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Resumé

Lad T være enhedscirklen i det komplekse plan, og lad ϕ : T → T være en afbildning som
er kontinuert, surjektiv og stykvist monoton. Vi tillader ϕ at have kritiske punkter. Ved at
generalisere de transformationsgrupoider for lokale homeomorfier, som først blev introduceret af
Renault i [30], konstruerer vi to étale grupoider, Γϕ og Γ+

ϕ , fra en sådan afbildning. Afhandlingen
omhandler forholdet mellem de dynamiske egenskaber ved ϕ, grupoid-egenskaberne ved Γϕ

og Γ+
ϕ , strukturteorien for disse grupoiders reducerede C∗-algebraer, og – for visse klasser

af cirkelafbildninger – disse algebraers K-teori. Vi viser, at hvis afbildningen ϕ er transitiv,
er grupoid-C∗-algebraerne rent uendelige og opfylder den universelle koefficient-sætning.
Ydermere finder vi nødvendige og tilstrækkelige betingelser for at disse C∗-algebraer er simple,
og formulerer disse betingelser i termer af en bestemt type fixpunkter for ϕ. I det tilfælde,
hvor algebraerne ikke er simple, bestemmer vi det primitive ideal-spektrum. Vi viser, at enhver
irreducibel repræsentation faktoriserer gennem C∗-algebraen for reduktionen af grupoiden til
banen af et punkt på cirklen, og at de tilhørende idealer falder i to typer, afhængigt af isotropien
over det tilknyttede punkt på cirklen. Herefter retter vi opmærksomheden mod kritisk endelige
afbildninger – afbildninger hvor fremad-banen for ethvert kritisk punkt er endelig – og udleder
en algoritme, der gør det muligt med simple midler at bestemme K-teorien for de tilhørende
C∗-algebraer. Til slut gør vi det samme for cirkelafbildninger uden periodiske punkter ved at
kombinerere resultater fra tidligere kapitler med tidligere arbejde af Putnam, Schmidt og Skau
i [28]. For en mere detaljeret kapiteloversigt henvises til den engelske introduktion.
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Introduction

The relationship between dynamical systems and operator algebras is by now at least half a
century old, and, as far as fifty-year relationships go, it seems to be a happy and fruitful one.
Many interesting C∗-algebras can be realised as the C∗-algebra of a dynamical system, and
knowledge of the dynamics often translate into results about the structure of the C∗-algebra.
Conversely, the C∗-algebras associated to a class of dynamical systems often provide strong,
computable invariants for these systems.

By now, there are many concrete ways of associating a C∗-algebra to a dynamical system –
one, first suggested by Jean Renault in [30], involves creating a topological groupoid G from the
dynamical system, and then constructing a C∗-algebra C∗r (G) from the groupoid by completing
the ∗-algebra of continuous, compactly supported functions Cc(G) on G in a suitable norm. As
many mathematical constructs – e.g. equivalence relations, groups, and infinite paths on graphs
– can be formulated in terms of groupoids, Renault’s construction paved the way for associating
C∗-algebras to these. In particular, in the case of an abelian group G acting by homeomorphisms
αg on a compact Hausdorff space X, the associated reduced transformation groupoid C∗-algebra
C∗r (G, X, α) is isomorphic to the well-know reduced crossed product C(X)oα G. However, as
realised by Renault and many others (see e.g. [30], [2], [10]), the transformation groupoid
construction is flexible enough to work even when the dynamics are non-invertible, i.e. when
the map is not a homeomorphism. This has led to a wealth of C∗-algebras constructed from
non-invertible dynamical systems. The goal of this dissertation is to take this construction one
step further, and construct topological groupoids (Hausdorff, locally compact, second countable
and étale) from dynamical systems that are not even locally invertible – more precisely, from
maps with critical points.

The dynamical systems we consider are all one-dimensional. More precisely, they are all con-
tinuous, surjective and piecewise monotone self-maps of the unit circle. While one-dimensional
dynamics only constitute a tiny corner in the wide world of dynamical systems, they often
serve as very interesting test cases: On one hand, they are tractable enough to admit a general
theory, while on the other, they are complicated enough to show chaotic, weird and wonderful
behaviour. The study of circle dynamics goes back at least to Poincaré, who classified circle
diffeomorphisms of to conjugacy in terms of their rotation number. Since then, the subject has
grown in a multitude of directions (see [37] for a recent survey), and many connections with the
field of C∗-algebras have appeared. This thesis presents yet another.

Let’s give a brief overview of the contents of this dissertation:

Chapter 1 contains a number of preliminaries. We give a short overview of the theory
of topological groupoids and their C∗-algebras, and prove a number of standard results.
This chapter can be skipped upon first reading – note, however, that the chapter concludes
with number of elementary examples of groupoids, and that these examples will feature
prominently through the rest of the thesis.

Chapter 2 is where the real work begins. We introduce a construction of locally compact,
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vi Introduction

second countable, Hausdorff étale groupoids Γϕ and Γ+
ϕ associated to a self-map ϕ of

the circle. Central to this construction is the idea of a local transfer: A locally defined
homeomorphism η of the circle satisfying ϕn = ϕm ◦ η for some m, n ∈ N. Using these
local transfers in the construction of the groupoid reflects the fact that ϕ may have critical
points, and that these points are somehow ’special’. In the construction of one groupoid, Γϕ,
we allow these transfers to revert the standard orientation of the circle, while for Γ+

ϕ , only
orientation-preserving transfers make the cut. We then prove a number of structural results
about the C∗-algebras of the gropoids, and show that transitivity of the map implies that the
algebras are purely infinite and satisfy the Universal Coefficient Theorem.

Chapter 3 focuses on core algebras C∗r (Rϕ) and C∗r (R+
ϕ ), which arise as C∗-algebras of

groupoids related to the equivalence relation on T given by x ∼ y if ϕk(x) = ϕk(y). We
realise these algebras as direct limits of so-called building block-algebras (as in [44]). This
allows us to show that the algebras C∗r (Γϕ) and C∗r (Γ+

ϕ ) are nuclear and satisfy the Universal
Coefficient Theorem.

Chapter 4 determines when C∗r (Γϕ) and C∗r (Γ+
ϕ ) are simple, and characterise the primitive

ideal spectrum in the non-simple case. We show that one algebra is simple if and only if the
other is, and then that simplicity is equivalent to exactness of the map ϕ and non-existence
of exceptional fixed points; that is, fixed points e whose pre-image is contained in the critical
points of ϕ (and {e} itself). When C∗r (Γϕ) and C∗r (Γϕ) are non-simple, we investigate a close
connection between primitive ideals and reductions Γϕ|[x] and Γ+

ϕ |[x] to the closure of the
groupoid orbit of a single point x. We show that the primitive ideals come in two distinct
families, depending on whether the set [x] contains an isolated pre-periodic or pre-critical
point or not. We end by finding the maximal ideals among the primitive ones.

Chapter 5 concerns the class of critically finite maps – maps with the property that the
forward orbit of every critical point is a finite set. We use some heavy machinery, not least the
theory of C∗-correspondences, to connect C∗r (Γϕ) and C∗r (Γ+

ϕ ) to the building block algebras
of Chapter 3, and exploit these connections to develop a simple algorithm for calculating the
K-theory of C∗r (Γϕ) and C∗r (Γ+

ϕ ).

Chapter 6 concerns circle maps without periodic points. After a historical detour through
results of Poincaré and Denjoy on homeomorphisms with no periodic points, we show how
the so-called Denjoy homeomorphisms can be modified to obtain any piecewise monotone
circle map without periodic points. Using the results from Chapter 4, we then determine the
primitive ideals of the groupoid C∗-algebras associated to such a map, and use results of
Putnam, Skau and Schmidt to determine the K-theory groups of these algebras.

Chapter 7 takes another look at the core algebras from Chapter 3, but with the added
assumption that the map in question is critically finite. The main result is that when the core
algebras C∗r (Rϕ) and C∗r (R+

ϕ ) are simple, the first is an AF-algebra, while the second is not.

A note on being self-referential: The beginnings of this project can be traced back to the year
2012, shortly after I was admitted to the PhD programme at Aarhus University. Rather quickly,
the project converged to a joint paper with my supervisor Klaus Thomsen ([38]), published
in Ergodic Theory and Dynamical Systems. Since publication, I have generalised the many
results in [38] in a number of directions, and the contents of the paper have in many ways been
subsumed by later results. Hence, instead of attaching the paper as part of the dissertation, I
have opted to integrate its directly into the main body of the thesis. Some parts – especially
in Chapter 4 – have been copied more or less verbatim from this paper, while others, such as
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in Chapter 5, appear here in more general versions. The same is true for my (unpublished)
Qualification Exam report, which essentially contains all the material of Chapter 5. The rest of
the material is new, and some, especially most of Chapter 6, will hopefully appear in publication
at some point in the near future.
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Chapter 1
Preliminaries

This chapter contains a brief introduction to topological groupoids and their C∗-algebras. We
fix some necessary notation, introduce some constructions which will be used extensively in
the chapters to come, and develop a catalogue of examples of groupoid C∗-algebras which will
feature prominently later. For more on the theory of groupoids, see e.g. [30] or [21].

1.1 Groupoids

We begin with a definition:

Definition 1.1. A groupoid G is a small category in which every morphism is an isomorphism.

While this definition is an excellent one-liner, one could argue that it needs some unwrapping
to be useful in calculations. Starting from the definition of a category, a groupoid G consists of a
set of objects G0, a set of morphisms G1, and range and source maps r, s : G1 → G0, satisfying a
number of category-theoretic axioms. One usually think of G1 as the ’elements’ of G, and refer
to G0 as the ’unit space’ of G. Expanding this point of view yields a more ’algebraic’ definition
of a groupoid, which highlights how one may think of groupoids as ’generalised groups’:

Definition 1.2. A groupoid is a set G with an inversion −1 : G → G, a set of composable elements
G(2) ⊆ G× G and a composition G(2) → G satisfying the following axioms for all γ1, γ2, γ3 ∈ G:

• (γ−1
1 )−1 = γ1

• If (γ1, γ2), (γ2, γ3) ∈ G(2), then (γ1, γ2γ3), (γ1γ2, γ3) ∈ G(2) and (γ1γ2)γ3 = γ1(γ2γ3).

• (γ1, γ−1
1 ) ∈ G(2), and if (γ1, γ2) ∈ G(2), then γ−1

1 (γ1γ2) = γ2.

• (γ−1
1 , γ1) ∈ G(2), and if (γ1, γ2) ∈ G(2), then (γ2γ1)γ

−1
1 = γ2.

Definition 1.3. Let G be a groupoid. Define range and source maps r, s : G → G by r(γ) = γγ−1

and s(γ) = γ−1γ, and define the unit space G0 of G as r(G).

Note that r(γ−1) = s(γ), so we could equally define G0 as s(G). Going back and forth
between the categorical and the algebraic definitions of a groupoid is straightforward, as are
the next few lemmas. The first lemma explains the name unit space – a typical groupoid has no
neutral element (unless it is a group!), but the elements of the unit space act ’locally’ as units.

1



2 Chapter 1 · Preliminaries

Lemma 1.4. Let γ ∈ G. Then (r(γ), γ), (γ, s(γ)) ∈ G(2) and r(γ)γ = γs(γ) = γ.

Proof. If (γ, η) ∈ G(2), the axioms in Definition 1.2 imply that

s(γ) = γ−1γ = γ−1γηη−1 = ηη−1 = r(η).

On the other hand, if s(γ) = γ−1γ = ηη−1 = r(η), it follows that (γ−1γ, η) is in G(2), and since
(γ, γ−1γ) ∈ G(2), we get that (γ, η) is in G(2). �

Lemma 1.5. Let G be a groupoid with unit space G0 and range and source maps r, s : G → G0. Then
(γ, η) ∈ G(2) if and only if s(γ) = r(η). If (γ, η) ∈ G(2), we have r(γη) = r(γ) and s(γη) = s(η).

Proof. This follows directly from the axioms in Definition 1.2. �

Subgroupoids are defined just as one would expect:

Definition 1.6. Let G be a groupoid, and H ⊂ G a subset. H is called a subgroupoid if it is closed
under inversion and composition – that is, if (γ, η) ∈ (H × H) ∩ G(2), we have γη ∈ H.

A typical way of creating subgroupoids is by taking reductions to invariant subsets of the
unit space:

Definition 1.7. Let G be a groupoid with unit space G0, range and source maps r, s : G → G0,
and let x ∈ G0. Define [x]G, the G-orbit of x as r(s−1(x)). We say that a subset A ⊆ G0 is
G-invariant if x ∈ A implies [x]G ⊆ A.

When the groupoid G is clear from the context, we will write [x] for [x]G. We remark that
the word ’invariant’ will appear with any number of prefixes (G-, forward, backward, totally...)
in the chapters to come, and that a significant part of the thesis will be dedicated to untangling
the various relations between different types of invariance.

Definition 1.8. Let G be a groupoid and A ⊂ G0 a G-invariant set. We define G|A, the reduction
of G to A, as the set

G|A = {γ ∈ G | r(γ) ∈ A}

Using the definition of G-invariance and Lemma 1.5, it is easy to see that G|A is a subgroupoid
of G. Finally, we define isotropy groups:

Definition 1.9. Let G be a groupoid and x ∈ G0. Define Iso(x), the isotropy group at x, as the set

Iso(x) = {γ ∈ G | r(γ) = s(γ) = x}

It is easy to check that Iso(x) is indeed a group, with x as neutral element.

1.1.1 Topological groupoids

Having defined groupoids algebraically, we now add some topology:

Definition 1.10. Let G be a groupoid, give G× G the product topology and G(2) the induced
topology from G× G. We say that G is a topological groupoid if the inversion and composition
maps are continuous.
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To do any serious work – in particular, to make the construction of the reduced groupoid
C∗-algebra work –, we need some assumptions on the topology of a given groupoid. In most
cases, we will require the topology to be Hausdorff, locally compact and second countable.
Furthermore, we would like the topology to be étale:

Definition 1.11. Let G be a topological groupoid. An open subset S ⊆ G is called a bisection
if the maps r|S : S → r(S) and s|S : S → s(S) are homeomorphisms onto their image. The
groupoid G is étale if the topology on G has a basis of bisections.

Lemma 1.12. Let G be an étale groupoid. Then the unit space G0 is open in G.

Proof. Let x ∈ G0, and choose a bisection U containing x. Since r(x) = x, we may choose an
open neighbourhood V of x such that V ⊂ U ∩ r−1(U). If there is a y ∈ V ∩ (G \ G0), we have
y, r(y) ∈ U with y 6= r(y) (since y /∈ G0), but r(y) = r(r(y)), contradicting the injectivity of r
on U. �

Renault ([30]) refers to étale groupoids as r-discrete, which is explained by the next lemma:

Lemma 1.13. Let G be an etale groupoid with range and source maps r, s : G → G0, and let x ∈ G0.
Then the fibers r−1(x) and s−1(x) are discrete subspaces of G.

Proof. For γ ∈ r−1(x), simply choose a bisection U containing γ. Then r−1(x) ∩ U = {γ},
showing that r−1(x) is discrete. The same goes for s−1(x). �

To a certain extent, one may think of étale groupoids as an analouge of discrete groups. For
our purposes, the salient feature of étale groupoids is that we can forget about the technical
difficulties of working with a Haar system, and simply equip each fiber over G0 with the
counting measure. As we shall see, this makes forming the convolution algebra – and hence, the
groupoid C∗-algebra – over G much easier.

Lemma 1.14. Let G be an étale groupoid, and A an open (resp. closed) G-invariant subset of G0. Then
G|A is open (resp. closed) in G.

Proof. The range map is continuous, and r−1(A) = G|A. �

1.2 The reduced C∗-algebra of an étale groupoid

Given an second countable, locally compact Hausdorff étale groupoid G, we proceed to construct
its reduced C∗-algebra C∗r (G). The process is similar to the construction of a group C∗-algebra:
Define a convolution product on some suitable set of continuous functions on G, and complete
this ∗-algebra in an appropriate norm to get a C∗-algebra. Denote by Cc(G) the continuous,
compactly supported functions on G, and note that for any f ∈ Cc(G) and x ∈ G0, the set
supp( f ) ∩ r−1(x) is finite by Lemma 1.13. Hence, we may define a convolution product ∗ by

f ∗ g(γ) = ∑
γ1γ2=γ

f (γ1)g(γ2), f , g ∈ Cc(G). (1.1)

If we note that γ1γ2 = γ is equivalent to γ2 = γ−1
1 γ and r(γ1) = r(γ), we can rewrite

Equation 1.1 as
f ∗ g(γ) = ∑

γ1∈r−1(r(γ))

f (γ1)g(γ−1
1 γ), f , g ∈ Cc(G)
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It follows that f ∗ g is again compactly supported and continuous. To define an involution,
define f ∗ by

f ∗(γ) = f (γ−1), f ∈ Cc(G).

Checking that the product and involution turns Cc(G) into a ∗-algebra is straightforward. To
obtain a C∗-algebra, we represent Cc(G) as multiplication operators – we just need to consider
many representations at the same time: For x ∈ G0, define a representation πx : Cc(G) →
B(l2(s−1(x))) by

[πx( f )ψ](γ) = ∑
γ1γ2=γ

f (γ1)ψ(γ2) (1.2)

and define a norm on Cc(G) by
‖ f ‖ = sup

x∈G0
‖πx( f )‖ (1.3)

Definition 1.15. Let G be an étale, locally compact, second countable Hausdorff groupoid. The
reduced groupoid C∗-algebra C∗r (G) of G is the completion of the ∗-algebra Cc(G) in the norm
given by Equation 1.3.

Checking that Equation (1.3) actually defines a C∗-norm takes a bit of work – for a proof,
see e.g. Chapter II.1 of [30]. If H is an open subgroupoid – for instance, the reduction of G to
an open invariant set of the unit space –, there is an inclusion map iH : Cc(H)→ Cc(G) simply
given by

iH( f )(γ) = f (γ)

for γ ∈ F, f ∈ Cc(H).

Lemma 1.16. Let G be a locally compact, second countable Hausdorff étale groupoid, and H an open
subgroupoid. Then the inclusion i : Cc(H) → Cc(G) extends to an injective ∗-homomorphism iH :
C∗r (H)→ C∗r (G). If H = G|U for some open G-invariant set U, C∗r (H) is an ideal in C∗r (G).

Proof. The first statement is Proposition 1.9 of [23]. For the second statement, let f ∈ Cc(G|U)
and h ∈ Cc(G), and let γ ∈ G \ G|U . If we then write γ = γ1γ2, we have r(γ1) = r(γ) /∈ U, so
γ1 /∈ G|U . It follows that

f ∗ h(γ) = ∑
γ1γ2=γ

f (γ1)h(γ2) = 0,

so f ∗ h ∈ Cc(G|U). Then claim then follows by continuity. �

In a similar way, if F ⊆ G0 is closed and invariant, there is a restriction map πF : Cc(G)→
Cc(G|F) given by

πF( f )(γ) = f (γ),

for γ ∈ F, f ∈ Cc(G). This is surjective by Tietzes extension theorem. It is straightforward to
check that πF is also a ∗-homomorphism.

Lemma 1.17. Let G be a locally compact, second countable Hausdorff étale groupoid, and F a closed,
invariant subset of the unit space. Then the restriction map πF : Cc(G) → Cc(G|F) extends to a
surjective ∗-homomorphism πF : C∗r (G)→ C∗r (G|F). In particular, C∗r (G|F) is a quotient of C∗r (G).

Proof. Let x ∈ T, and let πx be one of the representations from Equation 1.2. Then πx ◦ πF = πx
when x ∈ F, and πx ◦ πF = 0 otherwise – in particular, πF is a contraction, so it extends to a
∗-homomorphism from C∗r (G) to C∗r (G|F). Surjectivity of πF follows by continuity. The final
statement is the isomorphism theorem. �
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In the best of all possible worlds, one might concieve that the kernel of the map πF is exactly
C∗r (G|G0\F). This is not always the case – see [31] for an example. It is, however, true for the
groupoids we will focus on, and we prove this in Proposition 3.21.

Finally, a handy lemma:

Lemma 1.18. Let G be a locally compact, second countable Hausdorff étale groupoid, and f ∈ Cc(G).
Then f may be decomposed as a finite sum

f =
n

∑
i=1

fi

where each fi is supported in a bisection.

Proof. Let K = supp( f ). For each γ ∈ K, choose a bisection Wγ containing γ. Then the Wγ’s
cover K, and we may exhaust to a finite cover {Wγi}n

i=1. Choose a partition of unity {ρi} with
respect to this cover, and put fi = ρ f . �

1.3 Examples

In this section, we consider a number of elementary groupoids and calculate their C∗-algebras.
These groupoids, or variations of them, will feature prominently in the chapters to come, usually
arising as subgroupoids of the groupoid of a circle map.

Definition 1.19. Let X be a set, and ∼ an equivalence relation on X. Define GR, the groupoid of
the equivalence relation, as

GR = {(x, y) ∈ X× X | x ∼ y}

with composition (x, y)(y, z) = (x, z), inversion (x, y)−1 = (y, x), and range and source maps
given by the first and second coordinate projection, respectively. Particular examples are the full
equivalence relation on X, where x ∼ y for any x, y ∈ X, and the trivial equivalence relation,
where x ∼ y if and only if x = y.

Here’s a very specific example:

Example 1.20. Let X be a countable set, and GX the groupoid of the full equivalence relation
on X, equipped with the discrete topology. We claim that

C∗r (GX) ' K(l2(X)),

where K(l2(X)) denotes the compact operators on l2(X). For this, note that C∗r (GX) contains a
set of matrix units, namely the characteristic functions {1x,y|x, y ∈ X}. Indeed, one checks easily
that

1x,y ∗ 1z,w = δy,z1x,w, 1−1
x,y = 1y,x

Since K (identified with K(l2(X))) is the universal C∗-algebra generated by such matrix units,
we obtain a surjective ∗-homomorphism from K(l2(X)) to C∗r (GX). But the compact operators
is a simple C∗-algebra, so this map is also injective. N

In particular, when X is a finite set, the groupoid C∗-algebra of GX is simply isomorphic to
Mn(C) with n = |X|.
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Remark 1.21. The above example generalises easily to other equivalence relations – indeed,
let X be countable, ∼ an equivalence relation on X and GR the groupoid of the equivalence
relation. Assume that ∼ has finitely many equivalence classes X1, . . . , Xn. Then each set Xn is
GR-invariant and GR =

⊔n
i=1 GR|Xi . It follows that

C∗r (GR) '
n⊕

i=1

C∗r (GR|Xi ),

and each of the C∗r (GR|Xi ) are determined by Example 1.20. �

Example 1.22. Consider the following situation: Let {Xi}i∈Λ be a collection of metric spaces,
indexed by an at most countable set Λ, and let θij : Xi → Xj be a collection of homeomorphisms
satisfying θii = idXi , θ−1

ij = θji and θkj ◦ θik = θij for all i, j, k. Put X = ti∈ΛXi, the disjoint union
of the sets {Xi}i∈Λ, and define a groupoid Gθ by

Gθ =
{
(x, y) ∈ X× X

∣∣ ∃i, j : x ∈ Xi, y ∈ Xj, θij(x) = y
}

Equip Gθ with the topology generated by the sets {U × θij(U)}, with i, j ranging over Λ and U
over the open sets of Xi. Essentially, this is example 1.20 with each element in X replaced with a
topological space. It is easy to see that C∗r (Gθ) is Hausdorff, locally compact, second countable
and étale. Fix a λ ∈ Λ, and put X0 = Xλ. We claim that

C∗r (Gθ) ' C0(X0)� K(l2(Λ)).

To see this, let f ∈ Cc(Gθ), and define fij ∈ Cc(X0) by

fij(x) = f (θ0i(x), θ0j(x)), x ∈ X0

Since Λ is discrete, K(l2(Λ)) is generated by matrix units eij, i, j ∈ Λ. Consider the map
Θ : Cc(Gθ)→ Cc(X0)� K(l2(Λ)) given by

f 7→ ∑
i,j∈Λ

fij � eij

Θ is evidently linear, multiplicative, isometric and ∗-preserving. That f is compactly supported
entails that only finitely many fij’s are non-zero, so the image of Cc(Gθ) under Θ is exactly
Cc(X0) tensored with the finite rank operators in K(l2(Λ)). Since Θ is an isometry, we get the
desired isomorphism

C∗r (Gθ) = C0(X0)� K(l2(Λ)) N

A prominent feature of the groupoids in the example above – and indeed, of any groupoid
generated by an equivalence relation – is that the isotropy groups Iso(x) are all trivial. The next
proposition gives a tool for determining the C∗-algebra of a groupoid where the isotropy groups
are identical over any element in the unit space.

Proposition 1.23. Let G be a discrete groupoid with unit space G0, and assume that there is a group H
such that Iso(x) ' H for any x ∈ G0. Then there is an isomorphism

C∗r (G) ' C∗r (H)� K(l2(G0))

with C∗r (H) denoting the reduced group C∗-algebra of H.
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Proof. See Lemma 4.11 of [47]. �

Example 1.24. An example that will occur a few times in the chapters to come is the following:
Let GX be the groupoid from Example 1.20, with X either at most countable, let Z2 be the group
with two elements, and let K be the groupoid

K = G×Z2 = {(γ, p) | γ ∈ G, p ∈ Z2}

with unit space G0 and range and source maps inherited from G. Then, K is discrete and
Iso(k) ' Z2 for any k ∈ K. Since C∗(Z2) ' C2, Lemma 1.23 and 1.20 yields an isomorphism

C∗r (K) ' C∗(Z2)� K(l2(X)) ' C2 � C∗r (G) ' C∗r (G)� C∗r (G) N

1.3.1 K-theory

For the basic K-theory of C∗-algebras, we refer to [34].

Example 1.25. Let X be a countable set, and let GX be the groupoid from Example 1.20. Since
C∗r (GX) ' K(l2(X)), it follows that K0(C∗r (GX)) ' Z and K1(GX) ' 0. Any rank-one projection
in C∗r (GX) will do as generator of K0(C∗r (GX)); the natural choice is the characteristic function
1(x,x) for some x ∈ X. N

Example 1.26. Continuing Example 1.24, let L = GX ×Z2. It follows immediately that K0(L) '
Z2. A situation that will occur often in the chapters to come is the following: Let A be
some C∗-algebra and χ : C∗r (L) → A a ∗-homomorphism, inducing a group homomorphism
χ∗ : K0(C∗r (L))→ K0(A). Describing χ∗ requires explicit generators of K0(C∗r (L)). To find these,
write Z2 = {+,−}, and let K(l2(X)) be generated by matrix units ex,y with x, y ∈ X. Define a
map Ψ : C∗r (L)→ Mn(C)� Mn(C) by

Ψ(1(x,y,p)) =

{
(ex,y, ex,y), if p = +

(ex,y,−ex,y), if p = −

It is straightforward to check that this map is a ∗-isomorphism. Now, fix an x ∈ X and define
elements p+, p− in C∗r (L) by

p+ = 1
2 (1(x,x,+) + 1(x,x,−)), , p− = 1

2 (1(x,x,+) − 1(x,x,−)).

We note that
Ψ(p+) = (ex,x, 0), Ψ(p−) = (0, ex,x),

and that the elements p+, p− are projections in C∗r (L). The trace map Tr : Mn(C)� Mn(C)→ C2

induces an isomorphism Tr∗ : K0(Mn(C) � Mn(C)) → Z2. It follows that the composition
Tr∗ ◦Ψ∗ : K0(C∗r (GX ×Z2))→ Z2 is an isomorphism taking the K0-classes of p+ and p− to (1, 0)
and (0, 1), respectively. N

Finally, a general result: Let A and B be C∗-algebras, and I, U : A→ B ∗-homomorphisms.
Let I0 and U0 denote the induced maps between K0(A) and K0(B). Define D, the double mapping
cylinder of A and B, as the C∗-algebra

D = {(a, f ) ∈ A � C([0, 1], B) | I(a) = f (0), U(a) = f (1)}

Then the sequence
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0 −−−−→ SB
ι−−−−→ D

π−−−−→ A −−−−→ 0 (1.4)

is exact, where SB denotes the suspension

SB = { f : [0, 1]→ B | f (0) = f (1) = 0},

ι the inclusion ι( f ) = (0, f ), and π the projection onto the first coordinate. It follows that we
have a six-term exact sequence on K-theory:

K0(SB)
ι0 // K0(D)

π0 // K0(A)

δ1
��

K1(A)

OO

K1(D)
π1oo K1(SB)

ι1oo

(1.5)

Lemma 1.27. Let D be the double mapping cylinder of A and B via maps I and U as above. Let
β : K0(B)→ K1(SB) be the Bott map, and δ1 : K0(A)→ K1(SB) the exponential map in (1.5). Then
δ1 = β ◦ (I0 −U0).

Proof. Assume first that D, and hence also A, are unital, with 1 denoting the unit of A, and
(1, 1) the unit in D, 1 being the constant function 1. We use the setup from Proposition 12.2.2
in [34], and identify the unitisation ˜SB with the set { f : [0, 1]→ B | f (0) = f (1) ∈ C}. Writing
an element f ∈ S̃B as ( f − f (0)) + f (0) and noting that f − f (0) ∈ SB, we notice that the map
ῑ : S̃B→ D is given by

ῑ( f ) = ( f − f (0), 0) + f (0)(1, 1) = ( f , f (0)).

Now, let g = [p]0 ∈ K0(A) for some projection p ∈ Mn(A). Define h : [0, 1]→ Mn(B) by

h(t) = tU(p) + (1− t)I(p),

and note that h(0) = I(p), h(1) = U(p) and h(t) is self-adjoint for any t ∈ [0, 1]. With d = (h, p)
we certainly have d ∈ D and π(d) = p. Next, note that exp(2πip) = 1 (by spectral calculus), so
exp(2πid) = (exp(2πih), 1). If we define u : [0, 1] → Mn(B) by u(t) = exp(2πih(t)), we have
u ∈ Un(S̃B) and

ῑ(u) = (u, u(0)) = (exp(2πih), 1) = exp(2πid)

By Proposition 12.2.2, this implies that δ0(g) = −[u]1.
On the other hand, let β : K0(B→ K1(SB) be the Bott map given by

β([q]) = [ fq], fq(z) = zq + (1n − q)

for a projection q in Mn(B). We then have the following calculation:

β((I∗ −U∗)([p]0)) = β(I∗([p]0))− β(U∗([p]0)) = [ f I(p)]1 − [ fU(p)]1 = [ f I(p) f ∗U(p)]1

To finish the proof, we need to show that [ f ∗I(p) fU(p)]1 = −[ f I(p) f ∗U(p)]1 = [u]1 in K1(SB). Now,
again by spectral calculus, we have

f ∗I(p) fU(p)(e
2πit) =

(
e−2πit I(p) + (1n − I(p))

)(
e2πitU(p) + (1n −U(p))

)
= e−2πitI(p)e2πitU(p),
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so the class of f ∗I(p) fU(p) in K1 is (by the Whitehead lemma) represented by the element(
e2πitU(p) 0

0 e−2πitI(p)

)
= exp

(
2πit

(
U(p) 0

0 0

))
exp

(
2πi(1− t)

(
0 0
0 I(p)

))
Similarly, the class of u is represented by

exp
(

2πi [tU(p) + (1− t)I(p)] 0
0 1

)
To establish a homotopy between these two maps, let Rθ , for θ ∈ [0, π/2], be the rotation matrix(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, and put define G : [0, π/2]× [0, 1]→ ˜SB by

G(θ, t) = exp
(

2πi
[(

tU(p) 0
0 0

)
+ Rθ

(
0 0
0 (1− t)I(p)

)
R−1

θ

])
Then an easy computation shows that G(0,−) = f ∗I(p) fU(p), G(π/2,−) = u and that G(θ, 0) =

G(θ, 1) = 1 for any fixed θ (Note that Rθ

(
0 0
0 I(p)

)
R−1

θ is a projection). The existence of such a
homotopy implies that [ f ∗I(p) fU(p)]1 = [u]1, hence δ0([p]0) = βB((I∗ −U∗)([p]0)).

When D and A are not unital, the result follows from a diagram chase, using naturality of
the exponential map. �

Corollary 1.28. Let A and B be C∗-algebras with K1(A) = K1(B) = 0. Let D be a double mapping
cylinder of A and B via maps I, U : A→ B as in Lemma 1.27. Then

K0(D) ' ker(I0 −U0), K1(D) ' coker(I0 −U0)

Proof. Since K1(A) and K0(SB) ' K1(B) are trivial, the six-term exact sequence 1.5 simiplifies
to

0 −−−−→ K0(Dk)
π∗−−−−→ K0(Ak)

δ1−−−−→ K1(SBk)
ι∗−−−−→ K1(Dk) −−−−→ 0 (1.6)

Using Lemma 1.27, the map δ1 is equal to βB ◦ (I0 −U0), and since the Bott map is an isomor-
phism, the result follows. �





Chapter 2
The C∗-algebra of an amended

transformation groupoid

The idea of associating a topological groupoid Gψ to a dynamical system ψ : X → X has a
long history, beginning with the work of Renault in [30] and developed further by Deaconu,
Anatharaman-Delaroche and many others (see e.g. [10], [2]). The construction generalises the
well-known reduced crossed product-C∗-algebra in the following way: Assume that ψ : X → X
is a homeomorphism. Then ψ induces an Z-action α : Z→ Aut(C(X)) defined as

α(p)( f )(x) = f (ψ−p(x)), p ∈ Z, x ∈ X, f ∈ C(X)

and we may construct the reduced crossed product C(X)oψ,r Z (see e.g. [51]). On the other
hand, we may form the transformation groupoid Gψ defined as the set

Gψ = {(x, p, y) ∈ X×Z× X | ψp(x) = y}

with composable elements

G(2)
ψ =

{
(x, p, ψp(x)), (y, q, ψq(y)) ∈ Gψ

∣∣ ψp(x) = y
}

and composition (x, p, z)(z, q, y) = (x, p + q, y) and inversion (x, p, y)−1 = (y,−p, x). Connect-
ing the two constructions, there is a map Φ : Cc(Gψ)→ C(X)oψ,r Z given by

Φ( f )(p)(x) = f (ϕ−p(x), p, x), f ∈ Cc(Gψ), p ∈ Z, x ∈ X

which extends to an isomorphism Φ : C∗r (Gψ)→ C(X)oψ,r Z (for a proof, see Proposition 1.8
of [23]). The groupoid construction, however, makes sense for a larger class of maps than
just homeomorphisms – see e.g. [10], which studies the transformation groupoid of a local
homeomorphism of a compact space, or [7] for the groupoid of a locally injective surjection on a
metric space.

We now aim to take the construction of transformation groupoids (and their C∗-algebras)
even further, and adapt the construction to the case where the dynamics ψ is no longer locally
injective. To make things work – more precisely, to equip the groupoid with a sufficiently nice
topology –, we restrict to the situation where the underlying space is the unit circle T and the
map ψ has critical points. Before constructing the groupoids, we need some general results on
dynamical systems.

11
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2.1 Dynamical systems on the circle

This section contains a number of basic results on dynamical systems, starting in a very general
setup, and later specialising to the case where the underlying space is the unit circle T.

Definition 2.1. A dynamical system (X, ϕ) is a metric space X with a continuous map ϕ : X → X.

As always, choices must be made: One could impose fewer restrictions on X (i.e. by letting
X be a topological space), require X to be compact, or put more restrictions on ϕ (bijectivity is
perhaps the most common). For now, we stick with this definition and specialise as necessary.

Definition 2.2. Let (X, ϕ) be a dynamical system, and x ∈ X. Define the forward orbit O+
ϕ (x),

the backward orbit O−ϕ (x) and the full orbit Oϕ(x) of x as follows:

O+
ϕ (x) = {ϕn(x) | n = 0, 1, 2, . . .}

O−ϕ (x) =
∞⋃

n=1

ϕ−n({x})

Oϕ(x) = O+
ϕ (x) ∪O−ϕ (x)

Note that x is always an element of its own forward orbit, but not (necessarily) of its own
backward orbit.

Definition 2.3. Let (X, ϕ) be a dynamical system. We say that x is (n-)periodic if there is an
n > 0 such that

ϕn(x) = x (2.1)

The minimal period of x is the smallest n satisfying Equation 2.1. A point x is pre-periodic (or
eventually periodic) if there is an k ≥ 0 such that ϕk(x) is periodic.

Note that a periodic point is pre-periodic by definition. We now specialise to the unit
circle T = {z ∈ C | |z| = 1}, given the usual metric topology, and the usual (counter-clockwise)
orientation. We note that for any continuous map ϕ : T→ T, there is a unique map f : [0, 1]→ R

satisfying
f (t) = ϕ(e2πit), t ∈ [0, 1]

and f (0) ∈ [0, 1[. f is called a lift of ϕ, and the integer f (1)− f (0) the degree of ϕ.

Definition 2.4. Let ϕ : T→ T be continuous with lift f . We say that ϕ is piecewise monotone if
there are points 0 = c0 < c1 < · · · < cn = 1 such that f is strictly increasing or decreasing at
each interval ]ci−1, ci[.

This condition is sometimes called piecewise strictly monotone, since we do not allow the map
to be locally constant.

Definition 2.5. Let l : T→ [0, 1[ be the inverse of the map t 7→ e2πit, let ϕ : T→ T be piecewise
monotone, and let f be a lift of ϕ (i.e. f (l(z)) = ϕ(z) for all z ∈ T). We say that z ∈ T is critical
for ϕ if l(z) is critical for f , and call z a maximum/minimum if l(z) is a maximum/minimum
for f . A point d ∈ T is pre-critical if there is an n ≥ 0 such that ϕn(d) is critical, and post-critical
if there is an n ∈N and some element c ∈ ϕ−n(d) such that c is critical.

Note that the Definition 2.4 ensures that a piecewise monotone map has only finitely many
critical points, and that the pre-image ϕ−1(x) of a point x is always finite. We can now define
the class of maps that will concern us for the next many pages:
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Definition 2.6. A circle map is a map ϕ : T→ T which is continuous, surjective and piecewise
monotone.

When nothing else is specified, the term ’circle map’ will be used in the precise sense defined
above.

2.2 Local transfers

Traditionally, the construction of algebraic objects from a dynamical system (X, ϕ) has been
based on studying points x, y ∈ X such that

ϕk(x) = ϕl(y) for some numbers k, l ∈N. (2.2)

This is also the approach taken here – but with an extra requirement stemming from the fact
that a circle map may have critical points. In short, we want to amend Equation 2.2 to remove
cases where x is critical for ϕk, while y is not critical for ϕl . Or put as a one-liner: ϕk around x
should ’look like’ ϕl around y. We encode this condition using local transfers, which we’ll turn to
now.

Definition 2.7. Let ψ be a circle map, let U ⊆ T be open, and let η : U → η(U) be a homeomor-
phism onto its image. We say that η is a local transfer (of degree (n, m)) if ψn(η(x)) = ψm(x) for
any x ∈ U. We write T (m, n) for the local transfers of degree (n, m), and put

T (k) =
⋃

n−m=k

T (n, m)

for k ∈ Z. Finally, define T = ∪k∈ZT (k).

Remark 2.8. The set T of local transfers constitute a pseudogroup – it has an identity element
idT, all elements have inverses, and given two transfers η : U → η(U) and ρ : V → ρ(V), we
may form the composition ρ ◦ η : U ∩ η−1(V) → ρ ◦ η(U ∩ η−1(V)), provided η(U) ∩ V 6= ∅.
Local transfers implements the idea that ψn at a point x ∈ T ’looks like’ ψm at a point y. Indeed,
assume that ψm has a critical point at y ∈ T, and suppose there is a local transfer η ∈ T (n, m)
such that η(y) = x. Then ψn(x) = ψm(y), and x must be a critical point for ψn – indeed, if ψn

was monotone at x, ψm = ψn ◦ η would be monotone at η−1(x) = y. Furthermore, y is a local
minimum for ψm if and only if x is a local minimum for ψn, and similarly for local maxima. �

The next lemma adresses the following question: Given two points x, y ∈ T and a k ∈ N,
when does there exist a transfer η ∈ T (k) with η(y) = x, and when is it unique?

Lemma 2.9. Let x, y ∈ T, and let k ∈N. Assume that there exist numbers n, m with n−m = k such
that ψn(x) = ψm(y). Then:

• If both x and y are local maxima (or both local minima) for some iterate of ψ, there are two (germs
of) local transfers η1, η2 ∈ T (k) with ηi(y) = x.

• If neither x nor y are pre-critical, there is exactly one (germ of a) local transfer η ∈ T (k) with
η(y) = x.

Proof. Assume first that x is not precritical for any n ∈ N. In particular, for any n, there is
an interval around x where ψn is monotone. Hence, for any n, we may consider the inverse
map ψ−n around some small neighbourhood of ψn(x). Now, if η satisfies ψn ◦ η = ψm for



14 Chapter 2 · The C∗-algebra of an amended transformation groupoid

some n, m with n−m = k, it follows that η = ψ−n ◦ ψm locally (and indeed, this choice of η is
a homeomorphism on a suitably small open set). Had we chosen other numbers n′, m′ with
n′ −m′ = k, we would have had ψ−n ◦ ψm = ψ−n′ ◦ ψm′ , which shows uniqueness.

Note next that if η is a transfer taking y to x, and ψn ◦ η = ψm, ψn can have a mininum (resp.
maximum) at x if and only if ψm has a minimum (resp. maximum) at y. Now, assume that
η ∈ T (n, m) for some n, m with n−m = k, and that η(y) = x. Also, assume that x and y are
minima for ψn and ψm, respectively. Choose small intervals Il and Ir to the left and right of x
such that ψn(Il) = ψn(Ir), and let ψ−n

l and ψ−n
r be inverses to ψn (such that ψn ◦ ψ−n

l = idIl and
ψn ◦ ψ−n

r = idIr . Then two choices of η are

η1(t) =


ψ−n

l ◦ ψm(t), t < y
x, t = y
ψ−n

r ◦ ψm(t), t > y
, η2(t) =


ψ−n

r ◦ ψm(t), t < y
x, t = y
ψ−n

l ◦ ψm(t), t > y

As before, these two choices of η are the only ones possible, independently of choice of n
and m. �

Another way of interpreting the above lemma is by introducing the notion of valency of a
map:

Definition 2.10. Let ψ : T → T be continuous and piecewise strictly monotone. The valency
val(ψ, x) of ψ at a point x ∈ T is an element of the set V = {(−,+), (+,−), (+,+), (−,−)}
defined as follows:

• val(ψ, x) = (−,+) if x is a local minimum of ψ.

• val(ψ, x) = (+,−) if x is a local maximum of ψ.

• val(ψ, x) = (+,+) if x is increasing at x.

• val(ψ, x) = (−,−) if x is decreasing at x.

Using the following composition table, we may turn V into a semigroup with (+,+) as
neutral element:

x • y y = (+,+) y = (+,−) y = (−,+) y = (−,−)
x = (+,+) (+,+) (+,−) (−,+) (−,−)
x = (+,−) (+,−) (+,−) (+,−) (+,−)
x = (−,+) (−,+) (−,+) (−,+) (−,+)
x = (−,−) (−,−) (−,+) (+,−) (+,+)

Table 2.1: The composition table for •.

This composition respects composition of maps:

Lemma 2.11. Let ψ, ϕ be continuous, piecewise strictly monotone circle maps, and x ∈ T. Then

val(ϕ ◦ ψ, x) = val(ϕ, ψ(x)) • val(ψ, x)

Proof. Straightforward. �
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We note that x is critical for ψn if val(ψn, x) ∈ {(+,−), (−,+)}. In particular, the above
lemma implies that

val(ψn, x) = val(ψ, ψn−1(x)) • · · · • val(ψ, ψ(x)) • val(ψ, x)

a formula that will become useful time and time again. Together with Table 2.2, it im-
plies for instance that if val(ψn, x) ∈ {(+,−), (−,+)}, it is also the case that val(ψn+k, x) ∈
{(+,−), (−,+)} for all k > 0.

Using this idea, we may reformulate Lemma 2.9:

Lemma 2.12. Let x, y ∈ T, and let k ∈N. Assume that there exist numbers n, m with n−m = k such
that ψn(x) = ψm(y). Then:

• If val(ψn′ , x) = val(ψm′ , y) ∈ {(+,−), (−,+)} for some n′, m′ with n′ −m′ = k, there are two
germs η1, η2 ∈ Tk(ψ) such that ηi(y) = x.

• If val(ψn′ , x), val(ψm′ , y) ∈ {(+,+), (−,−)} for all n′, m′, there is a unique germ η ∈ Tk(ψ)
with η(y) = x.

Proof. Immediate from Lemma 2.9 and the definition of valency. See also figure 2.4 at the end of
this chapter. �

Remark 2.13. For future reference, we note a simple fact regarding the orientation of the local
transfers in Lemma 2.12: In the first case, with two possible germs η1 and η2 taking y to x,
observe that one germ preserves the standard orientation on T, while the other reverses it. In
the other case, the unique germ preserves orientation if and only if val(ϕn, x) = val(ϕm, y),
and reverses orientation if this is not the case. Thus, the lemmas become simpler if we restrict
ourselves to only orientation-preserving local transfers: Such (germs of) transfers exist if only if
val(ϕn, x) = val(ϕm, y), and if they exist, they are also unique. �

2.3 The amended transformation groupoid of a circle map

Consider a circle map ϕ with an associated set of local transfers T . Let Σ be a sub-pseudogroup
of T – i.e. a set containing the identity morphisms and closed under inversion and compositions.
We will refer to Σ as a pseudogroup of local transfers. The aim of this section is to take this data
and construct a topological groupoid Gϕ(Σ) that somehow encodes the dynamics of ϕ.

Remark 2.14. All these pseudogroups and sub-pseudogroups might seem rather abstract – to
simplify matters, lets note that there are really only four particular psedogroups that we care
about. The first is T itself, the set of all local transfers for ϕ. The next, which we will denote
by T +, is the subset consisting of all local transfers that preserve orientation, i.e. x < y implies
η(x) < η(y). The final two are the sets T (0) and T (0) ∩ T +, that is, the elements η satisfying
ϕk ◦ η = ϕk for some k – i.e. η has to intertwine some iterate of ϕ with itself, and not just another
iterate. The groupoids associated to the final two pseudogroups will be the focus of Chapter 3.�

We define the groupoids in a number of steps:

Definition 2.15. Let ψ be a circle map, and Σ a pseudogroup of local transfers. Put

Gψ(Σ) = {(x, k, η, y) ∈ T×Z× Σ×T | η ∈ TΣ(k), η(x) = y}
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One may turn G = Gψ(Σ) into a groupoid with unit space T and rules for composition
and inversion inspired by those for regular transformation groupoids. However, G is not quite
the groupoid we’re looking for – if (x, k, η, y) is an element of Gψ, we can restrict η to any
subset of its domain (containing x), obtain a new local transfer η̄ and hence another element
(x, k, η̄, y) ∈ Gψ, a priori different from (x, k, η, y). We want such two elements to be identified,
so we need to ’mod out’ by an appropriate equivalence relation.

Definition 2.16. Let U, V ⊆ T be open sets, x ∈ U, and η : U → V a map. Define [η]x, the
germ of η at x, as the set of all homeomorphisms ρ : U′ → V′ such that ρ is equal to η on a
sufficiently small neighbourhood of x.

Define an equivalence relation ∼ on Gψ by (x, k, η, y) ∼ (x′, k′, η′, y′) if (x′, k′, y′) = (x, k, y)
and [η]x = [η′]x.

Definition 2.17. Let ψ be a circle map, Σ a pseudogroup of local transfers on T, and Gψ(Σ) the
set from Definition 2.15. We define the amended transformation groupoid Gψ(Σ) of ψ and Σ as the
set Gψ(Σ)/ ∼. The unit space of Gψ(Σ) is T, with range and source maps given by projection
onto first and last component. The composable elements G(2)Σ)ψ are given by

G(2)(Σ)ψ =
{
(x, k, [η]x, y), (x′, k′, [η′]′x, y′) ∈ Gψ

∣∣ y = x′
}

and composition and inversion given by

(x, k, [η]x, y)(y, k′, [η′]′x, y′) = (x, k + k′, [η′ ◦ η]x, y′), (x, k, [η]x, y)−1 = (y,−k, [η−1]y, x)

If ϕ is a circle map, we will write Γϕ as a short-hand for Gϕ(T ) and Γ+
ϕ for Gϕ(T +). Briefly put,

the remainder of this dissertation studies the structure of Γϕ, Γ+
ϕ and their C∗-algebras, as well

as the relationship and the differences between these two algebras. Many theorems will be of
the type ’Let G be either Γϕ or Γ+

ϕ . . .’. In some cases, we might be able to prove some result
about both groupoids in one fell swoop; in other cases, we treat the two groupoids separately,
or prove the result first for one groupoid and then use it to prove it for the other. As a useful
intuition Γ+

ϕ can tell the valencies (+,+) and (−,−) apart, while Γϕ cannot.

Remark 2.18. Dealing with the local transfers directly is troublesome. Here’s another ’picture’ of
the two grupoids Γϕ and Γ+

ϕ , using Lemma 2.12. First, by this lemma and the subsequent remark,
we have (x, k, [η], y) ∈ Γ+

ϕ if and only if there are n, m ∈ N with n− m = k, ϕn(x) = ϕm(y)
and val(ϕn, x) = val(ϕm, y). On the other hand, if there are there are n, m ∈N with n−m = k,
ϕn(x) = ϕm(y) and val(ϕn, x) = val(ϕm, y), there is a unique local transfer η with η(x) = y. It
follows that we can forget about the local transfers and write

Γ+
ϕ = {(x, k, y) ∈ T×Z×T | ∃n, m : k = n−m, ϕn(x) = ϕm(y), val(ϕn, x) = val(ϕm, y)}

For Γϕ, the situation is a bit more murky: Write the group Z2 as {+,−} with the obvious
composition, and define a map V : P → Z2 by V(η) = + if η preserves orientation and
V(η) = − if η reverses orientation. V respects the composition in P , and by Lemma 2.12, we
have

Γϕ = {(x, k, p, y) ∈ T×Z×Z2 ×T∃n, m ∈N, η ∈ Tϕ(k) :n−m = k, ϕn(x) = ϕm(y),

η(x) = y, V(η) = p}
(2.3)

Essentially, for each triple (x, k, y), there are at most two transfers such that (x, k, [η]x, y) is in Γϕ,
and the transfer is determined uniquely by its orientation, represented as an element of Z2. �
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We proceed to equip Gϕ(Σ) with a topology, and show that this topology is sufficiently nice.

Definition 2.19. Let ϕ be a circle map, Σ a pseudogroup of local transfers, U ⊆ T, k ∈ Z and
η ∈ Σ(k) with U inside the domain of η. Put

U(η) = {[z, k, η, η(z)] | z ∈ U} ⊆ Gϕ(Σ)

Let ΩΣ denote the collection of sets {U(η)} with U ranging over the open subsets of T, k over
Z and η over Σ. We equip Gϕ(Σ) with the topology generated by these sets.

Proposition 2.20. In the topology defined above, the groupoids Γϕ and Γ+
ϕ are locally compact, second

countable, Hausdorff and étale.

Proof. Let G denote either of the groupoids Γϕ and Γ+
ϕ , and let U(η) be an open set in G. Both

range and source maps restrict to local homeomorphisms on U(η), so G is étale and locally
compact. To show that G is Hausdorff, let γ = [x, k, η, y] and γ′ = [x′, k′, η′, y′] ∈ G with γ 6= γ′.
If x 6= x′, y 6= y′ or k 6= k′, it is straightforward to choose disjoint neighbourhoods of γ and γ′.
If [η]x 6= [η′]x, it follows from Lemma 2.9 that that there is a neighbourhood U of x such that
η(z) = η′(z) implies z = x for all y ∈ U. Hence, [η]z 6= [η′]z for all z ∈ U, so U(η) and U(η′)
are disjoint neighbourhoods of γ and γ′.

To show that G is second countable, we need to work a bit more. The approach is completely
similar to that of Proposition 4.3 in [43]: Fix m and n, and note that the set of points critical for
either ϕn or ϕm is finite. Choose a countable basis {Ui}∞

i=1 for the topology of T such that each
Ui is connected and contains at most one critical of ϕn or ϕm, and such that ϕm is injective on
the Ui’s not containing critical points of ϕm. Let i, j ∈N. If Ui and Uj contains no critical points
of ϕn and ϕm, respectively, there is only one transfer η with domain Ui such that

η(Ui) ⊆ Uj and ϕn(z) = ϕm(η(z)) for all z ∈ Ui (2.4)

If Ui contains a critical point of ϕn and Uj a critical point of ϕm, there can be at most two
transfers satisfying Equation 2.4 (the exact number depends on the given valencies of ϕn and
ϕm and on the groupoid). In either case, the collection A(n, m, i, j) of local transfers satisfying
Equation 2.4 is finite for all n, m, i, j. Now, if η is a local transfer of order k and U ⊆ T is open,
U(η) is a countable union of sets

{[z, k, µ, µ(z)] | z ∈ Ui}

for some (n, m, i, j) with n − m = k and µ ∈ A(n, m, i, j). It follows that these sets form a
countable basis for the topology on G. �

2.4 On the structure of C∗(Γϕ) and C∗r (Γ+
ϕ )

Having equipped Γϕ and Γ+
ϕ with sufficiently nice topologies, we can form their groupoid

C∗-algebras C∗r (Γϕ) and C∗r (Γ+
ϕ ). We now take the approach laid out in the introduction –

assume some dynamical property of ϕ, and see how it reflects on the C∗-algebraic properties of
the corresponding C∗-algebras. Or the other way around: Require C∗r (Γϕ) or C∗r (Γ+

ϕ ) to have a
certain property, and investigate how that affects the dynamics.

Definition 2.21. Let ϕ : T→ T be a continuous map. We say that ϕ is transitive if for any pair
of open subsets U and V of T, there is an n ∈N such that ϕn(U) ∩V 6= ∅.
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Proposition 2.22. Assume that ϕ is transitive circle map and not locally injective. It follows that there
is an orientation-preserving homeomorphism h : T → T such that h ◦ ϕ ◦ h−1 is uniformly piecewise
linear with slope s > 1.

Proof. We will show how the theorem follows from the work of Shultz in [39] on discontinuous
piecewise monotone maps of the interval.

After conjugation by a rotation of the circle we can assume that ϕ(1) 6= 1 and 1 /∈ ϕ(C1).
(Indeed, since ϕ is piecewise monotone and transitive there are λ’s in T arbitrary close to 1 such
that ϕ(λ) 6= λ. Choose one of them such that λ /∈ ϕ(C1). Then ϕ1(t) = λ−1 ϕ(λt) is conjugate to
ϕ, does not fix 1 and all its critical values are different from 1.) Let µ : T→ [0, 1[ be the inverse
map of [0, 1[3 t 7→ e2πit. Then

τ(t) = µ ◦ ϕ(e2πit)

is piecewise monotone in the sense of Shultz [39]. Since ϕ is surjective and 1 /∈ ϕ (C1 ∪ {1}),
it follows that τ is discontinuous at a point in ]0, 1[ and τ ([0, 1]) = [0, 1[. We claim that τ is
transitive in the sense of Definition 2.6 in [39]; that is, we claim that for every open non-empty
subset U ⊆ [0, 1] there is an n ∈N such that

n⋃
i=0

τ̂k(U) = [0, 1] (2.5)

Here τ̂ is the possibly multivalued map on [0, 1] which associates to each x ∈ [0, 1] the left and
right hand limits of τ at x. By construction this union is either {τ(x)} or {1, 0}. In the latter
case 0 = τ(x). It follows therefore that τ̂(A)\{1} = τ(A) for every subset A ⊆ [0, 1]. Thus

τ̂k(U) ⊇ τk(U)

for all k. The strong transitivity of ϕ implies that
⋃n−1

i=0 τk(U) = [0, 1[ for some n ∈ N. As
observed above τ is discontinuous at a point in ]0, 1[. It follows therefore that 1 ∈ τ̂ ([0, 1[) and
hence that (2.5) holds since

n⋃
i=0

τ̂i(U) ⊇ τ̂
( n−1⋃

i=0

τ̂i(U)
)
⊇ τ̂

( n−1⋃
i=0

τi(U)
)
= τ̂([0, 1[) = [0, 1].

It follows now from Propositions 4.3 and 3.6 in [39] that there is a homeomorphism h :
[0, 1] → [0, 1] such that f = h ◦ τ ◦ h−1 is uniformly piecewise linear. From the proof of
Proposition 3.6 in [39] we see that h is increasing. Since ϕ is not locally injective there are
non-empty open intervals I, I′ ⊆ T\{1} such that I ∩ I′ = ∅ and ϕ(I) = ϕ(I′). Then J = µ(I)
and J′ = µ(I′) are non-empty open intervals in [0, 1[ such that J ∩ J′ = ∅ and τ(J) = τ(J′), i.e.
τ is not essentially injective in the sense of Definition 4.1 of [39]. Hence the slope s of the linear
pieces of f is > 1 by Proposition 4.3 of [39].

Since h(0) = 0, h(1) = 1 and τ(0) = τ(1) we find that f (0) = f (1) and we can therefore
define ϕ : T → T such that ϕ

(
e2πit) = e2πi f (t), t ∈ [0, 1]. Then ϕ = g ◦ ϕ ◦ g−1 where

g = µ−1 ◦ h ◦ µ. Then g(1) = 1 = limλ→1 g(λ). Hence g is continuous and an orientation
preserving homeomorphism on T. It follows that ϕ is a continuous map on T and conjugate
to ϕ. By construction ϕ is uniformly piecewise linear with slope s > 1. �

Remark 2.23. Let ϕ be transitive, and choose an orientation preserving homeomorphisms
h : T → T such that ψ = h ◦ ϕ ◦ h−1 is uniformly piecewise linear with slope s > 1. Then the
map H : Γϕ → Γψ given by

H(x, k, p, y) = (h−1(x), k, p, h−1(y))
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is an isomorphism of groupoids. Hence, whenever it is convenient, we may assume without loss
of generality that our map is uniformly piecewise linear (assuming it is transitive). �

We say that a p-periodic point x ∈ T is repelling when there is an open interval I in T and a
r > 1 such that x ∈ I and |ϕp(y)− x| ≥ r |y− x| for all y ∈ I.

Lemma 2.24. Assume that ϕ is transitive and uniformly piecewise linear with slope s > 1. Then the
periodic points of ϕ are dense in T and they are all repelling.

Proof. Since ϕ is transitive there is a point in T with dense forward orbit, cf. Theorem 5.9 in [50].
It follows therefore from Corollary 2 in [4] that ϕ has periodic points, and then by Corollary 3.4
in [9] that the periodic points are dense. For each n ∈ N the map ϕn is uniformly piecewise
linear with slope sn > 1. Therefore all periodic points of ϕ are repelling. �

Lemma 2.25. Assume that ϕ is transitive. Then Γϕ and Γ+
ϕ are locally contractive; that is, for every open

set U ⊆ T, there is an open set V ⊆ U and an open bisection S such that V ⊆ s(S) and s(VS−1) $ V.

Proof. Let U ⊆ T be open. By Lemma 2.24, there is a periodic and repelling point in U. Since
there are only finitely many critical points, the union of orbits of periodic points which contain
a critical point is a finite set – hence we may choose a z0 ∈ U that is periodic (of period n),
repelling, and whose orbit contains no critical points. Now, val(ϕ2n, z0) = (+,+), so there is a
neighbourhood W ⊆ U of z0 and a κ > 1 such that |ϕ2n(y)− z| ≥ κ|y− z| for all y ∈W. From
here, one may follow the proof of Proposition 4.1 in [46], replacing the set J( f ) \ E( f ) by T. �

Lemma 2.26. Assume that ϕ is transitive. Then Γϕ and Γ+
ϕ are topologically principal, i.e. the set of

points with trivial isotropy is dense in T.

Proof. We first consider Γϕ: Let x ∈ T, and note that the isotropy group Isx is given by

Isx =
{

γ ∈ Γϕ

∣∣ r(γ) = s(γ) = x} = {(x, k, p, x) ∈ Γϕ

}
Assume that x has non-trivial isotropy. Then x is either pre-periodic (so (x, k, p, x) ∈ Γϕ for some
k > 0) or pre-critical (so (x, 0,−, x) ∈ Γϕ). The set

⋃
j∈N ϕ−j(C) is countable, so it has empty

interior. We claim that the same is true for the set of pre-periodic points. Since ϕ is transitive,
Lemma 2.22 implies that there is a homeomorphism h : T→ T and a map g : T→ T which is
uniformly piecewise linear with slope s > 1 such that g = h ◦ ϕ ◦ h−1. The set of periodic points
for g is clearly a countable set, so the same is true for the set of pre-periodic points. Since h
maps the pre-periodic points of g bijectively to the pre-periodic points of ϕ, this set is countable,
too; in particular, it has empty interior.

The same proof works for Γϕ, just delete the part about pre-critical points. �

For the statement of the next theorem, recall that a C∗-algebra is purely infinite if all proper
hereditary subalgebras contain an infinite projection, see [2].

Theorem 2.27. Assume that ϕ is transitive. Then C∗r (Γϕ) and C∗(Γ+
ϕ ) are purely infinite.

Proof. The Lemmas 2.26 and 2.25, combined with Proposition 2.4 of [2], yields the desired
conclusion immediately. �
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In the next chapter, we shall see that transitivity of ϕ also has a great deal to say in deciding
simplicity of C∗r (Γϕ) and C∗r (Γ+

ϕ ).
Finally, let us establish a connection between the algebras C∗r (Γϕ) and C∗r (Γ+

ϕ ): First, note
that by Remark 2.18, there is an inclusion i : Γ+

ϕ → Γϕ given by

i((x, k, y)) = (x, k,+, y), (x, k, y) ∈ Γ+
ϕ

It follows that Γ+
ϕ sits inside Γϕ as a subgroupoid, and by comparing the topologies, we see

immediately that this subgroupoid is clopen. This yields an inclusion of C∗-algebras: For
f ∈ Cc(Γ+

ϕ ), put

i( f )(x, k, p, y) =

{
f (x, k, y) if p = +,
0 if p = −

(2.6)

The map i : Cc(Γ+
ϕ ) → Cc(Γ+

ϕ ) is isometric, injective and respects composition and inversion,
and therefore extends to a C∗-embedding i : C∗r (Γ+

ϕ )→ C∗r (Γϕ), realising C∗r (Γ+
ϕ ) as a subalgebra

of C∗r (Γϕ). It turns out that something stronger holds: C∗r (Γϕ) is the fixed point-algebra of an
order-two automorphism Λ of C∗r (Γϕ). To see this, let f ∈ Cc(Γϕ), and define

Λ( f )(x, k, p, y) = (−1)p f (x, k, p, y), (x, k, p, y) ∈ Γϕ (2.7)

with the convention that (−1)+ = 1 and (−1)− = −1.

Proposition 2.28. The map Λ from Equation 2.7 extends to an order-two ∗-automorphism of C∗r (Γϕ),
with fixed-point algebra C∗r (Γϕ)Λ isomorphic to C∗r (Γ+

ϕ ).

Proof. Most of this is completely straightforward – for instance, multiplicativity amounts to
seeing that

Λ( f ∗ g)(x, k, p, y) = (−1)p( f ∗ g)(x, k, p, y)

= (−1)p ∑
z,k1+k2=k,p1 p2=p

f (x, k1, p1, z)g(z, k2, p2, y)

= ∑
z,k1+k2=k,p1 p2=p

(−1)p1 f (x, k1, p1, z)(−1)p2 g(z, k2, p2, y)

= ∑
z,k1+k2=k,p1 p2=p

Λ( f )(x, k1, p1, z)Λ(g)(z, k2, p2, y)

= Λ( f ) ∗Λ(g)(x, k, p, y)

for f , g ∈ Cc(Γϕ). Similarly, Λ2 = id follows from the fact that (−1)p(−1)p = 1. Since
|Λ( f )(γ)| = | f (γ)| for any f ∈ Cc(Γϕ) and γ ∈ Γϕ, Λ extends to an isometry Λ : C∗r (Γϕ) →
C∗r (Γϕ), and since Λ2 = id on the dense subset Cc(Γϕ), this also holds on C∗r (Γϕ). Finally,

(−1)p f (x, k, p, y) = f (x, k, p, y)

for f ∈ Cc(Γϕ) and all (x, k, p, y) ∈ supp( f ) if and only if f ∈ Cc(Γ+
ϕ ). Hence, Cc(Γ+

ϕ ) ⊆
C∗r (Γϕ)Λ, so by continuity C∗r (Γ+

ϕ ) ⊆ C∗r (Γϕ)Λ. On the other hand, if a ∈ C∗r (Γϕ)Λ, we can
approximate a with elements {an} ⊆ Cc(Γϕ). But then a′n = 1/2(an + Λ(an)) is an element of
Cc(Γϕ)Λ = Cc(Γ+

ϕ ) for all n, and a′n converges to a. It follows that a is in C∗r (Γ+
ϕ ). �

The map Λ is sometimes known as the flip automorphism. We shall use it several times in the
following chapters.
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x y
Figure 2.1: This figure shows various combinations of valencies. The graphs
on the left shows the graph of some iterate ϕl around some point x, and the
graphs on the right show an iterate ϕk around y. In the first three cases, we
have val(ϕk , x) = val(ϕk , y), so there is at least one local transfer intertwining
ϕk and ϕl around x and y. In the fourth case, val(ϕk, x) is (+,+), while
val(ϕl , y) = (−,−) – so there is a local transfer intertwining ϕk and ϕl , but it
reverses orientation. In the fifth and sixth case, no transfers exist..





Chapter 3
The core algebras

Let ϕ be a circle map (continuous, surjective and piecewise strictly monotone), and consider the
groupoids Γϕ and Γ+

ϕ introduced in Chapter 2. Each of these have a distinguished subgroupoid:

Definition 3.1. Let ϕ : T→ T be a circle map, and let Γϕ and Γ+
ϕ the amended transformation

groupoids associated to ϕ as defined in Definition 2.17. Define groupoids Rϕ and R+
ϕ by

Rϕ = {(x, k, [η]x, y) ∈ Γϕ|k = 0}, R+
ϕ = {(x, k, [η]x, y) ∈ Γ+

ϕ |k = 0}

Give Rϕ and R+
ϕ the topology inherited from Γϕ and Γ+

ϕ , respectively.

It is immediate that Rϕ (resp. R+
ϕ ) is clopen in Γϕ (resp. Γ+

ϕ ). It follows that these groupoids
are locally compact, second countable, Hausdorff étale groupoids in their own right. To ease
notation, we will drop the k when writing elements of the groupoids – combining this with
Remark 2.18, we have

R+
ϕ = {(x, y) ∈ T×T | ∃n ∈N : ϕn(x) = ϕn(y), val(ϕn, x) = val(ϕn, y)}

and

Rϕ = {(x, p, y) ∈ T×Z2 ×T | ∃n ∈N, η ∈ T (0) : ϕn(x) = ϕn(y), η(y) = x, V(η) = p}

The C∗-algebras of these two groupoids are sometimes referred to as the ’core algebras’ of ϕ.
In many ways, these algebras are more tractable – not least due to the fact that the groupoids
have very little isotropy (R+

ϕ is the groupoid of an equivalence relation, while Rϕ has Z2-
isotropy over the countable set of pre-critical points). Apart from being interesting in themselves,
studying these algebras serve a twofold purpose: First, it paves the way for calculating the
K-theory of the algebras C∗r (Γϕ) and C∗r (Γ+

ϕ ) and obtaining some crucial structural results about
these. Second, in some cases, it gives a naturally occuring example of an AF-algebra with an
order-two-automorphism whose fixed-point algebra is not AF.

We note that each core algebra arise as the fixed-point algebra of a gauge action:

Definition 3.2. Let µ ∈ T, and f ∈ Cc(Γϕ). Define βµ( f ) ∈ Cc(Γϕ) by

βµ( f )(x, k, p, y) = µk f (x, k, p, y), (x, k, p, y) ∈ Γϕ

The map f 7→ βµ( f ) is isometric, so βµ extends to a ∗-automorphism of C∗r (Γϕ). The µ 7→ βµ

from T to Aut(C∗r (Γϕ)) called the gauge action.

23
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It is easy to check that βµ ◦ βρ = βµρ and β−1
µ = βµ for µ, ρ ∈ T. It follows that β is a group

homomorphism.

Proposition 3.3. Let β be the gauge action on C∗r (Γϕ), and

C∗r (Γϕ)
β =

{
a ∈ C∗r (Γϕ)

∣∣ βµ(a) = a for all µ ∈ T
}

the fixed-point algebra of β. Then C∗r (Γϕ)β is isomorphic to C∗r (Rϕ).

Proof. As in [47], Lemma 3.1. �

In a completely similar way, there is a gauge action β on C∗r (Γ+
ϕ ), given by

βµ( f )(x, k, y) = µk f (x, k, y)

for f ∈ Cc(Γ+
ϕ ), and the fixed point algebra of this action is C∗r (R+

ϕ ).
To understand the algebras C∗r (Rϕ) and C∗r (R+

ϕ ) better, we begin by realising them as
inductive limits of well-understood algebras.

3.1 The �nite-dimensional building blocks

Fix a k ∈N, and put
Rϕ(k) =

{
(x, p, y) ∈ Rϕ

∣∣∣ ϕk(x) = ϕk(y)
}

and
R+

ϕ (k) =
{
(x, y) ∈ R+

ϕ

∣∣∣ ϕk(x) = ϕk(y)
}

These groupoids can almost be visualised – one simply has do draw the graph of ϕk and keep
track of points with same image under ϕk, subject to the appropriate valency condition. The
ultimate goal of the section is the following result:

Theorem 3.4. Let k ∈N and let R be either Rϕ(k) or R+
ϕ (k). Then there are finite-dimensional algebras

Ak and Bk and ∗-homomorphisms Ik, Uk : Ak → Bk such that

C∗r (R) ' {(a, f ) ∈ Ak � C([0, 1], Bk) | Ik(a) = f (0), Uk(a) = f (1)}

Combined with Lemma 1.27, this determines the K-theory of the algebras. The strategy of
the proof is roughly the same for C∗r (Rϕ(k)) and C∗r (R+

ϕ (k)), with a few crucial differences –
we give all details for the case C∗r (Rϕ(k)) and then outline the differences when considering
C∗r (R+

ϕ (k)) instead.
Let Ck denote the critical points of ϕk, and fix D be a finite set with ϕk(Ck) ⊆ D. The set

E = ϕ−k(D) is finite, Rϕ(k)-invariant and contains all the critical points of ϕk. It follows that we
have reductions

Rϕ(k)|E =
{
(x, p, y) ∈ Rϕ(k)

∣∣∣ ϕk(x), ϕk(y) ∈ D
}

and
Rϕ(k)|T\E =

{
(x, p, y) ∈ Rϕ(k)

∣∣∣ ϕk(x), ϕk(y) /∈ D
}

The philosophy is now as follows: Given a function f ∈ Cc(Rϕ(k)), we get, by restriction,
functions on the two reductions above. On the other hand, given maps on the two reductions
above, we may – given that the maps satisfy certain compatibility relations – piece them together
and get an element of Cc(Rϕ(k)). Giving a precise description of these compatibility relations
will occupy us for much of this section.



3.1 The �nite-dimensional building blocks 25

(0, 1)

I

Ik

Ii

I

J

ψIi

λJ

λI

ϕk

ϕk

Figure 3.1: A picture of the sets I and Ik and the maps ψIi ,
λI and λJ . The leftmost circle is divided into intervals I by
the points of D, while the rightmost circle is subdivided into
intervals Ik by the set E . Each interval I of Ik is mapped
to some interval in I by ϕk, with inverse λI . The map ψIi
parametrises the interval Ii along the unit interval (0, 1)..

Remark 3.5. Note that the obvious choice of D would simply be ϕk(Ck). However, we will later
need the extra flexibility of being able to choose any finite set containing ϕk(Ck). �

Write D = {c1, c2, . . . , cN}, and put c0 = cN . Let I = {I1, I2, . . . , IN} denote the set of connected
components of T \ D such that ci−1 < Ii < ci, and let Ik be the connected components of
T \ E . Note that by construction, ϕk maps each element of Ik bijectively onto an element of
I – hence for each I ∈ Ik, ϕk has an inverse λI . Furthermore, for each Ii ∈ I , we can define
an orientation-preserving homeomorphism ψIi : (0, 1)→ Ii such that limt→0 ψIi (t) = ci−1 and
limt→1 ψIi (t) = ci (see Figure 3.1).

Lemma 3.6. For i = 1, . . . , N, let mi = #{I ∈ Ik|ϕk(I) = Ii}. Put

Bk =
N⊕

i=1

Mmi (C)

Then there is an isomorphism
C∗r
(

Rϕ(k)|T\E
)
' SBk
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where SBk denotes the suspension of Bk.

Proof. This is mainly an application of Example 1.22: Fix an Ii ∈ I , and consider the set

Ai =
{

I ∈ Ik

∣∣∣ ϕk(I) = Ii

}
.

For I, J ∈ Ai, the map λJ ◦ ϕk is a homeomorphism from I to J. Since ϕk is monotone on each I in
Ai, we have (x, p, y) ∈ Rϕ(k)|T\E if and only if ϕk(x) = ϕk(y), or, equivalently, if y = λI(ϕk(x))
for an appropriate I. It follows from Example 1.22 that

C∗r (Rϕ(k)|Ai ) ' C0((0, 1))� Mmi (C).

This works for each Ii ∈ I , and the result follows. �

Put
I (2)k =

{
(I, J) ∈ Ik × Ik

∣∣∣ ϕk(I) = ϕk(J)
}

We recall from Example 1.22 that the algebra Bk is generated by matrix units eI,J , (I, J) ∈ I (2)k .

Let f ∈ Cc(Rϕ(k)), (I, J) ∈ I (2)k , with ϕk(I) = ϕk(J) = Ii, and consider the map f I,J ∈ C((0, 1))
given by

f I,J(t) = f (λI ◦ ψIi (t), p, λJ ◦ ψIi (t)), t ∈ (0, 1)

where p = pI,J is + if val(ϕk, I) = val(ϕk, J), and − otherwise. This map has a continuous
extension to a map – also denoted f I,J – in C([0, 1]). Indeed, let

λI(ci−1) = lim
x→ci−1

λI(x), λI(ci) = lim
x→ci

λI(x)

If (λI(ci−1)), pI,J , λJ(ci−1)) ∈ Rϕ(k), then

lim
t↓0

f (λI ◦ ψIi (t), pI,J , λJ ◦ ψIi (t)) = f (λI(ci−1)), pI,J , λJ(ci−1))

On the other hand, if (λI(ci−1)), pI,J , λJ(ci−1)) /∈ Rϕ(k), we must have that

lim
t↓0

f (λI ◦ ψIi (t), pI,J , λJ ◦ ψIi (t)) = 0

since f is compactly supported. In either case, we define f I,J(0) to be this limit. The same
considerations hold for the limit t ↑ 1, and we thus get a map f I,J : [0, 1] → C. Doing this for

each pair of intervals (I, J) ∈ I (2)k yields a ∗-homomorphism b : Cc(Rϕ(k))→ C([0, 1], Bk) given
by

b( f ) = ∑
(I,J)∈I (2)k

f I,JeI,J

which extends to a ∗-homomorphism b : C∗r (Rϕ(k))→ C([0, 1], Bk).
Next, we do a similar analysis for the reduction Rϕ(k)|E . Unlike the reduction to the

complement, E contains critical points, so we have to deal with non-trivial isotropy groups.
However, Example 1.24 has paved the way:
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Lemma 3.7. Put Ak = C∗r (Rϕ(k)|E ). For i = 1, . . . , N, let ni = |ϕ−k({ci})|. Write ni = nmin
i +

nmax
i + nr

i with

nmin
i =

∣∣∣{x ∈ ϕ−k({ci})
∣∣∣ val(ϕk, x) = (−,+)

}∣∣∣
nmax

i =
∣∣∣{x ∈ ϕ−k({ci})

∣∣∣ val(ϕk, x) = (+,−)
}∣∣∣

nr
i =

∣∣∣{x ∈ ϕ−k({ci})
∣∣∣ val(ϕk, x) ∈ {(+,+), (−,−)}

}∣∣∣
Then

Ak '
N⊕

i=1

(
Mnmin

i
(C)2 � Mnmax

i
(C)2 � Mnr

i
(C)

)
Proof. Fix a ci ∈ D, and let A =

{
x ∈ E

∣∣∣ ϕk(x) = ci, val(ϕk, x) = (−,+)
}

. The set A is Rϕ(k)-

invariant and has nmin
i elements. If x, y ∈ A, both points are critical for ϕk, and it follows that

there are two (germs of) local transfers in T (k, k) taking x to y. Hence,

Rϕ(k)|A ' A× A×Z2

Appealing to Examples 1.20 and 1.24, we get

C∗r (Rϕ(k)|A) ' Mnmin
i

(C)� Mnmin
i

(C)

Putting

B =
{

x ∈ E
∣∣∣ ϕk(x) = ci, val(ϕk, x) = (+,−)

}
, C =

{
x ∈ E

∣∣∣ ϕk(x) = ci, val(ϕk, x) ∈ {(+,−), (−,+)
}

we get by analogous calculations that

C∗r (Rϕ(k)|B) ' Mnmax
i

(C)� Mnmax
i

(C)

and
C∗r (Rϕ(k)|C) ' Mnr

i
(C)

since the isotropy over C is trivial. Doing this for each i = 1, . . . , N yields the result. �

Note that since the set E is finite, the groupoid Rϕ(k)|E is discrete. It follows that the
algebra Ak is generated by the characteristic functions 1(x,p,y), (x, p, y) ∈ Rϕ(k)|E . For brevity,
we will sometimes write these characteristic functions as ’matrix units’ ex,p,y for (x, p, y) ∈
Rϕ(k)|E . However, while they obey the same composition rules as regular matrix units – i.e.
e(x,p,y)e(y,q,z) = e(x,pq,z), it is important to note that the elements e(x,−,x) are not projections
(indeed, e2

(x,−,x) = e(x,+,x)).
As above, we get a ∗-homomorphism a : C∗r (Rϕ(k))→ Ak by setting

a( f ) = ∑
(x,p,y)∈Rϕ(k)|E

f (x, p, y)ex,p,y.

We have now seen how elements in Cc(Rϕ(k)) give rise to elements in the algebras Ak and
C([0, 1], Bk). Now, we go the other way and analyse when an a ∈ Ak and an f ∈ C([0, 1], Bk)
match up to form a function g ∈ Cc(Rϕ(k)). We encode these compatibility relations in two
∗-homomorphisms Ik, Uk : Ak → Bk. Define the maps Ik and Uk first on the generating matrix
units ex,p,y ∈ Ak: For each x ∈ E , let Ix

l and Ix
r be the intervals of Ik immediately to the left and

right of x. Abbreviate val(ϕk, x) by vx, and define maps Ik and Uk by the following table:
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xIx
l Ix

r

ϕk(x)

yIy
l Iy

r

ϕk(y)

Figure 3.2: The intervals Ix
l and Ix

r to the left and right of x, and Iy
l and Iy

r

to the left and right and y..

ex,p,y Ik(ex,p,y) Uk(ex,p,y)
vx = vy = (−,+), p = + eIx

l ,Iy
l
+ eIx

r ,Iy
r

0
vx = vy = (−,+), p = − eIx

l ,Iy
r
+ eIx

r ,Iy
l

0
vx = vy = (+,−), p = + 0 eIx

l ,Iy
l
+ eIx

r ,Iy
r

vx = vy = (+,−), p = − 0 eIx
l ,Iy

r
+ eIx

r ,Iy
l

vx = vy = (+,+) eIx
r ,Iy

r
eIx

l ,Iy
l

vx = vy = (−,−) eIx
l ,Iy

l
eIx

r ,Iy
r

vx = (+,+), vy = (−,−) eIx
r ,Iy

l
eIx

l ,Iy
r

vx = (−,−), vy = (+,+) eIx
l ,Iy

r
eIx

r ,Iy
l

Checking that Ik and Uk respect multiplication and involution is now a straightforward,
albeit tedious, task. The following lemma is crucial:

Lemma 3.8. Let f ∈ Cc(Rϕ(k)), and a : Cc(Rϕ(k)) → Ak, b : Cc(Rϕ(k)) → C([0, 1], Bk) and
Ik, Uk : Ak → Bk be as above. Then

Ik(a( f )) = b( f )(0), Uk(a( f )) = b( f )(1).

Proof. Let f ∈ Cc(Γϕ). It is enough to consider the case where f is a bump function around a
point (x, p, y) ∈ Rϕ(k)|E . Assume, for instance, that (x,+, y) is the only element in supp( f ) ∩
Γϕ|E , and that vx = vy = (−,+). Then a( f ) = f ((x,+, y))ex,+,y, hence

Ik(a( f )) = f ((x,+, y))
(
eIx

l ,Iy
l
+ eIx

r ,Iy
r

)
, Uk(a( f )) = 0

by Table 3.1. Meanwhile, b( f ) is given by

b( f ) = f Ix
l ,Iy

l
eIx

l ,Iy
l
+ f Ix

r ,Iy
r
eIx

r ,Iy
r
.

Since val(ϕk, x) = (−,+), there is an I ∈ I such that

ϕk(Ix
l ) = ϕk(Iy

l ) = ϕk(Ix
r ) = ϕk(Iy

r ) = I.

Then f Ix
l ,Iy

l
is given by

f Ix
l ,Iy

l
(t) = f

(
λIx

l
◦ ψI(t),+, λIy

l
◦ ψI(t)

)
= f (x,+, y)
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since
lim
t→0

λIx
l
◦ ψI(t) = x, lim

t→0
λIy

l
◦ ψI(t) = y.

The same thing holds for the map f Ix
r ,Iy

r
(t), which shows that b( f )(0) = Ik(a( f )). Similarly, we

have Uk(a( f )) = 0, and

b( f )(0) = lim
t→1

b( f )(t) = lim
t→1

f Ix
l ,Iy

l
(t)eIx

l ,Iy
l
+ f Ix

r ,Iy
r
(t)eIx

r ,Iy
r
= 0

by assumption on f . The other cases follow using analogous arguments. �

Put
Dk = {(a, f ) ∈ Ak � C([0, 1], Bk) | Ik(a) = f (0), Uk(a) = f (1)}.

The lemma above then gives a map µk : Cc(Rϕ(k))→ Dk given by µk( f ) = (a( f ), b( f )).

Lemma 3.9. The map µk : Cc(Rϕ(k)) → Dk is injective, isometric, and extends to an isomorphism
between C∗r (Rϕ(k)) and Dk.

Proof. Showing that µk is an isometry is a little tricky: Recall that

‖ f ‖ = sup
x∈T

‖πx( f )‖B(l2(s−1(x))), f ∈ Cc(Rϕ(k))

with
πx( f )g(γ) = ∑

γ1γ2=γ

f (γ1)g(γ2).

Assume first that x ∈ ϕ−k(D) with val(ϕk, x) = (−,+) and ϕk(x) = ci for some ci ∈ D. Write

s−1(x) = {(y1, 0,+, x), (y2, 0,+, x), . . . , (yn, 0,+, x), (y1, 0,−, x), . . . , (yn, 0,−, x)}

with n = nmin
i . We identify l2(s−1(x)) with C2n. Now, one calculates that

πx( f )1(yi ,0,+,x) = ∑
j=1,...,n
p=+,−

f (yj, 0, p, yi)1yi ,0,p,x, πx( f )1(yi ,0,−,x) = ∑
i=j,...,n
p=+,−

f (yj, 0, p, yi)1yi ,0,p̄,x

with p̄ denoting the opposite element of p of Z2. Hence, a matrix representation of πx( f ) in
M2n(C) has the form

πx( f ) =
(

A B
B A

)
with A = ( f (yj, 0,+, yi))

n
i,j=1 and B = ( f (yj, 0,−, yi))

n
i,j=1. We now compare this with

a( f ) ∈ Ak =
⊕

i

(
Mnmin

i
(C)2 � Mnmax

i
(C)2 � Mnr

i
(C)

)
.

By definition,
a( f ) = ∑

(x,0,p,y)∈Rϕ(k)|ϕ−k(D)

f (x, 0, p, y)ex,p,y.

Under the isomorphism from Lemma 3.7, the component of a( f ) in Mnmin
i

(C)2 is represented
by (A + B, A− B) ∈ Mn(C)� Mn(C), with A and B as above. The unitary map Ψ : Cn � Cn →
Cn � Cn given by Ψ(a, b) = 1√

2
(a + b, a− b) implements a unitary equivalence between πx( f )
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and a( f )|Mnmin
i

(C)2 . Doing this for all x ∈ ϕ−k(D) yields ‖πx( f )‖ = ‖a( f )‖. When x /∈ ϕ−k(D)

a similar argument yields that ‖πx( f )‖ = ‖b( f )‖, which proves that µk is an isometry. Hence, it
extends to an injective map µk : C∗r (Rϕ(k))→ Dk.

To prove surjectivity, let (a, b) ∈ Dk. Write

a = ∑
(x,p,y)∈Rϕ(k)|E

λx,p,yex,p,y

with each λx,p,y ∈ C. Since Rϕ(k)|E is finite, there is a function g ∈ Cc(Rϕ(k)) with g(x, p, y) =
λx,p,y. It follows that µk(g) = (a, b′) for some b′ ∈ Cc(Rϕ(k)), hence

(a, b) = µk(g) + (0, b− b′)

Since b(0) = b′(0) and b(1) = b′(1), it follows that f = b− b′ ∈ C0((0, 1), Bk). Write

f = ∑
(I,J)∈I (2)k

f I,JeI,J

with each f I,J ∈ C((0, 1)). Fix a pair (I, J) and put

U = {(λI ◦ ψIi (t), p, λJ ◦ ψIi (t)|t ∈ (0, 1)}

U is open in Rϕ(k), and we can define a map h ∈ C0(U ) such that

h(λI ◦ ψIi (t), p, λJ ◦ ψIi (t)) = f I,J(t).

Choose a sequence hn ∈ Cc(U ) such that hn converges uniformly to h. Then µk(hn) converges to
(0, f I,JeI,J), and by extending linearly, we are done. �

As an immediate corollary, we get:

Corollary 3.10. The sequence

0 −−−−→ C∗r (Rϕ(k)|T\E )
i−−−−→ C∗r (Rϕ(k))

a−−−−→ C∗r (Rϕ(k)|E ) −−−−→ 0 (3.1)

is exact, and we have

K0(C∗r (Rϕ(k))) ' ker((Ik)0 − (Uk)0), K1(C∗r (Rϕ(k))) ' coker((Ik)0 − (Uk)0)

where (Ik)0 and (Uk)0 denote the induced maps between K0(Ak) and K0(Bk).

Proof. The first statement follows from the isomorphisms of Lemmas 3.6, 3.7 and 3.9, and the
fact that the sequence

0 −−−−→ SBk
i−−−−→ Dk

a−−−−→ Ak −−−−→ 0 (3.2)

is exact. The second statement follows from Corollary 1.28. �

Remark 3.11. So far, we have dealt only with the groupoids Rϕ(k) and the algebras C∗r (Rϕ(k)).
With only minor modifications, we can decompose C∗r (R+

ϕ (k)) in the same way – and some
definitions become simpler, due to the absence of Z2-isotropy. We have

R+
ϕ (k)|E '

{
(x, y) ∈ E × E

∣∣∣ ϕk(x) = ϕk(y), val(ϕk, x) = val(ϕk, y)
}

,
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so, writing A+
k for C∗r (R+

ϕ (k)|E ), we get

A+
k =

N⊕
i=1

M
n(−,+)

i
(C)� M

n(+,−)
i

(C)� M
n(+,+)

i
(C)� M

n(−,−)
i

(C) (3.3)

with
nv

i = |
{

x ∈ E
∣∣∣ ϕk(x) = ci, val(ϕk, x) = v

}
|,

for v ∈ V . We also have C∗r (Rϕ(k)|T\E ) ' C0((0, 1), B+
k ), with

B+
k =

N⊕
i=1

Mm+
i
(C)� Mm−i

(C), (3.4)

and mv
i = |

{
I ∈ Ik

∣∣∣ ϕk(I) = Ii, val(ϕk, I) = v
}
| for v ∈ {(+,+), (−,−)}. The maps I+k and U+

k
are given by

ex,y I+(ex,y) U+(ex,y)
vx = vy = (−,+) eIx

l ,Iy
l
+ eIx

r ,Iy
r

0
vx = vy = (+,−) 0 eIx

l ,Iy
l
+ eIx

r ,Iy
r

vx = vy = (+,+) eIx
r ,Iy

r
eIx

l ,Iy
l

vx = vy = (+,+) eIx
l ,Iy

l
eIx

r ,Iy
r

As above, there are ∗-homomorphisms a : C∗r (R+
ϕ (k)) → A+

k and b : C∗r (R+
ϕ (k)) →

C([0, 1], B+
k ) such that

C∗r (R+
ϕ (k)) '

{
(a, f ) ∈ A+

k � C([0, 1], B+
k )
∣∣ I+k (a) = f (0), U+

k (a) = f (1)
}

.

This yields a short exact sequence like (5.10), and shows that

K0(C∗r (R+
ϕ (k))) ' ker((I+k )0 − (U+

k )0), K1(C∗r (R+
ϕ (k))) ' coker((I+k )0 − (U+

k )0). �

3.1.1 Calculations

Let’s provide some more details on how to determine the K-theory of these algebras. We begin
with C∗r (R+

ϕ (k)), as this is a bit simpler. It follows from Equation 3.3 that K0(A
+
k ) is a free

abelian group with one summand for each element in the set

D(±) =
{
[d, v] ∈ D × V

∣∣∣ ∃x ∈ ϕ−k(d) : val(ϕk, x) = v
}

.

For each such pair [d, v], the corresponding summand in K0(A
+
k ) is generated by the K0-class of

the matrix unit ex,x for any x ∈ ϕ−k(d) with val(ϕk, x) = v.
Similarly, from Equation 3.4 it follows that K0(B

+
k ) is a free abelian group, with one summand

for each element in the set

I(±) =
{
[Ii, v] ∈ I × {(+,+), (−,−)}

∣∣∣ ∃I ∈ Ik : ϕk(I) = Ii, val(ϕk, I) = v
}

.

For each such pair [Ii, v], any interval I with ϕk(I) = Ii and val(ϕk, I) = v gives rise to a
rank-one projection eI,I generating the corresponding summand of K0(B

+
k ).
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This gives the recipe for determining the induced map (I+k )0 − (U+
k )0: Take an element

[d, v] ∈ D(±), choose a corresponding x with x ∈ ϕ−k(d) with val(ϕk, x) = v, write I+k (ex,x)

and U+
k (ex,x) as a sum of matrix units eI,I , and determine, for each term in this sum, the

corresponding element in I(±). We illustrate with an example:

Example 3.12. Let τ : [0, 1]→ R denote map given by τ(t) = 4t for t ∈ [0, 1/2] and τ(t) = 4− 4t
for t ∈ [1/2, 1]. τ induces a map (which we will also refer to as τ) of the unit circle onto
itself. This map is continuous, surjective, piecewise linear and non-injective. Iterating τ is
straightforward, as this picture of the graphs of τ, τ2 and τ3 shows:
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To simplify matters, let us consider the case k = 2. The critical points C2 are {0, 1/8, 1/4, . . . , 7/8},
so we may put D = τ2(C2) = {0}. Then

D(±) = {[0, (−,+)], [0, (+,−)], [0, (+,+)], [0, (−,−)]}

so K0(A
+
2 ) ' Z4, with the elements above (in that order) as a basis. Since T \ D has only one

connected component I, the set I(±) is just {[I, (+,+)], [I, (−,−)]}. It follows that K0(B
+
2 ) '

Z2. To calculate (I+2 )0 and (U+
2 )0, we proceed as sketched above: Consider, for instance,

[0, (+,−)] ∈ D(±). Since τ2(1/8) = 0 and val(τ2, 1/8) = (+,−), we should determine
I+2 (e1/8,1/8) and U+

2 (e1/8,1/8). We observe that

τ−2(0) = {0, 1/16, 1/8, 3/16, 1/4, . . . , 7/8, 15/16},

so the connected components of T \ τ−2(D) immediately to the left and right of 1/8 is J =
(1/16, 1/8) and K = (1/8, 3/16). Using Table 3.11, we get

I+2 (e1/8,1/8) = 0, U+
2 (e1/8,1/8) = eJ,J + eK,K

Since τ2(J) = τ2(K) = I, val(τ2, J) = (+,+) and val(τ2, K) = (−,−), the K0-classes of eJ,J and
eK,K correspond to [I, (+,+)] and [I, (−,−)], respectively. It follows that(

(I+2 )0 − (U+
2 )0

)
([0, (+,−)]) = −[(I, (+,+))]− [(I, (−,−))]

Doing similar calculations for the other elements of D(±) yields a matrix representation of(
(I+2 )0 − (U+

2 )0
)

as a map from Z4 to Z2, ordering the bases of K0(A
+
2 ) and K0(B

+
2 ) as above:

(I+2 )0 − (U+
2 )0 =

(
1 −1 0 0
1 −1 0 0

)
so

K0(C∗r (R+
τ (2))) ' ker((I+2 )0 − (U+

2 )0) ' Z3

and
K1(C∗r (R+

τ (2))) ' coker((I+2 )0 − (U+
2 )0 ' Z



3.1 The �nite-dimensional building blocks 33

Considering other iterates of τ and not just τ2 yield the same results: For any k, the only critical
value of τk is 0, so we choose D = {0} and get K0(A

+
k ) ' Z4 and K0(B

+
k ) = Z2, with the

induced map (I+k )0 − (U+
k )0 given as above. Hence, the K-theory groups of C∗r (R+

τ (k)) are Z3

and Z for any k. N

Example 3.13. We now turn to the other family of groupoids, Rτ(k). The presence of Z2-
isotropy makes the calculations slightly more complicated. By Lemma 3.6, Bk has a full matrix
summand for each element of I – in comparison to B+

k , Bk has fewer summands, but these
summands typically have higher dimension. More precisely, K0(Bk) ' ZN , where N is the
number of elements in I . Ak, on the other hand, tends to have more summands: Given a
d ∈ D, a v ∈ {(−,+), (+,−)} and an x ∈ ϕ−k(d) with val(ϕk, x) = v, we obtain two elements
(x,+, x) and (x,−, x) in Rϕ(k)|E , each yielding the two linearly independent functions 1(x,+,x)
and 1(x,−,x) in C∗r (Rϕ(k)|E ) = Ak. As in Example 1.26, one checks that

p+,x = 1
2
(
1(x,+,x) + 1(x,−,x)

)
, p−,x = 1

2
(
1(x,+,x) − 1(x,−,x)

)
are projections in Ak, each generating a summand of K0(Ak). On the other hand, if ϕk(x) = d
with val(ϕk, x) ∈ {(+,+), (−,−)}, the element 1(x,+,x) is a projection in Ak, generating a
summand of K0(Ak).

Again, as an example, we consider the map τ and start by looking at τ2. Using Lemmas 3.6
and 3.7, it follows that K0(A2) ' Z5 and K0(B2) ' Z. It is still the case that τ2(1/8) = 0
and val(τ2, 1/8) = (+,−) – but we now have two elements (1/8,+, 1/8) and (1/8,−, 1/8)
in Rτ(2)|E , each giving rise to characteristic functions 1(1/8,+,1/8) and 1(1/8,−,1/8). Following
Example 1.26, the K0-classes of each of the projections

p+ = 1
2
(
1(1/8,+,1/8) + 1(1/8,−,1/8)

)
, p− = 1

2
(
(1(1/8,+,1/8) − 1(1/8,−,1/8)

)
generate a summand in K0(A2). Appealing to Table 3.1, we see that

I2(p+) = I2(p−) = 0

and
U2(p+) = 1

2
(
eJ,J + eK,K + eJ,K + eK,J

)
Since τ2(J) = τ2(K) = I, it follows that

((I2)0 − (U2)0) ([p+]) = ((I2)0 − (U2)0([p−])) = −[I]

Doing similar calculations for the other generators of K0(A2) shows that (I2)0 − (U2)0 as a map
from Z5 to Z is given by the 1-by-5-matrix (11(−1)(−1)0), in particular

K0(C∗r (Rτ(2))) ' ker((I2)0 − (U2)0) ' Z4

and
K1(C∗r (R+

τ (2))) ' coker((I+2 )0 − (U+
2 )0) ' 0

Again, one may check that these K-theory groups are independent of k. N

We note that K1(C∗r (Rτ(k))) is trivial. This turns out to be a general fact:

Lemma 3.14. For k ∈ N, the induced map (Ik)0 − (Uk)0 : K0(Ak) → K0(Bk) is surjective. In
particular, K1(C∗r (Rϕ(k))) = 0.
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Proof. Let k ∈ N, let D = ϕk(Ck) and E = ϕ−k(D). Assume that D has N elements, and write
T \ D = {I1, . . . , IN}. By Lemma 3.6, we have

Bk =
N⊕

i=1

Mni (C)

with the i’th summand generated by matrix units eI,J where I and J are intervals such that
ϕk(I) = ϕk(J) = Ii. Hence

K0(Bk) ' ZN = Z[I1]� . . . Z[IN ].

Fix an Ii, and let d, d′ ∈ D such that d < Ii < d′. We divide into three cases:

• Assume that there is an x ∈ ϕ−k(d) such that val(ϕk, x) = (−,+). x gives rise to elements
ex,+,x and ex,−,x in Ak. Let I and J be the intervals of T \ E immediately to the left and
right of x. One then checks that p = 1/2(ex,+,x + ex,−,x) is a projection in Ak, and by using
Table 3.1, we see that

Ik(p) = 1
2
(
eI,I + eJ,J + eI,J + eJ,I

)
, Uk(p) = 0

Since ϕk(I) = ϕk(J) = Ii, it follows that

((Ik)0 − (Uk)0)([p]) = [Ii].

• If there is an x ∈ ϕk(d′) with val(ϕk, x) = (+,−), we may define p as above and get that

Ik(p) = 0, Uk(p) = 1
2
(
eI,I + eJ,J + eI,J + eJ,I

)
.

Hence, ((Ik)0 − (Uk)0)(−[p]) = [Ii].

• Finally, assume that neither of the above cases occur. Then there is a x such that ϕk(x) = d,
val(ϕk, x) = (+,−). Since ϕk is surjective, there is also a point y ∈ T such that ϕk(y) = d,
val(ϕk, y) = v ∈ {(+,+), (−,−)}. Then the element

p = 1
2 (ex,+,x + ex,−,x)− ey,+,y

is a projection, and one checks that ((Ik)0 − (Uk)0)(p) = [Ii].

This shows surjectivity of (Ik)0 − (Uk)0. �

This, on the other hand, is not the case for C∗r (R+
ϕ (k)):

Lemma 3.15. Let k ∈ N. The map (I+k )0 − (U+
k )0 : K0(A

+
k ) → K0(B

+
k ) is not surjective. In

particular, K1(C∗r (R+
ϕ (k))) is non-trivial.

Proof. We have K0(B
+
k ) ' ZI(±) with a basis given by elements {[I, (+,+)], [I, (−,−)]}I∈I . We

show that (Ik)0 − (Uk)0 maps A+
k into the subspace V of ZL given by

V =

{
∑
I∈I

cI,+[I, (+,+)] + cI,−[I, (−,−)]
∣∣∣∣∣ ∑

I∈I
cI,+ − cI,− = 0

}



3.2 On the structure of C∗r (Γϕ) and C∗r (Γ+
ϕ ) 35

To do this, let d ∈ D, v ∈ V , and let [d, v] be a basis element of K0(A
+
k ). Assume, for instance,

that v = (−,+), and let J ∈ I be the element of I immediately above d. Then

(I+k )0 − (U+
k )0([d, v]) = [J, (+,+)] + [J, (−,−)] ∈ V.

Similarly, if v = (+,+), let I and J be intervals of I such that J < d < I. Then

(I+k )0 − (U+
k )0([d, v]) = [I, (+,+)]− [J, (+,+)] ∈ V.

The other two cases are similar. It follows that Im((I+k )0 − (U+
k )0) ⊆ V, and V is a subspace

of codimension 1 in ZI(±). In particular, (I+k )0 − (U+
k )0 is not surjective, so the cokernel is

non-zero. From this it follows that

K1(C∗r (R+
ϕ (k))) ' coker((I+k )0 − (U+

k )0)

is non-trivial. �

3.2 On the structure of C∗r (Γϕ) and C∗r (Γ+
ϕ )

We observe that for each k, the groupoid Rϕ(k) is an open subgroupoid of Rϕ(k + 1), and that
Rϕ =

⋃
k∈N Rϕ(k). It follows that

C∗r (Rϕ) =
⋃

k∈N

C∗r (Rϕ(k)),

and in similar fashion that C∗r (R+
ϕ ) =

⋃
k∈N C∗r (R+

ϕ (k)).
We will need a short discussion on amenability of groupoids: For groupoids, the word

’amenable’ can have any number of prefixes (’strongly’, ’topological’, ’measure-wise’, etc.) In our
discussion, we will only need amenability as a tool to prove other properties, so we forego any
discussion of how the various definitions of amenability are related. For a thorough discussion,
see [3], in which it is proved (see Remark 3.3.9) that for étale groupoids, topological and
measure-wise amenability coincide, and that is all we will need.

Proposition 3.16. Let G be a locally compact, étale groupoid and assume that Iso(x) is discrete for all
x ∈ G0. Then G is (measure-wise) amenable if and only if C∗r (G) is nuclear.

Proof. This is Corollary 6.2.14 in [3]. �

For the definition of nuclearity, and a number of results about nuclear C∗-algebras, see [35].
In particular, we note that quotients of nuclear C∗-algebras are nuclear (see [6], Corollary 9.4.4).

Secondly, we need a brief discussion of the full C∗-algebra of a (locally compact, Hausdorff
étale) groupoid G. Recall that to define C∗r (G), we put a norm on Cc(G) given by

‖ f ‖ = sup
x∈T

‖πx( f )‖, f ∈ Cc(G)

with πx the left-regular representation on l2(s−1(x)). C∗r (G) was then the completion of Cc(G)
in this norm. Had we instead defined

‖ f ‖ = sup‖π( f )‖, f ∈ Cc(G)

with π ranging over all representations of Cc(G), and completed Cc(G) in this norm, we
would have gotten the full groupoid C∗-algebra C∗(G). When the groupoid is amenable, these
constructions coincide:
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Proposition 3.17. Let G be locally compact groupoid which is measure-wise amenable. Then C∗r (G) is
isomorphic to C∗(G).

Proof. This is Proposition 6.1.8 of [3]. �

Proposition 3.18. The algebra C∗r (R+
ϕ ) is nuclear and satisfies the Universal Coefficient Theorem.

Proof. Fix a k and consider the groupoid R+
ϕ (k). The C∗-algebra C∗r (R+

ϕ (k)) is nuclear, as it is
the extension of the nuclear C∗-algebras A+

k and SB+
k by Equation 5.10 and Remark 3.11. Since

C∗r (R+
ϕ ) is an inductive limit of nuclear C∗-algebras, it is also nuclear (see e.g. Proposition 2.1.2

of [35]). It follows by Proposition 3.16 that R+
ϕ is amenable. By a result of Tu in [49], it follows

then that C∗r (R+
ϕ ) satisfies the UCT. �

To obtain similar results about C∗r (Γ+
ϕ ), recall the gauge action from Definition 3.2, given by

βµ( f )(x, k, y) = µk f (x, k, y)

for µ ∈ T, (x, k, y) ∈ Γ+
ϕ and f ∈ Cc(Γ+

ϕ ).

Proposition 3.19. Γ+
ϕ is amenable, and the algebra C∗r (Γ+

ϕ ) is nuclear and satisfies the UCT.

Proof. Let β be the gauge action. Let c : Γ+
ϕ → Z be the map given by c((x, k, y)) = k. This

is a continuous homomorphism, and c−1(0) = R+
ϕ . By (the proof of) Proposition 3.18, R+

ϕ is
amenable, so by Proposition 9.3 of [41], Γ+

ϕ is amenable, and C∗r (Γ+
ϕ ) ' C∗(Γ+

ϕ ) is nuclear. By
the previously mentioned result of Tu, C∗r (Γ+

ϕ ) satisfies the UCT. �

To obtain the same results for C∗r (Γϕ) and C∗r (Rϕ), define d : Γϕ → Z2 = {+,−} by

d((x, k, p, y)) = p.

Then d−1(+) = Γ+
ϕ , which is amenable, and now another application of the result of Spielberg

in [41] shows that Γϕ is amenable and that C∗r (Γϕ) is nuclear and satisfies the UCT. Restricting d
to Rϕ shows that the same holds for C∗r (Rϕ).

Remark 3.20. From the Remarks to Theorem 1.12 in [30], it follows that C∗r (G) is separable
when the groupoid G is second countable. It follows that when ϕ is transitive, the C∗-algebras
C∗r (Γϕ) and C∗r (Γϕ) are unital, separable, purely infinite (by Theorem 2.27), nuclear and satisfies
the UCT. Hence, whenever the algebras are simple, the Kirchberg-Phillips Classification Theorem
(see [26]) implies that the algebras are classified by their K-theory. �

One consequence of the lemmas above is the following result, which determines the kernel
of a restriction map πF:

Proposition 3.21. Let G be an amenable locally compact second countable Hausdorff étale groupoid with
unit space G0, and assume that G has discrete isotropy groups. Let F be a closed invariant subset of G0,
and put U = G0 \ F. Let i : C∗(G|U) → C∗(G), and πF : C∗(G) → C∗(G|F) be the inclusion and
restriction maps defined in 1.16 and 1.17, respectively. Then the sequence

0 −−−−→ C∗r (G|U)
i−−−−→ C∗r (G)

πF−−−−→ C∗r (G|F) −−−−→ 0 (3.5)

is exact.
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Proof. The statement for the full groupoid C∗-algebra is true by Lemma 2.10 of [19]. Since G is
amenable, C∗(G) ' C∗r (G) by Proposition 3.17, and this algebra is nuclear by Proposition 3.16.
We then know that C∗(G|F) is a quotient of C∗(G), so C∗r (G|F) is nuclear and C∗r (G|F) ' C∗(G|F).
In then follows (from e.g. the five-lemma) that C∗r (G|U) is isomorphic to C∗(G|U), and we have
our result. �

We can generalise this lemma slightly: If A is closed in T and B ⊆ A is closed in A and
G-invariant, we have a surjective restriction map πA,B : C∗r (G|A)→ C∗r (G|B). Arguing exactly as
above, it follows that ker(πA,B) ' C∗r (G|A\B). Finally, if both B and C are closed and invariant
in T, the same is true for B ∪ C, and there is a restriction map πB∪C from C∗r (G) to C∗r (G|B∪C).
The next lemma compares the kernel of this map with the kernels of πB and πC:

Lemma 3.22. Let G be an amenable locally compact second countable Hausdorff étale groupoid with unit
space G0, and assume that G has discrete isotropy groups. Let B and C be closed, G-invariant subsets
of G0. Then

ker(πB∪C) = ker(πB) ∩ ker(πC).

Proof. Since C∗r (G|Bc) is a subalgebra of C∗r (G), the map πC : C∗r (G) → C∗r (G|C) restricts to a
map πC|Bc : C∗r (G|Bc)→ C∗r (G|C). πC|Bc is equal to the map πBc ,Bc∩C : C∗r (G|Bc)→ C∗r (G|Bc∩C),
since they agree on the dense subset Cc(G|Bc). Combining this with the above lemma yields

ker(πB) ∩ ker(πC) = C∗r (G|Bc) ∩ ker(πC) = ker(πC|Bc) = ker(πBc ,Bc∩C).

Using the lemma on πBc ,Bc∩C thus shows that

ker(πBc ,Bc∩C) = C∗r (G|Bc\(Bc∩C)) = C∗r (G|(B∪C)c) = ker(πB∪C),

which is the desired conclusion. �





Chapter 4
Simplicity and primitive ideals

4.1 Orbits and invariant sets

This section contains a number of general results. We determine the possible isotropy groups of
Γϕ and Γ+

ϕ and investigate the topology of orbits [x] under Γϕ and Γ+
ϕ .

4.1.1 Prime subsets

We begin with some general results on topological groupoids.

Definition 4.1. Let G be a topological groupoid, and A a closed and G-invariant subset of the
unit space. Assume that A ⊆ A1 ∪ A2 for some other closed G-invariant subsets A1 and A2. If
either A ⊆ A1 or A ⊆ A2 for any such decomposition, we say that A is prime.

In the following, we determine the prime subsets of the unit space of a second countable,
locally compact Hausdorff étale groupoid. The discussion follows [13] and [40] closely, but we
include full proofs here for completeness. Note that the results hold for a rather large class of
groupoids, and not just the particular ones under scrutiny in this paper.

We need some terminology from general topology: Let X be a topological space. A subset
A ⊆ X is locally closed if A is the intersection of an open and a closed set. X is a Baire space if the
intersection of a countable collection of open dense sets is again dense, and X is totally Baire if
any locally closed subset of X is a Baire space. A closed set F ⊆ X is irreducible if it is not the
union of two closed proper subsets.

Lemma 4.2. Let X and Y be topological spaces with X second countable and totally Baire, and let
ψ : X → Y be an open, continuous surjection. Then Y is also second countable and totally Baire.

Proof. Let {Ui}i∈N be a countable basis for the topology on X, and put Vi = ψ(Ui). Then each
Vi is open. We claim that {Vi}i∈N is a countable basis for the topology on Y: If A ⊆ Y is
open, ψ−1(A) is open in X, so ψ−1(A) = ∪kUik for some sequence of indices ik. But since ψ is
surjective,

A = ψ(ψ−1(A)) = ψ
(⋃

k

Uik
)
=
⋃
k

ψ(Uik ) =
⋃
k

Vik

and the claim follows.
Next, let F be locally closed in Y, and let {Di} be a countable collection of dense sets that

are open in F. Write F = V ∩ C with V open and C closed. Then ψ−1(F) = ψ−1(V) ∩ ψ−1(C),

39
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so ψ−1(F) is locally closed in X, hence a Baire space. The sets ψ−1(Di) are open in ψ−1(F),
and since ψ is open and surjective, each set is also dense in ψ−1(F). By the Baire property of
ψ−1(F), the intersection ∩iψ

−1(Di) is dense in ψ−1(F). By continuity and surjectivity of ψ, the
intersection of the Di’s is then dense in F. �

Lemma 4.3. Let X be a topological space which is second countable and totally Baire, and let F ⊆ X be
non-empty and closed. Then F is irreducible if and only if it is the closure of a single point.

Proof. Asumme that F is irreducible, and note that F is second countable and totally Baire since
X is. Any open non-empty set U ⊆ F must be dense – indeed, writing F = U ∪ (F \U), we get
by irreducibility that F = U. Let {Ui}i∈N be a countable base for the topology of F. Since each
Ui is dense, the Baire property implies that ∩iUi is dense as well. In particular, it is non-empty,
so we may pick an x ∈ ∩iUi. If y ∈ F, and V is an open neighbourhood of y, there is an i such
that y ∈ Ui ⊆ V. Since x ∈ Ui, it follows that y ∈ {x}, hence F = {x}. For the other direction, it
is immediate that any set which is the closure of a single point is irreducible. �

To apply the above lemma to our situation, assume that G is locally compact, second
countable, Hausdorff and étale. Define an equivalence relation ∼ on G(0) by x ∼ y if [x]G = [y]G.
The orbit space G(0)/G is the quotient space of G(0) under this equivalence relation, equipped
with the quotient topology. The quotient map q : G(0) → G(0)/G is continuous and surjective by
definition, and also open: We have q−1(q(A)) = s(r−1(A)) for any A ⊆ G(0), and if A is open,
s(r−1(A)) is open since G is étale. By Lemma 4.2, the properties of being second countable
and totally Baire is preserved under continuous, open surjective maps, so since G(0) is second
countable and totally Baire, the same holds for the orbit space G(0)/G.

Lemma 4.4. Let F ⊆ G(0) be closed and G-invariant, and let q̃ : F → q(F) be the restriction of the
quotient map q : G(0) → G(0)/G to F. Equip F and q(F) with the induced topologies. Then q̃ is an open
map.

Proof. Let U ⊆ F be open, and choose V ⊆ G(0) open such that U = F ∩ V. The inclusion
q(F ∩ V) ⊆ q(F) ∩ q(V) is clearly true. On the other hand, let x ∈ q(F) ∩ q(V) and choose
f ∈ F and v ∈ V such that x = q( f ) = q(v). By G-invariance of F, we see that v ∈ F, hence
x = q(v) ∈ q(F ∩V). It follows that q(U) = q(F) ∩ q(V), and since q(V) is open in G(0)/G, we
conclude that q(U) is open in q(F). �

For the next lemma, we note that any locally compact Hausdorff space is totally Baire (since
locally compact spaces are totally Baire, and locally closed subsets of locally compact spaces
again are locally compact). Hence, if G is a topological groupoid which is second countable,
locally compact and Hausdorff, the unit space G(0) ⊆ G has the same properties, and is in
particular totally Baire.

Proposition 4.5. (Cf. Lemma 2.1 of [40]) Let G be a second countable, locally compact Hausdorff étale
groupoid, and let F ⊆ G(0) be closed and G-invariant. Then F is prime if and only if there is an x ∈ G(0)

such that F = [x]G.

Proof. Let F ⊆ G(0) be prime. Note that q(F) is closed, and that the assumptions on G and G(0)

imply that G(0)/G is second countable and totally Baire. Now, if q(F) = F1 ∪ F2 with F1 and F2
closed, we have F ⊆ q−1(F1) ∪ q−1(F2), so since F is prime, we may assume that F ⊆ q−1(F1).
It follows that q(F) = F1, so q(F) is irreducible. But then Lemma 4.3 implies that q(F) is the
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closure of a single point, say q(F) = {ξ} for some ξ ∈ G(0)/G. Choose x ∈ F such that q(x) = ξ.
Assume towards a contradiction that H = F \ [x] is non-empty. Then H is open in F, so q(H) is
open in q(F) by Lemma 4.4. Since {ξ} is dense in q(F), we have ξ ∈ q(H), so we may choose a
y ∈ H with q(y) = ξ = q(x). But then y is both in [x] and in F \ [x], which is absurd. It follows
that F = [x].

For the other direction, simply observe that if [x] = F1 ∪ F2 for some closed invariant sets F1

and F2, there is an i = 1, 2 such that x ∈ Fi. But then [x] ⊆ Fi, so [x] is irreducible. �

4.1.2 Orbit closures and isotropy

Recall that a primitive ideal of a C∗-algebra A is the kernel of an irreducible representation of A.
We note the following result, which is a special case of Lemma 2.4 of [40]:

Lemma 4.6. Let G be an amenable second countable, locally compact Hausdorff étale groupoid, and π

an irreducible representation of C∗r (G). Then π factors through C∗r (G[x]) for some x ∈ G(0).

Proof. This is Lemma 2.4 of [40], with amenability ensuring that C∗(G) ' C∗r (G). �

Lemma 4.6 implies that reductions G|
[x] hold the key to determining the irreducible repre-

sentations of C∗r (G). In this section, we investigate to topology of the sets [x] with respect to the
groupoids Γϕ and Γ+

ϕ . Along the way, we calculate the possible isotropy groups for each of the
groupoids. Recall that a point x ∈ T is periodic (for ϕ) if there is an n ∈N such that ϕn(x) = x,
and that the minimal period of x is the smallest n satisfying this. We denote by Pern the set of
points with minimal period n. Furthermore, x is preperiodic if there is a k ∈N such that ϕk(x) is
periodic. Similarly, we say that x ∈ T is pre-critical if there is a k ∈N such that ϕk(x) is critical
for ϕ (in particular, critical points are precritical). Finally, x is G-isotropic if the isotropy group
Iso(x) (with respect to G) is non-trivial.

Proposition 4.7. Let G = Γ+
ϕ and x ∈ T. Then x is G-isotropic if and only if it is preperiodic, in which

case Iso(x) = Z.

Proof. It is clear from the definition that it is necessary for x to be preperiodic for Iso(x) to
be non-trivial. To show that it is also sufficient, assume that x is preperiodic, that is, ϕj(x) is
periodic with period p, and both numbers are chosen minimal. Let O denote the periodic orbit
{ϕj(x), ϕj+1(x), . . . , ϕj+p−1(x)}. There are now two cases: If O contains no critical points of ϕ,
we have

val(ϕj+2p, x) = val(ϕp, ϕj(x)) • val(ϕp, ϕj(x)) • val(ϕj, x),

using that ϕj+p(x) = ϕj(x). Since val(ϕp, ϕj(x)) ∈ {(+,+), (−,−)}, we get

val(ϕp, ϕj(x)) • val(ϕp, ϕj(x)) = (+,+)

and it follows that val(ϕj+2p, x) = val(ϕj, x), so (x, 2p, x) ∈ Γ+
ϕ , and the isotropy at x is non-

trivial.
If there are critical points in O, we have val(ϕp, ϕj(x)) ∈ {(+,−), (−,+)}, so

val(ϕj+p, x) = val(ϕp, ϕj(x)) • val(ϕj, x) = val(ϕp, ϕj(x)),

which means that (x, p, x) ∈ Γ+
ϕ , and the isotropy at x is non-trivial.

In both cases, there is a j ∈N such that

Iso(x) = {(x, kj, x) | k ∈ Z} ' Z �
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Proposition 4.8. Let x ∈ T. Then x is isotropic for Γϕ if and only if

• x is pre-periodic but not pre-critical, in which case Iso(x) ' Z, or

• x is pre-critical but not pre-periodic, in which case Iso(x) ' Z2, or

• x is pre-critical and pre-periodic, in which case Iso(x) ' Z � Z2.

Proof. Assume that x is isotropic. Then there is a k ∈ Z or a local transfer η such that
[x, k, η, x] ∈ Γϕ, and k 6= 0 or [η]x 6= [id]x. Note that η(x) = x. If k 6= 0, there are n, m ∈N with
n−m = k and ϕn(x) = ϕn(η(x)) = ϕm(x), hence x is pre-periodic. If k = 0, there is an n ∈N

with ϕn ◦ η = ϕn around x. Since η reverses orientation, x must be critical for ϕn, and hence x is
pre-critical.

Assume now that x is pre-critical for ϕ, i.e. that ϕn(x) ∈ C for some n ∈ N, and that x is
not pre-periodic. Then x is critical for ϕn+1, so there is a unique (germ of) η with η(x) = x,
ϕn+1 ◦ η = ϕn+1 and [η]x 6= [id]x. Then [x, 0, η, x] ∈ Iso(x). Note that this η is unique (up to
germ-wise identification) and satisfies [η ◦ η]x = [id]x. If furthermore x is not preperiodic, we
have

Iso(x) = {[x, 0, id, x], [x, 0, η, x]} ' Z2.

If x is pre-periodic, but not pre-critical, we get in a similar way that Iso(x) ' Z. If finally x
is both pre-periodic and pre-critical, choose n such that ϕn(x) is critical, and k, p ∈ N such
that ϕk+p(x) = ϕk(x), with p the minimal period of ϕk(x). We may assume without loss of
generality that k > n. There is a unique (germ of a) local transfer η such that ϕn ◦ η = ϕn,
η(x) = x and [η]x 6= [id]x. It follows that the elements (x, jp, [η]x, x) (for j ∈ Z) are all in Iso(x),
as are the elements (x, jp, [id]x, x). Then

Iso(x) = {[x, jp, id, x], [x, jp, η, x]|j ∈ Z} ' Z � Z2

as we wanted. �

The key result in this section is the following:

Lemma 4.9. Let G = Γ+
ϕ or Γϕ, and x ∈ T. Then either [x]G contains an isolated, isotropic point, or

the non-isotropic points are dense in [x]G.

The proof comes in two parts, depending on what groupoid we consider:

Proof (if G = Γ+
ϕ :). Assume first that there is an open set V ⊂ T such that ϕn|V = idV for some

n, and that [x] ∩V is not empty. We show that [x] ∩V is finite. If y ∈ [x] ∩V, there are k and l
such that ϕk(x) = ϕl(y). Since y is n-periodic, we may assume that ϕl(y) = x and 0 ≤ l ≤ n.
But then y ∈ ⋃0≤l≤n ϕ−l(x), which is a finite set. In particular, y is isolated and isotropic in [x].

Assume, on the other hand, that no iterate ϕn restricts to the identity on any open subset
of T. If the non-preperiodic points are not dense in [x], there is an open set U of [x] such that

U ⊆
⋃
n,j

ϕ−j(Pern)

By the Baire category theorem, there are then numbers n and j and an open set W of [x] such
that

W ⊆ ϕ−j(Pern)
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Let y ∈ W, and choose ε > 0 such that B(y, ε) ∩ [x] ⊆ ϕ−j(Pern). The set V = B(y, ε) ∩ [x] is
non-empty. We claim that it is also finite. Indeed, pick a z ∈ V, and note that ϕj(z) = ϕn+j(z).
Since z ∈ [x], there is a k such that ϕk(x) = ϕj(z), so the forward orbit of x is finite. For any
z′ ∈ V, the forward orbit of z′ meets the forward orbit of x after at most j + n iterations. Hence,
ϕj+n(V) is finite, which implies that V is finite since ϕ is piecewise monotone. Finiteness of V
in turn means that any element of V is isolated in [x], and the inclusion V ⊆ ϕ−j(Pern) shows
that V consists of isotropic points. �

Proof (Proof if G = Γϕ). If there is a n ∈ N and an open set V such that ϕn|V is the identity,
the argument from the proof above works. Assume not, and assume again that the set of
non-isotropic points is not dense in [x]. Bear in mind that isotropic points in Γ+

ϕ can be either

preperiodic or precritical, so we know that there is a set U, open in [x] such that

U ⊆
⋃
n,j

ϕ−j(Pern ∪C)

The Baire category theorem yields numbers n and j and an open set W of [x] such that

W ⊆ ϕ−j(Pern ∪C).

Let y ∈W and choose ε > 0 such that

V = B(y, ε) ∩ [x] ⊆ ϕ−j(Pern ∪C) = ϕ−j(Pern) ∪ ϕ−j(C)

Write V1 = V ∩ ϕ−j(Pern) and V2 = V ∩ ϕ−j(C). Now, V1 is finite by the same argument as in
the proof above, and V2 is finite since ϕ−j(C) is finite. It follows that V is finite, so any element
of V is isolated in [x] and isotropic. �

4.2 Simplicity

Let G denote either Γϕ or Γ+
ϕ . The goal of this section is to obtain a ’dynamical’ criterion for

simplicity of the algebras C∗r (G) The strategy consists of three steps: First, we show that C∗r (G)
is simple if and only if [x]G is dense in T for all x (this is easy). Then, we establish necessary
and sufficient conditions for this to be true for Γ+

ϕ , expressed in terms of transitivity of ϕ and the
existence of a certain class of fixed points. This part is subdivided into several cases depending
on the degree of ϕ. Finally, we exploit a connection between C∗r (Γϕ) and C∗r (Γϕ) and show that
one algebra is simple if and only if the other is.

As we have seen in Lemma 3.21, open (or closed) invariant subsets of T give rise to ideals
in C∗r (G). In particular, given an x ∈ T such that [x]G is not dense, we can put A = [x]G and
obtain an ideal C∗r (Γϕ|Ac) = ker(πA). We now aim to show a converse result – if [x]G is dense
for all x ∈ T, C∗r (G) is simple.

Lemma 4.10. C∗r (G) is simple if and only if [x]G is dense for all x ∈ T.

Proof. One direction is clear already. For the other direction, assume that [x]G is dense in T

for all x ∈ G. Then certainly no [x]G contains an isolated, isotropic point, so by Lemma 4.9,
the non-isotropic points are dense in T. But then Corollary 2.18 of [45] gives the desired
conclusion. �

As a standing assumption for the remainder of this chapter, we will assume that ϕ is not
locally injective, i.e. has at least one critical point. However, if ϕ is locally injective, it is a local
homeomorphism, and by Proposition 4.3 of [11], simplicity of the algebra is then equivalent to ϕ
being strongly transitive (since T is an infinite set).
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4.2.1 Exceptional �xed points

In this section, we focus only on Γ+
ϕ – meaning, in particular, that we will write [x] for [x]Γ+

ϕ
.

First, we expand on the definition of transitivity from 2.21:

Definition 4.11. Let ϕ : T→ T be a map. We say that

• totally transitive if ϕn : T → T is transitive for all n,

• strongly transitive if for any open set U ⊆ T there is an N such that
⋃N

i=1 ϕi(U) = T,

• exact if for any open set U ⊆ T, there is an N such that ϕN(U) = T.

Remark 4.12. It is clear that a totally (or strongly) transitive map is transitive, and that an
exact map is strongly transitive. Furthermore, by Corollary 4.2 of [52], a transitive, piecewise
monotone circle map is strongly transitive. Furthermore, ϕ has a periodic point by Lemma 2.24,
and then Theorem C of [9] shows that exactness and total transitivity are equivalent conditions.�

Finally, given an e ∈ T, we say that e an exceptional fixed point if ϕ−1(e) \ C = {e}. The main
theorem, which will take several pages to prove, is the following:

Theorem 4.13. Let ϕ be a circle map. The following are equivalent:

1. C∗r (Γ+
ϕ ) is simple.

2. ϕ is totally transitive and has no exceptional fixed points.

3. ϕ is exact and has no exceptional fixed points.

The proof requires a deep plunge into the dynamics of circle maps. We begin by showing
that transitivity of ϕ is a necessary condition for simplicity:

Lemma 4.14. Assume that C∗r (Γ+
ϕ ) is simple. Then ϕ is transitive.

Proof. Let E ⊆ T be closed with non-empty interior and ϕ-invariant in the sense that ϕ(E) ⊆ E.
By Theorem 5.9 of [50] it suffices to show that E = T. For each n, m ≥ 1 set

Un,m = {x ∈ T | ϕn(x) = ϕm(y), val(ϕn, x) = val(ϕm, y) for some y ∈ Int E}

where Int E is the interior of E. Note that Un,m is open and non-empty and that
⋃

n,m Un,m is
Γ+

ϕ -invariant. It follows therefore from Lemma 1.16 that
⋃

n,m Un,m = T. By compactness there is
an N ∈N such that T =

⋃N
n,m=1 Un,m. Since Un,m ⊆ ϕ−n(E) we find then that

T = ϕN(T) ⊆ ϕN( N⋃
n=1

ϕ−n(E)
)
⊆ E.

�

The converse of Lemma 4.14 is not true in general; transitivity of ϕ does not imply that
C∗r (Γ+

ϕ ) is simple.
For the next lemma, let C denote the critical points of ϕ, recall that the critical values of ϕ is

the set ϕ(C), and that the post-critical points is the set
⋃∞

i=1 ϕi(C). Note that critical points are
pre-critical, but not post-critical.

Lemma 4.15. Assume that ϕ is transitive. Let A ⊆ T be a non-empty Γ+
ϕ -invariant subset which is not

dense in T. Then A is finite and consists of points that are post-critical and not pre-critical.



4.2 Simplicity 45

Proof. By assumption there is an open non-empty interval J ⊆ T such that

A ∩ J = ∅. (4.1)

By Remark 4.12, ϕ is not only transitive, but also strongly transitive. There is therefore an
N ∈N such that

N⋃
i=0

ϕi(J) = T. (4.2)

If x ∈ A and val(ϕj, x) ∈ {(+,−), (−,+)} for some j ≥ 1 we can choose y ∈ J such that
ϕk(y) = x for some k ∈ {1, 2, . . . , N}. It follows from the composition table for • that

val(ϕk+j, y) = val(ϕj, x) • val(ϕk, y) = val(ϕj, x).

Hence y ∈ [x] ⊆ A, contradicting (4.1). It follows that val(ϕj, x) ∈ {(+,+), (−,−)} for all j ∈N

when x ∈ A; i.e A consists of points that are not pre-critical.
Since ϕ is not locally injective there is a z ∈ T such that val(ϕ, z) ∈ {(+,−), (−,+)}.

Choose z0 ∈ J and k ∈ {1, 2, . . . , N} such that ϕk(z0) = z and note that val(ϕk+1, z0) ∈
{(+,−), (−,+)}. There are therefore subintervals J+, J− of J such that val(ϕk+1, y) = (+,+)
when y ∈ J+, val(ϕk+1, y) = (−,−) when y ∈ J−, and ϕk+1(J+) = ϕk+1(J−) =: I. Since ϕ is
strongly transitive there is a K ∈ N such that

⋃K
i=1 ϕi(I) = T. Set Mi = I ∩ Ci. Let a ∈ T be a

non-critical element, i.e. val(ϕ, a) ∈ {(+,+), (−,−)}. Assume that a /∈ ⋃K
i=1 ϕi(Mi). We claim

that [a] ∩ J 6= ∅. To see this note that there is an i ∈ {1, 2, . . . , K} and a y′ ∈ I\Mi such that
ϕi(y′) = a. Then val(ϕi, y′) ∈ {(+,+), (−,−)} and there is also an element y ∈ J+ ∪ J− such
that ϕk+1(y) = y′ and

val(ϕi+k+2, y) = val(ϕi+1, y′) • val(ϕk+1, y) = val(ϕ, a)

It follows that y ∈ [a] ∩ J, proving the claim.
The last two paragraphs show that A ⊆ ⋃K

i=1 ϕi(Mi). This completes the proof because⋃K
i=1 ϕi(Mi) is finite and consists of post-critical points. �

We will refer to points x with [x] finite as exposed points. By the lemma above, exposed
points are the only obstruction for simplicity of C∗r (Γ+

ϕ ). To figure out when a map has exposed
points, we divide into cases depending on the degree of the map:

4.2.2 |deg(ϕ)| ≥ 2

Lemma 4.16. Assume that ϕ is transitive and that |deg ϕ| ≥ 2. It follows that [x] is dense in T for all
x ∈ T.

Proof. Let n ∈ N. By looking at the graph of a lift f : [0, 1] → R of ϕ2n one sees that for any
x ∈ T, the set

An =
{

y ∈ T

∣∣∣ ϕ2n(y) = x, val(ϕ2n, y) = (+,+)
}

contains at least deg ϕ2n elements. Since An ⊆ [x] we conclude that [x] is infinite for all x ∈ T.
It follows then from Lemma 4.15 that [x] is dense for all x. �

Corollary 4.17. Assume that ϕ is transitive and that |deg ϕ| ≥ 2. Then C∗r (Γ+
ϕ ) is simple.
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4.2.3 |deg ϕ| = 1

We next assume that the degree of ϕ is 1 or −1. If ϕ is not totally transitive, we have the
following decomposition theorem:

Lemma 4.18. Assume that ϕ is transitive, but not totally transitive. It follows that there is a p > 1 and
closed intervals Ii, i = 0, 1, 2, . . . , p− 1, such that

1. ϕ(Ii) = Ii+1 (addition mod p),

2. Ii ∩ Int Ij = ∅, i 6= j,

3.
⋃p−1

i=0 Ii = T,

4. ϕp|Ii is totally transitive for each i.

Proof. This is a special case of Corollary 2.7 in [1]. �

Note that the number p and the collection {I0, I1, . . . , Ip−1} of intervals in Lemma 4.18 are
unique. We will refer to p as the global period of ϕ, and say that it is 1 when ϕ is totally transitive.
In the following we denote the set of endpoints of the intervals Ii from Lemma 4.18 by E .

Lemma 4.19. Assume that ϕ is transitive but not totally transitive. Then

ϕ−1 (E) \C = E . (4.3)

Proof. Assume for a contradiction that e ∈ E , but ϕ(e) /∈ E . There are then intervals Ii, Ii′ , Ij as
in Lemma 4.18 such that i 6= i′, e ∈ Ii ∩ Ii′ and ϕ(e) ∈ Int Ij. By continuity of ϕ and condition 1)
from Lemma 4.18 it follows that Ii+1 ∩ Int Ij 6= ∅ and Ii′+1 ∩ Int Ij 6= ∅. Since i + 1 6= i′ + 1 this
violates condition 2). Thus

ϕ(E) ⊆ E . (4.4)

If e ∈ E is a critical point the images Ii+1 = ϕ (Ii) and Ii′+1 = ϕ (Ii′) of the two intervals Ii, Ii′

containing e will both have non-trivial intersection with the same interval Ij containing ϕ(e);
contradicting 2) again. Hence

E ∩ C = ∅. (4.5)

Consider then an element x ∈ ϕ−1(E) and assume that x /∈ C1. Let Ii and Ii′ be the two
intervals among the intervals from Lemma 4.18 which contain ϕ(x). If x /∈ E there is a third
interval Ij which contains x in its interior. Since x is not critical it follows that ϕ(Ij) = Ij+1 has
non-trivial intersection with both Int Ii and Int Ii′ , contradicting 2) once more. Hence

ϕ−1(E)\C1 ⊆ E . (4.6)
�

This completes the proof since (4.3) is equivalent to (4.4), (4.5) and (4.6).

Lemma 4.20. Assume that ϕ is transitive but not totally transitive. When deg ϕ = 1 the set E is
a p-periodic orbit where p is the global period of ϕ, and val (ϕ, x) = (+,+) for all x ∈ E . When
deg ϕ = −1 the global period of ϕ is 2 and E consists of two distinct fixed points of valency (−,−).
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Proof. Let Ii, i = 0, 1, · · · , p− 1, be the intervals from Lemma 4.18, and let e−i , be the left endpoint
of Ii, defined using the orientation of T. When deg ϕ = 1 we see by looking at the graph of a lift
of ϕ that val(ϕ, e−i ) = (+,+) and ϕ(e−i ) = e−i+1 (addition mod p). It follows that E = [e−0 ], and
that this is also the (forward) orbit of e−0 . When deg ϕ = −1 observe first ϕ has a fixed point x.
This fixed point lies in one of the intervals Ii. Since x also lies in Ii+1 and Ii+2 it follows that two
of the intervals Ii, Ii+1 and Ii+2 must be the same, i.e. p = 2. By looking at the graph of a lift of
ϕ we see that E consists of two fixed points of valency (−,−). �

Lemma 4.21. If deg ϕ = 1 there is for all x ∈ T an element y ∈ ϕ−1(x) such that val(ϕ, y) = (+,+).
If deg ϕ = −1 there is for all x ∈ T an element y ∈ ϕ−1(x) such that val(ϕ, y) = (−,−).

Proof. Look at the graph of a lift of ϕ. �

Lemma 4.22. Assume that deg ϕ ∈ {1,−1}. Then [x] is infinite for all x ∈ T that are not periodic
under ϕ.

Proof. Let x ∈ T. It follows from Lemma 4.21 that there are sequences {ni} in N and {xi} in T

such that ϕn1(x1) = x, ϕni (xi) = xi−1, i ≥ 2, and val (ϕni , xi) = (+,+) for all i. Then xi ∈ [x]
for all i. The set {xi : i ∈N} is infinite when x is not periodic. �

Lemma 4.23. Assume that deg ϕ ∈ {−1, 1} and ϕ is transitive but not totally transitive. Then E is
the set of exposed points for ϕ.

Proof. Let e ∈ E and y ∈ [e]. There are natural numbers i, j ∈ N such that ϕi(e) = ϕj(y) and
val(ϕi, e) = val(ϕj, y). It follows from (4.3) that ϕj(y) = ϕi(x) ∈ E and that val(ϕi, e) ∈ (±,±)
since e ∈ E . This implies first that val(ϕ, ϕk(y)) ∈ (±,±) for all k ≤ j − 1 and then that
ϕj−1(y) ∈ ϕ−1(E)\C1 = E . But then ϕj−2(y) ∈ ϕ−1(E)\C1 = E , and so on. After j steps we
conclude that y ∈ E . This shows that E is Γ+

ϕ -invariant.
It remains to show that E contains all exposed points. Assume therefore that y0 is an exposed

point. It follows from Lemma 4.22 that all exposed points are periodic. Since they are also
post-critical by Lemma 4.15 and there are only finitely many critical points it follows that
there are only finitely many exposed points. Let m ∈ N be an even number divisible by the
global period p and by all the periods of exposed points. Then ϕm(y0) = y0. Furthermore, if
z ∈ ϕ−m(y0) and val(ϕm, z) = (+,+) we see that z ∈ [y0] and hence z is exposed. By definition
of m this implies that ϕm(z) = z, i.e. z = y0. To see that there can not be any z ∈ ϕ−m(y0) with
val(ϕm, z) = (−,−) observe by looking at the graph of the lift of ϕm, that since deg ϕm = 1 the
existence of such a z would imply the existence of a z′ ∈ ϕ−m(y0)\{y0}with val(ϕm, z′) = (+,+)
which is impossible as we have just seen. Now assume for a contradiction that y0 /∈ E . Then y0
lies in the interior of one of the intervals from Lemma 4.18, say Ii. We can then write Ii as the
union Ii = J1 ∪ J2 of two closed non-degenerate intervals such that J1 ∩ J2 = {y0}. As we have
just seen an element of Ii ∩ (ϕ−m(y0)\{y0}) must be critical for ϕm and it follows therefore that
ϕm(J1) = J1. This contradicts the total transitivity of ϕp|Ii . �

Lemma 4.24. Assume that ϕ is totally transitive and that deg ϕ ∈ {−1, 1}. It follows that there is at
most a single exposed point, and it must be a fixed point e such that ϕ−1(e)\C1 = {e}.

Proof. Let m be the same number as in the proof of Lemma 4.23. In that proof it was shown that

ϕ−m(y)\{y} ⊆ Cm (4.7)

for every exposed point y. It follows that if there are two exposed points, say e1 and e2, we could
write T = J1 ∪ J2 where J1 and J2 are non-degenerate closed intervals such that J1 ∩ J2 = {e1, e2}
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and ϕ2m(Ji) = Ji, i = 1, 2. This contradicts the assumed total transitivity of ϕ. Therefore there
is at most at single exposed point e, and it is fixed by ϕm. When deg ϕ = 1 it follows from
Lemma 4.21 that there is an element z ∈ ϕ−1(e) such that val(ϕ, z) = (+,+). Then z is exposed
(since z ∈ [e]) and the uniqueness of e implies that z = e, proving that e is a fixed point for ϕ.

To reach the same conclusion when deg ϕ = −1 it suffices to consider the case where
val(ϕ, e) = (−,−). By Lemma 4.21 there are elements z1, z ∈ T such that ϕ(z1) = z, ϕ(z) = e
and val(ϕ, z1) = val(ϕ, z) = (−,−). Then z1 ∈ [e] and hence z1 = e because e is the only
exposed point. It follows that z = ϕ(e), i.e. ϕ2(e) = e. Note that val(ϕ, ϕ(e)) = (−,−). We
claim that

ϕ−1({e, ϕ(e)})\C1 = {e, ϕ(e)}. (4.8)
�

To show this let x ∈ ϕ−1(e)\C1. If val(ϕ, x) = (+,+) we find that x = e since e is the only
exposed point. If val(ϕ, x) = (−,−) an application of Lemma 4.21 shows that x = ϕ(e).
Consider then an element y ∈ ϕ−1(ϕ(e))\C1. If val(ϕ, y) = (−,−) it follows that y ∈ [e] and
hence y = e by uniqueness of e. If instead val(ϕ, y) = (+,+) an application of Lemma 4.21
shows that that y = ϕ(e). Having established (4.8) note that it implies that ϕ(e) is exposed,
whence equal to e.

To show that ϕ−1(e)\C1 = {e} we may assume that deg ϕ = 1, since the other case follows
from (4.8). Furthermore, it suffices to show that ϕ−1(e)\C1 ⊆ {e} since exposed points are not
critical by Lemma 4.15. Consider therefore an element x ∈ ϕ−1(e)\C1. If val(ϕ, x) = (+,+) it
follows that x ∈ [e] and hence x is exposed. Since e is the only exposed points this shows that
x = e. Assume then that val(ϕ, x) = (−,−). If x 6= e a look at the graph for a lift of ϕ shows
that there is then also a point y ∈ ϕ−1(e)\{e} with val(ϕ, y) = (+,+) which we have just seen
is not possible. Hence x = e.

Proposition 4.25. Assume that ϕ is transitive and that deg ϕ ∈ {−1, 1}. Then C∗r (Γ+
ϕ ) is simple

unless either

1. ϕ is not totally transitive, or

2. ϕ is totally transitive and there is an exceptional fixed point.

In case 2) there is an extension

0 // B // C∗r
(

Γ+
ϕ

)
// C(T) // 0 (4.9)

where B is simple and purely infinite. When ϕ is not totally transitive and deg ϕ = 1 there is an
extension

0 // B // C∗r
(

Γ+
ϕ

)
// C(T)� Mp(C) // 0, (4.10)

where p is the global period of ϕ and B is simple and purely infinite. When ϕ is not totally transitive and
deg ϕ = −1 there is an extension

0 // B // C∗r
(

Γ+
ϕ

)
// C(T)� C(T) // 0, (4.11)

where B is simple and purely infinite.
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Figure 4.1: Graphs of (lifts of) the maps ϕ1, ϕ2 and ϕ3..

Proof. Assume that none of the two cases 1) or 2) occur. It follows from Lemma 4.24 that there
are no exposed points, and then from Corollary 4.15 that C∗r (Γ+

ϕ ) is simple.
In case 2) it follows from Lemma 4.24 that there is exactly one exposed point, e, which is a

fixed point. From Lemma 3.21 we get then the extension

0 // B // C∗r
(

Γ+
ϕ

)
// C∗r

(
Γ+

ϕ |{e}
)

// 0 (4.12)

where B = C∗r (Γ+
ϕ |T\{e}). By Proposition 1.23, we see that C∗r (Γ+

ϕ |{e}) ' C∗(Z) ' C(T).
Furthermore, B is purely infinite because B is an ideal in C∗r (Γ+

ϕ ) which is purely infinite by
Theorem 2.27. To conclude that B is simple we argue as in the proof of Proposition 4.10 in [47]:
The elements of T\{e} with non-trivial isotropy in C∗r (Γ+

ϕ |T\{e}) are pre-periodic. It follows
from Lemma 2.26 that the pre-periodic points are countable, whence T\{e} must contain a point
with trivial isotropy. By Corollary 2.18 of [45] it suffices therefore to show that T\{e} does not
contain any non-trivial (relatively) closed Γ+

ϕ -invariant subsets. Let therefore L be such a set.
Then L ∪ {e} is closed and Γ+

ϕ -invariant in T and hence either equal to T or contained in {e} by
Lemma 4.15 and Lemma 4.24. It follows that L = ∅ or L = T\{e}. This completes the proof in
case 2).

In case 1) we argue as above, except that we use Lemma 4.23 to replace Lemma 4.24, and
Lemma 4.20 to determine C∗r (Γ+

ϕ |E ). �

Example 4.26. Let’s give examples of the various cases in the Proposition above. Consider the
three maps below. The first map ϕ1 is exact, with 0 as an exceptional fixed point, so we obtain
an extension of the form in (4.9). The second map ϕ2 is of degree 1 and transitive but not totally
transitive (to see this, observe that ϕ2

2 leaves the intervals (0, 1/2) and (1/2, 1) invariant). It
follows that we obtain an extension like the one in (4.10), with p = 2. The third map ϕ3 shows a
map of degree -1 which is not totally transitive, giving rise to an extension like (4.11).

4.2.4 deg ϕ = 0

A point z ∈ T will be called an exceptional critical value when ϕ−1(z) ⊆ C.

Lemma 4.27. Assume that deg ϕ = 0 and that ϕ is surjective. There is at most one exceptional critical
value, and for all other elements x ∈ T there are points y± ∈ ϕ−1(x) such that val(ϕ, y±) = (±,±).

Proof. Look at the graph of a lift of ϕ. �
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Lemma 4.28. Assume that ϕ is transitive and that deg ϕ = 0. If y ∈ T is an exposed point there is
an exceptional critical value e ∈ T such that ϕ2(e) = ϕ(e) 6= e, [y] = {e, ϕ(e)} and ϕ−1 (ϕ(e)) \C =
{e, ϕ(e)}.

Proof. The main part of the proof will be to show that there is an exceptional critical value e
such that one of the following holds:

1. ϕ2(e) = ϕ(e) 6= e, val (ϕ, e) = (−,−) and [y] = {ϕ(e)},

2. ϕ2(e) = ϕ(e) 6= e, val (ϕ, ϕ(e)) = (+,+) and [y] = {e},

3. ϕ2(e) = ϕ(e) 6= e, [y] = {e, ϕ(e)}.

Assume first that [y] does not contain an exceptional critical value. Let z ∈ [y]. By using Lemma
4.27 we can construct yk, k = 0, 1, 2, 3, . . . such that y0 = z, ϕ(yk) = yk−1 and val (ϕ, yk) =
(+,+), k ≥ 1. Then yk ∈ [y] for all k so there are k 6= k′ such that yk = yk′ . It follows that
z is periodic and that val(ϕ, u) = (+,+) for all u in the orbit O(z) of z. Hence O(z) ⊆ [y].
Since this conclusion holds for all z ∈ [y] and since the forward orbits of elements from [y]
must intersect we conclude that [y] = O(y) and val(ϕ, ϕk(y)) = (+,+) for all k ∈ N. Let
z ∈ [y]. Using Lemma 4.27 again we find u1, v1 ∈ ϕ−1(z) such that val(ϕ, u1)) = (+,+) and
val(ϕ, v1) = (−,−). Then u1 ∈ [y] and u1 is therefore an element of the orbit of y. Since v1 6= u1
(or since val(ϕ, v1) = (−,−)), it follows that v1 is not in the orbit of y. If v1 is not an exceptional
critical value we can find v2 ∈ ϕ−1(v1) such that val(ϕ, v2) = (−,−). It follows that v2 ∈ [y]
and v2 must therefore be an element of O(y). This contradicts that v1 is not, and we conclude
that v1 must be an exceptional critical value e, which by Lemma 4.27 is unique. This shows that
z = ϕ(e) and we conclude therefore that case 1 occurs.

We consider then the case where [y] contains an exceptional critical value e. By looking at
the graph of a lift of ϕ we see that a non-critical exceptional critical value e can not be fixed
since the degree is 0. Thus ϕ(e) 6= e since exposed points are not critical. To see that ϕ(e)
is a fixed point assume that it is not. Consider first the case where ϕ(e) is periodic, say of
period p > 1. Since ϕ(e) 6= e it follows from Lemma 4.27 that there is a point b1 ∈ ϕ−1(ϕ(e))
such that val(ϕ, b1) 6= val(ϕ, e). Then b1 /∈ {e, ϕ(e)} and we use Lemma 4.27 again to find
b2 ∈ ϕ−1(b1) such that val(ϕ, b2) 6= val(ϕ, ϕ(e)). It follows that b2 /∈ {e, ϕ(e), b1}. By requiring
in each step that val(ϕ, bi) 6= val(ϕ, ϕ(e)) we obtain through repeated application of Lemma 4.27
elements bi, i = 1, 2, . . . , p + 1, such that ϕ(bk+1) = bk and bk+1 /∈ {e, ϕ(e), b1, b2, . . . , bk} for all
k = 1, 2, . . . , p. Then, for j > p + 1 we require in each step instead that val(ϕj, bj) = val(ϕ, e). It
is then still automatic that bk+1 /∈ {e, b1, b2, . . . , bk} for all k, while the fact that bj 6= ϕ(e) follows
for j ≥ p + 1 because j is larger than the period of ϕ(e). Since bj ∈ [e] = [y] when j > p + 1,
we have contradicted the assume finiteness of [y]. To get the same contradiction when ϕ(e)
is not assumed to be periodic we proceed in the same way, except that the steps between b1
and bp+1 can be bypassed. In any case we conclude that ϕ2(e) = ϕ(e). We next argue, in a
similar way, that ϕ−1(ϕ(e))\C1 ⊆ {e, ϕ(e)}. Indeed, if b1 ∈ ϕ−1(ϕ(e))\({e, ϕ(e)} ∪ C1) we use
Lemma 4.27 to get a sequence bi such that ϕ(bi+1) = bi, i ≥ 1, and val(ϕ, bi) = (−,−), i ≥ 2.
Then i 6= i′ ⇒ bi 6= bi′ , and bi ∈ [e] for infinitely many i; again contradicting the infiniteness of
[e]. Since e is not pre-critical by Lemma 4.15 we have shown that ϕ−1(ϕ(e))\C1 = {e, ϕ(e)}. If
val(ϕ, e) = (−,−) and val(ϕ, ϕ(e)) = (+,+) we find now easily that [y] = [e] = {e}, which is
case ii), and in all other cases that [y] = [e] = {e, ϕ(e)}, which is case 3.

Finally we argue that the cases 1 and 2 are impossible. Indeed, in both cases we must
have that val(ϕ, e) = (−,−) and val(ϕ, ϕ(e)) = (+,+) since otherwise e ∈ [ϕ(e)]. But then the
two closed intervals J1 and J2 defined such that J1 ∩ J2 = {e, ϕ(e)} and J1 ∪ J2 = T are both
ϕ-invariant, which contradicts the transitivity of ϕ. It follows that only case 3 can occur. �
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Figure 4.2: Two circle maps – the C∗-algebra of the first map
is simple, while the second is not..

Lemma 4.29. Assume that ϕ is transitive and deg ϕ = 0. Then there are exposed points if and only if ϕ
is not totally transitive.

Proof. If ϕ is not totally transitive there are exposed points by (the proof of) Lemma 4.23.
Conversely, if there are exposed points it follows from Lemma 4.28 that there is an exceptional
critical value e such that e 6= ϕ(e) = ϕ2(e) and {e, ϕ(e)} is the set of exposed points. Furthermore,
ϕ−1(ϕ(e))\C1 = {e, ϕ(e)}. The points e and ϕ(e) define closed intervals J1 and J2 such that
T = J1 ∪ J2, J1 ∩ J2 = {e, ϕ(e)} and ϕ(Ji) = Ji, i = 1, 2, or ϕ(J1) = J2 and ϕ(J2) = J1. The first
case is ruled out by transitivity, and the second implies that ϕ is not totally transitive. �

Proposition 4.30. Assume that ϕ is transitive and that deg ϕ = 0. Then C∗r
(
Γϕ

)
is simple if and only

if ϕ is totally transitive. When ϕ is not totally transitive there is an extension

0 // B // C∗r
(

Γ+
ϕ

)
// C(T)� M2(C) // 0 (4.13)

where B is simple and purely infinite.

Proof. With Lemma 4.29 and Lemma 4.28 at hand all the necessary arguments can be found in
the proof of Proposition 4.25. �

Example 4.31. The picture below shows two degree-zero circle maps. The first map is the tent
map from Example 3.12, which is totally transitive. From the theorem above, it follows that
the corresponding C∗-algebra is simple. The second map is transitive, but not totally transitive
(again, the second iterate of the map leaves (0, 1/2) and (1/2, 1) invariant). It follows that the
set {0, 1/2} is invariant, and that the C∗-algebra of the map sits in a extension like 5.5.

We are ready to give the

Proof. (Of Theorem 4.13) Note first that by Remark 4.12, exactness and total transitivity are
equivalent, which shows that 2) and 3) are equivalent. If C∗r (Γϕ) is simple, it follows by
Lemma 4.14 that ϕ is transitive. But then ϕ is also totally transitive – otherwise the set E of
Lemma 4.18 would be non-empty, finite, and Γϕ-invariant (by the proof of Lemma 4.22). ϕ has
no exceptional fixed points, since an exceptional fixed point is its own Γ+

ϕ -orbit. Assume, on the
other hand that ϕ is totally transitive and without exceptional fixed points. Simplicity of C∗r (Γ+

ϕ )
then follows from Propositions 4.30, 4.25 and 4.17. �
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4.2.5 An order two-automorphism

We’re now ready to deal with simplicity of C∗r (Γϕ). Our main result is the following:

Theorem 4.32. Let ϕ be a circle map. Then C∗r (Γϕ) is simple if and only if C∗r (Γ+
ϕ ) is.

There is at least two ways to show this. One involves jumping through the same hoops
as in the previous section – showing that non-dense Γϕ-orbits are finite, and then considering
several cases depending on the degree of ϕ, ending up with a copy of Theorem 4.13 for Γϕ. This
gets a little repetitive, however, so we take a shortcut and exploit the relationship between the
groupoids Γϕ and Γ+

ϕ instead. Recall the flip automorphism from Proposition 2.28 given by

Λ( f )(x, k, p, y) = (−1)p f (x, k, p, y)

for f ∈ Cc(Γϕ), and that the fixed-point algebra of Λ is equal to C∗r (Γ+
ϕ ).

Lemma 4.33. The automorphism Λ : C∗r (Γϕ) → C∗r (Γϕ) is not implemented by conjugation with a
unitary element of C∗r (Γϕ).

The proof of this is surpringsingly convoluted. Here’s the main idea: Take an x ∈ T

critical for ϕ, and consider the characteristic function f = 1(x,0,−,x). An easy calculation shows
that Λ( f )(x, 0,−, x) = −1, while (u∗ f u)(x, 0,−, x) = ∑k |u(x, k, p, x)|2 ≥ 0 for any unitary
u ∈ Cc(Γϕ). Of course, f is not an element of C∗r (Γϕ), and we cannot be sure that a conjugating
unitary is in Cc(Γϕ) – so to make the approach work, we need to do our calculations in the space
l2(s−1(x)) and do a number of approximations.

Proof. Fix an x critical for ϕ, and note that (y, k,+, x) is in Γϕ if and only if (y, k,−, x) is. As
a shorthand, write 1+ and 1− for the characteristic functions of the elements (x, 0,+, x) and
(x, 0,−, x), respectively. Choose a sequence gn in Cc(Γϕ) converging pointwise to 1−. Using the
representation πx : C∗r (Γϕ)→ B(l2(s−1(x))), we observe that

〈πx(gn)1γ, 1γ′〉 = ∑
ρ∈s−1(x)

(πx(gn)1γ)(ρ)1γ′(ρ)

= (πx(gn)1γ)(γ
′)

= ∑
γ1γ2=γ′

gn(γ1)1γ(γ2)

= gn(γ
′γ−1)→n→∞ 1−(γ′γ−1)

for γ, γ′ ∈ s−1(x). Writing γ = (y1, k1, p1, x) and γ′ = (y2, k2, p2, x) (and using that p = p−1 in
Z2), we have γ′γ−1 = (y2, k2 − k1, p2 p1, y1). Hence, 1(x,0,−,x)(γ

′γ−1) = 1 if y1 = y2 = x, k1 = k2

and p1 6= p2, and 0 otherwise. Define an operator P on l2(s−1(x)) by

(P f )(y, k, p, x) =

{
(y, k, p̄, x) if x = y
0 otherwise

, f ∈ l2(s−1(x))

where p̄ denotes ’flipping’ the sign in Z2, i.e. + = − and − = +. One checks that P is a
partial isometry, and that the sequence πx(gn) converges weakly to P in B(l2(s−1(x))). If we
furthermore define an operator V on l2(s−1(x)) by

(V f )(x, k, p, y) = (−1)p f (x, k, p, y),
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calculations similar to those above show V implements Λ on l2(s−1(x)), i.e. that πx(Λ( f )) =
V∗πx( f )V for any f ∈ l2(s−1(x)). Hence,

〈πx(Λ(gn))1+, 1−〉 = 〈πx(gn)V1+, V1−〉
〈−−−→

n→∞
PV1+, V1−〉

= −PV1+((x, 0,−, x))
= −V1+(x, 0,+, x) = −1.

Now, assume that Λ is implemented by a unitary u ∈ C∗r (Γϕ), i.e. that there is a unitary in
C∗r (Γϕ) such that Λ( f ) = u∗ f u for any f in C∗r (Γϕ). Then

−1 = lim
n
〈πx(Λ(gn))1+, 1−〉 = lim

n
〈πx(u∗gnu)1+, 1−〉 (4.14)

= lim
n
〈πx(gn)πx(u)1+, πx(u)1−〉 = 〈Pπx(u)1+, π(u)1−〉. (4.15)

Choose a sequence {un} ⊆ Cc(Γϕ) converging to u in C∗r (Γϕ). Then, by definition of the norm
on C∗r (Γϕ), πx(un) converges to πx(u) in norm on B(l2(s−1(x))), so

lim
n→∞
〈Pπx(un)1+, πx(un)1−〉 = −1.

Observe that πx(un)1γ1(γ2) = un(γ2γ−1
1 ), and

Pun1γ1(γ2) = un1γ1(γ̄2) = un(γ̄2γ−1
1 )

when r(γ2) = x, with γ̄2 denoting γ2 with the sign ’flipped’. Hence

〈Pπx(un)1+, πx(un)1−〉 = ∑
γ1∈s−1(x)

Pπx(un)1+(γ1)πx(un)1−(γ1)

= ∑
γ1∈s−1(x),r(γ1)=x

un(γ1(x, 0,+, x))un(γ̄1(x, 0,−, x))

= ∑
γ1∈s−1(x),r(γ1)=x

|un(γ1)|2 ≥ 0.

This contradicts equation 4.14, so Λ is not implemented by a unitary. �

Proof. (Of Theorem 4.32): Assume first that C∗r (Γ+
ϕ ) is simple. Then [x]Γ+

ϕ
is dense in T for all

x ∈ T by Lemma 4.10. But [x]Γ+
ϕ

is a subset of [x]Γϕ , so [x]Γϕ is dense for any x ∈ T, and the
other direction in Lemma 4.10 then shows that C∗r (Γϕ) is simple.

Assume on the other hand that C∗r (Γϕ) is simple. Then, by Theorem 3.1 in [16], the crossed
product C∗r (Γϕ)oΛ Z2 is also simple. But then, by the Corollary in [36], the fixed point algebra
C∗r (Γϕ)Λ = C∗r (Γ+

ϕ ) is simple, too. �

4.3 Primitive ideals

Section 4.2 gave a criterion for simplicity of C∗r (Γϕ) and C∗r (Γ+
ϕ ): The algebra is simple if and

only if ϕ is totally transitive and without exceptional fixed points. In this chapter, we investigate
what happens when this is not the case. By digging deep into the connections between primitive
ideals, isotropy groups and invariant subsets of the unit space, we obtain a fairly concrete
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description of the primitive ideals of the two algebras. As a corollary, we also determine the
maximal ideals. The approach is similar to that of [47].

Throughout this section, G denotes either of the groupoids Γϕ or Γ+
ϕ . Let I be an ideal in

C∗r (G) (I is, by definition, closed and two-sided). We say that I is prime if it has the property
that I1 I2 ⊆ I implies I1 ⊂ I or I2 ⊂ I for any pair of ideals I1, I2. We note that for any seperable
C∗-algebra – in particular, for C∗r (G) – an ideal is primitive if and only if it is prime (see e.g.
Theorem 4.3.6 of [22]).

Definition 4.34. Let I be an ideal of C∗r (G). The co-support ρ(I) of I is the set

ρ(I) = {y ∈ T | f (y) = 0 for all f ∈ C(T) ∩ I}

We note that ρ reverses inclusions: If I ⊂ J, it follows that ρ(J) ⊂ ρ(I).

Lemma 4.35. For any ideal I, ρ(I) is a closed, G-invariant subset of T.

Proof. If {yn} is a sequence in ρ(I) converging to y ∈ T, and f ∈ C(T) ∩ I, we have f (yn) = 0
for all n, hence f (y) = 0 by continuity. This shows that ρ(I) is closed. For G-invariance, we
show that the set T \ ρ(I) is G-invariant. Let γ = [x, k, η, y] ∈ G with x ∈ T \ ρ(I). Choose
f ∈ C(T) ∩ I with f (x) 6= 0 and an open bisection W around γ. Choose a map h ∈ Cc(G) with
h(γ) = 1 and supp(h) ⊆ W. It is straightforward to check that h∗ f h is in C(T) ∩ I and that
(h∗ f h)(y) = f (x) 6= 0, so y ∈ T∩ ρ(I) and ρ(I) is G-invariant. �

Lemma 4.36. Let I be an ideal in C∗r (G), and A a closed, G-invariant set with ρ(I) ⊆ A. Then
ker(πA) ⊆ I.

Proof. Let S = C0(T \ A) ∩ I. Then S separates points in T \ A: Let x and y be different
points of T \ A, and choose a function f ∈ C(T) ∩ I with f (x) 6= 0 (this is possible since
T \ A ⊆ T \ ρ(I)). Let U be a small neighbourhood of x not containing y, and h ∈ C(T \ A) a
function with h(x) = 1 and vanishing outside U. Then f h is in S with f h(x) 6= 0 and f h(y) = 0.
Furthermore, S vanishes nowhere on T \ A: Given x ∈ T \ A, the map f h constructed above
satisfies f h(x) 6= 0. From the Stone-Weierstrass theorem, we get that S is dense in C0(T \ A),
from which it follows that C0(T \ A) is a subset of C(T) ∩ I. Take an approximate unit {in} in
C0(T \ A). We claim that this is also an approximate unit in ker(πA): By Lemma 3.21, we have
ker(πA) ' C∗r (Γϕ|T\A). Let f ∈ Cc(Γϕ|T\A). Then r(supp( f )) is a compact subset of T \ A,
so we may choose a h ∈ C0(T \ A) such that h f = f . Then in f = inh f converges to h f = f ,
so in is an approximate unit in Cc(G|T\A), and by continuity also in ker(πA). It follows that
ker(πA) ⊆ I. �

The next lemma gives a crucial connection between primitive ideals of C∗r (G) and prime
subsets of G(0).

Lemma 4.37. Let I ⊆ C∗r (G) be a primitive ideal. Then ρ(I) is prime.

Proof. First, note that for any G-invariant closed set A, we have

ker(πA) ∩ C(T) = C0(T \ A).

From this, it follows that ρ(ker(πA)) = A. Now, let B and C be closed and G-invariant with
ρ(I) ⊆ B ∪ C. By Lemma 4.36 and 3.22 and we have

ker(πB) ∩ ker(πC) = ker(πB∪C) ⊆ I
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Since I is primitive, and therefore a prime ideal, we must have ker(πB) ⊆ I or ker(πC) ⊆ I. In
the first case, we have

B = ρ(ker(πB)) ⊃ ρ(I).

and in the other case, we have ρ(I) ⊆ C. This shows that ρ(I) is prime. �

Define the quasi-orbit space Q(G) of G as the set

Q(G) =
{
[x]
∣∣∣ x ∈ T

}
.

By the lemma above and Proposition 4.5, we have a map ρ : Prim(C∗r (G)) → Q(G) taking a
primitive ideal I to the co-support ρ(I). Our next step is to determine, for each x ∈ T, the set{

I ∈ Prim(C∗r (G))
∣∣∣ ρ(I) = [x]

}
. We split our analysis into two cases according to the dichotomy

of Proposition 4.9. Put

Q(G)ex = {A ∈ Q(G) | A contains an isolated isotropic point}.

and Q(G) f r = Q(G) \ Q(G)ex (ex and fr for exceptional and free, respectively).

Lemma 4.38. Let A ∈ Q(G) f r. Then ker(πA) is a primitive ideal, and the unique ideal with
ρ(ker(πA)) = A.

Proof. To show that ker(πA) is primitive, we show that C∗r (G)/ ker(πA) ' C∗r (G|A) is a prime
C∗-algebra. Let I1 and I2 be ideals in C∗r (G|A) with I1 I2 = {0}, and let y ∈ A. Write A as
A = A1 ∪ A2 with

Ai = {y ∈ A | f (y) = 0 for all f ∈ Ii ∩ C(A)}, i = 1, 2.

We can do this – otherwise, we would have a f1 ∈ I1 ∩C(A) with f1(y) 6= 0 and a f2 ∈ I2 ∩C(A)
with f2(y) 6= 0, so f1 f2 would be a non-zero element in I1 I2. Now, choose x ∈ T such that
[x] = A. Assume without loss of generality that x ∈ A1. Arguing as in Lemma 4.35, we see that
A1 is closed and Γϕ|A-invariant, so A = A1. This means that I1 ∩ C(A) = 0, and as above, we
conclude that I1 = 0, so C∗r (G|A) is prime. From this, it follows that ρ(ker(πA)) is a prime subset
of T, and since A is invariant and A ⊆ ρ(ker(πA)), Lemma 4.37 shows that A = ρ(ker(πA)).

For uniqueness, let I be an ideal with ρ(I) = A. Then ker(πA) ⊆ I by Lemma 4.36. We
must show that I ⊆ ker(πA), or, equivalently, that πA( f ) = 0 for any f ∈ I. Begin by letting
f ∈ πA(I) ∩ C(A). Choose a function h ∈ C(T) with h|A = f and an a ∈ I with πA(a) = f .
Then πA(a− h) = 0, so a− h ∈ ker(πA) ⊆ I. Then h = a− (a− h) ∈ I ∩ C(T), hence h(x) = 0
for all x ∈ ρ(I) = A. This means that f = h|A = 0, so πA(I) ∩ C(A) = 0. Now, we use that
points with trivial isotropy group are dense in A. Let P : C∗r (G)→ C(T) denote the conditional
expectation, and apply Lemma 2.15 of [45] to show that P( f )(x) = 0 for all f ∈ πA(I) and
x ∈ A. Faithfulness of P then implies that πA(I) = 0, as we wanted. �

Next, we look at primitive ideals I with ρ(I) ∈ Q(G)ex. Given a set A ∈ Q(G)ex, we know
by Proposition 4.5 that A = [x] for some x ∈ T, and that A contains an isolated, isotropic
point y. Note that [y] ⊆ A since A is G-invariant. On the other hand, since y is isolated in
A = [x], we must have y ∈ [x], so x ∈ [y], and it follows that A = [x] ⊆ [y]. Now, for such
A = [y] ∈ Q(G)ex with y isolated and isotropic, let γ ∈ Iso(y). Then γ is isolated in G|A, so the

characteristic function 1γ is in C∗r (G|A). Let Îso(y) denote the Pontryagin dual group of Iso(y),

and let ω ∈ Îso(y). Denote by I0(y, ω) the ideal of C∗r (G|A) generated by the elements{
1[y,0,id,y] −ω(γ)1γ

∣∣∣ γ ∈ Iso(y)
}

.
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Finally note that given two such isolated isotropic points x, y ∈ A with [x] = [y], the groups
Iso(x) and Iso(y), as well as their dual groups, are isomorphic, and will be identified from here
on.

Lemma 4.39. Let A ∈ Q(G)ex, and let x, y ∈ A be isolated, isotropic points with [x] = [y] = A. For
any ω ∈ Îso(y) = Îso(x), we have I0(y, ω) = I0(x, ω).

Proof. It suffices to show that I0(y, ω) ⊆ I0(x, ω). As in the discussion above, since y is isolated
in [x], we must have y ∈ [x], and hence there are i ∈ Z and a local transfer η such that
γ = [x, i, η, y] ∈ G|A. Since both x and y are isolated in A, 1γ is an element of C∗r (G|A). One
checks easily that

1∗γ1[x,0,id,x]1γ = 1[y,0,id,y]

Similarly, let [y, l, ρ, y] ∈ Iso(y). Then λ = [x, l, η ◦ ρ ◦ η−1, x] ∈ Iso(x), and

1∗λ1γ1λ = 1[y,l,ρ,y].

It follows that I0(y, ω) ⊆ I0(x, ω). �

The above lemma shows that the ideal I0(x, ω) is independent of our choice of isotropic point
x ∈ A, so we may as well denote it by I0(A, ω). Similarly, we let Iso(A) denote the group Iso(x)
for some arbitrary isotropic isolated x ∈ A. Let I(A, ω) denote its preimage π−1

A (I0(A, ω)) in
C∗r (G).

Proposition 4.40. Let A ∈ Q(G)ex. The map ω 7→ I(A, ω) is a bijection from Îso(A) to {I ∈ Prim(C∗r (G)) | ρ(I) = A}.

Proof. First, note that the map πA gives a bijection between the sets

{I ∈ Prim(C∗r (G)) | ker(πA) ⊆ I} Prim−−→
πA

(C∗r (G|A))

This follows from Theorem 4.1.11 (ii) of [22]. If I ∈ Prim(C∗r (G)) with ρ(I) = A, it follows
from Lemma 4.36 that ker(πA) ⊆ I, so πA(I) is a primitive ideal in C∗r (G|A). Furthermore, one
checks that I 7→ πA(I) maps primitive ideals I in C∗r (G) with ρ(I) = A bijectively to ideals
πA(I) in C∗r (G|A) with ρ(πA(J)) = A. Now, let Qy denote the ideal in C∗r (G|A) generated by
py = 1[y,0,id,y]. Since

py(py −ω(γ)1γ) = py −ω(γ)1γ

we have I0(y, ω) ⊆ Qy. Another application of Theorem 4.1.11 (ii) of [22] gives a bijection

{
I ∈ Prim(C∗r (G|A)

∣∣Qy * I
} I 7→I∩Qy−−−−−→ Prim(Qy)

Let J be an ideal in C∗r (G|A). We claim that Qy * J if and only if ρ(J) = A. If py ∈ J, we have
y /∈ ρ(J), so ρ(J) 6= A. On the other hand, if ρ(J) 6= A, we have y /∈ ρ(J) since ρ(J) is closed and
G-invariant with A = [y]. It follows that there is an f ∈ J ∩C(A) with f (y) 6= 0, so py = f py ∈ J.
Hence, there is a bijection between primitive ideals in Qy and primitive ideals J in C∗r (GA) with
ρ(J) = A. Now, observe that pyC∗r (G|A) is a pyC∗r (G|A)py −Qy-imprimitivity bimodule, so the
map J 7→ py Jpy takes primitive ideals in Qy bijectively to primitive ideals in pyC∗r (G|A)py. Since

{γ ∈ G|A | r(γ) = s(γ) = y} = Iso(y),
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we obtain an isomorphism

pyC∗r (G|A)py ' C∗(Iso(y)) ' C(Îso(y)).

It follows that the primitive ideals of Qy are in one-to-one-correspondence with Îso(y), and we
are done. �

Combining Lemmas 4.40 and 4.38, we get the following classification of the primitive ideal
spectrum of C∗r (G):

Theorem 4.41. The set of primitive ideals in C∗r (G) is the disjoint union of the sets{
ker(πA)

∣∣∣ A ∈ Q(G) f r

}
t
{

I(A, ω)
∣∣∣ A ∈ Q(G)ex, ω ∈ Îso(A)

}
4.3.1 The maximal ideals

The next step is to determine the maximal ideals among the primitive ones.

Lemma 4.42. Let F ⊆ T, assume that not all points of F are pre-periodic, and that C∗r (G|F) contains a
non-trivial ideal. Then it contains a non-trivial, gauge-invariant ideal J with J ∩ C(F) 6= {0}.

Proof. As in [7], Lemma 4.17. �

We say that a closed, G-invariant set F ⊆ T is minimal if it does not contain any proper,
closed G-invariant subset.

Lemma 4.43. Assume that F ⊆ T is closed, G-invariant, minimal and non-empty. Then one of the
following two cases hold:

• F ∈ Q(G) f r, and ker(πF) is a maximal ideal.

• F is finite, and there is an isotropic point x ∈ T such that F = [x].

Proof. Note first that minimality ensures that F = [x] for any x ∈ F – otherwise, [x] would be a
proper, closed G-invariant subset of F. Assume first that the non-isotropic points are dense in F,
and that there is a proper ideal I containing ker(πF). Then πF(I) is a proper ideal in C∗r (G|F),
so we may appeal to Lemma 4.42 and pick a proper gauge-invariant ideal J in C∗r (G|F). Then
π−1

F (J) is a proper gauge-invariant ideal in C∗r (G). Since ker(πF) ⊆ π−1
F (J), we have

F = ρ(ker(πF)) ⊃ ρ(π−1
F (J))

contradicting the minimality of F. It follows that ker(πF) is maximal. Assume on the other
hand, that F contains an isolated, isotropic point x. It follows that x is isolated in F, and hence
that F = [x] – otherwise, there would be a y ∈ F \ [x], but then x /∈ [y] = F, which is absurd.
Since F is compact, [x] must be finite. �

Proposition 4.44. Let I be a maximal ideal in C∗r (G). Then either I = ker(πF) for some minimal,
closed, G-invariant set F ∈ Q(G) f r, or I = I([x], ω) with [x] a finite set and ω ∈ Îso(x).
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Proof. Since I is maximal, it is also primitive, so Proposition 4.41 yields that either I = ker(πF)

for some closed invariant set F ∈ Q(G) f r or I = I(A, ω), where A = [x] with x isolated and

isotropic in A and ω ∈ Îso(x). In the first case, maximality of I implies minimality of F. In the
second case, recall from the proof of Lemma 4.40 that I0(A, ω) ⊆ Qx. The inclusion is strict,
since Qx is gauge-invariant while I0(A, ω) is not. Since I0(A, ω) is maximal in C∗r (GA), we
conclude that Qx = C∗r (GA). Since any point of [x] is isolated, [x] is an open G-invariant subset
of A, and since px ∈ C∗r (G[x]), it follows that C∗r (G[x]) = C∗r (GA). From this it follows that

C0([x]) = C(A) ∩ C∗r (G[x]) = C(A),

so A = [x]. Since A is compact, [x] is finite. �

Having determined the maximal ideals of C∗r (G), we proceed to determine the simple
quotients. Like the maximal ideals, these come in two flavours:

Lemma 4.45. Let I be a maximal ideal in C∗r (G) such that I = ker(πF) for some minimal, closed,
G-invariant set F ∈ Q(G) \ Q(G)ex. Then the quotient C∗r (G)/I is isomorphic to C∗(G|F).

Proof. This is a direct consequence of Lemma 3.21. �

Lemma 4.46. Let I be a maximal ideal in C∗(G) such that I = I([x], ω) for [x] finite and ω ∈ Îso(x).
Then the quotient C∗r (G)/I is finite dimensional.

Proof. First, note that ker(π[x]) ⊆ I by Lemma 4.36. It follows that the quotient map qI :
C∗r (G)→ C∗r (G)/I factors through C∗r (G[x]) as in the following diagram:

C∗r (G)
π[x]
//

qI
%%

C∗r (G[x])

q̃I

��

C∗r (G)/I

Since [x] is finite, Lemma 4.11 of [47] implies that

C∗r (G[x]) ' C∗(Iso(x))� K(l2([x])) = C(Îso(x))� Mn(C)

where n = |[x]|. It follows that C∗r (G)/I is a simple quotient of C(Îso(x))� Mn(C), hence finite
dimensional. �

Proposition 4.47. Let Q be a simple quotient of C∗r (G). Then either Q is either finite-dimensional or
isomorphic to C∗r (GF) for some F ⊆ T such that F is minimal, closed and G-invariant.

Proof. Combine Lemmas 4.45 and 4.46. �

Example 4.48. We give a few examples of non-transitive circle maps and the primitive ideals of
their groupoid C∗-algebras. The first map, ψ1, is the piecewise linear function through the points
(0, 0), (1/3, 2/3), (2/3, 1/3) and (1, 1). This map is not transitive – in particular, the interval
(1/3, 2/3) is forward invariant. The figure below shows ψ1 and the first few iterates. From these
pictures, determining the set Q(Γψ1), is straightforward: Any point z ∈ T \ {0} is eventually
mapped to a point in the interval [1/3, 1/2], and two points have the same groupoid orbit if and
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only if they map to the same element of [1/3, 1/2]. Finally, 0 is a fixed point, and the groupoid
orbit of 0 is just {0}. It follows that there is bijection from Q(Γψ1) to the set {0} t [1/3, 1/2]. In
particular, any point in T is pre-periodic and has an isolated, isotropic point in its groupoid-orbit.
It follows that there are many primitive ideals in C∗r (Γψ1): For each point in x ∈ {0} t [1/3, 1/2],

Theorem 4.41 give uncountable many primitive ideals I(x, ω), parametrised by the group Îso(x).
The isotropy groups are

Iso(x) '
{

Z � Z2 when z=1/3 so z is critical,
Z, when z 6= 1/3,

so the dual groups are either T or T � Z2.

To distinguish the maximal ideals among the primitive ones, note that for any z ∈ T, 0 is
a limit point for O−(z), so 0 ∈ [z] for any z ∈ T. It follows that {0} is the only Γψ1-minimal

subset of T, so the maximal ideals are I(0, ω) with ω ∈ Îso(0) ' T. Note that

Γψ1 |{0} = {(0, k,+, 0)|k ∈ Z},

so Γψ1 |{0} is discrete and C∗r (Γψ1 |{0}) ' C(T) via the isomorphism taking a characteristic
function 1(0,k,+,0) to the map ek ∈ C(T) given by ek(z) = zk. The isomorphism Ẑ ' T is
implemented by the map z 7→ ωz, where ωz(n) = zn. It follows that the ideal I0(0, ωz), as an
ideal in C(T), is generated by the functions uz,k = 1−ωz(k)ek for k ∈ Z. But

uz,k(z) = 1− zkzk = 0,

so I0(0, ωz) is simply the maximal ideal of C(T) given by

I0(0, ωz) = { f ∈ C(T) | f (z) = 0}

N

Now consider the map ψ2, which can be obtained by modifying ψ1 very slightly: Instead of
mapping 1/3 to 2/3 and 2/3 to 1/3, ψ2 maps 1/3 to 2/3 + ε and 2/3 to 1/3− ε for some small
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ε > 0. As the figure shows, this indicates the structure of the groupoid orbits significantly: For
any x ∈ T \ {0, 1/2}, the orbit [x] is now dense in T. 1/2 is still a fixed point which is isolated
in its Γϕ2-orbit, giving rise to uncountably many primitive ideals I(1/2, ωz) parametrised by
z ∈ T. Similarly, 0 is a fixed point whose Γψ2 -orbit is just 0 itself, giving rise to another family of
primitive ideals parametrised by T. The picture reveals that 0 is a limit point for any backward
orbit O−(z), so as before, {0} is the only Γψ2-minimal subset, and the corresponding ideals
I(0, ω) the only maximal ideals.

Remark 4.49. It is easy to continue experimenting with various classes of circle maps – any
piece of mathematics software makes it possible to visualise iterates of a given circle map and
the structure of the corresponding groupoid orbits. There seem to be a general pattern – if
the map has a periodic point x, it attracts either the forward or backward orbit of any point
in some neighbourhood of x. In particular, the minimal sets are orbits of periodic points, and
the maximal ideals sit above the algebra of the reduction to these points. In Chapter 6, we will
investigate a wholly different situation, namely the one where the map has no periodic points at
all. �



Chapter 5
Critically �nite maps

Since the algebras C∗r (Γϕ) and C∗r (Γ+
ϕ ) are classfied by their K-theory, it seems reasonable to

develop a method of determining these groups. This seems unreasonably hard for general circle
maps – the crucial requirement for getting anywhere seems to be some degree of control over
the orbits of the critical points of the map. In this chapter, we focus on critically finite maps,
i.e. maps where the forward orbit of any critical point is finite. For such maps, we develop an
algorithm to determine the K-theory of the corresponding algebras. The road to this algorithm
is long and winding, and we will need to overcome a great deal of technicalities along the
way. Let’s give a rough sketch of our approach: In Chapter 3, we considered the building
block algebras C∗r (Rϕ(k)) for some number k. In Theorem 5.17 below, we show that C∗r (Γϕ)
arises as the C∗-algebra of a C∗-correspondence over C∗r (Rϕ(k)) for some k. Using results of
Katsura, this yields a six-term exact sequence connecting the K-theory groups of C∗r (Γϕ) and
C∗r (Rϕ(k)). Then, in section 5.3, we use the machinery of linking algebras to reduce the problem
to determining a certain map between the building block-algebras at level k and level k + 1.
Finally, we reduce the problem even further, showing that all we need to do is to determine the
induced inclusion map between level k and k + 1 on K-theory, and connect it with the K-theory
calculations from Chapter 3. We end up with an algorithm that involves nothing more than
looking at the graph of ϕk and doing some linear algebra.

5.1 C∗-correspondences

We will need some results from the theory of C∗-correspondences. For a detailed introduction
to C∗-correspondences, see [15] – here, we will just mention some key definitions and results.
We recall that a (right) Hilbert A-module over a C∗-algebra A is a Banach space X with a (right)
action of A and a A-valued inner product 〈, 〉A satisfying certain conditions (see e.g. [17]). We
denote by L(X) the adjointable operators on X, and by K(X) the compact operators, i.e. the
closed span of the ’rank-one projections’ θx,y, x, y ∈ X defined by θx,y(z) = x〈y, z〉A.

Definition 5.1. Let A be a C∗-algebra and X a (right) Hilbert A-module. If ϕX : A→ L(X) is a
∗-homomorphism, we say that (X, ϕX) is a C∗-correspondence over A.

We call ϕX the action of the C∗-correspondence.

Definition 5.2. Let (X, ϕX) be a C∗-correspondence over A, and B a C∗-algebra. A representation
of the correspondence is a ∗-homomorphism π : A→ B and a linear map t : X → B satisfying

61
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• t(x)∗t(y) = π(〈x, y〉A) for x, y ∈ X.

• π(a)t(x) = t(ϕX(a)x) for a ∈ A, x ∈ X.

The representation is injective if π is injective.

The images of π and t form a sub-C∗-algebra C∗(π, t) of B. Furthermore, we may define a
∗-homomorphism ψt : K(X)→ B given by

ψt(θx,y) = t(x)t(y)∗

on rank-one projections. We say that a representation (π, t) of (X, ϕX) on B is covariant if
π(a) = ψt(ϕX(a)) for any a ∈ ϕ−1

X (K(X)) ∩ (ker(ϕX))
⊥.

While the theory of C∗-correspondences is applicable in a variety of circumstances, we will
only need it in a very particular case:

Example 5.3. Let B be a C∗-algebra, A a sub-C∗-algebra, and E ⊂ B a closed subspace such that
EA ⊂ E, AE ⊂ E, and E∗E ⊂ A. If we let A act on E by multiplication, E is a Hilbert A-module
with inner product 〈x, y〉A = x∗y. Furthermore, defining ϕE(a)x = ax for x ∈ E and a ∈ A,
(E, ϕE) becomes a C∗-correspondence over A. Let π : A→ B and t : E→ B be the inclusions of
A and E into B. Then (π, t) is a injective representation of (E, ϕE). If we assume that the closed
span of E∗E is equal to A (i.e. that E is a full module), then ϕE is an isomorphism from A to
K(E), so we have ϕ−1

E (K(E)) ∩ (ker(ϕE))
⊥ = A. We also see that π(a) = ψt(ϕE(a)) – indeed, if

we write an a ∈ A as x∗y for x, y ∈ E, we have

ϕE(a)b = ab = x∗yb = x∗〈y∗, b〉A = θx∗ ,y∗(b),

so ϕE(a) = θx∗ ,y∗ , hence

ψt(ϕE(a)) = ψt(θx∗ ,y∗) = t(x∗)t(y∗)∗ = x∗y = a = π(a).

For general a, the same claim follows by linearity and continuity. In short, fullness of E implies
that the representation is covariant. N

Definition 5.4. Let (X, ϕX) be a C∗-correspondence over A, and (π, t) a representation on B.
We say that the representation admits a gauge action if, for any z ∈ T, there is a ∗-homomorphism
βz : C∗(π, t) → C∗(π, t) such that βz(π(a)) = π(a) and βz(t(x)) = zt(x) for any a ∈ A and
x ∈ X.

For a general C∗-correspondence (X, ϕX), denote by (πX , tX) the universal covariant represen-
tation, and let OX = C∗(πX , tX). By universality, the is a canonical surjection s : OX → C∗(π, t)
onto the C∗-algebra of any other covariant representation. Now, one may ask when this surjection
is an isomorphism. This is answered by Theorem 6.4 in [15].

Theorem 5.5. Let (π, t) be a representation of (X, ϕX). The surjection s : OX → C∗(π, t) is an
isomorphism if and only if (π, t) is covariant and admits a gauge action.

If the conditions of the theorem above are fulfilled, we get a six-term exact sequence on
K-theory relating OX and A, cf. Theorem 8.6 in [15]. In the context of our example, it might be
possible to prove that the hypotheses of the theorem are fulfilled, and that C∗(π, t) = B. Then,
the six-term sequence yields a connection between the K-theory of B and the K-theory of the
subalgebra A, which we may exploit for various purposes.



5.2 The groupoid of a critically �nite map 63

5.2 The groupoid of a critically �nite map

Let ϕ : T → T be a circle map satisfying our standard assumptions, i.e. ϕ is continuous,
surjective and piecewise monotone. Assume furthermore that ϕ is critically finite. This entails
that

D0 =
⋃
c∈C
O+(c), (5.1)

is a finite set. For each critical point c, define the number kc = min
{

k ∈N

∣∣∣ ∃p ∈N : ϕk−p(c) = ϕk(c)
}

.
Define k1 as the maximum of the kc’s. Finally, we need to assume that the algebras C∗r (Γϕ) and
C∗r (Γ+

ϕ ) are simple – by Theorems 4.13 and 4.32, this is equivalent to assuming that ϕ is exact
and without exceptional fixed points. Finally, we assume that ϕ has at least one critical point –
if not, ϕ is conjugate to an irrational rotation, and this case is well studied already. We need
some notation:

Definition 5.6. Let k ∈ Z, n ∈N, and assume that n + k ≥ 1. Define subsets

Γϕ(k, n) =
{
(x, k, p, y) ∈ Γϕ

∣∣∣ ϕk+n(x) = ϕn(y)
}

and
Γ+

ϕ (k, n) =
{
(x, k, y) ∈ Γ+

ϕ

∣∣∣ ϕk+n(x) = ϕn(y)
}

of Γϕ and Γ+
ϕ , respectively. For l ∈ Z, put

Γϕ(l) =
⋃

i∈N

Γϕ(l, i), Γ+
ϕ (l) =

⋃
i∈N

Γ+
ϕ (l, i)

We note that Γϕ =
⋃

l Γϕ(l) and Γ+
ϕ =

⋃
l Γ+

ϕ (l). The following lemmas analyze the structure
of the sets defined above – in particular, we ask the question: Given a γ ∈ Γ+

ϕ (k, n), how can γ

be written as a product of elements from other sets Γ+
ϕ (k′, n′)? We prove the lemmas first for

Γ+
ϕ , and then use these results as shortcuts to prove the same statements for Γϕ. The statements

might seem technical, and the proofs are often case-by-case-arguments – the reader short on
time can skip to Remark 5.14 for the conclusion.

Lemma 5.7. Assume that ϕ is exact. Then there is a number k2 such that for any x ∈ T and for any
j ≥ k2, there are points z+ and z− in ϕ−j(x) such that either val(ϕj, z+) = (+,+) and val(ϕj, z−) =
(−,−) or z+ and z− are critical for ϕj.

Proof. Choose intervals I+, I− and I with ϕ(I+) = ϕ(I−) = I and val(ϕ, I±) = (±,±). By
exactness of ϕ, there is an k2 such that ϕk2−1(I) = T. Note that for any j ≥ k2, there is a z ∈ I
with ϕj−1(z) = x. Choose points z± ∈ I± with ϕ(z±) = z, and note that z+, z− ∈ ϕ−j(x) and
that one z is critical for ϕj only if the other one is. Assume that neither z+ nor z− is critical for
ϕj. Then val(ϕj, z+) is either (+,+) or (−,−), and val(ϕj, z−) is the opposite. If necessary, we
interchange z+ and z−, and we are done. �

Note that the choice of the number k2 depends on the interval I chosen in the proof above.
Other choices of intervals would lead to other values of k2 – the important thing is that such a
number exists. Put k = 2k1 + k2. This number is fixed for the rest of the chapter.

Lemma 5.8. Assume that ϕ is exact and has no exceptional fixed points. Let l ∈ Z, n ∈N, and assume
that l + n ≥ k + 1. Let (x, l, y) ∈ Γ+

ϕ (l, n). Then there exists a z ∈ T such that (x, 1, z) ∈ Γ+
ϕ (1, k) and

(z, l − 1, y) ∈ Γ+
ϕ (l − 1, n).
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Proof. To prove the lemma, we need to find a z ∈ T such that

ϕk+1(x) = ϕk(z) , val(ϕk+1, x) = val(ϕk, z),

ϕn(y) = ϕn+l−1(z) , val(ϕn, y) = val(ϕn+l−1, z).

Choose elements z+ and z− as in the lemma above, i.e. such that ϕk2(z±) = ϕk2+1(x). Consider
the sets {

ϕj(x)
∣∣∣ j = 0, . . . , k

}
and

{
ϕj(z±)

∣∣∣ j = 0, . . . , k− 1
}

.

We divide the proof into four cases:
Case 1: Assume that neither of the sets above contain a critical point. Then there is a

z ∈ {z+, z−} such that ϕk2(z) = ϕk2+1(x) and such that val(ϕk2 , z) = val(ϕk2+1, x). Then
ϕk(z) = ϕk+1(x) and (using that k2 + 1 = k + 1− 2k1)

val(ϕk, z) = val(ϕ2k1 , ϕk2(z)) • val(ϕk2 , z)

= val(ϕ2k1 , ϕk+1−2k1(x)) • val(ϕk+1−2k1 , x) = val(ϕk+1, x),

so (x, 1, z) ∈ Γ+
ϕ (1, k). Similarly we get (z, l − 1, y) ∈ Γ+

ϕ (l − 1, n) since

val(ϕn, y) = val(ϕn+l , x) = val(ϕn+l−m−1, x) • val(ϕk+1, x)

= val(ϕn+l−k−1, x) • val(ϕk, z) = val(ϕn+l−1, z)

when l + n ≥ k + 2 and

val(ϕn+l−1, z) = val(ϕk, z) = val(ϕk+1, x) = val(ϕl+n, x) = val(ϕn, y)

when l + n = k + 1.
Case 2: Assume next that ϕj(x) is critical for some j between 1 and k. Put z = ϕ(x). By the

composition table for valency, we get

val(ϕk+1, x) = val(ϕk−j, ϕj+1(x)) • val(ϕ, ϕj(x)) • val(ϕj, x)

= val(ϕk−j, ϕj(z)) • val(ϕ, ϕj−1(z)) • val(ϕj−1, z) = val(ϕk, z)

so (x, 1, z) ∈ Γ+
ϕ (1, k). Next, one observes that

val(ϕn, y) = val(ϕn+l , x) = val(ϕn+l−k−1, ϕk+1(x)) • val(ϕk, x)

= val(ϕn+l−k−1, ϕk(z)) • val(ϕk, z) = val(ϕn+l−1, z),

so (z, l − 1, y) ∈ Γ+
ϕ (l − 1, n).

Case 3: Assume that x is critical for ϕ, but that ϕj(x) is non-critical for any j between 1
and k. By choice of k, we know that ϕk(x) is a periodic point with some period p, and that
ϕk−2p(x) = ϕk(x). Choose a z ∈ T such that ϕ2p−1(z) = x, and note that this entails that
ϕk+1(x) = ϕk(z). Using that x is critical for ϕk+1 yields

val(ϕk+1, x) = val(ϕk+1, x) • val(ϕ2p−1, z)

= val(ϕk+1, ϕ2p−1(z)) • val(ϕ2p−1, z) = val(ϕk+2p, z)

= val(ϕp, ϕm+p(z)) • val(ϕp, ϕm(z)) • val(ϕm, z)

= (val(ϕp, ϕm(z)))2 • val(ϕm, z)
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Now, ϕk(z) = ϕk−1(x) is not critical for any ϕj, hence val(ϕp, ϕk(z)) is either (+,+) or
(−,−). The composition table then gives that (val(ϕp, ϕk(z)))2 = (+,+), hence val(ϕk+1, x) =
val(ϕk, z), so (x, 1, z) ∈ Γ+

ϕ (1, k). Calculations as in case 1 shows that (z, l − 1, y) ∈ Γ+
ϕ (l − 1, n).

Case 4: Finally, assume that {ϕj(x)|j = 0, . . . , k} contains no critical points, but that the
set {ϕj(z±)|j = 0, . . . , k1 − 1} does. Then ϕk2(x) = ϕk2−1(z±) is in D0, so {ϕj(x)|j = 0, . . . , k}
contains a periodic orbitO consisting only of non-critical points. By simplicity of Γ+

ϕ , [ϕk−1(x)]Γ+
ϕ

is infinite, so we may choose a z0 in [ϕk−1(x)]Γ+
ϕ
∩ (T \ D0), and even arrange it such that

ϕ2k1(z0) = ϕk−1(x). Finally choose a z in ϕ−k2(z0) such that

val(ϕk, z) = val(ϕ2k1 , z0) • val(ϕk2 , z) = val(ϕk−1, x).

Calculations similar to those above show that (z, l − 1, y) ∈ Γ+
ϕ (l − 1, n), which proves the

lemma. �

Corollary 5.9. Assume that n ≥ k + 1, and let (x, 0, y) ∈ Γ+
ϕ (0, n). Then there are elements z1, z2 ∈ T

such that (z1, 0, z2) ∈ Γ+
ϕ (0, n− 1) and (x, 1, z1), (y, 1, z2) ∈ Γ+

ϕ (1, k).

Proof. Use Lemma 5.8 to get a z1 ∈ T such that (x, 1, z1) ∈ Γ+
ϕ (1, k) and (z1,−1, y) ∈ Γ+

ϕ (−1, n).
Then (y, 1, z1) ∈ Γ+

ϕ (1, n− 1), and a second application of Lemma 5.8 gives a z2 ∈ T such that
(y, 1, z2) ∈ Γ+

ϕ (1, k) and (z1, 0, z2) ∈ Γ+
ϕ (0, n− 1). We note that

(x, 0, y) = (x, 1, z1)(z1, 0, z2)(z2,−1, y) �

Lemma 5.10. Assume that C∗r (Γ+
ϕ ) is simple, let j ≥ k, and let (x, 0, y) ∈ R+

ϕ (j). Then there is a z ∈ T

such that
(z, 1, x), (z, 1, y) ∈ Γ+

ϕ (1, j)

and (x, 0, y) = (x,−1, z)(z, 1, y) ∈ Γ+
ϕ .

Proof. Choose points z+ and z− in ϕ−k2(ϕk2−1(x)) as in Lemma 5.7. Now, there are several
cases:

Case 1: If neither of the sets {ϕi(x)|i = 0, . . . , k2 − 2} and {ϕi(z±)|i = 0, . . . , k2 − 1} contain a
critical point, let z ∈ {z+, z−} be such that val(ϕk2 , z) = val(ϕk2−1, x). One now easily sees that
(z, 1, x) and (z, 1, y) is in Γ+

ϕ (1, j).
Case 2: If the set {ϕi(x)|i = 0, . . . , j− 1} contains a critical point, any z in ϕ−1(x) will do,

since the composition table for • gives

val(ϕj+1, z) = val(ϕj, x) • val(ϕ, z) = val(ϕj, x)

whenever val(ϕj, x) ∈ {(+,−), (−,+)}. Hence, for this z we have (z, 1, x), (z, 1, y) ∈ Γ+
ϕ (1, j).

Case 3: Assume finally that there is a critical point in the set {ϕj(z±)|j = 0, . . . , k2 − 1}, but
none in {ϕi(x)|i = 0, . . . , j− 1}. Then, by choice of j ≥ k, the set {ϕl(x)|l = 0, . . . , j} contains a
periodic orbit O without any critical points. Since [ϕj(x)]Γ+

ϕ
is infinite and contains no critical

points, we may choose a z0 ∈ [ϕj(x)]Γ+
ϕ
∩ (T \ D0) and a l ≤ 2k1 such that ϕl(z0) = ϕj(x).

Finally, note that j− l + 1 ≥ k2, so we may choose a z ∈ T such that ϕj−l−1(z) = z0 and such
that

val(ϕl , z0) • val(ϕj−l+1, z) = val(ϕj+1, z) = val(ϕj, x)

Hence (z, 1, x), and also (z, 1, y), are in Γ+
ϕ (1, j). �
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The lemmas above also holds if we replace Γ+
ϕ with Γϕ, but the proofs require a little notation:

Define an equivalence relation ≡ on V , the set of valencies, by putting (+,+) ≡ (−,−) and
(+,−) and (−,+) only equivalent to themselves. Then, if ϕi(x) = ϕj(y) and val(ϕi, x) ≡
val(ϕj, y), there is a p – maybe two – such that (x, i− j, p, y) ∈ Γϕ.

Lemma 5.11. Assume that ϕ is exact. Let l ∈ Z, n ∈ N, and assume that l + n ≥ k + 1. Let
(x, l, p, y) ∈ Γϕ(l, n). Then there exists a z ∈ T and p1, p2 ∈ Z2 such that (x, 1, p1, z) ∈ Γϕ(1, k),
(z, l − 1, p2, y) ∈ Γϕ(l − 1, n) and (x, l, p, y) = (x, 1, p1, z)(z, l − 1, p2, y).

Proof. Consider first the case where val(ϕ, x) = (±,±). Put z = ϕ(x), and note that ϕk(z) =
ϕk+1(x) and by the composition table for •,

val(ϕk+1, x) = val(ϕk, ϕ(x)) • val(ϕ, x) = val(ϕk, z) • val(ϕ, x) ≡ val(ϕk, z).

Hence, there is an η1 ∈ P with p1 = V(η1) (x, 1, p1, z) ∈ Γϕ(1, k). Next, note that

val(ϕl+n−1, z) = val(ϕl+n−1−k, ϕk(z)) • val(ϕk, z)

≡ val(ϕl+n−1−k, ϕk+1(x)) • val(ϕk+1, x)

= val(ϕl+n, x) ≡ val(ϕn, y)

and that ϕn(y) = ϕl+n−1(z), so there is an p2 with (z, l − 1, p2, y) ∈ Γϕ(l − 1, n). Now

(x, 1, p1, z)(z, l − 1, p2, y) = (x, 1, p2 p1, y),

so we just need to check that p2 p1 = p. If ϕn+l is monotone at x, the choice of local transfer is
unique, and we’re done. If x is critical for ϕn+l , we must have that y is critical for ϕn, and there
are two possible choices of p2. In this case, we simply choose the one making p2 p1 equal to p.

Next, assume that x is critical for ϕ. Then it is also critical for ϕn+l , so we must have
val(ϕn+l , x) = val(ϕn, y). Note next that either ϕj(x) /∈ C for any j = 1, . . . , k (corresponding to
case 2 of the lemma above), or there is a j between 1 and k with ϕj(x) ∈ C (corresponding to case 3
above). In both cases, we found a z ∈ T with val(ϕk, z) = val(ϕk+1, x) and ϕk+1(x) = ϕk(x)
as well as val(ϕl+n−1, z) = val(ϕn, y) and ϕl+n−1(z) = ϕn(y). This implies first that there is
an p1 such that (x, 1, p1, z) ∈ Γϕ(1, k), and secondly that there are two possible p2’s such that
(z, l − 1, p2, y) ∈ Γϕ(l − 1, n). Choosing the p2 such that p2 p1 = p yields the desired result. �

Corollary 5.12. Assume that n ≥ k + 1, and let (x, 0, p, y) ∈ Γ+
ϕ (0, n). Then there are elements

z1, z2 ∈ T and p1, p2, q ∈ Z2 such that (z1, 0, q, z2) ∈ Γ+
ϕ (0, n− 1) and (x, 1, p1, z1), (y, 1, p2, z2) ∈

Γ+
ϕ (1, k) and

(x, 0, p, y) = (x, 1, p1, z1)(z1, 0, q, z2)(z2,−1, p2, y).

Proof. Exactly as the proof of Corollary 5.9. �

Lemma 5.13. Let (x, 0, p, y) ∈ Rϕ(k). Then there is a z ∈ T and p1, p2 ∈ Z2 such that

(z, 1, p1, x), (z, 1, p2, y) ∈ Γϕ(1, k)

and (x, 0, p, y) = (x,−1, p1, z)(z, 1, p2, y) ∈ Γϕ.
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Proof. Assume first that x is critical for ϕk. Then val(ϕk, x) = val(ϕk, y). By Lemma 5.10, there
is a z ∈ T with ϕk+1(z) = ϕk(x) = ϕk(y) and val(ϕk+1, z) = val(ϕk, x) = val(ϕk, y). This means
that

(z,−1,+, x), (z,−1,−, x), (z, 1,+, y), (z, 1,−, y) ∈ Γϕ(1, k)

Choosing the right p1 and p2 yields the desired result.
Next, assume that x is not critical for ϕk. Then the sign p in (x, 0, p, y) is uniquely determined.

We may use Lemma 5.10 to find a z ∈ T with ϕk(x) = ϕk+1(z) and val(ϕk, x) = val(ϕk+1, z).
Choose the unique p1 such that (z, 1, p1, x) ∈ Γϕ(1, k). Since ϕk+1(z) = ϕk(y) and y is not critical
for ϕk, there is a unique p2 such that (z, 1, p2, y) ∈ Γϕ(1, k), and we get (x,−1, p1, z)(z, 1, p2, y) =
(x, 0, p, y). �

Remark 5.14. Here’s the short version of the results of this section: Let G be either of the
groupoids Γϕ or Γ+

ϕ , and G(n, m) the corresponding subsets introduced in Definition 5.6.
Corollaries 5.9 and 5.12 shows that given a γ ∈ G(0, n), for n ≥ k + 1, there are elements
γ1 ∈ G(1, k), γ2 ∈ G(0, n− 1) and γ3 ∈ G(−1, k + 1) such that γ = γ1γ2γ3. The Lemmas 5.10
and 5.13, on the other hand, shows that any γ ∈ G(0, k) may be written as γ = γ1γ2 with
γ1 ∈ G(−1, k + 1) and γ2 ∈ G(1, k).

Many results in the next sections depend not on the particular groupoid, but only on the
factorisation results that we proved above. Hence, in what’s to come we will let G denote either
groupoid Γϕ or Γ+

ϕ . Similarly, we will let R denote either Rϕ or R+
ϕ , and R(k) the sub-groupoids

Rϕ(k) or R+
ϕ (k). �

We can now take the first step of the program laid out in the introduction to this chapter
and realise C∗r (G) as the algebra of a C∗-correspondence over C∗r (R(k)). Let E be the closure of
Cc(G(1, k)) inside C∗r (G). It is straightforward to check that

E∗E ⊆ C∗r (R(k)), C∗r (R(k + 1))E ⊆ E, EC∗r (R(k)) ⊆ E (5.2)

It follows that we are in the situation from Example 5.3 (here, A = C∗r (R(k)) and B =
C∗r (R(k + 1))) where E is a C∗-correspondence over C∗r (R(k)). We now aim to show that
the associated C∗-algebra OE is isomorphic to C∗r (G). We need some properties of E:

Lemma 5.15. The following holds:

1. Span EE∗ = C∗r (R(k + 1))

2. C∗r (R(n)) ⊆ EC∗r (R(n + 1))E∗ for n ≥ k + 1.

3. C∗r (G) is generated by E.

Proof. The inclusion EE∗ ⊂ C∗r (R(k + 1)) is straightforward, so Span EE∗ ⊆ C∗r (R(k + 1)) by
continuity. For the other inclusion, take a h ∈ Cc(R(k+ 1)), and assume without loss of generality
that h is supported in a bisection U. Put K = r(supp h). If x ∈ K, there is a unique γ ∈ U
such that r(γ) = x. From Lemma 5.11 (or 5.8) we get elements γ1 ∈ G(1, k), γ2 ∈ G(−1, k + 1)
such that γ = γ1γ2. Let W1 ⊆ G(1, k) and W2 ⊆ G(−1, k + 1) be open bisections containing γ1
and γ2 respectively, chosen such that W1W2 ⊆ U. For each ρ in a neighbourhood of γ1 in W1,
there is a unique ρ′ in U with r(ρ) = r(ρ′), so we can define an f ∈ Cc(W1) by f (ρ) = h(ρ′).
Defining g ≡ 1 in a neighbourhood of γ2, we get a neighbourhood Vx of x such that f g = h on
r−1(V). The sets {Vx} cover K, so by compactness, we may exhaust to a finite cover {Vxi}n

i=1.
Let {ψi}i = 1n ⊆ C(T) be a partition of unity with respect to this cover, and fi, gi ∈ Cc(G(1, k))
maps defined from the xi’s as above. Then h = ∑i ψi fig∗i . Since ψi fi, gi ∈ E, it follows that
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h is in the span of EE∗. The second claim follows by very similar arguments. Finally, since
Cc(Rϕ(l)) ⊆ Cc(Rϕ(l + 1)) for all l ∈ N, it follows from 1) and 2) that C∗r (R) is contained in
the C∗-algebra generated by E. But with arguments similar to those above, it follows from
Lemmas 5.11 (or 5.8) that Cc(G(1)) is contained in Span ECc(R), and then that Cc(G(2)) is in the
span of ECc(G(1)), and so on. Since G(−l) = G(l)∗, it follows that all Cc(G(l)) are contained in
the C∗-algebra generated by E. Since

⋃
l Cc(G(l)) is dense in C∗r (G), we are done. �

From Equation 5.2, it follows that C∗r (R(k + 1)) acts on E by right multiplication, so there is
a map π : C∗r (R(k + 1))→ L(E) given by π(a)b = ab.

Lemma 5.16. The map π : C∗r (R(k + 1))→ L(E) is injective, and the image of π is equal to K(E).

Proof. This follows immediately from the equality Span EE∗ = C∗r (R(k + 1)). �

Theorem 5.17. Let ϕ be critically finite of order k, and let E be the closure of Cc(G(1, k)). Then
C∗r (G) ' OE, and there is a six-terms exact sequence

K0 (C∗r (R(k)))
id−[E]0

// K0 (C∗r (R(k)))
ι0 // K0 (C∗r (G))

��

K1 (C∗r (G))

OO

K1 (C∗r (R(k)))
ι1

oo K1 (C∗r (R(k)))
id−[E]1
oo

(5.3)

where ι : C∗r (R(k)) → C∗r (G) is the inclusion map and [E] is the KK-theory element defined from
π : C∗r (R(k))→ K(E).

Proof. The isomorphism OE ' C∗r (G) follows from point 3 of Lemma 5.15, Example 5.3 and
Theorem 5.5. The six-terms exact sequence is then a consequence of the lemma above and
Theorem 8.6 of [15]. �

Corollary 5.18. Let E be as above. Then there are extensions

0 −−−−→ coker(id− [E]0) −−−−→ K0(C∗r (G)) −−−−→ ker(id− [E]1) −−−−→ 0 (5.4)

and

0 −−−−→ coker(id− [E]1) −−−−→ K1(C∗r (G)) −−−−→ ker(id− [E]0) −−−−→ 0. (5.5)

5.3 The linking algebra

From Corollary 5.18, it follows that computing the maps [E]0 and [E]1 is the next step towards
computing the K-theory of C∗r (G). To do that, we need some bits and pieces from the theory of
groupoid equivalences. This was introduced by Muhly, Renault and Williams in [18]. Here, we
follow the approach taken in [40].

Definition 5.19. Let G be a locally compact groupoid with unit space G(0) and source map
sG, and Z a locally compact space. Z is a (left) G-space if there is a continuous, open map
rZ : Z → G(0) (the structure map) and a continuous action

{(γ, z) ∈ G× Z | sG(γ) = rZ(z)} =: G ∗ Z 3 (γ, z) 7→ γ · z ∈ Z

such that rZ(z) · z = z for all z ∈ Z and (γ1γ2)z = γ1(γ2z) for all (γ1, γ2) ∈ G(2) with
sG(γ2) = rZ(z). The action is free if γ · z = z implies γ = rZ(z) and proper if (γ, z) 7→ (γ · z, z) is
a proper map from G ∗ Z → Z× Z.
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Right G-spaces are defined analogously, except that the structure map is denoted sZ.

Definition 5.20. Let G and H be locally compact groupoids. Z is a (G, H)-equivalence if

• Z is a free and proper left G-space.

• Z is a free and proper right H-space.

• The actions of G and H on Z commute.

• rZ and sZ induces homeomorphisms Z/H ' G(0) and G\Z ' H(0).

Lemma 5.21. G(1, k) is a (R(k + 1), R(k))-equivalence, with multiplication inherited from G and rZ
and sZ the range- and source maps on G.

Proof. Checking that G(1, k) is a free and proper left R(k + 1)-space and right R(k)-space is
straightforward, as is commutativity of the right and left actions. The set G(1, k)/R(k) consists
of equivalence classes of elements γ ∈ G(1, k), where γ ∼ ρ if r(γ) = r(ρ). To show that the
induced structure map rZ : G(1, k)/R(k) → T is injective, let γ, ρ ∈ G(1, k) with r(γ) = r(ρ).
Then ρ−1γ ∈ R(k), and γ = ρ(ρ−1γ), so γ ∼ ρ. For surjectivity, let x ∈ T, and think of x
as an element of R(k + 1). Using Corollaries 5.9 and 5.12 yields an element γ ∈ G(1, k) such
that r(γ) = x, which gives surjectivity. The proof that R(k + 1)\G(1, k) ' T is similar, using
Lemmas 5.10 and 5.13 instead. �

Using the lemma above, Theorem 13 of [40] now yields the following conclusion:

Lemma 5.22. The completion E of Cc(G(1, k)) is a C∗r (R(k + 1))− C∗r (R(k))-imprimitivity bimodule.
Hence, C∗r (R(k)) and C∗r (R(k + 1)) are Morita equivalent.

To get any further, we need a description of the linking groupoid L of R(k) and R(k + 1).
Following the description in [40], L as a topological space is the disjoint union

L = R(k + 1) t R(k) t G(1, k) t G(−1, k + 1)

with each of the four sets clopen in L. We may regard L as a groupoid with unit space TtT,
and range and source maps inherited from G, but with target spaces as in the picture below:

T T

R(k + 1)

r
33

s

++

G(−1, k + 1)

r

77

s
��

G(1, k)
r

gg

s
��

R(k)

r

ii

s
uu

T T

(5.6)

Similarly, L(2) =
{
(γ, γ′) ∈ L2

∣∣ s(γ) = r(γ′)
}

with multiplication inherited from G. One checks
that L is a second countable étale locally compact Hausdorff groupoid. The reduction of L
to the first (resp. second) copy of T is naturally identified with R(k + 1) (resp. R(k)), giving
embeddings

a : C∗r (R(k + 1))→ C∗r (L), b : C∗r (R(k))→ C∗r (L)
Given a function f ∈ Cc(L), write f = f11 + f12 + f21 + f22 with f11 ∈ Cc(R(k + 1)), f12 ∈
Cc(G(1, k)), f21 ∈ Cc(G(−1, k + 1)) and f22 ∈ Cc(R(k)). Define Ψ( f ) ∈ L(E � R(k)) by

Ψ( f )(e, g) = ( f11e + f12g, f21e + f22g).
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Theorem 13 in [40] and Corollary 3.21 in [29] implies that Ψ extends to a ∗-isomorphism

Ψ : C∗r (L)→ K (E � C∗r (R(k))) .

There are canonical embeddings K(E)→ K(E � C∗r (R(k))) and

C∗r (R(k)) ' K(C∗r (R(k)))→ K(E � C∗r (R(k)))

making the diagram

C∗r (R(k))
ρ
//

π

''

C∗r (R(k + 1))

π

��

a // C∗r (L)

Ψ
��

K(E) // K(E � C∗r (R(k))) C∗r (R(k))oo

b

hh

(5.7)

commute. Here, π is the isomorphism from Lemma 5.16, and ρ : C∗r (R(k)) → C∗r (R(k + 1))
the inclusion. On K-theory, the map going diagonally down from C∗r (R(k)) to K(E) and then
horizontally to C∗r (R(k)) is – cf. [15], Theorem 8.3 and Appendix B – equal to the map [E]∗, i.e.

[E]∗ = b−1
∗ ◦ a∗ ◦ ρ∗ (5.8)

where the ∗ denotes the induced maps on either K0 or K1. The path forward is now clear: We
need to determine the three maps in the equation above. The strategies for the two groupoids Γϕ

and Γ+
ϕ are roughly the same – however, there are enough differences in the proofs to justify first

going through the results in great detail for Γ+
ϕ , and then doing the same for Γϕ, highlighting

the places where the proofs are different.

5.4 On K∗(C∗r (Γ+
ϕ ))

We begin by recalling the setup of Chapter 3: Fix a k ∈ N, and consider the groupoid R+
ϕ (k)

from Remark 3.11. Let C denote the critical points of ϕ, and put

D0 =
∞⋃

k=0

ϕk(C).

Put D = ϕ(D0). Then Ek = ϕ−k(D) is finite and R+
ϕ (k)-invariant, and we obtain from Lemma

3.21 a short exact sequence

0 −−−−→ C∗r (R+
ϕ (k)|T\Ek

)
i−−−−→ C∗r (R+

ϕ (k))
π−−−−→ C∗r (R+

ϕ (k)|Ek ) −−−−→ 0 (5.9)

of C∗-algebras. It also follows from Section 3.1 that there are finite dimensional C∗-algebras A+
k

and B+
k such that

C∗r (R+
ϕ (k)|T\Ek

) ' SB+
k , C∗r (R+

ϕ (k)|Ek ) ' A+
k .

Briefly put, B+
k is generated by matrix units eI,J , where I and J are connected components

of T \ Ek satisfying ϕk(I) = ϕk(J) and val(ϕk, I) = val(ϕk, J), and A+
k is generated by matrix

units ex,y, with x, y ∈ Ek satisfying ϕk(x) = ϕk(y) and val(ϕk, x) = val(ϕk, y). Now, we may do
the exact same thing for R+

ϕ (k + 1), using Ek+1 = ϕ−k−1(D) as invariant set. We obtain two
extensions

0 −−−−→ SB+
j

i−−−−→ C∗r (R+
ϕ (k))

a−−−−→ A+
j −−−−→ 0 (5.10)
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for j = k, k + 1. Finally, we have seen that the summands in A+
j is in one-to-one-correspondence

with the set

Dj(±) =
{
(d, v) ∈ D × V

∣∣∣ ∃x ∈ Ek : ϕj(x) = d, val(ϕj, x) = v
}

and the summands in Bj is in one-to-one-correspondence with the set

Ij(±) =
{
(Ii, v) ∈ I × {(+,+), (−,−)}

∣∣∣ ∃I ∈ Ij : ϕj(I) = Ii, val(ϕj, I) = v
}

where I denotes the connected components of T \ D and Ij the connected components of T \ Ej.

Lemma 5.23. For j ≥ k, there are isomorphisms K0(A
+
j ) ' K0(A

+
j+1) and K0(B

+
j ) ' K0(B

+
j+1).

Proof. By the discussion above, this amounts to showing that there is a k such that

Ij(±) = Ij+1(±), Dj(±) = Dj+1(±)

for j ≥ k. We choose k to be the order of the map as defined in Section 5.2. We begin with B+
j :

Let k be the order of the map, and let j ≥ k. Let Ii ∈ I , v ∈ {(+,+), (−,−)}, and assume that
there is an interval I ∈ Ij such that ϕj(I) = Ii with val(ϕk, I) = v. We must show that there is
an interval J ∈ Ij+1 with the same properties. Choose an x ∈ Ii such that ϕ−j−1(x) contains
points non-critical for ϕj+1. Then Lemma 5.7 implies that ϕ−j(x) contains a point z such that
val(ϕj+1, z) = v. We may then choose J to be the connected component of z in Ij+1. This shows
that Ij(±) ⊆ Ij+1(±), and the other way is completely similar.

For A+
j , let (d, v) ∈ Dj(±) and choose x ∈ ϕ−j(d) with val(ϕj, x) = v. Then (x, 0, x) ∈ Rϕ(j),

so by Lemma 5.10, there is a y in T such that (y, 1, x) ∈ Γϕ(1, j) – that is, ϕj+1(y) = d
and val(ϕj+1, y) = v. On the other hand, if ϕj+1(y) = d with val(ϕj+1, y) ≡ v, we use
Lemma 5.11 (with l = 0, n = j + 1) instead to get an x such that (x,−1, y) ∈ Γϕ(−1, j + 1); that
is, ϕj(x) = ϕj+1(y) = d and val(ϕj, x) = v. �

Remark 5.24. Note that the number k might be fairly large, and it might very well be the cases
that the K-theory groups above stabilise at an earlier level – for instance, for the tent map of
Example 3.12, we saw that D(±) and I(±) were independent of the number k. It is also worth
noting that the induced maps (Ik)0 and (Uk)0 between K0(A)k and K0(Bk) are independent of k
– once the K-theory groups stabilise, so do the induced maps. �

From this point onwards, we fix the number k from the Lemma above. Finally, we can reveal
what all this has to do with the linking groupoud L. Consider the set Ek+1 t Ek as a subset of
TtT, the unit space of L. Then Ek+1 t Ek is finite and L-invariant, and yields an extension

0 −−−−→ C∗r (L|(TtT)\(Ek+1tEk
))

i−−−−→ C∗r (L)
π−−−−→ C∗r (L|Ek+1tEk ) −−−−→ 0 (5.11)

Write AL for C∗r (L|Ek+1tEk ). Then, like the algebras A+
k and A+

k+1, AL is generated by matrix
units ex,y, x, y ∈ ϕ−k−1(D) t ϕ−k(D) subject to relations similar to those above:

• ϕk+1(x) = ϕk+1(y) and val(ϕk+1, x) = val(ϕk+1, y) when x, y ∈ ϕ−k−1(D).

• ϕk(x) = ϕk(y) and val(ϕk, x) = val(ϕk, y) when x, y ∈ ϕ−k(D).

• ϕk+1(x) = ϕk(y) and val(ϕk+1, x) = val(ϕk, y) when x ∈ ϕ−k−1(D), y ∈ ϕ−k(D).
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• ϕk(x) = ϕk+1(y) and val(ϕk, x) = val(ϕk+1, y) when x ∈ ϕ−k(D), y ∈ ϕ−k−1(D).

In particular, AL is finite-dimensional with summands in one-to-on-correspondence with the set
Dk(±). The inclusions from C∗r (R+

ϕ (j)) → C∗r (L) (for j = k, k + 1) restrict to maps A+
j → AL,

realising A+
k and A+

k+1 as orthogonal subalgebras of AL, as in this picture:

AL =

[
A+

k ∗
∗ A+

k+1

]
(5.12)

Similarly, we have C∗r (L|(TtT)\(Ek+1tEk
) ' SBL, where BL is a finite-dimensional C∗-algebra

generated by matrix units eI,J , I, J ∈ Ik+1 t Ik, subject to relations

• ϕk+1(I) = ϕk+1(J) and val(ϕk+1, I) = val(ϕk+1, J) when I, J ∈ Ik+1.

• ϕk(I) = ϕk(J) and val(ϕk, I) = val(ϕk, J) when I, J ∈ Ik.

• ϕk+1(I) = ϕk(J) and val(ϕk+1, I) = val(ϕk, J) when I ∈ Ik+1, J ∈ Ik.

• ϕk(I) = ϕk+1(J) and val(ϕk, I) = val(ϕk+1, J) when I ∈ Ik, J ∈ Ik+1.

As above, any matrix unit eI,J in B+
k or B+

k+1 gives rise to a matrix unit in BL, and the full matrix
summands in B+

k , B+
k+1 and BL are all indexed by the set Ik(±). Pictorially, we can think of the

inclusions of B+
k and B+

k+1 into BL as

BL =

[
B+

k ∗
∗ B+

k+1

]
(5.13)

It is straightforward to see that we get a commutative diagram of extensions:

0 // SB+
k+1

//

��

C∗r
(

R+
ϕ (k + 1)

)
//

a
��

A+
k+1

//

��

0

0 // SBL // C∗r (L) // AL // 0

0 // SB+
k

OO

// C∗r
(

R+
ϕ (k)

)b

OO

// A+
k

OO

// 0.

(5.14)

where every square commutes. By Lemma 3.10 there are isomorphisms

K0(C∗r (R+
ϕ (j))) ' ker((I+j )0 − (U+

j )0), K1(C∗r (R+
ϕ (j))) ' coker((I+j )0 − (U+

j )0)

for j = k, k + 1. From the diagram above, it follows that b−1
0 ◦ a0 and b−1

1 ◦ a1 are realised as
homomorphisms

b−1
0 ◦ a0 : ker((I+k+1)0 − (U+

k+1)0)→ ker((I+k )0 − (U+
k )0)

and
b−1

1 ◦ a1 : coker((I+k+1)1 − (U+
k+1)1)→ coker((I+k )1 − (U+

k )1)

From the discussion above the diagram, it follows that

K0(Bk) ' K0(Bk+1) ' K0(BL) ' ZI(±)
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and
K0(Ak) ' K0(Ak+1) ' K0(AL) ' ZD(±)

and that under these isomorphisms, the maps b−1
0 ◦ a0 and b−1

1 ◦ a1 becomes identities. Recalling
Formula 5.8, the final task in determining the maps [E]∗ is then to give a description of the
induced inclusion maps ρ∗ : K∗(C∗r (R+

ϕ (k)))→ K∗(C∗r (R+
ϕ (k + 1))).

Recall Lemma 3.9 from Chapter 3: For any j, the algebra C∗r (R+
ϕ (j)) is isomorphic to the

algebra Dj given as

Dj =
{
(a, f ) ∈ Aj � C([0, 1], Bj)

∣∣ I+k (a) = f (0), U+
k (a) = f (1)

}
via an isomorphism µj : C∗r (R+

ϕ (j)) → Dj. It follows that there is a unique ∗-homomorphism
Φ : Dk → Dk+1 making the diagram

C∗r
(

R+
ϕ (k)

)
ρ

��

µk // Dk

Φ
��

C∗r
(

R+
ϕ (k + 1)

) µk+1
// Dk+1

(5.15)

commute. Write Φ = (Φ1, Φ2) with Φ1 : Dk → Ak+1 and Φ2 : Dk → C([0, 1], Bk+1). We can
write

Φ1(a, f ) = χ(a) + µ( f )

where χ : Ak → Ak+1 and µ : C([0, 1], Bk)→ Ak+1 are ∗-homomorphisms. Let’s describe these
maps: Let f ∈ Cc(R+

ϕ (k)), and let aj : C∗r (R+
ϕ (j)) → Aj and bj : C∗r (R+

ϕ (j)) → C([0, 1], Bj) (for
j = k, k + 1) be the maps introduced in Chapter 3. For Diagram (5.15) to be commutative, we
must have

ak+1(ρ( f )) = Φ1((ak( f ), bk( f )) = χ(ak( f )) + µ(bk( f ))

We know that
ak+1(ρ( f )) = ∑

(x,y)∈A
f (x, y)ex,y

with A = {(x, y) ∈ ϕ−k(D)|ϕk+1(x) = ϕk+1(y)}. There are two types of matrix units in the sum
above: those arising from pairs (x, y) where ϕk(x) = ϕk(y) ∈ D, and those arising from pairs
where ϕk(x) = ϕk(y) /∈ D. The first kind can be obtained as the image of matrix units in Ak,
while the second kind comes from evaluating an element of C([0, 1], Bk) at the right places.
More precisely: First, define

χ(ex,y) = ex,y

whenever x, y ∈ ϕ−k(D) with ϕk(x) = ϕk(y). Second, let (I, J) ∈ I (2)k+1 and let

NI,J = {(x, y) ∈ ϕ−k−1(D)2|x ∈ I, y ∈ J, ϕk(x) = ϕk(y) /∈ D}

Put
µ(g � eI,J) = ∑

(x,y)∈NI,J

g
(

ψ−1
ϕk(I)(ϕk(x))

)
ex,y (5.16)

for g ∈ C([0, 1]). Then

χ(ak( f )) + µ(bk( f )) = ∑
ϕk(x)=ϕk(y)∈D

f (x, y)ex,y + ∑
(I,J)∈I (2)k

µ( f I,J � eI,J)
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= ∑
ϕk(x)=ϕk(y)∈D

f (x, y)ex,y + ∑
(I,J)∈I (2)k

 ∑
(x,y)∈NI,J

f I,J(ψ
−1
ϕk(I)(ϕk(x)))ex,y


= ∑

ϕk(x)=ϕk(y)∈D
f (x, y)ex,y + ∑

(I,J)∈I (2)k

 ∑
(x,y)∈NI,J

f (x, y)ex,y


= ak+1(ρ( f ))

as we wanted. We note a special case of the formula 5.16: When I = J and g ≡ 1, we have

NI,I = {(x, x)|x ∈ I ∩ ϕ−k−1(D)}.

since ϕk is one-to-one on I. Then

µ(eI,I) = ∑
(x,x)∈NI,I

ex,x. (5.17)

We also note that the ranges of χ and µ are orthogonal. Next, let hs : C([0, 1], Bk)→ C([0, 1], Bk)
be the family of maps given by hs( f )(t) = h(st) for s ∈ [0, 1], and define Hs : Dk → Ak+1 by

Hs((a, f )) = χ(a) + µ(hs( f )).

Then
H0((a, f )) = χ(a) + µ( f (0)) = (χ + µ ◦ Ik) (a)

and
H1((a, f )) = χ(a) + µ( f ) = Φ1((a, f ))

which shows that the diagram

Dk

Φ
��

pk // Ak

χ+µ◦Ik
��

Dk+1
pk+1
// Ak+1

(5.18)

commutes op to homotopy. It follows that

ρ0 = χ0 + µ0 ◦ (Ik)0 (5.19)

on K0(Dk) ' ker((Ik)0 − (Uk)0). This map has a very concrete description, which we proceed
to give here. Recall that K0(Ak) ' ZD(±), so a basis of K0(Ak) is given by elements [d, v] for
(d, v) ∈ D(±). For each basis element, we should do the following: Choose an x ∈ ϕ−k(d)
with val(ϕk, x) = v, calculate (χ + µ ◦ Ik)(ex,x), and express the K0-class of this element in terms
of the basis elements. Consider, for instance, a d ∈ D and the corresponding basis element
[d, (−,+)]. Let x ∈ T with ϕk(x) = d and val(ϕk, x) = (−,+). Let I and J denote the elements
of Ik immediately to the left and right of x, and note that ϕk(I) = ϕk(J) = Id, where Id is the
element of I above d. Then

(χ + µ ◦ Ik)(ex,x) = ex,x + ∑
(y,y)∈NI,I

ey,y + ∑
(y,y)∈NJ,J

ey,y
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Each of the matrix units in the sum above determines a basis element [d′, v′] in ZD(±),
determined by d′ = ϕk+1(y) and v′ = val(ϕk+1, y). Since ϕk is injective on I and J and
ϕk(I) = ϕk(J) = Ii there is a bijection between the sets NI,I , NJ,J and the set

Ii ∩ ϕ−1(D) =
{

z ∈ Ii

∣∣∣ ϕk(z) ∈ D
}

.

Hence, if z = ϕk(y), we have val(ϕk+1, y) = val(ϕ, z) • val(ϕk, y), and val(ϕk, y) is (−,−) when
y ∈ I and (+,+) when y ∈ J. It follows that we have

(χ0 + µ0 ◦ (Ik)0)([d, (−,+)]) =[ϕ(d), val(ϕ, d)]+

∑
z∈Id∩ϕ−1(D)

([ϕ(z), val(ϕ, z) • (+,+)] + [ϕ(z), val(ϕ, z) • (−,−)])

For brevity, denote the map (χ0 + µ0 ◦ (Ik)0) by A. Then, by arguments analogous to those
above, we see that A is given as follows:

A[d, v] = [ϕ(d), val (ϕ, d)]

when v = (+,−),

A[d, v] = [ϕ(d), val (ϕ, d)] +

∑
z∈I+d ∩ϕ−1(D)

[ϕ(z), val(ϕ, z) • (+,+)] + [ϕ(z), val(ϕ, z) • (−,−)])

when v = (−,+),

A[d, v] = [ϕ(d), val (ϕ, d)] +

∑
z∈I+d ∩ϕ−1(D)

[ϕ(z), val (ϕ, z) • (+,+)]

when v = (+,+) and finally

A[d, v] = [ϕ(d), val (ϕ, d)] +

∑
z∈I+d ∩ϕ−1(D)

[ϕ(z), val (ϕ, z) • (−,−)]

when v = (−,−). Let Ã denote the restriction of A to ker((Ik)0 − (Uk)0) – and don’t worry,
we’ll do an example shortly. First, we need to determine the map ρ1 : K1(C∗r (R+

ϕ (k))) →
K1(C∗r (R+

ϕ (k + 1))). Here’s the general idea: Let ij : SBj → C∗r (R+
ϕ (j)) be the inclusion (for

j = k, k + 1) from Extension . The induced maps (ij)1 : K1(SBj)→ K1(C∗r (R+
ϕ (j)) are surjective

since K1(Aj) = 0, and the groups K1(SBj) are free, so there is a homomorphism B : K1(SBk)→
K1(SBk+1) making the diagram

K1(SBk)

B
��

(ik)1
// K1(C∗r (R+

ϕ (k)))

ρ1

��

K1(SBk+1)
(ik+1)1

// K1(C∗r (R+
ϕ (k + 1)))

(5.20)

commute. One way to describe B is as follows: We have K1(SBk) ' K0(Bk) ' ZI(±), and the
basis elements of K1(SBk) are in one-to-one-correspondence with the set I(±). Let J ∈ I and
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v ∈ {(+,+), (−,−)}. Choose a I ∈ Ik with ϕk(I) = J and val(ϕk, I) = v, and let u : I → T− 1
be a continuous path of winding number 1. Then

(u ◦ λI ◦ ψJ)� eI,I

is an element of SBk representing (−1)v[J, v] in K1(SBk). Choose a subinterval I1 of I such that
I1 ∈ Ik+1. Deform u to a map u′ : I → T− 1 which wraps once round T− 1 while traversing I1,
and is zero elsewhere. Then

(u′ ◦ λI ◦ ψJ)� eI,I

represents the same element (−1)v[J, v] in K1(SBk) (by homotopy invariance). Let J1 =
ϕk+1(I1) ∈ D. Using the inclusion ρ : C∗r (Rϕ(k)) → C∗r (Rϕ(k + 1)) on u, we obtain an ele-
ment

(u′ ◦ λI1 ◦ ψJ1)� eI1,I1 ∈ SBk+1

representing (−1)v(−1)w[ϕ(J1), v • w] in K1(SBk+1) (where w = val(ϕ, J)). This yields an
algorithm for determining B: For each J ∈ I and v ∈ {(+,+), (−,−)} choose a subinterval
J′ ⊆ J such that J′ is a connected component of ϕ−1(D) ∩ J. Then ϕ(J) ∈ I and

B[J, v] = (−1)val(ϕ,J′)[ϕ(J′), val(ϕ, J′) • v] (5.21)

Then B is a homomorphism between K0(Bk) and K0(Bk+1), descending to a homomorphism
B̃ between coker((Ik)0 − (Uk)0) and coker((Ik+1)0 − (Uk+1)0) which is equal to the induced
inclusion map ρ1.

It’s time to put all the pieces together: We have obtained two endomorphisms

Ã : ker((Ik)0 − (Uk)0)→ ker((Ik+1)0 − (Uk+1)0)

B̃ : coker((Ik)0 − (Uk)0)→ coker((Ik+1)0 − (Uk+1)0)

determining the K-theory of C∗r (Γ+
ϕ ) in the sense that there are extensions

0 // coker
(
1− Ã

)
// K0(C∗r (Γ+

ϕ )) // ker
(
1− B̃

)
// 0 (5.22)

and
0 // coker

(
1− B̃

)
// K1(C∗r (Γ+

ϕ )) // ker
(
1− Ã

)
// 0. (5.23)

Note that the last extension is always split and hence

K1(C∗r (Γ
+
ϕ )) ' coker

(
1− B̃

)
� ker

(
1− Ã

)
.

To identify the C∗-algebra from its K-theory groups it is important to know which element of
K0(C∗r (Γ+

ϕ )) represents the unit 1 of C∗r (Γ+
ϕ ). Note therefore that [1] ∈ K0(C∗r (Γ+

ϕ )) is the image
of [1] ∈ K0(C∗r (R+

ϕ (k))) under the map ι0 in (5.3). Under the identification K0 (Ak) = ZD(±) we
have that

[1] = ∑
(d,v)∈D(±)

m(d, v)[d, v]

in K0 (Ak), where m(d, v) =
{

x ∈ ϕ−k(d)
∣∣∣ val(ϕk, x) = v

}
. Since Ik and Uk are unital ∗-

homomorphisms this element is always in ker ((Ik)0 − (Uk)0) and gives therefore rise to an
element of coker

(
1− Ã

)
which under the embedding coker

(
1− Ã

)
⊆ K0(C∗r (Γ+

ϕ )) from (5.22)
gives us the element representing [1] ∈ K0(C∗r (Γ+

ϕ )).
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Example 5.25. We illustrate the algorithm above with a simple example. Let ϕ be the tent map
introduced in Example , i.e. the map with lift ϕ : [0, 1]→ R given by

ϕ(t) =

{
2t for t ∈ [0, 1/2],
2− 2t for t ∈ [1/2, 1]

(5.24)

This map is critically finite, with critical points C = {0, 1/2}. We may put D = {0} and
I = {(0, 1)}. Since

D1(±) = {[0, (−,+)], [0, (+,−)], [0, (+,+)], [0, (−,−)]}

and
I1(±) = {[I, (+,+)], [I, (−,−)]}

the groups K0(A
+
1 ) ' Z4 and K0(B

+
1 ) = Z2 stabilise from the first step. The maps I and U are

given by the table

[d, v] [0, (−,+)] [0, (+,−)] [0, (+,+)] [0, (−,−)]
I[d, v] [I, (+,+)] + [I, (−,−)] 0 [I, (+,+)] [I, (−,−)]

U[d, v] 0 [I, (+,+)] + [I, (−,−)] [I, (+,+)] [I, (−,−)]

from which it follows that the map I −U : Z4 → Z2 has the matrix representation

I −U =

(
1 −1 0 0
1 −1 0 0

)
(5.25)

In particular,

K0(C∗r (Rϕ(1))) ' ker(I −U) '
{
(x, x, y, z) ∈ Z4

∣∣∣ x, y, z ∈ Z
}
' Z3

and
K1(C∗r (Rϕ(1))) ' coker(I −U) ' Z.

The map A : ZD(±) → ZD(±) is easy to calculate: There is only one interval I = (0, 1) in
I , I ∩ ϕ−1(D) = {1/4, 1/2, 3/4}, and these points have valency (+,+), (+,−) and (−,−)
respectively. Finally, we note that ϕ(0) = 0 and val(ϕ, 0) = (−,+). It follows that, for instance,

A[0, (+,+)] = [0, (−,+)] + [0, (+,+)] + [0, (+,−)] + [0, (−,−)].

Doing the same computations on the other basis elements yields a matrix representation of A
and its restriction Ã to ker(I −U):

A =


1 1 1 1
2 0 1 1
2 0 1 1
2 0 1 1

 , Ã =

2 1 1
2 1 1
2 1 1

 , Ã− 1 =

1 1 1
2 0 1
2 1 0

 . (5.26)

A few row and column operations show that ker(Ã − 1) is trivial and that coker(Ã − 1) '
Z3. Next, we determine the map B : ZI(±) → ZI(±). Following the description above,
consider for instance the interval J = (0, 1/4). We have ϕ(J) = I and val(ϕ, J) = (+,+). The
subinterval (0, 1/16) of J is in I2 (since ϕ2((0, 1/16) = I) and val(ϕ, (0, 1/16)) = (+,+). Hence
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B[I, (+,+)] = [I, (+,+)]. Similarly, B[I, (−,−)] = B[I, (−,−)]. It follows that B, hence also the
quotient map B̃, is the identity, so B̃− 1 as a map from Z to Z is the zero map. In particular

ker(1− B̃) = coker(1− B̃) ' Z.

From 5.22 and 5.23, there are extensions

0 // Z3 // K0

(
C∗r
(

Γ+
ϕ

))
// Z // 0, (5.27)

and

0 // Z // K1

(
C∗r
(

Γ+
ϕ

))
// 0 // 0. (5.28)

We conclude that
K0(C∗r (Γ

+
ϕ )) ' Z � Z3, K1(C∗r (Γ

+
ϕ )) ' Z. N

In the appendix, we calculate the K-theory of a larger class of critically finite maps.

5.5 On K∗(C∗r (Γϕ))

The previous section gave an algorithm for calculating the K-theory of C∗r (Γ+
ϕ ) by looking at a

graph of ϕ and doing some linear algebra. We can do the same for C∗r (Γϕ), with a completely
similar approach. Some aspects are easier – due to the fact that K1(C∗r (Rϕ(j))) = 0 – while
others are more technical (as always, due to the presence of Z2-isotropy in Γϕ).

As above, we put

D0 =
∞⋃

k=0

ϕk(C), D = ϕ(D0)

and Ej = ϕ−j(D). Then Ej is Rϕ(j)-invariant (for j = k, k + 1). Furthermore, if L is the linking
groupoid of Rϕ(k + 1) and R+

ϕ (k), the set Ek+1 t Ek is a L-invariant subset of TtT. As in the
previous section, we obtain an extension

0 −−−−→ C∗r (L|(TtT)\(Ek+1tEk)
)

i−−−−→ C∗r (L)
a−−−−→ C∗r (L|Ek+1tEk ) −−−−→ 0. (5.29)

Let I be the connected components of T \ D, and Ij the connected components of T \ Ej.
We let BL be the C∗-algebra generated by matrix units eI,J with I, J ∈ Ik ∪ Ik+1, subject to
the conditions that ϕj(I) = ϕj′(J) for j, j′ ∈ {k, k + 1}. Then BL is finite-dimensional with
summands in one-to-one-correspondence with set I , and there is an isomorphism

SBL ' C∗r (L|(TtT)\(ϕ−k−1(D)tϕ−k(D))

There are embeddings Bk → BL and Bk+1 → BL into orthogonal corners:

BL =

[
Bk ∗
∗ Bk+1

]
. (5.30)

Next, since L|Ek+1tEk is finite, the algebra AL = C∗r (L|Ek+1tEk ) is finite-dimensional, and the
summands are in one-to-one-correspondence with those of Ak and Ak+1. These algebras embed
as orthogonal corners in AL, and we have

K0(Ak) ' K0(Ak+1) ' K0(AL)
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We obtain a commutative diagram of extensions identical to (5.14), from which we see that the
map

b−1
0 ◦ a0 : ker((Ik+1)0 − (Uk+1)0)→ ker((Ik)0 − (Uk)0)

is an identity. Furthermore, we recall from Lemma 3.14 that K1(C∗r (Rϕ(j))) is zero, which in
particular means that the map

b−1
1 ◦ a1 : coker((Ik+1)0 − (Uk+1)0)→ coker((Ik)0 − (Uk)0)

is zero. From Corollary 5.18, it follows that

K0(C∗r (Γϕ)) ' coker(1− ρ0), K1(C∗r (Γϕ)) ' ker(1− ρ0).

It follows that we need to determine the map

ρ0 : K0(C∗r (Rϕ(k)))→ K0(C∗r (Rϕ(k + 1)))

induced by the inclusion ρ : C∗r (Rϕ(k)) → C∗r (Rϕ(k + 1)). The setup is essentially the same
as in the case of C∗r (R+

ϕ (k)): Since the maps µj, j = k, k + 1 are isomorphisms, there is a
∗-homomorphism Φ : Dk → Dk+1 making the diagram

C∗r (R+
ϕ (k))

ρ

��

µk // Dk

Φ
��

C∗r (R+
ϕ (k + 1))

µk+1
// Dk+1

(5.31)

commute. Writing Φ = (Φ1, Φ2) with Φ1 : Dk → Ak+1 and Φ2 = Dk → C([0, 1], Bk+1), we
need to describe Φ1 and Φ2. And this is where things get nasty: In the previous section, we
had a bijection between summands of A+

k and elements of the set Dk(±), which in turn gave
an isomorphism K0(A

+
k ) ' ZD(±) making it fairly straightforward to describe the induced

map of a ∗-homomorphism from A+
k on K-theory. For C∗r (Rϕ(k)) and Ak, things are less clear.

Now, we may write Φ1 : Dk → Ak+1 may be written as χ + µ, with χ : Ak → Ak+1 and
µ : C([0, 1], Bk)→ Ak+1. To define χ, let (x, p, y) ∈ Rϕ(k), and put

χ(1(x,p,y)) = 1(x,p,y)

This makes sense, since (x, p, y) ∈ Rϕ(k + 1). Next, let (I, J) ∈ I (2)k , and put p = p(I, J) = + if
val(ϕk, I) = val(ϕk, J) and p(I, J) = − otherwise. Define

NI,J =
{
(x, p, y)

∣∣∣ x ∈ I, y ∈ J, ϕk(x) = ϕk(y) /∈ D, ϕk+1(x) ∈ D
}

and
µ( f � eI,J) = ∑

(x,p,y)∈NI,J

f (ψ−1
ϕk(I)(ϕk(x)))1(x,p,y)

χ and µ are seen to have orthogonal ranges. We won’t write down an explicit description of Φ2 –
as we shall see, we will not need it. Indeed, we note that diagram

Dk

Φ
��

pk // Ak

χ+µ◦Ik
��

Dk+1
pk+1
// Ak+1

(5.32)
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commutes op to homotopy, hence ρ0 = χ0 + µ0 ◦ (Ik)0 on K0(C∗r (Rϕ(k))) ' ker((Ik)0 − (Uk)0).
To give an explicit formula for ρ0, we begin by giving a ’canonical’ basis of Ak:

Lemma 5.26. Let ci ∈ D. As far as such elements exist, choose xmin
i , xmax

i and xr
i ∈ T such that

ϕk(xmin
i ) = ϕk(xmax

i ) = ϕk(xr
i ) = ci and

val(ϕk, xmin
i ) = (−,+), val(ϕk, xmax

i ) = (+,−), val(ϕk, xr
i ) = (±,±)

Define projections in Ak by

E(−,+)
ci ,+ = 1

2

(
exmin

i ,+,xmin
i

+ exmin
i ,−,xmin

i

)
, E(−,+)

ci ,− = 1
2

(
exmin

i ,+,xmin
i
− exmin

i ,−,xmin
i

)
E(+,−)

ci ,+ = 1
2

(
exmax

i ,+,xmax
i

+ exmax
i ,−,xmax

i

)
, E(+,−)

ci ,− = 1
2

(
exmax

i ,+,xmax
i
− exmax

i ,−,xmax
i

)
Er

ci
= exr ,+,xr

Then K0(Ak) ⊂ ZM for some M ≤ 5|D|, and the K-theory classes of the Eci ’s correspond to the standard
basis of ZM.

Proof. This is an immediate consequence of Examples 1.24 and 1.26. �

Note the identities

E(−,+)
ci ,+ + E(−,+)

ci ,− = exmin
i ,+,xmin

i
, E(−,+)

ci ,+ − E(−,+)
ci ,− = exmin

i ,−,xmin
i

and similarly for exmax
i ,±,xmax

i
. To describe the action of ρ0 on these basis elements, we introduce

the following notation: For ci ∈ D, let I+i denote the interval in I such that ci < I+i , and
I−i the interval in I such that ci > I−i . Assume now, for instance, that ϕk(x) = ci and
val(ϕk, x) = (−,+). Then both Lx and Rx, the intervals in Ik to the right and left of x, are
mapped homeomorphically to I+i . Hence, the projections eLx ,Lx , eRx ,Rx ∈ Bk represent the
element [I+i ] ∈ K0(Bk). Similarly, if val(ϕk, x) = (+,−), eLx ,Lx and eRx ,Rx are represented by
[I−i ]. Now, recall that Lemma 5.26 gave basis elements for K0(Ak). Combining this with the
Table 5.5 for the map Ik show that

Ik(E(−,+)
ci ,+ ) = 1

2 (eLxmax
i

,Lxmax
i

+ eRxmax
i ,xmax

i
+ eLxmax

i
,Rxmax

i
+ eRxmax

i
,Lxmax

i
)

and that
Ik(E(−,+)

ci ,− ) = 1
2 (eLxmax

i
,Lxmax

i
+ eRxmax

i
,eRmax

i
− eLxmax

i
,Rxmax

i
− eRxmax

i
,Lxmax

i
)

Both these elements correspond to [I+i ] in K0(Bk). Now,

Ik(E(+,−)
ci ,± ) = 0

and Ik(Er
ci
) is either eLxr

i
,Lxr

i
(if ϕk is decreasing at xr

i ) or eRxr
i
,Rxr

i
(if ϕk is increasing at xr

i ). This,

too, represents the same K-theory element as Ik(E(−,+)
ci ,+ ). Carrying out the same considerations

about Uk yields the following table:
Next, we describe how µ0 : K0(Bk)→ K0(Ak+1) works on K-theory. For each Ii ∈ I , choose an
I ∈ Ik with ϕk(I) = Ii. Then,

µ0([Ii]) = [µ(eI,I)] = ∑
x∈NI,I

[ex,+,x], NI,I =
{

x ∈ I
∣∣∣ ϕk(x) ∈ ϕ−1(D) \ D

}
.
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[E(−,+)
ci ,+ ] [E(−,+)

ci ,− ] [E(+,−)
ci ,+ ] [E(+,−)

ci ,+ ] [Er
ci
]

(Ik)0 [I+i ] [I+i ] 0 0 [I+i ]
(Uk)0 0 0 [I−i ] [I−i ] [I−i ]

Table 5.1: Table of (Ik)0, (Uk)0 : K0(Ak)→ K0(Bk).

Note that ϕk yields a bijection between the set NI,I and the set {z ∈ Ii | ϕ(z) ∈ D}, and that
val(ϕk+1, x) = val(ϕ, ϕk(x)) val(ϕk, x) ≡ val(ϕ, ϕk(x)). Taking all this into account gives the
following formula:

(µ ◦ Ik)0([E
(−,+)
ci ,+ ]) = ∑

z∈I+ci ∩C

(
[Eval(ϕ,z)

ϕ(z),+ ] + [Eval(ϕ,z)
ϕ(z),− ]

)
+ ∑

z∈I+ci ∩ϕ−1(D)\C
[Er

ϕ(z)]

By the considerations above, this is also the value of (µ ◦ Ik)0 on [E(−,+)
ci ,− ] and [Er

ci
], and the

value on [E(+,−)
ci ,+ ] and [E(+,−)

ci ,− ] is just 0. Recall that ρ0 was equal to χ0 + (µ ◦ Ik)0 and that
χ(ex,v,y) = ex,v,y ∈ Ak+1. Note, however, that – unless ϕ is Markov – a ci ∈ D is not necessarily
critical for ϕ. Hence, a ’critical’ basis element can be mapped to a ’non-critical’ basis element,
and vice versa. Phrasing this in terms of basis elements, we get

χ0([Ev
ci ,p]) =

[Eval(ϕ,ci)
ϕ(ci),p

] if ci ∈ C
[Er

ϕ(ci)
] if ci /∈ C

, χ0([Er
ci
]) =

[Eval(ϕ,ci)
ϕ(ci),+

] + [Eval(ϕ,ci)
ϕ(ci),−

] if ci ∈ C
[Er

ϕ(ci)
] if ci /∈ C

(5.33)
for v ∈ {(+,−), (−,+)}, p ∈ {+,−}. Combining all of this yields a formula for ρ0:

ρ0([E
(−,+)
ci ,+ ]) = χ0([E

(−,+)
ci ,+ ]) + ∑

z∈I+ci ∩C

(
[Eval(ϕ,z)

ϕ(z),+ ] + [Eval(ϕ,z)
ϕ(z),− ]

)
+ ∑

z∈I+ci ∩ϕ−1(D)\C
[Er

ϕ(z)]

ρ0([E
(−,+)
ci ,− ]) = χ0([E

(−,+)
ci ,− ]) + ∑

z∈I+ci ∩C

(
[Eval(ϕ,z)

ϕ(z),+ ] + [Eval(ϕ,z)
ϕ(z),− ]

)
+ ∑

z∈I+ci ∩ϕ−1(D)\C
[Er

ϕ(z)]

ρ0([E
(+,−)
ci ,+ ]) = χ0([E

(+,−)
ci ,+ ]) (5.34)

ρ0([E
(+,−)
ci ,− ]) = χ0([E

(+,−)
ci ,− ])

ρ0([Er
ci
]) = [χ0([Er

ci
]) + ∑

z∈I+ci ∩C

(
[Eval(ϕ,z)

ϕ(z),+ ] + [Eval(ϕ,z)
ϕ(z),− ]

)
+ ∑

z∈I+ci ∩ϕ−1(D)\C
[Er

ϕ(z)]

While this formula looks frightening, apperances are decieving – calculating the Z-matrix given
by ρ∗ is possible simply by considering the graph of ϕ, and is, at least for fairly simple maps,
doable by hand. We illustrate with an example:

Example 5.27. Let ϕ be the tent map from Example and Example 5.25. We may then choose
D = {0} and I = {I} with I = (0, 1). In the notation of Lemma 5.26, we have

K0(Ak) ' Z[E(−,+)
0,+ ]� Z[E(−,+)

0,− ]� Z[E(+,−)
0,+ ]� Z[E(+,−)

0,− ]� Z[Er
0] ' Z5

We have ϕ−1(0) ∩ I = {1/4, 1/2, 3/4} with val(ϕ, 1/4) = (+,+), val(ϕ, 1/2) = (+,−) and
val(ϕ, 3/4) = (−,−). In particular, 1/2 is in C ∩ ϕ−1(D while 1/4 and 3/4 are in ϕ−1(D) \ C.
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We may then use the formula for ρ0 developed above – for instance,

χ0([E
(−,+)
0,+ ]) = Eval(ϕ,0)

ϕ(0),+ = E(−,+)
0,+

so
ρ0([E

(−,+)
0,+ ]) = E(−,+)

0,+ + E(+,−)
0,+ + E(+,−)

0,− + 2Er
0

Doing these calculations for all basis elements yields a matrix representation of ρ0:

ρ0 =


1 0 1 0 1
0 1 0 1 1
1 1 0 0 1
1 1 0 0 1
2 2 0 0 2

 .

By using Table 5.5, we observe that (I1)0 − (U1)0 as a map from Z5 to Z is given by the
1-by-5-matrix (1, 1,−1,−1, 0), so

ker((I1)0 − (U1)0) ' {(x, y, z, v, w) ∈ Z5|v = x + y− z} ' Z4

and the restriction of ρ0 to ker((I1)0 − (U1)0) is represented by the matrix

Ã =


1 0 1 1
1 2 −1 1
1 1 0 1
2 2 0 2

 .

We conclude that

K0(C∗r (Γϕ)) ' coker(1− Ã) ' Z � Z3

and
K1(C∗r (Γϕ)) ' ker(1− Ã) ' Z. N

See the Appendix for a more involved calculation of the K-theory of some of these algebras.



Chapter 6
Circle maps with no periodic points

In this chapter, we consider a rather special class of circle maps – in addition to our stading
assumptions (continuous, surjective, piecewise strictly monotone with finitely many critical
points), we also assume that our maps have no periodic points. This puts severe limitations on
the possible isotropy groups of the corresponding groupoid, which in turn allows us to apply
the general theory of Chapter 4 to determine the ideal structure of the groupoid C∗-algebras.

One can say quite a lot about continuous maps of the circle without periodic points – the
theory goes back to Poincaré’s work on circle homeomorphisms and Denjoy and Arnold’s
examples of circle homeomorphisms not conjugate to an irrational rotation. For the case where
the map is not necessarily a homeomorphism, the paper [4] is the definitive reference. This
chapter begins with a sketch of the classical theory, goes on to describe some of the main results
of [4], and finally develops the theory of the groupoid C∗-algebras arising from these maps.

6.1 Denjoy homeomorphisms � the classical theory

Let ψ : T→ T be a orientation-preserving homeomorphism of the circle, and let ψ̃ : R→ R be a
lift of ψ to a map of the real line. The starting point for studying circle homeomorphisms is the
following classical theorem:

Theorem 6.1. Define the rotation number of ψ as

ρ(ψ) = lim
n→∞

ψ̃n(x)− x
n

, x ∈ R (6.1)

Then ρ(ψ) exists and is, as an element of T, independent both of the choice of lift ψ̃ and of the point
x ∈ R. Furthermore ρ(ψ) is rational if and only if ψ has a periodic point.

For a proof, se e.g. [8], Chapter 3.3, Theorem 1. From this point on, we’ll focus only on maps
with irrational rotation number. We start by analysing the limit sets of forward orbits under ψ:

Lemma 6.2. Let ψ : T → T be an orientation-preserving homeomorphism with irrational rotation
number, let x ∈ T and let m, n ∈ Z with m 6= n. Let ∆ and ∆′ be the two arcs of T connecting ψn(x)
and ψm(x). Then for any y ∈ T, each of these arcs has non-empty intersection with O+(y) as well as
O−(y).

83
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Proof. Assume without loss of generality that m > n. Note first that all the arcs ∆, ψm−n(∆),
ψ2(m−n)(∆) are adjacent to each other. Furthermore, for some k large enough we have

k⋃
j=1

ψj(m−n)(∆) = T

Indeed, if this was not the case, the sequence ψ̃j(m−n)(x), where ψ̃ is a lift of ψ, would be
monotonic and bounded, and hence converge to some limit x0. But then x0 would be a periodic
point of period k, contradicting our assumption. Now let y ∈ T. Then y ∈ ψj(m−n)(∆) for some j,
which means that ϕ−j(m−n)(y) ∈ ∆. It follows that O−(y) ∩ ∆ 6= ∅. Interchanging m and n
shows that O+(y) ∩ ∆ 6= ∅. �

Corollary 6.3. Let x ∈ T, and P be the set of limit points of O+(x). Then P is independent of the point
x, and P is also the set of limit points of O−(x).

Proof. Let y ∈ T, and z ∈ P. For the first claim, it suffices to show that z is a limit point of
O+(y). By assumption, there is a sequence {nl} of positive integers such that ψnl (x) converges
to z. For each l, the lemma above yields a number kl such that ψkl (y) ∈ [ψnl (x), ψnl+1(x)] (i.e.
the shortest of the two arcs joining ψnl (x) and ψnl+1(x)). It follows that ψkl (y) converges to z.
For the second statement, the lemma above yields a sequence {ml} of positive integers such that
ψ−ml (x) ∈ [ψnl (x), ψnl+1(x)], so ψ−ml (x) converges to z. By symmetry, we see that a limit point
of the forward orbit is also a limit point of the backward orbit. �

The next theorem is also classical – for the proof, see e.g. [28]:

Proposition 6.4. Let ψ be an orientation preserving homeomorphism of the circle with irrational rotation
number α. Then ψ is semi-conjugate to the irrational rotation Rα, i.e. there is a continuous, surjective,
orientation-preserving map h : T→ T such that

h ◦ ψ = Rα ◦ h.

If the map h in the proposition above is invertible, ψ is conjugate to an irrational rotation – in
particular, any forward orbit under ϕ is dense and the map is transitive. There are some rigidity
results stating sufficient conditions for h to be invertible, see e.g. Theorem 1, Chapter 3.4 of [8].
We, however, are interested in the opposite case:

Definition 6.5. Let ψ and h be as in (6.4). If h is not invertible, ψ is called a Denjoy homeomorphism.

The following result, cf. Proposition 3.4 of [28], describes some properties of these maps. We
say that a set A is totally invariant (under ψ) if ψ(A) = ψ−1(A) = A:

Theorem 6.6. Let ψ be a Denjoy homeomorphism. Then ψ has a unique minimal closed totally invariant
set Σ ⊂ T. Σ is a Cantor set (totally disconnected, compact and without isolated points), and for any
x ∈ T, Σ is the set of limit points of O(x).

Let ψ be a Denjoy homeomorphism with invariant Cantor set Σ. The complement Y = T \ Σ
is open, hence a countable union of disjoint open intervals Y = ∪n∈ZYn. Since ψ has no periodic
points, it follows that the intervals Yn are permuted acyclically by ψ, i.e. ψk(Yn) ∪ Yn = ∅ for
any n, k ∈ Z. The action of ψ on these intervals may have one, several, or even countably infinite
many orbits.
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It is straightforward to modify a Denjoy homeomorphism ψ to a map with a critical point
without altering the structural properties listed above: Let Yn be a component of T \ Σ, and
note that ψ maps Yn homeomorphically to another interval Yn′ ⊆ T \ Σ. Now define ϕ as the
map obtained from ψ by adding critical points in Yn in a way such that ϕ(Yn) = ψ(Yn) = Yn′ . It
is evident that ϕ is continuous, surjective, piecewise strictly monotone and without periodic
points. One might add several critical points in other intervals in the same way. Since we only
modify ψ away from Σ, and only on finitely many intervals, it is still the case that Σ is the set of
limit points for any (forward or backward) orbit under ϕ. We will refer to these maps as modified
Denjoy maps or just Denjoy maps.

I

J

ψ
c I d

J

ϕ

6.2 Circle maps without periodic points

The previous section gave a construction of circle maps – i.e. piecewise linear, continuous,
surjective maps with critical points – without periodic points, starting from a Denjoy homeo-
morphism and modifying it suitably on the complement of the invariant Cantor set. In this
section we shall see that essentially all circle maps without periodic points arise in this way. The
discussion follows [4] closely. We let ϕ : T → T be continuous and without periodic points.
This implies surjectivity of ϕ. For each x ∈ T, and let Jx be the largest interval containing x such
that Jx ∩O+(x) is empty. The intervals Jx have a number of interesting properties, cf. Theorem
1 of [4]:

Lemma 6.7. Let ϕ, x and Jx be as above. Then the following hold:

1. If ξ and ξ ′ are the endpoints of Jx, then ϕ(ξ) and ϕ(ξ ′) are the endpoints of ϕ(Jx).

2. ϕn(Jx) = Jϕn(x) for any n ∈N.

3. The sets {Jϕn(x)}n∈N are pairwise disjoint.

4. The sets Jx form a decomposition of T (i.e. for x, y ∈ T, either Jx = Jy, or Jx ∩ Jy = ∅).

5. At most countably many of the sets Jx are non-degenerate (i.e. Jx 6= {x}).

6. If ϕ(x) = ϕ(y), then Jx = Jy.

Recall that a subset Y of a dynamical system (X, ϕ) is minimal if the forward orbit of any
point of Y is dense in Y. Let Σ be the set of endpoints of the intervals {Jx}x∈T. Theorem 2 of [4]
states some properties of Σ:

Lemma 6.8. The set Σ is the unique minimal subset of T, and if ϕ is not a homeomorphism, Σ is nowhere
dense in T. For x ∈ Σ, |ϕ−1(x) ∩ Σ| is 1 or 2, and there are at most countably many x ∈ Σ with
|ϕ−1(x) ∩ Σ| = 2.
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Lemma 6.9. Σ is a Cantor set, i.e. compact, totally disconnected and perfect.

Proof. Since Σ is closed in T, it is compact, and since it is nowhere dense, it is totally disconnected.
Given x ∈ Σ, we have by minimality that O+(ϕ(x)) = Σ, and x /∈ O+(ϕ(x)) since ϕ has no
periodic points. It follows that Σ is perfect. �

Putting these lemmas together gives a fairly clear picture of the dynamics of ϕ: T has a
unique minimal set Σ, which is a Cantor set, and whose complement is a countable union of
open intervals. Given an x ∈ T such that Jx is non-degenerate, it follows from Lemma (6.7) that
ϕ(Jx) = Jϕ(x) is either another open interval or collapses to a single point { f (x)}.

Proposition 6.10. Assume that ϕ, in addition to the other hypotheses in this section, is also piecewise
strictly monotone – in particular, not locally constant anywhere. Then Σ is totally invariant, and ϕ
restricted to Σ is a homeomorphism.

Proof. We show first that Σ is backwards invariant: Let x ∈ Σ, and assume that y ∈ T \ Σ
with ϕ(y) = x. Then Jx = {x}, and Jy is a non-degenerate interval. But since ϕ(Jy) = Jϕ(y) =

Jx = {x}, ϕ is locally constant on the open set Jy. This is against our assumptions, hence
ϕ−1(Σ) = Σ and ϕ restricted to Σ is surjective. Finally, if y1, y2 ∈ Σ with ϕ(y1) = ϕ(y2), we
have {y1} = Jy1 = Jy2 = {y2} by Lemma 6.7, so ϕ restricted to Σ is injective, and hence a
homeomorphism. �

Theorem 6.11. Let ϕ : T→ T be a continuous, surjective, piecewise monotone map with no periodic
points, and assume that ϕ is not a homeomorphism. Then ϕ is a modified Denjoy map.

Proof. From Lemma 6.9 and Proposition 6.10, it follows that there is a Cantor set Σ which is
totally invariant, and such that ϕ|Σ is a homeomorphism. The complement Y = T \ Σ is an at
most countable collection of intervals Y = tYn, and each interval Yn contains at most finitely
many critical points. Since Σ is totally invariant, the complement Y is also totally invariant –
hence, by continuity, each interval Yn is mapped to some other interval Yn′ with n 6= n′. Since
ϕ has no periodic points, ϕk(Yn) ∩Yn = ∅ for all k and n. Each restriction ϕ|Yn : Yn → Yn′ can
thus be homotoped to a homeomorphism ψYn : Yn → Yn′ . Doing this on each interval containing
critical points yields a map ψ : T → T such that ψ|Σ = ϕ|Σ and ψ(Yn) = ϕ(Yn) for each n. It
follows that ψ is a Denjoy homeomorphism, and that ϕ can be obtained from ψ be reverting the
homotopies. �

6.3 The groupoid C∗-algebra of a Denjoy map

Having obtained a fairly complete description of circle maps without critical points, we now turn
to their associated groupoids and groupoid C∗-algebras. Let ϕ be a map like those described
above, with minimal Cantor set Σ, and let Γϕ be its amended transformation groupoid introduced
in Chapter 2. We restrict our attention to Γϕ in this chapter, but the case of Γ+

ϕ should not be
significantly different. Denote by C the critical points of ϕ. First, we apply the theory developed
in Chapter 4 to determine the primitive ideal space of C∗r (Γϕ). Recall that we write [x] for the
Γϕ-orbit of x ∈ T, i.e. the set r(s−1(x)), that a set A is Γϕ-invariant if x ∈ A implies [x] ⊆ A,
and that A is Γϕ-minimal if it contains no proper closed Γϕ-invariant subsets.
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6.3.1 The primitive ideals

We begin by determining the primitive and maximal ideals of C∗r (Γϕ).

Proposition 6.12. The set Σ is Γϕ-invariant and Σ ⊆ [x] for any x ∈ T. In particular, it is the only
non-trivial Γϕ-minimal set.

Proof. If x ∈ Σ, we have O+(x) ⊆ Σ by forward invariance, and then [x] ⊆ Σ since Σ is
backwards invariant and closed. On the other hand, ϕ is increasing at any point x of Σ, so
we have O(x) ⊆ [x], so Σ ⊆ O(x) ⊆ [x]. This shows that [x] = Σ for any x ∈ Σ and that Σ is
Γϕ-minimal.

Next, assume that x ∈ T \ Σ. If the forward orbit of x intersects C trivially, ϕ is monotone at
ϕn(x) for all n, and we have O+(x) ⊆ [x]. Hence, Σ ⊆ [x]. If, on the other hand, there is an n
such that ϕn(x) ∈ C, we must have O−(x) ⊆ [x]: if ϕk(y) = x, we have

val(ϕk+n+1, y) = val(ϕ, ϕn(x)) • val(ϕk+n, y) = val(ϕ, ϕn(x)) = val(ϕn+1, x).

Since Σ is also the set of limit points of O−(x), it follows that Σ ⊆ [x]. In particular, Σ is the
only Γϕ-minimal set. �

Theorem 6.13. Let ϕ : T→ T be a continuous, surjective, piecewise monotone map with no periodic
points. Then C∗r (Γϕ) has a unique maximal ideal I, and the corresponding simple quotient is isomorphic
to the crossed product of a minimal homeomorphism on a Cantor set.

Proof. Let Σ be the minimal Cantor set of ϕ. By combining Proposition 6.12 and Lemma 4.45,
we see that the only maximal ideal in C∗r (Γϕ) is ker(πΣ), and that C∗r (Γϕ)/I is isomorphic to
C∗r (Γϕ|Σ). Since Σ is totally invariant and ϕ|Σ is a minimal homeomorphism, it follows from
Proposition 1.8 of [23] that C∗r (Γϕ|Σ) is isomorphic to the reduced crossed product C∗-algebra
C(Σ)oϕ,r Z. �

To determine the primitive ideals, recall from Theorem 4.41 that these come in two types:
Either the primitive ideal I is isomorphic to ker(πF) with F = [x] for some x ∈ T and the
non-isotropic points dense in F, or I = I([x], ω) where x is isotropic and and isolated in [x], and
ω is a character on Iso(x).

Lemma 6.14. Let x ∈ T and assume that x is not pre-critical. Put F = [x]. Then ker(πF) is a primitive
ideal, and ker(πF) ⊆ ker(πΣ).

Proof. If x is not precritical, the orbit closure [x] contains no isotropic points, so ker(πF) is a
primitive ideal by Theorem 4.41. Since Σ ⊆ F, we have ker(πF) ⊆ ker(πΣ). �

Next, assume that x is precritical. It follows that x is isolated in F = [x], and by Lemma 4.8,
we have

Iso(x) = {(x, 0,+, x), (x, 0,−, x)} ' Z2.

The dual group Îso(x) has two elements χ+ and χ−, where χ+ ≡ 1, and χ− is given by
χ−((x, 0,+, x)) = 1 and χ−((x, 0,−, x)) = −1. In C∗r (Γϕ|F), there are two ideals I0(F, χ+) and
I0(F, χ−), generated by the elements

a+ = 1(x,0,+,x) − χ+((x, 0,−, x))1(x,0,−,x) = 1(x,0,+,x) − 1(x,0,−,x)

and
a− = 1(x,0,+,x) − χ−((x, 0,−, x))1(x,0,−,x) = 1(x,0,+,x) + 1(x,0,−,x)

respectively.
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Lemma 6.15. Let x ∈ T such that x is isotropic and isolated in [x], and let F = [x]. Let πF : C∗r (Γϕ)→
C∗r (Γϕ|F), and let I0(F, χ+) and I0(F, χ−) be as above. Then the ideals

I(F,+) = π−1
F (I0(F, χ+)) , I(F,−) = π−1

F (I0(F, χ−))

are primitive ideals in C∗r (Γϕ), with

I(F,+) ∩ I(F,−) = ker(πF) and I(F,+) + I(F,−) = ker(πΣ).

Proof. It follows directly from Lemma 4.40 that I(F,+) and I(F,−) are primitive ideals in
C∗r (Γϕ). To show that I(F,+) ∩ I(F,−) = ker(πF), we show that

(I0(F, χ+)) ∩ (I0(F, χ−)) = {0}.

This, in turn, follows from showing that a+C∗r (Γϕ|F)a− = {0}, which again by continuity
amounts to showing that a+Cc(Γϕ|F)a− = {0}. So, let f ∈ Cc(Γϕ|F) and γ = (x, k, p, y) ∈ Γϕ|F.
Since a+ and a− are supported on Iso(x) = {(x, 0,+, x), (x, 0,−, x)}, the same holds for a+ f a−.
Now we calculate:

(a+ f a−) (x, 0,+, x) = a+(x, 0,+, x) f (x, 0,+, x)a−(x, 0,+, x) + a+(x, 0,−, x) f (x, 0,+, x)a−(x, 0,−, x)
+a+(x, 0,+, x) f (x, 0,−, x)a−(x, 0,−, x) + a+(x, 0,−, x) f (x, 0,−, x)a−(x, 0,+, x)
= f (x, 0,+, x)− f (x, 0,+, x) + f (x, 0,−, x)− f (x, 0,−, x) = 0.

Similarly, (a+ f a−) (x, 0,−, x) = 0, which shows what we want.
To conclude the final statement, we note a few things: First, the characteristic function

1(x,0,+,x) is in I0(F, χ+) � I0(F, χ−). Second, F decomposes as the disjoint union F = [x] t Σ.
Hence, if γ ∈ Γϕ|F there is a ρ ∈ Γϕ|F such that γ = ρ(x, 0,+, x)ρ−1 if and only if γ ∈ Γϕ|F\Σ. For
such a γ we have 1γ = 1ρ1(x,0,+,x)1ρ−1 , and since each element of [x] is isolated in [x], it follows
that Cc(Γϕ|F\Σ) ⊆ I0(F, χ+) � I0(F, χ−). By continuity, we have C∗r (Γϕ|F\Σ) ⊆ I0(F, χ+) �
I0(F, χ−). But, in the notation of Lemma 3.21, πΣ = πF,Σ ◦ πF, so if a ∈ ker(πΣ) we have

πF(a) ∈ ker(πF,Σ) = C∗r (Γϕ|F\Σ) ⊆ I0(F, χ+)� I0(F, χ−),

and hence a ∈ I(F,+) + I(F,−). It follows that

ker(πΣ) ⊆ I(F,+) + I(F,−).

The other inclusion follows from the fact that 1(x,0,+,x) and 1(x,0,−,x) are in ker πΣ since x /∈ Σ.�

Theorem 6.16. Let ψ be a Denjoy map. Then any primitive ideal I of C∗r (Γϕ) is either

• I = ker(πF), where F = [x] and x is not pre-critical, or

• I = I(F,±), where F = [x] and x is a pre-critical point.

Proof. This is immediate from Theorem 4.41. �
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6.3.2 Two fundamental extensions

By Theorem 6.13, C∗r (Γϕ) has a unique maximal ideal ker(πΣ). Putting Y = T \ Σ, we have (by
Lemma 3.21) ker(πΣ) ' C∗r (Γϕ|Y), and an extension

0 // C∗r (Γϕ|Y) // C∗r (Γϕ) // C∗r (Γϕ|Σ) // 0. (6.2)

Since Y is open in T, we may write Y = ti∈NYi as a countable disjoint union of open intervals.
After relabeling, we may assume that ψ maps Yi homeomorphically onto Yi+1. The set of critical
points C is finite and contained in Y. Since we require ϕ to have only finitely many critical
points, there is a number N ∈N such C ⊆ tN

i=−NYi.

Remark 6.17. Note that for a general Denjoy map ψ, the action of ψ on the intervals {Yi} might
have not just one, but several orbits – that is, we may partion Y into (finitely or infinitely many)
disjoint subsets Y1, Y2, . . . with each Yi left totally invariant by ψ, and hence also by ϕ. Since
each Yi is Γϕ-invariant and clopen in Y, we get a direct sum decomposition

C∗r (Γϕ|Y) =
⊕

i
C∗r (Γϕ|Yi ).

Hence, in analysing C∗r (Γϕ|Y), we lose no generality assuming that the action of ϕ on the
intervals Yi has only one orbit. �

To understand C∗r (Γϕ|Y), we construct another extension like (6.2), but now with C∗r (Γϕ|Y)
in the middle: For a point x ∈ Y, put

D(x) = {y ∈ Y | ∃m, n ∈N : ϕn(x) = ϕm(y)} =
⋃

n∈N

O−(ϕn(x)),

and put
D =

⋃
c∈C
D(c) (6.3)

The set D is illustrated in the first figure of 6.3.2, in the case where ϕ has two critical points c
and d.

Lemma 6.18. The set D is closed in Y, totally ϕ-invariant and Γϕ|Y-invariant.

Proof. Since D is the finite union of the sets D(c), it suffices to show that each of these has the
desired properties. So, fix a c ∈ C. Note that for n ≥ N, ϕ|Yn : Yn → Yn+1 is one-to-one, in
particular, ϕ−1(ϕn+1(c)) = {ϕn(c)}. It follows that

D(c) = O+(ϕN+1(c)) ∪O−(ϕN(c))

Now, if {xi} is a sequence in D(c) which is convergent in Y, it must have a subsequence xik in
either O+(ϕN(c)) or O−(ϕN(c)). But if {xi} is not eventually constant, it follows from 6.3 that
the limit of {xik}, and hence of {xi} is in Σ, which is against our assumption. It follows that
D(c) is closed in Y. Total invariance is immediate from the definition, and since [c] ⊆ D(c), it
follows that D(c) is Γϕ|Y-invariant. �

One way to think of the set D is as the smallest totally ϕ-invariant set that containts all critical
points. Let Z = Y \ D. Observe that each Z ∩Yi is a finite union of open intervals, and that each
connected component of Z ∩Yi is mapped homeomorphically onto some connected component
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Y2

Y1

Y0

Y−1

ϕ'
ϕ

ϕ'

ϕ−1(c) ϕ−1(d)ϕ−1(d′) ϕ−1(c′)

c dd′ c′

ϕ(d) ϕ(c)
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Z−1

Z0

Z1

Z2

Figure 6.1: The first picture shows the set D in the case where
ϕ has two critical points c and d, as in Figure 6.1. The red,
marked points are the set D. After removing D from Y, we
obtain the set Z, which consists of a finite number of intervals
at each level, each mapped homeomorphically onto an interval
one level above..

of Z ∩Yi+1 – this is basically the situation in the second picture in 6.3.2. Furthermore, since we
have removed the total orbits of all critical points from Y, we have val(ϕn, z) ∈ {(+,+), (−,−)}
for any z ∈ Z and n ∈N. Since Z is also Γϕ|Y-invariant, we have by Lemma 3.21 an extension

0 // C∗r (Γϕ|Z) // C∗r (Γϕ|Y) // C∗r (Γϕ|D) // 0 (6.4)

We now have the ingredients for determining the K-theory of C∗r (Γϕ): First, we analyse
extension 6.4, obtain concrete descriptions of C∗r (Γϕ|Z) and C∗r (Γϕ|D) and realise C∗r (Γϕ|Y) as a
double mapping cylinder of these two algebras. We then plug this information into Extension 6.2
and combine this with results from [28] to determine the K-theory of C∗r (Γϕ).

6.3.3 On Γϕ|Y
In this section, we describe the structure of C∗(Γϕ|Y). It is worth stressing that the situation in
this section is very similar to the one in Section 3.1 of Chapter 3, in particular the extension in
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Equation 5.10. Indeed, Equation 6.4 shows that C∗r (Γϕ) is the extension of a C∗-algebra of the
principal groupoid Γϕ|Z by the C∗-algebra of the discrete groupoid Γϕ|D .

We start, as before, with a Denjoy homeomorphism ψ : T→ T with associated Cantor set Σ,
and put Y = T \ Σ. Write Y = ti∈NYi as a countable disjoint union of open intervals. After
relabeling, we may assume that ψ maps Yi homeomorphically onto Yi+1. We now modify ψ to
get a map with critical points: At each interval Yi, twist ψ to add a (finite) number of critical
points {ci,1, ci,2, . . . , ci,li}, and denote the resulting map by ϕ. As long as ϕ(Yi) = Yi+1 and ϕ
is piecewise strictly monotone, we make no particular demands on how we obtain ϕ from ψ.
In particular, the forward orbits of critical points are allowed to meet. Let C denote the set of
critical points. Note that we require ϕ to have a finite number of critical points, hence there is a
number N ∈N such C ⊆ tN

i=−NYi.
The structure of Y as a disjoint union of intervals has great influence on the structure of Γϕ|Y:

Lemma 6.19. Let ϕ and Y be as above, and assume that (x, k, p, y) ∈ Γϕ|Y. Then the number k is
uniquely determined by x and y.

Proof. Choose numbers i, j ∈ Z such that x ∈ Yi and y ∈ Yj, and m, n ∈ N such that ϕn(x) =
ϕm(y). It follows that ϕn(x) ∈ Yi+n and that ϕm(y) ∈ Yj+m, so we have i + n = j + m. This
means that k = n−m = j− i. �

Lemma 6.20. Let x ∈ Y. The sequence val(ϕn, x) is eventually constant.

Proof. Choose N such that C ⊆ tN
i=−NYn. If x is in Yk for some k ∈ Z, we note that ϕj(x)

is non-critical for any j ≥ |k|+ N, indeed, val(ϕ, ϕj(x)) = (+,+). Since (+,+) is a neutral
element in the semigroup V , it follows that

val(ϕ|k|+N+i, x) = val(ϕi, ϕ|k|+N(x)) • val(ϕ|k|+N , x) = val(ϕ|k|+N , x)

as we wanted. �

We denote this ’eventual valency’ at x by vx. Put an equivalence relation ≡ on V by putting
(+,+) ≡ (−,−) and (+,−) and (−,+) only equivalent to itself. As we have seen, for points
x, y ∈ T with ϕn(x) = ϕm(y), there is a local transfer η with η(x) = y and ϕn = ϕm ◦ η if
and only if val(ϕn, x) ≡ val(ϕm, y). If this valency is critical (i.e. (+,−) or (−,+)) there are
two choices of (germ of) local transfer, one reversing orientation and one preserving it. If the
valencies at x and y are non-critical, there is one unique choice of (germ of) local transfers.

Lemma 6.21. Let x, y ∈ Y and assume that there are n, m ∈ N such that ϕn(x) = ϕm(y). Put
k = n−m. Then there is a local transfer η such that (x, k, [η]x, y) ∈ Γϕ|Y if and only if vx ≡ vy.

Proof. If there is a transfer η such that (x, k, [η]x, y) ∈ Γϕ|Y, there are n′, m′ with ϕn′(x) = ϕm′(y),
η(y) = x and ϕn′(x) = ϕm′(y). Then val(ϕn′ , x) ≡ val(ϕm′ , y), so vx ≡ vy. On the other hand, if
vx ≡ vy, there is an l such that val(ϕn+l , x) ≡ val(ϕm+l , y). Since ϕn+l(x) = ϕm+l(y), there is a
transfer η such that (x, k, [η]x, y) ∈ Γϕ|Y. �

Putting all these lemmas together, we obtain a description of the groupoid Γϕ|Y as

Γϕ|Y =
{
(x, p, y) ∈ Y×Z2 ×Y

∣∣ ∃n, m : ϕn(x) = ϕm(y), vx ≡ vy
}

with these possible choices of p determined by vx and vy as discussed above.



92 Chapter 6 · Circle maps with no periodic points

Lemma 6.22. Let F be a topological space, assume that F is a countably infinite union of disjoint
clopen sets {Fi}i∈Z, and that each Fi is a finite disjoint union of li sets {Fi,l}

li
l=1 such that each Fi,l is

homeomorphic to an open interval. Let θ : F → F be a continuous, surjective map such that each set Fi,l
at level i is mapped homeomorphically onto some Fi+1,l′ at level i + 1. Then θ is a local homeomorphism,
the sequence {li} is convergent to some number L, and we have an isomorphism of C∗-algebras

C∗r (Γθ) ' (C0((0, 1))� K)L ' C0((0, 1), KL)

Proof. Since θ is one-to-one on each interval Fi,l , it is immediate that θ is a local homeomorphism.
Since θ is surjective and each interval at level Fi is mapped homeomorphically onto some interval
at level Fi+1, we must have li ≥ li+1 for all i ∈ Z. It follows that {li} converges to some integer
L ≥ 1.

The next part is an application of Example 1.22: Choose a number N such that Fi is a disjoint
union of L sets for all i ≥ N. Write FN = FN,1 t · · · t FN,nN . Define an equivalence relation ∼ on
F by putting Fi,l ∼ Fj,k if ϕn(Fi,l) = ϕm(Fj,k) for some numbers n, m. Then ∼ partitions F into L
equivalence classes. Furthermore, if ϕn(Fi,l) = ϕm(Fj,k), the map

ϕ−m ◦ ϕn : Fi,l → Fj,k

is a homeomorphism. By Example 1.22, we have

C∗r (Γθ) ' C0((0, 1))� KL. �

Corollary 6.23. The algebra C∗r (Γϕ|Z) is isomorphic to (C0((0, 1))� K)L for some L ∈N.

Proof. This is an immediate consequence of Lemma 6.22. �

Note that Example 1.22 gives a little more info: Let I denote the set of connected components
of Z. Then the relation ∼ from the proof of Lemma 6.22 partitions I into L equivalence classes.
Let B be the algebra generated by matrix units eI,J for I, J ∈ I with I ∼ J. Then B ' KL, and
C∗r (Γϕ|Z) ' C0((0, 1), KL).

We now turn to the algebra arising from the reduction of Γϕ|Y to the set D. Since D contains
critical points, the Γϕ-orbit structure of points in D is somewhat more complicated.

Lemma 6.24. Let D be as in Equation 6.3. Then there is a finite set of points {x1, . . . , xm} ⊆ D such
that D decomposes as the disjoint union of the Γϕ|Y-orbits of these points, i.e.

D = [x1] t · · · t [xm].

Furthermore, we have C∗r (Γϕ|D) ' KM for some M ∈N.

Proof. As above, we may choose a number N such that C ⊆ tN
i=−NYi. Let K be the number

of elements in D ∩ YN+1 (note that with L as in Corollary 6.23, we have K = L − 1). Write
D ∩YN+1 = {y1, . . . , yK}, and note that we may write D as the disjoint union of the sets D(yi).
It suffices to show that each D(yi) may be written as a finite union of Γϕ|Y-orbits. We notice that
each D(yi) looks like an upside-down tree – the set ϕ−1(yi) is finite, and for each z ∈ ϕ−1(yi),
the set ϕ−1(z) is finite, etc. Finally, if z ∈ ϕ−2(N+1)(yi), we have z ∈ Y−N−1, so z is not critical
and ϕ−1(z) contains exactly one element. Now, observe the following:

• If z ∈ O+(yi), we have [z] = [yi].
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• If z ∈ ϕ−2(N+1)(yi), and x ∈ O−(z), we have [z] = [x].

• The set D(yi) ∩ (tN
i=−NYi) is finite.

Taken together, these three facts imply that D(yi) is the union of at most finitely many Γϕ|Y-
orbits, and this shows the first part of the lemma.

For the second part, let x ∈ D. Now one of two things happen: Either there is an n such that
x is critical for ϕn, in which case the isotropy group Iso(x) at x is isomorphic to Z2, or no such
n exists, in which case Iso(x) is trivial. In either case, the set [x] is infinite: if x is pre-critical, any
point in O−(x) is contained in [x], and if it isn’t, we have O+(x) ⊆ [x]. We may now appeal to
Examples 1.20 and 1.24 to conclude that

C∗r (Γϕ|[x]) ' C∗(Iso(x))� K(l2([x])) '
{

K2, if Iso(x) ' Z2.
K, if Iso(x) ' {e}.

(6.5)

Since C∗r (Γϕ|D) is the finite direct sum of the C∗-algebras of the Γϕ-orbits contained in D, the
result follows. �

Proposition 6.25. Let ϕ : T → T be a twisted Denjoy map with invariant Cantor set Σ, and put
Y = T \ Σ. Then there are extensions

0 // C∗r (Γϕ|Y) // C∗r (Γϕ) // C(Σ)oϕ,r Z // 0 (6.6)

and
0 // (C0((0, 1))� K)L // C∗r (Γϕ|Y) // KM // 0 (6.7)

for some natural numbers L and M.

Proof. Since ϕ is a homeomorphism on Σ, it follows from Proposition 1.8 of [23] C∗r (Γϕ|Σ) '
C(Σ)oϕ Z. The second extension is a direct consequence of Lemmas 6.23 and 6.24. �

Remark 6.26. The numbers L and M can be determined directly from ϕ. L is given as in
Lemma 6.22 and is simply the eventual number of connected components in YN \ D. The
number M is slightly more tricky – from Lemma 6.24 we may choose x1, . . . , xm ∈ D such
that D = [x1] t · · · t [xm]. Partition them according to their eventual valency, such that
vxi ∈ {(+,−), (−,+)} for i = 1, . . . , m1 and vxi ∈ {(+,+), (−,−)} for i = m1 + 1, . . . m.
From the lemma, it follows that each C∗r (Γϕ|[xi ]

) ' K2 for i = 1, . . . , m′ and C∗r (Γϕ|[xi ]
) ' K for

i = m′ + 1, . . . m. If we put m2 = m−m1, it follows that we have M = 2m1 + m2. �

6.3.4 K-theory

Lemma 6.25 gives a fairly clear picture of the C∗-algebra C∗r (Γϕ) when ϕ is a modified Denjoy
map. To calculate its K-theory, we use the same strategy as in Section 3.1 for determining
the K-theory of C∗r (Γϕ|Y), and then combine these results with those of [28] to get hold of the
K-theory of C∗r (Γϕ). Start by taking the extension (6.7) and its associated six-term exact sequence
on K-theory:

K0((C0((0, 1))� K)L) // K0(C∗r (Γϕ|Y)) // K0(K
M)

��

K1(K
M)

OO

K1(C∗r (Γϕ|Y))oo K1((C0((0, 1))� K)L)oo

(6.8)
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The K-theory of K and C0((0, 1))� K is well-known from e.g. [34]. Plugging this into (6.8)
yields

0 // K0(C∗r (Γϕ|Y)) // ZM

δ0
��

0 K1(C∗r (Γϕ|Y))oo ZLoo

(6.9)

which in turn implies that

K0(C∗r (Γϕ|Y)) ' ker(δ0), K1(C∗r (Γϕ|Y)) ' coker(δ0).

Write A for the algebra C∗r (Γϕ|D), and B for the algebra of the equivalence relation on I as in
the proof of Lemma 6.22. The extension in Lemma 6.7 then takes the form

0 // C0((0, 1), B) // C∗r (Γϕ|Y) // A // 0. (6.10)

We now aim to construct ∗-homomorphisms I, U : A→ B such that

C∗r (Γϕ|Y) ' {(a, f ) ∈ A � C([0, 1], B) | I(a) = f (0), U(a) = f (1)}

since this by Lemma 1.27 would mean that the map δ0 in (6.9) is equal to I∗ −U∗, the difference
of the two induced maps I∗, U∗ : K0(A)→ K0(B). We define the maps on matrix units, extend
them linearly, and then check that they give rise to honest ∗-homomorphisms. First, for a point
x ∈ D, choose i such that x ∈ Yi, and denote by Ix

l and Ix
r the connected component of Zi

immediately to the left and right of x. Then, if (x, p, y) ∈ Γϕ|D , define I and U on the matrix
unit ex,p,y by the following – horrible – table:

ex,p,y I(ex,p,y) U(ex,p,y)
vx = vy = (−,+), p = + eIx

l ,Iy
l
+ eIx

r ,Iy
r

0
vx = vy = (−,+), p = − eIx

l ,Iy
r
+ eIx

r ,Iy
l

0
vx = vy = (+,−), p = + 0 eIx

l ,Iy
l
+ eIx

r ,Iy
r

vx = vy = (+,−), p = − 0 eIx
l ,Iy

r
+ eIx

r ,Iy
l

vx = vy = (+,+) eIx
r ,Iy

r
eIx

l ,Iy
l

vx = vy = (−,−) eIx
l ,Iy

l
eIx

r ,Iy
r

vx = (+,+), vy = (−,−) eIx
r ,Iy

l
eIx

l ,Iy
r

vx = (−,−), vy = (+,+) eIx
l ,Iy

r
eIx

r ,Iy
l

Now extend I and U linearly to maps defined on all of A. Checking that these maps respect the
∗-operation is a simple case by case-argument. So is checking multiplicativity, albeit with a lot
more cases. For instance, let (x,+, y), (y,−, z) ∈ Γϕ|D with vx = vy = (−,−) and vz = (+,+).
Then

I(ex,+,y)I(ey,−,z) = eIx
l ,Iy

l
· eIy

l ,Iz
r
= eIx

l ,Iz
r = I(ex,−,z) = I(ex,+,y · ey,−,z).

The other cases are similar. It follows that I and U are ∗-homomorphisms. Finally, construct
maps a : C∗r (Γϕ|Y) → A and b : C∗r (Γϕ|Y) → C((0, 1), B) as follows: for f ∈ Cc(Γϕ|Y), let
A = supp( f ) ∩ Γϕ|D , and put

a( f ) = ∑
(x,p,y)∈A

f (x, p, y)ex,p,y
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and
b( f ) = ∑

(I,J)
f I,JeI,J

again with f I,J defined as in Lemma 6.22. It is straightforward to check that a and b extend to
∗-homomorphisms from C∗r (Γϕ|Y) into A and C([0, 1], B).

Lemma 6.27. Let f ∈ C∗r (Γϕ|Y). Then I(a( f )) = b( f )(0) and U(a( f )) = b( f )(1).

Proof. As the proof of Lemma 3.8. �

Consider the the C∗-algebra D given by

D = {(a, f ) ∈ A � C([0, 1], B) | I(a) = f (0), U(a) = f (1)}.

By Lemma 6.27, we have a map µ : C∗r (Γϕ|Y)→ D given by µ( f ) = (a( f ), b( f )), which is seen
to be injective and isometric.

Lemma 6.28. The map µ : C∗r (Γϕ|Y)→ D is a ∗-isomorphism.

Proof. The proof goes as the proof of Lemma 3.9, with an approximation argument towards
the end as an added bonus. First, let (a, f ) ∈ D and assume that the rank of a (as a compact
operator) is finite. It follows from the definition of I that I(a) is finite-rank in C([0, 1], B), and
since f (0) = I(a) and the rank of f (t) is locally constant in t, we have that f (t) ∈ B is finite
rank for any t. Proceeding as in the proof of Lemma 3.9, we may find a g ∈ C∗r (Γϕ|Y) such
that µ(g) = (a, f ). Next, for arbitrary (a, f ) ∈ D, let n ∈ N and define (an, fn) by restricting
a and f to points in the set tn

i=−nYn. Then an and fn are of finite rank, and (an, fn) ∈ D with
(an, fn) → (a, f ) as n → ∞. Choosing elemens gn ∈ C∗r (Γϕ|Y) with µ(gn) = (an, fn) gives a
sequence {gn} which is Cauchy (since µ is an isometry), hence the limit point g is mapped to
(a, f ) by µ. �

Corollary 6.29. With I, U : C∗r (Γϕ|D)→ C∗r (Γϕ|Z) defined as above, and I∗, U∗ denoting the induced
maps on K0, we have K0(C∗r (Γϕ|Y)) = ker(I∗ −U∗) and K0(C∗r (Γϕ|Y)) = coker(I∗ −U∗).

Proof. Immediate from Lemmas 3.9 and 1.27. �

These computations can be done for more complicated maps, but determining a matrix
representation of I∗ − U∗ quickly becomes rather involved. However, as we only need to
determine the kernel and the cokernel of the map, the next lemma is all we need:

Proposition 6.30. The map I∗ −U∗ : K0(C∗r (Γϕ|D))→ K0(C∗r (Γϕ|Z)) is surjective.

Proof. First, we choose a basis for K0(C∗r (Γϕ|Z)): Choose N ∈ N such that C ⊆ tN
i=−NYi, and

let I1, . . . , IL be the connected components of YN \ D. Each of these intervals Zi yield a matrix
unit eZi ,Zi ∈ C∗r (Γϕ|Z), and with slight abuse of notation, we have Z = [I1] t · · · t [IL] – more
precisely, each connected component of Z lies in exactly one of the sets

⋃
n,m ϕ−n(ϕm(Ii)), and

these total orbits are disjoint sets. It follows that the K0-classes of the matrix units eI1,I1 , . . . , eIL ,IL

generate ZL = K0(C∗r (Γϕ|Z)). Now, fix an i between 1 and L, and denote by x and y the
endpoints of Ii. Assume first that i 6= L, i.e. that Ii is not the rightmost interval of YN and y is
not the right endpoint of YN . Since y ∈ D ∩ YN , there is a y′ ∈ C ∩ ϕ−j(y) for some j. Let J be
the connected component of Z with y′ as the right endpoint, and J′ the connected component
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of Z with y′ as left endpoint. Since y′ is critical, we have that the eventual valency vy′ is either
(+,−) or (−,+). If vy′ = (+,−), we have I(ey′ ,+,y′) = I(ey′ ,−,y′) = 0 and

U
(

1
2 (ey′ ,+,y′ + ey′ ,−,y′)

)
= 1

2
(
eJ,J + eJ′ ,J′ + eJ,J′ + eJ′ ,J

)
Since both J and J′ are mapped to Ii by ϕj, it follows that the projection 1

2
(
eJ,J + eJ′ ,J′ + eJ,J′ + eJ′ ,J

)
is Murray-von Neumann equivalent to eIi ,Ii via the partial isometry

v =
1√
2

(
eJ,Ii + eJ′ ,Ii

)
.

It follows that on K0, we have

I∗ −U∗([ 1
2 (ey′ ,+,y′ + ey′ ,−,y′ ]) = [ 1

2 ([J, J + eJ′ ,J′ + eJ,J′ + eJ′ ,J)] =
[
eIi ,Ii

]
If, on the other hand, vy′ = (−,+), it follows that ϕj maps J and J′ not to Ii, but Ii+1, and hence
by the same calculations as above, we have

I∗ −U∗([ 1
2 (ey′ ,+,y′ + ey′ ,−,y′ ]) =

[
1
2
(
eJ,J + eJ′ ,J′ + eJ,J′ + eJ′ ,J

)]
=
[
eIi+1,Ii+1

]
However, we note that vy = (+,+), so

I(ey,y) = eIi+1,Ii+1 , U(ey,y) = eIi ,Ii

and hence
I∗ −U∗([ey,y]) = [eIi+1,Ii+1 ]− [eIi ,Ii ]

Applying I∗−U∗ to the difference between [ 1
2 (ey′ ,+,y′ + ey′ ,−,y′)] and [ey,y] thus yields the element

[eIi ,Ii ]. As noted, this argument works for all intervals Ii, except for the rightmost interval IL.
But here, applying the same argument to the left endpoint, with the roles of (+,−) and (−,+)
interchanged, yields the desired result. �

This lemma allows to calculate the K-theory of C∗r (Γϕ|Y):

Proposition 6.31. Let L and M be as in Remark 6.26. Then

K0(C∗r (Γϕ|Y)) ' ZM−L, K1(C∗r (Γϕ|Y)) = 0.

Proof. Recall that I∗ −U∗ is a linear map between K0(C∗r (Γϕ|D)) ' ZM and K0(C∗r (Γϕ|Z)) ' ZL.
By Proposition 6.30, it is surjective, so Im(I∗ −U∗) ' ZL and hence

K1(C∗r (Γϕ|Y)) ' coker(I∗ −U∗) = 0.

Furthermore, the rank-nullity theorem tells us that

dim(ker(I∗ −U∗)) + dim(Im(I∗ −U∗)) = M,

so K0(C∗r (Γϕ|Y)) ' ZM−L. �
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Using Bott periodicity on Equation (6.6) gives a six-term exact sequence on K-theory:

K0(C∗r (Γϕ|Y)) // K0(C∗r (Γϕ)) // K0(C(Σ)oϕ,r Z)

��

K1(C(Σ)oϕ,r Z)

OO

K1(C∗r (Γϕ))oo K1(C∗r (Γϕ|Y))oo

(6.11)

The K-theory of C(Σ)oϕ,r Z is calculated in Theorem 5.3 of [28], and we have, under the
assumption of Remark 6.17, that

K0(C(Σ)oϕ,r Z) = Z2, K1(C(Σ)oϕ,r Z) = Z.

Using this and Proposition 6.31 on (6.11), we get the following sequence:

ZM−L // K0(C∗r (Γϕ)) // Z2

��

Z

δ

OO

K1(C∗r (Γϕ))
r0oo 0oo

(6.12)

where r0 is the induced map from the restriction r : C∗r (Γϕ)→ C∗r (Γϕ|Σ), and £δ the index map.
We observe that the map r∗ from K1(C∗r (Γϕ)) to K1(C∗r (Γϕ|Σ)) ' Z is injective, so K1(C∗r (Γϕ)) is
either Z or 0. We claim the following:

Proposition 6.32. The map r0 : K1(C∗r (Γϕ))→ K1(C∗r (Γϕ|Σ)) is surjective. In particular, K1(C∗r (Γϕ)) ' Z.

We write [a]0 and [a]1 for the K0- and K1-classes of elements a of a C∗-algebra. Since
C∗r (Γϕ|Σ) ' C(Σ)or Z, its K1-group is generated by the unitary element u = 1{(x,1,ϕ(x)|x∈Σ}.
Showing that r0 is surjective is equivalent to showing that the index map δ is zero, which in
turn follows if δ([u]1) = 0.

Proof. Note that C∗r (Γϕ) is unital. We use the picture of the index map given in Theorem 9.2.3 of

[34]: Let ˜C∗r (Γϕ|Y) be the unitization of C∗r (Γϕ|Y) and ī : ˜C∗r (Γϕ|Y)→ C∗r (Γϕ) the map induced

by the inclusion. Let s : ˜C∗r (Γϕ|Y) → ˜C∗r (Γϕ|Y) be the scalar mapping (i.e. s(x + α1) = α1 for
x ∈ C∗r (Γϕ|Y)). The map δ is then defined as follows: Given a unitary lift V ∈ M2(C∗r (Γϕ)) of

diag(u, u∗) and a projection p ∈ M2( ˜C∗r (Γϕ|Y) with ī(p) = V diag(1, 0)V∗, we have

δ([u]1) = [p]0 − [s(p)]0.

To construct V, let v ∈ Cc(Γϕ) be a real-valued function such that

supp(v) ⊆ {(x, k, p, y) ∈ Γϕ|k = 1, p = +},

such that v(x, 1,+, ϕ(x)) = 1, such that v(x, k, p, y) = 0 for (x, k, p, y) ∈ Γϕ|D , and finallysuch
that ϕ is one-to-one at x if (x, 1,+, ϕ(x)) ∈ supp(v). Essentially, v is a bump function for the set
{(x, 1, ϕ(x))|x ∈ Σ}. It follows that r(v) = u, and that

v∗v(x, k, y) = v(y, 0, y)2

if x = y and k = 0, and zero elsewhere. Define V ∈ M2(C̃∗r (Γϕ)) by

V =

[
v (1− v∗v)1/2

−(1− v∗v)1/2 v∗

]
.
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Then V is unitary in M2(C∗r (Γϕ)) and a lift of diag(u, u∗). It follows that

V
[

1 0
0 0

]
V∗ =

[
vv∗ −(1− v∗v)1/2v∗

−(1− v∗v)1/2v 1− v∗v

]
=

[
vv∗ − 1 −(1− v∗v)1/2v∗

−(1− v∗v)1/2v 1− v∗v

]
+

[
1 0
0 0

]
=: V′ + diag(1, 0).

The matrix V′ is in M2(C∗r (Γϕ|Y)), so p = V′+diag(1, 0) ∈ ˜C∗r (Γϕ|Y)) and ī(p) = V diag(1, 0)V∗.
We see that s(p) = diag(1, 0). As stated above, we want to show that [p]0 = [s(p)]0. To do this,
recall that we have another restriction map in play – namely the map r|D : C∗r (Γϕ|Y)→ C∗r (Γϕ|D).
By looking at Equation (6.9), we see that the induced map (rD)0 on K0 is injective, so it suffices
to show that

(rD)0([p]0) = (rD)0([s(p)]0)

in K0( ˜C∗r (Γϕ|D)). By construction, we have rD(v) = 0, so since D is totally invariant, we also
have

rD(vv∗) = rD((1− v∗v)1/2v) = rD(v∗(1− v∗v)1/2) = 0

It follows that

rD(p) =
[

0 0
0 1

]
∼
[

1 0
0 0

]
= rD(s(p))

with ∼ denoting Murray-von Neumann equivalence in M2( ˜C∗r (Γϕ|D)). This is what we wanted,
so we conclude that δ([u]1) = 0. �

Theorem 6.33. Let ϕ be a Denjoy map with constants L and M as in Remark 6.26. Then K0(C∗r (Γϕ)) '
ZM−L+2 and K1(C∗r (Γϕ)) ' Z.

Proof. We know already that K1(C∗r (Γϕ)) ' Z and that the index map δ in Equation 6.12 is zero.
It follows then that the sequence

0 // ZM−L // K0(C∗r (Γϕ)) // Z2 // 0 (6.13)

is exact, hence K0(C∗r (Γϕ)) ' ZM−L+2. �



Chapter 7
Return of the core algebras

In this chapter, we return to the core algebras C∗r (Rϕ) and C∗r (R+
ϕ ) from Chapter 3. The ultimate

goal of this chapter is to show that in a number of situations, the algebra C∗r (Rϕ) is an AF-algebra,
while the algebra C∗r (R+

ϕ ) is not. We do this by proving a number of structural results about
the algebras, and then appealing to some deep classificiation results. These results typically
assume simplicity of the algebras, so we begin by obtaining some dynamical consequences
of this assumption. I would like to stress that everything in this chapter is joint work with
Benjamin Johannesen, and some of the results (Lemmas 7.1, 7.6, 7.7 and 7.9) appeared first in
his Qualification Exam report [14].

Proposition 7.1. Let ϕ be a circle map, and assume that C∗r (Rϕ) is simple. Then ϕ is critically finite
and transitive.

Proof. Let C∗r (Rϕ) be simple. This means that the orbit [x] = [x]Rϕ of any point x ∈ T is dense
in T – otherwise, the reduction Rϕ|T\[x] would give rise to an ideal C∗r (Rϕ|T\[x]) of C∗r (Rϕ) by
Lemma 1.16. Now, assume towards a contradiction that ϕ has a critical point c whose forward
orbit O+(c) is infinite. O+(c) may contain other critical points, but since the number of critical
points of ϕ is finite, there is a number j ∈N such that d = ϕj(c) is critical for ϕ, and such that
O+(d) contains no critical points. Note that val(ϕn, d) ∈ {(+,−), (−,+)} for all n ∈ N. We
have

[d]Rϕ = {x ∈ T | ∃n : ϕn(x) = ϕn(d), val(ϕn, x) = val(ϕn, d)}
Let {e1, . . . , eN} be the set of critical points of ϕ whose forward orbit meets the forward orbit of d.
For each ei, we may choose ni ∈ N minimal such that ϕni (ei) = ϕmi (d) for some mi ∈ N. The
number mi is unique – otherwise, d would be pre-periodic. If x ∈ [d]Rϕ , x has to be pre-critical,
and it then follows that x ∈ ϕmi−ni (ei) for some i. Hence

[d]Rϕ ⊆
N⋃

i=1

ϕmi−ni (ei)

which is a finite set. But this is a contradiction, so ϕ must be critically finite.
For the second statement, note that simpicity of C∗r (Rϕ) entails that [x]Rϕ is dense for any

x ∈ T by Lemma 1.16. But [x]Rϕ ⊂ [x]Γϕ , so any Γϕ-orbit is dense. But then C∗r (Γϕ) is simple
Lemma 4.10, and then ϕ is transitive by Lemma 4.14. �

Note that the same proof works for C∗r (R+
ϕ ). For the rest of this chapter, we assume that the

map ϕ is critically finite.

99
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7.1 Recursive subhomogeneous algebras

We begin by showing that C∗r (Rϕ) and C∗r (R+
ϕ ) are inductive limits of recursive subhomogeneous

algebras, as defined by Phillips in [25]:

Definition 7.2. Let Mn denote the complex n-by-n-matrices. The class R of recursive subhomoge-
neous C∗-algebras (or RSH-algebras) is the smallest class of C∗-algebras such that

• If X is a compact Hausdorff space and n ≥ 1, then C(X, Mn) ∈ R, and

• If A ∈ R, X is a compact Hausdorff space, X(0) ⊆ X is closed, ϕ : A → C(X(0), Mn) is a
unital ∗-homomorphism and ρ : C(X, Mn)→ C(X(0), Mn) is the restriction map, then the
pullback

A �C(X(0),Mn)
C(X, Mn) = {(a, f ) ∈ A � C(X, Mn) | ϕ(a) = ρ( f )}

is in R.

Note that X(0) = ∅ is allowed, in which case the pullback above is simply a direct sum.

Lemma 7.3. Let k ∈N. Then the algebras C∗r (Rϕ(k)) and C∗r (R+
ϕ (k)) are RSH-algebras.

Proof. Recall from Lemma 3.9 that the algebra C∗r (Rϕ(k)) is isomorphic to the algebra Dk given
by

Dk = {Ak � C([0, 1], Bk) | Ik(a) = f (0), Uk(a) = f (1)}
for some unital ∗-homomormphisms Ik, Uk : Ak → Bk with Ak and Bk finite dimensional. Now,
Ak is an RSH-algebra, and, writing Bk = �n

i=1Mni , each algebra C([0, 1], Mni ) is RSH. Let Ii
k and

Ui
k denote the partial maps between Ak and Mni , and put X = [0, 1] and X(0) = {0, 1}. Then

(I1
k , U1

k ) : Ak → C(X(0), Mn1) is a unital ∗-homomorphism, so

D1
k =

{
(a, f ) ∈ Ak � C([0, 1], Mn1)

∣∣∣ I1
k (a) = f (0), U1

k (a) = f (1)
}

is an RSH-algebra. But then

D2
k =

{
(a, f , f ′) ∈ D2

k � C([0, 1], Mn2

∣∣∣ I2
k (a) = f ′(0), U2

k (a) = f ′(1)
}

is also an RSH-algebra, and, inductively, we get that Dk is RSH. The same proof goes for
C∗r (R+

ϕ ). �

As in Chapter 5, we put

D = ϕ
( ⋃

c∈C

∞⋃
i=0

ϕi(c)
)

When ϕ is critically finite, D is a finite set. As we have seen, for any k ∈ N, the number of
summands in Ak, A+

k , Bk, B+
k are all bounded by some constant times the number of elements

of D. In the language of RSH-algebras (see definition 1.2 in [25]), this means that the length of
the decompositions of Dk and D+

k given above is uniformly bounded. Furthermore, the base
space for both Dk and D+

k is a finite disjoint union of spaces homeomorphic to the unit interval
[0, 1]; in particular, the dimension functions for all the algebras Dk and D+

k are bounded by the
constant 1. It follows that the inductive systems

{C∗r (Rϕ(k)), ρk}k∈N, {C∗r (R+
ϕ (k)), ρ+k }k∈N
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where ρk and ρ+k are the inclusion maps, have no dimension growth. The limits of both systems,
C∗r (Rϕ) and C∗r (R+

ϕ ), are infinite-dimensional (since they each contain a copy of C(T)). It follows
from Corollary 1.9 of [24] that both systems have strict slow dimension growth. We will need this
fact in a bit.

7.2 Traces on C∗r (Rϕ) and C∗r (R+
ϕ )

To understand the core algebras better, we now determine their tracial states. As we shall see,
simplicity of the algebras implies that they each have a unique tracial state. We prove this first for
C∗r (R+

ϕ ), and then use results of Nesvehyev to conclude the same for C∗r (Rϕ). The lemma below
reveals a close connection between tracial states on the core algebras and invariant measures
on the circle. Generally, given a groupoid G with unit space G0 and range and source maps
r, s : G → G0, a measure µ on G0 is G-invariant if µ(r(W)) = µ(s(W)) for any bisection W ⊆ G.

Lemma 7.4. If µ is a regular R+
ϕ -invariant Borel probability measure on T, the state given by

ω( f ) =
∫

T
f (x, x)µ(dx), f ∈ Cc(R+

ϕ )

is a tracial state on C∗r (R+
ϕ ). Conversely, given a tracial state on C∗r (R+

ϕ ), it is given by integration
against a regular Rϕ-invariant Borel probability measure as above.

Proof. Since R+
ϕ is principal, this result follows from Lemmas 3.4.4 and 3.4.5 of [27]. �

Lemma 7.5. Let ϕ : T→ T be a uniformly piecewise linear transitive circle map. Then there exists a
R+

ϕ -invariant Borel probability measure on T.

Proof. Let λ be the normalised Lebesgue measure on T. Let W be a bisection. Then we may
assume that W has the form

W =
{
(x, y) ∈ T×T

∣∣∣ x ∈ I, y ∈ J, ϕk(x) = ϕk(y), val(ϕk, x) = val(ϕk, y)
}

where I and J are open intervals. By the assumption on ϕ, it follows that

λ(r(W)) = λ(I) = λ(J) = λ(s(W))

It follows that λ is R+
ϕ -invariant. �

Lemma 7.6. Let µ be a Borel probability measure on T that is R+
ϕ -invariant, and assume that C∗r (Rϕ)

is simple. Then µ is non-atomic.

Proof. Assume towards a contradiction that there is an x0 ∈ T such that µ({x0}) > 0. Since
C∗r (R+

ϕ ) is simple, the orbit [x0]R+
ϕ

of x0 is infinite. Clearly, we are done if we can show that

µ({x}) = µ({x0}) for any x ∈ [x0]R+
ϕ

, so choose such an x and a γ ∈ R+
ϕ with r(γ) = x and

s(γ) = x0. Choose a decreasing sequence of open bisections Wn with
⋂

n Wn = {γ}. Then

µ({x}) = µ
(⋂

n
r(Wn)

)
= lim

n→∞
µ(r(Wn)) = lim

n→∞
µ(s(Wn)) = µ

(⋂
n

s(Wn)
)
= µ({x0}).

�

Lemma 7.7. Assume that C∗r (R+
ϕ ) is simple. Then there is a unique tracial state on C∗r (R+

ϕ ).
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Proof. Since C∗r (R+
ϕ ) is simple, ϕ is transitive, hence conjugate to a uniformly piecewise monotone

map ψ. Since Γ+
ψ ' Γ+

ϕ by Remark 2.23, their groupoid C∗-algebras are isomorphic, so we lose no
generality assuming that our map is uniformly piecewise monotone. Then existence follows from
the existence of a R+

ϕ -invariant measure in Lemma 7.5. For uniqueness, note that Lemma 3.2 of
[42] says that C∗r (R+

ϕ ) has at most one non-atomic tracial state, and Lemmas 7.4 7.6 says that
any tracial state is non-atomic. �

Proposition 7.8. Any trace on C∗r (Rϕ) factors through C∗r (R+
ϕ ). In particular, C∗r (Rϕ) has a unique

tracial state.

Proof. Let Q : C∗r (Rϕ) → C∗r (R+
ϕ ) denote the restriction map, let f ∈ Cc(Rϕ), and write

f = f+ + f−, with f+ ∈ Cc(R+
ϕ ) and f− ∈ Cc({(x, p, y) ∈ Rϕ|p = −}. Since f+ = Q( f ), we are

done if we can show that τ( f−) = 0. Choose a probability measure µ on T and a field of states
{ϕx}x representing τ, cf. [20], i.e. such that

τ(h) =
∫

T
∑

g∈Iso(x)
h(g)ϕx(ug)dµ(x)

for any h ∈ Cc(Rϕ). Consider the function F given by

F(x) = ∑
g∈Iso(x)

f−(g)ϕx(ug), x ∈ T.

Given x ∈ T such that x is non-critical for any ϕk, the isotropy group Iso(x) consists of the single
element (x,+, x). Since f−(x,+, x) = 0, we have F(x) = 0. The set of x ∈ T critical for some ϕk

is countable, so the function F is zero µ-almost everywhere. By Lemma 7.6, µ is non-atomic, so
we have τ( f−) =

∫
T

F(x)dµ(x) = 0. �

Lemma 7.9. Let ϕ be uniformly piecewise linear, and let τ be the unique tracial state on C∗r (R+
ϕ ). Then

for any ε > 0, there is a projection p in C∗r (R+
ϕ ) with τ(p) < ε.

Proof. Recall that C∗r (R+
ϕ ) is the infinite-dimensional limit of the inductive system {C∗r (R+

ϕ (k)), ρk},
that all the inclusion maps ρk are unital and injective, and that each C∗r (R+

ϕ (k)) is isomorphic to
the algebra Dk, as discussed in Lemma 7.3. Since C∗r (R+

ϕ ) is the infinite-dimensional inductive
limit of a system of recursive subhomogeneous algebras with unital and injective inclusion maps,
Lemma 1.8 of [25] shows the following: Let ρij be the composition ρj−1 ◦ · · · ◦ ρi+1 ◦ ρi : Di → Dj.
Then, given an n ∈N, for any non-zero d ∈ Di (for any i), there is a j0 such that for j ≥ j0,

rank(evx(ρij(d))) ≥ n

which in our notation simply boils down to the fact the the matrix dimension of any summand
of Bk goes to infinity as k goes to infinity. In particular it follows that there is a k and a pair
of intervals (I, J) ∈ I (2)k such that the set v(I, J), consisting of I, J and the shortest of the two
arcs on T between I and J, has length strictly less than ε. To prove the lemma, we proceed to
construct a projection p ∈ Cc(R+

ϕ ) such that p restricted to T is supported in v(I, J), and such
that |p(x, y)| ≤ 1 for all (x, y) ∈ R+

ϕ . If we can do this, it follows

τ(p) =
∫

T
pdt < ε
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Figure 7.1: The map g defined on the set v(I, J)..

and we are done. p is essentially constructed as a Rieffel projection, introduced in [32]. Write
I = (a, b) and J = (c, d), and assume that v(I, J) is the set (a, d). Let g1 ∈ C(I) be any function
such that 0 ≤ g1(t) ≤ 1, such that

lim
t→a+

g1(t) = 0, lim
t→b−

g1(t) = 1.

Let γ : I → J be the map λJ ◦ ϕk, which is a homeomorphism with inverse γ−1 = λI ◦ ϕk. Define
g2 ∈ C(J) by g2(t) = 1− g1(γ(t)). Then

lim
t→c−

g2(t) = 1 lim
t→d+

g2(t) = 0

Finally, define g on v(I, J) by putting g ≡ g1 on I, g ≡ g2 on J and g ≡ 1 on (b, c). Put

p(z, w) =


g(z) if z = w ∈ v(I, J) ⊆ T√

g(z)− g(z)2 if z ∈ I, w ∈ J, (z, w) ∈ R+
ϕ (k),√

g(w)− g(w)2 if z ∈ J, w ∈ I, (z, w) ∈ R+
ϕ (k)

(7.1)

and 0 elsewhere. Checking that p∗ = p is straightforward, and checking that p2 = p is a simple
calculation: Then, if x ∈ I, we have s(r−1(x) ∩ supp(p)) = {x, γ(x)}, so

p2(x, x) = p(x, γ(x))p(γ(x), x) + p(x, x)2 = g(x)− g(x)2 + g(x)2 = g(x) = p(x, x).

The same calculation shows that p2(x, x) = p(x, x) when x ∈ J, and when x ∈ v(I, J), but not in
I or J, have s(r−1 ∩ supp(p)) = {x}, so

p2(x, x) = p(x, x)p(x, x) = 1 = p(x, x).

Likewise, the calculation

p2(x, γ(x)) = p(x, x)p(x, γ(x)) + p(x, γ(x))p(γ(x), γ(x))

= g(x)
√

g(x)− g(x)2 + g(γ(x))
√

g(x)− g(x)2 =
√

g(x)− g(x)2 = p(x, γ(x))
(7.2)
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shows that p2(x, γ(x)) = p(x, γ(x)) when x ∈ I, and a similar calculation does the trick when
x ∈ J. In all other cases, p2(x, y) = 0 = p(x, y), which shows that p is a projection. �

The use of the Rieffel projection in the proof above was communicated to me by Benjamin
Johannesen, who in turn got the idea from conversations with Ian Putnam.

Corollary 7.10. Let τ be the unique tracial state on C∗r (R+
ϕ ), and τ∗ : K0(C∗r (R+

ϕ ))→ R the induced
map. Then the image τ∗(K0(C∗r (R+

ϕ ))) is dense in R.

Since the unique tracial state on C∗r (Rϕ) factors through C∗r (R+
ϕ ), the result above also holds

for C∗r (Rϕ).

7.3 A classi�cation result

Let us recapitulate what we have shown so far: Assuming that the algebras C∗r (Rϕ) and C∗r (R+
ϕ )

are simple, they each have a unique tracial state whose image in R is dense. Furthermore,
K1(C∗r (Rϕ)) = 0 by Lemma 3.14 and continuity of K1. Finally, C∗r (R+

ϕ ) is the fixed point-algebra
of the order-two automorphism Λ restricted to C∗r (Rϕ). We now boldy claim the following:

Theorem 7.11. Assume that C∗r (Rϕ) is simple. Then it is an AF-algebra.

Proving this will occupy the rest of the section, and requires some deep results. The proof
relies heavily on the K-theory of AF-algebras, which we outline briefly (for more, see e.g. [34]):
Assume that A is AF. Then (K0(A), K0(A)+) is a dimension group, i.e. the limit of a system of
ordered, free abelian groups:

Zn1
α1−−−−→ Zn2

α2−−−−→ Zn3 −−−−→ . . . (7.3)

with each Zn given the usual ordering and the α’s being positive group homomorphisms.
Conversely, given a dimension group, there is an AF-algebra with K0 isomorphic to this group.
The Effros-Handelman-Shen Theorem (see [12]) characterises dimension groups intrinsically:

Theorem 7.12. An ordered Abelian group (G, G+) is a dimension group if and only if it is

• unperforated: For any x ∈ G, nx ≥ 0 for some n ∈N implies x ≥ 0, and

• satisfies the Riesz interpolation property: if x1, x2, y1, y2 ∈ G with xi ≤ yj for i, j = 1, 2, there
is a z ∈ G with xi ≤ z ≤ yj for i, j = 1, 2.

Finally, any AF-algebra has trivial K1-group. The general strategy for proving Theorem 7.11
is then as follows: First, we prove that C∗r (Rϕ), when simple, has the K-theory of an AF-algebra.
Then we appeal to some general classification results for limits of RSH-algebras to show that if
it quacks like an AF-algebra and walks like an AF-algebra, then...

We need a general result. We say that a C∗-algebra A satisfies Blackadars Second Comparability
Condition if the partial order on projections in M∞(A) is determined by traces: If p, q ∈ M∞(A)
with τ(p) < τ(q) for all normalised traces on A, we have p ≤ q.

Lemma 7.13. Let A be a simple C∗-algebra satisfying Blackadars Second Comparability Condition, and
assume that A has a unique tracial state τ such that τ(P∞(A)) is dense in R. Then K0(A) has the
Riesz interpolation property.
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Proof. Let x1, x2, y1, y2 ∈ K0(A)+ with xi ≤ yj for i = 1, 2, and choose projections Xi, Yj ∈
M∞(A) representing these. By assumption, τ(Xi) ≤ τ(Yj) for i, j = 1, 2. Assume first that the
traces of the Xi’s are strictly less than those of the Yj’s, say τ(X1) ≤ τ(X2) < τ(Y1) ≤ τ(Y2).
Since the image of τ is dense in R, there is a projection Z in some Mn(A) with τ(X2) <
τ(Z) < τ(Y1). By the Comparability Condition, the K0-class of Z is an interpolating element
between the xi’s and yj’s. On the other hand, assume that we have equality of some of the
traces, say τ(X2) = τ(Y1). Since x2 ≤ y1, there are projections Z, R in some Mn(A) such that
Y1 � R ∼ X2 � Z � R. We get that τ(R) = 0, and since the set {A ∈ Mn(A)|τ(A∗A) = 0} is an
ideal (and hence equal to {0}), we must have R = 0. Thus, X2 ∼ Y1, so x2 = y1 works as an
interpolating element. �

With these lemmas in place, we can show that C∗r (Rϕ) has the K-theory of an AF-algebra:

Proposition 7.14. Assume that C∗r (Rϕ) is simple. Then K0(C∗r (Rϕ)) is a dimension group.

Proof. We know that C∗r (Rϕ) is the unital direct limit of the system (C∗r (Rϕ(k)), ik) of recursive
subhomogeneous algebras. Since the system has slow dimension growth, it follows from
Theorem 0.1 of [24] that K0(C∗r (Rϕ)) is unperforated and that C∗r (Rϕ) satisfies Blackadars Second
Comparability Condition. By Lemmas 7.9 and 7.13, K0(C∗r (Rϕ)) has the Riesz interpolation
property. By the Effros-Handelman-Shen Theorem, it is a dimension group. �

Proof (Of Theorem 7.11). By Proposition 7.14, we know that K0(C∗r (Rϕ)) is a dimension group.
Since C∗r (Rϕ) is assumed simple and admits a trace by 7.8, it is stably finite by Theorem 2.2 of
[33]. But then K0(C∗r (Rϕ)) is a simple ordered group by Theorem 6.3.5 of [5]. It follows that
there is an AF-algebra A whose K-theory is isomorphic to the K-theory of C∗r (Rϕ), and then that
A is simple since K0(A) is. But by [48], Corollary 1.4, ordered K-theory is a complete invariant
in the class of unital simple separable limits of recursive subhomogeneous C∗-algebras with slow
dimension growth whose projections separate traces (phew!), in particular for those algebras
with a unique tracial state. It follows that C∗r (Rϕ) ' A. �

To finish the programme laid out in the beginning of this chapter, we need to show that
C∗r (Rϕ) has non-trivial K1 whenever it is simple. Recall that the K1-groups of the building blocks
C∗r (R+

ϕ (k)) all were non-trivial – if we were able to show the same for C∗r (R+
ϕ ), we would have an

example of an AF-algebra (i.e. C∗r (Rϕ) whenever it is simple) with an order two-automorphism
whose fixed-point algebra is not AF. We know, by continuity of K1, that

K1(C∗r (R+
ϕ )) = lim−→(K1(C∗r (R+

ϕ (k))), (ρk)1)

where ρk is the inclusion from C∗r (R+
ϕ (k)) to C∗r (R+

ϕ (k + 1)). But in the critically finite case,
Equation 5.21 gives a formula for this map. Let’s put that to use:

Proposition 7.15. Let ϕ be a transitive, critically finite circle map. Then K1(C∗r (R+
ϕ )) is non-trivial.

Proof. Let’s recall the setup from Lemma 3.15: For each k, there is a map (Ik)0 − (Uk)0 :
K0(Ak)→ K0(Bk) such that

K1(C∗r (R+
ϕ (k))) ' coker((Ik)0 − (Uk)0).

As we saw in Lemma 3.15, this map is not surjective, and its image is contained in the subspace
V of K0(Bk) defined by

V =

{
∑
I∈I

cI,+[I, (+,+)] + cI,−[I, (−,−)]
∣∣∣∣∣ ∑

I∈I
cI,+ − cI,− = 0

}
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Recall furthermore that C∗r (Rϕ) is the limit of the building block algebras C∗r (R+
ϕ (k)), so by

continuity of K1, it follows that

K1(C∗r (R+
ϕ )) = lim−→

k
(K1(C∗r (Rϕ(k))), (ρk)1) (7.4)

with ρk denoting the inclusion from C∗r (Rϕ(k)) to C∗r (Rϕ(k + 1)). In Equation 5.21, we found a
formula for a map B : K0(Bk)→ K0(Bk+1) making the diagram

K0(Bk)

B
��

π // K1(C∗r (R+
ϕ (k)))

ρ1

��

K0(Bk+1)
π // K1(C∗r (R+

ϕ (k + 1)))

(7.5)

commute, with π denoting the quotient map. To prove the proposition, we find an element v in
the complement of V such that Bn(v) /∈ V for all n. It then follows that v gives rise to a non-zero
element in the inductive limit lim−→k

(K1(C∗r (Rϕ(k))), (ρk)1). First, lets describe the map B in some
detail: Let J ∈ I , v ∈ {(+,+), (−,−)}, and let [J, v] denote the corresponding basis element of
K0(Bk). By Equation 5.21, we have

B[J, v] = (−1)val(ϕ,J′)[ϕ(J′), v • val(ϕ, J′)]

where J′ ⊆ J is an interval such that ϕ(J′) ∈ I and J′ ∩ C = ∅. (Recall that for each J ∈ I , there
might be many subintervals J′ satisfying the conditions above, giving rise to many possible maps
B – we just fix some particular choice of intervals). It follows that B is completely determined
by the map Ψ : I → I taking an interval J to ϕ(J′) along with the set of valencies val(ϕ, J′).
Fix an I ∈ I , and note that v = [I, (+,+)]− [I, (−,−)] is in the complement of V, so π(v) is a
non-zero element of K1(C∗r (R+

ϕ (1))). Now, we calculate that

B[I, (+,+)] =

{
[Ψ(I), (+,+)] if val(ϕ, I′) = (+,+)

−[Ψ(I), (−,−)] if val(ϕ, I′) = (−,−)

and

B[I, (−,−)] =
{
[Ψ(I), (−,−)] if val(ϕ, I′) = (+,+)

−[Ψ(I), (+,+)] if val(ϕ, I′) = (−,−)

In both cases, it follows that

B ([I, (+,+)]− [I, (−,−)]) = [Ψ(I), (+,+)]− [Ψ(I), (−,−)],

so B(v) is also in the complement of V. But this calculation can be repeated to show that
B2(v), and, in general, Bn(v) is in the complement of V. It follows π(Bk(v)) is non-trivial in
K1(C∗r (R+

ϕ (k))) for any k, and that

ρ1(π(Bk(v)) = π(Bk+1(v)).

But then the direct limit

K1(C∗r (R+
ϕ )) = lim−→

k
(K1(C∗r (Rϕ(k))), (ρk)1)

is non-zero, as we wanted. �



Appendix A
Computations

This appendix contains a number of K-theory computations for critically finite maps. The setup
is the following: Let ϕ : T → T be a circle map, satisfying the following assumptions: 0 is a
critical point of valency (−,+), and for any c ∈ C, we have ϕ(c) = 0. This ensures that the map
is critically finite – indeed, the map is a Markov map, i.e. all critical points are mapped to critical
points. In the notation of Chapter 3, we may choose D = {0} and I = {I}, with I = (0, 1).

Example A.1. We begin by considering C∗r (Γϕ). Put

n1 = #{z ∈ ϕ−1(0)∩ (0, 1)| val(ϕ, z) = (+,−)}, n2 = #{z ∈ ϕ−1(0)∩ (0, 1)| val(ϕ, z) = (±,±)},

and note that it is possible to construct a Markov map ϕ with arbitrary values of n1 and n2.
Note first that #{z ∈ ϕ−1(0) ∩ (0, 1)| val(ϕ, z) = (−,+)} = n1 − 1. Using 5.34, we calculate:

ρ0(E(−,+)
0,+ ) = Eval(ϕ,0)

0,+ + ∑
z∈ϕ−1(0)∩C

(
Eval(ϕ,z)

0,+ + Eval(ϕ,z)
0,−

)
+ ∑

z∈ϕ−1(0)\C
Er

0

= n1E(−,+)
0,+ + (n1 − 1)E(−,+)

0,− + n1E(+,−)
0,+ + n1E(+,−)

0,− + n2Er
0.

Similar computations reveal that the matrix A is given by

A =


n1 n1 − 1 1 0 n1

n1 − 1 n1 0 1 n1
n1 n1 0 0 n1
n1 n1 0 0 n1
n2 n2 0 0 n2

 .

Using 6.3.4 shows that (I1)0 − (U1)0 as a map from Z5 to Z is given by (1, 1,−1,−1, 0). Hence,

ker((I1)0 − (U1)0) = {(x, y, z, x + y− z, w) | x, y, z, w ∈ Z} ' Z4.

A simple calculation shows that

Ã− 1 =


n1 − 1 n1 − 1 1 n1

n1 n1 −1 n1
n1 n1 −1 n1
n2 n20 n2 − 1

 ∼


0 0 1 n1
1 1 0 0
0 0 0 0
0 0 0 n2 − 1

 ,

107
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from which it is easily seen that K1(C∗r (Γϕ)) = ker(Ã− 1) ' Z if n2 6= 1, and K1(C∗r (Γϕ)) =

ker(Ã− 1) ' Z2 if n2 = 1. Similarly, some coloumn operations transforms Ã− 1 into the matrix
1 0 0 0
0 1 0 0
0 0 2n1 − 1 + n2 0
0 0 0 0

 .

Putting N = 2n1 + n2 − 1, we get that the Smith normal normal form of Ã− 1 is the diagonal
matrix (1, 1, N, 0), hence K0(C∗r (Γϕ)) = coker(Ã− 1) ' Z � ZN . In other words, the possible
K-theory groups for C∗r (Γϕ), where |D| = 1, is

(K0(C∗r (Γϕ)), K1(C∗r (Γϕ)) = (Z � ZN , Z)

with N arbitrary, and
(K0(C∗r (Γϕ)), K1(C∗r (Γϕ)) = (Z � ZN , Z2) N

for N even (since choosing n2 = 1 forces N to be even).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Figure A.1: Here are two examples of maps in the class
we considered. For the first map ϕ1, we have n1 =
n2 = 4, so N = 2n1 + n2 − 1 = 11, and it follows that
(K0(C∗r (Γϕ1)), K1(C∗r (Γϕ1)) ' (Z � Z11, Z). The second map
ϕ2 is supposed to have n1 local maxima (for some arbitrary
n1 ∈ N). It then follows that n2 = 2n1, so N = 3n1 − 1, so
K0(C∗r (Γϕ2)), K1(C∗r (Γϕ2)) ' (Z � Z3n1−1,' Z)..

Example A.2. We now consider C∗r (Γ+
ϕ ). This is a bit more complicated: We are now able to

distinguish between (+,+) and (−,−), so we need a parameter more compared to the sitation
above. We also need to determine the map B between K0(Bk) and K0(Bk+1). First, note that
the assumptions on ϕ implies that D(±) = {0} × V , so K0(Ak) ' Z4, and K0(Bk) ' Z2 since
I(±) = (0, 1)× {(+,+), (−,−)}. By the same arguments as in 5.25, (Ik)0 − (Uk)0 : Z4 → Z2 is
given by the matrix (

1 −1 0 0
1 −1 0 0

)
.

In particular, we have

ker((Ik)0 − (Uk)0) =
{
(x, y, z, w) ∈ Z4

∣∣∣ x = y
}
' Z3, coker((Ik)0 − (Uk)0) ' Z
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Next, note that since ϕ is assumed surjective, and since any critical point maps to 0, there is a
subinterval J of (0, 1) such that ϕ(J) = (0, 1), J contains no critical points, and val(ϕ, J) = (+,+).
It follows that the map B given in Equation 5.21, and hence also the restriction B̃, is simply the
identity. Hence

ker(1− B̃) ' coker(1− B̃) ' Z

Define numbers n1, n2 and n3 as follows:

n1 = #
{

z ∈ ϕ−1(0) ∩ (0, 1)
∣∣∣ val(ϕ, z) = (+,−)

}
n2 = #

{
z ∈ ϕ−1(0) ∩ (0, 1)

∣∣∣ val(ϕ, z) = (+,+)
}

n3 = #
{

z ∈ ϕ−1(0) ∩ (0, 1)
∣∣∣ val(ϕ, z) = (−,−)

}
Observe that #{z ∈ ϕ−1(0) ∩ (0, 1)| val(ϕ, z) = (−,+)} = n1 − 1. Using the formula for A given
above shows that

A =


2n1 − 1 1 n1 n1

2n1 0 n1 n1
n2 + n3 0 n2 n3
n2 + n3 0 n3 n2

 .

Since Using the vectors (1, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) as a basis for ker((Ik)0 − (Uk)0), a calcula-
tion reveals that

Ã− 1 =

2n1 − 1 n1 n1
n2 + n3 n2 − 1 n3
n2 + n3 n3 n2 − 1


which, after some invertible row and coloumn operations, turn out to be equivalent to

Ã− 1 =

1 0 0
0 n1 + n2 − 1 n1 + n3
0 n1 + n3 n1 + n2 − 1


from which we see that ker(Ã− 1) = 0 if

det(Ã− 1) = (n1 + n2 − 1)2 − (n1 + n3)
2 = n2

2 + n3
3 − 2n1n2 − 2n1 − 2n2 + 1 6= 0

and ker(Ã− 1) = Z otherwise. It follows from 5.23 that K1(C∗r (Γϕ)) ' Z in the first case, and
K1(C∗r (Γϕ)) ' Z2 in the second. Putting u = n1 + n2 − 1 and v = n1 + n3, a calculation shows
that the Smith normal form of Ã− 1 is1 0 0

0 gcd(u, v) 0
0 0 u2−v2

gcd(u,v)

 .

Hence coker(Ã− 1) = Zgcd(u,v) � Z |u2−v2 |
gcd(u,v)

, so

K0(C∗r (Γ
+
ϕ )) ' Z � Zgcd(u,v) � Z |u2−v2 |

gcd(u,v)

(A.1)

by 5.22. For any triple (n1, n2, n3) with n1 > 0 and n2, n3 ≥ 0, we can find a critically finite
map having the given constants. Indeed, fixing u ≥ 0 and v ≥ 1, and choosing a map
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ϕ with n1 = 1, n3 = v − 1 and u = n2, we get n1 + n2 − 1 = u and n1 + n3 = v. To
determine the possible K-theory groups, we simply need to calculate the range of the map
f (u, v) = (gcd(u, v), |u2 − v2|/ gcd(u, v)).

To do this, note first that gcd(u, v) divides |u2 − v2|/ gcd(u, v), and that

(cu)2 − (cv)2

gcd(cu, cv)
= c

u2 − v2

gcd(u, v)

In other words, if f (u, v) = (1, p), then f (cu, cv) = (c, cp), so we may reduce to the case where
gcd(u, v) = 1. Since gcd(u, u + 1) = 1 and |u2 − (u + 1)2| = 2u + 1, any pair (1, 2u + 1) is in
the range of f . Furthermore, with u = 2k + 1 odd and v = 2k + 3, we have gcd(u, v) = 1 and
u2 − v2 = 8k + 8, so any pair (1, 8k) is in the range. Conversely, if u2 − v2 = (u− v)(u + v)
is even with u, v coprime, both u and v are necessarily odd, so both u + v and u− v are even.
Furthermore, 4 divides at least one of them (if, say u− v = 4k + 2, then u + v = u− v + 2v =
4k + 2 + 2(2j + 1) = 4(k + j + 1)), so u2 − v2 is divisible by eight. Combining everything and
using 5.22, we get that the possible groups are

K0(C∗r (Γ
+
ϕ )) = Z � Zd � Zde

where d ∈N and e is either odd or a multiple of 8, or d = 1 and e = 0 (if u = v). N

We return to the concrete maps ϕ1 and ϕ2 given in the figure above. For the first map ϕ1,
we have n1 = n2 = 4 and n3 = 0. This means that u = 7 and n = 4, so gcd(u, v) = 1 and
|u2 − v2|/ gcd(u, v) = 33. It follows that

K0(C∗r (Γ
+
ϕ1
)) ' Z � Z33, K1(C∗r (Γ

+
ϕ1
)) ' Z.

The second map ϕ2 has n1 local maxima in (0, 1), and n1 = n2 = n3. In the notation of the
example, u = 2n1 − 1 and v = 2n1, so gcd(u, v) = 1 and |u2 − v2| = 2n1 − 1. It follows that the
K-theory groups are (Z � Z2n1−1, Z).
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