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Abstract

In this paper, we investigate two stochastic perturbations of the metamor-
phosis equations of image analysis, in the geometrical context of the Euler-
Poincaré theory. In the metamorphosis of images, the Lie group of diffeomor-
phisms deforms a template image that is undergoing its own internal dynamics
as it deforms. This type of deformation allows more freedom for image match-
ing and has analogies with complex fluids when the template properties are
regarded as order parameters (coset spaces of broken symmetries). The first
stochastic perturbation we consider corresponds to uncertainty due to random
errors in the reconstruction of the deformation map from its vector field. We
also consider a second stochastic perturbation, which compounds the uncer-
tainty in of the deformation map with the uncertainty in the reconstruction of
the template position from its velocity field. We apply this general geometric
theory to several classical examples, including landmarks, images, and closed
curves, and we discuss its use for functional data analysis.

1 Introduction

Variability in shapes can be modelled using flows of the group G of diffeomorphic de-
formations of the ambient domain €2 in which the shape is embedded. This is the basis
of the large deformation diffeomorphic metric mapping (LDDMM) framework, see
Trouvé (1995); Christensen et al. (1996); Dupuis et al. (1998); Beg et al. (2005). In
the LDDMM approach, the shape of an embedded template image n € N in the man-
ifold of embedded shapes Emb(N, Q) changes via the action g;.n of time-dependent
diffeomorphisms g; € G on n € N, through the action of g; on the domain 2. The
metamorphosis extension Holm et al. (2009); Miller and Younes (2001); Trouvé and
Younes (2005a,b) of LDDMM introduces a further time-dependent variation 7, of
the template to model the combined dynamics g;.n;.

In this paper, we combine the geometrical metamorphosis framework of Holm
et al. (2009) with recent developments in stochastically perturbed Euler-Poincaré
dynamics in fluid dynamics and shape analysis Holm (2015); Arnaudon et al. (2017,
2016), to model evolutions of both shape and template under stochastic perturba-
tions. The resulting framework allows modelling of random evolutions of shape and
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template simultaneously. A potential application of such an evolution is in modelling
the progression of disease using computational anatomy, in which the model would
address the analysis of disease progression in both the population average and in
the individual. From longitudinal image data, mean evolutions over the population
can be inferred. While average template evolutions can be modelled deterministi-
cally, models for the dynamics of each individual subject that include stochastic
uncertainty are arguably more realistic than models supporting only smooth deter-
ministic trajectories. The stochastic metamorphosis model includes such non-smooth
and non-deterministic variations by incorporating stochastic perturbations in shape
and template simultaneously. We detail this application and outline further areas
of applications where similar generative models of data appear, particularly in the
combined modelling of phase and amplitude variation in functional data analysis.
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Figure 1: Sketch of the deformation group G, the shape space N (vertical arrows), evo-
lution of the deformation variable g;, template variable 7;, and shape variable n; without
noise (W; = 0, blue), and shape variable n; with noise w (black). The shape space is illus-
trated as being linear (e.g. landmarks, images). However, the framework applies to general
non-linear shape spaces (e.g. curves, tensor fields).

1.1 Background

The LDDMM framework models the change of a shape n € N by the action of time
dependent flows of diffeomorphisms g; € G on the embedding space 2. One lifts the
shape trajectory to a time-dependent curve g; on the diffeomorphisms by setting
n; = ¢g;..m € N. For a right invariant metric on the tangent space of a subgroup
G of the diffeomorphism group Diff(N), N being the shape space, an energy can
be defined as E(g;) = fol 10:g:|2,dt. Combined with a data attachment term, this
approach allows matching of shapes and image registration Beg et al. (2005). The
invariance of E(g;) under the right action of G implies that the metric descends to
a metric structure on the data space N itself. The action of g; differs between data
types, but otherwise, the framework is formally equivalent for different classes of
shapes. The use of the flows g; to model the shape variability is fundamental and
the right trivialization v, := 0,g,0g; * gives an Eulerian interpretation of the metric.
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The right invariance of the metric enables Euler-Poincaré reduction of the dynamics
to the Lie algebra of G to be performed, and the critical paths for £ appear from
the reduced dynamics.

Metamorphosis extends the LDDMM setting by letting the template vary in
time as well as the deformation, thereby resulting in the flow g;.n;, in which 9y = n
is the original template. The metamorphosis energy is encoded into a Lagrangian
depending on both the G and N variability, again assuming invariance of the energy
to the group action on both G and N. A particular example of metamorphosis
dynamics arises in image analysis, where the image I; changes both by deformation
via the right action ¢;.I; = I, o gt_1 and via a pointwise change 0;1;(z) for each
pixel /voxel z.

In this formulation of metamorphosis dynamics, an analogy with the flows of
complex fluids arises. In complex fluids, a diffeomorphic flow carries an order pa-
rameter, defined as a coset space for a broken symmetry of homogeneous fluids, on
which the diffeomorphisms act. The order parameter moves with the fluid, but it
can also have its own internal dynamics, which in turn is coupled to the fluid motion
Holm (2002); Gay-Balmaz and Ratiu (2009). A similar combined dynamics of shape
and template also appears in the Fshape framework Charlier et al. (2017).

In Arnaudon et al. (2017, 2016), a stochastic model of shape evolution was in-
troduced that preserves the Euler-Poincaré theory of the deterministic LDDMM
framework. The model is based on the stochastic fluid dynamics model Holm (2015)
where right-invariant noise is introduced to perturb the reconstruction equation
that evolves the flow from the reduced dynamics. In deterministic LDDMM, the
reconstruction equation specifies the evolution of the group element by d;g; = v, 0 ¢,
generated by the reduced Eulerian velocity vector field v;. Stochasticity is introduced
as a perturbation to the reconstruction equation, by introducing the stochastic time

differential
N

dg, g; ! :vtdt—l—ZJZOthZ. (1.1)
1=1

Here W} are standard Wiener processes and o; are vector fields on the data domain
which characterize the spatial correlation of the noise. As it turns out, the noise in
Stratonovich form is denoted conventionally with the same symbol (o) that denotes
composition of maps. This coincidence should not cause any confusion. However,
just to be sure, we will write composition of maps as concatenation whenever the
two meanings appear in the same equation, as in (1.1). The perturbation of the
reduced variable implies that the noise is right-invariant and in a certain sense
compatible with the right-invariant LDDMM metric. This approach preserves many
of the geometric structures of the deterministic framework. Importantly, the descent
of the stochastic model to particular data types is similar to the way the metric
descends in the deterministic LDDMM framework.

A stochastic metamorphosis extension of the stochastic Euler-Poincaré frame-
work was introduced in Holm (2017). The stochastic perturbations there were also
introduced in the reduced variable influencing the deformation flow from the recon-
struction equation. The template evolution 7, is still deterministic. The aim of the
present paper is to extend this model to include noise in the template evolution 7, as
well. We will make this extension on the reduced template velocity g;0;n; similarly
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to the perturbation of the group variable. This procedure results in simultaneous
stochastic perturbations of the flow equations for both g, and 7.

1.2 Paper outline

After a brief survey of the deterministic metamorphosis framework in section 2.1,
we formally derive the stochastic model in section 2.2. We then show in section 2.3
how to derive these equations in the Hamilton-Pontryagin formulation, where the
noise appears as a stochastic constraint in the variational principle. We end the
theoretical section by deriving the corresponding Hamiltonian stochastic equations
in 2.4 to then move to some classical examples of image analysis and computational
anatomy in section 3, including landmarks and images. The inclusion of two types
of stochastic variations links the framework to combined random phase and ampli-
tude variations in functional data analysis. We provide perspectives of the method
to future applications in functional data analysis and computational anatomy in
section 4.

2 General stochastic metamorphosis

In this section, we introduce the stochastic deformation of metamorphosis, but first,
we recall the basis of this theory, in the context of reduction by symmetry. We will
only review what will be needed for our exposition, and we refer to Holm et al.
(2009) and Holm (2017) for more extensive treatments.

2.1 Deterministic metamorphosis

The theory of metamorphosis begins with a template N, considered here as a mani-
fold (landmarks, images, etc. .. ) upon which a group of diffeomorphism G = Diff(N)
acts. The parameter space of this theory is G x N, with curves (g;,7:) € G X N,
where g; is the deformation curve and 7, is the template curve. The image curve will
be denoted n; = g;.n; € N, where the dot represents the group action. This curve is
the total motion of the template, or image N, under both the deformation and its
own dynamics. For standard LDDMM, the motion of the image is only n, = g;.n, for
a fixed reference template 1. This combined action thus allows more freedom in the
matching procedure, while remaining compatible with the theory of reduction by
symmetries, which we now describe. We first define the two reduced velocity fields

Uy = gtgt_l, and vy = g1 . (2.1)

The first is the reduced deformation velocity and the second is the reduced template
velocity. We then assume that the original Lagrangian of this theory is invariant
under the group action of GG, so that we may write the reduced Lagrangian in terms
of the reduced velocity fields and the image position n,, i.e.,

L(gt, g mes ) = U(wg, e, 1) - (2.2)



Because the reduced Lagrangian still depends on the template variable n;, reduction
by the action of the diffeomorphisms will result in a semi-direct product structure,
where the template is an advected quantity, in the language of fluid dynamics.

We next compute the variations of the three variables in the reduced Lagrangian,
upon introducing the notation & = 6g,g; ' and w = gén, where dg and 67 are free
variations, to obtain

ou=§ — [ue, &]
on = Wy + 51:777: ) (23)
ov = (.L)t + gtl/t — Uy .

In these formulas, we need to specify what we mean by the multiplication, as the
vector fields live in different spaces. In fact, us, & € g = X (V) are vector fields; so the
Lie bracket is the natural operation. Recall that n, € N, thus &, corresponds to the
tangent map of the action of G on the manifold N, and similarly for v € TN, where
the action is on the tangent space of N. We do not need these actions explicitly
now, but we will need their ‘adjoint action’ in the following sense:

(n*om,u)y = —(n",un)y , (2.4)

(uxv*, V)rn = (V5 uv)ry (2.5

where N € N, n* € N*, v € TN, v* € T*N and u € g. The first equality defines
the diamond operation (¢), which will serve as a force term to capture the coupling
between the advected quantity n and the main dynamics of the diffeomorphism
group. The second equality defines the star operation (x), which is the adjoint of
the action of v on T'N. That is, it defines the action of u on T*N.

Applying the variational calculus to the action S = [[dt, we obtain the Euler-
Poincaré formulation of the metamorphosis equation in the form

d5l+a*6l+5l<> +5l<> ~0
dt du wiy on ey T (2.6)
dal 6o |
dtov o0 en
together with the reconstruction equation
n = ung + vy . (2.7)

We refer to Holm et al. (2009); Holm (2017) for the details of this derivation, which
we will do in the context of Hamilton-Pontryagin with noise in the next section.

From here, a choice of Lagrangian and data N will reduce the system to particular
cases, some of which we discuss in the applications section 3.

2.2 Formal derivation of the stochastic equations

We will first derive the equation informally, using ‘stochastic variations’, then show
a more straightforward derivation using the Hamilton-Pontryagin principle. The
second derivation also has the advantage of revealing the effects of the noise more
transparently.



In order to introduce a noise compatible with the Euler-Poincaré equation, we
need to perturb the theory at its core, which is in this case the definition of the
reduced velocities in (2.1). Indeed, the variations were computed from these defi-
nitions, and the deterministic Euler-Poincaré equation emerged. Although a single
relation is used in the Euler-Poincaré equation (2.7), we will split it into two parts,
and perturb them with two different noise components as follows,

Ku
dg,g;t = u(x)dt + Z o (x) o dW/ =: duy(z),
= (2.8)

Kl/
grdn = v dt + Z oy o thk =:dy; .

k=1

In a slight abuse of notation, du,(z) and di; are written as stochastic processes.
Here o' : N — g are a set of K" vector fields on the domain €2, and o} € T'N are
another set of K” tangent vectors on the template. We also denote by W} or W/ the
K"+ NV independent standard Weiner processes. In addition, we denote by zy € €2
the Lagrangian labels upon which ¢, acts, so that the first equation can be written

equivalently as
Ku

dg; = w(gewo)dt + Z ot (gig) o AW}
=1
The second equation for 7 in (2.8) does not have any z, dependence, as it is an
equation for the template itself. Thus, o} are not functions of V; rather, they are
tangent vectors to V.
With the notation for du; and di; in (2.8), we have the complete reconstruction
relation for the stochastic image template n;

dn; = dug ng + duy . (2.9)

Because n; € N, the concatination du; n; means the composition du,(n;). In (2.9),
the noise in the u; vector field was introduced in Holm (2017), based on the stochastic
fluid dynamics model of Holm (2015), whereas the noise in the v; field is new.
The first noise term in (2.9) corresponds to random errors in the reconstruction
of the diffeomorphism path from its velocity field, while the second one represents
random errors for the reconstruction of the template position from its velocity field.
In stochastic metamorphosis, the two noise terms will affect the dynamical equations
differently.

From these stochastic perturbations of the reconstruction relation, we can for-
mally compute the variations and obtain

6“ = dgt + [67 dut] 3

2.10
ov =dw + &dyy — duyw . ( )

These are convenient expressions, but they introduce the variations as stochastic
processes; so they should not be taken at face value without further analysis. We
will see in the next section how to re-derive these equations without introducing



stochastic variations, by using the Hamilton-Pontryagin principle. Because the re-
sults are identical for the two methods, we can proceed formally here by using these
variations as we did in the deterministic variational principle to obtain the following
stochastic reduced metamorphosis equations in Euler-Poincaré form,

dﬁ—i-adfluﬂ—i-ﬂondt—i—ﬂodyt:(),

ou tou  on ov (2.11)
d5l+d *5l—6ldt—0 .
ov b ov  on

as well as equation (2.9), all to be compared with the deterministic case in equations
(2.6) and (2.7).

2.3 Derivation using the Hamilton-Pontryagin principle

We now show how to rederive the stochastic metamorphosis equations more trans-
parently, without introducing stochastic variations (2.10). For this purpose, we will
use the stochastic Hamilton-Pontryagin approach and closely follow the exposition
of Holm (2017).

The deterministic Hamilton-Pontryagin principle is a variational principle with
the following constrained action

1 1
S(uhntahta Vt7gt7gt) = / l(utanta Vt)dt +/ <Mt> (tht_l - Ut)>dt
0 0 (2.12)

1
+ / <O't, (nt — UV — utnt»dt,
0

where M; € X*(N) and 0, € T*N are generalised Lagrange multipliers to enforce the
constraint of the reconstruction relations. Taking free variations for all the variables
yields the deterministic reconstruction relation (2.7) and the deterministic Euler-
Poincaré equation (2.6). We refer to Holm (2017) for more details of the derivation.
The crucial point here is to allow free variations, by introducing constraints into the
variational principle, and not in the variations as in the standard Euler-Poincaré
reduction theory. An alternative approach would be to use the Clebsch constrained
variational method used for fluid dynamics in Holm (2015).

In the present context, we enforce the stochastic reconstruction relations (2.8)
via the following stochastic Hamilton-Pontryagin principle

1 1
S(Ut,nt,d”t, Vt>gt>dgt) = / l(uunt,Vt) +/ <Mt7 (dgtg;1 - dut))
0 0 (2.13)

1
+ / <Ut7 (dnt - th - dutnt)> )
0



or, more explicitly, upon substituting for du; and di; from (2.8), we have

1
S(utynhdntaytugtudgt):/ l(Ut,nt,Vt)dt
0

1
/ (M, dgrg; Cwdt - S oo o div)
0

=1

+/01<at,dnt—ytdt—20k ode>
- e (uthzgl )odi)n).

Proposition 2.1. The stochastic variational principle §S = 0 with action (2.14)
yields the stochastic Euler-Poincaré equation (2.11) with stochastic reconstruction
relation (2.8) and (2.9).

(2.14)

Proof. The proof is a direct computation by taking free variations. We will show
the key steps below. First, the variations with respect to M, and o; yield the recon-
struction relations (2.8) and (2.9). Then, the variations with respect to u;, n; and v,
specify

ol ol

=M, +o,0ny, tertand — =oy. (2.15)

5Ut (SVt

We also have, for the n, variations,

Ku

5l
—dt=d dt dw?. 2.16
5 O + up * 0y +lz;al * 04 O ( )

Finally, for £ = §gg—! vanishing at the endpoints, we have

5(dgig; ) = de —[utdt+Zal JodWl, ¢ . (2.17)

From this computation, we have the last term in the calculus of variations which

reads
Ku

dM; = —ad;, My — Y ad}, () My o AW} . (2.18)

=1
Finally, substituting the values of M; and o; of (2.15) in equation (2.16) and (2.18)
yields the stochastic metamorphosis equation (2.11) after a few more manipulations
(see Corollary 3 of Holm (2017)). O

2.4 Hamiltonian formulation

Provided that the Lagrangian is hyperregular, the stochastic metamorphosis equa-
tion (2.11) can be written as a stochastic Hamiltonian equation with Hamiltonian
obtained via the reduced Legendre transform,

h(p,o,n) = (p,u) + (o, v) — l(u,v,n), (2.19)
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in which o and o, are the conjugate variables of u; and v, respectively. The noise is
encoded into the stochastic potentials

O (1) = (1, 01" )gxgr - and - (o) = {0y, o) TN 4 (2.20)

such that the stochastic equation of motion has a Hamiltonian drift term with h and
stochastic terms obtained via the same Hamiltonian structure, but with stochastic
potentials. Notice that the two potentials have a different pairing, one on the Lie
algebra of the diffeomorphism group, and the other on the tangent space of the
template manifold. The Hamiltonian structure is given in Holm (2017) and we will
only display here the Hamiltonian equations

oh oh
dpy + ads, uddt + 0 o —dt + — o ndt
Op

oo on
. odY
+Zad?iu0dwtl+20t<> 50_1 OthZZO, (221)
l E l
oh oh 0Py
doy + —*opdt — — + Y —Lxo,0dW/ =0.
o on l O

In the examples in the next section, we will use this formulation to derive the
stochastic equations of motion. Taking the Hamiltonian approach turns out to be
more transparent than the Lagrangian description.

3 Applications

Following Holm et al. (2009), we explicitly provide the stochastic metamorphosis
equations for a few classical examples, including landmarks and images, and leave
other applications such as closed planar curves, densities or tensor fields for later
works.

3.1 Landmarks and peakons

Consider the case when the template manifold N is the space of n landmarks q =
(g1 ---,qn) € Q" with momenta p = (p1,...,pn) € T42" = Q". One needs to specify
a Lagrangian for this system, and the simplest is

N ¢
l(“?”?”) = %||u”§<+?Z|p1|27 (31)
i=1

where the first norm depends on the kernel K (x) and the second norm is the vector
norm of the momenta multiplied by a constant A\2. In this case, we interpret the
momenta as the conjugate variables to the template deformation vector field v in
order to have an equation only in term of the position and momenta of the land-
marks. The derivation of the landmark equation is rather standard. Hence, we will
only show it on the Hamiltonian side. We refer, for example, to Holm et al. (2009)
for more details of the deterministic derivation, or to Arnaudon et al. (2017) and
Holm and Tyranowski (2016) for discussions of the stochastic landmark dynamics.
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Recall that the landmark Hamiltonian is
1
q) = 2 sz‘ piK(ai —qj), (3.2)
ij

and the metamorphosis Hamiltonian is thus

Mgi, i) = hi(a, P) + Z il (3.3)

The stochastic potentials (2.20) become in this case
®}'(q, p sz of(¢:)  and  ®Y(p) =p;-0y . (3.4)

Notice that the stochastic potential ®” is described by a fixed vector, where o7 is the
amplitude of the noise for the landmark i. However, for the stochastic potential ®*
we have to specify space (or q) dependent functions o}(q). This simple form comes
from the fact that we used a discrete set of points and v = p for the template
deformation, and the summation over k becomes a summation over the landmark
index. In addition, a sum of two Wiener process is another Wiener process with the
sum of the amplitude (if it is additive and in It6 form). From this observation, one
can see that the general equation ®}(p) = >, p; - 0 is equivalent to a change of
amplitudes o} and 7 = k.
We compute the stochastic Hamiltonian equations for landmarks to arrive at

Ohk

dg; =
4 Op;

dt + Z ot o AW} + N2pydt + oV dW, |
(3.5)

Ohk
dp; = — 8qldt+zal o) o dW},

in which we can use the Ito6 integral for the v-noise, as it is additive.
Notice that setting A = 0 recovers the standard landmark dynamics, but with an
additive noise in the position equation. This is different from the conventional phys-

ical perspective, in which additive noise often appears in the momentum equation,
as in Trouvé and Vialard (2012); Vialard (2013); Marsland and Shardlow (2017).

3.2 Images

The present stochastic metamorphosis framework can be directly applied to images,
by taking the template space N to be the space of smooth functions from the domain
Q) C R? to R. We set u; € X(Q2) the deformation vector field and p € TN = N
the template vector field. As before, the Lagrangian must have two parts, and the
simplest non-trivial one is the sum of kinetic energies written as

1 5 AP
Uy, v) = Sl + 5 Lol (36)
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where the first norm depends on the kernel K and the second norm is the standard
L? norm over Q. By choosing a L? norm we can identify p, with its dual in the case
A = 1. We will thus not distinguish between o; and v, of the general framework.

Thus, as before, we use the Hamiltonian formulation of the stochastic metamor-
phosis equations with the stochastic potentials,

B (my) = / (me(z), o (@))dz and (o) = / (ou(x), ot (e)dz.  (37)

Notice that in this case, both o} and o} are functions of the domain €2, and they
encode spatial correlation structure of the stochastic perturbations.

Then, because the Hamiltonian structure has three sorts of terms, the ad®, the
o and the * terms defined in equation (2.5), which in this case are

ady, my = (ug - V)my + (my - V)uy + div(ug)my
OOV = 0y -Vyt,

U x O = V- (Utut) s
we arrive at the following set of stochastic PDEs (for any \)

dmy + adj, mydt + Y adg, mg o AW = Xpy - Vpudt + Y py - Voy o dIWE,
l k

(3.8)
Ao 4V - (o)t + 5"V - (pot) o W = 0.
l

Another important equation is the reconstruction relation (2.9), which now reads

dgr = w(ge)dt + Z 01(g:) o AW} + ppdt + Z ot odW}. (3.9)
I [

Notice that if we set A = 1, the effect of the density, or template motion on the
momentum m only appears via the noise term, similarly to the landmark case.

In the one dimensional case, the metamorphosis equation is known to reduce to
the so-called CH2 system, which is equation coupling the Camassa-Holm equation
with a density advection equation for p; = 1. We refer to Holm et al. (2009); Chen
et al. (2006) and references therein for more details about this equation and its
complete integrability in the deterministic case. A similar reduction holds for both
stochastic deformations, and we have the following stochastic CH2 equation

dm + (ud,m + 2mo,u)dt

= —pdppdt — Y pOyoy o dWf = (01“ dem + Y 2md,of ) odW/.  (3.10)
k l l

dp + 0, (pu)dt + 0,(pot) o AW} = 0.

Compared to the landmark example, the noise associated to the template dy-
namics is described by a set of functions of the image, not a set of fixed vectors.
The difference between the nature of these two types of noise is thus less apparent,
apart from how they appear in the equation.
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4 Perspectives

4.1 Computational Anatomy

Estimation of population atlases and longitudinal analysis of anatomical changes
caused by disease progression constitute integral parts of computational anatomy
Younes et al. (2009). The relation between these problems and the stochastic meta-
morphosis model presented here can be illustrated by the analysis of longitudinal
brain MR-image data of patients suffering from Alzheimer’s disease. The data man-
ifold N is here a vector space of images as described above with  C R3.

geodesic perturbations continuous noise
Ui - N
population average populatlon trend population trend

Figure 2: (left) Template estimation in the form (4.1) aims at finding a single descriptor
n for the population average of the observed shapes n', ..., n* (red dots) in the non-linear
shape space N. The variational principle (4.1) corresponds to assuming n' arise from
geodesic perturbations of 7. (center) Geodesic regression models a population trend as a
geodesic ny. Observations at different time points (n! , red, néQ green) arise as perturbations
of the points n;, and ny, by random geodesics. (right) Stochastic metamorphosis models
the evolution of the population trend n; deterministically while observations néj = ny, (w?)
appear from individual noise realizations w’. The perturbations are time continuous and
apply to each case i individually making the model natural for modelling longitudinal
evolutions with noise.

Focusing first on template estimation, in medical imaging commonly denoted
atlas estimation, the aim is to find a population average of data assumed observed
at a fixed time point. In the literature, this is for example pursued by minimizing the
total sum of the regularized LDDMM energies of deterministic geodesic trajectories
that deform the atlas to match the observed data Joshi et al. (2004). For k data
points n',...,n* and with data matching term S : N x N — R, the template 7 is
then estimated by joint minimization of

min Z / it + S(6, ), (4.1

'I’},’Ut 5. ,v

where the deformations ¢% each are endpoints of the integral of the vector fields v}
on an interval [0, 7.

A different approach to atlas estimation is to perform inference in statistical mod-
els where observations are assumed random perturbations of a template and infer-
ence of the template is performed via maximum-likelihood or maximum-a-posteriori
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(a) tempate signal 7 (b) phase variation (c) amplitude (d) phase and
(¢) variation (v) amplitude variation

Figure 3: A template signal (a) can be perturbed by (b) variation in phase, in (4.2)
denoted ¢; (c) variation in amplitude, v in (4.2); (d) phase and amplitude simultaneously.

estimation. This approach is pursued, for example, in a Allassonniére et al. (2007);
Zhang et al. (2013); Pai et al. (2016). See also the discussion below.

Longitudinal analysis aims at capturing the average time evolution of the brain
shape caused by the disease Muralidharan and Fletcher (2012); Niethammer et al.
(2011). A common approach here is to estimate a general deterministic trend that
is perturbed by noise at discretely observed time points in order to describe the
observed images Fletcher and Zhang (2016). For example, the noise can take the form
of random initial velocity vectors for geodesics emanating from the deterministic
trajectory.

The stochastic metamorphosis framework proposed here combines deterministic
longitudinal evolution of the template in both shape, represented by the deforma-
tions ¢g¢, and in the template image, n; = ¢;.n;. We can assume longitudinal ob-
servations nf;j, 1 =1,...,k, j = 1,...,t at [ time points are realizations of the
stochastic model with time-continuous noise process drawn for each subject i. The
stochastic perturbations are thus tied to each subject affecting the dynamics simul-
taneously with the evolution of the deterministic flow. The relation between this
model, geodesic regression models, and atlas estimation is illustrated in Figure 2.

Because of the randomness, algorithms for inference of the template n and its
evolution n; = g;.n; from data can naturally be formulated by matching statistics of
the data, e.g. by matching moments or by maximume-likelihood as done for the land-
mark case of stochastic EPDiff equations in Arnaudon et al. (2017). Development
of such inference schemes constitutes natural future research directions.

4.2 Phase and Amplitude in Functional Data Analysis

While images exhibit variations in both intensity and shape of the image domain,
signals in functional data analysis often exhibit combined variation in amplitude
and phase. For a signal f : I — N defined on an interval I, amplitude variations
refer to variations of the values f(s) in N for each fixed s € I while phase variation
covers changes in the parametrization of the domain 7. This is illustrated with
N =R in Figure 3. An example of such combined phase and amplitude variations is
provided in the growth curves of children and young adults; in which phase variation
is connected to the absolute height of the subject while phase variation arise from
growth and growth spurts occurring at different ages for different children.
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Recent literature covers multiple approaches for identifying, separating and per-
forming inference in situations with combined phase and amplitude variation Raket
et al. (2014); Marron et al. (2015); Tucker et al. (2013). One example of a generative
model in this settings is the mixed-effects model Raket et al. (2014); Kiihnel et al.
(2017)

f(s)=n(¢'(s))+v(s)+e, sel, (4.2)

where the average signal 7 is deformed in phase by the action ¢.n = no ¢~! of a
deformation ¢ of the interval I, and in amplitude by the additive term v. Here 7 is
considered a fixed, non-random effect while both ¢ and v are random. Illustrated
with the growth curve case above, 7 models the population average growth curve
for each age s, while ¢ controls the timing of the growth process for the individual
children and v the absolute height difference to the population average. One observes
that the model (4.2) is non-linear, because of the coupling between ¢ and 7. In
addition, a model for the deformations ¢ is needed, and the randomness appearing
in both ¢ and v must be specified.

Whereas the LDDMM model is widely used in image analysis, this framework
has not yet seen many applications for modelling deformations in functional data
analysis, such as the phase variation appearing in (4.2). Instead, works such as Raket
et al. (2014) use a small-deformation model ¢(s) = s+v(s) with random vector field
v modelling displacements on I. On the other hand, large-deformation flow models
such as LDDMM traditionally have not integrated random variation directly into the
dynamics. Natural families of probability distributions and generative models taking
values in non-linear spaces such as deformation spaces are generally non-trivial to
construct. However, the model proposed in this paper achieves exactly that.

A direct metamorphosis equivalent of the mixed-effects model (4.2) has n = g
the population average 7, sets uy = 1y = 0 and encodes the random effects ¢
and v in (4.2) in the stochastic increments du; and dv,. The action of g, on the
signal is the right action g,.f = fog; ' as in (4.2). Now dv, models pure amplitude
variation, du; phase variation, and the combined stochastic evolution of the signal
is df; = dn;. We then assume the observed signal is f = fr for a fixed end time T of
the stochastic process. Spatial correlation in both the deformation increments du,
and the amplitude increments dv; is encoded in the fields o}* and o} respectively.

In the above model, the template is stationary in time when disregarding the
stochasticity. However, allowing non-zero initial momenta wug and vy in both phase
and amplitude allows the template to vary with time and thereby gives a non-linear
generalization of a standard multivariate regression model with one latent variable
for phase and one for amplitude. This in particular allows modelling of trends over
populations where subjects are affected by both the population trend and individual
stochastic perturbations.

4.3 Statistical nonlinear modelling

It may initially seem overly complicated to use the metamorphosis framework for a
simple regression model. However, statistical models that in linear space seem com-
pletely standard are often inherently difficult to generalize to non-linear spaces. In
general, the lack of vector space structure makes distributions and generative models
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hard to specify, see e.g. Sommer (2015); Sommer and Svane (2017) for examples of
the geometric complexities of generalizing the Euclidean normal distribution.

In Euclidean space, random vectors can model random perturbations. In non-
linear spaces, the lack of vector space structure prevents this and random perturba-
tions are often most naturally expressed with sequences of infinitesimal steps. Vectors
are thus replaced with tangent bundle valued sequences that, when integrated over
time, give rise to stochastic flows. When modelling both deterministic and random
variations, stochasticity generally couples non-trivially with the deterministic evo-
lution. In addition, perturbations and correlation structure must be specified with
respect to a frame of reference. While Euclidean space provides a global coordinate
system allowing this, a model of transport must be specified in non-linear spaces.
The stochastic metamorphosis model is an example of a model coupling determin-
istic and stochastic evolution and using right-invariance to provide reference frames
for the perturbations and correlation structure. An example of a related but differ-
ent approach is Kiithnel and Sommer (2017) where parallel transport is used to link
covariance between tangent spaces.
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