S (( z CENTRE FOR STOCHASTIC GEOMETRY
‘ AND ADVANCED BIOIMAGING

www.csgb.dk ! O I 7
RESEARCH REPORT

Abdollah Jalilian, Yongtao Guan and Rasmus Waagepetersen

Orthogonal series estimation of the pair correlation function
of a spatial point process

No. 01, March 2017



Orthogonal series estimation of the pair
correlation function of a spatial point process

Abdollah Jalilian!, Yongtao Guan? and Rasmus Waagepetersen®

'Department of Statistics, Razi University, Iran, jalilian@razi.ac.ir
2Department of Management Science, University of Miami, yguan@bus.miami . edu
3Department of Mathematical Sciences, Aalborg University, Denmark, ru@math.aau.dk

Abstract

The pair correlation function is a fundamental spatial point process character-
istic that, given the intensity function, determines second order moments of
the point process. Non-parametric estimation of the pair correlation function
is a typical initial step of a statistical analysis of a spatial point pattern. Kernel
estimators are popular but especially for clustered point patterns suffer from
bias for small spatial lags. In this paper we introduce a new orthogonal series
estimator. The new estimator is consistent and asymptotically normal accord-
ing to our theoretical and simulation results. Our simulations further show
that the new estimator can outperform the kernel estimators in particular for
Poisson and clustered point processes.

Keywords: Asymptotic normality; Consistency; Kernel estimator; Orthogonal
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1 Introduction

The pair correlation function is commonly considered the most informative second-
order summary statistic of a spatial point process (Stoyan and Stoyan, 1994; Mgller
and Waagepetersen, 2003; [llian et al., 2008). Non-parametric estimates of the pair
correlation function are useful for assessing regularity or clustering of a spatial point
pattern and can moreover be used for inferring parametric models for spatial point
processes via minimum contrast estimation (Stoyan and Stoyan, 1996; Illian et al.,
2008). Although alternatives exist (Yue and Loh, 2013), kernel estimation is the by
far most popular approach (Stoyan and Stoyan, 1994; Mgller and Waagepetersen,
2003; Illian et al., 2008) which is closely related to kernel estimation of probability
densities.

Kernel estimation is computationally fast and works well except at small spatial
lags. For spatial lags close to zero, kernel estimators suffer from strong bias, see
e.g. the discussion at page 186 in Stoyan and Stoyan (1994), Example 4.7 in Mgller
and Waagepetersen (2003) and Section 7.6.2 in Baddeley et al. (2015). The bias



is a major drawback if one attempts to infer a parametric model from the non-
parametric estimate since the behavior near zero is important for determining the
right parametric model (Jalilian et al., 2013).

In this paper we adapt orthogonal series density estimators (see e.g. the reviews
in Hall, 1987; Efromovich, 2010) to the estimation of the pair correlation function.
We derive unbiased estimators of the coefficients in an orthogonal series expansion of
the pair correlation function and propose a criterion for choosing a certain optimal
smoothing scheme. In the literature on orthogonal series estimation of probability
densities, the data are usually assumed to consist of indendent observations from the
unknown target density. In our case the situation is more complicated as the data
used for estimation consist of spatial lags between observed pairs of points. These
lags are neither independent nor identically distributed and the sample of lags is
biased due to edge effects. We establish consistency and asymptotic normality of
our new orthogonal series estimator and study its performance in a simulation study
and an application to a tropical rain forest data set.

2 Background

2.1 Spatial point processes

We denote by X a point process on R%, d > 1, that is, X is a locally finite random
subset of R%. For B C R? we let N(B) denote the random number of points in
X N B. That X is locally finite means that N(B) is finite almost surely whenever B
is bounded. We assume that X has an intensity function p and a second-order joint
intensity p(® so that for bounded A, B C R,

E{N(B)} = / plu)du,

(2.1)
E{N(A)N(B)} = Ame(u)du—i—/A/Bp@)(u,v)dudv.

The pair correlation function g is defined as g(u,v) = p® (u,v)/{p(u)p(v)} whenever
p(u)p(v) > 0 (otherwise we define g(u,v) = 0). By (2.1),

Cov{N(A),N(B)} = Ame(u)du+/A/Bp(u)p(v){g(v,u)—1}dudv

for bounded A, B C R%. Hence, given the intensity function, ¢ determines the covari-
ances of count variables N (A) and N(B). Further, for locations u,v € R¢, g(u,v) > 1
(< 1) implies that the presence of a point at v yields an elevated (decreased) proba-
bility of observing yet another point in a small neighbourhood of u (e.g. Coeurjolly
et al., 2016). In this paper we assume that g is isotropic, i.e. with an abuse of no-
tation, g(u,v) = g(|jv — ul|). Examples of pair correlation functions are shown in
Figure 6.1.



2.2 Kernel estimation of the pair correlation function

Suppose X is observed within a bounded observation window W C R? and let
Xw = X NW. Let ky(-) be a kernel of the form k,(r) = k(r/b)/b, where k is a
probability density and b > 0 is the bandwidth. Then a kernel density estimator
(Stoyan and Stoyan, 1994; Baddeley et al., 2000) of g is

#

A 1 kb(r— HU_UH)
)= —— =0
gr(r;b) sagrd—1 Z p(w)p(V)|W N W,_y|’ =

u,vEX

where sa, is the surface area of the unit sphere in R, 275 denotes sum over all
distinet points, 1/|W N W[, h € RY, is the translation edge correction factor with
Wy, = {u—nh:u e W}, and |A| is the volume (Lebesgue measure) of A C R<.
Variations of this include (Guan, 2007a)

#

) 1 ky(r — o —ul])
ryb) = — , r>0
alrib) = oo D o — al[ & p(w) p(0)[W N W, |

u,vEXy

and the bias corrected estimator (Guan, 2007a)

min{r,b}
Ge(r;0) = ga(r; ) /c(r;b),  c(r;b) :/ ky(t)dt,
—b

assuming k has bounded support [—1,1]. Regarding the choice of kernel, Illian
et al. (2008), p. 230, recommend to use the uniform kernel k(r) = 1(|r| < 1)/2,
where 1(-) denotes the indicator function, but the Epanechnikov kernel k(r) =
(3/4)(1 — r*)1(Jr| < 1) is another common choice. The choice of the bandwidth b
highly affects the bias and variance of the kernel estimator. In the planar (d = 2)
stationary case, Illian et al. (2008), p. 236, recommend b = 0.10/1/p based on prac-
tical experience where p is an estimate of the constant intensity. The default in
spatstat (Baddeley et al., 2015), following Stoyan and Stoyan (1994), is to use the
Epanechnikov kernel with b = 0.15/+/p.

Guan (2007b) and Guan (2007a) suggest to choose b by composite likelihood
cross validation or by minimizing an estimate of the mean integrated squared error
defined over some interval I as

MISE( Gy, w) = sad/IIE {Gm(r;b) — g(r)}2w(r — Tmin)dr, (2.2)

where ¢,,, m = k,d,c, is one of the aforementioned kernel estimators, w > 0 is a
weight function and rpy, > 0. With I = (0, R), w(r) = ¢! and 7, = 0, Guan
(2007a) suggests to estimate the mean integrated squared error by

G ([Jv = ul|; b)
—sad/ Gm(r; )} r¢ M dr — 2 (2.3)
{ MEZX V)W NW,_y|’
[lv—u||<R

where g, m =k, d, c, is defined as §,, but based on (X \ {u,v}) N W. Loh and
Jang (2010) instead use a spatial bootstrap for estimating (2.2). We return to (2.3)
in Section 5.



3 Orthogonal series estimation

3.1 The new estimator

For an R > 0, the new orthogonal series estimator of g(r), 0 < ryin < 7 < min + R,
is based on an orthogonal series expansion of g(7) on (Tyin, Tmin + R) :

=) 0k (r — Tin), (3.1)
k=1

where {¢x}r>1 is an orthonormal basis of functions on (0, R) with respect to some
weight function w(r) > 0, r € (0, R). That is, fo Or(r ¢l( Jw(r)dr = 1(k =) and

the coefficients in the expansion are given by 6, = fo (r + Tmin) Ok (T)w(r)dr.
For the cosine basis, w(r) = 1 and

o (r) =1/VR, on(r) = (2/R)?cos{(k — \)ar/R},  k>2.

Another example is the Fourier-Bessel basis with w(r) = 74~ and

¢k(r) = 21/2JV (TaV,k/R) riy/{RJqul(Oéu,k)}v k > 17

where v = (d — 2)/2, J, is the Bessel function of the first kind of order v, and
{awr }32 is the sequence of successive positive roots of J, ().

An estimator of g is obtained by replacing the 6, in (3.1) by unbiased estimators
and truncating or smoothing the infinite sum. A similar approach has a long history
in the context of non-parametric estimation of probability densities, see e.g. the
review in Efromovich (2010). For 6, we propose the estimator

#
P ] 0 et Y RS
Xy p(u)p(v)[Jo — ul| W N W,_y|

Tmin < ||’I.L—’U|| <Tmirl+R

which is unbiased by the second order Campbell formula, see Section B of the sup-

plementary material. This type of estimator has some similarity to the coefficient

estimators used for probability density estimation but is based on spatial lags v — u

which are not independent nor identically distributed. Moreover the estimator is

adjusted for the possibly inhomogeneous intensity p and corrected for edge effects.
The orthogonal series estimator is finally of the form

b) = Z DOk (T — Trin) (3.3)
k=1
where b = {b;}?2, is a smoothing/truncation scheme. The simplest smoothing

scheme is by = 1]k < K] for some cut-off K > 1. Section 3.3 considers several
other smoothing schemes.



3.2 Variance of ék

The factor |Jv — u||*"! in (3.2) may cause problems when d > 1 where the presence
of two very close points in Xy could imply division by a quantity close to zero. The
expression for the variance of ék given in Section B of the supplementary material
indeed shows that the variance is not finite unless g(r)w(r — rum)/r® ! is bounded
for rmm < r < rmim+ R. If rpp > 0 this is always satisfied for bounded ¢g. If 7, = 0
the condition is still satisfied in case of the Fourier-Bessel basis and bounded g.

For the cosine basis w(r) = 1 50 if ryi, = 0 we need the boundedness of g(r)/r?=t.
If X satisfies a hard core condition (i.e. two points in X cannot be closer than some
d > 0), this is trivially satisfied. Another example is a determinantal point process
(Lavancier et al., 2015) for which g(r) = 1 — ¢(r)? for a correlation function c. The
boundedness is then e.g. satisfied if ¢(-) is the Gaussian (d < 3) or exponential
(d < 2) correlation function. In practice, when using the cosine basis, we take 7y,
to be a small positive number to avoid issues with infinite variances.

3.3 Mean integrated squared error and smoothing schemes

The orthogonal series estimator (3.3) has the mean integrated squared error

Tmin+R
MISE(@O, w) = sad/ E {f]o(r; b) — g(r)}Qw(r — T'pin)dr

Tmin

= Sayg Z E(bkék — ‘gk)2 = Saq Z [bi E{(ék)2} - Qbkﬁz + 92] . (34)
k=1 k=1

Each term in (3.4) is minimized with by equal to (cf. Hall, 1987)
i bi

(N k>
E{(0x)?} 0% + Var(6y)

> 0, (3.5)

s

leading to the minimal value sag Y -, bf Var(6y) of the mean integrated square error.
Unfortunately, the b; are unknown.

In practice we consider a parametric class of smoothing schemes b(v)). For prac-
tical reasons we need a finite sum in (3.3) so one component in ¥ will be a cut-
off index K so that by(¢)) = 0 when £ > K. The simplest smoothing scheme
is bp(1)) = 1(k < K). A more refined scheme is by(¢) = L(k < K)b; where

~

bt = 62/(;)? is an estimate of the optimal smoothing coefficient b} given in (3.5).
Here 62 is an asymptotically unbiased estimator of 67 derived in Section 5. For these
two smoothing schemes 1) = K. Adapting the scheme suggested by Wahba (1981),
we also consider ¢ = (K, ¢1,¢2), ¢1 > 0,c0 > 1, and b () = L(k < K)/(1 + c1k%).
In practice we choose the smoothing parameter 1) by minimizing an estimate of the
mean integrated squared error, see Section 5.

3.4 Expansion of g(-)—1

For large R, g(rmin + R) is typically close to one. However, for the Fourier-Bessel
basis, ¢r(R) = 0 for all £ > 1 which implies g,(rmin + R) = 0. Hence the estimator
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cannot be consistent for » = r,;, + R and the convergence of the estimator for
7 € (Tmin, "min + R) can be quite slow as the number of terms K in the estimator
increases. In practice we obtain quicker convergence by applying the Fourier-Bessel
expansion to g(r)—1 =) ,<; Ux¢dr(r—rmm) so that the estimator becomes g, (r;b) =

14+ >0, bkzgkgbk(r — Tmin) Where Dy = 0, — Ormi“+R ér(r)w(r)dr is an estimator of
Uy = fOR{g(r + Pmin) — 1}ér(r)w(r)dr. Note that Var(dy) = Var(6y) and g,(r; b) —
E{g,(r;b)} = go(r;b) —E{g,(r;b)}. These identities imply that the results regarding
consistency and asymptotic normality established for g,(r;b) in Section 4 are also
valid for g,(r;b).

4 Consistency and asymptotic normality

4.1 Setting

To obtain asymptotic results we assume that X is observed through an increasing
sequence of observation windows W,,. For ease of presentation we assume square
observation windows W, = x&,[—na;,na;] for some a; > 0, i = 1,...,d. More
general sequences of windows can be used at the expense of more notation and
assumptions. We also consider an associated sequence ,, n > 1, of smoothing
parameters satisfying conditions to be detailed in the following. We let ék,n and Go.p
denote the estimators of 6, and g obtained from X observed on W,,. Thus

#
ék = 1 Z (bk(Hv_uH _Tmin>w<HU_uH _Tmin))
vosagWa| | e p(u)p(v)|[v — ul[*e, (v — u)

where
B ={heR?|rpm < |h| < rmn+R} and e,(h) = [W,N(Wy)sl/|Wal. (4.1)
Further,

Ky
.@o,n(r; b) = Z bk(wn)ékmqbk(r - Tmin)
k=1

#
_ 1 3 w(|lv —ul])on(v —u,r)
sadlWal |, 22 pw)p(o)lfo — [T, (0 = w)]
U—uEBﬁmin

where

Ky

En(hyr) =3 bi(¥n) Sk (I[Bl] = Tenin) Bk (r — Trmin)- (4.2)
k=1

In the results below we refer to higher order normalized joint intensities ¢*) of X .
Define the k’th order joint intensity of X by the identity

£
E{ Z ﬂ(uleAh---,ukEAk)}:/A p® (v, . v doy - - duy,

UL yeen U €EX 1X X Ay



for bounded subsets A; C RY, i =1, ..., k, where the sum is over distinct w1, . . ., u.
We then let ¢®) (vy,...,v) = p®(vy,...,ve)/{p(v1)--- p(vr)} and assume with an
abuse of notation that the ¢*) are translation invariant for k = 3,4, i.e.

g(k)(vla s ,Uk) = g(k)(UQ — V1., U — Ul)‘

4.2 Consistency of orthogonal series estimator

Consistency of the orthogonal series estimator can be established under fairly mild
conditions following the approach in Hall (1987). We first state some conditions that
ensure (see Section B of the supplementary material) that Var(6y,,) < Cy/|W,| for
some 0 < (] < o0:

V1: There exists 0 < pmin < Pmax < 00 such that for all u € R, prin < p(t) < pmax-
V2: For any h, hy, hy € Bfnin, g(R)w(||h| = rmin) < Co||h||7! and ¢®)(hy, hy) < Cs
for constants Cs, C'3 < 00.

V3: A constant €y < oo can be found such that supy, ,,cpr fRd|g(4)(h1,h3,
hy + hs) — g(h1)g(hs)|dhs < Ci.

The first part of V2 is needed to ensure finite variances of the ékn and is discussed
in detail in Section 3.2. The second part simply requires that ¢©* is bounded. The
condition V3 is a weak dependence condition which is also used for asymptotic
normality in Section 4.3 and for estimation of 67 in Section 5.

Regarding the smoothing scheme, we assume

S1: B = supy,, [bx(¢)| < 0o and for all ¢, 3507, |be(¥)| < oc.
S2: 1, — ¢* for some ¢*, and limy,_,y« maxi<g<m |bx(¢)) — 1| = 0 for all m > 1.
S3: Wl 32001 [br(hn) | — 0.

E.g. for the simplest smoothing scheme, v, = K,,, ¥* = oo and we assume that
K,,/|W,| tends to zero.

Assuming the above conditions we now verify that the mean integrated squared
error of g,, tends to zero as n — co. By (3.4),

MISE (G, ) /500 = 3 [be(6n)? Var(d) + 0240 () — 117].

k=1
By V1-V3 and S1 the right hand side is bounded by

m

BC W™ D |bk(ta) + max 03> (be(vn) = 1)+ (B2 +1) 3 6.

k=1 k=1 k=m+1

By Parseval’s identity, > -, 07 < co. The last term can thus be made arbitrarily
small by choosing m large enough. It also follows that 62 tends to zero as k — oo.
Hence, by S2, the middle term can be made arbitrarily small by choosing n large
enough for any choice of m. Finally, the first term can be made arbitrarily small by
S3 and choosing n large enough.



4.3 Asymptotic normality

The estimators ékn as well as the estimator g, ,(r;b) are of the form

1 a fo(v —u)
S0 = ol 2= Hplvento ) (43)

u,v€ X,
v—ucBE

for a sequence of even functions f, : R? — R. We let 72 = |W,| Var(S,,).

To establish asymptotic normality of estimators of the form (4.3) we need certain
mixing properties for X as in Waagepetersen and Guan (2009). The strong mixing
coefficient for the point process X on R? is given by (Ivanoff, 1982; Politis et al.,
1998)

ax (m; ay, az)
= sup {|pr(E\ N Ez) — pr(Ey)pr(Ey)| : By € Fx(B1), B2 € Fx(Bs),
|Bi| < a1, |Bs| < a2, D(By, By) > m, By, B, € B(R?)},

where B(R?) denotes the Borel o-field on R?, Fx(B;) is the o-field generated by
X N B; and

D(Bs, By) = inf { glag}yul — vl ru=(uy,...,uq) € By,v=(v1,...,0q) € Bg}.
To verify asymptotic normality we need the following assumptions as well as V1
(the conditions V2 and V3 are not needed due to conditions N2 and N4 below):

N1: The mixing coefficient satisfies ax(m; (s + 2R)?,00) = O(m™4¢) for some
s,e>0.

N2: There exists a 7 > 0 and L; < oo such that ¢ (hy,..., hy_y) < Ly for
k=2,...,2(2+ [n]) and all hy,... hy_; € RY

N3: liminf, o 72 > 0.

N4: There exists L, < 0o so that |f,(h)| < Ly for alln > 1 and h € B .

The conditions N1-N3 are standard in the point process literature, see e.g. the
discussions in Waagepetersen and Guan (2009) and Coeurjolly and Mgller (2014).
The condition N3 is difficult to verify and is usually left as an assumption, see
Waagepetersen and Guan (2009), Coeurjolly and Mgller (2014) and Dvotak and
Prokesova (2016). However, at least in the stationary case, and in case of estimation
of ékﬁn, the expression for Var(ék,n) in Section B of the supplementary material shows
that 72 = |W,,| Var () converges to a constant which supports the plausibility of
condition N3. We discuss N4 in further detail below when applying the general
framework to ékm and g, . The following theorem is proved in Section C of the
supplementary material.

Theorem 4.1. Under conditions V1, NI-N/, 7, [W,['/2{S, —E(S,)} = N(0,1).



4.4 Application to ékn and g,

In case of estimation of Oy, Oy, = Sy, with f,(h) = ¢p(||2]|=Tmin)w (| 2]l = rmin) /|| 2|42
The assumption N4 is then straightforwardly seen to hold in the case of the Fourier-
Bessel basis where |¢.(r)| < |¢x(0)] and w(r) = r¢~1. For the cosine basis, N4 does
not hold in general and further assumptions are needed, cf. the discussion in Sec-
tion 3.2. For simplicity we here just assume ry;, > 0. Thus we state the following

Corollary 1. Assume V1, NI-NJ, and, in case of the cosine basis, that ry;, > 0.
Then ) X
{Var(@k,n)}_l/g(ﬁkm - Hk) i) N(O, 1)

For g, (r;b) = Sy,

(B, r)w ([Pl = 7min)
[

B w(||h]] — Tmin

Kn
—Tnin) § by () (11l = Tain) B4 — 7o),
Tl
k=1

fn<h) =

where ¢, is defined in (4.2). In this case, f, is typically not uniformly bounded since
the number of not necessarily decreasing terms in the sum defining ¢,, in (4.2) grows
with n. We therefore introduce one more condition:

Nb5: There exist an w > 0 and M, < oo so that
Kn
ng Zbk<wn)|¢k<r - 7amm)¢k(”h’H - Tmin)} S Mw
k=1

for all h € Bfnin.

Given N5, we can simply rescale: S, := K;“S, and 72 := K272, Then, assum-
ing liminf, 72 > 0, Theorem 4.1 gives the asymptotic normality of 7, |W,,|'/2 .
{S, — E(S,)} which is equal to 7, '|W,|'/2{S, — E(S,)}. Hence we obtain

Corollary 2. Assume VI, N1-N2, N5 and liminf, ,., K,?*72 > 0. In case of the

n
cosine basis, assume further ryy > 0. Then for r € (Tmin, Tmin + R),

Tn_1|Wn|1/2 [gO,n<T; b) - E{gom(r; b)}] — N(O’ 1)'

In case of the simple smoothing scheme by(1,) = 1(k < K,,), we take w = 1
for the cosine basis. For the Fourier-Bessel basis we take w = 4/3 when d = 1 and
w=d/2+2/3 when d > 1 (see the derivations in Section F of the supplementary
material).



5 Tuning the smoothing scheme

In practice we choose K, and other parameters in the smoothing scheme b(1)), by
minimizing an estimate of the mean integrated squared error. This is equivalent to
minimizing

Tmin+R 9
sagl (1) = MISE(§,, w) — / {g(r) =1} w(r)dr

Tmin

[01(V)? E{(04)*} — 201, (v)0%].

I
[M] >

i

1
In practice we must replace (5.1) by an estimate. Define (92 as
. Gkl = vl = rmin) i (|[v — ]| = Tanin)

3y ~w(||v — ] = rain)w([[0" = W] = Tmin)

saq”p(u)p(v)p(u’) p(v") o — ul|*~H o — u'[|*7
AW AW |W O W]

u,v,u’ v’ eXy
v—u,v’ —u'€BE

Then, referring to the set-up in Section 4 and assuming V3,

2

lim E(é’/,%\n) — {/ORg(r - Tmin)¢k(r)w(r)dr} =03

n—oo

(see Section D of the supplementary material) and hence 9]3@ is an asymptotically
unbiased estimator of 7. The estimator is obtained from (6;)? by retaining only
terms where all four points u, v,u’,v’ involved are distinct. In simulation studies, 67
had a smaller root mean squared error than (ék)Q for estimation of 60%.

Thus
1) = 3" {bu(w)2(00)* — 2b(v)62} (5.2)

is an asymptotically unbiased estimator of (5.1). Moreover, (5.2) is equivalent to the
following slight modification of Guan (2007a)’s criterion (2.3):

Tmin+R 9
/ {go(r; b)} w(r — ryin)dr

Tmin

# A—1U,V
2 3 o M (JJo = wl; B)w (o — ull = Tomin)
Y= p(u)p(0)|W N W,_,|
vquBR

Tmin

For the simple smoothing scheme b;(K) = 1(k < K), (5.2) reduces to

[() =" {602 — 262} = S (60)*(1 — 26)), (5.3)

~

where b} = QA,%/(Gk)z is an estimator of b} in (3.5).
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In practice, uncertainties of 0, and 62 lead to numerical instabilities in the min-
imization of (5.2) with respect to 1. To obtain a numerically stable procedure we
first determine K as

IA( = 1nf{2 S k S Kmax . (ék+1)2 - 20/1%:1 > 0}

. (5.4)
=inf{2 <k < Kpax 1 b4 < 1/2}.

That is, K is the first local minimum of (5.3) larger than 1 and smaller than an upper
limit K. which we chose to be 49 in the applications. This choice of K is also used
for the refined and the Wahba smoothing schemes. For the refined smoothing scheme
we thus let b, = 1(k < K)b:. For the Wahba smoothing scheme b, = 1(k < K)/
(1 4 & k%), where ¢ and é minimize Y10 {(61)%/(1 + c1k)? — 262/(1 + c1k%)}
over ¢; > 0 and ¢y > 1.

6 Simulation study

Poisson Thomas VarGamma
1.50

1.25+

1.00

a(r)

0.754

0.50 14 0.00;

Figure 6.1: Pair correlation functions for the point processes considered in the simulation
study.

We compare the performance of the orthogonal series estimators and the kernel
estimators for data simulated on W = [0,1]? or W = [0, 2]* from four point pro-
cesses with constant intensity p = 100. More specifically, we consider ng, = 1000
realizations from a Poisson process, a Thomas process (parent intensity x = 25, dis-
persion standard deviation w = 0.0198), a Variance Gamma cluster process (parent
intensity k = 25, shape parameter v = —1/4, dispersion parameter w = 0.01845,
Jalilian et al., 2013), and a determinantal point process with pair correlation func-
tion g(r) = 1 — exp{—2(r/a)?} and o = 0.056. The pair correlation functions of
these point processes are shown in Figure 6.1.

For each realization, g(r) is estimated for r in (ruin, "min + R), With 7y, = 1073
and R = 0.06,0.085,0.125, using the kernel estimators gx(r;b), gq(r;b) and g.(r;b)
or the orthogonal series estimator g,(r; b). The Epanechnikov kernel with bandwidth
b= 0.15/+/p is used for gi(r;b) and g4(r; b) while the bandwidth of g.(r;b) is chosen
by minimizing Guan (2007a)’s estimate (2.3) of the mean integrated squared error.
For the orthogonal series estimator, we consider both the cosine and the Fourier-
Bessel bases with simple, refined or Wahba smoothing schemes. For the Fourier-
Bessel basis we use the modified orthogonal series estimator described in Section 3.4.
The parameters for the smoothing scheme are chosen according to Section 5.
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From the simulations we estimate the mean integrated squared error (2.2) with
w(r) = 1 of each estimator §,,, m = k,d, ¢, 0, over the intervals [rp;,, 0.025] (small
spatial lags) and [y, rmin + R] (all lags). We consider the kernel estimator g as
the baseline estimator and compare any of the other estimators § with g, using the
log relative efficiency e;(§) = log{MISE;(§;)/MISE;(§)}, where MISE;(§) denotes the
estimated mean squared integrated error over the interval I for the estimator g. Thus
er(g) > 0 indicates that g outperforms g on the interval I. Results for W=[0, 1]?
are summarized in Figure 6.2.

Poisson Poisson Thomas Thomas
(rmin, .025] (rmin, R] (rmin, .025] (rmin, R]
4 /,:: 1.54 .,_.,___.f.-lw..__s__“' 1.3 |-.-..—.—..-.—.l~.-______ ~~~~~
31 St P | I

A

- 1.2
ot 1.34 g n e ==
218" + 11> ==
1.2-/\_’ Type

— — 1.0 — simple
s 14 — 1.11a " - —_— .

/ / 0.91 : --- refined

04 0+ 0.81, -=-+ Wahba

X
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@
@
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E 0.060 0.085 0.125 0.060 0.085 0.125 0.060 0.085 0.125 0.060 0.085 0.125
2 VarGamma VarGamma DPP DPP .
5] Estimator
©c (rmin, .025] (rmin, R] (rmin, .025] (rmin, R]
= — 0.5 —— kernel d
© 0.6+ 1 ~————| ek
g 00 —4— kernel ¢
& 051 04 :\ . l‘\ —-=- Bessel
o . ~054 “
o 0.4 14 N 05 My —— cosine
o ~ N
= 0.3 e -1.0 [ NN
A — A — 4 Rt
0.3 24 ~ S
———t——+ 02 L e
0.2 — I ) Sep ~
0.060 0.085 0.125 0.060 0.085 0.125 0.060 0.085 0.125 0.060 0.085 0.125

R

Figure 6.2: Plots of log relative efficiencies for small lags (rin, 0.025] and all lags (7min, R],
R = 0.06,0.085,0.125, and W = [0, 1)2. Black: kernel estimators. Blue and red: orthogonal
series estimators with Bessel respectively cosine basis. Lines serve to ease visual interpre-
tation.

For all types of point processes, the orthogonal series estimators outperform or
does as well as the kernel estimators both at small lags and over all lags. The detailed
conclusions depend on whether the non-repulsive Poisson, Thomas and Var Gamma
processes or the repulsive determinantal process are considered. Orthogonal-Bessel
with refined or Wahba smoothing is superior for Poisson, Thomas and Var Gamma
but only better than §. for the determinantal point process. The performance of
the orthogonal-cosine estimator is between or better than the performance of the
kernel estimators for Poisson, Thomas and Var Gamma and is as good as the best
kernel estimator for determinantal. Regarding the kernel estimators, g. is better
than gy for Poisson, Thomas and Var Gamma and worse than g, for determinantal.
The above conclusions are stable over the three R values considered. For W =
[0,2] (see Figure G.1 in the supplementary material) the conclusions are similar
but with more clear superiority of the orthogonal series estimators for Poisson and
Thomas. For Var Gamma the performance of g. is similar to the orthogonal series
estimators. For determinantal and W = [0, 2]?, g. is better than orthogonal-Bessel-
refined/Wahba but still inferior to orthogonal-Bessel-simple and orthogonal-cosine.
Figures G.2 and G.3 in the supplementary material give a more detailed insight
in the bias and variance properties for g, g., and the orthogonal series estimators
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with simple smoothing scheme. Table G.1 in the supplementary material shows that
the selected K in general increases when the observation window is enlargened,
as required for the asymptotic results. The general conclusion, taking into account
the simulation results for all four types of point processes, is that the best overall
performance is obtained with orthogonal-Bessel-simple, orthogonal-cosine-refined or
orthogonal-cosine-Wahba.

To supplement our theoretical results in Section 4 we consider the distribution
of the simulated g,(r;b) for r = 0.025 and r = 0.1 in case of the Thomas process
and using the Fourier-Bessel basis with the simple smoothing scheme. In addition
to W =[0,1]*> and W = [0,2]?, also W = [0, 3]? is considered. The mean, standard
error, skewness and kurtosis of §,(r) are given in Table 6.1 while histograms of the
estimates are shown in Figure G.4. The standard error of §,(r; b) scales as |[W|'/2 in
accordance with our theoretical results. Also the bias decreases and the distributions
of the estimates become increasingly normal as |IV| increases.

Table 6.1: Monte Carlo mean, standard error, skewness (S) and kurtosis (K) of g,(r)
using the Bessel basis with the simple smoothing scheme in case of the Thomas process on
observation windows Wi = [0, 1]%, Wy = [0, 2]? and W3 = [0, 3]3.

rog(r) B{g(n)} [Var{g(r)}]'? ${g.(r)} K{g(r)}

Wi 0.025 3.972 3.961 0.923 1.145 5.240
W, 0.1 1.219 1.152 0.306 0.526 3.516
Wy 0.025 3.972 3.999 0.467 0.719 4.220
Wy 0.1 1.219 1.187 0.150 0.691 4.582
W3 0.025 3.972 3.949 0.306 0.432 3.225
W3 0.1 1.2187  1.2017 0.0951 0.2913 2.9573

7 Application

We consider point patterns of locations of Acalypha diversifolia (528 trees), Lon-
chocarpus heptaphyllus (836 trees) and Capparis frondosa (3299 trees) species in
the 1995 census for the 1000 m x 500 m Barro Colorado Island plot (Hubbell and
Foster, 1983; Condit, 1998). To estimate the intensity function of each species, we
use a log-linear regression model depending on soil condition (contents of copper,
mineralized nitrogen, potassium and phosphorus and soil acidity) and topographical
(elevation, slope gradient, multiresolution index of valley bottom flatness, ncoming
mean solar radiation and the topographic wetness index) variables. The regression
parameters are estimated using the quasi-likelihood approach in Guan et al. (2015).
The point patterns and fitted intensity functions are shown in Figure H.1 in the
supplementary material.

The pair correlation function of each species is then estimated using the bias
corrected kernel estimator g.(r;b) with b determined by minimizing (2.3) and the
orthogonal series estimator g,(r; b) with both Fourier-Bessel and cosine basis, refined
smoothing scheme and the optimal cut-offs K obtained from (5.4); see Figure 7.1.
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For Lonchocarpus the three estimates are quite similar while for Acalypha and
Capparis the estimates deviate markedly for small lags and then become similar for
lags greater than respectively 2 and 8 meters. For Capparis and the cosine basis,
the number of selected coefficients coincides with the chosen upper limit 49 for the
number of coefficients. The cosine estimate displays oscillations which appear to be
artefacts of using high frequency components of the cosine basis. The function (5.3)
decreases very slowly after K = 7 so we also tried the cosine estimate with K =7
which gives a more reasonable estimate.

Acalypha diversifolia Lonchocarpus heptaphyllus Capparis frondosa
o o
< 7] A i
— kernel: §(r; b=1.35) o — kernel: §,(r; b=9.64) — kernel: §(r; b=5.13)
A . ™
S - — Bessel: K=7, refined o | — Bessel: K=7 , refined — Bessel: K=7 , refined
N -
< — cosine: K=11, refined — cosine: ﬁz 6,refined o — cosine: Q: 49 , refined
—~ + Lo | Lo —— cosine: K =7, refined
= = - =
<o <o <o
S 1 v _] -
o
o - o
> | o ]
[ f f ‘ S T T T T T T 1 T T T T 1
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Figure 7.1: Estimated pair correlation functions for tropical rain forest trees.
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Supplementary material

Supplementary material includes proofs of consistency and asymptotic normality
results and details of the simulation study and data analysis.

Supplementary material for ‘Orthogonal series estimation of the pair correlation
function of a spatial point process’

A Expanding observation window

This section states a few results on the asymptotic behavior of the edge correction
en(h) (defined in (4.1) in the main document) and related ratios. For each n > 1
and h, hl, h2 € Rd,

[T, (2na; — |h|) || < 2na,i=1,....d

(W N (W)n| = { 0 otherwise

and

W O (Wo)ny 0 (W) |

_ Vn(hlahZ) max{‘hli‘>’h2,i
0 otherwise

,’hli—hgi‘} <2nai,i: 1,...,d
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where V,,(hy, ho) = Hle (Qnai — max{0, hy;, ho; } + min{0, hy;, hgi}). Therefore, for
any fixed h, hy, hy € RY, as n — oo,

en(h) = Vo 0 (Wala| _ 11 (1 - M) — 1. (A1)

|W,| Pl 2na;

If n > R/minj<;<qa; or equivalently B ~C W, then 1/2¢ < e,(h) < 1 for any
h E Brml“
Further,

’Wn N (Wa)p, N (Wn)hg‘ _ f[ 1_ max{0, hy;, ho; } — min{0, hy;, ho; } 1

i=1
(A.2)
Similarly, it can be shown that for any fixed hq, ho, hg € R?,

‘Wn N (Wn)/u N (Wn)hg N (Wn)h2+h3‘/|Wn| — L.

B Mean and variance of 0,

For n large enough, 1(h € Bf ) > 0 implies [W,, N (W,,),| > 0. Then, by the second
order Campbell formula (see Mgller and Waagepetersen, 2003, Section C.2.1),

E(B.)
1
= 1(v—uc BE
Sad|Wn| WTQL ( mln)

Or(llv = ull = rmin)w(llv = ul] -
lo = ul[#~ten(v —u)
:/ 1(he BE )Y gUP1D w1 = rmin)w ([|A]] = min)
Rd min

sagl| A~

/ {veW,n (W">h}dvdh
R4 |Wn N (Wn)hl

T min
(v — uf))dud

Tmin‘i’R
= / 9(r)dr(r — Tin)W(r — i )dr = 6.

Let fi(h) = or(||R|| — rm)w(||h]] — 7mi)/[|R||*t. Then, by the second to fourth
order Campbell formulae (omitting the details),

Var(fy,,) = —(Sad)i\Wn]
- [2 [ amsmne man (B.1)
+4 / 389 s ) D S N G (s, ot

"min Tmin

f / ) Rl )G )|
BR

7"mm
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where

11 u+h e W,
620 = o | ]
) =20 [l S, pladplu+ )
1 1 1w € (Wo)a, N (W]
G (h, h) = [ 1 Sduf
w(nshe) = S entin) LTl ., ()
1
W(hy, hy) = ————— @ (hy,u, b — g(h)g(h
G hnshe) = sy [0 st ) o)
) |Wn N (Wn)u N (Wn)hl N (Wn)hQ ‘ du
(Wl
For n > R/ minj<;<4a; and any h, hy, hy € Bfm, by V1,
1 u+h € W, 1 9
PR, P 3
=20 LWl S, oot ) ) = Poenth) = 2
1 1 1w € (Wm0 (Wi)n,]
GO (hy, hy) = [ . =du
w U he) = G entia) Wl s, o(u)
1 9
< <
pminen(h) pmin
and by V3,
1
W(hy, hy)| < ——— @ (hy,u, h —g(hy)g(h
GO < s [ o, ) = gl)g(h)
) |Wn N (Wn)u A (Wn)m N (Wn)hz‘du
Wl
1
< ) (hy.u.h — g(h))g(h (d
< 5 L[ a0 = (i)
<2 [ g s+ ) = g(n)g(ha)|du < 2°C.
R2
Thus, using V2, for all £ > 1 and n > R/ minj<;<4a;,
Opp) < —
9d+1 , 9d+2 2
A% [ s 2 [ ndunjn)
pmin Bﬁmin pmln Bﬁmin

+2C, (/BR | |fk(]|h]|)}dh>2] .

Tmin

But for all £ > 1,

Tmin+R w2 r — Poin
[ ramhgiehan = [ 6 = rngt = ar
BR

. Tmin
"min

w(r)

—d
(r 4 rmin)4 " 4

:A B (1)g(r + )
R
s@A¢wmmw=%
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and by Holder’s inequality,

_ o w(||A]] = rmin)
[ Anamplan = [ fontia = ) 2 pelan

"min "min

Tmin+R
= / |01 = Tmin) [0 (1 — i) dr

min

<( ’ Riru(rar) " (/ Rw(r)dr)
_ (/ORw('r)dr> .

1/2

Therefore
N 1 2d+1 2d+2 R Cl
Var(6,,) < C+< C+2d0)(/wrdr) = —
Orn) < Gl | T G 2 T2y ) W]
where
1 2d+1 2d+2 R
Cl =73 2—02 -+ ( 03 + 2d04> (/ w(r)dr) > 0.
(Sad) Pmin Pmin 0

C Proof of asymptotic normality

In this section we give a proof of Theorem 4.1. Let for t = (t1,...,t4) € Z4,
A(t) = xLy (s(t; —1/2), s(t; + 1/2)]
be the hyper-square with side length s and centered at st. Then, {A(t) : t € Z¢}
is a partition of R%; ie., A(t;) N A(ty) = 0 for t; # ty and UyezaA(t) = R? and
|AL(t) ® R| = (s + 2R)?, where
At)® R=x% (s(t; —1/2) — R,s(t; + 1/2) + R].

Let T, = {t € Z¢: A(t) N W, # 0} and define

fulv —w)1(u € Wy, v € W,)
Y, (t) = '
" uE);A(t) ue;\{;} plup(vien(v —u)

Tmin
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Then, since X = J,czq (X NA(2)),

B 1 z fu(v —u)
S0 = Wil 2= po()ente —

v— uEBR

"min

v —uw)l(ue W,,veW,
Z Z Z ( )1(u € € W)

sad|W | tezd ueXNA(®Y)  veX\{u} plu)p(v)en(v —u)
v— uEBﬁmm
1
= Yn Y
saq|W,| Z sad|W | Z
tezd
A(H) AW, 20

Due to V1, N4 and since e, (h) > 1/2% for n large enough and h € BE

E(|Y,(£)[*) < IE( 3 3 LSQd)2+W.

wEXNA(t) UEX\{u} Pnin
v—ueBE

Tmin

The moments E(|Y, (¢)|**!) are thus bounded by sums of integrals involving the
normalized joint intensities ¢ (uy, ..., up_1) times (Ly2%/p2; )* 1 for k = 2,...,
2(2+ [n]). These integrals are bounded uniformly in ¢ and n due to assumption N2.
Thus,

sup sup E(|Y, (1) P*7) < sup sup E(|Y, (1) **17) < oo

n>1teT, n>1teTy,
and hence {|Y,(¢)]*™ : ¢ € T,,n > 1} is a uniformly integrable family (trian-
gular array) of random variables. Invoking finally N1 and N3 and letting 02 =
Var{}_,cr. Ya(t)}, it follows directly from Theorem 3.1 in Biscio and Waagepetersen
(2016) that

ot D [t — B ()}] = N0, 1),

teTn

which is equivalent to Theorem 4.1.
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D Asymptotic mean of é;%

Consider a real function f on R? x R? where f(hy, hy) # 0 implies |W,, N (W,,)n,| -
|[W, 0 (Wy)n,| > 0. Then by the fourth order Campbell formula,

#
fo—u,v" —u)
E{ 2 p(w)p(v)p(u)p(0")[Wo O (Wa)ou [Wa O (W )| }

/ !
u,v,u’ v’ € X,

:K;wvn<“iim%7ﬁﬂmvuﬁw@—“ﬂ“ﬂwﬂ—wmmwww'
/ f(hy, ho)g® (hy, o — u, hy + ' — )
H“GW N (Wodny,t! € Wi V(W )n, }
(W 0 (W) [[Wi 0 (Wi ) s |

dudhdu’dhs

an N(Wa)p, anm Wn)
W 0 (W) | [Wo O (Wi |

This expectation is the sum of

Jwooowin. Jwoomva,, 9(h1)g(hs)
= hi, h R dudv b dhidh
LRJMQ%|MﬂWMM%NMM| wlh

:/Rd Rdf(h1,h2)9(h1)9(h2)dh1dh2

and

B, - /R [ 10nma)

anm(Wn)h1 an AW ny
{9 (hy, v = u, hy + u' — u) — g(h)g(he) }dudd’ dhydhgy
[Wo V(W) [[Wo O (W s |

= [ [ stmn)
Rd JRd
. { |Wn M (Wn)h1 N (Wn)h5 M (Wn)h2+h3|
Rd

|Wn N (Wn)h1||Wn N (Wn)h2|

4 gW (1, ha, ha + h3) — g(h1)g(he) }dhy | dhidhs.

We now specialize to f(hi, ha) = fr(h1)fx(h2), where

Fi(h) = o2l = ranin)w(IRl] = rmin) L(h € By, )/ (saall2|*7).
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Then, by V3,

Bl< [ / () i)

Tmin

. { |Wn N (Wn) hy [ (Wn)hs N (Wn)h2+h3|
R4 ‘Wn N (Wn)thWn N (Wn)h2’

: ’9(4)(h1, hs, ha + h3) — g(h1)g(h2) }dh?l dhdhy

fr(h1) fe(ho)
<C dhidhs.
4/BR /BR‘ ’W ﬂ )h1’ e

Thus B,, tends to zero as n — oo. Regarding A, we have

A= Jr(ha) fi(h2)g(h1)g(he)dhidhs = { y fk(h)g(h)dh}

Rd JRd
2

Tmin+R
= {/ g(r)pr(r — rmin)w(r — rmin)dr} = 07

E Asymptotic behavior of Bessel function roots

It is known (see Watson, 1995, p. 199) that as r — oo,

9\ 1/2
Jy(r) ~ (E) cos (7“ - g - %) :

which implies that

1
Qyk = <k’ + g — Z) 7+ Ok, as k — oo, (E.1)

and a, ;, — 00, as kK — oo. We can argue that for large £,

2 12 T v+ 1w
Jqul(au,k) ~ <7m k) cos (a,,’k — Z — %)

_ ( 2 >1/2 cos ((k— 1)r + O(k™)),

Tk

o) = (2 )/ (£.2)

Ty

and consequently

F  Order of sum of products of Bessel basis
functions

In this section we consider the Bessel basis in the case ryy, = 0. For v > 0and r > 0
(Landau, 2000),

‘Jy(r)| < _©

=
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where ¢ = 0.7857468704 . . ., and hence

—v— 1/3\/2

= (Rza o 1/3|Ju+1 )|

| (r r>0k>1.

Using (E.1) and (E.2), for large k,

crfu71/3\/2 3 rv—1/3 v 1/6
2 1/3 ~ C\/ﬂ- 2/3 OZV,/k‘ ~ C\/Tr 2/3 k + - — = T .
(Rt ) 3| Jys1 (o) | R R 2 4

Since lim, o J,(r)r™ = {T'(v+1)2} !, we also obtain for large k and 0 < ||| < R,

1/+1/2

_ O(k?y+1/2).

R\ V2
ol < conse () ~ consty/n

RJV+1(aV,k)
Thus, for fixed r and 0 < [|h]| < R,

‘st(r)ébk(l‘h”)’ _ O(k1/6+max(l/6,u+l/2)) _ O<kl/6+max(1/6,d/2—l/2)).

By generalization of Faulhaber’s formula (McGown and Parks, 2007),

Z kP = O(KP™),  p>—1.

Therefore,

KMZW r)ox([[hl)| =

nok=1

for w >0 and 0 <, ||h|| < R.

O(KA**) d=1
(Kg/2+2/3—w) d>1

G Simulation study

The results in Figure G.1 are obtained as for the simulation study in the main docu-
ment but with W = [0,2]2. The estimated cut-offs K are summarized in Table G.1.
Simulation mean and 95% envelopes for gx, g. and g, with both Fourier-Bessel and
cosine basis and simple smoothing schemes are shown in Figure G.2 and Figure G.3.
Figure G.4 shows histograms of orthogonal series estimates. Comments on these
figures and the table are given in the main document.
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Figure G.1: Plots of log relative efficiencies for small lags (rmin,0.025] and all lags
(Tmin, R], R = 0.06,0.085,0.125, and W = [0,2]2. Black: kernel estimators. Blue and red:
orthogonal series estimators with Bessel respectively cosine basis. Lines serve to ease visual
interpretation.

Table G.1: Monte Carlo mean and quantiles of the estimated cut-off K obtained from
(5.4) for the orthogonal series estimator with Bessel (§,1) and cosine (go4) basis in the case
of Poisson (P), Thomas (T), Variance Gamma (V) and determinantal (D) point processes
on observation windows Wj = [0,1]2 and Wy = [0, 2]? with 7, = 0.001.

R =0.06 R =0.085 R =0.125
E(K) Gdo.05(K) Go.95(K) E(K) do.05(K) do.o5(K) E(K) Go.05(K) Go.95(K)
Wi P Jol 2.17 2.00 3.00 2.15 2.00 3.00 2.11 2.00 3.00
Wi P God 2.17 2.00 4.00 2.15 2.00 4.00 2.11 2.00 4.00
Wi T  Go1 2.24 2.00 3.00 2.24 2.00 3.00 3.23 2.00 4.05
%% T Goa 2.24 2.00 4.00 2.24 2.00 4.00 3.23 3.00 5.00
Wi V  Go1 2.77 2.00 4.00 3.50 2.00 6.00 4.85 3.00 8.00
Wi V.  Goa 2.77 2.00 5.00 3.50 2.00 7.00 4.85 3.00 10.00
%% D Go1 2.21 2.00 3.00 2.18 2.00 3.00 2.38 2.00 3.00
Wi D Goa 2.21 2.00 3.00 2.18 2.00 4.00 2.38 2.00 5.00
Wo P ol 2.17 2.00 3.00 2.12 2.00 3.00 2.09 2.00 3.00
Wo P Joa 2.17 2.00 4.00 2.12 2.00 4.00 2.09 2.00 4.00
Wa T  Go1 2.39 2.00 4.00 2.46 2.00 4.00 3.78 3.00 5.00
Wo T Goa 2.39 2.00 5.00 2.46 2.00 5.00 3.78 3.00 6.00
Wo V  Go1 3.58 3.00 5.00 5.14 3.00 8.00 7.19 5.00 11.00
Wo V. Goa 3.58 3.00 9.00 5.14 4.00 12.00 7.19 5.00 17.00
Wo D Jol 2.22 2.00 4.00 2.17 2.00 3.00 2.79 2.00 4.00
Wo D Goa 2.22 2.00 3.00 2.17 2.00 4.00 2.79 3.00 5.00
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Figure G.2: True pair correlation function (solid line), Monte Carlo mean (dashed lines)
and 95% pointwise probability interval (grey area) of estimates based on ng, = 1000 sim-
ulations from the Poisson (first row), Thomas (second row), Variance Gamma (third row)
and determinantal (fourth row) point processes on W = [0, 1]2.
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Figure G.3: True pair correlation function (solid line), Monte Carlo mean (dashed lines)
and 95% pointwise probability interval (grey area) of estimates based on ng, = 1000 sim-
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and determinantal (fourth row) point processes on W = [0, 2]2.
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Figure G.4: Histograms of g,(r) at » = 0.025 and r = 0.1 using the Bessel basis with the
simple smoothing scheme in case of the Thomas process on W = [0,1]? (upper panels),
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H Data example

Figure H.1 shows the data sets and fitted intensity functions considered in Section 7
of the main document.

Acalypha diversifolia Lonchocarpus heptaphyllus Capparis frondosa

PR
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Figure H.1: Locations of Acalypha diversifolia, Lonchocarpus heptaphyllus and Capparis
frondosa trees in the Barro Colorado Island plot (upper panels) and their fitted parametric
intensity functions (lower panels).

For the Capparis frondosa species and the orthogonal series estimator with cosine
basis, the function /(K') given in (5.3) of the main document is shown in Figure H.2.
Although I(K) is decreasing over 1 < K < 49, the rate of decrease slows down after
K=T.
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Figure H.2: Estimate [ (K) of the mean integrated squared error for Capparis frondosa
in case of the orthogonal series estimator with cosine basis.

I Behavior of the Fourier-Bessel and cosine basis

Figure 1.1 shows the Fourier-Bessel and cosine basis functions ¢ (r) in the planar
case (d = 2) for R = 0.125, k = 1,...,8 and r € [0,0.125]. Obviously, the cosine
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Figure I.1: Fourier-Bessel and cosine basis functions ¢ (r) in the planar case (d = 2) for
R=0.125and k=1,...,8.

basis functions are uniformly bounded and integrable. However, the Fourier-Bessel
basis functions exhibit damped oscillation behavior with ¢, (R) = 0 and

v
au,k

st(O) = Ry+12u—1/2f(y + 1)Jy+1 (O-/V,k)7

for all & > 1, because lim, ¢ J,(r)r=" = 1/(I'(v +1)2") for v > 0. Thus, ¢(0) = oo
as k — oo.
For 0 < v < 1/2 (or equivalently d = 2,3), |J,(r)| < (2/77)}/? and hence

ayk 9 /2 poyp 9 1/2 yi3
/ ‘JV(T)|TV+1d7, S = / TV—"_%dT — - (a]/7k) ; 2 .
0 0 3

m M y+2
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Therefore, as k — o0,

\/2 R l/+2/~a,,,k v+1
/|¢k |w dr = R‘Jy—}-l(azj,k)‘ <a,,7k) i ‘Jy(r)|r dr

2 (YY)
- R‘Jy—&—l(au,k‘)‘ Ay ke m v+ g

2Ru+1
o (awg) (o) 2 (v + 3)
Ru—i-l \/2R1/+1
(w2 (v +5) vt 3

< 00,

(wayk

which implies uniform integrability of ¢ (7).
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