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Abstract

This dissertation consists of several projects. In the first we introduce the
notions of Demazure descent data (DDD) for a triangulated category. This is a
collection of functors satisfying a categorical version of degenerate Hecke algebra
relations. For such data we define the descent category which can be seen as
a categorical version of taking invariants. We construct such data explicitly for
the derived category of representations of a Borel subgroup B of an reductive
algebraic group G and more generally for the derived category of B-equivariant
quasi-coherent sheaves on a G-scheme X. We prove that the derived categories of
representations ofG and ofG-equivariant quasi-coherent sheaves onX is equivalent
to their respective descent categories. The result for quasi-coherent sheaves is a
categorification of a result in K-theory by Harada, Landweber and Sjamaar.

The next project studies the absolute derived category of equivariant matrix
factorizations, where the potential is induced by the moment map of the Hamilton-
ian action ofG on the cotangent bundle of a smooth complexG-variety. Combining
results of Isik and Polishchuk-Vaintrob one obtains that in the non-equivariant set-
ting this category is equivalent to the derived category of coherent sheaves on the
zero scheme of the moment map. We prove that this result extends to the equivari-
ant setting. This provides an equivalence between the equivariant absolute derived
category of matrix factorizations and the derived category of coherent sheaves on
the Hamiltonian reduction.

The last project is inspired a by a construction by Bezrukavnikov and Riche of
a categorical action of the affine braid group on the equivariant derived category
of coherent sheaves on both the Grothendieck and the Springer variety. We use
this result to construct such an action on the equivariant absolute derived category
of a slightly modified version of the matrix factorizations studied in the previous
project.
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Résumé

Denne afhandling indeholder flere projekter. I det første introducerer vi begre-
bet Demazure descent data (DDD). Dette er en samling af funktorer som opfylder
en kategorisk udgave af degenerate Hecke algebra relationer. For denne data de-
finerer vi descent kategorien der kan ses som kategorisk måde at tage invarianter
på. Vi konstruerer denne data eksplicit for den afledte kategori af repræsentationer
af en Borel undergruppe B af en reduktiv algebraisk gruppe G, og mere generelt
for den afledte kategori af B-ækvivariante kvasi-koherente knipper på et G-skema
X. Vi viser at de afledte kategorier af repræsentationer af G og af G-ækvivariante
kvasi-koherente knipper på X er ækvivalente til deres respektive descent kate-
gorier. Resultatet for kvasi-koherente knipper er en kategorifisering af et resultat
i K-theori af Harada, Landweber og Sjamaar.

Det næste projekt studerer den absolute afledte kategori af af ækvivariante
matrix faktorisationer, hvor potentialet er induceret af moment afbildningen for
den Hamiltoniske virkning af G på kotangent bundtet af en glat kompleks G-
varietet. Ved at kombinerer resultater af Isik og Polishchuk-Vaintrob får man at i
det ikke-ækvivariante tilfælde er denne kategori ækvivalent til den afledte kategori
af koherente knipper på nul-skemaet af moment afbildningen. Vi viser at dette re-
sultat kan generaliseres til den ækvivariantte situation. Denne giver en ækvivalens
mellem den ækvivariante absolute afledte kategori af matrix faktorisationer og den
afledte kategori af koherente knipper på den Hamiltoniske reduktion.

Det sidste projekt er inspireret af en konstruktion af Bezrukavnikov og Riche
af en kategorisk virkning af den affine braid gruppe på den ækvivariante afledte
kategori af koherente knipper på både Grothendieck og Springer varieteten. Vi
anvender dette resultat til at konstruere en sådan virkning på den ækvivariante
afledte kategori af koherente knipper på en let modificeret udgave af de matrix
factorisationer vi studerede i det foregående projekt.
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CHAPTER 1

Introduction

1.1. Introduction

There are many trends in modern representation theory. One is to realize
algebraic objects as homological invariants (Borel-Moore homology, topological
and algebraic K-theory) of spaces of different geometric nature (topological spaces,
manifolds, algebraic varieties). Another one is categorification, in which algebraic
objects are replaced by categories and morphisms by functors.

1.1.1. Geometric realizations of algebraic objects. One advantage of
geometric realizations in terms of homological invariants is that such invariants
often come with a tool box containing e.g. pull-backs, push-forwards, long exact
sequences. These can be used to construct new structures, which are natural in
this setting, but would have been very hard to come up with just looking at the
algebraic description. One example of a triumph of this approach is the well known
result of Kazhdan-Lusztig and Ginzburg realizing the group algebra of the Weyl
group as the top Borel-Moore homology of the Steinberg variety, where the algebra
structure on the later is given by a convolution. Using this description they were
able to classify all irreducible representations. By varying the homology theory
(e.g. replacing Borel-Moore homology by topological or algebraic K-theory) one
can get deformations of the group representation.

1.1.2. Idea of categorification. The idea of categorification is to replace an
algebraic object with a category from which the original object can be recovered
by passing to the Grothendieck group. A vector space V is replaced by a (Abelian,
differential graded or triangulated) category C whose Grothendieck group is iso-
morphic to the vector space. Additional structure should be encoded categorically
in such a way that the original structure is recovered in the Grothendieck group.
When passing to the Grothendieck group functors become morphisms so actions of
various kinds should be given by a collection of functors satisfying some relations.
The action of a group is encoded in the following way.

Definition 1.1. A categorical action of a group Γ on a category C is a collec-
tion of endofunctors {Fγ : C → C | γ ∈ Γ} satisfying Fγ1 ◦Fγ2 ' Fγ1γ2 for all γ1, γ2

in C.
Remark 1.2. Notice that we do not impose any assumptions on the isomor-

phisms. This is sometimes called a weak group action as opposed to a strong group
5



6 1. INTRODUCTION

action in which the isomorphisms are required to satisfy some commutativity con-
ditions.

One benefit of this approach is that categories offer higher flexibility and they
often come with a natural set of distinguished objects (e.g. indecomposable projec-
tive objects or simple objects). When passing to the Grothendieck group these ob-
jects defines a canonical basis for V and such bases often have interesting combina-
torial properties. Another advantage is that categories sometimes comes equipped
with a natural set of functors, which can be used to create new structures on
the vector space or study the existing ones. This is especially common when the
category is of a geometric nature such as sheaves (coherent, quasi-coherent, con-
structible, D-modules) on a space (variety, scheme). These categories usually have
tensor products and pull-back and push-forward along nice morphisms, which can
be used to define a convolution product on the category. A convolution on the
category can induce a ring structure on the Grothendieck group. This is the way
most of the ring structures arises on the geometric realizations of algebraic objects
mentioned above.

One of the most famous examples of a categorical approach to a result in
pure algebra is the Kazhdan-Lusztig conjecture from 1979 [KL1, Conj. 1.5]. The
conjecture is about the relation between the standard basis for the Hecke algebra
and a canonical basis invariant with respect to an involution. Since the Bernstein-
Gelfand-Gelfand category O for a semi-simple Lie algebra is a categorification of
the Hecke algebra the conjecture can also be translated into a question about the
relationship in the Grothendieck group between the Verma modules and the simple
modules. The conjecture was proved in 1981 independently by Beilinson and
Bernstein [BB] and by Brylinski and Kashiwara [BK] using geometrically defined
categories equivalent to category O such as perverse sheaves and D-modules. An
algebraic proof using the category of Soergel bimodules has recently been given by
Elias and Williamson [EW].

1.1.3. Categorifications of results in K-theory. In the opposite direction,
known constructions on the Grothendieck group can serve as inspiration for new
constructions on the categorical level. K-theory is the Grothendieck group of the
(derived) category of coherent sheaves so it is natural to try to lift K-theoretic
constructions to the level of (derived) categories. The first part of this thesis
construct such a lifting of a result by Harada, Landweber and Sjamaar [HLS].
They consider a algebraic variety X with an action of a split reductive algebraic
group G with a maximal torus T . The authors show that the natural Weyl group
action on the T -equivariant algebraic K-theory of X extends to an action of the
degenerate Hecke ring generated by divided difference operators. These operators
were originally introduced by Demazure and the corresponding operators on K-
theory are called Demazure operators. The main result is that G-equivariant
classes are exactly those T -equivariant classes, which are killed by the Demazure
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operators. Our goal is to replace the Demazure operators by Demazure functors
on the derived category of coherent sheaves on X equivariant with respect to a
Borel subgroup B (on the level of K-theory T -equivariance and B-equivariance
is the same, but this is not the case on the categorical level). We aim to lift
their main result to a categorical level showing that G-equivariant complexes are
those B-equivariant complexes on which the constructed Demazure functors act
as identity.

1.1.4. Matrix factorizations coming from Hamiltonian actions. Ma-
trix factorizations are pairs of coherent sheaves on a scheme X with morphisms
in each direction satisfying that both compositions are multiplication by a fixed
function on X, called the potential. They where originally introduced by Eisenbud
in [Eis] as a tool to study maximal Cohen-Macaulay modules. They have since
become a standard tool and an object of study in commutative algebra (see e.g
[BGS], [Yos]) and has also spread to other fields including topology and algebraic
geometry.

Since the composition is not zero the ordinary definition of the derived category
does not work. However, another notion of derived category for matrix factoriza-
tions has been defined and studied extensively by Positselski (see e.g. [Pos]). This
kind of derived category is called the absolute derived category. Following a sugges-
tion by Kontsevich it has been used in theoretical physics to describe D-branes of
type B in Landau-Ginzburg models (see [KaLi1] and [KaLi2]). They’ve also found
applications in various approaches to mirror symmetric and in the study of sigma
model/Landau-Ginzburg correspondence (see [KKP], [Efi2], [Sei], [BHLW] and
[HHP]). The mathematical foundations of these ideas is due to Orlov (see [Orl1],
[Orl2] and [Orl3]).

There are several known generalizations of matrix factorizations. One of them
is the notion of curved differential graded modules, which is also due to Positselski.
In this context they have been studied extensively by Positselski and Efimov in
the papers [Pos] and [EP]. It turns out that a lot of the homological algebra
machinery known from ordinary derived categories can be made to work on the
absolute derived category. Another generalization is to replace the category of
coherent sheaves by any Abelian category. In this setting the potential becomes
the application of a natural transformation w : Id → Id. This approach has been
developed in [Efi1].

We are mainly interested in the kind of matrix factorizations which comes from
a Hamiltonian action. More precisely, we are interested in matrix factorizations
on T ∗X × g, where g is the Lie algebra of a complex reductive algebraic group G
and X is a smooth complex G-variety. The potential W is the composition of the
moment map µ : T ∗X → g∗ times identity and the natural pairing g × g∗ → C.
However, most of our results work in greater generality. It has been proved by
Polishchuk and Vaintrob [PV] that in this case the absolute derived category of
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matrix factorizations is equivalent to the singularity category of W−1(0). Fur-
thermore, Isik proved that this singularity category is equivalent to the derived
category of coherent sheaves on the zero scheme of µ [Isik]. Our goal is to up-
grade this result to the equivariant setting. One reason such a result is interesting
is that it gives an equivalence between the equivariant absolute derived category
coming from a Hamiltonian action and the derived category of coherent sheaves
on the Hamiltonian reduction.

1.1.5. Braid group actions in representation theory. Categorical braid
group actions appear in many places in representation theory. For example it
turns out that many functors, which have now become standard tools in the study
of the Bernstein-Gelfand-Gelfand category O for a semisimple Lie algebra satisfy
braid relations. These include shuffling functors, Joseph’s completion functors
and Arkhipov’s twisting functors (see [MS]). Among other things they play an
important role in the study of Kazhdan-Lusztig combinatorics of the category O
(see [KL1]) together with other geometrically defined functors on perverse sheaves
and D-modules also satisfying braid relations.

Another case in which an affine braid group action plays an important role is
related to noncommutative resolutions of singularities of N (for a discussing see
[Bez3]). A noncommutative resolution of singularities is a sheaf of associative
ON -algebras A satisfying D(A − mod) ' D(Coh(Ñ )). It is determined up to
Morita equivalence by a t-structure on D(Coh(Ñ )) called the exotic t-structure.
The heart of this t-structure is called exotic sheaves and these can be described in
terms of a certain action of the affine braid group for the Langlands dual group on
D(Coh(Ñ )). Exotic sheaves are connected both to perverse sheaves on the affine
flag variety for the Langlands dual group, and to modular Lie algebra represen-
tations. This connection has been used to approach Lusztig’s conjecture [Lus]
relating the classes of irreducible g-modules to elements of the canonical basis in
the Borel-Moore homology of a Springer fiber. The appearance of the affine braid
group suggests a connection with homological mirror symmetry. This was the
motivation for Seidel and Thomas [ST] to study braid group actions on derived
categories of coherent sheaves.

In [BR] Bezrukavnikov and Riche constructed a categorical geometric action
of the affine braid on the bounded derived categories of G × Gm-equivariant co-
herent sheaves on both the Grothendieck and the Springer variety as well as their
DG-category analogs. Their construction works both in characteristic zero and
in positive characteristic with some mild restrictions on the characteristic. The
action has also been used by Bezrukavnikov and Mirković [BM] to prove several
conjectures by Lusztig about some numerical properties of representations of semi-
simple Lie algebras in positive characteristic. It also plays a technical role in the
study of Koszul duality for modular representations of semi-simple Lie algebras
(see [Ric2]). In section 7.1 we describe the construction of the categorical affine
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braid group action in [BR] in detail, since we will use it to construct a categorical
action of the affine braid group on matrix factorizations similar to the ones studied
in the previous project.

1.2. Chapter overview

In chapter 2 we recall the algebro-geometric realizations in terms of homology
or K-theory of some classical objects in representation theory. These realizations
are by now standard results in geometric representation theory and most of them
can be found in the book of Criss and Ginzburg [CG]. The realizations in this
section will not be used directly, but the schemes involved will be the main players
in this thesis, so this chapter can be seen as a motivation for why these particular
schemes are natural to study from a representation theory point of view.

Chapter 3 introduces the notion of Demazure descent data and descent category
for a triangulated category. These notions were first introduced by Arkhipov and
the author in the paper [AK1]. They can be seen as a categorification of a result
in K-theory by Harada, Landweber and Sjamaar [HLS], which we recall in the
first part of the chapter. For the purpose of this thesis it only serves as motivation
and is not used anywhere.

The content of chapter 4 is essentially the paper [AK1] by Arkhipov and the
author. Here we provide the first example of Demazure descent for the derived
category of representations of a reductive algebraic group G and a Borel subgroup
B. The main results are the construction of demazure descent data onDb(Rep(B)),
and a theorem stating that the descent category corresponding to this data is
equivalent to Db(Rep(G)). Since the schemes involved are affine the proof is largely
of an algebraic nature.

Chapter 5 is the paper [AK2] by Arkhipov and the author. In this paper we
extend the results of [AK1] to the derived category of equivariant quasi-coherent
sheaves on a G-scheme X. We define a convolution product on the quasi-coherent
Hecke category D(QCohG(G/B×G/B)) and a monoidal action of this category on
D(QCohB(X)). Demazure descent data on D(QCohB(X)) is constructed as con-
volution with certain elements. We prove that the corresponding descent category
is equivalent to D(QCohG(X)). This result is a categorification of the main result
in [HLS]. Although the results in the previous chapter is the special case X =
point of the results in this chapter, the proofs are not just direct generalizations of
the proofs in that chapter, since the algebraic setting is no longer sufficient when
X is not assumed to be affine. Instead the proofs in this chapter are entirely of an
algebro-geometric nature.

In chapter 6 we study equivariant matrix factorizations on the cotangent bundle
of a smooth complex G-variety X whose potentialW comes from the moment map
of the Hamiltonian action of G on T ∗X. The main result in this chapter is an
extension of the result mentioned in the introduction to the equivariant setting.
The result of Polishchuk-Vaintrob already works in this generality so the main
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content of this chapter is an extension of the result by Isik to the equivariant
setting. In Isik’s proof the main step uses linear Kozsul duality as developed by
Mirković and Riche in [MR1]. Mirković and Riche has later extended linear Koszul
duality to the equivariant setting in [MR3]. Our method of proof is to follow the
approach of Isik with the linear Koszul duality from [MR1] replaced by the one
from [MR3].

In chapter 7 we work with matrix factorizations on the product of the Grothen-
dieck variety and cotangent bundle to a smooth complex G-variety X with poten-
tial induced by the moment map. The main result is the construction of a categor-
ical action of the affine braid group on the equivariant absolute derived category of
matrix factorizations of this kind. The main source of inspiration for this project
is an affine braid group action constructed by Bezrukavnikov and Riche [BR]. In
their proof they construct a monoidal category with a monoidal action on these
categories. They then identify objects in the monoidal category whose convolution
with each other satisfy affine braid group relations. In our proof we also construct
a monoidal category with a monoidal action on the category we are interested in.
Using the direct analogy of the convolution in [BR] would result in a functor map-
ping into matrix factorizations with the wrong potential so some modifications are
needed. The generators of the affine braid group action our category are identi-
fied by constructing a monoidal functor from a full subcategory of the monoidal
category in [BR], containing the generators, to our monoidal category.

Chapter 8 contains suggestions for further projects which are natural extensions
of the projects presented in this dissertation.
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CHAPTER 2

Geometric realizations of objects in representation theory

2.1. Notations

We always work over an algebraically closed field of characteristic 0. Let
G be a reductive algebraic group, B a fixed Borel subgroup and T a maximal
torus contained in B. In this thesis all subgroups are closed. The weight lattice
Homalg(T,C∗) is denoted by X, and the coweight lattice Homalg(C∗, T ) by X∨. The
root and coroot system is denoted by Φ and Φ∨ respectively. Let W be the Weyl
group. The generator ofW corresponding to the root α ∈ Φ is denoted by sα. The
set of simple roots is denoted by Π = {α1, . . . , αn} and the corresponding set of
simple reflections by S. Recall thatW can be written as the group with generators
simple reflections and relations

sαsβsα · · · = sβsαsβ · · · m(α, β) factors,

s2
α = 1

The first type of relations are called braid relations. The minimal number of
factors needed to write w ∈ W as a product of simple reflections is denoted by
`(w). The function taking w to `(x) is called the length function. An expression
w = sαi1 · · · sαim with all sαik ∈ S is a reduced expression if m = `(w).

The (extended) affine Weyl group, Waff , is the semi-direct product W n X.
It acts on the complexification of the Lie algebra of the torus tC by affine linear
transformations and is generated by reflections in the hyperplanes

Hα,n := {v | (α, v) = n} α root, n ∈ Z

The connected components of the complement of all these hyperplanes are called
alcoves. The alcove

{v | 0 < (α, v) < 1 for all positive roots}

is the fundamental alcove.

Remark 2.1. The group Waff is not a Coxeter group. Classically, the affine
Weyl groupWCox

aff has been defined asW nZΦ. This is a Coxeter group associated
to the affine root system so it comes with a length function `. There is an iso-
morphism Waff ' WCox

aff o Ω, where Ω ⊂ Waff is the stabilizer of the fundamental
alcove under the standard action. Setting `(w) = 0 for w ∈ Ω one can extend ` to
Waff .

12
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The flag variety is the quotient B := G/B. The following spaces will play an
important role throughout the dissertation.

Definition 2.2. (1) The Grothendieck variety is the variety

g̃ := {(x, b) ∈ g× B | x ∈ b}.
(2) The projection µ : g̃→ g is called the Grothendieck-Springer resolution.
(3) An element x ∈ g is nilpotent if the map ad(x) : g → g is nilpotent.

The set of all nilpotent elements in g is called the nilpotent cone and is
denoted by N .

(4) The Springer variety is the preimage

Ñ := µ−1(N ) = {(x, b) ∈ N × B | x ∈ b}

and the restriction µ : Ñ → N is called the Springer resolution.
(5) The fiber product over the Springer resolution

Z := Ñ ×N Ñ = {(x, b), (x′, b′) ∈ Ñ × Ñ | x = x′}
is the Steinberg variety.

Remark 2.3. (1) Clearly, N is a closed Ad(G)-stable subvariety of g. It
is stable under k∗-dilations so it is a cone variety.

(2) There is an isomorphism

G×B b
∼→ g̃, (g, x) 7→ (g · x · g−1, g ·B/B).

In particular, g̃ is smooth and have a natural G-action. Similarly Ñ '
G×B n, where n is the Lie algebra of the unipotent radical.

(3) The Grothendieck-Springer resolution is proper since it factors through
g× B and B is projective.

(4) There is a natural G-equivariant vector bundle isomorphism Ñ ' T ∗B
(see [CG, Lemma 3.2.2]). In particular, Ñ is smooth and µ : Ñ → N is
a resolution of singularities.

2.2. Weyl groups

2.2.1. Finite Weyl group. The group algebra of the Weyl group can be con-
structed geometrically in terms of Borel-Moore homology. The results in this sec-
tion will not be needed anywhere but together with subsequent sections it provides
a beautiful example of the general principal in geometric representation theory of
passing from homology to K-theory and finally to categories. For details we refer
to section 2.6 and 2.7 in [CG].

Definition 2.4. Let X be a complex variety with one-point compactification
X̂ = X ∪ {∞}. The Borel-Moore homology of X is defined as

HBM
∗ (X) := H∗(X̂,∞),
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where H∗ is the ordinary relative homology with complex coefficients of the pair
(X̂,∞).

The one advantage of this type of homology is that any (not necessarily smooth
or compact) complex algebraic varietyX has a fundamental class [X] ∈ HBM

dimRX
(X).

Many constructions in ordinary homology induces constructions in Borel-Moore
homology. For example Borel-Moore homology has push-forward along proper
maps and a Künneth formula.

� : HBM
∗ (X1)⊗HBM

∗ (X2)
∼→ HBM

∗ (X1 ×X2).

For two closed subspaces X1, X2 inside X one can define a cap product

∩ : HBM
i (X1)×HBM

j (X2)→ HBM
i+j−dimRX

(X1 ∩X2).

This is done by transporting the cap product in cohomology to Borel-Moore ho-
mology using Poincaré duality (for details see section 2.6.15 in [CG]). Notice that
the top degree HBM

dimRX
is conserved under this operation. Set d := dimR Ñ and

let p13 : Ñ × Ñ × Ñ → Ñ × Ñ be the projection to the first and last factor. We
define a convolution product on HBM

d (Z) in the following way

∗ : HBM
d (Z)×HBM

d (Z)→ HBM
d (Z),

a ∗ b := p13∗((a� [Ñ ]) ∩ [Ñ ] � b)).

The convolution products on the level of K-theory and categories we are going to
work with later are similar in spirit.

Theorem 2.5. There is a canonical algebra isomorphism

HBM
d (Z) ' Q[W ]

Proof. This is theorem 3.4.1 in [CG]. �

One of the main applications of this geometrical realization is a classification of
isomorphism classes of simple W -modules. The Springer fiber for an element n ∈
N is Bx := µ−1(x). The centralizer C(x) is finite and acts on HBM

dimR Bx(Bx). Write
C(x)∧ for the set of irreducible representations of C(x) that occur in HBM

dimR Bx(Bx).
For ψ ∈ C(x)∧ let HBM

dimR Bx(Bx)ψ denote the ψ-isotypic component.

Theorem 2.6. Assume that G is semisimple. Then the set

{HBM
dimR Bx(Bx)ψ | G− conjugacy classes of pairs (x ∈ N , ψ ∈ C(x)∧)}

is the complete collection of isomorphism classes of simple W -modules.

Proof. This is theorem 3.6.9 in [CG]. �
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2.2.2. Affine Weyl group. A similar construction to the one above with
Borel-Moore homology replaced by T -equivariant K-theory gives a geometric re-
alization of the affine Weyl group. The analog of the convolution in Borel-Moore
homology is the tensor product in K-theory. Let X be a G-variety. The K-group
KG(X) is the Grothendieck group of CohG(X) and Db(CohG(X)). Let Y be an-
other G-variety and pX (resp. pY ) be the projection from X × Y to X (resp. Y ).
The functor

� : CohG(X)× CohG(Y )→ CohG(X × Y )

(F ,G) 7→ p∗XF ⊗OX×Y p∗Y G
is exact so it induces a function on equivariant K-theory. Assume that X is smooth
and let ∆ : X → X × X be the diagonal embedding. Equivariant K-theory also
has pull-back along G-equivariant closed embeddings so for any two closed subsets
Y1, Y2 one can define a tensor product

⊗ : KG(Y1)×KG(Y2)→ KG(Y1 ∩ Y2),

(F ,G) 7→ ∆∗(F � G).

Consider the G×C∗-action (we will need the C∗-action in the next section) on Ñ
given by

Ñ ' {(x, b) ∈ N × B | x ∈ b}
(g, z) · (x, b) := (z−1gxg−1, gbg−1).

The diagonal G×C∗-action on Ñ ×Ñ induces an action on Z, since the morphism
µ : Ñ → N is equivariant when the action of G×C∗ on N is given by (g, z) · x =
z−1gxg−1.

Theorem 2.7. There is a natural algebra isomorphism KG(Z) ' Z[Waff ].

Proof. This is theorem 7.2.2 in [CG]. �

2.3. Hecke algebras

Hecke algebras can be thought of as q-deformations of the group algebra of the
corresponding Weyl group.

Definition 2.8. The (finite) Hecke algebra, Hq, of the Coxeter group (W,S)
is the Z[q, q−1] algebra with generators {Ts | s ∈ S} and relactions
(i) TsαTsβTsα · · · = TsβTsαTsβ · · · with m(α, β) factors on both sides.
(ii) (Tsα + 1)(Tsα − q) = 0.

It can be rewritten in the following form.

Proposition 2.9. The Hecke algebra is isomorphic to the algebra with a free
Z[q, q−1] basis {Tw | w ∈ W} satisfying the following multiplication relations
(i) TyTw = Tyw if `(y) + `(w) = `(yw).
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(ii) (Ts + 1)(Ts − q) = 0 if s ∈ S.
Proof. This is [CG, Prop. 7.1.2]. �

Recall the Bruhat decomposition of G into a disjoint union
G = tw∈WBwB.

The Hecke algebra can be realized as an algebra of functions on a double coset.

Proposition 2.10. Let p be a prime number and set q = pn for some n ∈ N.
Then

Hq ⊗q→pn C ' C
(
B(Fq)\G(Fq)/B(Fq)

)
, Tw ↔ δBwB,

where δBwB is the function which is 1 on BwB and 0 elsewhere.

Notice that the group algebra Z[X] is isomorphic to the ring of representations
of T denoted by R(T ). Write eλ for the element in Z[X] corresponding to the
weight λ ∈ X.

Definition 2.11. The affine Hecke algebra, Haff , is a free Z[q, q−1]-module
with basis {eλ · Tw | w ∈ W,λ ∈ X}, such that

(1) The {Tw} span a subalgebra of Haff isomorphic to Hq.
(2) The {eλ} span a Z[q, q−1]-subalgebra of Haff isomorphic to R(T )[q, q−1].
(3) For sα ∈ S with 〈λ, α∨〉 = 0 we have Tsαeλ = eλTsα .
(4) For sα ∈ S with 〈λ, α∨〉 = 1 we have Tsαesα(λ)Tsα = qeλ.

Using infinite dimensional spaces one can get a description of the affine Hecke
algebra analogous to the one for the finite Hecke algebra. Set F := Fqn((t)) and
O := Fqn [[t]]. The inclusion O ↪→ F and the morphism O → Fq given by evaluation
at 0 induce morphisms of algebraic groups

G(F ) G(O)

��

? _oo

G(Fqn)

The analog of the Borel subgroup is the Iwahori subgroup I ⊂ G(O) which is the
preimage of B(Fqn).

Proposition 2.12. There is an isomorphism

Haff ⊗q→pn C
∼→ C

(
I\G(F )/I

)
, Tw ↔ δIwI .

The affine Hecke algebra also have a geometric realization similar to the one
for Z[Waff ]. Every irreducible representation of the group C∗ is of the form z 7→ zn

for some n ∈ Z so there are natural ring isomorphisms
R(C∗) ' Z[q, q−1], R(T × C∗) ' R(T )[q, q−1].

Thus, the extra Z[q, q−1]-module structure corresponds to introducing a C∗-action.
Let Z∆ ⊂ Ñ × Ñ be the diagonal.
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Theorem 2.13. There is a natural algebra isomorphism KG×C∗(Z) ' Haff

making the following diagram commutative

KG×C∗(Z∆) �
� //

∼

��

KG×C∗(Z)

∼

��
R(T )[q, q−1] �

� // Haff

Proof. This is theorem 7.2.5 in [CG]. �

Remark 2.14. A classification of simple modules over Haff along the same
lines as the one for Z[W ] has been obtain by Kazhdan and Lusztig in [KL2, Thm
7.1.2].

2.4. Braid groups

We will consider the braid monoid when defining Demazure descent in the next
chapter.

Definition 2.15. The monoid Br+ with generators {Tw, w ∈ W} and relations
Tw1Tw2 = Tw1w2 if `(w1) + `(w2) = `(w1w2) in W

is called the braid monoid of G.

In chapter 7 we deal with categorical actions of the affine braid group defined
below. Note that in some papers this is called the extended affine braid group and
the name affine braid group is used for a different group.

Definition 2.16. The (extended) affine braid group Baff is the group with
generators {Tw, w ∈ Waff} and relations

Tw1Tw2 = Tw1w2 if `(w1) + `(w2) = `(w1w2) in Waff

The affine braid group also has another presentation, which is the one used by
Bezrukavnikov and Riche.

Theorem 2.17. [BR, Thm 1.1.3] The affine braid group Baff admits a presen-
tation with generators {Tα | α ∈ Π} ∪ {θx | x ∈ X} and relations:

(1) TαTβTα · · · = TβTαTβ · · · with m(α, β) factors on each side.
(2) θxθy = θx+y.
(3) Tαθx = θxTα if 〈x, α〉 = 0, i.e. sα(x) = x.
(4) θx = Tαθx−αTα if 〈x, α〉 = 1, i.e. sα(x) = x− α.
If G is simply-connected the affine braid group can be realized geometrically

as the fundamental group

Baff = π1

(
tC\
⋃
α,nHα,n

WCox
aff

)
.

Categorifications of braid groups has been studied by Rouquier in [Rou].
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2.5. Demazure operators

2.5.1. Definitions. Demazure operators were introduced by Demazure in
[Dem1]. The original application was to calculate the characters of simple mod-
ules for a semi-simple Lie algebra. The Demazure operators provide a factorization
of the Weyl character formula. Recall the identification R(T ) = Z[X].

Definition 2.18. Let αi ∈ Π. The Demazure operator δi is the endomorphism
of R(T ) given by

δi(u) :=
u− e−αisαi(u)

1− e−αi
.

Note that 1 − e−αi divides u − e−αisαi(u) so δi(u) is a finite sum. Demazure
observed that

δ2
i = δi.

He also proved the following proposition

Proposition 2.19. Let w ∈ W with a reduced expression w = si1 · · · sin. Then
δw := δαi1 · · · δαin

is independent of the choice of reduced expression.

Definition 2.20. The affine 0-Hecke algebra, H0
aff is the R(T )-algebra gener-

ated by {δi | αi ∈ Π}.

Remark 2.21. We will often call H0
aff the degenerate Hecke algebra. We warn

the reader that some sources use this name for the algebra one gets by setting
q = 0 in the definition of the affine Hecke algebra.

2.5.2. Geometric realization. Assume that G is a finite-dimensional, semi-
simple, connected, simply-connected, complex algebraic group. Then H0

aff has the
following geometric realization:

Theorem 2.22 ([KK]). There is an isomorphism H0
aff ' KT (B).

Proof. Using [KK, Thm 3.13] one gets an action of H0
aff on KT (B) (note that

δw is yw in their notation). The Schubert variety Xw is the closure of BwB/B in
G/B. Let Ow denote the structure sheaf OXw extended by zero to B. By [KK,
Lemma 4.9 and Prop. 4.10] the elements {[Ow]}w∈W form a R(T )-basis for the
R(T )-module KT (B). Let ∗ : KT (B) → KT (B) be the involution taking a vector
bundle to its dual. The H0

aff-action in this basis is given by [KK, Lemma 4.12]:

δi(∗[Ow]) =

{
∗[Ow] if wsi < w

∗[Owsi ] if wsi > w

Thus, KT (B) is generated by ∗[Oe] as a H0
aff module. �



CHAPTER 3

Demazure descent

3.1. Demazure operators on K-theory

The main motivation for the definition of Demazure descent is to try to cate-
gorify the following result by Harada, Landweber and Sjamaar:

Theorem 3.1. [HLS, Prop. 6.5 and 6.6] Let X be a quasi-projective k-scheme
with a G action

(1) There is a natural action of H0
aff on KT (X).

(2) There is an isomorphism

KG(X)
∼→ KT (X)I(H

0
aff),

where I(H0
aff) := {∆ ∈ H0

aff | ∆(1) = 0} and 1 is the identity element in
R(T ).

We will not give the complete proof, but we will give their construction theH0
aff-

action on KT (X). Their construction works for K∗G(X) := KG(X)⊕K−1
G (X), but

we are only interested inKG(X). The groupKT (X) has a naturalKT (pt) ' R(T )-
module structure so we only need to define the action of the δi’s.

The closed embeddings j : T ↪→ G and k : T ↪→ B induces pull-back morphisms
on the K-groups

j∗ : KG(X)→ KT (X),

k∗ : KB(X)→ KT (X).

Since B is contractible to T the map k∗ is an isomorphism. The projection pr :
X × B → X is a projective G-morphism since B is projective. Hence, it induces
pull-back and push-forward morphisms on the K-groups

pr∗ : KG(X)→ KG(X × B),

pr∗ : KG(X × B)→ KG(X).

Finally, the closed embedding i : X ' X × [B] ↪→ X ×B induces an isomorphism

i∗ : KG(X × B)
∼→ KB(X).

Notice that j∗ can be written as j∗ = k∗i∗pr∗. It has a left inverse given by

j∗ = pr∗(i
∗)−1(k∗)−1

19
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The composition δ := j∗j∗ is a Demazure operator corresponding to the whole
group.

For a simple root αl we define Gl := Z(kerαl) with embedding jl : T ↪→ Gi.
Let Bl be a Borel in Gl containing T and kl : T ↪→ Bl the embedding. Replacing
G by Gl and B by Bl in the above definition we get

j∗l = k∗l i
∗
l pr∗l , jl∗ = prl∗(i

∗
l )
−1(k∗l )

−1.

δl := j∗l jl∗.

The δl together with the R(T )-action generate the H0
aff-action in (1). The isomor-

phism in (2) is given by j∗.

3.2. Demazure descent

In this section we introduce the notion of Demazure descent on a triangulated
category C. Demazure descent data is supposed to be a categorical version of the
Demazure operators part of the H0

aff-action in [HLS]. To categorify the action of
the Demazure operators we require our functors to satisfy the same kind of rela-
tions. The first step is to require it to satisfy the braid relations from proposition
2.19.

Definition 3.2. A weak braid monoid action on the category C is a collection
of triangulated functors

Dw : C → C, w ∈ W
satisfying braid monoid relations, i.e. for all w1, w2 ∈ W there exist isomorphisms
of functors

Dw1 ◦Dw2 ' Dw1w2 , if `(w1w2) = `(w1) + `(w2).

Notice that we neither fix the braid relations isomorphisms nor impose any
additional relations on them.

Now, we would like to impose the δ2
i = δi condition. In [HLS] the Demazure

operators were constructed as a composition of two maps, which on the categorical
level, come from a pair of adjoint functors. The composition of a functor with its
left adjoint produces a comonad [Mac, section VI.1].

Definition 3.3. A comonad in a category, C, consists of a functor D : C → C
and natural transformations

η : D → D2, ε : D → Id,

for which the following diagrams are commutative

D
η //

η
��

D2

Dη
��

D2
ηD
// D3

D

η
��

Id ◦D D2
εD
oo

Dε
// D ◦ Id
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This gives a natural way to impose the idempotentcy condition.

Definition 3.4. Demazure descent data on a triangulated category C is a
weak braid monoid action {Dw} such that for each simple root si the corresponding
functorDsi is a comonad for which the comonad mapDsi → D2

si
is an isomorphism.

Given a fixed Demazure descent data {Dw, w ∈ W} the categorical analog of
the invariance from theorem 3.1 is the descent category.

Definition 3.5. The descent category Desc(C, Dw, w ∈ W ) is the full subcat-
egory in C consisting of objects M such that for all i the cones of the counit maps
Dsi(M)

ε→M are isomorphic to 0.

Notice that the requirement that the cone of a map is isomorphic to 0 is
equivalent to the map being an isomorphism.

Remark 3.6. Suppose that C has functorial cones. Then Desc(C, Dw, w ∈ W )
a full triangulated subcategory in C being the intersection of kernels of Cone(Dsi →
Id). However, one can prove this statement not using functoriality of cones.

Definition 3.7. An object X in C is a comodule over the comonad D if
there exists a morphism c : X → D(X) such that the following diagrams are
commutative.

X
c //

c

��

D(X)

ηX
��

D(X)
Dc
// D2(X)

X
c // D(X)

εX
��
X

Lemma 3.8. An object M ∈ Desc(C, Dw, w ∈ W ) is naturally a comodule over
each Dsi.

Proof. By definition the comonad maps

η : Dsi → D2
si
, ε : Dsi → Id

makes the following diagram commutative

Dsi

η

��
Dsi ◦ Id D2

siDsiε
oo

For Demazure descent data we require that η is an isomorphism, so Dsiε is also an
isomorphism. Let M ∈ Desc(C, Dw, w ∈ W ). By assumption εM : Dsi(M) → M
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is an isomorphism so we have a commutative diagram.

M
ε−1
M //

ε−1
M
��

Dsi(M)

ηM
��

Dsi(M)
DsiεM

−1
// D2

si
(M)

The second diagram in the definition is clearly commutative so ε−1
M defines a co-

module structure on M . �

Remark 3.9. In the usual descent setting either in Algebraic Geometry or
in abstract Category Theory (Barr-Beck theorem) descent data includes a pair of
adjoint functors and their composition which is a comonad. By definition, the
descent category for such data is the category of comodules over this comonad.
Our definition of Desc(C,Dw, w ∈ W ) for Demazure descent data formally is
not about comodules, yet the previous lemma demonstrates that every object of
Desc(C,Dw, w ∈ W ) is naturally equipped with structures of a comodule over each
Dsi , and any morphism in Desc(C,Dw, w ∈ W ) is a morphism of Dsi-comodules.



CHAPTER 4

Demazure descent for representations

4.1. Categories of representations.

For a linear algebraic group G, we denote the Hopf algebra of polynomial
functions on G by O(G). Let Rep(G) be the category of O(G)-comodules. This is
an Abelian tensor category. For a closed subgroup H of G the H invariant part of
a M ∈ Rep(G) is defined as

MH := HomRep(H)(k,M).

Fix a Borel subgroup B. The minimal parabolic subgroup Pi corresponding
to the simple root αi is the parabolic subgroup containing B such that its Levi
subgroup has the root system {±αi}. For minimal parabolics the quotient map
G/B → G/Pi is a locally trivial fibration with fiber P1.

Using the natural Hopf algebra maps O(G) → O(B) and O(Pi) → O(B) we
get restriction functors

Resi : Rep(Pi)→ Rep(B), and Res : Rep(G)→ Rep(B).

The restriction functors are exact and naturally commute with taking tensor prod-
uct of representations. Consider the induction functors

Indi : Rep(B)→ Rep(Pi), M 7→ (O(Pi)⊗M)B,

Ind : Rep(B)→ Rep(G), M 7→ (O(G)⊗M)B.

This can also be reformulated in terms of cotensor products.

Definition 4.1. Let R be a ring and C a coalgebra over R. Consider a right
C-comodule M with coaction map ρM : M → M ⊗R C and a left C-comodule N
with coaction map ρN : N → C ⊗R N . The cotensor product consists of a ring
N ⊗CR M together with a morphism φ : N ⊗CR M → N ⊗RM such that

(ρM ⊗ Id) ◦ φ = (Id⊗ρN) ◦ φ

and satisfying the following universal property: for any ring Y and morphism
h : Y →M ⊗RN with (ρM ⊗ Id)◦h = (Id⊗ρN)◦h there exist a unique morphism

23
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u : Y → N ⊗CR M making the following diagram commutative

M ⊗CR N
φ // M ⊗R N

ρM⊗Id //

Id⊗ρN
// M ⊗R C ⊗R N

Y

u

OO

h

88

Lemma 4.2. Let M ∈ comod−O(B) and N ∈ O(B)− comod. Then

M ⊗O(B) N ' (M ⊗N)B.

Proof. M⊗O(B)N is the subring ofM⊗N on which coacM⊗ Id = Id⊗coacN
so
∑
mi⊗ni ∈M⊗O(B)N if and only if

∑
coacM(mi)⊗ni−

∑
mi⊗coacN(ni) = 0.

By Nullstellensatz this is equivalent to

evb

(∑
coacM(mi)⊗ ni −

∑
mi ⊗ coacN(ni)

)
= 0 for all b ∈ B,

where evb is the evaluation at b. By definition of the B module structure (See
[Jant, Section 2.8])

evb

(∑
coacM(mi)⊗ ni −

∑
mi ⊗ coacN(ni)

)
=
∑

mib⊗ ni −
∑

mi ⊗ bni

This is exactly the requirement
∑
mi ⊗ ni ∈ (M ⊗N)B. �

Using the lemma we can rewrite the induction functors as

Indi : Rep(B)→ Rep(Pi), M 7→ O(Pi)⊗O(B) M,

Ind : Rep(B)→ Rep(G), M 7→ O(G)⊗O(B) M.

Set ∆i := Resi ◦ Indi

�

Rep(B) and ∆ := Res ◦ Ind

�

Rep(B). Notice that ∆i

and ∆ are left exact, since the induction functors are left exact.

4.1.1. The derived categories. For an algebraic group H, the regular co-
module O(H) is injective in Rep(H), moreover for any M ∈ Rep(H) the coaction
map M → O(H) ⊗M provides an embedding of M into an injective object. In
particular, Rep(H) has enough injectives. The algebraic De Rham complex Ω•(H)
provides an injective resolution for the trivial comodule, of the length equal to
the dimension of H. For any M ∈ Rep(H) the complex Ω•(H) ⊗M provides an
injective resolution forM of the same length. Thus, Rep(H) has finite homological
dimension. In particular, we have a right derived functor for any left exact functor
in the bounded derived categories Db(Rep(B)), Db(Rep(Pi)) and Db(Rep(G)). Let
Li and L be the derived functors of Resi and Res respectively. Denote the right
derived functors of Indi and Ind by Ii and I respectively. Set Di = Li ◦ Ii and
D = L ◦ I.
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4.2. Main theorem

The main theorem in this chapter is the following.

Theorem 4.3. Let w ∈ W and let w = si1 · · · sin be a reduced expression.
Then Dw := Di1 ◦ · · · ◦Din is independent of the choice of reduced expression and
the {Dw}w∈W form Demazure descent data on Db(Rep(B)).

Schubert and Bott-Samuelson schemes play an important role in the proof of
the main theorem in this chapter and also of the main theorem in the next, so we
will take a moment to introduce them before starting the proof.

4.2.1. Schubert schemes. For w ∈ W we define the Schubert scheme Xw to
be the closure of BwB/B in G/B. It is known that

Xw = tw′≤wBw′B/B,
where ≤ is the Bruhat order. In other words the union is over element in W
which can be obtained from an expression for w by deleting a number of simple
reflections. In particular, if w0 denotes the unique longest element in W then
Xw0 = G/B.

Lemma 4.4. [Dem2, Coro. 5.1] Schubert schemes are normal.

Schubert schemes are generally singular, but they have a resolution of singu-
larites given by so-called Bott-Samelson schemes: Consider the B×· · ·×B-action
on Pi1 × · · · × Pin given by

(b1, . . . , bn) · (pi1 , . . . , pin) = (pi1b1, b
−1
1 pi2b

−1
2 , . . . , bn−1pinbn)

The quotient by this action is called the Bott-Samelson scheme and is denoted by
Xi1...in := Pi1 ×B · · · ×B Pin/B.

The multiplication m : Pi1 × · · ·Pin → Pi1 · · ·Pin factions though Xi1...in giving a
morphism

m̄ : Xi1...in → Pi1 · · ·Pin/B.
Notice that Xi1...in is complete since Pik/B ' P1 is complete. This implies that m̄
is proper.

Lemma 4.5. Let w = si1 · · · sin be a reduced expression. Then

Pi1 · · ·Pin = tw′≤wBw′B,
where the union is over all w′ ∈ W which is ≤ w in the Bruhat order.

Proof. The proof goes by induction on n = `(w). It is true for n = 1 by
definition of Pi. Set v = si1 · · · sin−1 . Using the hypotheses we get

Pi1 · · ·Pin−1Pin =
( ⋃
w′≤v

Bw′B
)

(B ∪BsinB) =
⋃
w′≤v

Bw′B ∪
⋃
w′≤v

(Bw′B)(BsinB)
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Let w′ be any element in W and s a simple reflection. Then by [Hum2, Cor.
28.3] we have (Bw′B)(BsB) ⊆ Bw′sB ∪ Bw′B. Thus, if w′sin ≤ w′ ≤ v then
(Bw′B)(BsinB) is contained in the first union. If w′ ≤ w′sin then we have
(Bw′B)(BsinB) = Bw′sinB by [Hum2, Lemma 29.3A and section 29.1]. Thus,
the product can be written as

Pi1 · · ·Pin =
⋃
w′≤v

Bw′B ∪
⋃
w′≤v

w′≤w′sin

Bw′sinB

=
⋃
w′≤v

Bw′B ∪
⋃

w′′sin≤v,
w′′sin≤w′′

Bw′′B

Claim 4.6. The conditions w′′sin ≤ v and w′′sin ≤ w′′ are equivalent to the
conditions w′′ ≤ w and w′′sin ≤ w′′.

Proof of the claim. Assume that w′′sin ≤ v. By [Hum3, Prop. 5.9] this
implies that w′′ ≤ v or w′′ ≤ vsin = w. In both cases we get w′′ ≤ w since v ≤ w.
Assume now that w′′ ≤ w and w′′sin ≤ w′′. w′′ has a reduced expression of the
form

w′′ = si1 · · · ŝij1 · · · ŝij2 · · · ŝijk · · · sin ,
where theˆ indicates that the term has been removed from the product. If jk 6= n
then

w′′sin = si1 · · · ŝij1 · · · ŝij2 · · · ŝijk · · · sin−1 ≤ si1 · · · sin−1 = v.

If jk = n then w′′ ≤ v. Since w′′sin ≤ w′′ by assumption we get w′′sin ≤ v. �

If w′ ≤ v in the first union satisfies that w′sin ≤ w′ then it is also contained in
the second union. Using the claim we get

Pi1 · · ·Pin =
⋃
w′≤v

w′≤w′sin

Bw′B ∪
⋃

w′′≤w,
w′′sin≤w′′

Bw′′B

Assume that w′ ≤ w and w′ ≤ w′sin . Then w′ has a reduced expression of the
form

w′ = si1 · · · ŝij1 · · · ŝij2 · · · ŝijk · · · sin .
If jk = n then w′ ≤ v. If jk 6= n then w′sin ≤ v, but since w′ ≤ w′sin we get
w′ ≤ v. Hence, the conditions w′ ≤ v and w′ ≤ w′sin can be replaced by w′ ≤ w
and w′ ≤ w′sin . Thus,

Pi1 · · ·Pin =
⋃
w′≤w

w′≤w′sin

Bw′B ∪
⋃

w′′≤w,
w′′sin≤w′′

Bw′′B =
⋃
w′≤w

Bw′B.

This finishes the induction step. �
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By the lemma, when si1 · · · sin is a reduced expression, then we have a morphism

m̄ : Xi1...in → Xw.

This morphism is called the Bott-Samelson resolution and it is a resolution of
singularities.

4.2.2. Comonad structure of functors associated to simple roots. In
this section we prove that the Dsi ’s are comonads for which Dsi → D2

si
is an

isomorphism. The braid relations are proved in the next section. The proof of the
first part of the following technical lemma is essentially some extra observations
added to the proof of [CPS, Lemma 2.2].

Lemma 4.7. (1) O(Pi1 ×B · · · ×B Pik) ' O(Pi1 · · ·Pik)
(2) Hq

(
Pi1 × · · · × Pin ,

(
OPi1 ⊗ · · · ⊗ OPin

)B×···×B)
= 0 for q > 0.

For the proof we need the lemma.

Lemma 4.8. Let f : X → Y be a surjective proper morphism and suppose
further that f is a birational isomorphism and Y is a normal variety. Then f# :
O(Y )→ O(X) is an isomorphism.

Proof. See [EGA, III, 4.3.12] �

Proof of lemma 4.7. The multiplication morphism factors as

Pi1 × · · · × Pin
π→ Pi1 ×B · · · ×B Pin

m′→ Pi1 · · ·Pin
Consider the functor

F : QCohB×···×B(Pi1 × · · · × Pin)→ QCoh
(
Pi1 ×B · · · ×B Pin

)
,

F (M)(U) = (π∗(M)(U))B×···×B

For global sections we have

F (M) = F (M)(Pi1 ×B · · · ×B Pin)

= (M(π−1(Pi1 ×B · · · ×B Pin))B×···×B

= (M(Pi1 × · · · × Pin))B×···×B

= MB×···×B

On the other hand

F (M) = F (M)(Pi1 ×B · · · ×B Pin) ' m′∗(F (M))(Pi1 · · ·Pin) = m′∗(F (M))

so MB×···×B ' m∗(F (M)). This also gives an equivalence of the derived functors
R( )B×···×B ' R(m′∗ ◦F ). For M = OPi1×···×Pin we have F (M) = OPi1×B ···×BPin so

Hq
(
Pi1 × · · · × Pin ,

(
OPi1 ⊗ · · · ⊗ OPin

)B×···×B) ' Rqm′∗

(
OPi1×B ···×BPin

)
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To prove that this vanishes we will construct a cartesian diagram of locally trivial
principal B-bundles inspired by the proof of [CPS, Lemma 2.2]. Recall the Bott-
Samelson resolution for a reduced expression w = si1 · · · sin from section 4.2.1

m̄ : Xi1...in → Xw.

As previously mentioned the Bott-Samelson resolution is proper. By [Dem2,
Proposition 3.2]

m′ : Yi1···in := Pi1 ×B · · · ×B Pin → Pi1 · · ·Pin
is a birational isomorphism. The quotient maps π : Yi1...in → Xi1...in and π′ :
Pi1 · · ·Pin → Xw are locally trivial principal B-bundles. Since Pin/B is complete
π is proper. We have a commutative diagram

Yi1...in
m′ //

π

��

Pi1 . . . Pin

π′

��
Xi1...in m̄

// Xw

By [Ser][(3.1)] any locally trivial principal B-bundle F which fits into the diagram
(with F → Pi1 · · ·Pin equivariant) is isomorphic to Xi1...in ×Xw Pi1 · · ·Pin . Hence,
the diagram is cartesian so we have the formula

Lπ
′∗ ◦Rm̄∗ ' Rm′∗ ◦ Lπ∗.

The Schubert varieties are normal, so we can apply lemma 4.8 to m̄ and get

O(Xi1...in) ' O(Pi1 · · ·Pin/B).

Properness is conserved under base change so m′ is also proper. Applying lemma
4.8 to m′ we get

O(Pi1 ×B · · · ×B Pin) ' O(Pi1 . . . Pin).

Proposition 5.2 and 5.3 in [Dem2] gives that

Rqm̄∗(OXi1...in ) = 0 q > 0.

Notice that Lπ∗(OXi1...in ) = OYi1...in (OYi1...in is the only non-zero term in the
complex and is siting in degree 0). Inserting this we get

Rqm′∗
(
OPi1×B ···×BPin

)
= Rqm̄∗(OXi1...in ) = 0 q > 0. �

Notice that the lemma applied to only one O(Pi) shows that Ii takes the trivial
O(B)-comodule to the trivial O(Pi)-comodule. Using this and a couple of other
nice properties for Indi and Resi we can prove that Di are comonads (the proofs
are identical for Ind, Res and D).

Proposition 4.9.
(a) The functor Li is left adjoint to Ii.
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(b) For M ∈ Db(Rep(B)) and N ∈ Db(Rep(Pi)) we have the tensor identitiy:

Ii(M ⊗ Li(N)) ' Ii(M)⊗N.

(c) The Di’s are comonads for which the comonad map Di → D2
i are isomor-

phisms.
The same is true for L and I.

Proof. (a) By proposition 3.4 in [Jant] Indi is right adjoint to Resi. The
derived functors of a pair of adjoint functors are also adjoint [Stacks, Lemma
13.28.4.]. (b) The tensor identity

Indi(M ⊗ Resi(N)) ' Indi(M)⊗N

is proposition 3.6 in [Jant]. Consider the functor Ii(M ⊗ Li(N)). Let J denote
the operation of taking resolutions. Then the derived functor can be written as

Indi
(
J(N)⊗ J(Resi(J(M)))

)
For any X we have that X ⊗ I is injective if I is injective. Therefore, J(N) ⊗
Resi(J(M)) is another injective resolution. Hence,

Indi

(
J(N)⊗ J

(
Resi(J(M))

))
' Indi

(
J(N)⊗ Resi(J(M))

)
' Indi(J(N))⊗ J(M).

This is exactly Ii(N) ⊗ M so we get the derived tensor identity. (c) Part (a)
together with [Mac, section VI.1] shows that the Di’s are comonads. Since Ii take
the trivial O(B) comodule to the trivial O(Pi) comodule inserting M = k into (b)
we get Ii ◦Li(N) ' N for N ∈ Db(Rep(Pi)). Thus, Id

∼→ Ii ◦Li. From this we get
the desired isomorphism

Di = Li ◦ Ii = Li ◦ Id ◦ Ii
∼→ Li ◦ Ii ◦ Li ◦ Ii = D2

i . �

Remark 4.10. It follows that the restriction functors Li and L are fully faithful.

4.3. Braid relations

For the braid relations we will need to consider compositions of induction func-
tors. First we will consider a slightly more general setting.

Let C be a coalgebra and let Q ∈ C-mod-C. Assume that Q has an injective
resolution J(Q) as a C�C module. Assume also that Res : C�C → 1�C takes
injectives to injectives. We have the functor

F : C-comod→ C-comod, M 7→ Q⊗C M.

We want to study its right derived functor. Let ⊗CR denote the right derived functor
of ⊗C .
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Lemma 4.11. Suppose we have Q1, Q2 ∈ C-comod-C with finite injective reso-
lutions J(Q1) and J(Q2) with H 6=0(J(Q2)⊗C J(Q1)) = 0 and functors F1 and F2

on C-comod given by

F1(X) = Q1 ⊗CR X, F2(X) = Q2 ⊗CR X.
Then F2 ◦ F1 = (Q2 ⊗C Q1)⊗CR.

Proof. Let I be injective. We have

F2 ◦ F1(I) = J
(
J(Q2)⊗C J

(
J(Q1)⊗C I

))
The derived cotensor product can be calculated by resolving any of the two factors
or both [EM, Section 5] so we have

J
(
J(Q2)⊗C J

(
J(Q1)⊗C I

))
= J

(
J(Q2)⊗C

(
J(Q1)⊗C I

))
= J

((
J(Q2)⊗C J(Q1)

)
⊗C I

)
.

Since H 6=0(J(Q2)⊗C J(Q1)) = 0 we have a quasi-isomorphism J(Q2)⊗C J(Q1) '
Q2 ⊗C Q1. Finite injective complexes are co-flat so (Q2 ⊗C Q1) ⊗C I is quasi-
isomorphic to

(
J(Q2)⊗C J(Q1)

)
⊗C I. We have proved that

F2 ◦ F1(I) = J
((
J(Q2)⊗C J(Q1)

)
⊗C I

)
= (Q2 ⊗C Q1)⊗CR I �

Lemma 4.7 shows that the above assumptions are satisfied in the case C =
O(B), Q1 = O(Pi1) and Q2 = O(Pi2)⊗O(B) · · · ⊗O(B) O(Pik). By induction

Di1 ◦ · · · ◦Din '
(
O(Pi1)⊗O(B) · · · ⊗O(B) O(Pin)

)
⊗O(B)
R

Thus, the study of composition of the Di’s reduces to the study of cotensor prod-
ucts of O(Pi)’s. Since B ⊆ Pi we can restrict the multiplication map from Pi
to B. The category of affine schemes is the opposite category of the category of
commutative rings so

Spec
(
O(Pi)⊗O(B) O(Pj)

)
' Coeq

(
Pi ×B × Pj

m×Id

⇒
Id×m

Pi × Pj
)
.

Let Y be a scheme and h a map Pi×Pj → Y such that h◦(m×Id) = h◦(Id×m).

m× Id(pi, b, pj) = (pib, pj), Id×m(pi, b, pj) = (pi, bpj, )

Hence, h factors through Pi ×B Pj uniquely. Thus,

O(Pi)⊗O(B) O(Pj) ' O(Pi ×B Pj).
Reviewing the proof we see that it extends to any number of factors

O(Pi1)⊗O(B) · · · ⊗O(B) O(Pin) ' O(Pi1 ×B Pi2 ×B · · · ×B Pin).
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Using lemma 4.7 this proves that

Di1 ◦ · · · ◦Din ' O(Pi1 · · ·Pin)⊗O(B)
R

By lemma 4.5 the product Pi1 · · ·Pin is independent of the choice of reduced ex-
pression. This finishes the proof of theorem 4.3.

4.4. The descent category

Theorem 4.12. Desc(Db(Rep(B)), Dw, w ∈ W ) is equivalent to Db(Rep(G)).

Proof. Let M ∈ Db(Rep(B). It is also in Db(Rep(G) if it is in the essential
image of L. If M ' D(M) = L ◦ I(M) then M is in the essential image. If
M = L(N) then

D(M) = L ◦ I ◦ L(N)
∼→ L(N) = M.

Thus, being in the essential image is equivalent to D(M) ' M . Let w0 =
si1 · · · sin be a reduced expression for the longest element in the Weyl group. Then
Pi1 · · ·Pin = G by lemma 4.5 so

D(M) ' Dw0(M) ' Di1 ◦ · · · ◦Din(M).

Thus, the descent category Desc(Db(Rep(B)), Dw, w ∈ W ) is a full subcategory in
the essential image of L. The restriction factor as

ResGB = Res
Pik
B ◦ResGPik

.

Passing to derived functors we get L ' Lik ◦ LResGPik
. Hence, objects in the

essential image of L are in the essential image of Lik for k = 1, . . . , n. By the above
argument this is equivalent to Dik(M) ' M so Db(Rep(G)) is a full subcategory
of Desc(Db(Rep(B)), Dw, w ∈ W ). �



CHAPTER 5

Demazure descent for equivariant quasi-coherent sheaves

5.1. Equivariant quasi-coherent sheaves on a scheme

Below we collect the main facts about equivariant quasi-coherent sheaves to be
used later. In this section, K denotes a not necessarily reductive algebraic group.

Let X be a K-scheme. Denote the action (resp., the projection) map K ×
X → X by ac (resp., by p). Consider further the multiplication map and two
projections m, p0, p1 : K × K × X → K × X and the coordinate embedding
s : X → K ×X, x 7→ (1, x).

Definition 5.1. A K-equivariant quasi-coherent sheaf on a K-scheme X is a
pair (M, θ), whereM ∈ QCoh(X) and θ is an isomorphism ac∗M ∼→ p∗M satisfying
m∗θ = p∗0θ ◦ p∗1θ and s∗θ = IdM . The category of K-equivariant quasi-coherent
sheaves on X is denoted by QCohK(X).

Let X be a K-scheme. The forgetful functor For : QCohK(X) → QCoh(X)
is exact and has an exact right adjoint functor AvK = ac∗p∗ called the averaging
functor. Being right adjoint to an exact functor implies that AvK takes injectives
to injectives. For any M ∈ QCoh(X) the natural map M → For ◦ AvK(M) is an
embedding. It follows that the category QCohK(X) has enough injective objects
since QCoh(X) has enough injectives (see [Bez1], Section 2).

Let f : X → Y be a K-equivariant map of K-schemes. The functors of
push-forward and pull-back are extended naturally to the categories of equivariant
sheaves:

f ∗ : QCohK(Y )→ QCohK(X), (M, θ) 7→ (f ∗M, f ∗θ ◦ canonical isomorphisms),

f∗ : QCohK(X)→ QCohK(Y ), (M, θ) 7→ (f∗M, (Id×f)∗θ ◦ canonical isomorphisms).

Notice that both f ∗ and f∗ commute with the forgetful functor For : QCohK(X)→
QCoh(X).

Let K,H be algebraic groups acting on a scheme X so that the actions com-
mute. Assume that X admits an H-equivariant quotient q : X → X/K which is a
locally trivial principal K-bundle. Denote the quotient scheme X/K by Y .

Lemma 5.2. The inverse image functor provides an equivalence of Abelian
categories QCohH(Y )→ QCohH×K(X).

32
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Proof. See [Bri], discussion in Section 2. �

In order for all derived functors to exist and to satisfy the same relations as in
the non-equivariant case we assume that allK-schemes are Noetherian, normal and
quasi-projective. To avoid further restrictions on X, we work in the unbounded
derived category DQCohK(X). Since it is exact the functor For extends to the
functor DQCohK(X) → DQCoh(X). Under these assumptions the following
derived functors exist.

Proposition 5.3. Assume that all schemes are Noetherian, normal and quasi-
projective. Then we have the following properties
(a) Any unbounded complex in QCohK(X) has a K-injective resolution and a K-

flat resolution.
(b) The tensor product has a left derived functor

⊗LX : DQCohK(X)×DQCohK(X)→ DQCohK(X).

(c) Let f : X → Y be a K-morphism. Then the derived functors exist

Lf ∗ : DQCohK(Y )→ DQCohK(X)

Rf∗ : DQCohK(X)→ DQCohK(Y ).

Proof. This is proposition 1.5.6 and 1.5.7 in [VV]. �

The equivariant derived functors satisfy many of the same relations as the
non-equivariant derived functors.

Proposition 5.4. Assume that all schemes are Noetherian, normal and quasi-
projective. Then the derived functors satisfy the following relations

(1) The functors Rf∗ and Lf ∗ commute with the forgetful functor.
(2) The functor Lf ∗ is left adjoint to Rf∗.
(3) The functors satisfy the projection formula, i.e. for N ∈ DQCohK(Y )

and M ∈ DQCohK(X) we have a canonical isomorphism

Rf∗N
L
⊗Y M ' Rf∗(N

L
⊗X Lf ∗M).

(4) The flat base change theorem also works in the equivariant setting: Let
g : Z → Y be a flat K-morphism. Consider the Cartesian square

Z ×Y X
f ′

��

g′ // X

f
��

Z
g // Y

The standard adjunction map provides an isomorphism of functors

Lg∗Rf∗ ' Rf ′∗Lg
′∗.
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Proof. This is section 1.5.8 and the discussion immediately after lemma 1.5.9
in [VV]. �

Remark 5.5. In [VV] proposition 5.3 this is proved under weaker assumptions,
but the stronger assumptions are needed for proposition 5.4.

5.2. Convolution and the quasi-coherent Hecke category

5.2.1. Convolution monoidal structure. Let Z, Y and X be Noetherian,
normal, quasi-projective K-schemes. Consider the projections

Z × Y ×X
pr12

ww
pr13

��

pr23

''
Z × Y Z ×X Y ×X

The group K acts on each of the four schemes in the diagram diagonally, and the
projections are K-equivariant.

The convolution product ∗ is defined as follows:

∗ : D(QCohK(Z × Y ))×D(QCohK(Y ×X))→ D(QCohK(Z ×X)),

M1 ∗M2 := Rpr13∗(Lpr∗12M1

L
⊗Z×Y×X Lpr∗23M2).

Proposition 5.6. The convolution product defines a monoidal structure

∗ : D(QCohK(X ×X))×D(QCohK(X ×X))→ D(QCohK(X ×X)).

It also produces a monoidal action of D(QCohK(X ×X)) on D(QCohK(X × Y )).

Proof. Let M1,M2 ∈ D(QCohK(X×X)) and M3 ∈ D(QCohK(X×Y )). We
need to show that (M1 ∗M2) ∗M3 'M1 ∗ (M2 ∗M3). First we calculate the LHS.

(M1∗M2) ∗M3

= Rp13∗

(
Lp∗12

(
Rp13∗(Lp

∗
12M1 ⊗LX×X×X Lp∗23M2)

)
⊗LX×X×Y Lp∗23M3

)
.

Consider the cartesian diagram

X ×X ×X × Y p123 //

p134

��

X ×X ×X
p13

��
X ×X × Y p12

// X ×X

By flat base change we have Lp∗12Rp13∗ ' Rp134∗Lp
∗
123. Inserting this we get

(M1∗M2) ∗M3

' Rp13∗
(
Rp134∗Lp

∗
123(Lp∗12M1 ⊗LX×X×X Lp∗23M2)⊗LX×X×Y Lp∗23M3

)
.
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Using the projection formula we get

(M1 ∗M2) ∗M3

' Rp13∗Rp134∗
(
Lp∗123(Lp∗12M1 ⊗LX×X×X Lp∗23M2)⊗LX×X×X×Y Lp∗134Lp

∗
23M3

)
.

Pull-back commutes with tensor product so

(M1 ∗M2) ∗M3

' Rp13∗Rp134∗
(
Lp∗123Lp

∗
12M1 ⊗LX×X×X×Y Lp∗123Lp

∗
23M2 ⊗LX×X×X×Y Lp∗134Lp

∗
23M3

)
' Rp14∗

(
Lp∗12M1 ⊗LX×X×X×Y Lp∗23M2 ⊗LX×X×X×Y Lp∗34M3

)
.

Now we make a similar calculation for the RHS.

M1∗(M2∗M3) = Rp13∗

(
Lp∗12M1⊗LX×X×Y Lp∗23

(
Rp13∗(Lp

∗
12M2⊗LX×X×Y Lp∗23M3)

))
.

Consider the cartesian diagram

X ×X ×X × Y p234 //

p124

��

X ×X × Y
p13

��
X ×X × Y p23

// X × Y

Using flat base change we get

M1 ∗ (M2 ∗M3) ' Rp13∗
(
Lp∗12M1⊗LX×X×Y Rp124∗Lp

∗
234(Lp∗12M2⊗LX×X×Y Lp∗23M3)

)
.

Applying the projection formula we get

M1 ∗ (M2 ∗M3)

' Rp13∗Rp124∗
(
Lp∗124Lp

∗
12M1 ⊗LX×X×X×Y Lp∗234(Lp∗12M2 ⊗LX×X×Y Lp∗23M3)

)
' Rp13∗Rp124∗

(
Lp∗124Lp

∗
12M1 ⊗LX×X×X×Y Lp∗234Lp

∗
12M2 ⊗LX×X×X×Y Lp∗234Lp

∗
23M3)

)
' Rp14∗(Lp

∗
12M1 ⊗LX×X×X×Y Lp∗23M2 ⊗LX×X×X×Y Lp∗34M3).

This finishes the proof. �

Remark 5.7. In the proposition everything is in a weak sense: the associativity
constraint (M1 ∗M2) ∗M3

∼→M1 ∗ (M2 ∗M3) is not specified.
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One often need to compare convolutions on two different spaces. This requires
the following setup. Suppose we have Noetherian, normal K-schemes X1, X2 and
X3, Z12, Z ′12 and Z23. We are given the K-equivariant flat maps

p1 : Z12 → X1, p2 : Z12 → X2, q2 : Z23 → X2, q3 : Z23 → X3,

and α : Z ′12 → Z12 such that p′1 = p1 ◦ α and p′2 = p2 ◦ α are also flat. Consider
the projections

pr12 : Z12 ×X2 Z23 → Z12, pr23 : Z12 ×X2 Z23 → Z23,

pr′12 : Z ′12 ×X2 Z23 → Z ′12, pr′23 : Z ′12 ×X2 Z23 → Z ′23,

pr13 : Z12 ×X2 Z23 → X1 ×X3, pr′13 : Z ′12 ×X2 Z23 → X1 ×X3

We introduce the convolution products

∗′ : D(QCohK(Z ′12))×D(QCohK(Z23))→ D(QCohK(X1 ×X3)),

M1 ∗M2 := Rpr13∗(Lpr∗12(Rα∗M1)⊗LZ12×X2
Z23

Lpr∗23M2)

and

∗′′ : D(QCohK(Z ′12))×D(QCohK(Z23))→ D(QCohK(X1 ×X3)),

M1 ∗′′M2 := Rpr′13∗(Lpr
′∗
12M1 ⊗LZ′12×X2

Z23
Lpr

′∗
23M2).

Lemma 5.8. The convolutions ∗ and ∗′ are canonically isomorphic.

Proof. Let M1 ∈ D(QCohK(Z ′12)) and M2 ∈ D(QCohK(Z23)). Consider the
cartesian diagram

Z ′12 ×X2 Z23

pr′12 //

β

��

Z ′12

α

��
Z12 ×X2 Z23 pr12

// Z12

By flat base change we get

M1 ∗′M2 ' Rp13∗
(
Rβ∗Lpr

′∗
12M1 ⊗LZ12×X2

Z23
Lpr∗23M2

)
.

Using the projection formula we get

M1 ∗′M2 ' Rp13∗Rβ∗
(
Lpr

′∗
12M1 ⊗LZ′12×X2

Z23
Lβ∗Lpr∗23M2

)
' Rpr′13∗(Lpr

′∗
12M1 ⊗LZ′12×X2

Z23
Lpr∗23M2)

= M1 ∗′′M2. �

Remark 5.9. A typical special case in which Lemma 5.8 is applied is as follows.
Take X1 = X2 = X3 = X. For a flat surjective K-equivariant map X → Y
consider

Z ′12 = X ×Y X, Z12 = Z23 = Z13 = X ×X.
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Lemma 5.8 implies that convolution operations defined via X ×Y X × X and
push-forward from X ×X ×X coincide.

Remark 5.10. In particular the unit object in the monoidal categoryD(QCohK(X×
X)) is given by the structure sheaf of the diagonal in X ×X denoted by OX∆

.

5.2.2. Convolution and correspondences. Let X, Y1, . . . Yn be regular K-
schemes. Suppose we are given flat surjective maps φi : X → Yi, i = 1, . . . , n.
Denote the fiber product X ×Yi X ⊂ X ×X by XI and let αi : Xi → X ×X be
the inclusion. Consider the iterated fibered product

Zi1,...,ik := Xi1 ×X . . .×X Xik = X ×Yi1 X . . .×Yik X ⊂ Xk+1.

We have the map provided by the projections to the first and last factors

αi1,...,ik : Zi1,...,ik → X ×X.
Denote the image of the map by Xi1,...,ik ⊂ X × X. All the defined schemes

are acted on naturally by K and all the defined maps are K-equivariant.
Consider the sheavesMi := Rαi ∗(OXi). The category D(QCohK(X×X)) acts

on the category D(QCohK(X)) by convolution. Denote the functor of convolution
with Mi by Di.

Lemma 5.11. The functor Di : D(QCohK(X)) → D(QCohK(X)) is isomor-
phic to the functor Lφ∗i ◦Rφi∗.

Proof. Denote the two projections Xi → X by q1,i and q2,i. Let N ∈
D(QCohK(X)). We apply lemma 5.8 as suggested in remark 5.9 with Z12 = X×X,
Z ′12 = Xi and Z23 = X. In the notation of the lemma pr′12 = Id, pr′23 = q2 and
pr′13 = q1.

Di(N) = OXi ∗′ N
' Rq1∗(OXi ⊗LXi Lq

∗
2N)

' Rq1∗Lq
∗
2N.

Consider the cartesian diagram

X ×Yi X
q2 //

q1

��

X

φi
��

X
φi

// Yi

Applying flat base change we obtain the statement of the lemma. �

Corollary 5.12. Each functor Di is isomorphic to a comonad. Suppose
additionally that the maps φi : X → Yi are locally trivial fibrations with fiber
F such that H i(F ) = 0 for i > 0 and H0(F ) = k. Then the comonads Di are
coprojectors, i.e. the coproduct maps Di → Di ◦Di are isomorphisms of functors.
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Proof. Since Rφi∗ is right adjoint to Lφ∗i the first statement follows from
[Mac, section VI.1]. Let {Uj} be a trivialization of φi. Then

(Rkφi∗OX)|Uj ' Rkφi∗(OX |φ−1
i (Uj)

)

' Rk(Id×Γ)∗(OUj×F )

' OUj ⊗Hk(F,OF )

'

{
OUj k = 0

0 k > 0

Thus, Rφi∗OX ' OYi . Inserting this into the projection formula forM ∈ DQCohG(Yi)
we get

Rφi∗Lφ
∗
iM ' Rφi∗(OX ⊗LX Lφ∗iM)

' Rφi∗OX ⊗LYi M
' OYi ⊗LYi M 'M.

Thus, the map

Hom(N,M)→ Hom(N,Rφi∗Lφ
∗
iM) = Hom(N,M)

induced by the adjunction map M → Rφi∗Lφ
∗
iM is a bijection for all N,M . This

implies that the adjunction map is an isomorphism. The coproduct map

Di ' Lφ∗i ◦ Id ◦Rφi∗ → Lφ∗i ◦Rφi∗ ◦ Lφ∗i ◦Rφi∗ ' Di ◦Di

is defined via the adjunction map so it is also an isomorphism. �

Our goal is to describe the composition of the functors Di1 ◦ . . .◦Din explicitly.
Denote Rαi1,...,ik∗(OZi1,...,ik ) ∈ D(QCohK(X ×X)) by Mi1,...,ik .

Lemma 5.13. We have a natural isomorphism of objects in D(QCohK(X×X))

Mi1 ∗ . . . ∗Mik

∼→Mi1,...,ik .

Proof. We proceed by induction. As in the proof of lemma 5.11 we consider
the two projections q1,i and q2,i : X ×Yi X ×X → X ×X and notice that

Mi1 ∗ . . . ∗Mik

∼→Mi1 ∗Mi2,...,ik

∼→ Rq1,i∗Lq
∗
2,i(Mi2,...,ik).

Applying base change to the diagram

Zi1,...,ik = X ×Yi Zi2,...,ik
p1,2,k+1

��

π2 // Zi2,...,ik

αi2,...,ik
��

X ×Yi X ×X q2,i
// X ×X
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we get
Mi1 ∗ . . . ∗Mik ' Rq1,i∗Lq

∗
2,iRαi2,...,ik(OZi2,...ik )

' Rq1,i∗Rp1,2,k+1∗Lπ
∗
2(OZi2,...,ik )

' R(q1,i ◦ p1,2,k+1)∗(OZi1,...,ik )

' Rαi1,...,ik∗(OZi1,...,ik )

= Mi1,...,ik .

This finishes the proof. �

5.2.3. Quasi-coherent Hecke category. Fix a reductive algebraic group K
with an algebraic subgroup H. Consider the K-scheme Y = K/H.

Definition 5.14. The monoidal category
(D(QCohK(K/H ×K/H)), ∗)

is called the quasi-coherent Hecke category and it is denoted by QCHecke(K,H).

Notice that for a K-scheme X we have
D(QCohH(X)) ' D(QCohK(K/H ×X)).

Taking Z = Y = K/H in the setting 5.2.1 we get the monoidal action

QCHecke(K,H)×D(QCohH(X))→ D(QCohH(X)).

5.3. Demazure Descent for D(QCohB(X))

Let X be a scheme equipped with an action of a reductive algebraic group G.
For every element of the Weyl group w ∈ W we construct a functor Dw acting
on the category D(QCohG(G/B × X)). The functor is defined in terms of the
monoidal action of QCHecke(G,B).

The elements in the Weyl group is in bijection with the orbits for the the
diagonal action of G on G/B×G/B via the map w 7→ G·(BwB,B) [CG, Theorem
3.1.9]. We denote the closure of the orbit corresponding to w by Ow. To simplify
the notations below we write Oi for Osαi

when sαi is a simple reflection. It can be
expressed in terms of minimal parabolics

Oi = (G/B)∆ ∪G · {(B, piB) | pi ∈ Pi\B}
= G/B ×G/Pi G/B.

Since G/B → G/Pi is a locally trivial fibration with fiber P1 so is the projections to
the factors p1, p2 : Oi → G/B. In particular, they are flat. The structure sheaves
of the orbit closures OOw , w ∈ W , are objects of the category QCHecke(G,B).
Consider the functor

Dw : D(QCohG(G/B ×X))→ D(QCohG(G/B ×X)),

Dw(M) := OOw ∗M.
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Below we prove that the functors Dw, w ∈ W, form Demazure descent data on
the category D(QCohG(G/B × X)). Consider the projection pi : G/B × X →
G/Pi ×X and the corresponding inverse and direct image functors

Lp∗i , Rpi∗ : D(QCohG(G/B ×X))
←−−→ D(QCohG(G/Pi ×X)).

Proposition 5.15. The Demazure functor Dsi is isomorphic to Lp∗iRpi∗. This
gives a comonad structure with Dsi

∼→ DsiDsi.

Proof. The projections pi are locally trivial fibrations with fiber P1 so the
result follows from lemma 5.11 and corollary 5.12. �

Notice that the associativity up to isomorphism for the monoidal action of
QCHecke(G,B) on the category D(QCohG(G/B × X)) implies that all relations
up to a non-specified isomorphism can be checked in the Hecke category.

Proposition 5.16. Let w = sk1 · · · skn be a reduced expression. Then

OOk1
∗ · · · ∗ OOkn

' OOw

Proof. For w ∈ W choose a a reduced expression w = sk1 · · · skn . Recall the
Bott-Samelson resolution φw : Xk1···kn := Pk1 ×B Pk2 ×B · · · ×B Pkn/B → Xw from
section 4.2.1. With the projections φik : G/B → G/Pik we are in the setting of
5.2.2. Set

Ok1···kn := (G/B ×G/Pk1
G/B)×G/B · · · ×G/B (G/B ×G/Pkn G/B)

' G/B ×G/Pk1
G/B ×G/Pk2

· · · ×G/Pkn G/B
' G×B Pk1 ×B Pk2 ×B · · · ×B Pkn/B

' G×Xk1···kn
B

.

Thus, we have the following equivalences of categories

QCohG(Ok1...kn) ' QCohG
(
G×Xk1···kn

B

)
' QCohB(Xk1···kn).

As a set

G/B×G/Pk1
G/B ×G/Pk2

· · · ×G/Pkn G/B
= G · {(pi1 · · · pinB, . . . , pin−1pinB, pinB,B) | pik ∈ Pik}.

Hence, αi1,...,in(Ok1···kn) ' Xw×G
B
' Ow and the following diagram is commutative

G×Xk1···kn
B

φ̄w //

∼

G×Xw
B

∼

Ok1...kn αi1,...,in
// Ow
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Thus, on the level of categories we have

D(QCohB(Xk1···kn))
Rφw∗ //

∼ψ1

��

D(QCohB(Xw))

∼ψ2

��

D(QCohG(Ok1...kn))
Rαi1,...,in∗

// D(QCohG(Ow))

It is known (see e.g. [And][Theorem 3.1]) that in the non-equivariant setting
Rφw∗OXk1···kn

' OXw . Since Rφw∗ commutes with the forgetful functor the same
is true in the equivariant setting. Inserting this we get

Rαi1,...,in∗(OOk1...kn
) ' Rαi1,...,in∗ψ1(OXk1···kn

) ' ψ2Rφw∗(OXk1···kn
)

' ψ2(OXw) ' OOw .

By lemma 5.13OOk1
∗· · ·∗OOkn

' Rαi1,...,in∗(OOk1...kn
) so this finishes the proof. �

Now we are prepared to prove the central result.

Theorem 5.17. The functors {Dw, w ∈ W} form Demazure Descent Data on
the category D(QCohG(G/B ×X)).

Proof of Theorem 5.17. We have proved that each of the functors Dsi is
a comonad and the coproduct maps are isomorphisms of functors. It remains to
show that for all w,w2 ∈ W with `(w1w2) = `(w1) + `(w2) we have

Dw1 ◦Dw2 ' Dw1w2 .

Fix reduced expressions for the Weyl group elements w1 = sk1 · · · skn and w2 =
sj1 · · · sjm . Since `(w1w2) = `(w1)+`(w2) the expression w1w2 = sk1 · · · sknsj1 · · · sjm
is reduced. For any M ∈ D(QCohG(G/B ×X)) we obtain

Dw1 ◦Dw2(M) ' OOw1
∗ OOw2

∗M
' OOk1

∗ · · · ∗ OOkn
∗ OOj1

∗ · · · ∗ OOjm
∗M

' OOw1w2
∗M

' Dw1w2(M).

This finishes the proof. �

5.4. Descent category

Consider the descent category for the constructed Demazure descent data on
the category D(QCohG(G/B ×X)).

Theorem 5.18. The descent category Desc(D(QCohB(X)), Dw, w ∈ W ) is
equivalent to D(QCohG(X)).
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The projection pi : G/B×X → G/Pi×X (resp. p : G/B×X → X) is a locally
trivial fibration with fiber P1 (resp. G/B). Notice that Hk(P1) = 0 = Hk(G/B)
for k > 0 and H0(P1) ' k ' H0(G/B). In the proof of corollary 5.12 we proved
that this implies that the adjunction map Id → Rpi∗Lp

∗
i (resp. Id → Rp∗Lp

∗) is
an isomorphism. Hence, Lp∗i (resp. Lp∗) is fully faithful since

Hom(Lp∗iN,Lp
∗
iM) = Hom(Rpi∗Lp

∗
iN,M) = Hom(N,M).

We identify D(QCohG(X)) with the full subcategory of D(QCohB(X)) given by
the essential image of Lp∗.

Lemma 5.19. An object M in D(QCohG(G/B × X)) belongs to the essential
image of Lp∗i if and only if the coaction map M → Dsi(M)is an isomorphism.

Proof. We identified the functor Dsi with the composition Lp∗iRpi∗. Thus,
M ' Dsi(M) implies that M belongs to the essential image of Lp∗i . Assume that
M = Lp∗i (N) for some N ∈ D(QCohG(G/Pi ×X)). Since the adjunction map is
an isomorphism we have

Dsi(M) ' Lp∗iRpi∗Lp
∗
i (N) ' Lp∗i (N) = M. �

Remark 5.20. Since Ow0
= G/B × G/B the same argument shows that an

object M in D(QCohG(G/B × X)) belongs to the essential image of Lp∗ if and
only if Dw0(M) is isomorphic to M .

Proof of Theorem 5.18. Let M ∈ Desc(D(QCohB(X)), Dw, w ∈ W ). For
every simple root αi the object Dsi(M) is isomorphic to M . Choose a reduced
expression si1 · · · sin for w0. We have

Dsi1
◦ · · · ◦Dsin

(M) ' Dw0(M).

It follows that M belongs to the essential image of Lp∗. In particular, the descent
category Desc(D(QCohB(X)), Dw, w ∈ W ) is a full subcategory in the essential
image of the functor Lp∗.

To prove the other embedding, notice that the map p factors as
G/B ×X → G/Pi ×X → X.

It follows that the essential image of Lp∗ is a full subcategory in the essential image
of Lp∗i for all i. This completes the proof of the theorem. �



CHAPTER 6

Equivariant matrix factorizations and Hamiltonian
reduction

6.1. Context

6.1.1. Known results in the non-equivariant setting. LetX be a smooth
variety over an algebraically closed field of characteristic zero and let π : E → X
be a vector bundle. Fix a regular global section s of that vector bundle. The dual
vector bundle is denoted by π∨ : E∨ → X. This defines a pull-back section via the
cartesian diagram

E∨ ×X E // E

E∨

(π∨)∗s

OO

π∨ // X

s

OO

Define the function W to be the composition with the natural pairing

W : E∨ → E∨ ×X E
〈 , 〉−→ k,

ax 7→ 〈((π∨)∗s)(ax), ax〉.

Consider W as a function on E∨. Acting by this element defines a potential for
matrix factorizations on E∨. Set X0 := W−1(0). Let Perf(X0) denote the full
subcategory of Db Coh(X0) of perfect complexes, i.e. complexes quasi-isomorphic
to a bounded complex of locally free sheaves of finite rank. The singularity category
denoted byDsg(X0) is the quotient categoryDb Coh(X0)/Perf(X0). Introducing an
additional k∗-equivariance, equivalent to an additional grading, Isik proved [Isik,
Theorem 3.6] using linear Koszul duality that Dk∗

sg (X0) is equivalent to Db Coh(Y ),
where Y is the zero scheme of s.

Polishchuk and Vaintrob proved in [PV, Theorem 3.14] (generalizing a result
of Orlov) that assuming W is not a zero-divisor the absolute derived category
DMF(E∨,W ) is isomorphic to Dsg(X0). The precise definition of the absolute
derived category is given in section 6.5.1.

6.1.2. Moment maps and Hamiltonian reduction. Symplectic differen-
tial geometry is the language of classical mechanics. The definitions naturally
carries over to the algebro-geometric setting. Let X be a smooth algebraic variety.
The definition of a symplectic form on X is the same as in differential geometry
only we require it to be algebraic.

43
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Definition 6.1. A symplectic form ω on X is a 2-form satisfying
• ω is closed, i.e. dω = 0 where d is the exterior derivative.
• ω is non-degenerate, i.e. for each x ∈ X the map ωx : TxX × TxX → k
satisfies that if we have Y ∈ TxX such that ωx(Y, Z) = 0 for all Z ∈ TxX
then Y = 0.

A symplectic algebraic variety is pair (X,ω) of a smooth algebraic variety X and
a symplectic form ω.

Our main example of interest is the following

Example 6.2. Let X be a smooth algebraic variety. Then T ∗X is a symplectic
algebraic variety with a symplectic form defined in the following way. Let π :
T ∗X → X be the projection. For x ∈ X and β ∈ T ∗xX we define the 1-form

α(x,β) : T(x,β)(T
∗X)→ k, α(x,β)(ξ) := 〈β, d(x,β)π(ξ)〉.

Then we get a symplectic form ω := −dα.

The non-degeneracy condition gives a canonical isomorphism TX ' T ∗X and
it defines a unique k-linear map

O(X)→ Vect(X), f 7→ ξf

defined by the requirement
ω(·, ξf ) = df.

Definition 6.3. A Poisson algebra is a commutative algebra with a Lie bracket
satisfying the Leibniz rule.

Lemma 6.4. The algebra O(X) of global functions has a Poisson algebra struc-
ture with the bracket defined by

{f, g} := ω(ξf , ξg).

The map f 7→ ξf intertwines the bracket on O(X) with the Lie bracket on Vect(X).

Proof. See section 1.2 in [CG]. �

The vector field v(f) := {f, ·} is called the Hamiltonian vector field for f . Let
G be a reductive algebraic group acting on X. The action is called symplectic if
it preserves the symplectic form, i.e. ω(z, y) = ω(gz, gy) for all x ∈ X, z, y ∈ TxX
and g ∈ G. Such an action induces a Lie algebra homomorphism

g→ Vect(X), ξ 7→ ξX .

Defined in the following way. For x ∈ X consider the action σx : G→ G · x ⊂ X.
Then for ξ ∈ g we define ξX(x) := dσx(ξ) ∈ TxX.
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Definition 6.5. A symplectic G-action on a smooth symplectic algebraic va-
riety X is called Hamiltonian if a G-equivariant (with respect to the adjoint action
of G on g) Lie algebra homomorphism

µ∗ : g→ O(X)

is given, which makes the following diagram commutative

g
µ∗ //

ξ 7→ξX ##

O(X)

f 7→ξfyy
Vect(X)

Such µ∗ is called a comoment map.

Remark 6.6. If it exists a comoment map µ∗ is unique up to an element of
(g∗)G. For λ ∈ (g∗)G the map µ∗(ξ) + 〈λ, ξ〉 is also a comoment map.

Given a comoment map one can define the dual map µ : X → g∗ by the
requirement

〈µ(x), ξ〉 = µ∗(ξ)(x).

This is called a moment map.

Example 6.7. An action of a reductive algebraic group G on a smooth alge-
braic variety X lifts to a symplectic action of G on T ∗X. A comoment map for
this action is given by

g 3 ξ 7→ ξX ∈ Vect(X) ↪→ O(T ∗X) = SO(X)Vect(X).

Here S is the symmetric algebra.

One of the main applications is the following construction.

Definition 6.8. Let G and X as above and let λ ∈ (g∗)G. The Hamiltonian
reduction is the GIT quotient

µ−1(λ)//G = Spec(O(µ−1(λ))G)

When the action of G on µ−1(λ) is free the Hamiltonian reduction is a smooth
symplectic algebraic variety. Thus, this is an important way of constructing new
symplectic varieties from old ones. In physics this kind of construction is often
used to eliminate degrees of freedom in a system in classical mechanics using a
symmetry of the system. A classical object of study in geometric representation
theory are Nakajima quiver varieties and some of these are of this form. In our
setup µ−1(0) will be a derived scheme.
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6.1.3. Matrix factorizations coming from Hamiltonian reduction. Let
X be a smooth algebraic variety and G a linear algebraic group acting on X. The
moment map µ : T ∗X → g∗ is a section of the trivial vector bundle π : T ∗X×g∗ →
T ∗X so it defines a potential

W : T ∗X × g
µ×Id−→ g∗ × g

〈 , 〉−→ k.

Inserting this into the theorems in section 6.1.1 we get DMF(T ∗X × g,W ) on one
side and Db Coh(µ−1(0)) on the other. If one could extend these results to the G-
equivariant setting one would get an equivalence between the equivariant derived
category of matrix factorizations and the derived category of coherent sheaves on
the Hamiltonian reduction. This is the goal of this chapter.

6.2. The setting

We recall the basic definitions of equivariant quasi-coherent sheaves of differ-
ential graded modules.

Definition 6.9. Let A =
⊕

p∈ZAp be a sheaf of Z-graded OX-algebras on a
complex algebraic variety X. Denote the multiplication map by µA : A⊗OX A →
A.

(1) The sheaf A is a sheaf of dg-algebras if it is provided with an endomor-
phism of OX-modules dA : A → A of degree 1, such that dA ◦ dA = 0,
satisfying the following formula on Ai ⊗A for any i ∈ Z:

dA ◦ µA = µA ◦ (dA ⊗ IdA) + (−1)iµA ◦ (IdAp ⊗dA).

(2) A morphism of sheaves of dg-algebras on the same scheme is a morphism
of sheaves of graded algebras commuting with the differentials.

(3) A morphism of dg-algebras on different schemes f : (X,A)→ (Y,B) is the
data of a morphism of schemes f0 : X → Y , and a morphism of sheaves
of dg-algebras f ∗0B → A.

(4) Define the opposite dg-algebra Aop to have the same elements and dif-
ferential as A but a new multiplication a ◦ b := (−1)deg(a) deg(b)ba. The
sheaf of dg-algebras A is called graded-commutative if the identity map
Id : A → Aop is an isomorphism of sheaves of dg-algebras.

(5) A A-dg-module is a sheaf of Z-graded left A-modules F on X together
with an endomorphism of OX-modules dF : F → F of degree 1, such that
dF ◦ dF = 0 and satisfying the following formula on Ai ⊗OX F for i ∈ Z,
where αF : A⊗OX F → F is the action map:

dF ◦ αF = αF ◦ (dA ⊗ IdF) + (−1)iαF ◦ (IdAp ⊗dF).

(6) A morphism of A-dg-modules is a morphism of sheaves of graded A-
modules commuting with differentials.

(7) A quasi-coherent dg-sheaf F on (X,A) is an A-dg-module such that F i
is a quasi-coherent OX-module for all i ∈ Z.
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Definition 6.10. Let G be a complex reductive algebraic group acting on a
complex algebraic variety X. Let A be a sheaf of dg-algebras on X and assume
that Ai is G-equivariant for all i ∈ Z and that the multiplication and differential
are G-equivariant. A A-dg-module F is G-equivariant if Fi is G-equivariant for
all i ∈ Z and the differential and action morphisms are G-equivariant.

The category of G-equivariant quasi-coherent left dg-modules over the dg-
algebra A is denoted by CQCohG(A). The definition of the equivariant derived
category is analogous to the non-equivariant derived category as defined in [BL].
We recall the definitions.

Definition 6.11. (1) The translation functor

[1] : CQCohG(A)→ CQCohG(A)

is given by

(M[1])i =Mi+1, dM[1] = −dM, a ·m := (−1)deg(a)am, a ∈ A.

(2) Two morphisms f, g : M → N in CQCohG(A) are homotopic if there
exists a morphism of modules over the graded ring A (but not necessarily
a morphism of A-modules) s :M→N [−1] s.t.

f − g = sdM + dN s.

We write f ∼ g.
(3) The homotopy categoryH0(QCohG(A)) has the same objects as CQCohG(A)

and morphisms

HomH0(QCohG(A))(M,N ) := HomCQCohG(A)(M,N )/{morphisms ∼ 0}.
(4) Let u :M→N be a morphism. The cone of u, C(u), is defined as

C(u) = N ⊕M[1], dC(u) = (dN + u,−dM).

(5) An exact triangle in H0(QCohG(A)) is a sequence isomorphic to a se-
quence of the form

M u−→ N → C(u)→M[1].

(6) The cohomology ofM∈ CQCohG(A) is the graded sheaf of OX-modules
H(M) = ker(dM)/im(dM). M is acyclic if H(M) = 0.

(7) A morphism is a quasi-isomorphism if it induces an isomorphism on
cohomology. The derived category DQCohG(A) is the localization of
H0(QCohG(A)) with respect to quasi-isomorphisms.

(8) A coherent dg-module M over A is a quasi-coherent dg-sheaf whose co-
homology sheaf H(M) is coherent over H(A). The full subcategory of
DQCohG(A) whose objects are coherent is denoted by DCohG(A).

(9) The full subcategory of DQCohG(A) consisting of objects whose cohomol-
ogy is bounded and coherent as aOX-module is denoted byDbc QCohG(A).
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Lemma 6.12. The derived categories DQCohG(A) and DCohG(A) are trian-
gulated.

Proof. See [BL, Cor. 10.4.3]. �

Remark 6.13. Consider OX as a dg-algebra with OX in degree zero and 0
elsewhere. Then

DQCohG(OX) ' Db(QCohG(X)), DCohG(OX) ' Db(CohG(X)).

6.2.1. Functors. Let G be a reductive algebraic group acting on a complex
algebraic variety X. To be able to define the derived functors we will assume that
the following property hold:

For any F ∈ CohG(X), there exists P ∈ CohG(X)

which is flat over OX and a surjection P � F in CohG(X).(6.2.1)

Remark 6.14. Property 6.2.1 is satisfied e.g. when X admits an ample family
of line bundles in the sense of [VV, Definition 1.5.3] or when X is normal and
quasi-projective (see [CG, Proposition 5.1.26]).

Definition 6.15. Let A be an equivariant sheaf of dg-algebras on X. If A
is quasi-coherent, non-positively graded and graded-commutative then the pair
(X,A) is called a dg-scheme.

From now on we will always assume that we are working with a dg-scheme. In
particular, the category of left A-dg-modules is equivalent to the category of right
A-dg-modules (see [BL, 10.6.3]). Furthermore, we will assume that A is locally
finitely generated over A0, that A0 is locally finitely generated as an OX-algebra,
and that A is K-flat as a Gm-equivariant A0-dg-module.

The last assumption is justified by the following observation in [MR3, Section
2.2]: If A is the G-equivariant affine scheme over X such that the push-forward
of OA to X is A0, then there exists a Gm × G-equivariant quasi-coherent OA-dg-
algebra A′ whose direct image to X is A and there is an equivalence of categories
CQCohG(A′) ' CQCohG(A). Using this trick one can always reduce to the situ-
ation in which A is OX-coherent and K-flat as an OX-dg-module.

Let Dbc(QCohG(A)) denote the full subcategory of DQCohG(A) whose objects
are the dg-modules M for which the complex Mj has bounded and coherent
cohomology for any j ∈ Z.

Lemma 6.16. [MR3, Lemma 2.5] Let A be as above. For any M,N ∈
Dbc(QCohG×C

∗
(A)) the C-vector space HomDbc(QCohC∗ (A))(M,N )) has a natural

structure of an algebraic G-module. Moreover, the natural morphism

HomDbc(QCohG×C∗ (A))(M,N )→ (HomDbc(QCohC∗ (A))(M,N ))G

induced by the forgetful functor is an isomorphism.
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One can define the usual functors on CQCohG(A). We define the internalHom
functor

HomG
A(−,−) : CQCohG(A)× CQCohG(A)→ CQCohG(OX)

ForM,N ∈ CQCohG(A) the sheaf of OX-dg-modulesHomG
A(M,N ) is the graded

sheaf of OX-modules with the i-th component being local equivariant homomor-
phisms of graded A-modules M → N [i] (not necessarily commuting with the
differentials). For φ ∈ HomG

A(M,N )i the differential is given by

d(φ) = dM ◦ φ− (−1)iφ ◦ dN .

We also have a tensor product

−⊗A − : CQCohG(A)× CQCohG(A)→ CQCohG(OX)

The sheaf of OX-dg-modules F ⊗A G is graded in the natural way and on local
sections of F i ⊗A G the differential is given by

d(f ⊗ g) = d(f)⊗ g + (−1)if ⊗ d(g).

It is equivariant with respect to the diagonal G-action.

Let f : (X,A) → (Y,B) be a G-equivariant morphism of dg-schemes. This
defines a the morphism of sheaves of dg-algebras since, by adjunction, the mor-
phism f ∗B → A corresponds to a morphism B → f∗A. We define the direct image
functor to be restriction of scalars using this map.

f∗ : CQCohG(A)→ CQCohG(B).

We can also define an inverse image functor using the tensor product

f ∗ : CQCohG(B)→ CQCohG(A),

F → A⊗f∗B f ∗F .

Lemma 6.17. [MR3, Lemma 2.7 and Prop. 2.8] Assume that (X,G) satisfies
the above assumptions and let f : (X,A) → (Y,B) be a G × Gm-equivariant
morphism of dg-schemes. Then

(1) For any objectM∈ CQCohG(B), there exits an object P ∈ CQCohG(B),
which is K-flat as a B-dg-module and a quasi-isomorphism of G × Gm-
equivariant B-dg-modules P →M.

(2) The functor of pull-back admits a derived functor

Lf ∗ : DQCohG(B)→ DQCohG(A)
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and the following diagram is commutative

DQCohG(B)

For
��

Lf∗ // DQCohG(A)

For
��

DQCohG(B)
Lf∗ // DQCohG(A)

(3) For any N ∈ C+ QCohG(A), there exists an object I ∈ C+ QCohG(A)
which is K-injective in CQCohG(A) and a quasi-isomorphism N → I.

(4) The functor of push-forward admits a derived functor

Rf∗ : D+ QCohG(A)→ DQCohG(B)

and the following diagram is commutative up to isomorphism

D+ QCohG(A)

For
��

Rf∗ // DQCohG(B)

For
��

D+ QCoh(A)
Rf∗ // DQCoh(B)

Lemma 6.18. [BR, Prop. 5.2.1] Let H be an algebraic group (not necessarily
reductive) and f : (X,A)→ (X,B) a H-equivariant quasi-isomorphism of complex
algebraic H-varieties satisfying the conditions above. Then the pull-back and push-
forward functors induce equivalences of categories

DQCohH(A) ' DQCohH(B).

The equivalence restricts to an equivalence

DCohH(A) ' DCohH(B).

6.3. Equivariant linear Koszul duality

In the paper [MR3] Mirković and Riche extend the linear Koszul duality from
[MR1] and [MR2] to the equivariant setting. In this section we recall their
construction. Consider a complex algebraic variety X with an action of a reductive
algebraic group G. Again we assume that property (6.2.1) is satisfied. Consider a
two term complex of locally free G-equivariant OX-modules of finite rank.

X := (· · · 0→ V f−→W → 0 · · · ).

Here V sits in homological degree -1 andW is in homological degree 0. We consider
it as a complex of graded OX-modules with both V andW siting in internal degree
2. We define the graded symmetric algebra SymOX (X ) to be the sheaf tensor
algebra of X modulo the graded commutation relations a⊗b = (−1)degh(a) degh(b)b⊗
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a, where degh is the homological degree. More explicitly SymOX (X ) is the bi-
graded complex for which the term in homological degree k and internal degree
2k + 2n is

SymOX (X )k2k+2n = ΛkV ⊗OX Symn(W).

The differential is given by

d(v1 ∧ · · · ∧ vn ⊗ w) =
n∑
i=1

(−1)iv1 ∧ · · · ∧ v̂i ∧ · · · ∧ vn ⊗ f(vi)w.

For a bi-graded sheaf of OX-modules M we denote by M∨ the bi-graded OX-
module with (M∨)ij = HomOX (M−i

−j,OX). The dual complex is defined as

Y := (· · · 0→W∨ −f
∨

−→ V∨ → 0 · · · ),

where W∨ sits in bi-degree (-1,-2) and V∨ sits in bi-degree (0,-2). A shift in
homological degree is denoted by [ ] and shift in internal degree is denoted by ( ).
We introduce the following notation

T := SymOX (X ), R := SymOX (Y), S := SymOX (Y [−2]).

Mirković and Riche proved the following theorem known as equivariant linear
Koszul duality.

Theorem 6.19. [MR3, Theorem 3.1] There is an equivalence of triangulated
categories

κ : DCohG×C
∗
(T )

∼→ DCohG×C
∗
(R)op,

satisfying κ(M[n](m)) = κ(M)[−n+m](−m).

Remark 6.20. In [MR3] the theorem is stated in less generality. However,
the corresponding statement in the non-equivariant setting [MR2, Thm 1.7.1 and
section 1.8] is stated in this generality and the proof in [MR3] shows that this
non-equivariant equivalence can be lifted to the equivariant setting.

We now recall their construction of the functor κ. For a dg-algebra A let
C−QCohG×C

∗
(A) (resp. C+ QCohG×C

∗
(A)) denote the full subcategory of CQCohG×C

∗

(A) consisting of objects whose internal degree is bounded above (resp. below)
uniformly in the homological degree. The associated derived category is denoted
by D−QCohG×C

∗
(A) (resp. D+ QCohG×C

∗
(A)). The functor κ is a restriction of

a functor
κ : Dbc+ QCohG×C

∗
(T )

∼→ Dbc− QCohG×C
∗
(R)op.

This functor is the composition of three functors. The first is the functor

A : CQCohG×C
∗
(T )→ CQCohG×C

∗
(S).
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As a bi-graded equivariant OX-module A (M) = S ⊗OX M. The S-action is
induced by the left multiplication of S on itself. The differential is the sum of two
terms d1 and d2. The term d1 is the natural differential on the tensor product

d1(s⊗m) = dS(s)⊗m+ (−1)|s|s⊗ dM(m).

The term d2 is the composition of the following morphisms. First the morphism

ρ : S ⊗OXM→ S ⊗OXM, s⊗m 7→ (−1)|s|s⊗m.
The second morphism

ψ : S ⊗OXM→ S ⊗X ∨ ⊗X ⊗M
is induced by the natural morphism i : OX → End(X ) ' X ∨ ⊗ X . The last map
is the morphism

Ψ : S ⊗ X ∨ ⊗X ⊗M→ S ⊗M
induced by the right multiplication S⊗OXX ∨ → S and the action X⊗OXM→M.
The term d2 is defined as d2 = Ψ ◦ ψ ◦ ρ. Locally, choosing a basis {xα} of X and
the dual basis {x∗α} of X ∨ it can be written as

d2(s⊗m) = (−1)|s|
∑
α

sx∗α ⊗ xα ·m.

This data defines a S-dg-module structure on A (M). Part of the proof of [MR3,
Thm. 3.1] is showing that A induces an equivalence of categories

Ā : Dbc− QCohG×C
∗
(T )

∼→ Dbc− QCohG×C
∗
(S).

By [Bez1, Example 2.16] under the assumption 6.2.1 there exists an object
Ω ∈ Db CohG(X) whose image under the forgetful functor For: Db CohG(X) →
Db Coh(X) is a dualizing object in Db Coh(X). Let IΩ be a bounded below
complex of injective objects of QCohG(X) whose image in the derived category
D+ QCoh(X) is Ω. It defines a functor on the category of complexes of all equi-
variant sheaves on X.

RHomOX (−, IΩ) : C(ShG(X))→ C(ShG(X))op.

In [MR3, Lemma 2.3] it is proved that this functor is exact and that the induced
functor on derived categories restricts to a functor

DX
Ω : Db CohG(X)→ Db CohG(X)op.

Let C̃(T −modG×C
∗
) denote the category of all sheaves of G × C∗-equivariant T

dg-modules on X. It’s derived category is denoted by D̃(T −modG×C
∗
). Consider

the functor
D̃Ω : C̃(T −modG×C

∗
)→ C̃(T −modG×C

∗
)op,

which sendsM ∈ C̃(T −modG×C
∗
) to the dg-module whose underlying G × Gm-

equivariant OX-dg-module is Hom(M, IΩ), with T -action defined by

(t · φ)(m) = (−1)|t|·|φ|φ(t ·m), t ∈ T ,m ∈M.
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In proposition 2.6 Mirković and Riche prove that the induced functor restricts to
an equivalence

DΩ : Dbc QCohG×C
∗
(T )

∼→ Dbc QCohG×C
∗
(T )op.

The last functor is the regrading functor

ξ : CQCohG×C
∗
(S)→ CQCohG×C

∗
(R)

sendingM∈ CQCohG×C
∗
(S) to the R-dg-module with (i, j) component ξ(M) =

Mi−j
j . If one forgets the grading then S and R coincides and so does M and

ξ(M). The R-action on the differential on ξ(M) is the same as the S-action on
the differential of M. This is an equivalence of categories. The functor κ from
theorem 6.19 is the restriction of the composition ξ ◦ Ā ◦DΩ.

6.3.1. Extension to an arbitrary linear algebraic group. We want to
be able to work with equivariance with respect to a Borel subgroup. Thus, we
need to extend linear Koszul duality to work with a not necessarily reductive
linear algebraic group H sitting inside a reductive group G. Let X be a H-
variety. Consider the variety X̃ := IndGH(X) = G×X

H
. The projection and quotient

morphisms

X
pr←− G×X π−→ X̃.

induce equivalences of categories

A := pr∗ : QCohH(X)
∼→ QCohG×H(G×X),

B := π∗ : QCohG(X̃)
∼→ QCohG×H(G×X).

Lemma 6.21. The functors A and B are monoidal.

Proof. Let ∆ : X → X × X be the diagonal embedding. By definition the
monoidal action on QCohH(X) is given by

M ⊗OX N := ∆∗ResH×HH∆
(M �N).

Consider the commutative diagram

X
∆ // X ×X

G×X

pr

OO

∆G // G×X ×G×X

pr2

OO
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Using this we calculate

A(M)⊗OG×X A(N) = ∆∗G ResG×H×G×H(G×H)∆
(pr∗M � pr∗N)

' ∆∗G ResG×H×G×H(G×H)∆
pr∗2(M �N)

' ∆∗Gpr∗2 ResH×HH∆
(M �N)

' pr∗∆∗ResH×HH∆
(M �N)

= A(M ⊗OX N).

Thus, A is monoidal. For B we have the following diagram

X̃
∆̃ // X̃ × X̃

G×X

π

OO

∆G // G×X ×G×X

π2

OO

This gives

B(M)⊗OG×X B(N) = ∆∗G ResG×H×G×H(G×H)∆
(B(M) �B(N))

' ∆∗Gπ
∗
2 ResG×GG∆

(M �N)

' π∗∆̃∗ResG×GG∆
(M �N)

= B(M ⊗OX̃ N).

Hence, both functors are monoidal. �

By the lemma we have a monoidal equivalence of categories

B−1A : QCohH(X)
∼→ QCohG(X̃).

Consider a complex of H-equivariant vector bundles

X := (· · · → 0→ V →W → 0→ · · · ).

Applying B−1A we get a new complex

X̃ := B−1A(X ) = (· · · → 0→ B−1A(V)→ B−1A(W)→ 0→ · · · ).

Notice that

HomOX̃ (B−1A(M),OX̃) ' HomOX̃ (B−1A(M), B−1A(OX))

' B−1A(HomOX (M,OX)).

Thus, X̃ ∨ ' (X̃ )∨.
In the construction of SymOX (X ) we only used the monoidal structure on

QCohH(X). Since B−1A is monoidal we get

B−1A(SymOX (X )) ' SymOX̃ (X̃ ).
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LetM be a dg-module over SymOX (X ). I.e. there is a collection of linear maps
Symn

OX (X )⊗OXM→M respecting the differentials. B−1A respects these maps
so B−1A(M) is a dg-module over SymOX̃ (X̃ ). Thus, we have proved

Proposition 6.22. There is a natural equivalence of dg-categories

CQCohH(SymOX (X )) ' CQCohG(SymOX̃ (X̃ )).

The functor sends quasi-isomorphisms to quasi-isomorphisms so it descends to
the derived category. Using this equivalence we obtain the desired version of linear
Koszul duality.

Theorem 6.23. Let G be a complex reductive group acting on a variety X
satisfying condition 6.2.1. Let H be a closed subgroup of G and define T and R
as in the previous section. Then there is an equivalence of triangulated categories

κ : DCohH×C
∗
(T )

∼→ DCohH×C
∗
(R)op,

satisfying κ(M[n](m)) = κ(M)[−n+m](−m).

6.4. Derived category of equivariant DG-modules for G-schemes

In this section we extend the construction in [Isik] to the equivariant setting.
LetX be a smooth complex algebraic variety with an action of a reductive algebraic
group G. In particular, X is Noetherian, separated and regular. Then X has an
ample family of G-equivariant line bundles and property (6.2.1) is satisfied (see
[VV, Remark 1.5.4]). Let π : E → X be a G-equivariant vector bundle of rank n.
Denote the sheaf of G-equivariant sections of the bundle by E and let s ∈ H0(X, E)
be a G-equivariant regular section. The zero scheme of s is denoted by Y . In
order to use linear Koszul duality we need to introduce an additional Z-grading
or equivalently a C∗-action. Consider OY [t, t−1] as a bi-graded dg-algebra sitting
in homological degree 0 with zero differential and t a formal variable sitting in
internal degree -2.

Proposition 6.24. There is an equivalence of categories

DCohG×C
∗
(OY [t, t−1]) ' Db CohG(Y )

Proof. The pull-back along the projection Y × C∗ → Y is an equivalence of
categories CohG(Y ) ' CohG×C

∗
(Y × C∗). By remark 6.13

Db CohG×C
∗
(Y × C∗) ' DCohG×C

∗
(OY×C∗).

Notice that OY×C∗ ' OY [t, t−1]. �

By lemma 6.18 we may replace OY [t, t−1] by a quasi-isomorphic dg-algebra sit-
ing in non-positive homological degrees which fits into the setting of linear Koszul
duality. When Y is the zero locus of a regular section s ∈ H0(X, E) the sheaf OY
has an equivariant Koszul resolution

0→ ΛnE∨ → · · · → Λ2E∨ → E∨ → OX → OY → 0
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with differential given by d(f) = f(s) and extended by Leibnitz rule. Using
shifted copies of this resolution in each internal degree we get a bi-complex with
is a resolution of OY [t, t−1].

· · · // Λ3E∨t−1 // Λ2E∨ // E∨t // OXt2 i = −4

· · · // Λ3E∨t−2 // Λ2E∨t−1 // E∨ // OXt i = −2

· · · // Λ3E∨t−3 // Λ2E∨t−2 // E∨t−1 // OX i = 0

· · · // Λ3E∨t−4 // Λ2E∨t−3 // E∨t−2 // OXt−1 i = 2

· · · // Λ3E∨t−5 // Λ2E∨t−4 // E∨t−3 // OXt−2 i = 4

We denote this bi-complex by AX×C∗ . By construction H(AX×C∗) = OY [t, t−1]
and the morphism

ψ : AX×C∗ → OY [t, t−1],

which takes tkf to tkf |Y for f ∈ OX and everything else to zero, is a quasi-
isomorphism. Thus, we have shown that

Proposition 6.25. There is an equivalence of categories

DCohG×C
∗
(AX×C∗) ' DCohG×C

∗
(OY [t, t−1]).

Consider the following bi-graded complex with E∨ in degree (-1,-2), OX in
degree (0,0) and t in degree (0,−2).

AX×C :=
∧
E∨ ⊗OX OX [t]

with differential d(f) = tf(s) and extended by Leibnitz. Observe that

AX×C∗ = AX×C ⊗OX OX [t−1].

The bi-complex AX×C fits into the setting of linear Koszul duality as it can be
written in the form

AX×C = SymOX
(
0→ E∨ −s

∨
−→ tOX → 0

)
Definition 6.26. Let (X,A) be a G× C∗-equivariant dg-scheme.
(1) The full subcategory ofDCohG×C

∗
(A) whose objects are locally in 〈A(i)〉i∈Z,

i.e. is quasi-isomorphic to a bounded complex of free A-modules of finite
rank, is denoted by Perf(A). Such complexes are called perfect.
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(2) The full subcategory ofDCohG×C
∗
(A) whose objects are locally in 〈OX(i)〉i∈Z

is denoted by DX CohG×C
∗
(A). We say that these modules are supported

on X.

Lemma 6.27. Let G be a complex reductive algebraic group acting on X such
that assumption 6.2.1 is satisfied. Let R be a sheaf of dg-algebras sitting in
non-positive homological and non-positive internal degrees with R0

0 = OX and
H0(R)0 = OX . If M is a coherent module over R and H(M) is coherent when
considered as a module over OX , thenM is locally in 〈OX(i)〉i∈Z.

Proof. In the non-equivariant setting this is [Isik, Lemma 3.3]. Under the
assumption that (6.2.1) is satisfied the proof extends to the equivariant setting.
We recall it here. The property is local so we may assume that X is affine. Assume
that H(M) is coherent as a OX-module. In particular the cohomology of M is
bounded above and below and there are only finitely many pairs (i, j) such that
H i(M)j 6= 0. The proof is by induction on the number of such pairs. Acyclic
modules are in 〈OX(i)〉i∈Z so the start is clear.

Let n be the lowest degree such that Hn(M) 6= 0. ThenM is quasi-isomorphic
to the truncated complex

τ≥nM = · · · → 0→ coker dn−1
M →Mn+1 →Mn+2 → · · ·

The complex τ≥nM is also a R-module since R sits in non-positive homological
degrees. Let F be the kernel of the morphism

dn : coker dn−1
M →Mn+1.

The assumption on R means that F is a R-submodule of τ≥nM. Notice that
F ' Hn(M), so F is coherent as an OX-module.

Let m be the lowest internal degree such that Fm ' Hn(M)m 6= 0. Since R
sits in non-positive both homological and internal degree Ri

j acts by zero on the
coherent OX-module Fm for (i, j) 6= (0, 0). Thus, Fm which is concentrated in
degree (n,m), is also an R-module.

Since X is smooth there exist a finite G-equivariant free resolution of Fm.
Hence, Fm is quasi-isomorphic to a complex of OX-modules of the form

0→ O⊕rkX (m)→ · · · → O⊕r2X (m)→ O⊕r1X (m)→ 0.

Since Ri
j acts by zero on Fm for (i, j) 6= (0, 0) and R0

0 = OX this complex is also
quasi-isomorphic to Fm as a R-module with R acting trivially except for the (0, 0)
piece. Hence, Fm represents an object in 〈OX(i)〉i∈Z. The cone of the inclusion
Fm ↪→ τ≥nM has the same cohomology asM except for the piece in degree (n,m)
which is zero. By induction the cone is in 〈OX(i)〉i∈Z so τ≥nM and consequently
M are in 〈OX(i)〉i∈Z. �
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Proposition 6.28. There is an equivalence of categories

DCohG×C
∗
(AX×C)

DX CohG×C
∗
(AX×C)

' DCohG×C
∗
(AX×C∗).

Proof. In the non-equivariant setting this is [Isik, Prop. 3.2]. In the proof
Isik uses the inclusion morphism φ : AX×C → AX×C[t−1] = AX×C∗ to construct
two functors

φ∗ : DQCoh(AX×C)→ DQCoh(AX×C∗),
M 7→ AX×C∗ ⊗AX×CM' OX [t, t−1]⊗OX [t]M,

φ∗ : DQCoh(AX×C∗)→ DQCoh(AX×C),

N 7→ N≤0.

He proves that φ∗ factors through DX Coh(AX×C) and that the functors induce
mutually inverse equivalences of categories

DCoh(AX×C)

DX Coh(AX×C)

φ∗

∼
// DCoh(AX×C∗)

φ∗
oo

Both functors naturally extend to the equivariant setting so we get functors

DCohG×C
∗
(AX×C)

DX CohG×C
∗
(AX×C)

φ∗ // DCohG×C
∗
(AX×C∗)

φ∗
oo

As in the non-equivariant setting we need to prove that the natural transformations

φ∗ ◦ φ∗ → Id

given by
AX×C[t−1]⊗AX×C (N )≤0 → N , a⊗ n 7→ an.

and
Id→ φ∗ ◦ φ∗

given by

M→ (AX×C[t−1]⊗AX×CM)≤0 ' (k[t−1]⊗kM)≤0,

m 7→

{
1⊗m internal degree non-positive
0 else

are both isomorphisms.
Then first natural transformation φ∗ ◦ φ∗ → Id is clearly surjective. Assume

that we have a section tk ⊗ n whose image is 0. Then n = t−ktkn = 0, so the
morphism is also injective. Thus, this natural transformation is an isomorphism

Let J be the cone of the morphism M → φ∗φ∗M from the second natural
transformation. We want to show that J is supported on X. By the lemma it is
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enough to show that H(J ) is coherent over OX . Consider the long exact sequence
of sheaves of OX-modules in cohomology

· · · → H i(M)→ H i(φ∗φ∗M)→ H i(J )→ H i+1(M)→ H i+1(φ∗φ∗M)→ · · ·
So we get short exact sequences

0→ coker(αi)→ H i(J )→ ker(αi+1)→ 0,

where
αi : H i(M)→ H i((OX [t, t−1]⊗OX [t]M)≤0)

is the induced map on cohomology. From the short exact sequence it follows that
H(J ) is coherent over OX if coker(αi) and ker(αi+1) are. Recall what the terms
in AX×C look like

· · · // 0 // Λ2E∨ // E∨t // OXt2 i = −4

· · · // 0 // 0 // E∨ // OXt i = −2

· · · // 0 // 0 // 0 // OX i = 0

In each degree we have a truncation of the resolution of OY . In degrees lower than
−n we have the full resolution so the only non-zero cohomology in lower degrees
are of the form tkOY . All individual terms in H(AX×C) are coherent over OX so
the only way coker(αi) and ker(αi+1) could fail to be coherent is if infinitely many
powers of t are required to generate them. However, everything in ker(αi+1) sits
in strictly positive internal degree and since the internal degree of t is −2 this is
not the case. Isik shows that H(OX [t, t−1]⊗OX [t]M) ' OX [t, t−1]⊗OX [t] H(M) so
elements in coker(αi) are represented by t−k ⊗m with 2k + degi(m) ≤ 0, where
degi(m) is the internal degree of m. Thus, coker(αi) is also coherent over OX and
we get the result. �

The Koszul dual to AX×C is the dg-algbera

B := Sym(0→ εOX
s−→ E → 0).

Here ε is a formal variable with ε2 = 0 sitting in homological degree -1 and internal
degree 2. This is just a convenient notation expressing the fact that ΛnOX = 0
for n ≥ 2. E is in homological degree 0 and internal degree 2. As a complex B is
ε Sym E → Sym E with differential dB(εf) = sf .

The functor κ from theorem 6.19 gives an equivalence of categories

κ : DCohG×C
∗
(B)

∼→ DCohG×C
∗
(AX×C)op.

Lemma 6.29. The functor κ restricts to an equivalence

Perf(B) ' DX CohG×C
∗
(AX×C)op.



60 6. EQUIVARIANT MATRIX FACTORIZATIONS AND HAMILTONIAN REDUCTION

Proof. In the non-equivariant setting this is similar to proposition 3.1 in
[Isik]. However, Isik uses the Koszul duality from [MR1], which is slightly different
from the linear Koszul duality from [MR3] that we are using, so some additional
arguments are needed. The functor κ is defined locally so for any open subset
i : U ↪→ X the following diagram is commutative

DCohG×C
∗
(B)

κ //

i∗

��

DCohG×C
∗
(AX×C)

i∗

��

DCohG×C
∗
(B|U)

κ|U // DCohG×C
∗
(AX×C|U)

It suffices to show that for any open affine U the functor κ|U takes modules of
the form B(i) to objects in 〈OX(i)〉i∈Z. Theorem 6.19 states that κ(M[j](i)) =
κ(M)[−j + i](−i), so it is enough to prove the statement for i = 0.

Recall that κ is the composition of three functors ξ, Ā and DΩ. Since X is
smooth the dualizing sheaf Ω is just top forms shifted by dimension. In particular,
it is locally free of rank 1 so the functor Hom(−,Ω) is exact and there is no need
to take the injective resolution IΩ. That Ω is a line bundle implies that locally
DΩ(B) ' Hom(B,OX). Applying Ā on the opposite category corresponds to
reversing the grading for all dg-modules. Thus, Ā ◦DΩ(B) corresponds to Ā(B∨),
where (B∨)ij = Hom(B−i−j,OX). By [MR1, Lemma 2.6.1] the projection on the
(0, 0)-component Ā(B∨) → OX is a quasi-isomorphism. Clearly, ξ(OX) = OX .
This finishes the proof. �

Definition 6.30. The singularity category of a dg-algebra A is the Verdier
quotient

DG×C∗sg (A) :=
DCohG×C

∗
(A)

Perf(A)
.

Corollary 6.31. There is an equivalence of categories

DG×C∗sg (B) ' DCohG×C
∗
(AX×C)op

DX CohG×C
∗
(AX×C)op

.

Recall the notation from the beginning of this section.
Let π∨ : E∨ → X denote the dual vector bundle. This defines a pull-back

section via the cartesian diagram

E∨ ×X E // E

E∨

(π∨)∗s

OO

π∨ // X

s

OO

Define the function W to be the composition with the natural pairing

W : E∨ → E∨ ×X E
〈 , 〉−→ C, ax 7→ 〈((π∨)∗s)(ax), ax〉.
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Set Z := W−1(0). There is a short exact sequence

0→ εSym E s−→ Sym E −→ π∗OZ → 0.

Thus, the map φ : B → π∗OZ sending Sym E to π∗OZ and ε to 0 is a quasi-
isomorphism of sheaves of equivariant graded dg-algebras. Proposition 6.18 gives
an equivalence

DCohG×C
∗
(B) ' DCohG×C

∗
(π∗OZ).

The equivalence takes B to π∗OZ so it descends to the singularity categories.

Lemma 6.32. There is an equivalence of categories DG×C∗sg (B) ' DG×C∗sg (π∗OZ).

Lemma 6.33. Let f : X → Y be a G-equivariant affine morphism and set
C := f∗OX . Then f∗ induces an equivalence of categories

f∗ : QCohG(X)
∼→ QCohG(C).

Here QCohG(C) denotes G-equivariant quasi-coherent OY -modules with a C-action.

Proof. In the non-equivariant setting this is [Har1, Exercise II.5.17]. The
functor f∗ lifts to the equivariant setting

QCohG(X)
fG∗ //

For
��

QCohG(C)

For
��

QCoh(X)
f∗

∼
// QCoh(C)

Since f∗ is fully-faithful we have

HomG
C (fG∗ (N ), fG∗ (M)) = (HomC(f∗(N ), f∗(M)))G

= (HomX(N ,M))G

= HomG
X(N ,M).

Thus, fG∗ is fully-faithful. We need to show that fG∗ is essentially surjective. Let
(M, φ) ∈ QCohG(C) where M ∈ QCoh(C) and φ : ac∗Y (M)

∼→ p∗Y (M). Here
acY , pY : G × Y → Y is the action and projection morphism, respectively. Use
similar notation for X. Since f∗ is essentially surjective forgetting the equivariance
M' f∗(N ) for some N ∈ QCoh(X). Using base change we get isomorphisms

(1× f∗)ac∗X(N ) ' ac∗Y f∗(N ) ∼
φ // p∗Y f∗(N ) ' (1× f∗)p∗X(N )

Since 1 × f∗ is an equivalence of categories this induces an isomorphism ψ :=
(1 × f∗)−1φ : ac∗X(N )

∼→ p∗X(N ). Thus, N lifts to QCohG(X) so fG∗ is essentially
surjective. �
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The morphism π : Z → X is affine so the lemma gives an equivalence

Db CohG×C
∗
(Z) ' DCohG×C

∗
(π∗OZ).

The equivalence descends to the singularity categories

DG×C∗sg (π∗OZ) ' DG×C∗
sg (Z).

Combining all these equivalences of categories we can now prove the equivariant
version of the main theorem in [Isik].

Theorem 6.34. There is an equivalence of categories DG×C∗
sg (Z) ' Db(CohG(Y )).

Proof. We already proved the following series of equivalences

DG×C∗
sg (Z) ' DG×C∗sg (π∗OZ)

' DG×C∗sg (B)

' DCohG×C
∗
(AX×C)op

DX CohG×C
∗
(AX×C)op

' DCohG×C
∗
(AX×C∗)op

' DCohG×C
∗
((OY [t, t−1])op

' Db(CohG(Y ))op.

Since X has an ample family of G-equivariant line bundles so does the closed
subvariety Y by restriction. Thus, Y satisfies property (6.2.1) so a functor similar
to DX

Ω from section 6.3 can also be constructed for Y . This gives an equivalence
Db(CohG(Y ))op ' Db(CohG(Y )). �

6.5. Equivariant matrix factorizations and singularity category

6.5.1. Definitions. LetX be an algebraic stack andW ∈ H0(X,C) a section.
The section W is called the potential.

Definition 6.35. (1) A matrix factorization Ē = (E•, δ•) of W on X
consists of a pair of vector bundles, i.e. locally free sheaves of finite rank,
E0, E1 on X together with homomorphisms

δ1 : E1 → E0 and δ0 : E0 → E1

such that δ1δ0 = W · Id = δ0δ1.
(2) The dg-category of matrix factorizations is defined in the following way.

Let Ē, F̄ be matrix factorizations. Then HomMF(Ē, F̄ ) is the Z-graded
complex

HomMF(Ē, F̄ )2n := Hom(E0, F0)⊕ Hom(E1, F1),

HomMF(Ē, F̄ )2n+1 := Hom(E0, F1)⊕ Hom(E1, F0).
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with differential

df := δF ◦ f − (−1)|f |f ◦ δE.

Remark 6.36. Matrix factorizations can be defined for a general line bundle
over X (see [PV]) but for the application we have in mind we only need L = C.

Let G be a linear algebraic group acting on X and assume that W is invariant
with respect to the action. Then we define G-equivariant matrix factorizations in
the following way.

Definition 6.37. A matrix factorization Ē = (E•, δ•) of W on X is G-
equivariant if (E0, E1) areG-equivariant vector bundles and (δ0, δ1) areG-invariant.
We define HomMFG(Ē, F̄ ) to be the complex

HomMFG(Ē, F̄ )2n := Hom(E0, F0)G ⊕ Hom(E1, F1)G,

HomMFG(Ē, F̄ )2n+1 := Hom(E0, F1)G ⊕ Hom(E1, F0)G.

The differential is the same as for non-equivariant matrix factorizations.

Denote the corresponding homotopy categories by HMF(X,W ) := H0(MF(X,W ))
and HMFG(X,W ) := H0(MFG(X,W )).

Remark 6.38. Let W̄ denote the induced potential X/G → C. Then the
dg-categories MFG(X,W ) and MF(X/G, W̄ ) are equivalent.

The category HMF(X,W ) is a triangulated category. Consider the triangulated
subcategory LHZ(X,W ) consisting of matrix factorizations Ē that are locally con-
tractible (i.e. there exists an open covering Ui of X in the smooth topology such
that Ē|Ui = 0 in HMF(Ui,W |Ui)).

Definition 6.39. For a stack X we define the derived category of matrix
factorizations by

DMF(X,W ) := HMF(X,W )/LHZ(X,W ).

6.5.2. Connection with singularity categories. In this subsection we re-
call the connection between matrix factorizations and singularity categories as
stated by Polishchuk and Vaintrob in [PV]. Let X be an algebraic stack and
W ∈ H0(X,C) a potential. Assume that W is not a zero divisor (i.e. the mor-
phism W : OX → C is injective). Set X0 := W−1(0). Then there is a natural
functor (see [PV, Section 3]).

C : HMF(X,W )→ Dsg(X0),

(E•, δ•) 7→ coker(δ1 : E1 → E0).

Definition 6.40. (i) X has the resolution property (RP) if for every co-
herent sheaf F on X there exists a vector bundle V on X and a surjection
V → F .
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(ii) X has finite cohomological dimension (FCD) if there exists an integer N such
that for every quasi-coherent sheaf F on X one has H i(X,F) = 0 for i > N .

(iii) X is called a FCDRP-stack if it has property (i) and (ii).

Theorem 6.41. [PV, Theorem 3.14] Let X be a smooth FCDRP-stack and W
a potential which is not a zero-divisor. Then the functor

C̄ : DMF(X,W )→ Dsg(X0)

induced by C is an equivalence of triangulated categories.

Proposition 6.42. Let U be a Noetherian scheme and G a reductive algebraic
group acting on it. Assume that U has an ample family of G-equivariant line
bundles. Then the quotient stack U/G is a FCDRP-stack.

Proof. See [PV, Section 3]. �

6.6. Application to the setting from Isik

Recall the notation from section 6.4: X is a smooth complex algebraic variety
with an action of a reductive algebraic group G. We also have a G-equivariant
vector bundle π : E → X of rank n. Its sheaf of G-equivariant sections is denoted
by E . Let s ∈ H0(X, E) be a regular G-equivariant section. The zero scheme of s
is denoted by Y . We also defined the function.

W : E∨ → C, ax 7→ 〈((π∨)∗s)(ax), ax〉.
We assume that W is not a zero divisor. The section s is G-equivariant by as-
sumption and the pairing is G-invariant so W is G-invariant. The C∗-action is
given by dilation of the fibers and W is also invariant with respect to this action.
Thus, W factors through the quotient

E∨
W //

&&

C

E∨/(G× C∗)
W

99

For any linear algebraic group K acting on a scheme V there is an equivalence
CohK(V ) ' Coh(V/K). This induces equivalences

DG×C∗
sg (W−1(0)) ' Dsg(W

−1(0)/(G× C∗)) ' Dsg(W
−1

(0)).

Proposition 6.43. With the above assumptions there is an equivalence of
categories

DMF(E∨/(G× C∗), W̄ ) ' Dsg(W
−1

(0)).

Proof. We need to show that the assumptions of theorem 6.41 are satisfied.
By assumption X is smooth, hence E∨ is smooth so the stack E∨/(G × C∗) is
smooth. The varietyX has an ample family ofG×C∗-equivariant line bundles. The
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pull-back of such a family along the G×C∗-equivariant bundle map π∨ : E∨ → X
is an ample family of G×C∗-equivariant line bundles on E∨. It then follows from
proposition 6.42 that E∨/(G× C∗) is a FCDRP-stack. �

By remark 6.38 we have

DMF(E∨/(G× C∗),W ) ' DMFG×C∗(E,
∨W ).

Combining these equivalences with corollary 6.34 we obtain

Theorem 6.44. There is an equivalence of categories

DMFG×C∗(E
∨,W ) ' Db(CohG(Y )).

6.6.1. Extension to an arbitrary linear algebraic group. In this section
we extend theorem 6.44 to arbitrary linear algebraic groups. Let X be a smooth
complex algebraic variety with an action of a linear algebraic group H. Let π :
E → X be a H-equivariant vector bundle and s a H-equivariant regular section.
Let Y denote the zero section of s and let W be the function

W : E∨ → C, ax 7→ 〈((π∨)∗s)(ax), ax〉.

Theorem 6.45. With the above assumptions there is an equivalence of cate-
gories

DMFC∗(E
∨/H, W̄ ) ' Db(CohH(Y )).

Proof. Embed H into a reductive algebraic group G. Then H acts freely
on G × X by h · (g, x) := (gh−1, hx). Consider the quotient by this action. The
morphism

πG : G×E
H
→ G×X

H
, (g, e) 7→ (g, π(e)).

is a G-equivariant vector bundle. Consider the section

sG : G×X
H
→ G×E

H
, (g, x) 7→ (g, s(x)).

The zero scheme for this section is G×Y
H

=: YG. We have the corresponding func-
tion.

WG :
(
G×E
H

)∨
= G×E∨

H

Id×sG−→ G×E∨
H
×G×X

H

G×E
H

〈 , 〉−→ C.

Notice that WG(g, e) = W (e) for all (g, e) ∈ G×E
H

. Inserting this into theorem 6.44
gives an equivalence

DMFG×C∗(
G×E∨
H

,WG) ' Db(CohG(YG)).

Notice that Db(CohG(YG)) ' Db(CohH(Y )) and that

DMFG×C∗(
G×E∨
H

,WG) ' DMFC∗(
G×E∨
H

/
G, W̄G)

' DMFC∗(E
∨/H, W̄ ).

This finishes the proof. �
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6.6.2. Application to Hamiltonian reduction. Let X be a smooth com-
plex algebraic variety with a free action of a linear algebraic group G such that
the quotient Y := X/G is a scheme. The moment map µ : T ∗X → g∗ provides
a G-equivariant section of the trivial vector bundle π : T ∗X × g∗ → T ∗X. The
potential W is the composition

W : T ∗X × g
µ×Id−→ g∗ × g

〈 , 〉−→ C.
Theorem 6.45 gives an equivalence of categories between matrix factorizations and
the Hamiltonian reduction

DMFC∗((T
∗X × g)/G, W̄ ) ' Db(Coh(µ−1(0)/G)).

Write µ−1(0) as T ∗X×g∗ 0. Let p : X → X/G be the quotient morphism and {Ui}
a trivialization. Then

T ∗(p−1(Ui))×g∗ 0 ' (G× g∗ × T ∗Ui)×g∗ 0 ' G× T ∗Ui.
This shows that µ−1(0)/G ' T ∗(X/G). In particular, we proved that

Theorem 6.46. There is an equivalence of categories

DMFC∗((T
∗X × g)/G, W̄ ) ' Db(Coh(T ∗(X/G))).

Remark 6.47. When X is a reductive algebraic group G and the linear alge-
braic group from the theorem is a Borel subgroup B then we get the Springer res-
olution Ñ ' T ∗(G/B). Thus, we get DMFC∗((T

∗G× b)/B, W̄ ) ' Db(CohG(Ñ )).



CHAPTER 7

Braid group actions on equivariant matrix factorizations

7.1. The braid group action of Bezrukavnikov and Riche

In this section we recall the construction of an action of the (extended) affine
braid group by Bezrukavnikov and Riche in [BR] and [Ric]. Let G be a reductive
algebraic group over an algebraically closed field k. Their proof works both in
characteristic zero and when the characteristic is bigger than the Coxeter number.
Fix a maximal torus T and Borel subgroup B containing it. Recall that the
extended affine braid group has the following presentation.

Theorem 7.1. [Ric, Thm 1.1.3] The extended affine braid group, Baff , admits
a presentation with generators {Tα | α ∈ Π} ∪ {θx | x ∈ X} and relations:

(1) TαTβTα · · · = TβTαTβ · · · with m(α, β) factors on each side.
(2) θxθy = θx+y.
(3) Tαθx = θxTα if 〈x, α〉 = 0, i.e. sα(x) = x.
(4) θx = Tαθx−αTα if 〈x, α〉 = 1, i.e. sα(x) = x− α.

We sketch their construction. Let X and Y be G-varieties. Denote the projec-
tions X × Y → X and X × Y → Y by pX and pY respectively. These projections
are not assumed to be proper, so push-forward might not take coherent sheaves to
coherent sheaves. This problem is fixed by introducing the following full subcate-
gory

Db
prop(Coh(X × Y )) ⊂ Db(Coh(X × Y ))

in the following way. An object in Db(Coh(X×Y )) belongs to Db
prop(Coh(X×Y ))

if its cohomology sheaves are topologically supported on a closed subscheme Z ⊂
X × Y such that the restrictions of pX and pY to Z are proper. They define a
convolution product

∗ : Db
prop(CohG(Y × Z))×Db

prop(CohG(X × Y ))→ Db
prop(CohG(X × Z)),

F ∗ G := RpX,Z∗(p
∗
X,YF ⊗LX×Y×Z p∗Y,ZG),

where pX,Y , pY,Z and pX,Z are the projections from X×Y ×Z to the listed factors.
Any F ∈ Db

prop(CohG(X × Y )) defines a functor

FFX→Y : Db(CohG(X))→ Db(CohG(X)),

M 7→ RpY ∗(F ⊗LX×Y p∗XM).

67
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Lemma 7.2. [Ric, Lemma 1.2.1] Let F ∈ Db
prop(CohG(X × Y )) and G ∈

Db
prop(CohG(Y × Z)). Then

F GY→Z ◦ FFX→Y ' F G∗FX→Z .

The categorical action of Baff to be constructed will be a weak action. Recall
that a weak action of a group A on a category C is a group morphism from A to the
group of isomorphism classes of auto-equivalences of the category C. Note that no
compatibility conditions are imposed on the morphisms. In particular, to construct
an action of Baff on Db(CohG(X)) it suffices to find objects in (Db

prop(CohG(X ×
X)), ∗), whose convolution with each other satisfy affine braid group relations.

In this construction the variety is going to be the Grothendieck variety g̃. Recall
that g̃ is smooth and that ν : g̃ → g is proper. It follows that the base change
morphisms g̃×g g̃→ g̃ are proper, so we have a full monoidal subcategory

Db
g̃×gg̃(CohG(g̃× g̃)) ⊂ Db

prop(CohG(g̃× g̃)),

whose objects are topologically supported on g̃ ×g g̃. It is a monoidal category
with ∗. We call this monoidal category the affine Hecke category

Heckeaf(G,B) := (Db
g̃×gg̃(CohG(g̃× g̃)), ∗).

Consider the composition

g̃×g g̃ ↪→ g̃× g̃ � B × B.
For w ∈ W we denote by Zw the closure of the inverse image of the G diagonal
orbit of (B/B,w−1B/B). For x ∈ X we have the canonical line bundle OB(x). It
is the sheaf corresponding to the G-equivariant line bundle G×B kx → B. Here kx
is the vector space k with a B-action given by

b · z = x(π(b))z,

where π is the quotient map B → B/[B,B] ' T . We define O∆(g̃)(x) to be
the pull-back of OB(x) along the projection of the diagonal ∆(g̃) → B. We can
now state the main result of Bezrukavnikov and Riche, which can be seen as a
categorification of the result about representations of the Weyl group in chapter
2.

Theorem 7.3. [BR, Theorem 1.3.2] There is a categorical Baff-action on
Db(CohG(g̃)) in which Tαi acts by convolution with OZsαi and θx acts by con-
volution with O∆(g̃)(x).

Moreover, they prove that for a reduced expression w = sαi1 · · · sαin
OZsαi1 ∗ · · · ∗ OZsαin ' OZw .

In [BR, Section 4 and 5] Bezrukavnikov and Riche also lift this construction
to the DG-category setting. Consider two G × Gm-equivariant dg-algebras X =
(X0,AX) and Y = (Y0,AY ) and an equivariant functor of dg-algebras f : X → Y .
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By choosing resolutions (in the appropriate sense) one can define a derived fiber
product X ×RY X up to quasi-isomorphism. This is sufficient to get a well-defined
category

KX,Y := DQCohG×Gm(X ×RY X).

Remark 7.4. Assume that X and Y are ordinary schemes (i.e. AX = OX and
AY = OY ) satisfying

Torf
−1OY
6=0 (OX ,OX) = 0.

Then the dg-scheme X ×RY X is just the ordinary fiber product X0 ×Y0 X0 and

KX,Y ' DQCohG×Gm(X0 ×Y0 X0).

This is the case when X = g̃, Y = g and f is the Grothendieck-Springer resoluion
(see [Bez2, Section 1.2.2]).

The category KX,Y is monoidal. When f is smooth (any quasi-projective
morphism can be replaced by a smooth morphism using a trick explained in
[BR, Section 3.7]) the derived fiber product is the ordinary fiber product of dg-
schemes X ×Y X and the convolution product is defined in the following way. Let
qij : X0 ×Y0 X0 ×Y0 X0 → X0 ×Y0 X0 be the projection to the (i, j)-th factor.
Consider the dg-schme

Zij := (X0 ×Y0 X0 ×Y0 X0, q
∗
ijAX×YX .)

It has a natural morphism of dg-schemes pij : Zij → X ×Y X. Let q2 : X0 ×Y0

X0 ×Y0 X0 → X0 be projection to the second factor, and consider the sheaf of
dg-algebras q∗2AX on X0×Y0X0×Y0X0,. Then there exist a derived tensor product

⊗Lq∗2AX : DQCohG×Gm(Z12)×DQCohG×Gm(Z23)→ DQCohG×Gm(Z13)

Using this they define the convolution product ∗ : KX,Y ×KX,Y → KX,Y
M∗N := Rp13∗(Lp

∗
12N ⊗Lq∗AX Lp

∗
23M).

Let p1, p2 : X ×Y X → X be the two projections. There is a monoidal action of
KX,Y on DQCohG×Gm(X).

KX,Y ×DQCohG×Gm(X)→ DQCohG×Gm(X),

M∗N := Rp2∗(M⊗LX×RYX Lp
∗
1N ).

Definition 7.5. Let KCoh
X,Y be the full subcategory of KX,Y whose objects are

complexes with only finitely many non-zero cohomology sheaves, each of which is
a coherent sheaf on X ×Y X.

Proposition 7.6. [BR, Prop. 4.2.1] Assume that X and Y are ordinary
schemes and that f is proper. Then KCoh

X,Y is a monoidal category with the restricted
convolution product and the action of KCoh

X,Y on DQCohG×Gm(X) preserves the full
subcategory Db CohG×Gm(X).
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In the setting of the proposition there is a "direct image under closed embed-
ding" functor

KCoh
X,Y → Db CohX×YX(X ×X)

This functor is monoidal as remarked in [MR3, Section 4.1]. The generators of
the braid group action from theorem 7.3 are all schemes on g̃ ×g g̃ so they can
naturally be considered as objects in KCoh

g̃,g .

Theorem 7.7. There is a (weak) geometric action of Baff on KCoh
g̃,g .

7.2. Braid group action on matrix factorizations coming from
Hamiltonian actions

Let G be reductive algebraic group over an algebraically closed field of char-
acteristic zero. We would like to construct a categorical affine braid group action
on the equivariant absolute derived category of matrix factorizations coming from
the Hamiltonian action of G on the cotangent bundle of a smooth complex G-
variety X. However, in order to get such an action one should replace g by the
Grothendieck variety g̃ and instead consider matrix factorizations on g̃×T ∗X. De-
note the moment map of the action by µ. One can use the Grothendieck-Springer
resolution ν : g̃→ g to modify the potential to work with g̃. The new potential is
the function

w : g̃× T ∗X ν×µ−→ g× g∗
〈 , 〉−→ C.

The theorem we are going to prove is the following.

Theorem 7.8 (Main theorem). There is a Baff-action on Dabs(CohG(g̃ ×
T ∗X), w).

The idea of the proof is to construct a monoidal category of matrix fac-
torizations and a monoidal action of this category on Dabs(CohG(g̃ × T ∗X), w).
Then we construct a monoidal functor from a subcategory of the category from
Bezrukavnikov and Riche’s theorem 7.7 below, containing the generators of the
braid group action, to this monoidal category.

7.3. Matrix factorizations as CDG-modules

In this section we give an another but equivalent definition of matrix factor-
izations, which is more convenient for the purpose of this project. Here we will
consider matrix factorizations as a special (zero differential, 2-periodic and with
constant curvature) case of curved differential graded modules following the ap-
proach of Efimov and Positselski in [EP] and [Pos]. The previous chapter relied
on the result [PV, Thm. 3.14]. In order to deal with the equivariance, it was im-
portant that the result works for quotient stacks. The same result formulated in
the language of this chapter but only for schemes is [EP, Thm. 2.7]. It is possible
that the proof of Efimov and Positselski extends to the equivariant setting, but we



7.3. MATRIX FACTORIZATIONS AS CDG-MODULES 71

did not check this. The notion of matrix factorizations and their derived category
can be extended to any Abelian category (see [Efi1]).

Our main reason for choosing the CDG-module setting is that all the homo-
logical algebra machinery we need has been developed in [Pos] and [EP]. Some
machinery has also been developed in [Efi1] in the categorical generalization, but
it is not sufficient for our purposes. An attempt to develop it to the extend we need
was done by Ballard, Deliu, Favero, Isik and Katzarkov in the paper [BDFIK].
However, the paper contains many errors, so we decided to stick with the CDG-
module setting. We are fairly convinced that the results we need also holds in
the categorical setting, and that our construction would work well also in this
formulation, but this would require more work.

7.3.1. Curved differential graded modules.

Definition 7.9. (1) A curved differential graded (CDG) ring is a triple
B = (B, d, h), where B is a Z-graded ring with an odd derivation d : B →
B of degree 1 and h is an element in B2 such that d2(b) = [h, b] for all b ∈ B
and d(h) = 0. Here [ , ] is the supercommutator [a, b] = ab− (−1)|a||b|ba.

(2) A morphism of CDG-rings is a pair (f, a) : B → A, where f : B → A is
a morphism of graded rings and a ∈ A1 an element satisfying f(dBb) =
dAf(b)+[a, f(b)] for all b ∈ B and f(hB) = hA+dAa+a2. The composition
of morphisms is defined as (f, a) ◦ (g, b) = (f ◦ g, a+ f(b)).

(3) A left CDG-module over a CDG-ring B is a pair (M,dM), where M is a
graded B-module with an odd derivation dM : M → M compatible with
dB and satisfying d2

B(m) = hm for all m ∈M .

Remark 7.10. In the cases we are interested in all morphisms of CDG-rings
will have the change of curvature element a = 0 ∈ A1.

The category of left CDG-modules over a CDG- ring B has a DG-category
structure with the following Hom complex

Homn(M,N) := {f : M → N homogeneous | f(bm) = (−1)n|b|bf(m) ∀b ∈ B,m ∈M}
d(f)(m) := dN(f(m))− (−1)|f |f(dM(m)).

Since

d2(f)(m) = d2
Nf(m)− (−1)|f |+1dNfdM(m)− (−1)|f |dNfdM(m)− fd2

M(m)

= hf(m)− f(hm) = hf(m)− (−1)n2hf(m)

= 0.

From now on all schemes are separated Noetherian and we assume that they
have enough vector bundles, i.e. every coherent sheaf on X is the quotient sheaf
of a locally free sheaf of finite rank.
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Definition 7.11. LetX be a separated Noetherian scheme with enough vector
bundles.

(1) A quasi-coherent CDG-algebra B over X is a graded quasi-coherent OX-
algebra such that for every affine open subspace U ⊆ X the graded ring
B(U) is a CDG-ring (the differential is not required to be OX-linear).
For each pair of embedded affine open subspaces U ⊆ V ⊆ X we fix
an element aUV ∈ B1(U) which together with the restriction morphism
B(V )→ B(U) form a morphism of CDG-rings. Moreover, we impose the
usual compatibility conditions for triples of embedded affine open subsets.

(2) A quasi-coherent left CDG-module M over B is an OX quasi-coherent
sheaf endowed with a family of differentials d :M(U) →M(U) for each
affine open subset U satisfying d(s)|U = d(s|U)+aUV s|U for all s ∈M(V ).

Definition 7.12. Let f : Y → X be a morphism of separated Noetherian
schemes with enough vector bundles and BX , BY CDG-algebras on X and Y
respectively. A morphism of CDG-algebras BX → BY compatible with f is a
CDG-ring morphism BX(U)→ BY (V ) for each pair of affine open subsets U ⊆ X,
V ⊆ Y with f(V ) ⊆ U satisfying the following compatibility condition: for all
affine open subsets U ′ ⊆ U , V ′ ⊆ V with f(V ′) ⊆ U ′ the following diagram is
commutative

BX(U) //

��

BY (V )

��
BX(U ′) // BY (V ′)

For two quasi-coherent left CDG-modules M and N we define the complex
Hom(M,N ) to be the complex of morphisms such that f |U :M(U)→ N (U) is in
the Hom complex of CDG-modules over the CDG-ring B(U) for every affine open
subset U ⊂ X. The differential is defined locally as the supercommutator

d(f)(m) := dN(f(m))− (−1)|f |f(dM(m))

This gives a DG-category structure and we denote the DG-category by B−QCoh.
The CDG-algebra B is called Noetherian if B(U) is Noetherian for all affine

open U . In this case we denote by B − Coh the full DG-subcategory of quasi-
coherent CDG-modules whose underlying graded B-modules are finitely generated
over B.

These DG-categories admits shifts and cones so the homotopy categoriesH0(B−
QCoh) and H0(B − Coh) are triangulated.

7.3.2. Exotic derived category. Since the differential does not square to
zero the conventional definition of the derived category does not make sense. In-
stead one can form the exotic derived category introduced by Positselski.
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Definition 7.13. For a complex · · · → Xi
gi→ Xi+1 → . . . in one of these DG-

categories we define the total object to be the object
⊕

nXn[n] with differential
defined by d =

∑
n dXn + (−1)vertical degreegn

Definition 7.14 (Exotic derived category). (1) A quasi-coherent CDG-
module over B is absolutely acyclic if it belongs to the minimal thick
subcategory of H0(B − QCoh) containing all total complexes of short
exact sequences in B −QCoh.

(2) The absolute derived category Dabs(B − QCoh) is the quotient category
of H0(B − QCoh) by the thick subcategory of absolutely acyclic CDG-
modules.

(3) Assume that B is Noetherian. A coherent CDG-module is absolutely
acyclic if it belongs to the minimal thick subcategory of H0(B − Coh)
containing all total complexes of short exact sequences in B − Coh.

(4) The absolute derived category Dabs(B − Coh) is the quotient category
of H0(B − Coh) by the thick subcategory of coherent absolutely acyclic
CDG-modules.

(5) Let E be an exact subcategory in the Abelian category of quasi-coherent
graded left B-modules. Denote the full subcategory of B − QCoh with
objects for which underlying graded B-modules are in E by B − QCohE .
The relative absolute derived category Dabs(B − QCohE) is the quotient
of H0(B−QCohE) by the minimal thick subcategory containing the total
objects of all short exact sequences, whose underlying graded modules
belong to E . The category Dabs(B − CohE) is defined similarly.

Lemma 7.15. [EP, Rem. 1.3] Absolute acyclicity is a local notion, i.e. to check
that M is acyclic it is enough to show that M restricted to each Uα is acyclic,
where {Uα} is a finite affine open cover of X.

Proposition 7.16. [EP, Prop. 1.5(c)] The functor Dabs(B−Coh)→ Dabs(B−
QCoh) induced by the inclusion B − Coh ↪→ B −QCoh is fully faithful.

7.3.3. Matrix factorizations. LetX be a separated Noetherian scheme with
enough vector bundles and let L be a line bundle on X. Fix a section w ∈ L(X).
This section is called the potential. We define the Z-graded quasi-coherent CDG-
algebra (X,L, w) as follows.

(X,L, w)n :=

{
L⊗n/2 n ∈ 2Z
0 n ∈ 2Z + 1

In particular, the differential is zero and the elements aUV defining the restriction
morphism (X,L, w)(U)→ (X,L, w)(V ) for affine open V ⊆ U ⊆ X vanish. For U
affine open the curvature element is w|U ∈ (X,L, w)2 = L(X). The multiplication
comes from the natural isomorphisms

L⊗n/2 ⊗OX L⊗m/2 → L⊗(n+m)/2.
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There is an equivalence of categories between quasi-coherent Z-graded (X,L, w)-
modules and Z/2-graded quasi-coherent OX-modules given by

QCohZ(X,L, w)−mod oo // QCohZ/2(X)

M � // (U0 =M0,U1 ⊗ L⊗1/2 =M1)

Mn = Un mod 2 ⊗OX L⊗n/2
�oo (U0,U1)

This equivalence preserves all the properties we are interested in, e.g. coherence,
flatness ect. Hence, an object in (X,L, w) − QCoh is a pair of quasi-coherent
OX-modules U0 and U1 ⊗ L⊗1/2 with OX-linear morphisms

U0 → U1 ⊗ L⊗1/2, U1 ⊗ L⊗1/2 → U0 ⊗OX L

such that both compositions

U0 → U1 ⊗ L⊗1/2 → U0 ⊗OX L
U1 ⊗ L⊗1/2 → U0 ⊗OX L → U1 ⊗OX L⊗3/2

are equal to the multiplication by w.
Let f : X → Y be a morphism of separated Noetherian schemes with enough

vector bundles. For any affine open U ⊆ X and V ⊆ Y with f(U) ⊆ V we have a
morphism compatible with restriction

f∗L⊗n/2(V ) = L(f−1(V ))⊗n/2 → L⊗n/2(U).

By adjunction we get a map L⊗n/2(U) → f ∗L⊗n/2(V ). This defines a morphism
of CDG-algebras (X,L, w)→ (Y, f ∗L, f ∗w), where f ∗w = f(w).

The absolute derived category of matrix factorizations isDabs(Coh(X),L, w) :=
Dabs((X,L, w)−Coh). Likewise, we writeDabs(QCoh(X),L, w) := Dabs((X,L, w)−
QCoh). When L = OX we leave it out from the notation.

7.3.4. Equivariant matrix factorizations. Let G be a reductive algebraic
group acting on a smooth scheme X. In the case we are interested in L = OX and
w is a G-invariant section. The notation in the equivariant setting is analogues to
the non-equivariant setting.

Definition 7.17. (1) The subcategory of (X,OX , w)−QCoh whose ob-
jects are the CDG-modules for which the underlying OX-modules are G-
equivariant and morphisms areG-equivariant is denoted by (QCohG(X), w).

(2) Objects in H0(QCohG(X), w) are called equivariant absolutely acyclic if
they belong to the minimal thick subcategory of H0(QCohG(X), w) con-
taining all total complexes of short exact sequences in (QCohG(X), w).
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(3) The equivariant absolute derived category Dabs(QCohG(X), w) is the quo-
tient category of H0(QCohG(X), w) by the thick subcategory of equivari-
ant absolutely acyclic CDG-modules.

We use similar notation in the coherent case and in the relative case. The proof
from proposition 7.16 generalizes to the equivariant setting.

Proposition 7.18. Let G be a reductive algebraic group acting on a smooth
scheme X. Then the functor Dabs(CohG(X), w) → Dabs(QCohG(X), w) induced
by the inclusion (CohG(X), w) ↪→ (QCohG(X), w) is fully faithful.

7.4. Derived functors

7.4.1. Derived functors on exotic derived categories. Let f be a mor-
phism of CDG-algebras. Then we can define push-forward and pull-back as usual

f ∗ : BX −QCoh→ BY −QCoh,

f ∗M := BY ⊗f−1BX f
−1M.

f∗ : BY −QCoh→ BX −QCoh,

f∗N := N as a BX-module.

These functors descend to the homotopy categories and f∗ is right adjoint to f ∗.
The usual tensor product for graded complexes defines a quasi-coherent graded

OX-module N ⊗BXM for N a quasi-coherent graded right BX-module N andM
a quasi-coherent graded left BX-module. A moduleM is called flat if the functor
− ⊗BX M is exact on the abelian category of quasi-coherent graded right BX-
modules. Equivalently, M is flat if the graded left BX(U)-module M(U) is flat
for any affine open subscheme U ⊆ X. Denote the full subcategory in BX −QCoh
of CDG-modules whose underlying graded BX-modules are flat by BX − QCohfl.
Since ⊗BZ takes short exact sequences in BX −QCohfl to short exact sequences it
takes absolutely acyclic modules to absolutely acyclic modules. Hence, it induces
a functor

⊗LBX : Dabs(QCoh−BX)×Dabs(BX −QCohfl)→ Dabs(OX −QCoh).

The functor f ∗ restricts to a functor H0(BX − QCohfl) → H0(BY − QCoh)
preserving short exact sequences. Hence, it takes modules absolutely acyclic with
respect to BX −QCohfl to modules absolutely acyclic with respect to BY −QCohfl

so it induces a functor

Lf ∗ : Dabs(BX −QCohfl)→ Dabs(BY −QCohfl).

Notice that if g : (X,BX) → (Z,BZ) is another morphism of CDG-algebras then
L(g ◦ f)∗ ' Lf ∗ ◦ Lg∗ since pull-back takes flat to flat.

Similarly, we denote the full subcategory in BX−QCoh of CDG-modules whose
underlying graded BX-modules are injective (respectively of finite injective dimen-
sion) by BX −QCohinj (respectively BX −QCohfid).
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Lemma 7.19. [EP, Lemma 1.7(a)] The natural functor H0(BX − QCohinj) →
Dabs(BX −QCohfid) is an equivalence of triangulated categories.

By the lemma f∗ induces a functor

Rf∗ : Dabs(BY −QCohfid)→ Dabs(BX −QCoh).

Let Dabs(QCohG(X)lf, w) denote the relative absolute derived category for the
full subcategory in QCohG(X) whose underlying graded modules are locally free
of finite rank.

7.4.2. Derived functors on matrix factorizations. Let f : X → Y be an
equivariant morphism of separated Noetherian schemes G-schemes with enough
G-equivariant vector bundles. As noted in section 7.3.3 this defines a morphism
of CDG-algebras. Hence, we can define the absolute derived pull-back and push-
forward as in the previous section

Lf ∗ : Dabs(QCohG(X)fl, w)→ Dabs(QCohG(Y )fl, f
∗w).

Rf∗ : Dabs(QCohG(Y )inj, f
∗w)→ Dabs(QCohG(X), w).

When X and Y are smooth these can be extended to functors

Lf ∗ : Dabs(QCohG(X), w)→ Dabs(QCohG(Y ), f ∗w).

Rf∗ : Dabs(QCohG(Y ), f ∗w)→ Dabs(QCohG(X), w).

by the following proposition

Proposition 7.20. Let G be a reductive algebraic group acting on a smooth
scheme X.

(1) The natural functor

H0(QCohG(X)inj, h)→ Dabs(QCohG(X), h)

is an equivalence of triangulated categories.
(2) The natural functor

Dabs(QCohG(X)lf , w)→ Dabs(QCohG(X), w)

is an equivalence of triangulated categories.

Proof. (1) The proof of lemma 7.19 extends to the equivariant setting so we
get an equivalence of triangulated categories

H0(QCohG(X)inj, w) ' Dabs(QCohG(X)fid, w).

For smooth schemes all equivariant quasi-coherent sheaves have finite equivariant
injective dimension so the result follows.

(2) [EP, Cor. 2.4(b)+rem.] states that when X is a regular separated Noether-
ian scheme of finite Krull dimension then the natural functorDabs(QCoh(X)lf, w)→
Dabs(QCoh(X), w) is an equivalence of triangulated categories. The proof extends
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to the equivariant setting when X has finite G-equivariant locally free dimension.
This is satisfied when X is smooth. �

Proposition 7.21. Let f : X → Y be an equivariant morphism of smooth
G-schemes. Then Rf∗ is right adjoint to Lf ∗.

Proof. In the non-equivariant setting this follows from [EP] Prop. 1.9 and
Cor. 2.3(b)+(f). The proof also works in the equivariant case. �

Lemma 7.22. Let f : X → Y and g : Y → Z be morphisms of smooth schemes.
Then

L(g ◦ f)∗ ' Lf ∗ ◦ Lg∗ and R(g ◦ f)∗ ' Rg∗ ◦Rf∗.

Proof. The first part follows from the fact that pull-back take flat to flat.
The second part follows from the first by adjunction. �

We also have an equivariant tensor product

⊗LX : Dabs(QCohG(X), w1)×Dabs(QCohG(X), w2)→ Dabs(QCohG(X), w1 + w2).

Lemma 7.23. Let f : X → Y be an equivariant morphism of smooth schemes.
There is an isomorphism of functors

Lg∗(−)⊗LX Lg∗(−) ' Lg∗(−⊗LX −).

Proof. The pull-back takes flat modules to flat modules and the tensor prod-
uct is a functor⊗LY : Dabs(QCoh(Y )fl, w1)×Dabs(QCoh(Y )fl, w2)→ Dabs(QCoh(Y )fl,
w1 + w2). Thus, on Dabs(QCoh(Y )fl, w1)×Dabs(QCoh(Y )fl, w2).

Lg∗(−)⊗LX Lg∗(−) ' L(g∗(−)⊗X g∗(−))

Lg∗(−⊗LX −) ' L(g∗(−⊗Y −)).

Thus, it is enough to show that g∗(−)⊗X g∗(−) ' g∗(−⊗Y −)

g∗(F1,F2)⊗X g∗(G1,G2)

= (g∗F1 ⊗X g∗G2 ⊕ g∗F2 ⊗X g∗G1, g
∗F1 ⊗X g∗G1 ⊕ g∗F2 ⊗X g∗G2)

' (g∗(F1 ⊗Y G2)⊕ g∗(F2 ⊗Y G1), g∗(F1 ⊗Y G1)⊕ g∗(F2 ⊗Y G2))

= g∗((F1,F2)⊗Y (G1,G2)).

Clearly, the differentials also match. The result now follows from proposition
7.20. �

Proposition 7.24 (Projection formula). Let g : X → Y be an equivariant
morphism of smooth G-schemes. Then there are isomorphisms of functors

Rg∗(Lg
∗(−)⊗LX −) ' −⊗LY Rg∗(−), Rg∗(−⊗LX Lg∗(−)) ' Rg∗(−)⊗LY −.
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Proof. The proof is similar to the proof for the usual derived category of
quasi-coherent sheaves (see for example [Stacks, Lemma 20.8.2 or 21.37.1]). We
only prove the first formula since the other is similar. Like for quasi-coherent
sheaves we can use the adjunction to construct a morphism.

−⊗LY Rg∗(−)→ Rg∗(Lg
∗(−)⊗LX −).

Indeed, the adjunction morphism Lg∗Rg∗ → Id induces a morphism

Lg∗(−⊗LY Rg∗(−)) ' Lg∗(−)⊗LX Lg∗Rg∗(−)→ Lg∗(−)⊗LX −.

We obtain the desired morphism from the above morphism by adjunction.
If F is flat and I is injective then F ⊗X I is injective by [EP, Lemma 2.5].

Thus, when restricting to Dabs(QCoh(Y )fl, wY )×Dabs(QCoh(X)inj, wX) we have

Rg∗(Lg
∗(−)⊗LX −) = g∗(g

∗(−)⊗X −),

−⊗LY Rg∗(−) = −⊗Y g∗(−).

Thus, we only need to show that g∗(g∗F⊗XG) ' F⊗Y g∗(G). By [EP, Cor. 2.3(h)]
the inclusion of Dabs(QCoh(Y )lf, wY ) into Dabs(QCoh(Y )fl, wY ) is an equivalence
of categories, so we may assume that F ∈ Dabs(QCoh(Y )lf, wY ). By Lemma 7.15
proving that we have an isomorphism can be done locally. Hence, we may assume
that F = (O⊗nY ,O⊗mY ). Write G = (G1,G2). Then

g∗(g
∗(O⊗nY ,O⊗mY )⊗X (G1,G2)) = g∗((O⊗nX ,O⊗mX )⊗X (G1,G2))

= g∗(G⊗n2 ⊕ G⊗m1 ,G⊗n1 ⊕ G⊗m2 )

= (g∗G⊗n2 ⊕ g∗G⊗m1 , g∗G⊗n1 ⊕ g∗G⊗m2 ).

On the other side we have

(O⊗nY ,O⊗mY )⊗Y g∗(G1,G2)) = (g∗G⊗n2 ⊕ g∗G⊗m1 , g∗G⊗n1 ⊕ g∗G⊗m2 ).

We check that the differentials match

g∗(g
∗di ⊗X dGi )(1⊗ a) = g∗g

∗di(1)⊗ a+ (−1)|1|1⊗ g∗dGi (a)

= (di(1)⊗ 1)⊗ a+ (−1)|1|1⊗ 1⊗ dGi (a)

' di(1)a+ (−1)|1|dGi (a)

On the other side we have

(di ⊗Y g∗dGi )(1⊗ a) = di(1)⊗ a+ (−1)|1|1⊗ g∗dGi (a)

' di(1)a+ (−1)|1|dGi (a).

The result now follows from proposition 7.20. �
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Proposition 7.25. Consider a Cartesian square of equivariant morphisms

Z
h //

f ′

��

Y

f
��

X g
// W

Assume that either u or v is flat. Then there is a natural isomorphism between
the composition of derived functors

Lg∗ ◦Rf∗ ' Rf ′∗ ◦ Lh∗.

Proof. The proof is inspired by the proof of tor-independent base change
for quasi-coherent sheaves (see for example [Stacks, Lemma 35.17.3]). By [EP,
Proposition 1.9] derived push-forward for matrix factorizations is right adjoint to
pull-back so we can use the same construction as for coherent sheaves to get a
canonical base change morphism

Lg∗Rf∗M→ Rf ′∗Lh
∗M, M∈ Dabs(QCoh(Y,w)).

This morphism is the adjoint of the morphism

Lf ′
∗
Lg∗Rf∗M' Lh∗Lf ∗Rf∗M→ Lh∗M,

which is induced by the adjunction morphism Lf ∗Rf∗M→M.
That the base change morphism is an isomorphism can be checked locally by

lemma 7.15. Hence, we may assume that S ′ and S are affine so g∗ is exact. We
claim that it is enough to show that

Rg∗Lg
∗Rf∗M→ Rg∗Rf

′
∗Lh

∗M' Rf∗Rh∗Lh
∗M(7.4.1)

is an isomorphism. The reason is that a morphism α is an isomorphism if and only
if Rg∗α is an isomorphism. Indeed, by exactness Cone(Rg∗α) = g∗Cone(α) but g∗
is just restriction so if g∗Cone(α) ' 0 it is because Cone(α) ' 0.

To simplify the notation we write F for the matrix factorization (0,F , 0, 0).
Notice that

(G0,G1, d0, d1)⊗X F = (G0 ⊗X F ,G1 ⊗X F , d0, d1).

In particular, ⊗XOX is the identity. Using the projection formula we get

Rg∗Lg
∗N ' Rg∗(Lg

∗N ⊗LX OX) ' N ⊗LW Rg∗OX .
By base change we get that h is an affine morphism so it is exact and the same
formula works for h. Thus, (7.4.1) can be rewritten as

Rf∗M⊗LW Rg∗OX → Rf∗(M⊗LY h∗OZ).

Notice that h∗OZ = h∗f
′∗OX . Inserting this we get

Rf∗M⊗LW Rg∗OX → Rf∗(M⊗LY f ∗g∗OX)
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If f ∗g∗OX ' Lf ∗g∗OX this is the morphism in the projection formula and we are
done. For f flat this is clear. In the case where g is flat we use the projection
formula

Lf ∗g∗OX = g∗OX ⊗LW OY
' g∗(OX ⊗LX Lg∗OX) ' g∗Lg

∗OX .

Hence, we also have f ∗g∗OX ' Lf ∗g∗OX in the case where g is the flat morphism.
�

7.5. Convolution

In this section we define a monoidal action on the category from section 7.2. As
in [BR] the categorical action of the affine braid group will come from convolution
with certain elements.

7.5.1. Definition. Let X and Y be smooth G-schemes and V a G-vector
space. Let V ∗ denote the dual vector space with the following G-action

g · f(x) = f(g−1x) ∀g ∈ G, f ∈ Hom(V, k), x ∈ V.

Assume that we have equivariant morphisms µ : X → V ∗ and ν : Y → V . These
determine a G-invariant section w ∈ O(Y ×X) by

w : Y ×X → k, (y, x) 7→ µ(x)(ν(y)).

Remark 7.26. In the case we are interested in X = T ∗X, Y = g̃, V = g, µ is
the moment map and ν is the Grothendieck-Springer resolution.

We would like construct an action on Dabs(QCohG(Y × X), w) similar to the
one for coherent sheaves in [BR]. However, if we use the exact same formula then
the potentials will not match and we will land in the wrong category. To correct
this, we introduce an additional factor of V ∗

Y × Y ×X
p

vv

p23

''
p13

��
Y × Y × V ∗ Y ×X Y ×X

where p := Id× Id×µ. Define the potential on Y ×Y ×V ∗ to be the section given
by

h : Y × Y × V ∗ → k, (y1, y2, g) 7→ g(ν(y1)− ν(y2)).

Then we have

(w ◦ p23 + h ◦ p)(y1, y2, x) = µ(x)(ν(y2)) + µ(x)(ν(y1)− ν(y2))

= µ(x)(ν(y1)) = w ◦ p13(y1, y2, x),
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Thus, we can define the action ∗ to be the composition.

Dabs(QCohG(Y × Y × V ∗), h)×Dabs(QCohG(Y ×X), w)

Lp∗×p∗23
��

Dabs(QCohG(Y × Y ×X), h ◦ p)×Dabs(QCohG(Y × Y ×X), w ◦ p23)

⊗LY×Y×X
��

Dabs(QCohG(Y × Y ×X), h ◦ p+ w ◦ p23 = w ◦ p13)

Rp13∗
��

Dabs(QCohG(Y ×X), w)

Now we need to define a monoidal structure on Dabs(QCohG(Y × Y × V ∗), h).
Consider the projection maps

Y × Y × Y × V ∗
p12

uu

p23

))
p13

��
Y × Y × V ∗ Y × Y × V ∗ Y × Y × V ∗

Notice that

(h ◦ p12 + h ◦ p23)(y1, y2, y3, g) = g(ν(y1)− ν(y2)) + g(ν(y2)− ν(y3))

= g(ν(y1)− ν(y3)) = h ◦ p13(y1, y2, y3, g).

Thus, we can define the convolution product ∗ as the composition.

Dabs(QCohG(Y × Y × V ∗), h)×Dabs(QCohG(Y × Y × V ∗), h)

p∗12×p∗23
��

Dabs(QCohG(Y × Y × Y × V ∗), h ◦ p12)×Dabs(QCohG(Y × Y × Y × V ∗), h ◦ p23)

⊗L
Y×Y×Y×V ∗
��

Dabs(QCohG(Y × Y × Y × V ∗), h ◦ p12 + h ◦ p23 = h ◦ p13)

Rp13∗
��

Dabs(QCohG(Y × Y × V ∗), h).

The proof that the convolution product is associative is similar to the proof of
proposition 7.27 below and both are similar to the proof of associativity in chapter
5.

Proposition 7.27. Let M1,M2 ∈ Dabs(QCohG(Y × Y × V ∗), h) and N ∈
Dabs(QCohG(Y ×X), w). Then

M1 ∗ (M2 ∗ N ) ' (M1 ∗M2) ∗ N .
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Proof. Consider the following cartesian diagram of projections

Y × Y × Y ×X p234 //

p124

��

Y × Y ×X
p13

��
Y × Y ×X p23

// Y ×X

Using the flat base change from proposition 7.25 and the projection formula from
proposition 7.24 we get

M1∗(M2 ∗ N )

= Rp13∗(Lp
∗M1 ⊗LY×Y×X p∗23Rp13∗(Lp

∗M2 ⊗LY×Y×X p∗23N ))

' Rp13∗(Lp
∗M1 ⊗LY×Y×X Rp124∗p

∗
234(Lp∗M2 ⊗LY×Y×X p∗23N ))

' Rp13∗Rp124∗(p
∗
124Lp

∗M1 ⊗LY×Y×Y×X p∗234(Lp∗M2 ⊗LY×Y×X p∗23N ))

' Rp13∗Rp124∗(p
∗
124Lp

∗M1 ⊗LY×Y×Y×X p∗234Lp
∗M2 ⊗LY×Y×Y×X p∗234p

∗
23N ).

Since p13 ◦ p124 = p13 ◦ p134 and p23 ◦ p234 = p23 ◦ p134 we get

M1∗(M2 ∗ N )

' Rp13∗Rp134∗(p
∗
124Lp

∗M1 ⊗LY×Y×Y×X p∗234Lp
∗M2 ⊗LY×Y×Y×X p∗134p

∗
23N )

' Rp13∗(Rp134∗(p
∗
124Lp

∗M1 ⊗LY×Y×Y×X p∗234Lp
∗M2)⊗LY×Y×X p∗23N ).

Set p4 := Id× Id× Id×µ. Notice that p ◦ p124 = π12 ◦ p4 and p ◦ p234 = π23 ◦ p4.

M1∗(M2 ∗ N )

' Rp13∗(Rp134∗(Lp
∗
4π
∗
12M1 ⊗LY×Y×Y×X Lp∗4π∗23M2)⊗LY×Y×X p∗23N )

' Rp13∗(Rp134∗Lp
∗
4(π∗12M1 ⊗LY×Y×Y×V ∗ π∗23M2)⊗LY×Y×X p∗23N )

Consider the cartesian diagram

Y × Y × Y ×X p4 //

p134

��

Y × Y × Y × V ∗

π13

��
Y × Y ×X p

// Y × Y × V ∗

Using flat base change we get the result

M1∗(M2 ∗ N )

' Rp13∗(Lp
∗Rπ13∗(π

∗
12M1 ⊗LY×Y×Y×V ∗ π∗23M2)⊗LY×Y×X p∗23N )

= (M1 ∗M2) ∗ N . �
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7.5.2. Restriction to an action on the coherent category. The category
normally referred to as derived equivariant matrix factorizations is the category
Dabs(CohG(Y × X), w) so we would like our action to restrict to this category.
The derived pull-back and tensor products both restricts to the coherent cate-
gory. However, this is not the case for the push-forward along a non-proper map.
Bezrukavnikov and Riche solved the corresponding problem for coherent sheaves
by introducing a support condition. A similar notion exists in our setting.

Definition 7.28. (i) The category-theoretical support of an equivariant co-
herent sheafM on X is the minimal closed subset T ⊂ X such thatM|X\T
is absolutely acyclic in Dabs(CohG(X), w).

(ii) For T a closed subset of a scheme X we denote by Dabs
T (CohG(X), w) the

quotient category of the homotopy category of coherent matrix factorizations
category-theoretically supported inside T by the thick subcategory of matrix
factorizations which are absolutely acyclic in Dabs(CohG(X), w).

The category Dabs
T (CohG(X), w) is a full subcategory in Dabs(CohG(X), w). In

the non-equivariant setting this is [EP, Prop. 1.10(d)] and the proof extends to
the equivariant case.

Lemma 7.29. Let φ : X → Y be a G-equivariant morphism of Noetherian sep-
arated G-schemes with enough G-equivariant vector bundles and T a G-invariant
closed subset in X.

(1) If φ|T : T → Y is proper of finite type and S is a closed subset in φ(T )
then Rφ∗ restricts to

Rφ∗ : Dabs
T (CohG(X), w ◦ φ)→ Dabs

S (CohG(Y ), w).

(2) Let T1, T2 be closed subsets of X. Then the tensor product restricts to a
functor

⊗LX : Dabs
T1

(CohG(X), h1)×Dabs
T2

(CohG(X), h2)→ Dabs
T1∩T2

(CohG(X), h1 + h2).

(3) Let S be a closed subset of Y . Then the pull-back restricts to a functor

Lφ∗ : Dabs
S (CohG(Y ), h)→ Dabs

X\φ−1(Y \S)(CohG(X), h ◦ φ).

Proof. 1) By [EP, lemma 3.5] Rφ∗ restricts to a functor

Rφ∗ : Dabs
T (CohG(X), w ◦ φ)→ Dabs(CohG(Y ), w)

so we only need to check the support. Since acyclicity is a local property we may
assume that X and Y are affine so φ∗ is exact. For V ⊆ Y open φ∗M(V ) =
M(φ−1(V )) so if M|U is absolutely acyclic then φ∗M|V is absolutely acyclic for
V ⊆ φ(U).

2) It is well-know that the derived tensor product of coherent sheaves on a
Noetherian scheme is coherent. A tensor product is acyclic if one of the factors
is acyclic and the other is flat. Thus, for an open set V the matrix factorization
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(M⊗OX N )|V =M|V ⊗OX |V N|V is acyclic when V ⊆ X\T1 or V ⊆ X\T2. Hence
if V ⊆ X\T1 ∪X\T2 = X\(T1 ∩ T2).

3) LetM ∈ Dabs
S (CohG(Y ), h). Then φ−1M|φ−1(Y \S) is absolutely acyclic. By

(2) this implies that Lφ∗(M) ∈ Dabs
X\φ−1(Y \S)(CohG(X), h ◦ φ). �

Corollary 7.30. (1) The convolution action restricts to

∗ : Dabs
Y×V Y×V ∗(CohG(Y×Y×V ∗), h)×Dabs(CohG(Y×X), w)→ Dabs(CohG(Y×X), w)

(2) The category Dabs
Y×V Y×V ∗(CohG(Y × Y × V ∗), h) is monoidal.

Proof. 1) By the lemma the functors in the convolution all restrict to the full
subcategory of coherent matrix factorizations.

Dabs
Y×V Y×V ∗(CohG(Y × Y × V ∗), h)×Dabs(CohG(Y ×X), w)

p∗×p∗23

��

Dabs
Y×V Y×X(CohG(Y × Y ×X), h ◦ p)×Dabs(CohG(Y × Y ×X), w ◦ p23)

⊗LY×Y×X
��

Dabs
Y×V Y×X(CohG(Y × Y ×X), w ◦ p13)

Rp13∗
��

Dabs(CohG(Y ×X), w)

2) In the same way we get

Dabs
Y×V Y×V ∗(CohG(Y × Y × V ∗), h)×Dabs

Y×V Y×V ∗(CohG(Y × Y × V ∗), h)

p∗12×p∗23
��

Dabs
Y×V Y×Y×V ∗(CohG(Y × Y × Y × V ∗), h ◦ p12)

×Dabs
Y×Y×V Y×V ∗(CohG(Y × Y × Y × V ∗), h ◦ p23)

⊗L
Y×Y×Y×V ∗

��

Dabs
Y×V Y×V ×Y×V ∗(CohG(Y × Y × Y × V ∗), h ◦ p13)

Rp13∗
��

Dabs
Y×V Y×V ∗(CohG(Y × Y × V ∗), h).

Since all categories are full subcategories of the ones involved in the convolution
in the quasi-coherent setting the restricted convolutions are also associative. �
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7.6. Koszul duality

The main theorem 7.8 would follow from [BR] if we can construct a monoidal
functor

D(CohG(Y ×RV Y ))→ Dabs
Y×V Y×V ∗(CohG(Y × Y × V ∗), h),

This turns out to be a bit hard so we will only construct the functor on a full
subcategory which contains the generators of the braid group action. This functor
is called Koszul duality, but it is not the functor from the previous chapter and no
result from that chapter will be used. We prove all the properties of this functor
needed for our proof.

7.6.1. Definition of a Koszul duality functor. Recall that D(CohG(Y ×RV
Y )) can be expressed as the normal derived category of a DG-category in the
following way. Consider the function

ρ : Y × Y → V, (y1, y2) 7→ ν(y2)− ν(y1).

This induces a map ρ] : V ∗ → OY×Y . Since Y ×V Y = ρ−1(0) we have a resolution

· · · −→ OY×Y ⊗
2∧
V ∗ −→ OY×Y ⊗ V ∗

θ−→ OY×Y → OY×V Y → 0,

where θ(f ⊗ s) = fρ](s) and the differential is extended by Leibniz rule. Thus,

D(CohG(Y ×RV Y )) ' D(DG(OY×Y ⊗ Λ(V ∗)−modG))

The first step in the construction is to define a functor

DG(OY×Y ⊗ Λ(V ∗)−modG)→ CDG(OY×Y ⊗ Sym(V ), h)−modG .

One way to construct such a functor is to tensor with a OY×Y ⊗Λ(V ∗)⊗Sym(V )-
bimodule with differential d satisfying d2 = h.

Definition 7.31. Pick a basis (t1, . . . , tn) for V and a dual basis (ξ1, . . . , ξn)
for V ∗. We define a grading with OY×Y in degree 0, ξi in degree -1 and ti in degree
2. Consider the complex K with terms

Km :=
⊕

m=2i−j

OY×Y ⊗ Λj(ξ1, . . . , ξn)⊗ Symi(t1, . . . , tn)

and differential

d(f ⊗ x⊗ y) := f ⊗ dΛ(x)⊗ y +
n∑
k=1

f ⊗ ξix⊗ tiy,

where dΛ is the usual differential on Λ. We call K the Koszul complex.

Lemma 7.32. The Koszul complex is in CDG(OY×Y ⊗ Sym(V ), h)−modG
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Proof. The only thing to check is that d2 = h.

d2(f ⊗ x⊗ y) = f ⊗ d2
Λx⊗ y +

n∑
k=1

f ⊗ dΛ(ξkx)⊗ tky +
n∑
k=1

f ⊗ ξk(dΛx)⊗ tky

+
n∑

k,`=1

f ⊗ ξkξ`x⊗ tkt`y

=
n∑
k=1

f ⊗ (dΛ(ξkx) + ξkdΛx)⊗ tky

=
n∑
k=1

f ⊗ (ρ](ξk)x− ξkdΛx+ ξkdΛx)⊗ tky

=
n∑
k=1

f ⊗ ρ](ξk)x⊗ tky.

By definition we have h : Y × Y × V ∗ ρ×Id−→ V × V ∗ 〈 , 〉−→ k. Hence,

h] = (ρ] ⊗ Id) ◦ 〈 , 〉] =
n∑
k=1

ρ](ξk)⊗ tk.

So d2 = h. �

Using the lemma we can define the functor

κ : DG(OY×Y ⊗ Λ(V ∗)−modG)→ CDG(OY×Y ⊗ Sym(V ), h)−modG,

M 7→M⊗OY×Y ⊗Λ(V ∗) K 'M⊗ Sym(V ).

To make it Z/2-graded we take the direct sum of the all the odd terms and all the
even terms. Notice that

(M⊗Λ(V ∗) K)m =
⊕

m=i+2s−r

Mi ⊗Λ(V ∗) Λr(V ∗)⊗ Syms(V )

So (M⊗Λ(V ∗) K)odd 'Modd ⊗ Sym(V ) and likewise for the even part.

Lemma 7.33. κ descends to the homotopy categories.

Proof. Let f :M→N be a homotopy equivalence in DG(OY×Y ⊗ Λ(V ∗)−
modG). We want to show that

∏
f⊗Id : κ(M)→ κ(N ) is a homotopy equivalence

in H0(QCohG(Y × Y × V ∗), h), i.e. the diagram

Modd ⊗ Sym(V )
∏
f⊗Id

//

dκ(M)

��

N odd ⊗ Sym(V )

dκ(N )

��
Meven ⊗ Sym(V )

dκ(M)

OO

∏
f⊗Id

// N even ⊗ Sym(V )

dκ(N )

OO
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is commutative.

(f ⊗ Id) ◦ dκ(M)(m⊗ s) = f(dMm)⊗ s+
n∑
k=1

f(ξkm)⊗ tks

= dNf(m)⊗ s+
n∑
k=1

ξkf(m)⊗ tks

= dκ(N ) ◦ (f ⊗ Id)(m⊗ s). �

We want a functor into the absolute derived category of coherent sheaves so
we cannot take infinite direct sums of coherent modules. To avoid this we restrict
our functor to the following category.

Definition 7.34. Let A be a dg-scheme. The category PerfG(A) is the full
subcategory of the dg-category of G-equivariant A-dg-modules whose objects are
finite complexes of locally free modules of finite rank.

By the lemma we get a functor

κ : H0(PerfG(OY×Y ⊗ Λ(V ∗)))→ Dabs(CohG(Y × Y × V ∗), h)

M 7→ (Modd ⊗ Sym(V ),Meven ⊗ Sym(V ), d, d),

d(m⊗ s) := dMm⊗ s+
n∑
k=1

ξkm⊗ tks.

We want the functor to descend to the derived category DPerf(OY×Y ⊗Λ(V ∗)−
modG). By lemma 7.15 checking that something is acyclic can be done locally so
we may assume that Y is affine.

Lemma 7.35. Assume that Y is affine. Then there is an equivalence of trian-
gulated categories

H0(PerfG(OY×Y ⊗ Λ(V ∗))) ' DPerf(OY×Y ⊗ Λ(V ∗)−modG).

Proof. When Y is affine the categories reduce to categories of modules over
a DG-algebra. Set A := OY×Y ⊗ Λ(V ∗). The result would follow from showing
that objects in PerfG(A) are projective in A−modG. Equivalently,

Ext1
A−modG

(P,M) = 0

for all P ∈ PerfG(A) and M ∈ A−modG. Recall that

Ext1
A−modG

(P,M) = (Ext1
A−mod(P,M))G.

The result now follows from the fact that perfect complexes are projective in
A−mod. �

Thus, we have constructed a functor

κ : DPerf(OY×Y ⊗ Λ(V ∗)−modG)→ Dabs(CohG(Y × Y × V ∗), h).
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However, the full subcategory DPerf(OY×Y ⊗ Λ(V ∗) −modG) is not preserved by
convolution since the derived push-forward along a non-proper maps does not send
Perf to Perf. To fix this, we restrict to the full subcategory whose cohomology
over Y × Y is set-theoretically supported on Y ×V Y , so that the final projection
is proper on the support.

κ : DPerf,Y×V Y (OY×Y ⊗ Λ(V ∗)−modG)→ Dabs(CohG(Y × Y × V ∗), h).

7.6.2. Compatibility with convolution. To prove that κ commutes with
convolution we need some preparatory lemmas.

Lemma 7.36. LetM,N ∈ DPerf(OY×Y⊗Λ(V ∗)−modG). Then κ(M)�κ(N ) '
κ(M�N ).

Proof. The functor � is clearly exact and takes Perf×Perf to Perf. First we
check that the matrix factorizations agree on terms

κ(M) � κ(N )

=

Modd ⊗ Sym(V ) �N even ⊗ Sym(V )⊕Meven ⊗ Sym(V ) �N odd ⊗ Sym(V )

��
Modd ⊗ Sym(V ) �N odd ⊗ Sym(V )⊕Meven ⊗ Sym(V ) �N even ⊗ Sym(V )

OO



=

 (Modd �N even ⊕Meven �N odd)⊗ Sym(V )⊗ Sym(V )

��
(Modd �N odd ⊕Meven �N even)⊗ Sym(V )⊗ Sym(V )

OO



=

 (M�N )odd ⊗ Sym(V )⊗ Sym(V )

��
(M�N )even ⊗ Sym(V )⊗ Sym(V )

OO


= κ(M�N ).

Now we check the differentials

dκ(M)�κ(N )(a⊗ r � b⊗ s) = d(a⊗ r) � b⊗ s+ (−1)|a|a⊗ r � d(b⊗ s)

= (dMa⊗ r +
∑
k

ξka⊗ tkr) � b⊗ s+ (−1)|a|a⊗ r � (dN b⊗ s+
∑
k

ξkb⊗ tks)

dκ(M�N )(a� b⊗ r ⊗ s)

= d(a� b)⊗ r ⊗ s+
∑
k

(ξk, 0) · (a� b)⊗ (tk, 0) · (r ⊗ t)
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+
∑
k

(0, ξk) · (a� b)⊗ (0, tk) · (r ⊗ s)

= dMa� b⊗ r ⊗ s+ (−1)|a|a� dN b⊗ r ⊗ s

+
∑
k

(−1)|a||0|ξka� b⊗ tkr ⊗ s+
∑
k

(−1)|a||ξk|a� ξkb⊗ r ⊗ tks

= dMa� b⊗ r ⊗ s+ (−1)|a|a� dN b⊗ r ⊗ s

+
∑
k

(−1)|a|ξka� b⊗ tkr ⊗ s+
∑
k

a� ξkb⊗ r ⊗ tks �

Lemma 7.37. Let θ : Z1 → Z2 be a morphism of schemes.
(1) If Z3 is a closed subscheme of Z1 and θ restricted to Z3 is proper then the

following diagram is commutative

DPerf(OZ2 ⊗ Λ(V )−modG)

κ1

��

DPerf,Z3(OZ1 ⊗ Λ(V )−modG)

κ2

��

(θ×Id)]∗oo

Dabs(QCohG(Z2 × V ), h2) Dabs(QCohG(Z1 × V ), h1)
R(θ×Id)f∗oo

(2) If θ is flat then the following diagram is commutative

DPerf(OZ2 ⊗ Λ(V )−modG)
(θ×Id)]∗

//

κ1

��

DPerf(OZ1 ⊗ Λ(V )−modG)

κ2

��

Dabs(QCohG(Z2 × V ), h2)
(θ×Id)∗

// Dabs(QCohG(Z1 × V ), h1)

Proof. 1) Since θ is proper on the support the functor (θ × Id)]∗ sends Perf
to Perf so the composition is well-defined. Proving that κ1(θ × Id)]∗(M) ' (θ ×
Id)∗κ2(M) can be done locally so we may assume that all schemes are affine in
which case the push-forward is exact.

κ2(θ × Id)]∗(M) =

 ((θ × Id)]∗M)odd ⊗ Sym(V ∗)

��

((θ × Id)]∗M)even ⊗ Sym(V ∗)

OO


=

 (θ × Id)∗(Modd ⊗ Sym(V ∗))

��
(θ × Id)∗(Meven ⊗ Sym(V ∗))

OO


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' (θ × Id)∗κ1(M).

The functor (θ × Id)]∗ does not change the action of Λ(V ) so

dκ2(θ×Id)]∗(M)(m⊗ s) = dm⊗ s+
n∑
k=1

ξkm⊗ tks

= d(θ×Id)∗κ1(M)(m⊗ s).

2) Pull-back preserve Perf and (θ × Id)∗ is exact so we have.

κ1(θ × Id)]∗(M) =

 (M⊗Z2 OZ1)odd ⊗ Sym(V ∗)

d
��

(M⊗Z2 OZ1)even ⊗ Sym(V ∗)

d

OO



'

 Modd ⊗Z2 OZ1 ⊗ Sym(V ∗)

d
��

Meven ⊗Z2 OZ1 ⊗ Sym(V ∗)

d

OO


' (θ × Id)∗κ2(M).

For differentials we have

dκ1(θ×Id)]∗(M)(m⊗ f ⊗ s) = dM(m)⊗ f ⊗ s+
n∑
k=1

ξkm⊗ f ⊗ tks

= d(θ×Id)∗κ2(M)(m⊗ f ⊗ s).

This finishes the proof. �

Lemma 7.38. Let f : V ↪→ V ⊕W be an inclusion of vector spaces. Then the
following diagram is commutative

DPerf(OZ ⊗ Λ(V )⊗ Λ(W )−modG)
(Id×f)]∗//

κ1

��

DPerf(OZ ⊗ Λ(V )−modG)

κ2

��

Dabs(QCohG(Z × V ×W ), h1)
(Id×f)∗

// Dabs(QCohG(Z × V ), h2)

Proof. Since f is injective and Λ(W ) is a finite complex with a finite dimen-
sional vector space in each degree the functor (Id×f)]∗ preserves Perf. On the level
of components we have

L(Id×f)∗κ1(M) =


Modd ⊗ Sym(V ∗)⊗ Sym(W ∗)⊗LSym(W ∗)⊗Sym(V ∗) Sym(V ∗)

��
Meven ⊗ Sym(V ∗)⊗ Sym(W ∗)⊗LSym(W ∗)⊗Sym(V ∗) Sym(V ∗)

OO


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'

 Modd ⊗ Sym(V ∗)

��
Meven ⊗ Sym(V ∗)

OO


= κ2(Id×f)]∗(M).

Let (ξVk , t
V
k )nk=1 be a pair of a basis for V and its dual basis and (ξWl , t

W
l )ml=1 a pair

of a basis for W and its dual basis. Then we have

dL(Id×f)∗κ1(M)(m⊗ 1⊗ 1⊗ s)

= dMm⊗ 1⊗ 1⊗ s+
n∑
k=1

ξVk m⊗ 1⊗ 1⊗ tVk s+
m∑
l=1

ξWl m⊗ 1⊗ tWl ⊗ s

= dMm⊗ 1⊗ 1⊗ s+
n∑
k=1

ξVk m⊗ 1⊗ 1⊗ tVk s+
m∑
l=1

ξWl m⊗ 1⊗ 1⊗ f ](tWl )s

= dMm⊗ 1⊗ 1⊗ s+
n∑
k=1

ξVk m⊗ 1⊗ 1⊗ tVk s

' dMm⊗ s+
n∑
k=1

ξVk m⊗ tVk s

= dκ2(Id×f)]∗(M)(m⊗ s).

This finishes the proof. �

Proposition 7.39. The functor κ is monoidal.

Proof. Consider the derived projections

Y ×RV Y ×RV Y
p̄23

''
p̄13

��

p̄12

ww
Y ×RV Y Y ×RV Y Y ×RV Y

Recall that in [BR] the convolution product for M,N ∈ DPerf,Y×V Y (OY×Y ⊗
Λ(V ∗)−modG) is defined as.

M∗N := Rp̄13∗(Lp̄
∗
12 ⊗Y×RV Y×RV Y Lp̄

∗
23)
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On the level of DG-schemes this translates into the following picture

OY×Y×Y ⊗ Λ(V ∗)⊗ Λ(V ∗)

OY×Y×Y ⊗ Λ(V ∗)

q12

44

OY×Y×Y ⊗ Λ(V ∗)

q13

OO

OY×Y×Y ⊗ Λ(V ∗)

q23

jj

OY×Y ⊗ Λ(V ∗)

p∗12

OO

OY×Y ⊗ Λ(V ∗)

p∗13

OO

OY×Y ⊗ Λ(V ∗)

p∗23

OO

Explicitly, the maps are given by

q12(f ⊗ v) = f ⊗ v ⊗ 1, q23(f ⊗ v) = f ⊗ 1⊗ v,
q13(f ⊗ v) = f ⊗ v ⊗ 1 + f ⊗ 1⊗ v.

The map p∗ij is the pull-back corresponding to the projection to the (i, j)’th factor
of Y and identity on V ∗. The formula becomes

M∗N = Rp13∗Rq13∗(q
∗
12p
∗
12M⊗LOY×Y×Y ⊗Λ(V ∗)⊗Λ(V ∗) q

∗
23p
∗
23N )

' Rp13∗Rq13∗((Λ(V ∗)⊗ p∗12M)⊗LOY×Y×Y ⊗Λ(V ∗)⊗Λ(V ∗) (p∗23N ⊗ Λ(V ∗)))

' Rp13∗Rq13∗(p
∗
12M⊗LOY×Y×Y p

∗
23N )

' Rp13∗Rq13∗L∆∗Y (p∗12M� p∗23N ),

where ∆Y is the diagonal embedding.
The corresponding diagram on the Koszul dual side is the following

Y × Y × Y × V ∗ × V ∗

Y × Y × Y × V ∗
' �

ψ12

44

π12

��

Y × Y × Y × V ∗
?�

ψ13

OO

π13

��

Y × Y × Y × V ∗
7 W

ψ23

jj

π23

��
Y × Y × V ∗ Y × Y × V ∗ Y × Y × V ∗

The morphisms in the Koszul dual picture are

ψ12(y1, y2, y3, v) = (y1, y2, y3, v, 0), ψ23(y1, y2, y3, v) = (y1, y2, y3, 0, v)

ψ13(y1, y2, y3, v) = (y1, y2, y3, v, v).
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The πij is projection to the (i, j)’th factor times identity. Using the above lemmas
we get

κ(M∗N ) ' Rπ13∗κ(Rq13∗L∆∗Y (p∗12M� p∗23N ))

' Rπ13∗Lψ
∗
13κ(L∆∗Y (p∗12M� p∗23N ))

' Rπ13∗Lψ
∗
13L∆∗Y κ(p∗12M� p∗23N )

' Rπ13∗L(∆Y ◦ ψ13)∗(π∗12κ(M) � π∗23κ(N ))

Notice that ∆Y ◦ ψ13 : Y × Y × Y × V ∗ → Y × Y × Y × Y × Y × Y × V ∗ × V ∗ is
the diagonal embedding ∆ so

κ(M∗N ) ' Rπ13∗L∆∗(π∗12κ(M) � π∗23κ(N ))

' Rπ13∗(π
∗
12κ(M)⊗LY×Y×Y×V ∗ π∗23κ(N ))

= κ(M) ∗ κ(N ).

This finishes the proof. �

Proposition 7.40. The functor κ takes the unit to the unit.

Proof. The unit in KY,V is the structure sheaf of the diagonal O∆Y sitting in
degree 0.

κ(O∆Y ) =

 0

��
O∆Y ⊗ Sym(V )

OO


This is a push-forward along the inclusion

i : Y ×Y Y × V ∗ ↪→ Y × Y × V ∗.

LetM∈ Dabs(CohG(Y ×Y ×V ∗), h). We need to check that κ(O∆Y )∗M 'M '
M∗ κ(O∆Y ). Consider the following commutative diagram

Y × Y × V ∗

Id
��

∼
Y ×Y Y × Y × V ∗

i4
��

p1 // Y ×Y Y × V ∗ ' Y × V ∗

i
��

Y × Y × V ∗ Y × Y × Y × V ∗p13

p23oo
p12

// Y × Y × V ∗
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Using flat base change and the projection formula we get
κ(O∆Y ) ∗M = Rp13∗(p

∗
12Ri∗κ(O∆Y )⊗LY×Y×Y×V ∗ p∗23M)

' Rp13∗(Ri4∗p
∗
1κ(O∆Y )⊗LY×Y×Y×V ∗ p∗23M)

' Rp13∗Ri4∗(p
∗
1κ(O∆Y )⊗LY×Y Y×Y×V ∗ Li

∗
4p
∗
23M)

' Id∗(p
∗
1κ(OY )⊗LY×Y×V ∗ Id∗M)

'

 0

��
OY×Y×V ∗

OO

⊗Y×V ∗
 0

��
OY ⊗ Sym(V )

OO
⊗LY×Y×V ∗M

'

 0

��
OY×Y×V ∗

OO

⊗LY×Y×V ∗M
'M.

Similarly, we getM∗ κ(O∆Y ) 'M. �

We can now finish the proof of the main theorem.

Proof of main theorem 7.8. From theorem 7.7 we have explicit genera-
tors of a braid group action in KCoh

g̃,g . These are sheaves on closed subschemes sit-
ting in one degree so they lie in the full subcategory DPerf(Og̃×g̃⊗Λ(g∗)−modG).
Since all of them are supported on g̃ ×g g̃ the images under the monoidal func-
tor κ land in the full subcategory Dabs

g̃×gg̃×g∗(CohG(g̃ × g̃ × g∗), h). Thus, they
act on Dabs(CohG(g̃ × T ∗X), w) and generate the desired geometric braid group
action. �



CHAPTER 8

Further directions

In this chapter we suggest some further projects which are natural continua-
tions of the projects in this dissertation.

8.1. Affine Demazure descent

Having studied Demazure descent and categorical actions of the affine braid
group it is natural to upgrade Demazure descent to the affine setting by replacing
the Weyl group by the affine Weyl group.

Definition 8.1. Affine Demazure descent data on the triangulated category
C is a collection of triangulated functors {Dw : C → C, w ∈ Waff} satisfying weak
affine braid monoid relations:

Dw1 ◦Dw2 ' Dw1w2 for all w1, w2 ∈ Waff with `(w1w2) = `(w1) + `(w2).

For each simple reflection sk ∈ W the corresponding functor Dsk should be a
comonad with the coproduct map being an isomorphism.

A natural goal is to try to upgrade the Demazure descent data from chapter
5 to affine Demazure descent data. In [BR] the action of x ∈ X in the affine
braid group is given by convolution with O∆g̃(x) ∈ Db

prop Coh(g̃× g̃) so a natural
candidate for the Demazure functor Dx

�

D(QCohB(X)) is convolution by the
analogous line bundle O∆G/B(x) in QCHecke(G,B).

Conjecture 8.2. The {Dw | w ∈ Waff} is affine Demazure descent data on
D(QCohB(X)). In particular, QCHecke(G,B) categorifies the degenerate affine
Hecke algebra.

8.2. Degenerate double affine Hecke algebra

Let G be a simple, connected and simply-connected complex algebraic group.
The double affine Hecke algebra (DAHA) is a version of the affine Hecke alge-
bra with an additional lattice. It has been constructed geometrically by Varag-
nolo and Vasserot in terms of K-theory (see [VV]) using the algebraic loop group
LG = G((t)) and an Iwahori subgroup I. They proved that as a ring the DAHA
is isomorphic to the I-equivariant K-theory on an affine analogue of the Stein-
berg variety N, with the ring structure on KI(N) coming from a convolution on
D(CohI(N)). The isomorphism is defined on generators and each generator is
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mapped either to the class of the structure sheaf of a subspace in N or to the class
of a cone. Thus, their construction naturally suggests a categorification.

Assuming that the previous project is successful a natural next step is to at-
tempt to categorify the degenerate double affine Hecke algebra by constructing a
double affine version of Demazure descent data on an affine analog of QCHecke(G,B)
' D(QCohB(G/B)). Pursuing the analogy a natural candidate is

QCHecke(LG, I) := D(QCohI(LG/I))

with the monoidal structure defined in the same way as for QCHecke(G,B).

Conjecture 8.3. The category QCHecke(LG, I) categorifies the degenerate
DAHA.

8.3. Categorification of the DAHA

If conjecture 8.3 holds it is natural to try to use the same setting to construct
an affine version of Bezrukavnikov and Riche, i.e. a categorical action of the
DAHA. In [BR] the Baff-action is on Db(CohG(g̃)) ' Db(CohB(b)). Following the
analogy we hope that a analogous construction will produce an action of Baff on
D(CohI(Lie(I))). For the action of the second lattice we would use a categorical
version of [VV].

Conjecture 8.4. There exist an action of the DAHA on D(CohI(Lie(I))).
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