Aarhus University Seal / Aarhus Universitets segl

A global operator approach to WZNW models via Krichever-Novikov type algebras

Martin Schlichenmaier
( University of Luxembourg )
Seminar
Thursday, 7 March, 2013, at 15:00-16:00, in Aud. D2 (1531-119)
Abstract:
We present a global operator approach to Wess-Zumino-Novikov models for compact Riemann surfaces of arbitrary genus g with N marked points.
The approach is based on the multi-point Krichever-Novikov algebras of global meromorphic functions and vector fields, and the global algebras of affine type and their representations.
Using the global Sugawara construction and the identification of a certain subspace of the vector field algebra with the tangent space to the moduli space of the geometric data, the Knizhnik-Zamalodchikov connection is defined.
For fermionic representations it defines a projectively flat connection on the vector bundle of conformal blocks.
The presented work is joint work with Oleg Sheinman.
Organised by: QGM
Contact person: Jørgen Ellegaard Andersen