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Abstract

In this thesis we study aspects of the mathematical formulation of quantization and
more specifically geometric quantization. Our main objective is the construction of a
Hitchin connection in settings, that generalise the constructions of Andersen in [And12],
which again was a generalisation of the original work by Hitchin [Hit90] studying the
case of the moduli space of flat connections on a surface.

We review the construction by Andersen and this Author in [AR16], where we
succeeded in significantly weakening the so called rigidity condition on the family of
complex structures, which was required for Andersens original construction to work.
We also include calculations of the curvature in this so-called weakly restricted case.

Afterwards we continue with new work joint with Andersen, where we construct a
Hitchin connection for a general family of Kähler structures under certain cohomolog-
ical conditions. Under similar conditions, we can even state the uniqueness of such a
connection, and proof that this condition is also necessary for the existence of such a
Hitchin connection. This is at the moment work in progress, which we expect to publish
ultimo 2018 [AR18].

Besides stating and proving these results, we introduce the context by going through
some basics of complex geometry, quantization and review the original moduli space
case studied by Hitchin.

Resumé

I denne afhandling, studerer vi aspekter indenfor den matematiske formulering af
kvantisering og mere specifikt geometrisk kvantisering. Vores hovedmål er at konstruere
en Hitchin konnektion i et setup, der generaliserer Andersens konstruktion fra [And12],
som igen var en generalisering a Hitchins oprindelig studier i [Hit90], hvor han betragtede
modulirummet af flade konnektioner på en flade.

Vi gennemgår konstruktionen af Andersen og denne forfatter i [AR16], hvor vi lykke-
des med at svække den såkaldte rigidity betingelse på familien af komplekse strukturer,
som var en vigtig betingelse for Andersens originale konstruktion. Vi inkluderer også
udregninger af krumningen i dette såkaldte weakly restricted tilfælde.

Bagefter fortsætter vi med at gennemgå nyt arbejde, lavet i samarbejde med Ander-
sen, hvor vi konstruerer en Hitchin konnektion for en general familie af Kähler strukturer
under visse kohomologiske betingelser. Under lignende betingelser, kan vi endda vise at
Hitchin konnektionen er entydig, og endvidere bevise at betingelsen er nødvendig for at
sådan en Hitchin konnektion kan eksistere. Dette er i øjeblikket igangværende arbejde,
som vi forventer at publicere ultimo 2018 [AR18].

Udover at vise disse resultater, vil vi introducere konteksten ved at gennem noget
af den grundlæggende teori om kompleks geometri og kvantiseringer samt gennemgå
det oprindelig modulirums tilfælde, som Hitchin studerede.



Introduction

The following work takes place in the subject of mathematical quantization, which relates
to problems on the border between physics and mathematics. In the beginning of the 20th
century physicists discovered that the laws of classical Newtonian mechanics fail to describe
events happening at the level of particles. This gave rise to the theory of quantum mechanics,
which was since developed and widely accepted during the 1920’s. Ever since, mathematicians
have tried to come up with a mathematically sound way of producing a quantum mechanical
description for a physical system from its classical description, a so-called quantization
scheme.

It has been shown, that there can not exist a full quantization in the sense that the
physicists wanted, but quantum mechanics has, however, been hugely succesful in describing
and predicting events studied in experiments. Thus it has been a great field of mathematical
research to construct and study different approaches to quantization.

We will in this thesis primarily study the approach called geometric quantization, that
takes its starting point from a classical theory encoded through its Hamiltonian description by
the phase space given by a symplectic manifold (M,ω). To this geometric quantization aims
to associate a corresponding Hilbert space of quantum states H, and to classical observables
given by functions on phase space it should assign a self adjoint operator on H. All of this
should be done in a way, such that the assignment satisfies certain conditions, which we will
later describe in detail in chapter 2.

The first step is prequantization, which is a purely geometric construction, that almost
satisfies all the criteria of a quantization, except it doesn’t reproduce so-called canonical
quantization of Rn. It produces a state space as sections of a line bundle, but this space
depends on twice as many variables as desired. To deal with this, we need to introduce a
polarization on M and only consider polarized sections of the line bundle. This gives the
desired quantization, except we have to weaken the so-called commutation relation to only
hold asymptotically.

We will only work with polarizations coming from compatible Kähler structures. The
problem is that different choices of Kähler structure give rise to different quantizations, and
since the Kähler structure is complementary to the physical theory, we have no good reason
to choose one over another. Thus, we need a way of relating different choices.

If we assume that the quantum spaces Hσ constitute the fibers of a vector bundle H → T ,
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Introduction

where T parametrizes Kähler structures, and we can find a connection in this bundle, then we
can relate the quantum spaces arising from different complex structures by parallel transport
along a curve connecting them. We do, however, need the connection to be flat in order for
this to be independent of the curve, such that we get a canonical isomorphism of the fibers.

Now we leap forward to the study of Chern-Simons theory, where the moduli spaceM
of flat SU(n)-connections on a genus g ≥ 2 surface Σ arises as the classical solutions to the
Euler-Lagrange equations of the Chern-Simons action functional. The space comes naturally
equipped with the Seshadri-Atiyah-Bott-Goldman symplectic form ω [AB83, NS64, NS65,
Gol84], and Teichmüller space T (Σ) of the surface parametrizes almost complex structures
Jσ makingMσ = (M,ω, Jσ) Kähler for each σ ∈ T . Furthermore,M admits a Hermitian line
bundle L with a compatible connection of curvature given by the symplectic form. Now for
each level k ∈ N, we get the space of quantum states H(k)

J = H0(Mσ,Lk) as the holomorphic
sections of the k’th tensor power of this line bundle with respect to the Kähler structure
Jσ, and these form the fibers of the so-called Verlinde Bundle, which is a vector bundle over
Teichmüller space. It was this quantization, that Hitchin studied in the paper [Hit90], and
for which he showed that there exists a natural projectively flat connection, which we call
the Hitchin connection.

In [And12], Andersen gave a purely geometrical construction of a Hitchin connection
on any compact prequantizable symplectic manifold satisfying certain simple topological
restrictions, but with one rather restrictive condition on the familiy of complex structures,
namely that it satisfies the so-called rigidity condition. This means that the corresponding
deformations of the metric is by the real part of a global holomorphic symmetric tensor,
as we recall in details below. Importantly, Andersens abstract construction applied to the
original case studied by Hitchin, and in this case reproduced the connection constructed by
Hitchin.

It has, of course, been of great interest to try to get rid of the rigidity condition and
construct a Hitchin connection in a more general setting. In the paper [AR16], Andersen
and I succeeded in weakening this criterion considerably, only demanding that the family
was weakly restricted, a notion we will introduce below. We go through the construction and
proofs in detail in chapter 6.

We have since then, continued the work in trying to understand exactly when it is pos-
sible to define a Hitchin connection, and what the ambiguity in choosing one is, if it exists.
Furthermore we have worked on computing its curvature, and to show if it is projectively
flat or not. This is still ongoing work to appear in the article [AR18]. In this, we show that
a Hitchin connection exists when certain cohomological restrictions are fulfilled, and that a
Hitchin connection of that form only exists under these restrictions. Furthermore, we can
give similar cohomological restrictions ensuring uniqueness and projective flatness of said
connection.

Let us now briefly introduce the mathematical setting, so we can rigorously describe the
results.

We let (M,ω) be a symplectic manifold and let T be a complex manifold parametrizing a
holomorphic family J : T → C∞(M,End(TM)) of complex structures, which are all Kähler

vi



with respect to ω. For any point σ ∈ T we will write Mσ, when we refer to the complex
manifold (M,Jσ).

We will consider the variation of the family J along a real vector field V on T , which
we denote V [J ]. We consider the splitting of V = V ′ + V ′′ into types on T and we consider
the symmetric bi-vector field G(V ′) = V ′[J ] · ω̃, where ω̃ is the bivector field, inverse to ω.
We think of G as a one form on T with coefficients in bi-vector fields and as such, we write
G(V ) = G(V ′). Observe that if g is the corresponding family of Kähler metrics parametrized
by T , then we have that

V [g] = G(V ) +G(V ).

The assumption that the family J is rigid, says that G(V ) defines a holomorphic section
G(V )σ ∈ H0(Mσ, S

2(T ′Mσ)) at all points σ ∈ T , which as mentioned was the case for the
setting studied in [Hit90], but this is still a very restrictive condition.

In [AR16], we weakened the rigidity criterion by adding the possibility of varying the
bi-vector field G(V )σ by adding a term of the form ∂̄β(V )σ · ω̃ for an arbitrary vector field
β(V )σ ∈ C∞(Mσ, T

′Mσ).

Definition 1 (Weakly restricted). We call the family J weakly restricted if there exist a
one form β on T with values in C∞(Mσ, T

′Mσ) at each point σ ∈ T , such that for all vector
fields V along T and all σ ∈ T , there exist Gβ(V )σ ∈ H0(M,S2(T ′Mσ)) such that

Gβ(V )σ · ω = V ′[J ]σ + ∂̄β(V )σ.

It is, of course, interesting to investigate when we can solve the weakly restricted criterion.
We explain this in section 3.5, but In general, we can solve the equation (1) if the cohomology
class of V ′[J ]σ is contained in the image of the map

·ω : H0(MJ , S
2(T ′MJ))→ H1(MJ , T

′MJ)ω,

where H1(MJ , T
′MJ)ω is defined to be be the symmetric part of this cohomology. In par-

ticular, it is clear that this is always possible, if the map is surjective. A particularly simple
case of this is when

H1(MJ , T
′MJ)ω = 0.

From this it follows that our construction provide a partial connection on the space of all
complex structures compatible with the symplectic form on ω, but If M is compact, we see
that this partial connection is defined on a subspace of finite co-dimension of the tangent
space to the space of all complex structures compatible with ω.

To state our theorems we recall the setup in geometric quantization. Let (M,ω) be a
symplectic manifold and assume that (M,ω) admits a prequantum line bundle (L, h,∇).
Let T be a complex manifold parametrizing a holomorphic family of complex structures J
making (M,ω, Jσ) Kähler for each σ ∈ T . Now for each σ ∈ T we consider the quantum

vii



Introduction

space at level k ∈ N, which is the subspace H(k)
σ of the prequantum space Hk = C∞(M,Lk)

consisting of holomorphic sections

H(k)
σ = H0(Mσ,Lk) ⊂ Hk.

We will in the following assume that these quantum spaces form a smooth subbundle H(k)

of the trivial bundle
Ĥk = T ×Hk.

Now we let ∇T denote the trivial connection on Ĥk and consider a connection of the form

∇V = ∇TV + u(V ), (1)

where u ∈ Ω1(T ,D(M,Lk)) is a one-form on T with values in the space of differential
operators on sections of Lk. Our goal is to construct a u, such that ∇ preserves the quantum
spaces H(k)

σ inside each fibre of Ĥk.

Definition 2 (Hitchin connection). A Hitchin connection in the bundle Ĥk is a connection
of the form (1), that preserves the subspaces H(k)

σ inside each fibre of Ĥk.

We can now state the main theorem proven in [AR16].

Theorem 3 (Hitchin connection for weakly restricted families). Let (M,ω) be a symplectic
manifold with a prequantum line bundle L. Assume that M has first Chern class of the form
c1(M,ω) = n

[
ω
2π
]
for some integer n ∈ Z and such that H1(M,R) = 0. Furthermore, let

J : T → C∞(M,End(TM)) be a weakly restricted, holomorphic family of Kähler structures
on M, parametrized by a complex manifold T , and assume that the family admits a family
of Ricci potentials F . Then there exists a Hitchin connection ∇ in the bundle Ĥk over T ,
given by the expression

∇V = ∇TV + u(V ),

where

u(V ) = 1
2(2k + n) (∆Gβ(V ) + 2∇Gβ(V )·dF − i(2k + n)∇β(V )

+ 4kV ′[F ]− 2ikdF · β(V )− ikδ(β(V )) + 2k(k + n)ϕ(V ) + ikψ(V )),

and ϕ(V ), ψ(V ) ∈ C∞(M) are smooth functions, satisfying

∂̄ϕ(V ) = ω · β(V ) and ∂̄ψ(V ) = Ω(V ),

where Ω(V ) ∈ Ω1(M) is given by

Ω(V ) = −δ(Gβ(V )) · ω + δ(∂̄β(V ))− 2dF ·Gβ(V ) · ω + 2∂̄β(V ) · dF + 4i∂̄V ′[F ].

For remarks on the details and special cases of this theorem see section 6.2, where the
theorem is proved and the remarks following the theorem.

It still remains to investigate the curvature of this connection further, since a projectively
flat connection gives a canonical identification of the projectivised quantum spaces, if T
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is simply connected, and thus proves that the quantization is independent of the arbitrary
choice of a distinct Kähler polarization.

Projective flatness was proved by Hitchin in [Hit90] and Axelrod, Della Pietra and Witten
in [ADPW91] in the original moduli space setting, and by a purely differential geometric
argument, Andersen and Gammelgaard proved that the Hitchin connection constructed in
[And12] is also projectively flat if all complex structures in the family have zero-dimensional
symmetry group. This is, especially, valid in the case of the moduli spaces of flat connection
on a closed oriented surface.

In the case of weakly restricted families, we already know, that we cannot prove projective
flatness in general due to the No-Go Theorem of [GM00], see section 9.1 for the proof of
this. We would, however, still like to calculate a direct expression for the curvature given by
differential operators, and understand the conditions under which the connection is indeed
projectively flat. We have attacked this problem using different approaches, and the best
result so far is by a direct computation using differential operators in the same spirit as
Andersen and Gammelgaard in [AG14]. The full result can be seen in section 8.4, but we
include here the condition for projective flatness.

Corollary 4. The Hitchin connection given in theorem 3 is projectively flat if and only if

0 = Γ3(V,W )− Γ3(W,V )

0 = −i∇β(V )Gβ(W )− iS(Gβ(V )·∇β(W ))

+ i∇β(W )Gβ(V ) + iS(Gβ(W )·∇β(V ))

+ V [Gβ(W )]−W [Gβ(V )]

0 = ∆Gβ(V )δGβ(W )−∆Gβ(W )δGβ(V )

+ 2∇2
Gβ(V )(Gβ(W ) · dF )− 2∇2

Gβ(W )(Gβ(V ) · dF )

+ 4
[
Gβ(V ) · dF,Gβ(W ) · dF

]
+ 2(

[
δGβ(V ), Gβ(W ) · dF

]
−
[
δGβ(W ), Gβ(V ) · dF

]
)

0 = −i∇2
Gβ(V )β(W ) + i∇2

Gβ(W )β(V )

+ 4V [Gβ(W )] · dF − 4W [Gβ(V )] · dF

+ 4Gβ(W ) · dV [F ]− 4Gβ(V ) · dW [F ]

+ 2δV [Gβ(W )]− 2δW [Gβ(V )]

− 2i
[
Gβ(V ) · dF, β(W )

]
+ 2i

[
Gβ(W ) · dF, β(V )

]
− i
[
δGβ(V ), β(W )

]
+ i
[
δGβ(W ), β(V )

]
0 = −4

[
β(V ), β(W )

]
− 2iV [β(W )] + 2iW [β(V )]

We have also added a uniqueness result for the Hitchin connection in the weakly restricted
case, utilising some of the techniques, that we use in our new work on general families of
Kähler structures.
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Introduction

Theorem 5 (Uniqueness of the Hitchin connection). Assume the setup of Theorem 3. Fur-
thermore assume that the contraction map

ω· : H0(M,S2(T ′Mσ))→ H1(M,T ′Mσ)

is injective and H0(M,T ′Mσ) = 0. Then any Hitchin connection

∇̃ = ∇T + ũ

in Hk of order at most 2 with

ũ(V ) =
2∑
i=0
∇(i)
Gi(V )

is unique and thus ũ = u, where u is given by the expression in Theorem 6.11.

Besides the example on the no-go theorem, we include two examples in chapter 11 that
illustrate how our construction is applicable. We show that our constructions can be used on
certain open subsets of the entire family of all complex structures on R2n with the standard
symplectic structure and the entire family of all complex structures on R2n/Z2n compatible
with the standard symplectic structure.

Furthermore, our construction also applies to certain open subsets of the entire family of
all complex structures on co-adjoint orbits and on the moduli spaces of flat SU(n)-connections
on a surface of genus g ≥ 2, possibly with fixed central holonomy around a point on the
surface, when equipped with the Seshadri-Atiyah-Bott-Goldman symplectic structure.

We conclude the introduction by discussing our current research. For this, we consider the
same general setup as above, except for the restrictions on the family of Kähler structures.
Inspired by our use of symbols to describe the curvature, we started investigating some
general properties of differential operators given in terms of their symbols, and some of these
results are described in chapter 5.

Now instead of just looking, at the equation Gβ(V )σ · ω = V ′[J ]σ + ∂̄β(V )σ, or even
the more restrictive rigid case with β = 0, we realised that it was very interesting to look
at a contraction with a linear combination of the symplectic form ω and the ricci form ρ.
Furthermore we consider the contraction with symmetric n-tensors of arbitrary degree and
not just bi-vector fields as in the weakly restricted or rigid case.

Definition 6. For any n ≥ 1, we let

Ψ(n) : H0(Mσ,Sn(T ′Mσ))→ H1(Mσ, S
n−1(T ′Mσ)),

be given by
Ψ(n)
Z (Gn) = i(knιZω + (n− 1)ιZρ) ·Gn,

where Z ∈ C∞(M,TM). We will need the kernel and image of these maps and name them

K(n) := ker(Ψ(n)) : H0(Mσ,Sn(T ′Mσ))→ H1(Mσ, S
n−1(T ′Mσ))

I(n) := Im(Ψ(n)) : H0(Mσ,Sn(T ′Mσ))→ H1(Mσ, S
n−1(T ′Mσ)).
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We start by considering any differential operator D, which can be written on the form

D =
N∑
i=0
∇(i)
Gi
.

Now we know from lemma 6.2, which is also the starting point of our earlier constructions
of the Hitchin connection, that the condition for being a Hitchin connection is in fact a
condition on the derivative ∇0,1Ds of a differential operator for any holomorphic section s.
Thus we tried to find a way of computing this in general, as it is done for ∆G in lemma 6.3,
and it turned of that it was possible and very useful to do this calculation modulo differential
operators of degree n−2 or less. Using this calculation we have proved the following theorems.

Theorem 7. Let (M,ω) be a symplectic manifold with a prequamtum line bundle L and
let J : T → C∞(M,End(TM)) be a family of Kähler structures on M, parametrized by a
complex manifold T . If H1(M,R) = 0, then an order 2 Hitchin connection ∇ = ∇T +u with

u(V ) =
2∑
i=0
∇(i)
Gi(V )

on Ĥk exists if and only if
[V ′[J ]] ∈ I(2)

for all V ∈ C∞(T , TT ). If so, a Hitchin connection is given by

∇V = ∇TV + u(V )

u(V ) = ∇2
G2(V ) +∇δ(G2(V )) −∇β(V ) − ψ(V ),

where
V ′[J ] = Ψ(n)(2iG2(V )) + ∂̄(2iβ(V )),

and ψ(V ) is a function, such that

∂̄ψ(V ) = ikιδ(G2(V ))−β(V )ω.

Furthermore, if the Hitchin connection exists, it is projectively flat, if K(n)
σ = 0 for

n = 1, 2, 3 and all σ ∈ T .

Theorem 8. Let (M,ω) be a symplectic manifold with a prequamtum line bundle L and
let J : T → C∞(M,End(TM)) be a family of Kähler structures on M, parametrized by a
complex manifold T .

If K(n)
σ = 0 for all n ≥ 2 and all σ ∈ T , then for any Hitchin connection ∇ = ∇T + u

with

u(V ) =
N∑
i=0
∇(i)
Gi(V )

on Ĥk, the order N ≤ 2.
Furthermore if H0(M,T ′M) = 0 and a Hitchin connection of this form exists on Ĥk, it

is unique up to addition of a scalar and projectively flat.
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Introduction

We are still working on expanding this theory to an even more general setting, where we
can give an “if and only if” statement on the existence of a Hitchin connection of any order.
Also, we are working on examples, where our new theorem applies.
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Chapter 1

Complex Differential Geometry

We will, in the following chapter, review the most important background material from
complex differential geometry, that will be used throughout the report. We assume knowledge
of this part and include as a reminder to introduce the setting and to fix notation and
conventions for the rest of the thesis.

Definition 1.1. Let M be a smooth manifold. Then an almost complex structure on M is
a smooth family of endomorphisms

Jp : TpM → TpM, such that J2
p = − Id, ∀p ∈M.

That is, J is a smooth section of the endomorphism bundle End (TM) overM , with J2 = − Id.
A manifoldM with an almost complex structure J will be called an almost complex manifold,
and we denote this MJ .

A complex structure turns the tangent bundle into a complex vector space, since mul-
tiplication with i is given by J , and thus an almost complex manifold must have even real
dimension 2m.

We are interested in complex structures on a symplectic manifold (M,ω), and we say
that a complex structure is compatible with ω, if the bilinear form g on the tangent bundle
given by

g(X,Y ) = ω(X,JY ) (1.1)

for vector fields X and Y onM , defines a Riemannian metric, i.e. g is symmetric and positive
definite. We also call the triple (J, g, ω) compatible and remark that two of the structures
in a compatible triple uniquely determines the other two by (1.1). The symmetry of g is
equivalent to J-invariance of ω, and by the relation between ω and g, it follows that g is
J-invariant as well, which is also the criterion for g being Hermitian.

We will often need contraction of tensors as in the compatibility criterion above, so we
will introduce some notation for this. For contraction of tensors placed next to each other,
we will use a dot, so the above compatibility will be denoted by

g = ω · J,
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1. Complex Differential Geometry

but for some of the more complicated expressions, we can’t always indicate contraction
by placing the tensors next to each other. For this, we will use abstract index notation to
denote the entries of the tensor, and following the Einstein summation convention, repeated
indices are contracted. In the same spirit, we use substript indices for covariant entries and
superscript indices for contravariant entries. The contraction correspond to a summation in
local coordinates, but our indices only name the entries of the tensor and do not represent a
choice of local coordinates. Writing the expression from before in abstract index notation,
would look like

gab = ωauJ
u
b ,

and we remark, that we try to use the letters a, b, c, d for entries, that are not contracted,
and letters u, v, w, x, y for contracted indices.

We will need the inverses of the metric and the symplectic form. These are the symmetric
bivector field g̃ and antisymmetric bivector field ω̃, such that

g · g̃ = g̃ · g = Id and ω · ω̃ = ω̃ · ω = Id .

These exist, since the metric and symplectic forms are nondegenerate. We will sometimes
use g and g̃ to either lower or raise an index by contraction. It is also useful to record, that
the relation between g and ω implies that

g̃ = −J · ω̃.

1.1 Poisson Structure

Related to a symplectic structure, we also get a Poisson structure on the algebra of smooth
functions C∞(M), that is a Poisson bracket

{·, ·} : C∞ × C∞ → C∞(M),

which is a skewsymmetric, bilinear map satisfying the Leibniz rule

{f, gh} = {f, g} g + g {f, h}

and the Jacobi identity

{f {g, h}} {g, {h, f}}+ {h, {f, g}} = 0.

The Poisson structure associated to the symplectic structure, is given directly using ω̃, which
is therefore also known as the Poisson tensor, by

{f, g} = df ·ω̃,

but is more often seen in the more indirect notations

{f, g} = −ω(Xf , Xg),

where Xf = ι−1
ω (df) = df ·ω̃ is the Hamiltonian vector field associated to the function f. We

recall also the identity between the commutator of Hamiltonian vector fiels and the Poisson
bracket of the functions

[Xf , Xg] = X{f,g}.
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1.2. Splitting of the Tangent Bundle

1.2 Splitting of the Tangent Bundle

An almost complex structure J on a manifold M , extended linearly to the complexified
tangent bundle, induces a splitting

TMC = T ′MJ ⊕ T ′′MJ ,

into the holomorphic and anti-holomorphic parts, i.e. the i and −i eigenspaces og J . We
have projections on the subbundles

π1,0
J : TMC → T ′MJ , given by π1,0

J = 1
2(Id− iJ)

π0,1
J : TMC → T ′′MJ , given by π0,1

J = 1
2(Id+ iJ).

When we have a compatible triple, the Riemannian metric also induces a Hermitian structure
h on the the holomorphic tangent bundle T ′MJ given by

h(X,Y ) = g(X, Ȳ ),

where the bar denotes conjugation with respect to J .
Likewise we denote the splitting of a vector field X on MJ by X = X ′J +X ′′J . Similarly

the complexified cotangent bundle splits into

TM∗C = T ′M∗J ⊕ T ′′M∗J ,

such that T ′M∗J is the subbundle of 1-forms that vanish on T ′′MJ , and T ′′M∗J is the subbundle
of forms that vanish on T ′MJ .

These splittings induce splittings of all bundles of tensorpowers of TMC and thus on the
exterior algebra and the forms on M . We first define (p, q)-forms.

Definition 1.2 (Forms of type (p,q)). The differential forms of type (p, q) are the sections

Ωp,qJ (M) = C∞(M,Λp,q(TM∗J )),

where we define ∧p,q
TM∗J =

∧p
T ′M∗J �

∧q
T ′′M∗J .

With this definition the space of k-forms on M splits as the direct sum

Ωk(M) =
⊕
p+q=k

Ωp,qJ (M),

and for pairs (p, q) with p+ q = k, we get projections

πp,qJ : Ωk(M)→ Ωp,qJ (M),

and composing the usual exterior derivative with these projection maps, we get the differential
operators ∂ and ∂̄ on forms of type (p, q)

∂J : Ωp,qJ (M)→ Ωp+1,q
J (M) given by ∂J := πp+1,q

J ◦ d

∂̄J : Ωp,qJ (M)→ Ωp,q+1
J (M) given by ∂J := πp,q+1

J ◦ d.
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1. Complex Differential Geometry

The metric and the symplectic forms are both bilinear, and since they are J-invariant, it
follows that the (2, 0) and (0, 2) parts vanish, since

ω(X ′, Y ′) = ω(JX ′, JY ′) = −ω(X ′, Y ′)

and similarly for g and for two anti holomorphic vector fields. Thus we see that they are
both type (1, 1). We will use this fact extensively in later computations, where we will see ω
vanish, when it is contracted with two vector fields of type (1, 0).

Another construction, that we will need later, is the canonical line bundle of MJ , which
is just defined as the top exterior power of the holomorphic tangent bundle

KJ =
∧m

T ′MJ .

The hermitian structure on T ′MJ induced by g again induces a hermitian structure in the
canonical line bundle, which we will also just denote by h.

1.3 Complex Manifolds

A complex structure on a manifold is defined similarly to a smooth structure, except that the
charts should be maps from subsets of Cn with biholomorphic transition functions. Given
charts with complex coordinates zk = xk + iyk, we get a canonical almost complex structure
on the tangent bundle, defined locally on the coordinate vector fields by

J

(
∂

∂xk

)
= ∂

∂yk
, and J

(
∂

∂yk

)
= − ∂

∂xk
.

The biholomorphicity of the charts, ensures that the coordinate functions satisfies the Cauchy-
Riemann equations, and using this we get that J is well-defined on overlaps of charts and
thus well-defined globally.

An almost complex structure coming from a complex structure is called integrable, and
these will be of particular importance to us. The following proposition states equivalent
conditions for integrability.

Proposition 1.3. The following statements about an almost complex structure J on M are
equivalent.

1. J is integrable

2. The Nijenhuis tensor, given on vector fields X and Y on M by

NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ],

vanishes on M .

3. The exterior differential splits as

d = ∂J + ∂̄J
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1.4. Connections and Curvature

4. The square of the delbar operator vanishes, i.e.

∂̄2
J = 0.

As it is seen from the proposition, the differential operator ∂̄J for an integrable almost
complex structure is a cochain map, and for each non-negative integer p, we get a cochain
complex

Ωp,0J (M) ∂̄J−→ Ωp,1J (M) ∂̄J−→ Ωp,2J (M) ∂̄J−→ · · · ,

and the cohomology of this complex is called the dolbeault cohomology of M and is denoted

Hp,q
J (M,C).

We will be especially interested in manifolds, that have all these different structures, and
we will call these Kähler manifolds.

Definition 1.4. A Kähler manifold is a smooth manifold M equipped with a symplectic
form ω, a Riemannian metric g and an integrable almost complex structure J , such that the
triple (J, g, ω) is compatible.

On a Kähler manifold we will also call ω the Kähler form and g the Kähler metric.

1.4 Connections and Curvature

We will define connections on vector bundles in the form of covariant derivatives. The
definition is equivalent for R respectively C vector bundles, and we will not worry about the
distinction in the following. Afterwards we will define the curvature of a connection and then
look at the special case of the Levi-Civita connection on a Riemannian manifold.

Definition 1.5 (Connection). Let π : E →M be a vector bundle. A connection on E is a
map

∇ : X(M)× C∞(M,E)→ C∞(M,E)

satisfying the following properties

(i) ∇fXs = f∇Xs for all f ∈ C∞(M), X ∈ X(M) and s ∈ C∞(M,E),

(ii) ∇X1+X2s = ∇X1s+∇X2s for all X1, X2 ∈ X(M) and s ∈ C∞(M,E),

(iii) ∇X(s1 + s2) = ∇Xs1 +∇Xs2 for all X ∈ X(M) and s1, s2 ∈ C∞(M,E),

(iv) ∇X(fs) = (Xf)s+ f∇Xs for all f ∈ C∞(M), X ∈ X(M) and s ∈ C∞(M,E).

It turns out, that the value of (∇Xs)(p) does not depend on the vector field X but only
on the value of X at p, i.e. on the vector Xp, so the definition is equivalent to having a map

∇ : TM × C∞(M,E)→ C∞(M,E)

with corresponding properties.
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1. Complex Differential Geometry

Definition 1.6 (Curvature). The curvature of a connection ∇ on a vectorbundle E →M

is the 2-form with values in the endomorphism bundle End(E) given by

F∇(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s,

for vector fields X,Y on M and a section s ∈ C∞(M,E). We call the connection flat, if the
curvature is zero.

On a Riemannian manifold we have the unique Levi-Civita connection ∇, which is
the unique torsion-free metric connection, compatible with the Riemannian metric. Here
compatible with the metric means

∇g = 0

or equivalently
∇X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ),

and torsion-free means, that the torsion

∇XY −∇YX − [X,Y ] = 0.

We note that on a Kähler manifold we also have

∇J = ∇ω = 0.

These relations will be useful in later computations, and another important fact that follows
is

∇X(JY ) = J∇X(Y ) (1.2)

for any vector fields X,Y on M , and therefore ∇ preserves T ′MJ and T ′′MJ , and thus it
induces a connection on T ′MJ .

By the Kähler curvature, we will refer to the curvature of the Levi-Civita connection,
that we will denote by R, which in abstract index notation will be Rdabc. Sometimes it will
be useful for us to define a purely covariant version, which is the curvature tensor, obtained
by lowering an index using the metric

Rabcd = Ruabcg
u
d .

Proposition 1.7. The Riemann curvature tensor has the following symmetries

(i) Rabcd = −Rbacd

(ii) Rabcd = −Rabdc

(iii) Rabcd = Rcdab

(iv) Rabcd +Rcabd +Rbcad = 0.

The equality (iv) is called the first Bianchi identity.

6



1.4. Connections and Curvature

By (1.2) it follows immediately, that R(X,Y )JZ = JR(X,Y )Z, and by using (vi) and
by combining with J-invariance of the metric and symmetry of the curvature tensor, we get
that the form part of R is also J-invariant, that is R(JX, JY ) = R(X,Y ). This follows by
the little calulation

Jua J
v
bRuvcd = RcduvJ

u
a J

v
b = RwcduJ

u
a gwvJ

v
b = RwcdaJ

u
wguvJ

v
b = RwcdaJgwb = Rcdab = Rabcd,

and by raising the last index again, this holds for the curvature as well as the curvature
tensor. Just as for ω and g it follows, that the Kähler curvature is of type (1, 1), which we
also use repeatedly to simplify expressions in calculation later. Since R(X,Y ) commutes
with J , we get that the endomorphism part preserves type, such that R(X,Y ) takes values
in End(T ′M)⊕ End(T ′′M).

Lastly we define the ricci curvature tensor as

r(X,Y ) = tr(Z 7→ R(Z,X)Y ) or in index notation rab = Rwwab.

Again by using the symmetries etc from above, it follows that r is a symmetric, J-invariant
bilinear form. We also define the ricci form, which is the skew-symmetric (1, 1)-form given
by

ρ(X,Y ) = r(JX, Y ).

Again skew-symmetry follows from J-invariance and symmetry of r, and the type decompo-
sition as for ω and g.

1.4.1 Divergence

We will also encounter the notion of divergence δ(X) of a vector field X, which is originally
defined only using the volume form ωn and the Lie derivative by the formula

LXωn = (δX)ωn.

We will, however, not see the divergence on this form, but it will arrise, when we calculate
certain expressions involving the trace and the Levi-Civita connection, since on a Kähler
manifold the divergence can be calculated by the expression

δX = tr∇X = ∇uXu.

Likewise we use the generalisation of this expression to tensors of higher order, which we
define for vector fields X1, . . . , Xn, as

δ(X1 � . . .�Xn) = δ(X1)X2 � . . .�Xn +
∑
j

X2 � . . .�∇X1Xj � . . .�Xn,

and we remark, that this is really just taking the induced connection on the n’th tensor
power of the tangent bundle followed by the trace of the first entry, and that it defines a
map

δ : C∞(M,TMn)→ C∞(M,TMn−1).

For our new result in section 5, we need a similar operator, but taking traces of several entries
in a specific pattern. We define this operator δ̃ inductively using the divergence.
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1. Complex Differential Geometry

Definition 1.8. For n ≥ 2, we define the map

δ̃ : C∞(M,TMn)→ C∞(M,TMn−1)

inductively by

δ̃(Gn) =

δ(Gn) n = 2

δ(Gn) +X1 � δ̃(Gn−1), n ≥ 3,

and then expanding by linearity to any n-tensor.

1.5 First Chern Class

We will not go through the theory of introducing Chern classes, but we state a couple of
results that we will need on line bundles. First of all, the only non trivial Chern class on
a complex line bundle L is the first Chern class c1(L), which is an element of the second
cohomology with integral coefficients, c1(L) ∈ H2(M,Z). It turns out that the first Chern
class is a complete invariant for isomorphism classes of line bundles.

We will be referring to the first Chern class of a symplectic manifold (M,ω) in the
following, and to give sense to this, we will have to associate a line bundle to (M,ω). On a
Kähler manifold (M,ω, J), we have the canonical line bundle KJ as described earlier, and
we will define

c1(M,ω, J) = −c1(M,KJ).

This is, however, apriori depended on the almost complex structure J , but since we have an
injective map

J 7→ ω · J

from the space of compatible almost complex structures to the space of Riemannian metrics
on M , which is convex, it can be shown using a retraction, that the space of compatible
almost complex structures is contractible. Now, since the first Chern class is integral, we get
that any choice of a compatible almost complex structure will give the same Chern class, so
we can define c1(M,ω) = c1(M,ω, J) for any J .

We will also be referring to the real first Chern class of a complex line bundle c̃1(L), but
this just given as viewing the element the first Chern class c1(L) as an element of H2(M,R)
under the natural homomorphism H2(M,Z)→ H2(M,R). Here we will recall that the real
first Chern class can be calculated using any connection ∇ on L by the formula

c̃1(L) = i

2π [F∇] = 1
2π [ρ],

where F∇ as usual denotes the curvature and of the connection and ρ the Ricci connection.

1.6 Hodge Theory and Ricci Potentials

Now we will review some powerful theorems from Hodge theory, that we can utilize in the
case, when M is a compact Kähler manifold. So let us assume this for the rest of this section,
and let us introduce the framework.
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Firstly we define the Hodge on forms. This can be defined directly by its value on a basis,
but we state it here implicitly as follows.

Definition 1.9 (Hodge star). For 0 ≤ k ≤ n, the Hodge star operator ∗ is the unique vector
bundle isomorphism

∗ :
∧k

TM∗ →
∧n−k

TM∗,

which satisfies the relation
α ∧ ∗β = g(α, β) ω

m! (1.3)

for α, β ∈
∧k

TM∗, where g is the pointwise inner product on forms, which is induced by
the Kähler metric.

We also define an inner product on forms by integrating the expression (1.3) over the
manifold, i.e.

〈α, β〉 =
∫
M

α ∧ ∗β,

and using the Hodge star and the differentials, we can define the adjoint d∗ of d, i.e. the
operator such that 〈dα, β〉 = 〈α, d∗β〉, which on a compact oriented Riemannian manifold is
given by

d∗ = − ∗ d ∗ : Ωk(M)→ Ωk−1(M),

and completely analogous for ∂ and ∂̄. For each of these we have a Laplacian, and we denote
these by

∆ = dd∗ + d∗d, � = ∂∂∗ + ∂∗∂, �̄ = ∂̄∂̄∗ + ∂̄∗∂̄.

Form in the kernel of one of the Laplace operators are called harmonic, with respect to this
Laplacian, and on Kähler manifolds these are equal for each of the above.

Theorem 1.10. On a Kähler manifold, we have that the Laplacians are related by

∆ = 2� = 2�̄,

and preserves the type decomposition. Hence the harmonic k-forms decompose, and we have{
α ∈ Ωk(M) | ∆α = 0

}
= Hk∆ =

⊕
p+q=k

Hp,q∆ .

Furthermore, any harmonic form is d-closed, and so it defines an element in de Rham
cohomology, and we even have the following theorem, for which a proof can be found in
[Wel08].

Theorem 1.11 (Hodge decomposition). On a compact, Kähler manifold every de Rham
cohomology class [α] has a unique harmonic representative αH , and we have the following
isomorphisms

Hk(M,C) ∼= Hk∆ ∼=
⊕
p+q=k

Hp,q∆
∼=
⊕
p+q=k

Hp,q(M,C).
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1. Complex Differential Geometry

We will need the following global ∂∂̄-lemma for (1, 1) forms, which is also a result in
Hodge theory.

Proposition 1.12. On a compact Kähler manifold M , any exact (real) form α ∈ Ω1,1(M),
there exist a (real) function F ∈ C∞(M), such that

α = 2i∂∂̄F.

We recall that the ricci form ρ has type (1, 1), and furthermore is real and closed. Thus
it defines an element in cohomology and by Theorem 1.11 it has a harmonic representative
ρH , and now the difference ρ − ρH is a real, exact (1, 1)-form, for which proposition 1.12
applies to give a real function F , such that

ρ = ρH + 2i∂∂̄F.

We call F a Ricci potential, and we observe that it is only unique up to addition of a constant,
but since M is compact, we can choose an F , such that the average∫

M

Fωn = 0,

which then determines F uniquely.
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Chapter 2

Quantization

In this chapter we will introduce the mathematical theory of quantization and explain some of
the problems that arise, when we try to define a matematically rigid theory of quantization
(see e.g. [Wel08] [AE05]). One of the main points for us later, is the need to choose a
polarization, when we do geometric quantization. In our case this will be a Kähler structure
compatible with the symplectic form on the manifold, but this choice is not canonical and
is auxiliary to the physical theory, and therefore we would suspect that the theory should
be independent of this choice. The Hitchin connection aims to relate these different choices.

Before we get this, let us start from beginning. A quantization scheme is in the simplest
form, a way to pass from classical mechanics to quantum mechanics. That is, to a system in
classical mechanic, in the form of a phase space consistenting of a symplectic 2n dimensional
manifold (M,ω), it assigns a corresponding Hilbert space H of quantum states, and to a
classical observable given by a smooth function f ∈ C∞(M) it assigns a self adjoint operater
Qf on H, where this assignment satisfies a number of assumptions.

This proces should, ideally, be done in a way, such that we can retrieve the classical
system, when we go to macroscopic scales, where classical Newtonian mechanics describe
the system. This is the so-called classical or correspondance limit, which arises as Planck’s
constant ~ → 0, since the contribution by terms involving ~ becomes so small, that they
can effectively be taken to be zero on the macroscopic level. It does, however, turn out
that there exist quantum systems with no classical counterpart and also many different
quantum systems, which reduce to the same classical system. This leaves the question of
which quantization to choose and how to relate different quantizations.

2.1 Quantization Axioms

Let us go into more mathematical detail and describe the original concept of quantization,
which we refer to as canonical quantization. The description goes back to Weyl, Von Neumann
and Dirac, and takes place in the setting, where the classical phase space is given by R2n with
the standard symplectic form ω, coordinates q = (q1, . . . , qn) for position and p = (p1, . . . , pn)
for momentum, and with the observables being real valued smooth functions C∞(R2n,R) on
the phase space. In this case the Hilbert space of quantum states is given by H = L2(Rn, dq)
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and for each f ∈ C∞(R2n,R) the assignment of a quantum observable Qf , which a self-adjoint
operator on H, should satisfy the following axioms.

(Q1) The assignment f 7→ Qf is linear.

(Q2) Q1 = 1 where 1 is the constant function 1, and 1 is the identity operator.

(Q3) The equation Qϕ◦f = ϕ(Qf ) should hold for any function ϕ : R→ R, as long as both
sides of the equation are defined.

(Q4) The quantum observables corresponding to position and momentum must be given by

Qqiψ = qiψ, and Qpiψ = −i~ ∂ψ
∂qi

, for ψ ∈ H = L2(Rn, dq).

Furthermore, an important theorem of Stone and von Neumann, shows that the momen-
tum and position operators, acting on the Hilbert space, satisfy the commutation relations[

Qqj , Qqk
]

=
[
Qpj , Qpk

]
= 0, and

[
Qqj , Qpk

]
= i~δjk1,

and that there are no subspaces H0 ⊆ H other than {0} and H itself, that are stable under
the action of all of all these operators.

If we consider f ∈ R[q] to be a polynomial in the position variables, and likewise g ∈ R[p]
a polynomial in the momentum variables, then (Q1) and (Q3) together with the commutation
relations imply

(Q5) the commutator of f and g satisfies[
Qf , Qg

]
= i~Q{f,g},

where {f, g} is the poisson bracket

{f, g} =
∑
i

∂f

∂pi

∂g

∂qi
− ∂f

∂pi

∂g

∂qi

induced from the standard symplectic form, and again from physical considerations it turns
out that another desirable criterium for a quantization is that (Q5) holds for all quantizable
functions f and g, since this is related to the Heisenberg uncertainty principle.

This leads us to the point, where the inconsistencies in the theory arrise. We would like
to define a quantization Q satisfying all the rules (Q1)-(Q5) on the largest possible subspace
O ⊆ C∞(Rn,R) of observables, and at least containing the coordinate functions. It can
however be shown using only polynomials of degree 4 or less and simple computations, that
any three of the axioms (Q1), (Q3), (Q4) and (Q5) taken together are inconsistent.

The two classical approaches to deal with these problems are to either restrict the set O
of observables even further, or to weaken the criterion (Q5) in such a way, that this should
only hold asymptotically. We will not consider this second option, since the first will limit
the functions we can quantize too drastically, but will consider two different quantization
schemes utilising the second approach.
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2.2 Geometric Quantization

Let us move on from the case of R2n to consider a general symplectic manifold (M,ω), and
let us restate the axioms, as they should hold in this general setup.

Definition 2.1. A quantization of a symplectic manifold (M,ω) is an assignment of a
separable Hilbert space H and a map Q : f 7→ Qf from a subalgebra O ⊆ C∞(M), with the
Poisson bracket associated to ω, into the self-adjoint linear operators on H satisfying

(Q1) The map f 7→ Qf is linear.

(Q2) Q1 = 1 where 1 is the constant function 1, and 1 is the identity operator on H.

(Q3) For all f, g ∈ O the commutator satisfies[
Qf , Qg

]
= i~Q{f,g},

(Q4) The assignment should be functorial in the sense that for any symplectomorphism
ϕ : (M,ω)→ (M̃, ω̃), there should exist a unitary operator Uϕ from H → H̃, such that

Qf̃◦ϕ = U∗ϕQ̃f̃Uϕ ∀f̃ ∈ Õ.

(Q5) For R2n with the standard symplectic form, we should recover canonical quantization.

We remark, also, that a special case of (Q4) is when there is a group of symplectomor-
phisms acting on (M,ω), then this shows that the quantization map is essentially G-invariant.

As mentioned, we can unfortunately not construct a quantization, that fullfils all of the
above on the same time, so even though we introduce prequantization, as in the following,
such (Q1) -(Q4) is satisfied and only (Q5) fails, we will skip this part and weaken (Q3). The
way we do this, is such that this condition only holds asymptotically as ~→ 0. That is

(Q̃3) For all f, g ∈ O the commutator satisfies[
Qf , Qg

]
= i~Q{f,g} +O(~2) as ~→ 0.

2.2.1 Prequantization

We will continue to introduce the machinery of geometric quantization, which originally was
introduced by Kostant [Kos73] and Souriau [Sou70]. This is a two step proces, and the first
step is the prequantization. Here we construct a Hilbert space of quantum observables as
sections of tensor powers of a so called prequantum line bundle over the phase space (M,ω).

Definition 2.2 (Prequantum line bundle). A prequantum line bundle over the symplectic
manifold (M,ω) is a triple (L, h,∇) consisting of a line bundle L over M with a Hermitian
metric h and a compatible connection ∇, such that the curvature of ∇ is related to the
symplectic form by the relation

F∇ = −iω. (2.1)

We call (M,ω) prequantizable, if there exist a prequantum line bundle over it.

13



2. Quantization

By looking at the real first chern class c̃1(L), it is seen that the condition (2.1) is actually
a restrictive condition, since c̃1(L) = i

2π [F∇ ] = [ ω2π ], which is not the case for all symplectic
manifolds. It is however true, that (M,ω) is prequantizable, precisely when[ ω

2π

]
∈ Im (H2(M,Z)→ H2(M,R)),

and we call this the prequantum condition. Now given a prequantum line bundle over M , we
can define the prequantum space. Here we remark, that a prequantum structure on a line
bundle induces a prequantum structure on any tensorpower of the bundle, and we will also
use h and ∇ for the induced metric and connection.

Definition 2.3 (Prequantum space). The prequantum space of level k ∈ N is the infinite
dimensional vector space of sections of the k’th tensor power of L

Hk = C∞(M,Lk).

More precisely, we actually consider the L2-completion with respect to the Hermitian inner
product on compactly supported sections, given by

〈s1, s2〉 = 1
n!

∫
M

h(s1, s2)ωn.

We will not distinguish between Hk and the completion in the following.

Next we define the prequantum map, sending a function f ∈ C∞(M) to an operator on
Hk by the expression

P
(k)
f = − i

k
∇Xf + f,

and it is checked directly, that the relations (Q1), (Q2) and (Q4) hold. We don’t get (Q3)
in the explicit form as above, since we have changed to a discretized version where we think
of 1

k as a substitute for ~, since this the form, we will use in our final form of geometric
quantization. Thus the commutation relations takes the form

[P (k)
f , P (k)

g ] = i

k
P

(k)
{f,g}.

Prequantization does, however, not reproduce canonical quantization, when used on R2n,
which can be seen directly since the operators do not act on L2(Rn) but on L2(R2n), so we
have in a sense produced wave functions depending on twice a many variable, as they should
in accordance to the physical theory.

2.2.2 Polarization

To deal with the problem, that prequantization produces a Hilbert space of twice the desired
dimension, we introduce a so-called polarization to restrict to half of the varibles. We will
focus solely on complex polarization and specifically on Kähler polarization, since this part of
the theory is rich on examples, and the original case where Hilbert constructed his connection
also takes place in this setting.
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2.2. Geometric Quantization

Definition 2.4 (Polarization). Let (M,ω) be a symplectic manifold, then a complex polar-
ization P is a distribution of the complexified tangent bundle TMC, satisfying

(i) P is Lagrangian, i.e. P = {X ∈ TMC | ω(X,Y ) = 0, ∀Y ∈ P}.

(ii) P is involutive, i.e.
[
X,Y

]
∈ P, ∀X,Y ∈ P.

(iii) dim(Px ∩ P̄x ∩ TxM) is constant (i.e. independent of x ∈M).

We will immediately restrict out attention to Kähler polarization, which we define.

Definition 2.5 (Kähler Polarization). A Kähler polarization P on a symplectic manifold
(M,ω), is a complex polarization, if the associated Hermitian form on P defined by h(X,Y )
is positive definite.

This is called Kähler, since we can define a Kähler structure J on (M,ω) by letting
P = T ′′MJ be the −i eigenspace and likewise P = T ′MJ be the i eigenspace. Using
involutiveity of P it follows that the so defined almost complex structure is integrable.
Moreover, we get that g(X,Y ) = ω(X, IY ) defines Riemannian metric, such that (M,ω, J)
is Kähler. Conversely we get a polarization on any Kähler manifold by letting P = T ′′MJ ,
and the polarizations we will study all arrise from a a Kähler structure on the manifold in
this way.

Given a Kähler polarization, the line bundles Lk get induced complex structures given
by ∂̄ = ∇(0,1), since ω has type (1, 1) with respect to J , and the prequantum condition
thus ensures that (F∇)(0,2) = 0. This means we can choose the quantum space to be the
holomorphic sections

H
(k)
J = H0(Mσ,Lk) =

{
s ∈ H(k) | ∇0,1

σ s = 0
}
.

This is a subspace of the prequantum space Hk, and it is finite dimensional, if M is compact.
This way we get the restriction of the space of quantum observables, that we need to make
(Q5) hold.

2.2.3 Kähler Quantization

The last step in the geometric quantization is utilize the Kähler polarization and restrict
the prequantum operators to act on the subspace H(k)

σ . The operator P fk does, however, not
preserve the quantum spaces H(k)

J , unless

[Xf , T
′′MJ ] ⊆ T ′′MJ ,

and this gives a very limited amount of quantizable functions, so we will instead us the
fact that H(k)

σ is a closed subspace of Hk (see [Woo92]). Thus, we have a projection map
π

(k)
σ : Hk → H

(k)
σ , and we can define the quantum operator by taking the prequantum

operator and projecting the result back on H(k)
σ , that is

Q
(k)
f,J = π

(k)
J ◦ P

(k)
f .
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2. Quantization

We might lose the subscript J , when the relation to the complex structure is clear or irrelevant.
With this construction we lose the commutation relation (Q3), but we do get the asymptotic
relation (Q̃3), which explicitly stated is∥∥∥∥[Q(k)

f,J , Q
(k)
g,J

]
− i

k
Q

(k)
{f,g},J

∥∥∥∥ = O(k−2) as k →∞,

with respect to the operator norm on the quantum subspace. The proof of this relies on the
theorem of Tuynman [Tuy87], which states that the quantum operators can be represented
as Toeplitz operators.

Theorem 2.6 (Tuynman). For any f ∈ C∞(M), the quantum operator satisfy

Q
(k)
f,J = T

(k)
f+ 1

2k∆Jf,J
,

where ∆J is the Laplacian on (MJ , ω).

When combined with the theorem of Bordemann, Meinrenken and Schlichenmaier on the
assymptotic behaviour of the commutator of Toeplitz operators [BMS94], which we will get
back to after introducing Toeplitz operators in section 2.4, the commutation relation follows
quite easily.

2.3 Deformation Quantization

Another approach to quantization is to completely avoid the construction of the Hilbert space
of quantum states, and instead construct a non-commutative deformation of the algebra of
classical observables. To be more precise, let

C∞h (M) = C∞(M)[[h]]

be the space of formal power series in the variable h with coefficients in C∞(M).

Definition 2.7 (Formal Deformation Quantization). A formal deformation quantization
of a symplectic manifold (M,ω) is an associative C[[h]] bilinear product ∗ on the algebra
C∞h (M) given by

f ∗ g =
∞∑
l

C(l)(f, g)hj ,

such that C(l) : C∞(M)× C∞(M)→ C∞(M) are bilinear operators satisfying

(DQ1) C(0)(f, g) = fg

(DQ2) C(1)(f, g)− C(1)(g, f) = i {f, g}.

Furthermore the product is said to be differential, if the C(l) are bidifferential operators, and
the product is called normalised if we have

(DQ3) C(l)(1, f) = C(l)(f, 1) = 0 for all j ≥ 1.
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2.4. Berezin-Toeplitz Deformation Quantization

Lastly, the star product should be invariant under the symplectic action of a symmetry Γ in
the sense that

γ∗(f ∗ g) = γ∗(f) ∗ γ∗(g)

for all γ ∈ Γ and f, g ∈ C∞.

We will not dive further into the general theory of deformation quantization and the
existence and equivalence of star products, but refer to the work of Kontsevich [Kon03],
where he shows that any Poisson manifold admit a deformation quantization and also gives
a classifications of star products on these.

We will, however, study the Berezin-Teoplitz deformation in more detail, since this helps
to establish a connection between deformation quantization and geometric quantization.

2.4 Berezin-Toeplitz Deformation Quantization

We remain in the setup from section 2.2.3 and we will see how this gives rise to the Berezin-
Toeplitz Deformation Quantization. That is we have a Kähler manifold (M,ω, J) with a
prequantum line bundle L →M and the projection π(k)

J : Hk → H
(k)
J .

Definition 2.8. For f ∈ C∞(M), the Toeplitz operator T (k)
f,J : Hk → H

(k)
J at level k is given

by
T

(k)
f,J = π

(k)
J ◦Mf ,

where Mf ∈ End(Hk) is the multiplication operator associated to f . .

The Toeplitz operators are elements in Hom(Hk, H(k)) and as such restrict to elements
in End(H(k)), but even though Mf : Hk → Hk is trivially an algebra homomorphism, pre-
composing with the projection changes this, and in general

T
(k)
f,JT

(k)
g,J = π

(k)
J ◦Mf ◦ π(k)

J ◦Mg 6= π
(k)
J ◦Mfg = T

(k)
fg,J .

It has, however been proven by Schlichenmaier in [Sch96] that there is an asymptotic expan-
sion of such a product on a compact Kähler manifold.

Theorem 2.9 (Schlichenmaier). For any f, g ∈ C∞(M) on a compact Kähler manifold
(M,ω, J), the product of their Toeplitz operators have the asymptotic expansion

T
(k)
f,JT

(k)
g,J ∼

∞∑
l=0

T
(k)
C

(l)
J

(f,g),J
k−l,

where the C(l)
J (f, g), J ∈ C∞(M) are uniquely determined. More precisely∥∥∥∥∥T (k)

f,JT
(k)
g,J −

N∑
l=0

T
(k)
C

(l)
J

(f,g),J
k−l

∥∥∥∥∥ = O

(
1

N − 1

)
,

for any N ∈ N.

Furthermore, the operators C(l)
J (f, g), J actually define a star product, which gives the

Berezin-Toeplitz deformation quantization. This was also proved by Schlichenmaier, and
further it was proved to be with seperation of variables in joint work with Karabegov [KS01].
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2. Quantization

Theorem 2.10 (Karabegov and Schlichenmaier). The product ∗BT defined by

f ∗BT g =
N∑
l=0

(−1)lC(l)
J (f, g)hl,

where f, g ∈ C∞(M) and C
(l)
J (f, g) are defined to by the expansion in theorem 2.9, is a

differential deformation quantization of the compact Kähler manifold (M,ω), which is called
the Berezin-Toeplitz deformation quantization.

Besides constructing the Berezin-Toeplitz deformation quantization, the Toeplitz opera-
tors are, as mentioned, used to show that geometric quantization with Kähler polarization
satisfies the asymptotic commutation relation. Before getting to this, let us state the fol-
lowing theorem by Bordemann, Meinrenken and Schlichenmaier [BMS94] proving that the
Toeplitz opeator of function represent the function faithfully.

Theorem 2.11 (Bordemann, Meinrenken and Schlichenmaier). For any f ∈ C∞(M), the
Toeplitz operators satisfy

lim
k→∞

∥∥∥T (k)
f,J

∥∥∥ = sup
x∈M
|f(x)| ,

and this limit is approached from below.

In the same paper, they show the following asymptotic result on the commutator of the
Toeplitz operators.

Theorem 2.12. The Toeplitz operators satisfy∥∥∥∥[T (k)
f,J , T

(k)
g,J

]
− i

k
T

(k)
{f,g},J

∥∥∥∥ = O
(
k−2) as k →∞,

for any f, g ∈ C∞(M).

Now it follows from Tuynman’s Theorem 2.6 and Theorem 2.11, as we stated earlier, that
we have the following theorem.

Theorem 2.13. The quantum operators on a compact kähler manifold (M,ω, I) satisfy∥∥∥∥[Q(k)
f,J , Q

(k)
g,J

]
− i

k
Q

(k)
{f,g},J

∥∥∥∥ = O(k−2) as k →∞,

for any smooth functions f, g ∈ C∞(M).

2.5 Hitchin Connections

We have now gone through the basics of quantization, and it was evident, that we needed
not only the initial physical information given in terms of a symplectic manifold (M,ω),
but we also had to choose a compatible Kähler structure to construct the spaces H(k)

J of
quantum states, which appear both in the geometric quantization and the formal Berezin-
Toeplitz quantization. Unfortunately, there is no physical motivation for choosing one such
Kähler structure over another, so we need a way of relating the different choices of complex
structures.
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2.5. Hitchin Connections

Moreover the symmetry group will in general act by symplectomorphisms but not by
automorphisms of the Kähler Structure, so it will act on the space of complex structures,
and as such it will permute the quantum spaces associated to different Kähler structures.

If we assume that the spacesH(k)
J form a vector bundle over the space of Kähler structures,

and we can find connection in this bundle, then we can relate different complex structures
by parallel transport along a curve connecting them. We do, however, need the connection
to be flat in order for this to be independent of the curve, such that we get an isomorphism
of the fibers, i.e. the different quantum state spaces. We would also like the quantization
to respect symmetries, and thus the connection should be invariant under the action of the
symmetry group.

This is exactly the idea behind the Hitchin connection, and in chapter 3 we will introduce
families of Kähler structures and work with different conditions on these under which, we can
construct such a connection. It was, as mentioned in the introduction, initially constructed by
Hitchin on the moduli space of flat SU(n)-connection on a Riemann surface Σ with complex
structures parametrized by Teichmüller space. We will review this setting in chapter 4, before
we continue with the general setup and our generalisations of Andersens construction of the
Hitchin connection in this setup.
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Chapter 3

Families of Kähler Structures

Before we get to the construction of the Hithin connection in the next chapter, we explore
the properties of families of Kähler structures on a symplectic manifold (M,ω). We start out
with a smooth family of integrable almost complex structures, all compatible with ω, giving
us a family of Kähler structures on M . For each complex structure we get a splitting of the
tangent bundle as described in section 1.2.

After establishing the basic relations, we introduce further restrictions on the family,
namely that the family is holomorphic and rigid or weakly restricted.

3.1 Smooth Families of Kähler Structures

We let T be a smooth manifold and (M,ω) a symplectic manifold. Then we say that T
smoothly parametrizes a family of almost complex structures on (M,ω), if there exist a
smooth map

J : T → C∞(M,End(TM)) mapping σ 7→ Jσ

such that Jσ is an almost complex structure for each σ ∈ T . We say that J is smooth, when
it defines a smooth section of the pullback bundle π∗M (End(TM)), where πM : T ×M →M

is the projection on M .
We will look at the case where all Jσ are integrable and compatible with the symplectic

structure, such that (M,ω, Jσ) is kähler for each σ ∈ T .
As described earlier, each complex structure gives a splitting of the complexified tangent

bundle, so now we have a splitting

TMC = T ′Mσ ⊕ T ′′Mσ,

for each σ ∈ T , into the holomorphic and anti-holomorphic parts, i.e. the i and −i eigenspaces
of Jσ.

Now we want to investigate the variation of the family J . More precisely we will differ-
entiate along a vectorfield V on T . This derivative is again a map into the endomorphism
bundle which we denote by

V [J ] : T → C∞(M,End(TM)).
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3. Families of Kähler Structures

Differentiating the equality J2 = −1 and using the Leibniz rule, we get

JV [J ] = −V [J ]J,

which shows that V [J ]σ interchanges types on TMC, sending i eigenvectors to −i eigenvectors
and the other way around. Thus V [J ] decomposes as

V [J ] = V [J ]′ + V [J ]′′

where the two components

V [J ]′σ ∈ C∞(M,T ′′M∗σ � T ′Mσ) and

V [J ]′′σ ∈ C∞(M,T ′M∗σ � T ′′Mσ)

are each others conjugates. Now since contraction in the first entry of ω defines an isomor-
phism iω : TMC → TM∗C, we can get any element in

C∞(M,End(TMC)) = C∞(M,TMC � TM∗C)

by contraction with a bivector field. We let G̃(V ) : T → C∞(M,TMC � TMC) be such that
the equality

V [J ] = G̃(V ) · ω

holds at each σ ∈ T and for each vector field V on T . We get another expression for G̃(V )
by differentiating the equality g̃ = −J · ω̃ along V , namely

V [g̃] = −V [J ] · ω̃ = −G̃(V ). (3.1)

This is again using the Leibniz rule, and that ω̃ does not depend on σ, so the derivative along
any vector field V vanishes. Since g̃ is symmetric, (3.1) implies that G̃(V ) is also symmetric.

Looking at the types of V [J ] and ω, we see that G̃(V ) has no (1, 1)-part, and so we get
a decomposition of G̃(V ) into

G̃(V ) = G(V ) + Ḡ(V ),

where
G(V )σ ∈ C∞(M,S2(T ′Mσ)) and Ḡ(V )σ ∈ C∞(M,S2(T ′′Mσ)).

Observe also that Ḡ(V ) is actually the conjugate of G(V ), since G̃(V ) is real and thus its
own conjugate. We can also express the variation of the kähler metric in terms of G̃(V ) by
differetiating the compatibility condition g = ω · J , getting

V [g] = ω · V [J ]

= ω · G̃(V ) · ω

= g · J · G̃(V ) · g · J

= −g · J · (G(V ) + Ḡ(V )) · J · g

= −i2g ·G(V ) · g − (−i)2g · Ḡ(V ) · g

= g · G̃(V ) · g.
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3.2. The Canonical Line Bundle of a Family

This also shows that V [g]σ ∈ C∞(M,S2(T ′M∗σ)⊕S2(T ′′M∗σ)). One more relation about vari-
ations, that we will need, is the variation of the Levi-Civita connection ∇g, here superscripted
with g to denote that it is the connection related to the metric g. We will not calculate this
here, but just state the result, which is given implicitly in ([Bes87] Theorem 1.174) by the
formula

2g(V [∇g]XY,Z) = ∇X(V [g](Y,Z)) +∇Y (V [g])(X,Z)−∇Z(V [g])(X,Y )

for vector fields X,Y, Z on M . To give an explicit expression, we use the above result and
write it in the index notation as

2V [∇g]cab = ∇aG̃(V )cugub + gau∇bG̃(V )uc − gaug̃cw∇wG̃(V )uvgvb. (3.2)

3.2 The Canonical Line Bundle of a Family

Our purpose in this chapter is to derive an expression for the variation of the Ricci form ρ.
This will not seem apparent from the beginning, but we will construct a certain line bundle
over the product manifold T ×M and consider the induced connection in this bundle. The
Ricci form will appear in an expression for the curvature in some directions on T ×M and
using the Bianchi identity, we will get a very useful relation.

First we consider the vector bundle T̂ ′M → T ×M , where the fibers are just the holo-
morphic tangent spaces of M, that is T̂ ′M(σ,p) = T ′pMσ. So the point σ ∈ T determines the
splitting of the bundle TMC, and the point p ∈M chooses the fiber T ′pMσ of the subbundle
T ′Mσ. We use the hat in the notation to denote, that we look at the bundle over the product
T ×M , and similarly we will use a hat on the differential d̂ and connection ∇̂ on this bundle.

We notice that the Kähler metric induces a Hermitian structure ĥ on T̂ ′M , as we have
already described for fixed σ ∈ T . Now the Kähler and Hermitian metric just varies with σ
as well. We construct a connection on T̂ ′M in two steps. We first notice that along vector
fields on M = {σ} ×M , we can use the Levi-Civita Connection on the bundle T ′Mσ, which
gives us a partial connection on T̂ ′M compatible with the Hermitian structure.

Now we think of a section Z ∈ C∞(T ×M, T̂ ′M) as a smooth family of sections of the
holomorphic tangent bundles, and we let V be a vector field on T = T ×{p}. Since each of the
holomorphic tangent spaces sits inside the larger complexified tangent bundle T ′Mσ ⊂ TMC,
we can think of Z as a smooth family of vector fields in this bundle. Since TMC is unchanged
along V , we can take the variation of Z along V in TMC, and then project the result back
onto the holomorphic subbundle. This defines a connection along directions on T , that is

∇̂V Z = π1,0V [Z].

We still want this connection to be compatible with the Hermitian structure, so we check
this by calculation. Let V be a vector field on T and X,Y sections of T̂ ′M , then we have

V [ĥ(X,Y )] = V [g(X, Ȳ )] = V [g](X, Ȳ ) + g(V [X], Ȳ ) + g(X,V [Y ])

= g(V [X], Ȳ ) + g(X,V [Y ])

= h(∇̂VX,Y ) + h(X, ∇̂V Y ),
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3. Families of Kähler Structures

since the (1, 1)-part of V [g] vanishes as shown earlier. This is exactly the condition, that ∇̂
is compatible with the Hermitian structure. In this way we have constructed a connection
on all of T̂ ′M compatible with the Hermitian structure.

Next we consider the top exterior power, which as in the case of T ′Mσ gives a line bundle,
and we will call this the canonical line bundle of the family of complex structures, and we
will denote this

K̂ =
∧m

T̂ ′M∗ → T ×M.

Just as for the normal canonical line bundle, we get an induced Hermitian structure and a
compatible connection on K̂.

Now we want to give an expression for the curvature of ∇̂K , but before we are ready to
do that, we will introduce some notation.

Definition 3.1. For vectorfields V,W on T we define Θ ∈ Ω(T , S2(TM)) by

Θ(V,W ) = S(G̃(V ) · ω · G̃(W )),

where S denotes symmetrization. Furthermore, we define the metric trace of Θ to be

θ(V,W ) = −1
4g(Θ(V,W )) = −1

4guvΘ(V,W )uv,

and we observe that θ ∈ Ω2(T , C∞(M)).

The following proposition states a couple of basic properties of Θ.

Proposition 3.2. Let V,W be vector fields on T . Then we have

W [G(V )] = iS(G(V ) · ω · Ḡ(W ))− π2,0(WV [g̃]) (3.3)

dTG = −iΘ,

where we view G as a 1-form in Ω1(T , S2(T ′M)).

Proof. The proof of (3.3) is the following calculation, where we use, that we can write
G(V ) = π2,0(G̃(V )) = (π1,0 � π1,0)(G̃(V )). Then we let V,W be vector fields on T and
calculate the variation using the Leibniz rule

W [G(V )] = W [(π1,0 � π1,0)(G̃(V ))]

= (W [π1,0] � π1,0)(G̃(V )) + (π1,0 �W [π1,0])(G̃(V )) + (π1,0 � π1,0)(W [G̃(V )])

= − i2(W [Jσ] � π1,0)(G̃(V ))− i

2(π1,0 �W [Jσ])(G̃(V ))− π2,0(WV [g̃])

= − i2 G̃(W ) · ω ·G(V ) + i

2G(V ) · ω · G̃(W )− π2,0(WV [g̃])

= − i2 Ḡ(W ) · ω ·G(V ) + i

2G(V ) · ω · Ḡ(W )− π2,0(WV [g̃])

= iS(G(V ) · ω · Ḡ(W ))− π2,0(WV [g̃]),
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3.3. Holomorphic Families of Kähler Structures

where we have used symmetries and that ω is type (1, 1). Now for commuting vector fields
V and W , we get by the invariant formula for the exterior derivative that

(dTG)(V,W ) = V [G(W )]−W [G(V )]

= i(S(G(W ) · ω · Ḡ(V ))− S(G(V ) · ω · Ḡ(W )))

= −i(S(Ḡ(V ) · ω ·G(W )) + S(G(V ) · ω · Ḡ(W )))

= −iS(G̃(V ) · ω · G̃(W ))

= −iΘ(V,W ).

Thus we have shown that Θ is exact.

Now we are ready to state the proposition about the curvature of ∇̂K . The proof of this
can be found in [AGL12], where it is carried out in full detail.

Proposition 3.3. Given vector fields X,Y on M and V,W on T , the curvature of ∇̂K is
given by

F∇̂K (X,Y ) = iρ(X,Y ),

F∇̂K (V,X) = i

2δG̃(V ) · ω ·X,

F∇̂K (V,W ) = iθ(V,W ).

Applying the Bianchi identity and the results of proposition 3.3 gives us the desired result
about the variation of the the Ricci form.

Proposition 3.4. The variation of the Ricci form along a vector field V on T is given by

V [ρ] = 1
2d(δG̃(V ) · ω).

Proof. Let X,Y be commuting vector fields on M and V a vector field on T . Then the
Bianchi identity for ∇̂K gives

0 = V [F∇̂K (X,Y )] +X[F∇̂K (Y, V )] + Y [F∇̂K (V,X)]

= iV [ρ(X,Y )]−X
[
i

2δG̃(V ) · ω · Y
]

+ Y

[
i

2δG̃(V ) · ω ·X
]

= iV [ρ(X,Y )]− i

2d(δG̃(V ) · ω)(X,Y ),

where the last equality again follows by the invariant formula for the exterior derivative, since
X and Y were chosen to commute. Now isolating V [ρ(X,Y )] gives the desired equality.

3.3 Holomorphic Families of Kähler Structures

Now we introduce some extra structure. We assume that T is a complex manifold, and then
we can require, that the the family J of holomorphic structures define a holomorphic map
from T to the space of holomorphic structures. This is defined as follows.
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3. Families of Kähler Structures

Definition 3.5. Let T be a complex manifold and J : T → C∞(M,End(TM)) a family of
integrable almost complex structures on M . Then J is holomorphic if

V ′[J ] = V [J ]′ and V ′′[J ] = V [J ]′′

for any vector field V on T .

Now let us denote the integrable almost complex structure on T by I. Then we get an
almost complex structure Ĵ on the product manifold T ×M defined by

Ĵ(V ⊕X) = IX ⊕ JσX, for V ⊕X ∈ T(σ,p)(T ×M).

It can be shown that holomorphicity of the family of complex structure as defined above is
equivalent to the Ĵ being an integrable almost complex structure on T ×M (see [AGL12]).
This is shown by using the criterion of the vanishing of the Nijunhuis tensor.

A useful consequnce of holomorphicity is that

G̃(V ′) = V ′[J ] · ω̃ = V [J ]′ · ω̃ = G(V ),

and similarly G̃(V ′′) = Ḡ(V ).

3.4 Rigid Families of Kähler Structures

Now we introduce a further restriction on the family of complex structures, which is that
G(V ) is a holomorphic section of S2(T ′M) for each vector field V on T .

Definition 3.6 (Rigid). A family of Kähler structures is called rigid if

∇0,1
σ G(V )σ = 0 (3.4)

for all vector fields V on T and for all points σ ∈ T .

This is a crucial assumption in the construction of the Hitchin connection in [And12]. It
is also used to show the following result, which is used in the calculation of the curvature of
the Hitchin connection in [AG14].

Proposition 3.7. Given a rigid family of complex structures, the associated bivector fields
satisfy the following symmetry property

S(G(V ) · ∇G(W )) = S(G(W ) · ∇G(V ))

for any vector fields V and W on T .

Proof. We let V and W be commuting vector fields on T , and then we differentiate the
identity (3.4) along W using the Leibniz rule. We do the calculation using index notation

0 = W [∇a′′G(V )bc] = W [(π0,1)ua∇uG(V )bc]

= W [π0,1]ua∇uG(V )bc +∇a′′W [G(V )]bc +W [∇]ba′′uG(V )uc +W [∇]ca′′uG(V )bu.
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3.4. Rigid Families of Kähler Structures

We calculate expressions for each of these terms

2W [π0,1]ua∇uG(V )bc = iW [J ]ua∇uG(V )bc = iG̃(W )uvωva∇uG(V )bc

= iG̃(W )uvJwv gwa∇uG(V )bc = −G(W )uvgva∇uG(V )bc

= −gavG(W )vu∇uG(V )bc,

where the second to last equality follows, since iḠ(W )uvJwv gwa∇uG(V )bc = 0 by rigidity.
For the next term we use the expression (3.3) and get

2∇a′′W [G(V )]bc

=∇a(−iḠ(W )buωuvG(V )vc + iG(V )buωuvḠ(W )vc − 2(π2,0)bcuv(WV [g̃uv]))

=∇a(−iḠ(W )buJwu gwvG(V )vc + iG(V )buJwu gwvḠ(W )vc − 2(π2,0)bcuv(WV [g̃uv]))

=∇a(−Ḡ(W )buguvG(V )vc −G(V )buguvḠ(W )vc − 2(π2,0)bcuv(WV [g̃uv]))

=−∇a(Ḡ(W )bu)guvG(V )vc −G(V )buguv∇a(Ḡ(W )vc)− 2∇a((π2,0)bcuv(WV [g̃uv])).

For the last two terms we use the expression for the variation of the Levi-Civita connection
(3.2), that we stated earlier and by using symmetries and type decompositions, we get

2W [∇]ba′′uG(V )uc

=∇a′′(G̃(W )bv)gvuG(V )uc + ga′′v∇u(G̃(W )vb)G(V )uc − ga′′v g̃bw∇w(G̃(W )vx)gxuG(V )uc

=∇a′′(Ḡ(W )bv)gvuG(V )uc + ga′′v∇u(G(W )vb)G(V )uc − ga′′v′ g̃bw∇w(G̃(W )v
′x′′)gx′′u′G(V )u

′c′

=∇a(Ḡ(W )bv)gvuG(V )uc + gav∇u(G(W )vb)G(V )uc,

where the last equality follows, since there is no (1, 1) part of G̃(W ). The last term follows
in the same way and gives

2W [∇]ca′′uG(V )bu = ∇a(Ḡ(W )cv)gvuG(V )bu + gav∇u(G(W )vc)G(V )bu.

Now we are ready to combine all of these expressions, and we get

0 = −gavG(W )vu∇uG(V )bc

((((
((((

((((
−∇a(Ḡ(W )bu)guvG(V )vc

((((
((((

((((
−G(V )buguv∇a(Ḡ(W )vc)− 2∇a((π2,0)bcuv(WV [g̃uv]))

(((
((((

(((
((

+∇a(Ḡ(W )bv)gvuG(V )uc + gav∇u(G(W )vb)G(V )uc

((((
((((

((((
+∇a(Ḡ(W )cv)gvuG(V )bu + gav∇u(G(W )vc)G(V )bu

= gav∇u(G(W )vb)G(V )uc + gav∇u(G(W )vc)G(V )bu

− gavG(W )vu∇uG(V )bc − 2∇a((π2,0)bcuv(WV [g̃uv])).

Now we raise the index a, and we add the term G(V )au∇uG(W )bc on both sides of the
equation, which gives us

G(V )au∇uG(W )bc = G(V )au∇uG(W )bc +∇u(G(W )ab)G(V )uc +∇u(G(W )ac)G(V )bu

−G(W )au∇uG(V )bc − 2g̃aw∇w′′((π2,0)bcuv(WV [g̃uv])).
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3. Families of Kähler Structures

Writing out 6S(G(V ) · ∇G(W )) and using symmetry gives exactly two of each of the first
three terms on the right hand side. Now reordering the terms gives us

3S(G(V ) · ∇G(W ))abc

=G(V )au∇uG(W )bc +G(W )au∇uG(V )bc + 2g̃aw∇w′′((π2,0)bcuv(WV [g̃uv])),

which is symmetric in V and W , since these were chosen to be commutative.

3.5 Weakly Restricted Families of Kähler Structures

The assumption that the family J is rigid is, of course, a very restrictive condition, however,
it is satisfied in the setting, in which Hitchin initially introduced his connection. This was
the case of Teichmüller space parametrizing Kähler structures for the Seshadri-Atiyah-Bott-
Goldman symplectic form [AB83, NS64, NS65, Gol84] on the moduli spaces of flat SU(n)
connections on a genus g surface [Hit90].

The main object of my research has been to find ways to weaken this criterion, and in
the paper [AR16] Andersen and I weakened the criterion by adding the possibility of varying
the bi-vector field G(V ) by adding a term of the form ∂̄β(V ) · ω̃ for an arbitrary vector field
β(V )σ ∈ C∞(Mσ, T

′Mσ).

Definition 3.8 (Weakly restricted). We call the family J weakly restricted if there exists a
one form β on T with values in C∞(Mσ, T

′Mσ) at each point σ ∈ T , such that for all vector
fields V along T and all σ ∈ T , there exists Gβ(V )σ ∈ H0(M,S2(T ′Mσ)) such that

Gβ(V )σ · ω = V ′[J ]σ + ∂̄β(V )σ. (3.5)

It is clear that a rigid family is also weakly restricted, since Gβ(V ) = G(V ) with β(V ) = 0
obviously fulfils the weak rigidity condition.

Furthermore it is, of course, interesting to investigate when we can solve the weakly
restricted criterion. We let Cω be the space of all complex structures on M compatible with
the symplectic form ω and let J ∈ Cω(M). Then we have that

TJCω = ker(∂̄J : Ω0,1(M,T ′MJ)ω → Ω0,2(M,T ′MJ)),

where
Ω0,1(M,T ′MJ)ω = {VJ ∈ Ω0,1(M,T ′MJ) | ω(VJ ·, J ·) = ω(·, JVJ ·)},

which is the same as stating that VJ is symmetric with respect to the Kähler metric gJ
associated to ω and J . Thus, we see that given VJ ∈ TJCω, we can solve the weakly restricted
condition, e.g. find β(V ), whenever we have

VJ ∈ H0(MJ , S
2(T ′MJ)) · ω+ Im(∂̄J : C∞(M,T ′MJ)ω → Ω0,1(M,T ′MJ)ω).

where
C∞(M,T ′MJ)ω = {X ∈ C∞(M,T ′MJ) | ∂̄(iXω) = 0}.

If the map
·ω : H0(MJ , S

2(T ′MJ))→ H1(MJ , T
′MJ)ω
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is surjective, this is always possible. Here H1(MJ , T
′MJ)ω is defined in analogy with (3.5),

namely to be the symmetric part of this cohomology.
A particular simple case, where we can always solve (3.5) is of course if

H1(MJ , T
′MJ)ω = 0.

In general, we can solve the equation (3.5) if the cohomology class of V ′[J ]σ is contained in
the image of ·ω in (3.5). Thus our construction will only provide a partial connection on the
space of all complex structures compatible with the symplectic form on ω. If M is compact,
we see that this partial connection is defined on a subspace of finite co-dimension of the
tangent space to the space of all complex structures compatible with ω.

3.6 Families of Ricci Potentials

Just as we have families of Kähler structures, we need the notion of a family of Ricci potentials,
which we will define to be a smooth assignment of a Ricci potential to each Kähler structure.
That is, assume that we have a symplectic manifold (M,ω) with a family of Kähler structures
J parametrized by T . Then we call a smooth map

F : T → C∞(M)

a family of Ricci potentials if it satisfies

ρσ = ρHσ + 2i∂σ∂̄σFσ. (3.6)

Now assume that M is compact, such that we for each σ ∈ T get a Ricci potential Fσ as
we saw in section 1.6, and by choosing the unique Fσ with zero average, we get a smooth
function

F̃ ∈ C∞(T ×M),

which we can also view as a smooth function F : T → C∞(M) satisfying (3.6). Now if we
assume that the real first chern class is represented by

c1(M,ω) = n
[ ω

2π

]
,

for some integer n ∈ Z, and since we know that it is also represented by

c1(M,ω) =
[ ρ

2π

]
,

we get that [ρ] = [nω], and since ω is harmonic, we get that

ρσ = nω + 2i∂σ∂̄σFσ.
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Chapter 4

The Moduli Space of Flat
SU(n)-connections

We include this chapter on the special example of the moduli space of flat SU(n)-connections,
since this first of all is an interesting and well studied example where our constructions of
the Hitchin connection in the following chapters apply, and secondly because of its historic
significance in the development of the theory and relation to physics.

4.1 Chern-Simons Theory and the Moduli Space

Let us first briefly introduce classical Chern-Simons theory so as to motivate, how the moduli
space arrises from this theory. For this introduction, we will follow the formulation of Freed
(see [Fre95]).

We start by the description of Chern-Simons theory as what Freed calls a local Lagrangian
field theory. Here space is modelled by a closed oriented surface Σ, and spacetime is modelled
by a compact oriented three-manifold X with boundary ∂X = Σ. The fields in the theory are
connections on principal SU(n)-bundles P → X, and for a connection B on P|Σ we associate
a Hermitian line, i.e. a 1 dimensional complex vector space with a Hermitian structure,

B 7→ LB . (4.1)

If the boundary Σ = ∅ we define this Hermitian line to be C, and we call these Hermitian
lines the Chern-Simons lines. For each connection A on the entire space X we associate a
unitary element

A 7→ e2πiS(A)1A|Σ ∈ LA|Σ,

where 1A|Σ is a basis element of unit length, and S is the action functional, which for closed
X is given by

S(A) =
∫
X

〈A ∧ FA〉 −
1
6 〈A ∧ [A ∧A〉]〉,

where 〈·, ·〉 : su(n) × su(n) → R, is a suitably normalized Ad-invariant symmetric bilinear
form and FA = dA + 1

2 [A ∧ A] is the curvature of A. The normalization of 〈 · , · 〉 ensures
that S descends to an action functional

S : A/G → R/Z,
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4. The Moduli Space of Flat SU(n)-connections

where A is the space of connections on principal bundles P → X, and G is the group of
gauge transformations.

Since all principal SU(n)-bundles over compact orientable three-manifolds are topologi-
cally trivial, we get the identification

A ' Ω1(X, su(n)),

which shows that A is an infinite dimensional smooth manifold. It can further be shown,
that the action functional S is smooth, and therefore it makes sense to investigate the
Euler-Lagrange equation.

In doing so, it turns out that the space of classical solutions is given by the moduli space
of flat connections on Σ

M = F/G,

where F is the space of flat connections on principal bundles over Σ. The moduli space is
often identified, or even defined, by its equivalent description as a character variety, and we
get the isomorphism through the map

Hol :M ∼−→ Hom(π1(Σ)),SU(n))/SU(n),

which for each flat connection associates its holonomy representation. Also we remark that
we have implicit that π1(Σ) = π1(Σ, p) for some fixed basepoint, and if Σ has a boundary we
will assume p ∈ ∂Σ. We remember that for any connection in a principal bundle P → Σ, a
loop in Σ lifts to a unique horizontal loop in P , and since the start and endpoint are in the
same fiber, they are associated via the action of an element in SU(n). This construction is the
holonomy represention of the connection in that fiber. Now for a flat connection, the parallel
transport depends only on the homotopy type of the loop, so the map restricts to give a
homomorphism from π1(Σ) to SU(n). Also, choosing a different point in the fiber, would give
a conjugate homomorphism, so the map is well-defined from F → Hom(π1(Σ),SU(n)/SU(n)
and since gauge equivalent connections have conjugate holonomy representations the map
restricts to a map from M , which is an isomorphism.

Through this map, we can define a notion of irreducibility of a connection. A connection
B is said to be irreducible if its associated unitary representation on CN is irreducible. It
turns out thatM is singular, but throwing away the reducible representations and looking
only at the space of irreducible flat connections modulo gauge equivalence

M∗ = F Irr/G = HomIrr(π1(Σ),SU(n))/ SU(n),

we get a smooth manifold, which is an open dense subset ofM.
As mentioned in the introduction, we might also consider only connection with fixed

central holonomy around a point on the surface. In this case we consider a compact, smooth
and orientable surface Σ of genus g ≥ 2 with a single boundary component. Let γ ∈ π1(Σ)
be the class of a curve homotopic to the boundary of Σ. Also for d ∈ Z/nZ, let Z = e2πidI ∈
SU(n) be a generator of the center of SU(n), and define

Homd(π1(Σ),SU(n)) = {ρ ∈ Hom(π1(Σ),SU(n)) | ρ(γ) = Z} .
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Since Z is central, this subspace is preserved by the conjugation action, and since every
element in Homd(π1(Σ),SU(n)) can be shown to be irreducible, it follows that

Md = Homd(π1(Σ),SU(n))/ SU(n)

is a compact, smooth manifold.

4.2 The Tangent Bundle and Symplectic Structure

For the moduli space to fit into the theory of quantization, we of course need a symplectic
structure, and it turns out this can be defined in a natural way. Let us first introduce the
tangent bundle. Let AdP → Σ be the adjoint bundle associated to a principal bundle P → Σ
and recall that any connection A on P induces a connection ∇A on AdP . If A is flat, then
so is ∇A. Hence we get a cochain complex

(
Ω•Σ(AdP ),∇A

)
, and we let H•(Σ,AdAP ) be the

associated cohomology groups. At an irreducible point [A] we have

T[A]M∗ ' H1(Σ,AdAP ).

For closed 1-forms α, β ∈ Ω1(Σ,AdAP ) representing tangent vectors at [A] ∈ M∗, we get a
2-form on Σ by the pairing −Tr(α ∧ β), and we let

ω([α], [β]) = −
∫

Σ
Tr(α ∧ β).

This defines a symplectic form on M∗, which we will refer to as the Seshadri-Atiyah-Bott-
Goldman symplectic form, since work on and construction of it was done in various settings
by these people [AB83, NS64, NS65, Gol84].

Likewise, we get a symplectic structure on the moduli spaceMd.

4.3 Teichmüller Space and Kähler Structure

The next component we need, is a compatible Kähler structure on the moduli space. To
construct this, we remember that the complex structures on the surface Σ are identified with
points in Teichmüller space T (Σ), which is given by

T (Σ) = C(Σ)/Diff0(Σ),

where C(Σ) is the space of conformal equivalence classes of Riemannian metrics on Σ, Diff(Σ)
is the group of orientation preserving diffeomorphisms fixing the boundary, and Diff0(Σ) is the
subgroup of diffeomorphisms that are isotopic to the identity. It is, furthermore, well-known
that T (Σ) is a contractible space and carries a natural complex structure.

Now, let us explain how T (Σ) parametrizes Kähler structures on the moduli space. For
σ ∈ T we get a Kähler structure on Σ and a corresonding Hodge star operater

∗σ : Ω1(Σ)→ Ω1(Σ).
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4. The Moduli Space of Flat SU(n)-connections

This extends to the cochain complex Ω•Σ(AdP ). Now, if A is an irreducible flat connection,
then by Hodge theory, we have an identification of the tangent space with the harmonic
forms

T[A]M∗ ' H1(Σ,AdAP ) ' ker(∇A) ∩ ker(∗∇A∗),

and since ∗σ satisfies ∗2σ = −1, we can define an almost complex structure Jσ through

Jσ[α] = [− ∗σ (α)],

where α is the unique harmonic representative of its cohomology class. Through work of
Narasimhan and Seshadri [NS64], this is known to induce an integrable almost complex
structure onM∗. In fact the choice of complex structure on Σ allows us to identify the whole
moduli space of flat connectionsM with the moduli space of semistable holomorphic rank n
vector bundles of trivial determinant. We denote this moduli space by Nσ.

The subsetM∗ ⊂ Nσ is the smooth part, and if we denote the corresponding complex
manifold byM∗σ then (M∗σ, ω) will in fact be a be Kähler manifold.

Moreover, the complex structures preserve the subspaces Md, such that these become
compact Kähler manifolds.

4.4 Quantization of Moduli Spaces

The last ingredient in the quantization data is a prequantum line bundle, and this is given
by the Chern-Simons lines described earlier. We refer to following theorem of Freed.

Theorem 4.1 (Freed). The Chern-Simons lines (4.1) descends to a Prequantum line bundle

LCS →M∗,

onM∗ with the Seshadri-Atiyah-Bott-Goldman symplectic form ω.

The content of theorem 4.1 can be found in proposition 3.17, in [Fre95] where it is also
discussed how to realize the moduli space as a symplectic quotient. In the same way, we get
a prequantum line bundle in the case of the moduli space Md.

To summarize, we started from Chern-Simons theory and as a description of the space
of classical solutions, we got the moduli space of flat connections, which we have seen is a
symplectic manifold with a prequantum line bundle given by the Chern-Simons lines central
to the Lagrangian formulation of Chern-Simons theory. This constitutes the pre-quantization
data, as it was described in section 2.2.1.

Furthermore, we have a family of Kähler structures parametrized by Teichmüller space,
and for each Kähler structure we get the space of Holomorphic sections

V(k)
σ = H0 (M∗σ,LkCS) .

These constitue the fibers in the so-called Verlinde bundle

V(k) → T .
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which turns out to be finite-dimensional. This was, as mentioned, the bundle which Hitchin
studied in [Hit90], and he proved that it admitted a projectively flat connection. In [ADPW91]
a similar construction is carried out, and Andersen have proven the following theorem in
[And12].

Theorem 4.2 (Andersen). The construction provided by Hitchin in [Hit90] is equivalent to
the construction by Axelrod, Della Pietra, and Witten provided in [ADPW91].

In chapter 6 we will return to Andersens paper [And12], wherein the existence of a
projectively flat connection on V(k) → T is explained and generalized to rigid families of
Kähler structures as introduced in section 3.4, and we will furthermore give the construction
in the weakly restricted case, which was done in [AR16]. In chapter 7 we will discuss the
general case of any family of Kähler structures.

Returning again to the case in which Σ is a compact surface of genus g ≥ 2 with a single
boundary component, the spaceMd is a compact Kähler manifold and carries in the same
way a prequantum line bundle. This space fullfils all the assumptions of theorem 6.7, and
further all complex structures in the family have zero-dimensional symmetry group, such
that Andersen and Gammelgaards calculation of the curvature in [AG14] shows that it is
projectively flat.

Building on the former results, Andersen and his former PhD student N. S. Poulsen are
able to explicitly calculate the curvature of the Hitchin connection on the moduli space in
the paper [AP16]. As it is projectively flat, the curvature form is a 2-form tensored together
with the identity endomorphism. They get the following expression for the 2-form

Theorem 4.3 (Andersen & Poulsen).

F∇H = ik(N2 − 1)
12(k +N)πωT ,

where ωT is the Weil-Petersson form.

4.5 The Mapping Class Group

Let us finish the discussion by briefly mentioning the natural group of symmetries on the
moduli space. We remember that Diff(Σ) is the group of orientation preserving diffeomor-
phisms fixing the boundary, and Diff0(Σ) is the subgroup of diffeomorphisms that are isotopic
to the identity, and we define the mapping class group of Σ to be the quotient

Γ(Σ) = Diff(Σ)/Diff0(Σ).

An element ϕ of the mapping class group is a diffeomorphism of Σ, and so it induces an
isomorphism on the fundamental group π1(Σ, p) → π1(Σ, ϕ(p)). Now any path from p to
ϕ(p) induces an isomorphism π1(Σ, ϕ(p))→ π1(Σ, p), and postcomposing with this gives an
automorphism of π1(Σ, p). This is not independent of the choice of path from p to ϕ(p), but
different choices give conjugate automorphisms, and so this gives a well-defined action of the
mapping class group on the moduli space.
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4. The Moduli Space of Flat SU(n)-connections

If Σ has boundary, we have assumed p ∈ ∂Σ, and so each ϕ ∈ Diff(M) directly induce a
automorphism of π1(Σ, p) only depending on the isotopi class of ϕ, and this action commutes
with the conjugation action of SU(n).

Furthermore, the mapping class group action preserves the symplectic structure, and
the map J : T (Σ) → C∞(M,∗ End(TM∗)) defining Kähler structures on M∗ is likewise
equivariant with respect to the of Γ(Σ).
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Chapter 5

Differential Operators and Symbols

In this section we will investigate some general properties and equalities on differential
operators and their symbols. These will be paramount in our study of the Hitchin connection
in chapter 7.

We first consider an arbitrary vector bundle E →M with a connection ∇. We will derive
an identity on the n’th order differential operator with principal symbol Gn, which we define
inductively as in [AGL12] by

∇nX1�...�Xns = ∇X1∇n−1
X2�...�Xns−∇

n−1
∇X1 (X2�...�Xn)s

= ∇X1∇n−1
X2�...�Xns−

∑
j
∇n−1
X2�...�∇X1Xj�...�Xn

s,

with the obvious induction start given by the covariant derivative, and with the covariant
derivative on tensor powers of the tangent bundle being the one induced via the Leibniz
rule by the covariant derivative on the tangent bundle. It can be verified directly that this
expression is tensorial in the vector fields, so that we get a map

∇n : C∞(M,TMn)→ Dn(M,E),

where Dn(M,E) is the space of differential operators of order at most n on the bundle E.
For any tensor field Gn ∈ C∞(M,TMn), the symbol of ∇nGn is given by the symmetrization
S(Tn) ∈ C∞(M,Sn(TM)) of Gn. Given any operator D ∈ Dn(M,E), with principal symbol
σP (D) = Sn ∈ C∞(M,Sn(TM)), the operator D − ∇nSn is of order at most n − 1, since
the symbol of order n obviously vanishes. Inductively, it follows that the operator D can be
written uniquely in the form

D = ∇nSn +∇n−1
Sn−1

+ · · ·+∇S1 + S0, (5.1)

where Sd ∈ C∞(M,Sd(TM)) is called the symbol of order d and gives rise to a map from
the space of all differential operators

σd : D(M,E)→ C∞(M,Sd(TM)).

Any finite order differential operator on E is uniquely determined by these symbols. In fact,
through the expression (5.1), a choice of symbols specifies a differential operator on any
vector bundle with connection, and in particular on functions.
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5.1 Differential Operators on the Bundle of Quantum Spaces

Now we will restrict ourselves to look at the case of a symplectic manifold (M,ω) with a pre-
quantum line bundle L as defined in section 2.2.1, and we will investigate what happens, when
we differentiate ∇nGns in the (0, 1)-direction for any holomorphic section s ∈ H0(Mσ,Lk).

To state the result, we define, for an n-tensor Gn = X1 � . . .�Xn ∈ TM�n and a k-form
Ωk for any k ≤ n, the trace tr as follows.

tr(Ωk, Gn) =
∑

i1<···<ik
j1<···<jn−k

iν 6=jη

Ωk(Xi1 , . . . , Xin)Xj1 � . . .�Xjn−k .

We expand the definition by linearity to any tensor in TM�n, and now we can state the
proposition. We will in the following do calculations modulo Dn−2(M,Lk), and by this we
simply mean that the equations hold up to additions of differential operators of order n− 2
or lower.

Proposition 5.1. For any tensor Gn ∈ C∞(Mσ,Sn(T ′Mσ)), any holomorphic section
s ∈ H0(Mσ,Lk) and any vector field Z ∈ C∞(Mσ, T

′′Mσ), we get the identity

∇0,1
Z ∇

n
Gns =

∇∇0,1
Z
Gn
s− ikω(Z,G1)s, n = 1

∇n∇0,1
Z
Gn
s−∇n−1

ik tr(ιZω,Gn)+tr(ιZR,Gn)s mod Dn−2(M,Lk), n ≥ 2.

Here R denotes the curvature of the connection in tensor powers of the tangent bundle,
induced by the Levi Civita connection.

Proof. To begin the proof, we notice that any n-tensor can be written in the form

Gn =
∑
i

Xi
1 � . . .�Xi

n,

and by linearity, it is enough to show the result for Gn = X1 � . . .�Xn. The proof is done
by induction in n, so let us first establish the result for n = 1, which basically follows directy
from the definition of the curvature

F∇(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ],

and the fact that the torsion

T (X,Y ) = ∇XY −∇YX − [X,Y ]

is 0 for the Levi Civita connection, and lastly that the Levi Civita connection preserves types
on the tangent bundle. Using this we calculate

∇0,1
Z ∇G1s = −ikω(Z,G1)s+∇[Z,G1]s+���

��∇G1∇
0,1
Z s

= −ikω(Z,G1)s+∇∇0,1
Z
G1
s−���

�∇∇G1Z
s

= ∇∇0,1
Z
G1
s− ikω(Z,G1)s.
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5.1. Differential Operators on the Bundle of Quantum Spaces

This establishes the result for n = 1, which will be used several times in the following. Since
n = 1 is different, we will start the induction with n = 2, and in the following the calculations
are done modulo Dn−2(M,Lk), so we immidiately discard terms of order n− 2 or lower.

∇0,1
Z ∇

2
G2
s =∇0,1

Z ∇X1∇X2s−∇
0,1
Z ∇∇X1X2s

=− ikω(Z,X1)∇X2s+∇[Z,X1]∇X2s+∇X1∇
0,1
Z ∇X2s

−∇∇0,1
Z
∇X1X2

s

=∇−ikω(Z,X1)X2s+∇∇0,1
Z
X1
∇X2s−∇

0,1
∇X1Z

∇X2s

+∇X1∇∇0,1
Z
X2
s+∇−ikω(Z,X2)X1s

−∇∇0,1
Z
∇X1X2

s

=∇∇0,1
Z
X1
∇X2s+∇X1∇∇0,1

Z
X2
s

+∇−ikω(Z,X1)X2s+∇−ikω(Z,X2)X1s

−∇∇0,1
Z
∇X1X2

s−∇∇0,1
∇X1Z

X2
s

=∇2
∇0,1
Z
G2
s−∇ik tr(ιZω,G2)s

+∇∇X1∇
0,1
Z
X2
s−∇∇0,1

Z
∇X1X2

s+∇∇
∇0,1
Z

X1
X2s−∇∇0,1

∇X1Z
X2
s

=∇2
∇0,1
Z
G2
s−∇ik tr(ιZω,G2)s

+∇∇X1∇
0,1
Z
X2
s−∇∇0,1

Z
∇X1X2

s−∇∇[X1,Z]X2s

=∇2
∇0,1
Z
G2
s−∇ik tr(ιZω,G2)s+∇ikR(X1,Z)X2s

=∇2
∇0,1
Z
G2
s−∇ik tr(ιZω,G2)+tr(ιZR,G2)s

where we have used, that by defintion

∇∇0,1
Z
X1
∇X2s+∇X1∇∇0,1

Z
X2
s = ∇2

∇0,1
Z
G2
s+∇∇

∇0,1
Z

X1
X2s+∇∇X1∇

0,1
Z
X2
s.

Now we continue with the proof for general n, which uses the induction step and Leibniz
rule for the covariant derivative, but othervise follows the same structure as the n = 2 case.
In the follwing we will write Gn−1 = X2 � . . .�Xn.

∇0,1
Z ∇

n
Gns =∇0,1

Z ∇X1∇n−1
Gn−1

s−∇0,1
Z ∇

n−1
∇X1Gn−1

s

=− ikω(Z,X1)∇n−1
Gn−1

s+∇[Z,X1]∇n−1
Gn−1

s+∇X1∇
0,1
Z ∇

n−1
Gn−1

s

−∇n−1
∇0,1
Z
∇X1Gn−1

s

=−∇n−1
ikω(Z,X1)Gn−1

s+∇∇0,1
Z
X1
∇n−1
Gn−1

s−∇0,1
∇X1Z

∇n−1
Gn−1

s

+∇X1∇n−1
∇0,1
Z
Gn−1

s−∇X1∇n−2
ik tr(ιZω,Gn−1)s−∇X1∇n−2

tr(ιZR,Gn−1)s

−∇n−1
∇0,1
Z
∇X1Gn−1

s

39
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=∇∇0,1
Z
X1
∇n−1
Gn−1

s+∇X1∇n−1
∇0,1
Z
Gn−1

s

−∇n−1
ikω(Z,X1)Gn−1

s−∇X1∇n−2
ik tr(ιZω,Gn−1)s

−∇n−1
∇0,1
∇X1Z

Gn−1
s−∇n−1

∇0,1
Z
∇X1Gn−1

s−∇X1∇n−2
tr(ιZR,Gn−1)s

=∇n∇0,1
Z
Gn
s−∇n−1

ik tr(ιZω,Gn)s

+∇n−1
∇X1∇

0,1
Z
Gn−1

s−∇n−1
∇0,1
Z
∇X1Gn−1

s+∇n−1
∇
∇0,1
Z

X1
Gn−1

s−∇n−1
∇0,1
∇X1Z

Gn−1
s

−∇X1∇n−2
tr(ιZR,Gn−1)s

=∇n∇0,1
Z
Gn
s+∇n−1

−ik tr(ιZω,Gn)s

−∇n−1
tr(ιZR(X1),Gn−1) −∇X1∇n−2

tr(ιZR,Gn−1)s

=∇n∇0,1
Z
Gn
s−∇n−1

ik tr(ιZω,Gn)s−∇
n−1
tr(ιZR,Gn)s,

where we have used, that by defintion

∇∇0,1
Z
X1
∇n−1
Gn−1

s+∇X1∇n−1
∇0,1
Z
Gn−1

s = ∇n∇0,1
Z
Gn
s+∇n−1

∇
∇0,1
Z

X1
Gn−1

s+∇n−1
∇X1∇

0,1
Z
Gn−1

s.

We would like to improve the equality a little more when possible, and the following
lemma shows, that we can substitute the term involving the trace of the Levi Civita curvature
with an exact term and a trace over the ricci form, given that Gn is actually a holomorphic
section. To state this lemma intrinsically, we define the following variation of the trace from
above. For an n-tensor Gn = X1 � . . . �Xn ∈ TM�n and a k-form Ωk for any k ≤ n − 1,
the trace t̃r is given by

t̃r(Ωk, Gn) = tr(Ωk, X1 � . . .�Xn−1)Xn,

and again expanding by linearity.

Lemma 5.2. For n ≥ 2, we get for any holomorphic tensor Gn ∈ H0(Mσ, T
′M�n

σ ) and any
vector field Z ∈ C∞(Mσ, T

′′Mσ), the identity

∇0,1
Z δ̃(Gn) = −t̃r(iιZρ,Gn) + tr(ιZR,Gn),

The equation expands by linearity to any Gn ∈ H0(Mσ,Sn(T ′Mσ)).

Proof. The proof is inductive starting at n = 2, but firstly we will start with the following
little calculation, which we will use several times. Let X ∈ H0(Mσ, T

′M) be a holomorphic
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5.1. Differential Operators on the Bundle of Quantum Spaces

vector field, then

∇0,1
Z δ(X) = ∇0,1

Z tr(∇X)

= tr(∇0,1
Z ∇X)

= tr(R(Z, ·)X)

= − tr(R(·, Z)X)

= −r(Z,X)

= −r(JZ, JX)

= −ir(JZ,X)

= −iρ(Z,X).

Now as in proposition 1.3, we will assumeGn = X1�. . .�Xn expressed locally by holomorphic
vector fields X1, . . . , Xn, and it is enough to proof the lemma in this case, since it just extends
by linearity. For n = 2, the calculation goes as follows

∇0,1
Z δ(G2) = ∇0,1

Z δ(X1)X2 +∇0,1
Z ∇X1X2

= −iρ(Z,X1)X2 +∇0,1
Z ∇X1X2 −∇X1∇

0,1
Z X2 −∇[Z,X1]X2

= −iρ(Z,X1)X2 +R(Z,X1)X2

= − tr(iιZρ,X1)X2 + tr(ιZR,G2),

where we in the second equality, we have subtracted two terms, that are zero because of
holomorphicity, to get the curvature term. Now to shorten notation we write
X2 � . . .�Xn = Gn−1, and assuming the lemma holds for n− 1, we similarly calculate for
n, that

∇0,1
Z δ̃(Gn) =∇0,1

Z δ(X1)Gn−1 +∇0,1
Z ∇X1Gn−1 +X1 �∇0,1

Z δ̃(Gn−1)

=− iρ(Z,X1)Gn−1

+∇0,1
Z ∇X1Gn−1 −∇X1∇

0,1
Z Gn−1 −∇[Z,X1]Gn−1

−X1 � tr(iιZρ,X2 � . . .�Xn−1)Xn +X1 � tr(ιZR,Gn−1)

=− tr(iιZρ,X1 � . . .�Xn−1)Xn

+R(Z,X1)Gn−1 +X1 � tr(ιZR,Gn−1)

= − tr(iιZρ,X1 � . . .�Xn−1)Xn + tr(ιZR,Gn)

= −t̃r(iιZρ,Gn) + tr(ιZR,Gn),

which finishes the proof.

We will often use these two results together and combine them in a corollary. Before
we state this, we will introduce the following maps on cohomology, which together with
the previous results, will play an important role in the existence theorems for the Hitchin
connection in chapter 7.
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Definition 5.3. For any n ≥ 1, we let

Ψ(n) : H0(Mσ,Sn(T ′Mσ))→ H1(Mσ, S
n−1(T ′Mσ)),

be given by
Ψ(n)
Z (Gn) = i(knιZω + (n− 1)ιZρ) ·Gn,

where Z ∈ C∞(M,TM). We will need the kernel and image of these maps and name them

K(n) := ker(Ψ(n)) : H0(Mσ,Sn(T ′Mσ))→ H1(Mσ, S
n−1(T ′Mσ))

I(n) := Im(Ψ(n)) : H0(Mσ,Sn(T ′Mσ))→ H1(Mσ, S
n−1(T ′Mσ)).

Corollary 5.4. For n ≥ 2, for any symmetric holomorphic tensorGn ∈ C∞(Mσ,Sn(T ′Mσ)),
any holomorphic section s ∈ H0(Mσ,Lk) and any vector field Z ∈ C∞(Mσ, T

′′Mσ), we get
the identity

∇0,1
Z (∇nGn +∇n−1

δ̃(Gn))s = ∇n∇0,1
Z
Gn
s−∇n−1

Ψ(n)(Gn) mod Dn−2(M,Lk)

Proof. Like earlier we calculate for Gn = X1 � . . .�Xn = X1 �Gn−1 ∈ H0(Mσ,Sn(T ′Mσ))
and get the general result by expanding by linearity. By combining Proposition 1.3 and
Lemma 5.2, we calculate directly the following, where the only extra ingredient is to apply
the symmetry in the fifth equality.

∇0,1
Z (∇nGn +∇n−1

δ̃(Gn))s

= ∇n∇0,1
Z
Gn
s−∇n−1

ik tr(ιZω,Gn)+tr(ιZR,Gn)s+∇n−1
∇0,1
Z
δ̃(Gn)s

= ∇n∇0,1
Z
Gn
s+∇n−1

−ik tr(ιZω,Gn)−tr(ιZR,Gn)s+∇n−1
−t̃r(iιZρ,Gn)+tr(ιZR,Gn)s

= ∇n∇0,1
Z
Gn
s+∇n−1

−ik tr(ιZω,Gn)−t̃r(iιZρ,Gn)s

= ∇n∇0,1
Z
Gn
s−∇n−1

ik tr(ιZω,Gn)+tr(iιZρ,X1�...�Xn−1)Xn

= ∇n∇0,1
Z
Gn
s−∇n−1

iknιZω·Gn+i(n−1)ιZρ·Gn

= ∇n∇0,1
Z
Gn
s−∇n−1

i(knιZω+(n−1)ιZρ)·Gn

= ∇n∇0,1
Z
Gn
s−∇n−1

Ψ(n)
Z

(Gn)
mod Dn−2(M,Lk).

5.2 Sections vanishing up to order N − 1

In this section we will state a general result, that for any point p ∈ M and any integer N ,
we can find a level k and a subspace of H0(Mσ,Lk) which span the fibers of the bundle
of N jets of holomorphic sections at p. By evaluating a differential operator D at all these
sections we will be able to get equalities on the symbols from equalities that hold for each
holomorphic section. We formulate this in the following.
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Proposition 5.5. Let p ∈M , N ≥ 0 and dN = dim(SN (T ′Mp)). Also let {e1, . . . edN } be a
basis for SN (T ′pMσ). Then there exists a level k, and a set {s1, . . . , sdN } ⊆ H0(Mσ,Lk) of
holomorphic sections, such that

(∇Neisj)(p) = δij ,

and such that for any 0 ≤ l ≤ N , the lower order derivatives

(∇lsj)(p) = 0

for all j = 0, . . . , dN .
Furthermore for compact M , we can choose the level k independent of the point p.

This is a result from the theory of jets of sections, and the proof follows the same idea,
which is applied in the proof of Kodairas Embedding Theorem. We will need it to proof the
following theorem.

Theorem 5.6. Assume that D(1) and D(2) are differential operators of the form

D(j) =
N∑
i=0
∇(i)
G

(j)
i

, j = 1, 2,

such that for all k ≥ 0 and for all holomorphic sections s ∈ H0(Mσ,Lk)

D(1)s = D(2)s.

Then we get equality of the principal symbols

G
(1)
N = G

(2)
N .

Proof. At any point p ∈ M , find a level k and sections {e1, . . . edN } as in proposition 5.5.
The theorem follows directly by evaluating the D(j) on all of these sections. It is clear that
we can write the symbol G(j)

N in terms of the basis

G
(j)
N =

ld∑
i=1

c
(j)
i ei, j = 1, 2.

Using proposition 5.5, it follows that

(D(j)si)(p) = c
(j)
i , j = 1, 2,

and thus
G

(1)
N = G

(2)
N .
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5.3 Differential Operators Preserving the Subspace of
Holomorphic sections

Now we can combine our results from above to proof the following main theorem of this
chapter.

Theorem 5.7. If K(n) = 0 for all n ≥ l, then any operator of the form

D =
N∑
i=0
∇(i)
Gi

(5.2)

which maps H0(Mσ,Lk) to itself for all k, must be of order at most most l − 1. Moroever
the symbol of order l − 1 of D must be holomorphic.

Proof of Theorem 5.7. Consider a differential operator D of order N , which we can write on
the form

D =
N∑
i=0
∇(i)
Gi
, (5.3)

where Gi ∈ C∞(Mσ, S
i(T ′Mσ)). We assume that D maps H0(Mσ,Lk) to itself for all k. In

other words the derivative

∇0,1Ds = 0, ∀ s ∈ H0(Mσ,Lk).

On the other hand, using Proposition 5.1 on derivatives of differential operators, we get for
any vector field Z ∈ C∞(Mσ, T

′′Mσ), that when calculating modulo DN−2(M,Lk), we have

0 = ∇0,1
Z Ds = ∇N∇0,1

Z
GN

s+∇N−1
∇0,1
Z
GN−1

s

−∇N−1
ik tr(ιZω,GN )+tr(ιZR,GN )s mod DN−2(M,Lk).

Now by Theorem 5.6 we get equality of the principal symbol of the left hand side, which is
zero, with the principal symbols of the right hand side, since this is still an operator of the
form (5.3). That is, we have

∇0,1
Z GN = 0,

and thus, since this show that Gn is holomorphic, we can also use corollary 5.4 in combination
with Proposition 5.1 to get

∇N−1
∇0,1
Z
δ̃(GN )s = ∇0,1

Z (∇N−1
δ̃(GN ))s

= ∇0,1
Z (D +∇N−1

δ̃(GN ))s

= ∇N∇0,1
Z
GN

s+∇N−1
∇0,1
Z
GN−1

s−∇N−1
Ψ(N)
Z

(GN )
s

= ∇N−1
∇0,1
Z
GN−1

s−∇N−1
Ψ(N)
Z

(GN )
s mod DN−2(M,Lk),

where Ψ(N) is defined in defintion 5.3. Now the principal symbol is of order N − 1, and again
applying theorem 5.6 we get the equation

Ψ(N)
Z (GN ) = ∇0,1

Z (GN−1 − δ̃(GN )).
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This shows that Ψ(N)(GN ) is exact, and thus 0 on cohomology. Now if K(N) = 0, we get by
injectivity of Ψ(N) that GN = 0, which again gives

0 = ∇0,1
Z (GN−1 + δ̃(GN )) = ∇0,1

Z (GN−1).

Continuing this procedure inductively gives us Gn = 0 for all n = l, . . . , N and also
∇0,1
Z (Gl−1) = 0, and we conclude that that D is of order at most l and that the symbol of

order l − 1 is holomorphic.

We also state the following immidiate corollary, which handles some special and useful
cases.

Corollary 5.8. If K(n) = 0 for all n ≥ 1, then any D as in Theorem 5.7 must be multipli-
cation by a holomorphic function.

Furthermore if H0(Mσ, T
′Mσ) = 0 we get automatically that K(1) = 0, and that all

holomorphic functions are constant, implying that D vanish projectively.

Proof of corollary 5.8. If K(n) = 0 for all n ≥ 1, Theorem 5.7 shows that D must be an
operator of order 0, i.e. a function, and since the principal symbol is holemorphic, this means
that D is a holomorphic function.

If H0(Mσ, T
′Mσ) = 0, it is clear that K(1) = 0, since Ψ(n) is a map from the zero set.

Also if H0(Mσ, T
′Mσ) = 0, all holomorphic functions on M are constant.
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Chapter 6

Hitchin Connections for Restricted
Families of Kähler Structures

In this section we go through two explicit constructions of the Hitchin connection in Geometric
Quantization. First we review the construction in the rigid setting, which was carried out
in [And12] and for which further work was done on calculating the curvature in [AG14].
Afterwards we will carry out the construction under the weakly restricted assumption, which
was developed by Andersen and Rasmussen in [AR16] expanding on the same general idea of
construction, but loosening the restriction on the family of complex structures considerably.

To emphasise where the weakly restricted case differs from the rigid case, we will go
through the first part of the construction without applying either of these condition. This
way we go through as much of the theory as possible in the most general setup, and afterwards
we add a section showing the last part of the construction in each of the cases.

Let us briefly sum up the setup. We let (M,ω) be a symplectic manifold with a prequantum
line bundle L. Assume (M,ω) has real first chern class c1(M,ω) = n

[
ω
2π
]
for some integer

n ∈ Z, and let T be a complex manifold parametrizing a holomorphic family of integrable
almost complex structures J making (M,ω, Jσ) kähler for each σ ∈ T .

Now for each σ ∈ T we consider the quantum space at level k ∈ N, which is the finite
dimensional subspace H(k)

σ of the prequantum space H(k) = C∞(M,Lk) as defined in chapter
2. We will assume that these quantum spaces form a smooth finite rank subbundle Ĥ(k) of
the trivial bundle

Ĥ(k) = T ×H(k).

Now we let ∇T denote the trivial connection on Ĥ(k), and then we consider a connection
of the form

∇V = ∇TV + u(V ),

where u ∈ Ω1(T ,D(M,Lk)) is a one-form on T with values in the space of differential
operators on sections of Lk. Our goal is to construct a u, such that ∇ preserves the quantum
spaces H(k)

σ inside each fiber of Ĥ(k).
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Structures

Definition 6.1 (Hitchin Connection). A Hitchin connection on the bundle Ĥ(k) is a con-
nection ∇ = ∇T + u, that preserves the subspaces H(k)

σ inside each fiber of Ĥ(k). That is
such that ∇s ∈ H(k)

σ for each section s ∈ H(k)
σ .

To construct a Hitchin connection, our approach is always the same, namely to construct
a u, which satisfies the condition in the following lemma.

Lemma 6.2. The connection ∇ = ∇T + u is a Hitchin connection if and only if

∇0,1
σ u(V )s = i

2V
′[Jσ] · ∇1,0

σ s, (6.1)

for any holomorphic section s ∈ H(k)
σ and any smooth vector field V on T .

Proof. By assumption we need to have

0 = ∇0,1
σ (∇V s)

= ∇0,1
σ V [s] +∇0,1

σ u(V )s.

Now by differentiating ∇0,1
σ s = 0 along V we get

0 = V [∇0,1
σ s] = V

[
1
2(Id+ iJσ) · ∇s

]
= i

2V [Jσ] · ∇1,0
σ s+∇0,1

σ V [s]

Combining the above expressions, we get the equation (6.1).

The construction of the connection is carried out through a number of lemmas. We will,
as mentioned, start in the most general setting and then add the assumptions in the lemmas,
when we need them. Firstly we just assume that we have a symplectic manifold (M,ω) with
a prequantum line bundle L, a family of Kähler structures J , and that we have an arbitrary
symmetric bivector field

G ∈ C∞(Mσ, S
2(T ′Mσ)).

Then we get a linear bundle map

G : T ′M∗σ → T ′Mσ,

given by contracting with one of the entries of G. Using this we construct an operator ∆G

on H(k) given by

∆G : H(k) = C∞(M,Lk) ∇
1,0
σ−−−→ C∞(M,T ′M∗σ � Lk)

G�Id−−−→ C∞(M,T ′Mσ � Lk)
∇1,0
σ �Id + Id �∇1,0

σ−−−−−−−−−−−−→ C∞(M,T ′M∗σ � T ′Mσ � Lk)
tr−→ C∞(M,T ′Mσ � Lk).

In abstract tensor notation we can write this in the short form

∆Gs = ∇u′Gu
′v′∇v′s,
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where the outer connection is the connection in the tensor product T ′Mσ � Lk, which is
given exactly as described above by the Leibniz rule.

Before proceeding we observe, that ∆G is a second order differential operator of order 2,
and as such we can of course write ∆G on the form (5.1) as in chapter 5. We will need this
other description later on, so we calculate for G = X � Y , that

∆X�Y s = ∇X∇Y s+∇δ(X)Y s

= ∇X∇Y s−∇∇XY s+∇δ(X)Y s+∇∇XY s

= ∇2
X�Y s+∇δ(X�Y )s,

and by linearity, we get for any G that ∆G = ∇2
G +∇δG.

We will, however, continue our calculations using the index notation in the following,
where this first lemma is the crucial common ingredient in the constructions.

Lemma 6.3. Let G ∈ H0(Mσ, S
2(T ′Mσ)) be any holomorphic bi-vector field on (M,ωσ),

then we have for any section s ∈ H(k)
σ

∇(0,1)∆Gs = −2ikω ·G · ∇(1,0)s− iρ ·G · ∇(1,0)s− ikω · δ(G)s. (6.2)

Proof. The proof is a calculation that mainly uses the trick of commuting two covariant
derivatives to get one term that disappears because of type considerations plus a curvature
term. We will write out the proof using abstract tensor notation, which highlights contraction
of terms. So for s ∈ H(k)

σ we get that

∇(0,1)∆Gs = ∇a′′∇u′Gu
′v′∇v′s

= ∇u′∇a′′Gu
′v′∇v′s+ [∇,∇]a′′u′Gu

′v′∇v′s

= ∇u′Gu
′v′∇a′′∇v′s+ [∇,∇]a′′u′(Gu

′v′)∇v′s+Gu
′v′ [∇,∇]a′′u′∇v′s

= ∇u′Gu
′v′ [∇,∇]a′′v′s+Rwa′′wu′G

u′v′∇v′s− ikωa′′u′Gu
′v′∇v′s

= −ik∇u′Gu
′v′ωa′′v′s−Rwwa′′u′Gu

′v′∇v′s− ikω ·G · ∇s

= −ik∇u′(Gu
′v′)ωa′′v′s− ikGu

′v′ωa′′v′∇u′s− ra′′u′Gu
′v′∇v′s− ikω ·G · ∇s

= −ikωa′′v′δ(G)v
′
s− ikω ·G · ∇s− Jxa rxyJ

y
u′G

u′v′∇v′s− ikω ·G · ∇s

= −2ikω ·G · ∇s− ikω · δ(G)s− iρau′Gu
′v′∇v′s

= −2ikω ·G · ∇s− iρ ·G · ∇s− ikω · δ(G)s.

Now we will start applying more assumptions to continue the construction.

Corollary 6.4. Consider the situation as in Lemma 6.3 and assume that the family admits
a family of Ricci potentials F . Then we get

∇(0,1)∆Gs = −i(2k + n)ω ·G · ∇(1,0)s+ 2(d∂̄σFσ) ·G · ∇(1,0)s− ikω · δ(G)s. (6.3)

Proof. The proof follows directly by inserting the expression for the Ricci form given in
terms of the family of Ricci potentials Fσ, i.e. ρσ = nωσ + 2id∂̄σFσ, in (6.2).
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To get rid of the second term here, we can use the following lemma.

Lemma 6.5. Under the same assumptions as above, we have that

∇(0,1)(∇G·dF s) = −ikω ·G · dFs− (d∂̄σFσ) ·G · ∇(1,0)s, (6.4)

and thus we get the equality

∇(0,1)(∆Gs+ 2∇G·dF s) = −i(2k + n)ω ·G · ∇(1,0)s− ikω · δ(G)s− 2ikω ·G · dFs. (6.5)

Proof. Again the proof is a calculation. For s ∈ H(k)
σ , we have that

∇(0,1)(∇G·dF s) = ∇a′′Gu
′v′dFv′∇u′s

= Gu
′v′dFv′∇a′′∇u′s+Gu

′v′∇a′′(dFv′)∇u′s

= Gu
′v′dFv′ [∇,∇]a′′u′s+∇a′′(dFu′)Gu

′v′∇v′s

= −ikωa′′u′Gu
′v′dFv′s+ (∂̄dF ) ·G · ∇s

= −ikω ·G · dFs+ (∂̄∂F ) ·G · ∇s

= −ikω ·G · dFs− (∂∂̄F ) ·G · ∇s.

Now (6.5) follows by combining equations (6.3) and (6.4).

6.1 The Rigid Case

In this section we continue with the construction in the rigid case. We don’t include the
proof of the following proposition, but it is a special case of Proposition 6.9, when β(V ) = 0.
For interest in this specific proof, it can be found in [AG14].

Proposition 6.6. Consider the situation as in corollary 6.4, and assume that the family of
holomorphic structures Jσ is rigid. Furthermore assume that H1(M,R) = 0, that c1(M,ω) =
n
[
ω
2π
]
and that the family admits a family of Ricci potentials F , but that non of the complex

structures admit non-constant holomorphic functions on M . Then we have

δ(G(V )) · ω + 2dF ·G(V ) · ω = 4i∂̄V ′[F ].

We can now insert this result in the expression from Lemma 6.5 and get

∇(0,1)(∆G(V )s+ 2∇G(V )·dF s)

= −i(2k + n)ω ·G(V ) · ∇(1,0)s− ikω · δ(G(V ))s− 2ikω ·G(V ) · dFs

= i(2k + n)(G(V ) · ω) · ∇(1,0)s+ ik(δ(G(V )) · ω + 2dF ·G(V ) · ω)s

= i(2k + n)V ′[J ] · ∇(1,0)s− 4k∂̄V ′[F ]s.

From this follows immediately that

∇(0,1)(∆G(V ) + 2∇G(V )·dF + 4kV ′[F ])s = 2(2k + n) i2V
′[J ] · ∇(1,0)s,

and we see that dividing with 2(2k + n) gives a u(V ) that satisfies the condition in Lemma
6.2. Thus we have proved the following theorem.
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Theorem 6.7 (Hitchin Connection in the Rigid Setting). Let (M,ω) be a symplectic manifold
with a prequamtum line bundle L and H1(M,R) = 0. Assume that M has first chern class
c1(M,ω) = n

[
ω
2π
]
for some integer n ∈ Z. Furthermore let J : T → C∞(M,End(TM)) be

a rigid, holomorphic family of Kähler structures on M, parametrized by a complex manifold
T , and assume that the family admits a family of Ricci potentials F , but that non of the
complex structures admit non-constant holomorphic functions on M . Then there exits a
Hitchin connection ∇ in the bundle Ĥ(k) over T , given by the expression

∇V = ∇TV + u(V ),

u(V ) = 1
2(2k + n) (∆G(V ) + 2∇G(V )·dF + 4kV ′[F ]).

6.2 The Weakly Restricted Case

Now, instead of the rigid condition, we impose the weakly restricted condition and continue
the construction in the case where the family of complex structures is holomorphic. The
following lemma and proposition are the key components.

Lemma 6.8. Consider the situation as in corollary 6.4, and assume that the family of
holomorphic structures Jσ is weakly restricted. Furthermore assume that c1(M,ω) = n

[
ω
2π
]

and that the family admits a family of Ricci potentials F .
Let Gβ(V ) and β(V ) be bivector- and vector fields associated to the the family Jσ satisfying

(3.5). Then we have that the 1-form

Ω(V ) = −δ(Gβ(V )) · ω + δ(∂̄β(V ))− 2dF ·Gβ(V ) · ω + 2∂̄β(V ) · dF + 4i∂̄V ′[F ]

is closed and of type (0, 1).

Proof. We start with the equation ρσ = nω + 2id∂̄σFσ. Differentiating this equation along
V ′ we get

V ′[ρ] = 2idV ′[∂̄]F + 2id∂̄V ′[F ]

= −dV ′[J ] · dF + d(2i∂̄V ′[F ])

= −d(Gβ(V ) · ω) · dF + d∂̄β(V ) · dF + d(2i∂̄V ′[F ])

= −d(dF ·Gβ(V ) · ω) + d(∂̄β(V ) · dF ) + d(2i∂̄V ′[F ]).

Now we use Proposition 3.4, which gives us

2V ′[ρ] = dδ(G(V ) · ω) = dδ(V ′[J ]) = dδ(Gβ(V )) · ω − dδ(∂̄β(V )).

Inserting this on the left hand side of the above equation, we get that

0 = −d(δ(Gβ(V )) · ω) + dδ(∂̄β(V ))− d(2dF ·Gβ(V ) · ω)

+d(2∂̄β(V ) · dF ) + d(4i∂̄V ′[F ]) = dΩ(V ),

which exactly states that Ω(V ) is closed. By checking each term, it is also seen directly to
be of type (0, 1).

51



6. Hitchin Connections for Restricted Families of Kähler
Structures

Proposition 6.9. Consider the setup of Lemma 6.8, and furthermore assume thatH1(M,R) =
0. Then there exists ψ(V ) ∈ C∞(M), such that

δ(Gβ(V )) · ω + 2dF ·Gβ(V ) · ω

= 4i∂̄V ′[F ] + 2∂̄(dF · β(V )) + inω · β(V ) + ∂̄δ(β(V ))− ∂̄ψ(V ).

If none of the complex structures admits non-constant holomorphic functions on M , which
is true for instance if M is compact, we get that ψ(V ) = 0.

Proof. We know that Ω(V ) is closed and of type (0, 1), and since we have assumedH1(M,R) =
0, it is exact. Thus there exist a function ψ(V ) ∈ C∞(M), such that Ω(V ) = ∂̄ψ(V ).

Observe that if none of the complex structures admits non-constant holomorphic functions
on M , we get that ψ(V ) = 0, since the equation dψ(V ) = ∂̄ψ(V ) shows that ψ(V ) is anti-
holomorphic.

Combining expressions we get that

δ(Gβ(V )) · ω + 2dF ·Gβ(V ) · ω = 4i∂̄V ′[F ] + 2dF · ∂̄β(V ) + δ(∂̄β(V ))− ∂̄ψ(V ).

Now we only need to rewrite the term δ(∂̄β(V )), and this is again done by an application of
commuting covariant derivatives, which goes as follows

δ(∂̄β(V )) = ∇u′∇a′′β(V )u
′

= [∇,∇]u′a′′β(V )u
′
+∇a′′∇u′β(V )u

′

= Ru
′

u′a′′v′β(V )v
′
+ ∂̄δ(β(V ))

= ra′′v′β(V )v
′
+ ∂̄δ(β(V ))

= Jua′′ruwJ
w
v′β(V )v

′
+ ∂̄δ(β(V ))

= iρa′′v′β(V )v
′
+ ∂̄δ(β(V ))

= iρ · β(V ) + ∂̄δ(β(V ))

= inω · β(V )− 2∂∂̄F · β(V ) + ∂̄δ(β(V )

= inω · β(V ) + 2∂̄dF · β(V ) + ∂̄δ(β(V ).

Inserting this above and rewriting

∂̄dF · β(V ) + dF · ∂̄β(V )) = ∂̄(dF · β(V )),

we obtain the desired equation, which completes the proof.

We can now insert this in the expression from Lemma 6.5 and we get that

∇(0,1)(∆Gβ(V )s+ 2∇Gβ(V )·dF s)

= −i(2k + n)ω ·Gβ(V ) · ∇(1,0)s− ik(ω · δ(Gβ(V ))s+ 2ω ·Gβ(V ) · dFs)

= i(2k + n)(Gβ(V ) · ω) · ∇(1,0)s+ ik(δ(Gβ(V )) · ω + 2dF ·Gβ(V ) · ω)s

= i(2k + n)(V ′[J ] + ∂̄β(V )) · ∇(1,0)s

+ ik(4i∂̄V ′[F ] + 2∂̄(dF · β(V )) + inω · β(V ) + ∂̄δ(β(V ))− ∂̄ψ(V ))s

= 2(2k + n) i2V
′[J ] · ∇(1,0)s+ i(2k + n)∂̄β(V ) · ∇(1,0)s

− 4k∂̄V ′[F ]s+ 2ik∂̄(dF · β(V ))s− knω · β(V )s+ ik∂̄δ(β(V ))s− ik∂̄ψ(V )s.
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Now we only need one last lemma to get rid of the last first-order term on the right side.

Lemma 6.10. For any family of vector fields β(V ) ∈ C∞(Mσ, T
′Mσ) and a holomorphic

section s ∈ Hk
σ , we have that

∇(0,1)∇β(V )s = ∂̄β(V ) · ∇(1,0)s− ikω · β(V )s.

Proof. The result follows directly by the following calculation

∇(0,1)∇β(V )s = ∂̄β(V ) · ∇(1,0)s+ β(V )u
′
∇a′′∇u′s

= ∂̄β(V ) · ∇(1,0)s+ β(V )u
′
[∇,∇]a′′u′s

= ∂̄β(V ) · ∇(1,0)s− β(V )u
′
ikωa′′u′s

= ∂̄β(V ) · ∇(1,0)s− ikω · β(V )s.

Now using this lemma we get that

∇(0,1)(∆Gβ(V )s+ 2∇Gβ(V )·dF s− i(2k + n)∇β(V )s)

= 2(2k + n) i2V
′[J ] · ∇(1,0)s− 4k∂̄V ′[F ]s

+ 2ik∂̄(dF · β(V ))s− 2k(k + n)ω · β(V )s+ ik∂̄δ(β(V ))s− ik∂̄ψ(V )s,

and now by moving all the 0’th order terms to the left side, we get the desired result. Here
ϕ(V ) ∈ C∞(M) is a smooth function, such that ∂̄ϕ(V ) = ω · β(V ), and thus we get that

∇(0,1)(∆Gβ(V )s+ 2∇Gβ(V )·dF s− i(2k + n)∇β(V )s

+ 4kV ′[F ]s− 2ikdF · β(V )s− ikδ(β(V ))s+ 2k(k + n)ϕ(V )s+ ikψ(V )s)

= 2(2k + n) i2V
′[J ] · ∇(1,0)s,

and at last we see, that we get a Hitchin connection by setting

u(V ) = 1
2(2k + n) (∆Gβ(V ) + 2∇Gβ(V )·dF − i(2k + n)∇β(V )

+ 4kV ′[F ]− 2ikdF · β(V )− ikδ(β(V )) + 2k(k + n)ϕ(V ) + ikψ(V )),

and thus we have proved the following theorem.

Theorem 6.11 (Hitchin connection for weakly restricted families). Let (M,ω) be a sym-
plectic manifold with a prequantum line bundle L. Assume that M has first Chern class of
the form c1(M,ω) = n

[
ω
2π
]
for some integer n ∈ Z and such that H1(M,R) = 0. Further-

more, let J : T → C∞(M,End(TM)) be a weakly restricted, holomorphic family of Kähler
structures on M, parametrized by a complex manifold T , and assume that the family admits
a family of Ricci potentials F . Then there exists a Hitchin connection ∇ in the bundle Ĥ(k)

over T , given by the expression
∇V = ∇TV + u(V )
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where

u(V ) = 1
2(2k + n) (∆Gβ(V ) + 2∇Gβ(V )·dF − i(2k + n)∇β(V )

+ 4kV ′[F ]− 2ikdF · β(V )− ikδ(β(V )) + 2k(k + n)ϕ(V ) + ikψ(V )),

and ϕ(V ), ψ(V ) ∈ C∞(M) are smooth functions, satisfying

∂̄ϕ(V ) = ω · β(V ) and ∂̄ψ(V ) = Ω(V ),

where Ω(V ) ∈ Ω1(M) is given by

Ω(V ) = −δ(Gβ(V )) · ω + δ(∂̄β(V ))− 2dF ·Gβ(V ) · ω + 2∂̄β(V ) · dF + 4i∂̄V ′[F ].

There are several remarks to be made on this construction, and for clarity we choose to
state them as bullet points.

Remark 6.12. If none of the complex structures admit non-constant holomorphic functions
on M we get that ψ(V ) = 0.

Remark 6.13. When M is compact, Hodge theory will provide us with a family of Ricci
potentials and of course there will in that case only be constant holomorphic functions
globally on M . So we don’t need the assumption, that such a family of Ricci potentials exist,
and we automatically get ψ(V ) = 0 from remark 6.12. Thus in this case we can reduce the
assumptions in Theorem 6.11 to the two cohomological restrictions

H1(M,R) = 0 and c1(M,ω) = n
[ ω

2π

]
.

Remark 6.14. We expect that the Fano type condition

c1(M,ω) = n
[ ω

2π

]
can be removed by doing metaplectic correction as considered in [AGL12].

Remark 6.15. The condition H1(M,R) = 0 is only used to ensure that the closed 1-form
Ω(V ) is exact, such that ψ(V ) exists. In other words, if we already have a ∂̄-primitive for
Ω(V ) for all V , this assumption can also be ignored. See details in the proof of Proposition
6.9.

Remark 6.16. When β(V ) = 0, the family is rigid and this new Hitchin connection restricts
to the Hitchin connection in [And12].

Remark 6.17. We stress that we do not need that T is a complex manifold, in fact, we have
a complete analog of Theorem 6.11, when T has no complex structure, and we go through
this case in section 6.4 below.
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6.3 Uniqueness of the Hitchin connection

In this section, we apply some of our results on differential operators and the techniques,
which we will be using in chapter 7, to prove a uniqueness result for Hitchin connections of
order at most 2 in the setting of Theorem 6.11.

Theorem 6.18 (Uniqueness of the Hitchin connection). Assume the setup of Theorem 6.11.
Furthermore assume that the contraction map

ω· : H0(M,S2(T ′Mσ))→ H1(M,T ′Mσ)

is injective and H0(M,T ′Mσ) = 0. Then any Hitchin connection

∇̃ = ∇T + ũ

in Ĥk of order at most 2 with

ũ(V ) =
2∑
i=0
∇(i)
Gi(V )

is unique and thus ũ = u, where u is given by the expression in Theorem 6.11.

Proof. Assume that we have such a connection. By Lemma 6.2 we must have for all k, that

∇0,1
σ ũ(V )s = ∇ i

2V
′[Jσ ]s (6.6)

for all s ∈ H0(Mσ, L
k) and all σ ∈ T . By the right hand side of this equation, we see that

only the symbol of order 1 for ∇0,1
Z u(V )s is non-zero, so arguing as in the proof of Theorem

5.7, we get that

∇ i
2V
′[J](Z)s = ∇0,1

Z ũ(V )s = ∇2
∇0,1
Z
G2
s+∇∇0,1

Z
GN−1

s

−∇ik tr(ιZω,G2)+tr(ιZR,G2)s mod D0(M,Lk),

where the equation for the symbol of order 2 gives us

∇0,1
Z G2(V ) = 0.

Now to fit the situation of our construction in Theorem 6.11, we rewrite

ũ(V ) =
2∑
i=0
∇(i)
Gi(V ) = ∆G2(V ) +∇β̃(V ) + ψ̃(V ).

We can obviously do this by letting β̃(V ) = G1(V )− δ(G2(V )) and ψ̃(V ) = G0(V ).
Continuing our analysis using corollary 6.4, we get for any section s ∈ H0(Mσ, L

k) and
any vector field Z ∈ C∞(M,T ′′Mσ), that

∇0,1
Z ũ(V )s =− i(2k + n)∇ιZω·G2(V )s+ 2∇ιZ(d∂̄σFσ)·G2(V )s+∇[Z,β̃(V )]s

− ikω(Z, δ(G2(V )))s− ikω(Z, β̃(V ))s+ Z[ψ̃(V )]s.

So we see by theorem 5.6 and equation (6.6) that

i

2V
′[Jσ](Z) = −i(2k + n)ιZω ·G2(V ) + 2ιZ(d∂̄σFσ) ·G2(V ) + [Z, β̃(V )].
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The last term just gives [Z, β̃(V )] = Z[β̃(V )] = ∂̄(β̃(V ))(Z), and since the equation holds
for all such Z, we get

i

2V
′[Jσ] = −i(2k + n)ω ·G2(V ) + 2(d∂̄σFσ) ·G2(V ) + ∂̄β̃(V ). (6.7)

Since G2(V ) is holomorphic, we see that

2(d∂̄σFσ) ·G2(V ) = −2∂̄σ(∂σFσ ·G2(V )).

Since the map
ω : H0(M,S2(T ′Mσ)→ H1(M,T ′Mσ)

is injective, we see from equation (6.7), that first of all G2(V ) is uniquely determined by
projecting this equation onto H1(M,T ′Mσ). Moreover, we see that then β̃(V ) is uniquely
determined by equation (6.7), since H0(M,T ′Mσ) = 0.

Now, we can also conclude that

∇0,1
Z ũ(V )−∇ i

2V
′[Jσ ](Z)s = −ikω(Z, δ(G2(V )))s− ikω(Z, β̃(V ))s+ Z[ψ̃(V )]s

for all Z ∈ C∞(M,T ′′Mσ), but this must be the zero operator by equation (6.7). Thus we
must have that

−ikω · δ(G2(V ))− ikω · β̃(V ) + ∂̄ψ̃(V ) = 0.

Now we see that ψ̃(V ) is uniquely determined by this equation, since H0(M,T ′Mσ) = 0
implies that M has only constant holomorphic functions. This way we have concluded that
all the symbols and thus the operator ũ is determined uniquely, and thus it must be the u
constructed in Theorem 6.11.

6.4 Hitchin connection for smooth families of complex structures

We have in the above constructions of the Hitchin connection assumed that the family of
complex structures is holomorphic. We can however go through the construction without
assuming that T is a complex manifold. We have not used holomorphicity of the family
before assuming it to be weakly restricted, so instead of differentiation along V ′ in Lemma
6.8, we instead differentiate along V .

Doing this we get that the form

− δ(Gβ(V )) · ω − 2dF ·Gβ(V ) · ω + δ(∂̄β(V )) + 2∂̄β(V ) · dF + 4i∂̄V [F ]

− δ(Ḡ(V )) · ω − 2dF · Ḡ(V ) · ω

is closed and hence exact. It is however no longer of type (0, 1), but it splits into a (1, 0) and
a (0, 1) part, which come as ∂ and ∂̄ of a function ψ̃(V ) ∈ C∞(M). Both of the new terms
are of type (1, 0), so we get similarly as above

∂̄ψ̃(V ) = −δ(Gβ(V )) · ω + δ(∂̄β(V ))− 2dF ·Gβ(V ) · ω + 2∂̄β(V ) · dF + 4i∂̄V [F ].

Arguing as in the proof of Proposition 6.9, we get that

δ(Gβ(V )) · ω + 2dF ·Gβ(V ) · ω

= 4i∂̄V [F ] + 2∂̄(dF · β(V )) + inω · β(V ) + ∂̄δ(β(V ))− ∂̄ψ(V ).
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Now going through the construction of the Hitchin Connection as above, still assuming
weakly restricted but without holomorphicity of the family of Kähler structures, we get the
following theorem.

Theorem 6.19 (Hitchin Connection for smooth T ). Consider the same setup as in Theorem
6.11, except the manifold T is only assumed to be smooth and the assumption of holomor-
phicity of the family J is dropped. Then there exists a Hitchin connection ∇ in the bundle
Ĥ(k) over T , given by the expression

∇V = ∇TV + u(V ),

where

u(V ) = 1
2(2k + n) (∆Gβ(V ) + 2∇Gβ(V )·dF − i(2k + n)∇β(V )

+ 4kV [F ]− 2ikdF · β(V )− ikδ(β(V )) + 2k(k + n)ϕ(V ) + ikψ̃(V )),

where ϕ(V ) is defined as in Theorem 6.11 and ψ̃(V ) ∈ C∞(M) satisfies

∂̄ψ̃(V ) = Ω̃(V ),

and Ω̃(V ) ∈ Ω1(M) is the closed and hence exact 1-form

Ω̃(V ) = −δ(Gβ(V )) · ω + δ(∂̄β(V ))− 2dF ·Gβ(V ) · ω + 2∂̄β(V ) · dF + 4i∂̄V [F ].
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Chapter 7

Hitchin Connections for General Families
of Kähler Structures

This chapter is dedicated to show some new results on the existence and uniqueness of a
Hitchin connection for general families of Kähler strutures without assuming any restrictions
on the family itself, but giving conditions on cohomology involving the map Ψ(n) defined in
chapter 5.

7.1 Existence of a Hitchin Connection

We assume the same setup as in chapter 6 and go straight to the theorems.

Theorem 7.1. Let (M,ω) be a symplectic manifold with a prequamtum line bundle L and
let J : T → C∞(M,End(TM)) be a family of Kähler structures on M, parametrized by a
complex manifold T . If H1(M,R) = 0, then an order 2 Hitchin connection ∇ = ∇T +u with

u(V ) =
2∑
i=0
∇(i)
Gi(V )

on Ĥk exists if and only if
[V ′[J ]] ∈ I(2)

for all V ∈ C∞(T , TT ). If so, a Hitchin connection is given by

∇V = ∇TV + u(V )

u(V ) = ∇2
G2(V ) +∇δ(G2(V )) −∇β(V ) − ψ(V ),

where
V ′[J ] = Ψ(n)(2iG2(V )) + ∂̄(2iβ(V )),

and ψ(V ) is a function, such that

∂̄ψ(V ) = ikιδ(G2(V ))−β(V )ω.

Furthermore, if the Hitchin connection exists, it is projectively flat, if K(n)
σ = 0 for

n = 1, 2, 3 and all σ ∈ T .
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Proof of Theorem 7.1. Assume that ∇ = ∇T + u is a hitchin connection on H(k) of order
at most 2. Then we can write

u(V ) =
2∑
i=0
∇(i)
Gi(V ),

and since ∇ is a Hitchin connection, we know by Lemma 6.2, that for any Z ∈ C∞(M,T ′′M),
we have

∇0,1
Z u(V )s = ∇ i

2V
′[J](Z)s.

By the right hand side of this equation, we see that only the symbol of order 1 for ∇0,1
Z u(V )s

is non-zero, so arguing as in the proof of Theorem 5.7, we get that

∇ i
2V
′[J](Z)s = ∇0,1

Z u(V )s = ∇2
∇0,1
Z
G2
s+∇∇0,1

Z
GN−1

s

−∇ik tr(ιZω,G2)+tr(ιZR,G2)s mod D0(M,Lk).

where the equation for the symbol of order 2 gives us

∇0,1
Z G2(V ) = 0,

which again means we can apply corollary 6.4 as well, such that we get

∇ i
2V
′[J](Z)+∇0,1

Z
δ(G2(V ))s = ∇0,1

Z (∇ i
2V
′[J](Z)+δ(G2(V )))s

= ∇0,1
Z (u(V ) +∇δ(G2(V )))s

= ∇2
∇0,1
Z
G2(V )s+∇∇0,1

Z
G1
s−∇Ψ(2)

Z
(G2(V ))s mod D0(M,Lk),

For the symbol of order n = 1, this gives us the new equation
i

2V
′[J ](Z) +∇0,1

Z δ(G2(V )) = ∇0,1
Z G1 −Ψ(2)

Z (G2(V ))

and rewriting this gives

V ′[J ] = Ψ(2)
Z (2iG2(V )) +∇0,1

Z (−2iG1(V ) + δ(2iG2(V ))),

which proves that [V ′[J ]] ∈ I(2).
To prove the other implication, let V ∈ C∞(T , TT ) and assume that [V ′[J ]] ∈ I(2). Now

we can choose G2(V ) ∈ H0(M,S2(T ′M)) and β(V ) ∈ C∞(M,T ′M), such that

V ′[J ] = Ψ(n)(2iG2(V )) + ∂̄(2iβ(V )).

Now we need to redo the calculation of ∇0,1
Z (∇2

G2(V ) +∇δ(G2(V )))s for a section
s ∈ H0(Mσ,Lk), since we need to have an exact result including constant terms. This is,
however, exactly the result of Lemma 6.3, since we remember that

∆G2(V ) = ∇2
G2(V ) +∇δ(G2(V )),

so rewriting this result a bit to fit the notation of this chapter, we get

∇0,1
Z (∇2

G2(V ) +∇δ(G2(V )))s

=∇0,1
Z (∆G2(V ))s

=∇−2ikιZω·G2(V )s+∇−iιZρ·G2(V )s− ikω(Z, δ(G2(V )))

=∇ i
2 Ψ(2)

Z
(2iG2(V ))s− ikω(Z, δ(G2(V )))s.
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We remember that Lemma 6.10 shows that

∇0,1
Z (∇β(V ))s = −ikω(Z, β(V ))s+∇∇0,1

Z
β(V )s = −ikω(Z, β(V ))s+∇(∂̄β(V ))(Z)s,

and combining with the above we get

∇0,1
Z (∇2

G2(V ) +∇δ(G2(V )) −∇β(V ))s

=∇ i
2 (Ψ(2)

Z
(2iG2(V ))+∂̄(2iβ(V ))(Z))s− ikω(Z, δ(G2(V )))s+ ikω(Z, β(V ))s

=∇ i
2V
′[J](Z)s+ ikιδ(G2(V ))−β(V )ω(Z)s.

This is almost the requirement for a differential operator from Lemma 6.2. We do however
need to find a function ψ(V ), such that ∂̄ψ(V ) = ikιδ(G2(V ))−β(V )ω. Given this, we get a
Hitchin connection by letting

u(V ) = ∇2
G2(V ) +∇δ(G2(V )) −∇β(V ) − ψ(V ).

We observe that ιδ(G2(V ))−β(V )ω ∈ Ω0,1(M), and since H1(M) = 0, it is enough to show
∂̄ιδ(G2(V ))−β(V )ω = 0. To do this we use that

∂̄∇0,1(∇2
G2(V ) +∇δ(G2(V )) −∇β(V )) = ∂̄2(∇2

G2(V ) +∇δ(G2(V )) −∇β(V )) = 0,

and thus it is enough to show that the other term on the right side of the equation vanishes,
that is

∂̄∇ i
2V
′[J] = 0.

On Ω0,1(M), the ∂̄-operator is just the antisymmetrization of ∇0,1. We know already that

∇0,1∇V ′[J]s = ∇∇0,1V ′[J]s+ ikιV ′[J]ωs.

The antisymmetrization A of each of these terms are zero. Firstly

A(∇∇0,1V ′[J]) = ∇∂̄V ′[J],

and Hitchin already showed that ∂̄V ′[J ] = 0 in general (See [Hit90] eq. 1.12). To see that
the second term is zero, we remark that

ω(JX, JY ) = ω(X,Y ),

so differentiating this equation along V ′, gives

ω(V ′[J ]X, JY ) + ω(JX, V ′[J ]Y ) = 0.

Now choose two vector fields Z1, Z2 ∈ C∞(M,T ′′Mσ), such that JZj = −iZj for j = 1, 2.
This gives us

0 = ω(V ′[J ]Z1, Z2) + ω(Z1, V
′[J ]Z2)

= ω(V ′[J ]Z1, Z2)− ω(V ′[J ]Z2, Z1) = A(∇0,1ιV ′[J])(Z1, Z2),

and since Z1, Z2 was chosen randomly, this proves the claim.
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That the connection is projectively flat if K(n) = 0 for n = 1, 2, 3 follows directly from
Theorem 5.7, since the curvature is apriori a differential operator of order at most 3 that
preserves the subspace of holomorphic sections H0(Mσ,Lk). Furthermore the curvature is
the commutator of differential operators on the form (5.2) as in this theorem, and thus it is
on this form itself, so the theorem applies.

Finally we present one very general existence result.

Theorem 7.2. Let (M,ω) be a symplectic manifold with a prequamtum line bundle L and
let J : T → C∞(M,End(TM)) be a family of Kähler structures on M, parametrized by a
complex manifold T .

If K(n)
σ = 0 for all n ≥ 2 and all σ ∈ T , then for any Hitchin connection ∇ = ∇T + u

with

u(V ) =
N∑
i=0
∇(i)
Gi(V )

on Ĥk, the order N ≤ 2.
Furthermore if H0(M,T ′M) = 0 and a Hitchin connection of this form exists on Ĥk, it

is unique up to addition of a scalar and projectively flat.

Proof of Theorem 7.2. Let ∇ = ∇T + u be a Hitchin connection on Ĥk with

u(V ) =
N∑
i=0
∇(i)
Gi(V ).

Again we know from Lemma 6.2 that

∇0,1
Z u(V )s = ∇ i

2V
′[J](Z)s.

For i ≥ 3, we can argue exactly as in the proof of 5.7, since the symbols of ∇0,1
Z u(V ) of order

i and i− 1 vanish. This shows that ∇ can be of order at most 2.
Now assume H0(M,T ′M) = 0, and assume we have another Hitchin connection

∇̃ = ∇T + ũ(V )

with ũ on the same form. Now the difference D = ∇ − ∇̃ = u(V ) − ũ(V ) is a differential
operator, again of the same form, which preserves H(k), and since K(n) = 0 for all n ≥ 1, we
get from Corollary 5.8 that D vanish projectively.

We get immediately from Theorem 7.1 that ∇ is projectively flat, since it is of order
2.
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Chapter 8

Curvature of the Hitchin Connection in
the Weakly Restricted Case

In this section, we continue the study of the Hitchin connection in the weakly restricted
case, which Andersen and I constructed in [AR16]. In this paper, we did however not include
calculations of the curvature. We realised, by applying a no-go theorem from [GM00], that the
connection could not be projectively flat in general, see section 9.1 for the proof. As mentioned
in the article, it is however still interesting to calculate the curvature and investigate, what
constitutes the obstruction to the projective flatness.

We have spend quite some time investigating the curvature using different approaches.
The best result so far, is a direct calculation of the symbols, which gives a rather simple
expression for the third and second order symbols, but still leaves quite a big expression for
the first order symbol. By splitting each of these symbols into orders of (2k+n), we however
get som simplification, and since each symbol of order 1, 2 and 3 vanish for all k if and only
if the curvature is projectively flat, we get a series of equation, each of which vanish if and
only if the curvature is projectively flat.

8.1 Symmetry Property

As described earlier, Andersen and Gammalgaard proved in [AG14] that the Hitchin connec-
tion associated to a rigid family is projectively flat, if each complex structure in the family
have zero-dimensional symmetry group. Their proof is done by a lengthy direct computation
of the symbols of commutators of the differential operators in the explicit expression for the
connection, followed by realising that different leftover terms appear as derivatives of certain
forms.

The first thing to notice is that the the Hitchin connection in both the rigid and weakly
restricted case, only have one term of order 2, namely ∆G(V ) and ∆Gβ(V ) respectively, and
thus the principal symbol of the curvature F∇(V,W ) only depends on the commutator
[∆G(V ),∆G(W )]. We show below that the vanishing of this principal symbal is equivalent
to the symmetry of the expression S(Gβ(V )·∇Gβ(W )), which in the rigid case is proven to
hold in the Proposition 3.7. The proof relies heavily on G(V ) being the (2, 0) part of G̃(V ),
which we can not expect to replicate in the weakly restricted case. Instead we will just state
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that the Hitchin connection in the weakly restricted case can only be flat, if

S(Gβ(V )·∇Gβ(W )) = S(Gβ(W )·∇Gβ(V )), (8.1)

and thus we will assume this in the following proposition, which holds without assumptions
in the rigid case.

Proposition 8.1. If the principal symbols for the Hitchin connection for a weakly restricted
family of complex structures J has the symmetry property (8.1), then the four two forms Γj
on T , with values in symmetric contravariant tensors on M , defined by

Γ3(V,W ) = S(Gβ(V )·∇Gβ(W ))

Γ2(V,W ) = ∆Gβ(V )Gβ(W ) + 2S(Gβ(V )·∇δGβ(W ))

Γ1(V,W ) = 2∆Gβ(V )δGβ(W ) +Gβ(V )·dδδGβ(W ) +∇w(Gβ(V )uv)∇u∇v(Gβ(W )wa)

Γ0(V,W ) = ∆Gβ(V )δδGβ(W ) +∇w(Gβ(V )uv)∇u∇vδGβ(W )w,

are all symmetric in the vector fields V and W on T .

Proof. The idea, which is explained in the similar proposition in [AG14], is that taking
the divergence of the contravariant trivector field part of Γ3 doesn’t change the symmetry
property, and thus gives a new symmetric two form with values in symmetric bivector fields
and so on.

Firstly lets us write out the symmetrization defining Γ3.

Γ3(V,W ) = S(Gβ(V )·∇Gβ(W ))abc

= 1
3
(
Gβ(V )av∇vGβ(W )bc +Gβ(V )bv∇vGβ(W )ac +Gβ(V )cv∇vGβ(W )ab

)
,

where we have gathered the 6 initial terms in pairs by the symmetry of Gβ(W ). Now we
take the divergence of this expression.

δ(Γ3(V,W )) = 1
3δ
(
Gβ(V )av∇vGβ(W )bc +Gβ(V )bv∇vGβ(W )ac +Gβ(V )cv∇vGβ(W )ab

)
= 1

3(∆Gβ(V )Gβ(W )

+∇uGβ(V )bv∇vGβ(W )uc +Gβ(V )bv∇u∇vGβ(W )uc

+∇uGβ(V )cv∇vGβ(W )ub +Gβ(V )cv∇u∇vGβ(W )ub)

= 1
3(∆Gβ(V )Gβ(W )

+∇uGβ(V )bv∇vGβ(W )uc +∇uGβ(V )cv∇vGβ(W )ub

+Gβ(V )bv∇u∇vGβ(W )uc +Gβ(V )cv∇u∇vGβ(W )ub)

= 1
3(∆Gβ(V )Gβ(W )

+∇uGβ(V )bv∇vGβ(W )uc +∇uGβ(V )cv∇vGβ(W )ub

+Gβ(V )bv[∇,∇]uvGβ(W )uc +Gβ(V )cv[∇,∇]uvGβ(W )ub

+Gβ(V )bv∇v∇uGβ(W )uc +Gβ(V )cv∇v∇uGβ(W )ub)
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= 1
3(∆Gβ(V )Gβ(W ) + 2S(Gβ(V )·∇δGβ(W ))

+∇uGβ(V )bv∇vGβ(W )uc +∇uGβ(V )cv∇vGβ(W )ub)

= 1
3(Γ2(U, V ) +∇uGβ(V )bv∇vGβ(W )uc +∇uGβ(V )cv∇vGβ(W )ub),

where the remaining term is clearly seen to be symmetric in V and W , and since we know
δ(Γ3(V,W )) is symmetric, we get as desired that Γ2 is also symmetric. In the computation,
we have used that the Levi-Civita Curvature is of type (1, 1), and since Gβ is always of type
(2, 0), all the curvature terms contracted with these vanish.

Now we continue using the exact same idea and take the divergence of Γ2. In the following
we will not write out all the commutators that disappear.

δ(Γ2(V,W ))

= δ(∆Gβ(V )Gβ(W ) + 2S(Gβ(V )·∇δGβ(W )))

= ∇w∇uGβ(V )uv∇vGβ(W )wa

+∇wGβ(V )wv∇vδ(Gβ(W ))a

+∇wGβ(V )av∇vδ(Gβ(W ))w

= ∇uGβ(V )uv∇vδGβ(W )a +∇w(Gβ(V )uv)∇u∇vGβ(W )wa +∇w(δGβ(V ))v∇vGβ(W )wa

+ ∆Gβ(V )δ(Gβ(W ))

+∇w(Gβ(V )av)∇vδ(Gβ(W ))w +Gβ(V )av∇v∇wδ(Gβ(W ))w

= 2∆Gβ(V )δ(Gβ(W )) +∇w(Gβ(V )uv)∇u∇vGβ(W )wa +Gβ(V )·dδδ(Gβ(W ))

+∇w(δGβ(V ))v∇vGβ(W )wa +∇vδ(Gβ(W ))w∇w(Gβ(V )va)

= Γ1(V,W ) +∇w(δGβ(V ))v∇vGβ(W )wa +∇vδ(Gβ(W ))w∇w(Gβ(V )va),

and again the leftover term is clearly seen to be symmetric. We continue the procedure one
last time and calculate

δ(Γ1(V,W ))

= δ(2∆Gβ(V )δ(Gβ(W )) +∇w(Gβ(V )uv)∇u∇vGβ(W )wa +Gβ(V )·dδδ(Gβ(W )))

= 2∇z∇uGβ(V )uv∇vδGβ(W )z

+∇z∇w(Gβ(V )uv)∇u∇vGβ(W )wz

+∇zGβ(V )zu∇uδδGβ(W ))

= 2∆Gβ(V )δδGβ(W ) + 2∇z(δGβ(V ))v∇vδ(Gβ(W ))z + 2∇z(Gβ(V )uv)∇u∇vδGβ(W )z

+∇z(∇wGβ(V )uv)∇u∇vGβ(W )wz +∇w(Gβ(V )uv)∇u∇vδGβ(W )w

+ ∆Gβ(V )δδGβ(W )

= 3∆Gβ(V )δδGβ(W ) + 3∇w(Gβ(V )uv)∇u∇vδGβ(W )w

+ 2∇z(δGβ(V ))v∇vδ(Gβ(W ))z +∇z(∇wGβ(V )uv)∇u∇vGβ(W )wz

= 3Γ0(V,W ) + 2∇z(δGβ(V ))v∇vδ(Gβ(W ))z +∇z(∇wGβ(V )uv)∇u∇vGβ(W )wz,

which finishes the proof.
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8.2 Commutators of Differential Operators

Our explicit description of the Hitchin connection in the weakly restricted case, as in the
rigid case, is in terms of differential operators, and the direct calculation of the curvature is
a very long computation involving commutators of various differential operators on sections
of the prequantum line bundle L and its tensor powers. Therefore, we divide the calculation
by writing each operator in the form of (5.1), and using the following general formulas for
the curvature of differential operators on this form in terms of their symbols.

This is the idea, that Andersen and Gammelgaard used to calculated the curvature of the
Hitchin and the Hitchin-Witten connection in [AG14], and since the following commutators
are calculated for the generel case, we can use these results directly. We will not go through
the explicit calculation but state the lemmas.

Firstly the commutator of two first order operators is of course given directly by the
definition of the curvature of the line bundle Lk, i.e.

[∇X ,∇Y ]s = ∇[X,Y ]s− ikω(X,Y )s

for any vector fields X,Y on M and any smooth section s ∈ H(k). However this quickly
becomes more complicated, when we introduce second-order operators. The following lemma
gives the commutator for a second order and a first order operator.

Lemma 8.2. On any symplectic manifold (M,ω) with a Kähler structure J , any vector field
X on M , and any symmetric bivector field B ∈ C∞(M,S2(TM)), we have the symbols

σ2
[
∇2
B ,∇X

]
= 2S(B·∇X)−∇XB

σ1
[
∇2
B ,∇X

]
= ∇2

BX − 2ikB·ω·X +BuvRawuvX
w

σ0
[
∇2
B ,∇X

]
= −ik ω(B·∇X)

for the commutator of the operators ∇X and ∇2
B acting on H(k).

The proof is done in [AG14], and is done by direct computation and then extracting the
value of the symbols. The next lemma gives the commutator for two second-order operator,
which is vastly more complicated calculation, which is however done in a similar fashion.

Lemma 8.3. On any symplectic manifold (M,ω) with a Kähler structure J , for any sym-
metric bivector fields A,B ∈ C∞(M,S2(TM)), we have the symbols

σ3
[
∇2
A,∇2

B

]
= 2S(A·∇B)− 2S(B·∇A)

σ2
[
∇2
A,∇2

B

]
= ∇2

AB −∇2
BA− 4ik S(A·ω·B)

+ 2S(AxyRauxyBub)− 2S(BuvRaxuvAxb)

σ1
[
∇2
A,∇2

B

]
= −2ikAxyωyu∇x(Bua) + 2ikBuvωvx∇u(Axa)

−Axy∇x(Rayuv)Buv +Buv∇v(Rauxy)Axy

− 4
3A

xyRaxuv∇yBuv + 4
3B

uvRauxy∇vAxy
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σ0
[
∇2
A,∇2

B

]
= ik

2 A
xyJjyRxuvjB

uv − ik

2 B
uvJjvRuxyjA

xy

for the commutator of the operators ∇2
A and ∇2

B acting on H(k).

8.3 Commutators in The Weakly Restricted Case

In this section we use the lemmas from the previous section to calculate the symbols for each
of the commutators that appears in the curvature of the Hitchin connection in the weakly
restricted case. Remember that we have the expression

∇V = ∇TV + u(V ),

where we rewrite

u(V ) = 1
2(2k + n) (∇2

s2(V ) +∇s1(V ) + s0(V )),

where

s2(V ) = Gβ(V )

s1(V ) = δGβ(V ) + 2Gβ(V ) · dF − i(2k + n)β(V )

s0(V ) = 4kV ′[F ]− 2ikdF · β(V )− ikδ(β(V )) + 2k(k + n)ϕ(V ) + ikψ(V )

Now to calculate the curvature, we want to find an expression for

[∇TV + u(V ),∇TW + u(W )] = [∇TV ,∇TW ] + [∇TV , u(W )]− [∇TW , u(V )] + [u(V ), u(W )],

and we split this computation into parts. The commutator of the trivial connection is zero,
so we can forget about that one, and we carry on to calculate the next two commutators.
These are fairly simple, and the following lemma gives the result.

Lemma 8.4. For any weakly restricted family of Kähler structures, the symbols of

C0 = 2(2k + n)([∇TV , u(W )]− [∇TW , u(V )])

acting on H(k), are given as follows

σ2(C0) =V [Gβ(W )]−W [Gβ(V )]

σ1(C0) =2V [Gβ(W )] · dF + 2Gβ(W ) · dV [F ] + δV [Gβ(W )]− i(2k + n)V [β(W )]

−2W [Gβ(V )] · dF − 2Gβ(V ) · dW [F ]− δW [Gβ(V )] + i(2k + n)W [β(V )]

σ0(C0) =ik(V [ψ(W )]−W [ψ(V )])

+2k(k + n)(V [ϕ(W )]−W [ϕ(V )])

−ik(V [δ(β(W ))]−W [δ(β(V ))])

−2ik(dV [F ] · β(W )− dF · V [β(W )]− dW [F ] · β(V ) + dF ·W [β(V )])

+4k(V [W ′[F ]]−W [V ′[F ]])

for any vector fields V and W on T .

Proof. We start by simply calculating the following commutators[
∇TV ,∇s2(W )

]
= ∇2

V [Gβ(W )]
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[
∇TV ,∇s1(W )

]
= ∇δV [Gβ(W )]+2V [Gβ(W )]·dF+2Gβ(W )·dV [F ]−i(2k+n)V [β(W )][

∇TV , s0(W )
]

= ikV [ψ(W )] + 2k(k + n)V [ϕ(W )]− ikV [δ(β(W ))]

− 2ik(dV [F ] · β(W )− dF · V [β(W )]) + 4kV [W ′[F ]]

It is clear that the entries of −[∇TW , u(V )] is calculated completely equivalently, and we can
easily extract the symbols from the above to get the expression claimed in the lemma.

Things get a lot more complicated, when we start calculating [u(V ), u(W )], and this
calculation will rely heavily on Lemma 8.2 and 8.3. Due to the length of the expressions, we
have again split the calculation into a series of smaller lemmas.

Lemma 8.5. For any weakly restricted family of Kähler structures, the symbols of

C1 = [∇2
s2(V ),∇

2
s2(W )] = [∇2

Gβ(V ),∇
2
Gβ(W )]

acting on H(k), are given as follows

σ3(C1) =2S(Gβ(V )·∇Gβ(W ))− 2S(Gβ(W )·∇Gβ(V ))

σ2(C1) =∇2
Gβ(V )Gβ(W )−∇2

Gβ(W )Gβ(V )

σ1(C1) =0

σ0(C1) =0

for any vector fields V and W on T .

Proof. By Lemma 8.3 we get that

σ3(C1) = 2S(Gβ(V )·∇Gβ(W ))− 2S(Gβ(W )·∇Gβ(V ))

σ2(C1) = ∇2
Gβ(V )Gβ(W )−∇2

Gβ(W )Gβ(V )− 4ik S(Gβ(V )·ω·Gβ(W ))

+ 2S(Gβ(V )xyRauxyGβ(W )ub)− 2S(Gβ(W )uvRaxuvGβ(V )xb)

= ∇2
Gβ(V )Gβ(W )−∇2

Gβ(W )Gβ(V )

σ1(C1) = −2ikGβ(V )xyωyu∇x(Gβ(W )ua) + 2ikGβ(W )uvωvx∇u(Gβ(V )xa)

−Gβ(V )xy∇x(Rayuv)Gβ(W )uv +Gβ(W )uv∇v(Rauxy)Gβ(V )xy

− 4
3Gβ(V )xyRaxuv∇yGβ(W )uv + 4

3Gβ(W )uvRauxy∇vGβ(V )xy

= 0

σ0(C1) = ik

2 Gβ(V )xyJjyRxuvjGβ(W )uv − ik

2 Gβ(W )uvJjvRuxyjGβ(V )xy

= 0,

where the cancellations happen, because both the Levi-Civita curvature, and the symplectic
form are type (1, 1).
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Lemma 8.6. For any weakly restricted family of Kähler structures, the symbols of

C2 = [∇2
s2(V ),∇s1(W )]− [∇2

s2(W ),∇s1(V )]

acting on H(k), are given as follows

σ2(C2) = 6Γ3(V,W ) · dF − 6Γ3(W,V ) · dF

+ 2(S(Gβ(V )·∇(δGβ(W )))− S(Gβ(W )·∇(δGβ(V ))))

− i2(2k + n)(S(Gβ(V )·∇β(W ))− S(Gβ(W )·∇β(V )))

−∇δGβ(W )Gβ(V ) +∇δGβ(V )Gβ(W )

+ i2(2k + n)(∇β(W )Gβ(V )−∇β(V )Gβ(W ))

σ1(C2) = ∇2
Gβ(V )δGβ(W )−∇2

Gβ(W )δGβ(V )

+ 2(∇2
Gβ(V )(Gβ(W ) · dF )−∇2

Gβ(W )(Gβ(V ) · dF )

− i(2k + n)(∇2
Gβ(V )β(W )−∇2

Gβ(W )β(V ))

σ0(C2) = 0

for any vector fields V and W on T .

Proof. By Lemma 8.2 we get that the second order symbol is given by

σ2(C2) = 2S(Gβ(V )·∇(δGβ(W ) + 2Gβ(W ) · dF − i(2k + n)β(W ))

− 2S(Gβ(W )·∇(δGβ(V )− 2Gβ(V ) · dF + i(2k + n)β(V ))

−∇(δGβ(W )+2Gβ(W )·dF−i(2k+n)β(W )Gβ(V )

+∇(δGβ(V )−2Gβ(V )·dF−i(2k+n)β(V )Gβ(W )

= 4(S(Gβ(V )·∇(Gβ(W ) · dF ))− S(Gβ(W )·∇(Gβ(V ) · dF )))

− 2(∇Gβ(W )·dFGβ(V )− 2∇Gβ(V )·dFGβ(W ))

+ 2(S(Gβ(V )·∇(δGβ(W )))− S(Gβ(W )·∇(δGβ(V ))))

− i2(2k + n)(S(Gβ(V )·∇β(W ))− S(Gβ(W )·∇β(V )))

−∇δGβ(W )Gβ(V ) +∇δGβ(V )Gβ(W )

+ i2(2k + n)(∇β(W )Gβ(V )−∇β(V )Gβ(W ))

= 6S(Gβ(V )·∇(Gβ(W ))) · dF − 6S(Gβ(W )·∇(Gβ(V ))) · dF

+ 2(S(Gβ(V )·∇(δGβ(W )))− S(Gβ(W )·∇(δGβ(V ))))

− i2(2k + n)(S(Gβ(V )·∇β(W ))− S(Gβ(W )·∇β(V )))

−∇δGβ(W )Gβ(V ) +∇δGβ(V )Gβ(W )

+ i2(2k + n)(∇β(W )Gβ(V )−∇β(V )Gβ(W ))
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= 6Γ3(V,W ) · dF − 6Γ3(W,V ) · dF

+ 2(S(Gβ(V )·∇(δGβ(W )))− S(Gβ(W )·∇(δGβ(V ))))

− i2(2k + n)(S(Gβ(V )·∇β(W ))− S(Gβ(W )·∇β(V )))

−∇δGβ(W )Gβ(V ) +∇δGβ(V )Gβ(W )

+ i2(2k + n)(∇β(W )Gβ(V )−∇β(V )Gβ(W ))

Likewise, and using type considerations, we get

σ1(C2) = ∇2
Gβ(V )(δGβ(W ) + 2Gβ(W ) · dF − i(2k + n)β(W ))

−∇2
Gβ(W )(δGβ(V )− 2Gβ(V ) · dF + i(2k + n)β(V ))

− 2ikGβ(V )·ω·(δGβ(W ) + 2Gβ(W ) · dF − i(2k + n)β(W ))

+ 2ikGβ(W )·ω·(δGβ(V )− 2Gβ(V ) · dF − i(2k + n)β(V ))

+Gβ(V )uvRawuv(δGβ(W ) + 2Gβ(W ) · dF − i(2k + n)β(W ))w

−Gβ(W )uvRawuv(δGβ(V )− 2Gβ(V ) · dF − i(2k + n)β(V ))w

= ∇2
Gβ(V )δGβ(W )−∇2

Gβ(W )δGβ(V )

+ 2(∇2
Gβ(V )(Gβ(W ) · dF )−∇2

Gβ(W )(Gβ(V ) · dF )

− i(2k + n)(∇2
Gβ(V )β(W )−∇2

Gβ(W )β(V )),

and lastly

σ0(C2) = −ik ω(Gβ(V )·∇(δGβ(W ) + 2Gβ(W ) · dF − i(2k + n)β(W )))

+ ik ω(Gβ(W )·∇(δGβ(V )− 2Gβ(V ) · dF − i(2k + n)β(V )))

= 0.

Lemma 8.7. For any weakly restricted family of Kähler structures, the symbols of

C3 = [∇s1(V ),∇s1(W )]

acting on H(k), are given as follows

σ1(C3) =
[
δGβ(V ), δGβ(W )

]
+ 4
[
Gβ(V ) · dF,Gβ(W ) · dF

]
− (2(2k + n))2[β(V ), β(W )

]
+ 2(

[
δGβ(V ), Gβ(W ) · dF

]
−
[
δGβ(W ), Gβ(V ) · dF

]
)

− i(2k + n)(
[
δGβ(V ), β(W )

]
−
[
δGβ(W ), β(V )

]
)

− i2(2k + n)(
[
Gβ(V ) · dF, β(W )

]
−
[
Gβ(W ) · dF, β(V )

]
)

σ0(C3) = 0,

for any vector fields V and W on T .
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Proof. By using the definition of the curvature, we get

σ1(C3) =
[
s1(V ), s1(w)

]
=
[
δGβ(V ), δGβ(W )

]
+ 4
[
Gβ(V ) · dF,Gβ(W ) · dF

]
− (2(2k + n))2[β(V ), β(W )

]
+ 2(

[
δGβ(V ), Gβ(W ) · dF

]
−
[
δGβ(W ), Gβ(V ) · dF

]
)

− i(2k + n)(
[
δGβ(V ), β(W )

]
−
[
δGβ(W ), β(V )

]
)

− i2(2k + n)(
[
Gβ(V ) · dF, β(W )

]
−
[
Gβ(W ) · dF, β(V )

]
)

σ0(C3) = −ikω(s1(V ), s1(w))

= −ikω(δGβ(V ), δGβ(W )) + 4− ikω(Gβ(V ) · dF,Gβ(W ) · dF ) + ik(2(2k + n))2ω(β(V ), β(W ))

− 2ik(ω(δGβ(V ), Gβ(W ) · dF )− ω(δGβ(W ), Gβ(V ) · dF ))

− k(2k + n)(ω(δGβ(V ), β(W ))− ω(δGβ(W ), β(V )))

− 2k(2k + n)(ω(Gβ(V ) · dF, β(W ))− ω(Gβ(W ) · dF, β(V )))

= 0,

since all the terms going into the symplectic form are of type (1, 0).

Lemma 8.8. For any weakly restricted family of Kähler structures, the symbols of

C4 = [∇s2(V ),∇s0(W )]− [∇s2(W ),∇s0(V )]

C5 = [∇s1(V ),∇s0(W )]− [∇s1(W ),∇s0(V )]

C6 = [∇s0(V ),∇s0(W )]

acting on H(k), are given as follows

σ0(C4) = 4k(∇2
Gβ(W )V

′[F ]−∇2
Gβ(V )W

′[F ])

− 2ik(∇2
Gβ(W )dF · β(V )−∇2

Gβ(V )dF · β(W ))

− ik(∇2
Gβ(W )δ(β(V ))−∇2

Gβ(V )δ(β(W )))

+ 2k(k + n)(∇2
Gβ(W )ϕ(V )−∇2

Gβ(V )ϕ(W ))

+ ik(∇2
Gβ(W )ψ(V )−∇2

Gβ(V )ψ(W ))

σ0(C5) = 4k(∇δGβ(V )W
′[F ]−∇δGβ(W )V

′[F ])

− 2ik(∇δGβ(V )dF · β(W )−∇δGβ(W )dF · β(V ))

− ik(∇δGβ(V )δ(β(W ))−∇δGβ(W )δ(β(V )))

+ 2k(k + n)(∇δGβ(V )ϕ(W )−∇δGβ(W )ϕ(V ))

+ ik(∇δGβ(V )ψ(W )−∇δGβ(W )ψ(V ))

+ 8k(∇Gβ(V )·dFW
′[F ]−∇Gβ(W )·dFV

′[F ])

− 4ik(∇Gβ(V )·dF dF · β(W )−∇Gβ(W )·dF dF · β(V ))

− 2ik(∇Gβ(V )·dF δ(β(W ))−∇Gβ(W )·dF δ(β(V )))

+ 4k(k + n)(∇Gβ(V )·dFϕ(W )−∇Gβ(W )·dFϕ(V ))

+ 2ik(∇Gβ(V )·dFψ(W )−∇Gβ(W )·dFψ(V ))
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− i4k(2k + n)(∇β(V )W
′[F ]−∇β(V )V

′[F ])

+ 2k(2k + n)(∇β(V )dF · β(W )−∇β(V )dF · β(V ))

+ k(2k + n)(∇β(V )δ(β(W ))−∇β(V )δ(β(V )))

− i2k(k + n)(2k + n)(∇β(V )ϕ(W )−∇β(V )ϕ(V ))

− k(2k + n)(∇β(V )ψ(W )−∇β(V )ψ(V ))

σ0(C6) = 0

for any vector fields V and W on T .

Proof. For these commutators, we simply get zeroth order terms given by the second, respec-
tively first, order operator acting on the zeroth order term. Also, the commutator of the two
first order terms simply vanish.

8.4 Curvature in the Weakly Restricted Case

Now we have calculated each of the terms constituting the commutator
[
u(V ), u(W )

]
, and

we are ready to combine all the results to get an explicit expression for the curvature

Theorem 8.9. The symbols of the curvature F∇ of the Hitchin connection in the weakly
restricted setting, acting on H(k), is given by

σi(F∇(V,W )) = 1
(2k + n)2σi(C),

where C is given by

C = (2(2k + n))2[u(V ), u(W )
]

= 2(2k + n)C0 +
6∑
i=1

Ci,

and

σ3(C) =2Γ3(V,W )− 2Γ3(W,V )

σ2(C) = 6Γ3(V,W ) · dF − 6Γ3(W,V ) · dF

+ Γ2(V,W )− Γ2(W,V )

+ 2(2k + n)(−i∇β(V )Gβ(W )− iS(Gβ(V )·∇β(W ))

+ i∇β(W )Gβ(V ) + iS(Gβ(W )·∇β(V ))

+ V [Gβ(W )]−W [Gβ(V )]).

σ1(C) = ∇2
Gβ(V )δGβ(W )−∇2

Gβ(W )δGβ(V )

+ 2∇2
Gβ(V )(Gβ(W ) · dF )− 2∇2

Gβ(W )(Gβ(V ) · dF )

+
[
δGβ(V ), δGβ(W )

]
+ 4
[
Gβ(V ) · dF,Gβ(W ) · dF

]
+ 2(

[
δGβ(V ), Gβ(W ) · dF

]
−
[
δGβ(W ), Gβ(V ) · dF

]
)
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+(2k + n)(−i∇2
Gβ(V )β(W ) + i∇2

Gβ(W )β(V )

+ 4V [Gβ(W )] · dF − 4W [Gβ(V )] · dF

+ 4Gβ(W ) · dV [F ]− 4Gβ(V ) · dW [F ]

+ 2δV [Gβ(W )]− 2δW [Gβ(V )]

− 2i
[
Gβ(V ) · dF, β(W )

]
+ 2i

[
Gβ(W ) · dF, β(V )

]
− i
[
δGβ(V ), β(W )

]
+ i
[
δGβ(W ), β(V )

]
)

+(2k + n)2(−4
[
β(V ), β(W )

]
− 2iV [β(W )] + 2iW [β(V )])

σ0(C) =ik(V [ψ(W )]−W [ψ(V )])

+2k(k + n)(V [ϕ(W )]−W [ϕ(V )])

−ik(V [δ(β(W ))]−W [δ(β(V ))])

−2ik(dV [F ] · β(W )− dF · V [β(W )]− dW [F ] · β(V ) + dF ·W [β(V )])

+4k(V [W ′[F ]]−W [V ′[F ]])

+ 4k(∇2
Gβ(W )V

′[F ]−∇2
Gβ(V )W

′[F ])

− 2ik(∇2
Gβ(W )dF · β(V )−∇2

Gβ(V )dF · β(W ))

− ik(∇2
Gβ(W )δ(β(V ))−∇2

Gβ(V )δ(β(W )))

+ 2k(k + n)(∇2
Gβ(W )ϕ(V )−∇2

Gβ(V )ϕ(W ))

+ ik(∇2
Gβ(W )ψ(V )−∇2

Gβ(V )ψ(W ))

+ 4k(∇δGβ(V )W
′[F ]−∇δGβ(W )V

′[F ])

− 2ik(∇δGβ(V )dF · β(W )−∇δGβ(W )dF · β(V ))

− ik(∇δGβ(V )δ(β(W ))−∇δGβ(W )δ(β(V )))

+ 2k(k + n)(∇δGβ(V )ϕ(W )−∇δGβ(W )ϕ(V ))

+ ik(∇δGβ(V )ψ(W )−∇δGβ(W )ψ(V ))

+ 8k(∇Gβ(V )·dFW
′[F ]−∇Gβ(W )·dFV

′[F ])

− 4ik(∇Gβ(V )·dF dF · β(W )−∇Gβ(W )·dF dF · β(V ))

− 2ik(∇Gβ(V )·dF δ(β(W ))−∇Gβ(W )·dF δ(β(V )))

+ 4k(k + n)(∇Gβ(V )·dFϕ(W )−∇Gβ(W )·dFϕ(V ))

+ 2ik(∇Gβ(V )·dFψ(W )−∇Gβ(W )·dFψ(V ))

− i4k(2k + n)(∇β(V )W
′[F ]−∇β(V )V

′[F ])

+ 2k(2k + n)(∇β(V )dF · β(W )−∇β(V )dF · β(V ))

+ k(2k + n)(∇β(V )δ(β(W ))−∇β(V )δ(β(V )))

− i2k(k + n)(2k + n)(∇β(V )ϕ(W )−∇β(V )ϕ(V ))

− k(2k + n)(∇β(V )ψ(W )−∇β(V )ψ(V )).

Proof. We first observe, that by choosing commuting vector fields V and W , we get the
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curvature as

F∇(V,W ) =
[
u(V ), u(W )

]
,

and by writing out this commutator, we see that we get exactly all the terms calculated in
the Ci’s the previous lemmas, as we have stated in the theorem.

Now we combine all the calculated terms from Lemmas 8.4, 8.5, 8.6, 8.7 and 8.8. Firstly
there is only one contribution to the principal symbol, which is from C1, and are given by

σ3(C) = σ3(C1) = 2S(Gβ(V )·∇Gβ(W ))− 2S(Gβ(W )·∇Gβ(V ))

= 2Γ3(V,W )− 2Γ3(W,V ).

We continue with the second order symbol, which get contributions from C0, C1 and C2 and
furthermore gather the terms in powers of 2k + n, which we will elaborate on later.

σ2(C) =2(2k + n)σ2(C0) + σ2(C1) + σ2(C2)

=2(2k + n)(V [Gβ(W )]−W [Gβ(V )])

+∇2
Gβ(V )Gβ(W )−∇2

Gβ(W )Gβ(V )

+ 6Γ3(V,W ) · dF − 6Γ3(W,V ) · dF

+ 2(S(Gβ(V )·∇(δGβ(W )))− S(Gβ(W )·∇(δGβ(V ))))

− i2(2k + n)(S(Gβ(V )·∇β(W ))− S(Gβ(W )·∇β(V )))

−∇δGβ(W )Gβ(V ) +∇δGβ(V )Gβ(W )

+ i2(2k + n)(∇β(W )Gβ(V )−∇β(V )Gβ(W ))

=∇2
Gβ(V )Gβ(W ) +∇δGβ(V )Gβ(W ) + 2S(Gβ(V )·∇(δGβ(W )))

−∇2
Gβ(W )Gβ(V )−∇δGβ(W )Gβ(V )− 2S(Gβ(W )·∇(δGβ(V )))

+ 6Γ3(V,W ) · dF − 6Γ3(W,V ) · dF

+ 2(2k + n)(−iS(Gβ(V )·∇β(W )) + iS(Gβ(W )·∇β(V ))

+ i∇β(W )Gβ(V )− i∇β(V )Gβ(W )

+ V [Gβ(W )]−W [Gβ(V )])

= 6Γ3(V,W ) · dF − 6Γ3(W,V ) · dF

+ Γ2(V,W )− Γ2(W,V )

+ 2(2k + n)(−i∇β(V )Gβ(W )− iS(Gβ(V )·∇β(W ))

+ i∇β(W )Gβ(V ) + iS(Gβ(W )·∇β(V ))

+ V [Gβ(W )]−W [Gβ(V )]).

74



8.4. Curvature in the Weakly Restricted Case

For the first order symbol we get contributions from C0, C1, C2 and C3.

σ1(C) = 2(2k + n)σ1(C0) + σ1(C1) + σ1(C2) + σ1(C3)

= 2(2k + n)(2V [Gβ(W )] · dF − 2W [Gβ(V )] · dF )

+ 2(2k + n)(2Gβ(W ) · dV [F ]− 2Gβ(V ) · dW [F ])

+ 2(2k + n)(δV [Gβ(W )]− δW [Gβ(V )])

− i2(2k + n)2(V [β(W )]−W [β(V )])

+∇2
Gβ(V )δGβ(W )−∇2

Gβ(W )δGβ(V )

+ 2(∇2
Gβ(V )(Gβ(W ) · dF )−∇2

Gβ(W )(Gβ(V ) · dF ))

− i(2k + n)(∇2
Gβ(V )β(W )−∇2

Gβ(W )β(V ))

+
[
δGβ(V ), δGβ(W )

]
+ 4
[
Gβ(V ) · dF,Gβ(W ) · dF

]
− (2(2k + n))2[β(V ), β(W )

]
+ 2(

[
δGβ(V ), Gβ(W ) · dF

]
−
[
δGβ(W ), Gβ(V ) · dF

]
)

− i(2k + n)(
[
δGβ(V ), β(W )

]
−
[
δGβ(W ), β(V )

]
)

− i2(2k + n)(
[
Gβ(V ) · dF, β(W )

]
−
[
Gβ(W ) · dF, β(V )

]
)

= +∇2
Gβ(V )δGβ(W )−∇2

Gβ(W )δGβ(V )

+ 2∇2
Gβ(V )(Gβ(W ) · dF )− 2∇2

Gβ(W )(Gβ(V ) · dF )

+
[
δGβ(V ), δGβ(W )

]
+ 4
[
Gβ(V ) · dF,Gβ(W ) · dF

]
+ 2(

[
δGβ(V ), Gβ(W ) · dF

]
−
[
δGβ(W ), Gβ(V ) · dF

]
)

+(2k + n)(−i∇2
Gβ(V )β(W ) + i∇2

Gβ(W )β(V )

+ 4V [Gβ(W )] · dF − 4W [Gβ(V )] · dF

+ 4Gβ(W ) · dV [F ]− 4Gβ(V ) · dW [F ]

+ 2δV [Gβ(W )]− 2δW [Gβ(V )]

− 2i
[
Gβ(V ) · dF, β(W )

]
+ 2i

[
Gβ(W ) · dF, β(V )

]
− i
[
δGβ(V ), β(W )

]
+ i
[
δGβ(W ), β(V )

]
)

+(2k + n)2(−4
[
β(V ), β(W )

]
− 2iV [β(W )] + 2iW [β(V )]).

Lastly we gather all the terms for the zeroth order symbol. This time we get contribution
from C0, C4 and C5, and we have done nothing, except add the terms together and we get
the expression in the theorem from

σ0(C) =σ0(C0) + σ0(C4) + σ0(C5).

This completes the proof.
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8.5 Projective Flatness

The expressions from Theorem 8.9 are clearly long and complicated, but we are still able to
extract some simpler information from them.

First of all, as mentioned in the beginning of the chapter, the first criterion for projective
flatness is that

0 = Γ3(V,W )− Γ3(W,V ). (8.2)

Given that this is fulfilled, we can apply Proposition 8.1 to get

0 = Γ2(V,W )− Γ2(W,V ),

which reduces the criterion on the second order symbol to

0 =− i∇β(V )Gβ(W )− iS(Gβ(V )·∇β(W )) (8.3)

+ i∇β(W )Gβ(V ) + iS(Gβ(W )·∇β(V ))

+ V [Gβ(W )]−W [Gβ(V )],

which is seen to be a symmetry property as well. We have, however, not found any other
criterion that gives vanishing of these. Now continuing to the first order symbol, we will use
that we have an expression like

(2k + n)0a0 + (2k + n)1a1 + (2k + n)2a2 = 0,

that holds for all levels k, and thus we must have a0 = a1 = a2 = 0. This splits the equation
on the first order symbol into three seperat equations, which gives us more precise information
on which terms should vanish.

0 = ∇2
Gβ(V )δGβ(W )−∇2

Gβ(W )δGβ(V ) (8.4)

+ 2∇2
Gβ(V )(Gβ(W ) · dF )− 2∇2

Gβ(W )(Gβ(V ) · dF )

+
[
δGβ(V ), δGβ(W )

]
+ 4
[
Gβ(V ) · dF,Gβ(W ) · dF

]
+ 2(

[
δGβ(V ), Gβ(W ) · dF

]
−
[
δGβ(W ), Gβ(V ) · dF

]
)

= ∆Gβ(V )δGβ(W )−∆Gβ(W )δGβ(V )

+ 2∇2
Gβ(V )(Gβ(W ) · dF )− 2∇2

Gβ(W )(Gβ(V ) · dF )

+ 4
[
Gβ(V ) · dF,Gβ(W ) · dF

]
+ 2(

[
δGβ(V ), Gβ(W ) · dF

]
−
[
δGβ(W ), Gβ(V ) · dF

]
)

0 = −i∇2
Gβ(V )β(W ) + i∇2

Gβ(W )β(V )

+ 4V [Gβ(W )] · dF − 4W [Gβ(V )] · dF

+ 4Gβ(W ) · dV [F ]− 4Gβ(V ) · dW [F ]

+ 2δV [Gβ(W )]− 2δW [Gβ(V )]

− 2i
[
Gβ(V ) · dF, β(W )

]
+ 2i

[
Gβ(W ) · dF, β(V )

]
− i
[
δGβ(V ), β(W )

]
+ i
[
δGβ(W ), β(V )

]
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0 = −4
[
β(V ), β(W )

]
(8.5)

− 2iV [β(W )] + 2iW [β(V )].

We see, for instance, that the last equation gives us an identity only involving β and the
vector fields V and W . We could hope to find some way to express these expressions, such
that they simplify further or even prove that they hold given some general condition, but
this remains an open problem.

We state the above in a corollary.

Corollary 8.10. The Hitchin connection in the weakly restricted case is projectively flat if
and only if equations (8.2), (8.3), (8.4) and (8.5) hold.
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Chapter 9

Obstructions for Projective Flatness

We have already seen the explicit calculations for the curvature of the Hitchin connection in
the rigid setting in chapter 8, and we have stated the obstruction to being projectively flat
explicitly in terms of differential operators. Here we approach the problem from a different
viewpoint and state a theorem of Ginzburg and Montgomery, that gives a more abstract
condition on the symplectic manifold and space of compatible complex structures under
which no projectively flat connection can exist on the bundle of quantum spaces. It turns out
that the Hitchin connection constructed in Theorem 6.11 fullfils the conditions, and thus it
cannot be projectively flat in general. Explicitly we show in the case of the coadjoint orbit,
that we get a Hitchin connection that cannot be projectively flat.

9.1 The no-go theorem and projective flatness

Let us begin with briefly recalling the work [GM00], in which Ginzburg and Montgomery
show a no-go theorem, stating conditions under which no natural projectively flat connection
can exist on the vector bundle of quantizations.

We will introduce some notation to state the theorem. We have as usual a symplectic
manifold (M,ω). We let Ham(M,ω) be the group of hamiltonian symplectomorphisms of M ,
and G be the group of diffeomorphisms of the unit circle bundle U of L which preserve the
connection form. Lastly we let G0 be the connected component of G containing the identity.
We consider a compatible complex structure J0 ∈ Cω(M) and assume that there exist a
neighbourhood C0

ω(M) of J0, such that H(k) |C0
ω(M) is a vector bundle over C0

ω(M).

Theorem 9.1 (Ginzburg and Montgomery). Assume that there exist a complex structure
J0 with stabilizer GJ0 in Ham(M,ω) of positive dimension, and that the infinitesimal rep-
resentation of GJ0 on H

(k)
J0

is non-trivial. Then there is no projectively flat connection on
H(k) |C0

ω(M), which is invariant under the G0 local action.

We will now proceed with the mentioned example, where we can apply our construction
for a certain small enough neighbourhood of a particular J0 with such a symmetry group.

Let G be a compact simple and simply-connected Lie group. We are going to consider
a co-adjoint orbit M in g∗. On M we are going to consider the Kirillov-Kostant symplectic
structure (see e.g. [Woo92]). Furthermore, we have the natural G-invariant complex structure
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9. Obstructions for Projective Flatness

J0 on M coming from the identification

M = GC/P,

where P is a parabolic subgroup determined by M . It is well known that (M,J0) is rigid
and that there exist a small enough neighbourhood C0

ω(M) of J0 such that

H1(MJ , T
′MJ) = 0

for all complex structures J ∈ C0
ω(M).

We now want to determine β(V )J uniquely for all J ∈ C0
ω(M) and all V ∈ TJC0

ω(M)
solving

V ′[J ]J = −∂̄Jβ(V )J .

This we can do uniquely by the above vanishing of H1(MJ , T
′MJ ) and if we impose suitable

conditions on β(V )J . One possibility is to require that β(V )J is orthogonal to all holomorphic
vector fields on (M,J). Another way could be to require special evaluation properties of
β(V )J at various points on M . Furthermore, we can determine a smooth family of Ricci
potentials, by picking, for each complex structure J ∈ C0

ω(M), the unique potential with
zero average. Hence, since M is simply connected, there is a unique prequantum line bundle
(L, h,∇) with curvature −iω. Thus we satisfy all assumptions of Theorem 6.11 and so we
get the following corollary.

Corollary 9.2. For the coadjoint orbit M , we get a Hitchin connection in the bundle H(k)

over the subspace C0
ω(M). This connection is invariant under the local action of the group of

bundle automorphisms of the prequantum line bundle (L, h,∇) covering the symplectomor-
phism group of (M,ω).

We see that this connection therefore satisfies all the requirements of Ginzburg and
Montgomery’s Theorem 9.1 above, and thus this connection cannot be projectively flat over
C0
ω(M).
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Chapter 10

Pullbacks of the Hitchin Connection

We will now present a way to construct a Hitchin connection on a nice enough connected
neighbourhood C0

ω(M) of a rigid family of complex structures T . This gives, in the case of
(Pn, ωFS), an alternative construction of a connection, to the weakly restricted construction
for the case of a coadjoint orbit presented above. It follows by projective flatness of the
pullback connection, that these two constructions actually gives different connections on
(Pn, ωFS).

10.1 General Scheme for Pullbacks of The Hitchin Connection

Let us consider a symplectic manifold (M,ω), and assume that we have a rigid subfamily
T ⊆ Cω(M) of all the complex structures compatible with ω.

Furthermore we assume, that we have some connected subspace C0
ω(M), on which we can

find a map Φ: C0
ω(M) → Diff(M) denoted J 7→ ΦJ , such that for each J ∈ C0

ω(M) there
exists a J ′ ∈ T with

Φ∗J(J ′) = J and Φ|T = Id .

That is ΦJ gives a biholomorphism from M with the complex structure J to M with the
complex structure J ′ from the rigid family T .

Now for each J we can consider the pullback bundle Φ∗JL → M , which is naturally
isomorphic to L itself, since ΦJ is isotopic to the identity for all J ∈ C0

ω(M).
Choosing a holomorphic isomorphism Ψ̃J : L → Φ∗JL we get the following commutative

diagram.

L

��

Ψ̃J // Φ∗JL

��

p // L

��
M

Id
// M

ΦJ
// M

where p is the map given canonically in the construction of the pullback bundle. Composing
the maps in the top of the diagram, we get an induced endomorphism on L given by
ΨJ = p ◦ Ψ̃J . We need to fix ΨJ uniquely up to the action of the automorphism group of the
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10. Pullbacks of the Hitchin Connection

line bundle, Aut(L) = C∗. To do this we seek a section Ψ of the bundle

L(M) =
{

(J,Ψ) ∈ C0
ω(M)×Hom(L,L) | Ψ: (L, J)→ (L, J ′) holo. for some J ′ ∈ T

}
over D(M), where

D(M) =
{

(J,Φ) ∈ C0
ω(M)×Diff(M) | J = Φ∗(J ′) for some J ′ ∈ T

}
,

which in turn is a bundle over C0
ω(M). If we have one point x ∈M , which is fixed for all ΦJ ,

J ∈ C0
ω(M), then we can fix the ambiguity by requiring that

(ΨJ)x = Id: Lx → Lx,

and hence get the required section Ψ. Let us now assume we have a map

πT : C0
ω(M)→ T ,

which is compatible with some Φ. Then any section Ψ as above will induce an isomorphism
of the bundles, such that we get the following commutative diagram

H
(k)
|T

%%

π∗T ((H(k))|T )oo

&&

∼= // H(k)

||
T C0

ω(M)πToo

We know from that we get a projectively flat connection on the bundle of quantum states
(H(k))|T restricted to the rigid part T of the compatible complex structures, since this space
fulfils all the requirements from [AG14]. Now this connection induces a projectively flat
connection on the pullback bundle, which then gives a projectively flat connection on H(k).

Here we have used that

π∗((H(k))|T )J = H0(MJ ,Φ∗JLk),

giving us the isomorphism on each fiber, and since the diagram 10.1 commutes, an isomor-
phism on the level of bundles is obtained.

10.2 Pullback of the Hitchin connection on Pn

Let us restrict to an example, where we can actually construct a Φ fulfilling the requirements
above. We consider M = Pn as a symplectic manifold equipped with the Fubini-Study
symplectic form ω but without the normal structure as a complex manifold. We do, however,
denote the almost complex structure coming from the normal structure on Pn by J0.

On M there exist a neighbourhood C0
ω(M) around J0 such that every complex structure

J ′ ∈ C0
ω(M) is biholomorphic to J0, and thus we can choose the subfamily T ⊆ Cω(M) to

just be the pointset T = {J0}. This way we have D(M)J 6= ∅ for all J ∈ C0
ω(M).

It is known that Pn has the property, that we can choose a set of n+ 1 points

X = {x0, x1, . . . , xn} ⊆ Pn,
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10.2. Pullback of the Hitchin connection on Pn

such that any set of lifts of these to Cn+1 is a basis. Furthermore, we have that for any such
set

Y = {y0, y1, . . . , yn} ⊆ Pn,

there exists a unique Φ0 ∈ Aut(Pn), such that

Φ0(yi) = xi.

This means that we can for any J ∈ C0
ω(M) determine a unique biholomorphism

ΦJ : (M,J)→ (M,J0) with ΦJ(xi) = xi

This way, we can define a section Φ ∈ C∞(C0
ω(M), D(M)).

Note that we have ΦJ0 = Id, and therefore Φ and T = {J0} fullfils the requirements
outlined above. Thus we get a flat connection in H(k) over the entire space C0

ω(M). This
connection does however not have the symmetry required by Theorem 9.1, and does not
agree with the connection obtained in Corollary 9.2, since that connection is not projectively
flat.
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Chapter 11

Examples of Weakly Restricted Families

In this chapter, we give a number of examples, where we can solve the weakly restricted
criterion for open subsets of the entire family of complex structures on a given symplectic
manifold, such that we can apply theorem 6.11 to get a Hitchin connection on such subspaces
of all complex structures on the given symplectic manifold.

11.1 Euclidean space R2n

The first example we consider isM = R2n with the standard symplectic structure. We call the
standard complex structure J0 and let C0

ω(M) be an open and small enough neighbourhood
of J0, such that H(k) |C0

ω(M) is a vector bundle over C0
ω(M).

Furthermore we choose C0
ω(M) such that

H1(MJ , T
′MJ) = 0

for all complex structures J ∈ C0
ω(M). This means that we have a solution to the weakly

restricted criterion with Gβ(V ) = 0 and β(V )σ a solution to

V ′[J ]σ = −∂̄σβ(V )σ

for all vector fields V and points σ on C0
ω(M). We will need a smooth family of β’s, which

we can assume exists by choosing a suitable C0
ω(M).

In this case the functions ϕ(V ) and ψ(V ) in the expression of the Hitchin connection
from Theorem 6.11 can be calculated explicitly by curve integrals (depending of course on a
choice of base point in C0

ω(M)) of the ∂̄-exact forms that they are related to by definition.

11.2 Symplectic Tori

Now let us consider the symplectic torus M = R2n/Z2n with the standard symplectic
structure ω. In this case, it is not true that the moduli space of complex structures is locally
a point. We consider the usual moduli space of linear complex structures compatible with
the standard symplectic structure, which is the moduli space of principal polarised abelian
varieties. In fact, the space of all linear complex structures on R2n compatible with ω can
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be identified with
H = {Z ∈Mn,n(C) | Z = Zt, Im(Z) > 0}.

We denote the complex structure corresponding to Z ∈ H by JZ . It is easy to check that the
map

·ω : H0(MJZ , S
2(T ′MJZ ))→ H1(MJZ , T

′MJZ )ω

is surjective for all Z ∈ H. Recall that for any J ∈ Cω(M), there exists a unique Z ∈ H, for
which there exists a unique biholomophism

ΦJ : (M,J)→ (M,JZ),

which induces the identity on H1(M,Z) and which preserves 0 ∈M . Then we also have that

·ω : H0(MJ , S
2(T ′MJ))→ H1(MJ , T

′MJ)ω (11.1)

is surjective for all complex structures J ∈ Cω(M), and furthermore this gives us a natural
projection map

π : Cω(M)→ H.

We now fix a prequantum line bundle (L, h,∇) over (M,ω). Consider the bundle of
quantum spaces H̃(k) → H, with its usual Hitchin connection (see e.g. [Hit90, And05]) and
further the pullback

π∗H̃(k) → Cω(M).

Since each ΦJ induces the identity on the first homology, we see that Φ∗JL ∼= L and as we
furthermore have ΦJ(0) = 0, we can find a section Ψ as discussed in section 10.1, which
induces an isomorphism of the quantum bundles

Ψ∗ : π∗H̃(k) → H(k).

We now pull back the Hitchin connection in H̃(k) to π∗H̃(k) and push it to H(k) by this
isomorphism, to get a projectively flat connection. Again by the no-go Theorem 9.1, this
connection cannot be natural, which is also clear from its construction.

We will now show that our construction of the Hitchin connection in the weakly restricted
setting applies to provide a construction of a natural partial connection in H(k) over Cω(M).
Since we have that (11.1) is surjective, we see that the equation (3.5) can be solved for all
J ∈ C0

ω(M) and all tangent vectors V ∈ TJC0
ω(M). For any choice of solution to this equation,

we get a ∂̄-closed form ω · βJ(V ). However, the map

ω· : H0(MJ , T
′MJ)→ H0,1(M)

is an isomorphism for all J ∈ Cω(M), so we can uniquely determine βJ(V ) as a solution to
(3.5), by requiring that ω · βJ(V ) = 0 in H0,1(M). This in turn means that we can indeed
find a unique solution to the equation ∂̄ϕ(V ) = ω · βJ(V ) of zero average.

We now consider the linear map

[Ω]J : TJC0
ω(M)→ H0,1(MJ).

86
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We see that we can apply our Hitchin connection construction along the distribution

ker[Ω] ⊂ TC0
ω(M),

simply by just choosing the ψ(V ) with zero average which solves

∂̄ψ(V ) = Ω(V ).

11.3 The Moduli Space of Flat SU(n)-Connections

The last example we will consider is the moduli spaces M of flat SU(n)-connections on a
surface of genus g ≥ 2 possibly with central holonomy around a point on the surface, which
we have already discussed in chapter 4. We have again the Narasimhan-Goldman-Atiyah-Bott
symplectic form ω on (the smooth part of)M, and we further have that the Chern-Simons
functional induces the Chern-Simons line bundle (LCS , h,∇) over (M, ω).

We first consider the usual family of complex structures J parametrized by Teichmüller
space T . In this situation Hitchin has proved [Hit90] that the map

·ω : H0(MJ , S
2(T ′MJ))→ H1(MJ , T

′MJ)ω

is surjective for all J ∈ T . We define C0
ω(M) to be the maximal connected subspace of all

complex structures on M, which is compatible with ω and for which there exist a unique
J ′ ∈ T and a unique biholomophism

ΦJ : (M, J)→ (M, J ′),

with the property that it varies smoothly with J ∈ C0
ω(M) and ΦJ = Id for all J ∈ T . Now

we see as above that (3.5) can always be solved and since there are no holomorphic vector
fields on (M, J) for all J ∈ C0

ω(M), we get a unique βJ(V ) with the needed properties for
all J ∈ C0

ω(M) and V ∈ TJC0
ω(M). Then we have that Theorem 6.11 applies and we we get

a Hitchin connection in H(k) over all of C0
ω(M). We have here normalized ψ(V ) and ϕ(V )

by requiring that they have zero average overM.
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