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Abstract

We provide a probabilistic and infinitesimal view of how the principal com-
ponent analysis procedure (PCA) can be generalized to analysis of nonlinear
manifold valued data. Starting with the probabilistic PCA interpretation of
the Euclidean PCA procedure, we show how PCA can be generalized to man-
ifolds in an intrinsic way that does not resort to linearization of the data
space. The underlying probability model is constructed by mapping a Eu-
clidean stochastic process to the manifold using stochastic development of
Euclidean semimartingales. The construction uses a connection and bundles
of covariant tensors to allow global transport of principal eigenvectors, and
the model is thereby an example of how principal fiber bundles can be used to
handle the lack of global coordinate system and orientations that characterizes
manifold valued statistics. We show how curvature implies non-integrability of
the equivalent of Euclidean principal subspaces, and how the stochastic flows
provide an alternative to explicit construction of such subspaces. We describe
two estimation procedures for inference of parameters and prediction of prin-
cipal components, and we give examples of properties of the model on surfaces
embedded in R3.

Keywords: principal component analysis, manifold valued statistics, stochas-
tic development, probabilistic PCA, anisotropic normal distributions, frame
bundle

1 Introduction

A central problem in the formulation of statistical methods for analysis of data
in nonlinear spaces is the lack of global coordinate systems and global orientation
fields. As an example, consider generalizing the notion of covariance matrix to man-
ifold valued random variables: While the Euclidean definition takes the expectation
E[X i−E[X]i]E[Xj−E[X]j] of the product of the coordinate components X i of the
centered random variable X−E[X], the coordinate components are not meaningful
in the nonlinear situation as the coordinates themselves are not defined. This fact
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fundamentally questions what constitutes a natural generalization of covariance. As
a second example, consider a standard Euclidean linear latent variable model

y = m+Wx+ ε (1.1)

on Rd with mean m, coefficient matrix W , latent variables x, and noise ε. The
columns ofW can be seen as encoding the direction in the Euclidean space connected
to a change of each element of x. However, on a manifold M , W has a priori only
meaning for infinitesimal changes dx in the tangent space TmM , and the lack of
global orientation prevents a direct translation between such infinitesimal changes,
finite perturbations of m, and global directions on M .

The aim of this paper is to construct a nonlinear manifold generalization of the
inherently linear principal component analysis (PCA) procedure, a generalization
that is intrinsically based on the geometry of the manifold M and does not resort to
a linear approximation of the geometry. The model is based on the Euclidean prob-
abilistic principal component analysis procedure (PPCA, [26]) that interprets PCA
as a latent variable model (1.1) with W having low rank k ≤ d. We use PPCA with
a probability model based on a notion of infinitesimal covariance and thereby avoid
linearizing the nonlinear data space while incorporating the effect of data anisotropy,
here difference in the principal eigenvalues, intrinsically. The model is related to the
probabilistic principal geodesic analysis (PPGA, [27]) procedure, however using the
probability model and normal distributions defined in [20, 24]. This construction
in particular emphasizes the role of the connection on the manifold in linking in-
finitesimally close tangent spaces. We refer to the method as being infinitesimal
probabilistic because the connection allows sequences of random, infinitesimal steps
to generate the data probability model.

As a second aim, we wish to exemplify how the use of fiber bundle structures
provides a way around the lack of coordinates and global orientations on M . The
construction in [20, 24] essentially enlarges the manifold by equipping it with a
structure group at each point and hence a principal fiber bundle structure. An
example of this is the frame bundle FM , viewed as the bundle of invertible linear
maps GL(Rd, TM), but we will also encounter lower-rank versions F kM of FM ,
and the quotient bundle Sym+ of symmetric positive tensors on TM . Elements of
these bundles are here used to model the local anisotropy and covariance of the
data. The incorporation of nontrivial covariance couples with curvature leading to
families of paths that extend geodesics as being, in a certain sense, most probable
paths between data points [22].

The probabilistic construction naturally gives a formulation of inference proce-
dures as maximum likelihood or maximum a posteriori fits to data. Using intrinsi-
cally defined probability distributions on the manifold thereby avoids some of the
complexities that makes non-probabilistic parametric constructions on manifolds
inherently complex to define. For regression, a similar approach has been pursued
in [13]. The present paper is partly based on and extends the Oberwolfach ab-
stract [19]. While the analogy to PPCA is mentioned in [20], the focus of that paper
is on defining normal-like distributions and not to generalize PPCA as is the focus
here.
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1.1 Outline

We start by a short review of related work on generalizing PCA to manifolds. This
is followed by a description of the fiber bundle geometry necessary for represent-
ing and transporting orientations structures over the manifold. We then define and
discuss the generalized probabilistic principal component analysis procedure before
outlining inference methods. The paper ends with simple numerical experiments and
concluding remarks.

2 Background

Extending Euclidean statistical notions, tools, and inference procedures to the non-
linear manifold situation has been treated in multiple works in recent literature. We
focus here on PCA-like statistical analysis of data y1, . . . , yN , yi ∈ M with M be-
ing a nonlinear manifold with a priori known structure, for example arising directly
from the data, e.g. angular measurements or position measurements on the surface
of the earth, or from modeling constraints. We assume the dimension d of M is fi-
nite. Note that the setting is different than manifold learning where the objective is
to infer the manifold structure from the data. Manifolds lack vector space structure
and therefore also a global coordinate system and globally consistent orientations.
Instead of inner product structure on Euclidean vectors, we instead often assume
the existence of a Riemannian metric g that defines local inner products on infinites-
imal variations, vectors in the tangent bundle TM . For the construction in focus in
this paper, we however mainly need a connection ∇ and a fixed base measure µ0. If
M has a Riemannian metric, ∇ can be the Levi-Civita connection of g and µ0 the
Riemannian volume form volg.

2.1 Parametric Subspace Constructions

Perhaps the most immediate way to handle the lack of coordinate system is to
use tangent spaces to linearize the manifold and thereby implicitly define a local
sense of linear coordinate system on the nonlinear space. This approach is used for
generalizations of the principal component analysis procedure in tangent space PCA
(tPCA). The principal geodesic analysis (PGA, [5]) procedure also uses a tangent
space linearization but minimizes the residual distances to the data using manifold
distances induced from a Riemannian metric. The central idea in tangent space based
procedures is to find a suitable zero-dimensional representation m of the data, often
a Frechét mean [6], and subsequently map the data from the manifold to the linear
tangent space TmM . Given a Riemannian structure on M , this can be achieved
from the geodesic endpoint map Expm and its locally defined inverse Logm. This
construction is however not faithful to the geometry: The effective linearization of
the manifold is only locally around m a proper view of the geometry as encoded
in the Riemannian metric. The curvature of the manifold will distort the linearized
view of the data when significant data mass is observed far from m. The fact that
the linear view is only one-to-one up to the cut locus of m further emphasizes the
approximation in the tangent space linearization.
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When using tangent PCA or similar tangent-space based procedures, principal
subspaces found as linear subspaces of TmM are projected to subspaces of M using
Expm, i.e. as sprays of geodesics originating at m. Such subspaces are generally
only geodesic at m itself unlike the Euclidean situation where a linear subspace
always contains straight lines between all of its points. Multiple methods aims at
improving this situation by either using particular properties of the data space or
by defining other constructions of geometrically natural subspaces: Principal nested
spheres (PNS) and composite PNS (CPNS, [10]) use the particular fact that sub-
spheres of spheres are totally geodesic. Horizontal component analysis (HCA, [18])
uses parallel transport and Fermi coordinates. Torus PCA (TPCA, [3]) performs
surgery on tori to deform them into spheres on which CPNS can be used. Geodesic
PCA (GPCA, [8]) finds principal geodesics passing m that minimize residual errors.
Recently barycentric subspace analysis (BSA, [16]) uses subspaces arising as affine
spans between data points. Common to these approaches is the explicit construction
of low-dimensional subspaces that, focusing on different aspects, are as faithful to
the nonlinear geometry as possible.

In contrast to the Euclidean situation, subspaces maximizing captured variance
are not equivalent to subspaces minimizing residual errors. Even for distributions
with local support, recurring and dense geodesics can make subspace projections
minimizing residual errors undefined [9]. Projections to subspaces in general have
complex behavior, and finding subspaces maximizing variance of projections can
also lead to counter-intuitive results or non-existing maxima.

2.2 PCA from a Probabilistic View

Instead of focusing on PCA as a fit of linear subspaces, we take a probabilistic
approach and generalize the Euclidean probabilistic PCA (PPCA, [26]) formulation
of PCA to the manifold setting. PPCA interprets PCA as a maximum likelihood fit
of the factor model (1.1) when restricting W to be of rank k ≤ d and setting the
covariance matrix for the noise ε to be diagonal σ2I. Because x is assumed normally
distributed with unit variance, the marginal distribution of y is normal as well. i.e.,
PPCA assumes

y|x ∼ N(Wx+m,σ2I) (2.1)

with the latent variables x normally distributed N (0, I) and i.i.d. isotropic noise
ε ∼ N (0, σ2I). This implies

y ∼ N(m,Σ) (2.2)

with Σ = WW T + σ2I.
Assuming σ,m andW are already estimated, the latent variable x|yi conditioned

on the data yi takes the role of the ordinary principal components of the data yi
in PCA. To get a single data descriptor for yi, one can take the expectation of x|yi
which has the explicit expression xi := E[x|yi] = (W TW + σ2I)−1W T (yi −m). We
here loosely denote xi as principal components for PPCA.

From (2.2), it is immediate that the log-likelihood of the data y is

L(y;W,σ,m) = −1
2
(d ln(2π) + ln |Σ|+ (y −m)TΣ−1(y −m)) (2.3)
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and the maximum likelihood estimate for W is up to rotation given by WML =
Uk(Λ− σ2I)1/2, Λ = diag(λ1, . . . , λk) where Uk contains the firsk k principal eigen-
vectors of the sample covariance matrix of yi in the columns, and λ1, . . . , λk are
corresponding eigenvalues.

For both the ML estimates of m and W , and for the principal components xi,
the usual non-probabilistic PCA solution is recovered in the zero noise limit σ2 → 0.
Note that a similar interpretation of PCA can be found in [17]. Here the case σ > 0
is denoted sensible PCA (SPCA).

Turning to the manifold situation, the probabilistic view implies that the fun-
damental problem in generalizing PPCA is not to define low-dimensional subspaces
as sought by the approaches described in section 2.1 but instead to define a nat-
ural generalization of the Euclidean normal distribution to manifolds. PPCA has
previously been generalized to manifolds with the probabilistic principal geodesic
analysis (PPGA, [27]) procedure. The probability model is for PPGA a Riemannian
normal distribution defined via its density

p(y;m, τ) =
1

C(m, τ)
e−

τ
2
dg(m,y)2

(2.4)

with C(m, τ) a normalization constant and dg the distance induced by a Riemannian
metric g on M . This distribution is a function of the squared Riemannian distance
to m, it is isotropic and closely connected to geodesic distances and least-squares.

We aim in this paper to generalize PPCA using a different probability model.
In [20, 24], a generalization of the Euclidean normal distribution is constructed
that intrinsically takes anisotropy of the data into account. Instead of using the
metric g and squared dg distances to define a density as for the Riemannian normal
distribution in PPGA, a connection ∇ on M is used as the fundamental tool for
moving vectors and tensors between infinitesimally close tangent spaces and thereby
to distribute orientations on the manifold without linearizing the manifold. This
distribution of directions enables stochastic processes to be mapped onto M . With
a fixed background measure, the resulting transition distributions have densities and
the data thereby likelihoods. We will make this precise in section 4 after describing
the necessary fiber bundle geometry in the next section.

3 Fiber Bundle Geometry

We here review aspects of fiber bundle geometry focusing on the concepts necessary
for the intrinsic construction of normal-like probability distributions. We therefore
omit many geometric details. More information can for example be found in the
papers [24, 21], the book [7] and, for a comprehensive exposition of fiber bundle
geometry, the book [11].

The focus is to handle the absence of global orientation fields on the manifold.
Indeed, we can choose an ordered basis, a frame, for a single tangent space TxM
providing a reference orientation for vectors in TxM . This however does not provide
us with information about vectors in TyM , x 6= y. When M is equipped with a
connection, the parallel transport along a curve can be used to link the tangent
spaces TxM and TyM . However, the parallel transport is dependent on the curve, and
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the holonomy of a manifold with non-zero curvature implies that different choices
of curves give different parallel transport. This problem is elegantly handled by the
Eells-Elworthy-Malliavin construction of Brownian motion that uses a Euclidean
martingale and the orthonormal frame bundle to lift the problem to a distribution
of orientations over M . The outline below is based on and inspired by this idea.

3.1 The Frame Bundle

The frame bundle is the set of points x ∈ M and ordered bases ν for TxM . For an
element u = (x, ν) ∈ FM , the frame part ν consists of d basis vectors νi ∈ TxM .
Splitting u in the parts x and ν technically requires a local trivialization of FM .
Instead, we let π be the projection FM →M that just drops the frame from a frame
bundle elements and thus sends u to x, and we write just u and ui for the frame and
basis vectors. The frame bundle can equivalently be defined as the principal bundle
GL(Rd, TM) of invertible linear maps between Rd and the tangent bundle TM . An
element u ∈ GL(Rd, TM) assigns to a vector v ∈ Rd an element uv ∈ TxM . The d
basis vectors ui ∈ TxM in this view appear as the images ue1, . . . , ued with e1, . . . , ed
the standard basis for Rd.

If the manifold is equipped with a connection ∇, each of the basis vectors ui
can be parallel transported along a curve γ on M passing x = π(u). We write the
parallel transport of a vector v ∈ Tγ0M along γ as Pγ,t(v) giving a vector in TγtM .
Performing this operation for all ui gives a transport along γ of the entire frame u.
We can thus lift the parallel transport operation from working on vectors in the
tangent bundle TM to transporting frames in FM .

The infinitesimal t → 0 limit of the parallel transport of u along γ gives an
infinitesimal variation in FM , i.e. a vector in the tangent bundle TFM of the frame
bundle. The span of the tangent vectors arising from such infinitesimal parallel
transports, i.e. from choosing curves γ on M with different velocities γ̇0, defines
a linear subbundle of TFM denoted the horizontal subbundle. Another subbundle
of TFM is the vertical subbundle V FM , and we can write TFM as a direct sum
TFM = HFM ⊕ V FM thanks to the connection. Elements in the vertical bundle
are variations of u that keep x = π(u) fixed varying only the frame part in the
fiber π−1(x) above x. Conversely, infinitesimal variations in the horizontal subspace
moves x while keeping the frame part of u as fixed as possible as measured by
the connection or, equivalently, the parallel transport. HFM variations are thus
zero-acceleration as measured by the connection.

An important property of the horizontal bundle HFM is that the pushforward
π∗ : TFM → TM of the projection π is a linear isomorphism when restricted to the
horizontal space for a given u ∈ FM , i.e. π∗|HuFM : HuFM → Tπ(u)M is invertible.
The inverse is called the horizontal lift, here denoted hu : Tπ(u)M → HuFM . That
is, we can relate vectors in Tπ(u)M and vectors in HuFM in a one-to-one fashion. An
important consequence, in particular for our purposes, is the fact that the horizontal
lift gives a basis of globally defined vector fields (H1(u), . . . , Hd(u)) for HFM . This
is very much in contrast to the situation on the base manifold M where topology
generally prohibits globally defined non-zero vector fields. We get this basis by,
for each basis element ei ∈ Rd, using the horizontal lift u 7→ hu(uei) to get the

6



HFM valued vector field on FM denoted Hi(u). Moreover, if M has a Riemannian
metric, the basis is globally orthonormal for u ∈ OM , OM being the subbundle
of FM consisting of orthonormal frames, in the sense that (π∗H1(u), . . . , π∗Hd(u))
constitutes an orthonormal basis at each point π(u).

3.2 Sub-Riemannian Structure

Recall that the density of the Euclidean normal distribution with covariance Σ is
a function of the weighed quadratic form xTΣ−1x. If we let W be a square root
WW T = Σ, we can write this as (W−1x)T (W−1x) using the usual Rd dot product
vTv of the preimageW−1x regardingW as a linear map Rd → Rd. This construction
can be naturally extended to give a sub-Riemannian structure on FM that is then,
by definition, related to the density of the normal distribution. Because u ∈ FM can
be regarded a linear map GL(Rd, Tπ(u)M), we can take (u−1v)Tu−1v for v ∈ Tπ(u)M .
We thus informally regard u−1 a square root of the precision matrix Σ−1 in TxM ,
or, conversely, u is a square root of the covariance matrix Σ that is then a matrix
on Rd. To be precise, we define the inner product

Σ−1(u)(v, w) = 〈u−1v, u−1w〉Rn = (u−1v)Tu−1v, v, w ∈ Tπ(u)M. (3.1)

The Σ−1 notation indicates that the inner product should be seen as encoding the
precision matrix corresponding to the term xTΣ−1x in the Euclidean normal distri-
bution density. The inner product on Tπ(u)M lifts to an inner product on TuFM

Σ−1(u)(vu, wu) = 〈u−1(π∗(vu)), u
−1(π∗(wu))〉Rn , vu, wu ∈ TuFM. (3.2)

Thanks to π∗|HuFM onto Tπ(u)M being an isomorphism, this product is positive
definite on HuFM . However, it degenerates on V FM and therefore does not define a
Riemannian structure on FM . It does however defines a sub-Riemannian structure.
The sub-Riemannian metric can also be viewed as a map gΣ : TFM∗ → HFM
defined by ξu(vu) = Σ−1(u) 〈vu, gΣ(ξu)〉 for ξu ∈ TuFM∗. This in addition defines a
cometric, also denoted gΣ, in the form of an inner product on T ∗FM by gΣ(ξu, ηu) =
ηu(gΣ(ξu)), ξu, ηu ∈ TuFM

∗. Being inverse to the metric which is modeled after
precision matrix, the cometric can be seen as encoding covariance.

3.3 Bundles of Symmetric Positive Definite Tensors

The quadratic form Σ−1 is an element of the bundle Sym+M of covariant 2-tensors
on M . The projection π : FM → M can be factored through this bundle giving a
map q such that FM Σ−1

−−→ Sym+M
q−→ M with π = q ◦ Σ−1. It is natural modeling

covariance structure using Sym+M since the bundle omits the implicit rotation
that a representation of Σ by a square root u ∈ FM imply. Indeed, Sym+M can
be viewed as the quotient FM/O(d) where the orthogonal group O(d) acts on the
right by R.u = uR for R ∈ O(d) and u ∈ GL(Rd, TM).

As shown in [24], the horizontal/vertical splitting of TFM and the sub-Riemannian
structure on FM descend to corresponding structures on Sym+M . We can therefore
work on the two bundles interchangeably in the same way as one shifts between a
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square root covarianceW and the covariance matrix Σ = WW T in Euclidean statis-
tics. As we will see below, the frame bundle supports the development construction
for mapping Euclidean semimartingales to the manifold. We therefore often work
on FM keeping in mind that the generated covariance structures can be seen as
element of the quotient bundle Sym+.

3.4 Development and Stochastic Development

Let xt be a Euclidean semimartingale on Rd defined as the solution to the Stratonovich
SDE

dxt = b(t, xt) +W (t, xt) ◦ dBt (3.3)

where Bt is a standard Brownian motion on Rk, k ≤ d, and ◦ denotes Stratonovich
multiplication. We let Pxt denote its law and, when k = d, pxt(v;x, T ) denotes the
time T transition density of the process evaluated at v ∈ Rd when started with
initial conditions x0 = x. Note that when the drift b is zero and W is a time-
and spatially stationary full-rank matrix, xT is normally distributed with covariance
Σ = WW T and density pxt(v;x, T ) = (2πT |Σ|)− d2 e− 1

2
(v−x)TΣ−1(v−x). This view of

the normal distribution arising as the combined effects of an continuous sequence of
infinitesimal random steps with covariance Σ = WW T is particularly well-suited for
generalizing to the manifold situation.

We achieve this generalization using the stochastic development construction,
see e.g. [7]. Recall above the existence of a globally defined basis (H1, . . . , Hd) for
the horizontal bundle HFM . This can be used to define an FM valued process from
the semimartingale xt via the SDE

dut = Hi(ut) ◦ dxit . (3.4)

Note the Einstein summation convention implies a summation over the components
dxit and the horizontal basis fields. In the deterministic case (W = 0 in (3.3)),
the ODE is denoted just development or “rolling-without-slipping” due to the fact
that the frame represented by a solution ut is parallel transported, or rolled, along
the manifold. This is a consequence of Hi representing infinitesimal parallel trans-
port. In the stochastic case, when u0 = u is an orthonormal frame with respect to
a Riemannian metric, i.e. an element of the orthonormal frame bundle OM , the
construction is the basis for the Eells-Elworthy-Malliavin construction of Brownian
motion [4]. In the following, we denote by φu(xt) the solution of (3.4) of a path
xt ∈ Rd, deterministic or stochastic, started at u ∈ FM . The inverse of φu is denote
anti-development.

3.5 Anisotropic Normal Distributions

In [20, 24], the stochastic development construction is used with xt a Euclidean Brow-
nian motion to map from a starting frame u to a distribution yT = π(uT ) onM with
density pyt(v;u, T ) with respect to a fixed base measure (e.g. the Riemannian vol-
ume form volg). The orthonormality condition on u in the Eells-Elworthy-Malliavin
construction of Brownian motion is thus relaxed. The result is the anisotropic distri-
bution yT that has nontrivial covariance in the sense that the infinitesimal stochastic
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displacements of the process have covariance given by the frame u. The base point
m = π(u) is thus interpreted as the mean of the distribution, and the frame u itself
models the square root covariance. The precision matrix is the inner product Σ−1(u)
on Tπ(u)M . The orientation problem that usually prevents us from defining globally
non-zero vector fields onM with special properties, e.g. orthonormality, is thus han-
dled by spreading the orientations stochastically in FM with parallel transport and
taking the time T distribution before projecting the resulting distribution to M .
The density of the generated distributions is visualized in Figure 2.

Note that the process ut is actually a semi-elliptic FM -valued Brownian motion
with respect to the sub-Riemannian metric gΣ on FM . The semi-ellipticity arise
because the diffusion is generated only in the subspace HFM of TFM . The curva-
ture of M is exactly the non-integrability of the horizontal fields Hi, and non-zero
curvature therefore implies that the process will diffuse out of the horizontal bundle
and generate a larger subspace of FM . It does however not satisfy the Hörmander
condition on TFM , and the diffusion will not fill all of FM .

3.6 Euclideanization

In manifold statistics, the concept of Euclideanizations of the data, mappings from
the nonlinear manifold to a Euclidean space that preserve important features of the
data, is often appearing. This is for example the case in tangent space PCA and
related models where the map Logm maps the data from M to a linear tangent
space TmM thus providing a linear view of the data. This is however at the cost of
flattening the space and thus loosing curvature information.

The development procedure provides a Euclideanization that is qualitatively dif-
ferent: Development is a one-to-one map from theWiener space of pathsW ([0, T ],Rd)
to the corresponding space W ([0, T ],M) on M . It thus provides a Euclidean view of
paths to data instead of the data itself. As we will see below, we can marginalize over
all paths xt ∈ W ([0, T ],Rd) reaching a point y ∈ M in the sense φu(xt)T = y. This
for example provides a Euclidean view of the data as the expectation over paths
xt whose development reach y, or the expectation over endpoints xT of paths with
development reaching y.

4 Probabilistic Principal Component Analysis on
Manifolds

The probabilistic formulation of PPCA makes no reference to linear subspaces which
suggests a generalization to nonlinear manifolds can be obtained without construct-
ing submanifolds that in general cannot satisfy the usual properties of linear sub-
spaces of Euclidean spaces, e.g. being totally geodesic. The main difficulty in gen-
eralizing PPCA instead lies in the latent variable model being additive and using
normal distributions, neither which are directly transferable to manifolds. Instead,
we propose to use the anisotropic normal distributions described in section 3.5 to
take the place of the normal distributions in Euclidean PPCA.1

1In the abstract [19], the procedure was denoted DPCA for diffusion PCA due to the use of
semi-elliptic diffusions to generate the probability model but we avoid using this term here.
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4.1 The Nonlinear Probability Model

Consider the map φBt,T : FM → Prob(M) that by stochastic development sends
u ∈ FM to π(uT ) where the FM diffusion dut = Hi(ut) ◦ dBi

t is started at time
t = 0 at u, and Bt ∈ Rd is a Brownian motion. The stopping time T can without
loss of generality be assumed T = 1. Recall from the discussion earlier in the paper
that u represents the mean m = π(u) and the frame u the square root covariance
of the distribution µu = π(uT ). The precision matrix is the inner product Σ−1(u)
given by u. We let Γ ⊂ Prob(M) be the image of φBt,T , i.e. the set of distributions
µu = φBt,T (u) resulting from point-sourced diffusions in FM stopped at time T . We
then assume the observed data is distributed according to µu ∈ Γ so that y ∼ µu =
π(uT ) for a diffusion uT ∈ FM started at u.

Let µ0 be a fixed measure on M , e.g. a Riemannian volume form volg. For each
distribution µ ∈ Γ, we write pµ for the density satisfying µ = pµ0 ∈ Γ. We can then
define the log-likelihood

lnL(y;u) = lnL(y;µu) = ln pµu(y) (4.1)

for a sample y ∈ M . Now for samples y1, . . . , yN , let uML ∈ FM be a maximum
for lnL(y1, . . . , yN ;µu) =

∏N
i=1 lnL(yi;u). Then uML contains the parameters of a

maximum likelihood fit to the data y1, . . . , yN of the parameters of the model in u.
In the PPCA model (2.2), the coefficient matrix W was assumed of rank k ≤ d.

A similar rank k model in the nonlinear setting can be constructed by instead
of modelling u directly, letting W be an element of the bundle F kM of rank k
linear maps Rk → TM . In addition, we need to represent the isotropic iid. noise
ε with variance σ2. Generators of isotropic noise are elements of the orthonormal
frame bundle OM with respect to a Riemannian metric g on M , confer the Eells-
Elworthy-Malliavin construction of Brownian motion. We denote such an element
by R ∈ Oπ(u)M to emphasize its pure rotation, no scaling nature. We then set

dW = Hi(Wt) ◦ dX i
t + σHi(Rt) ◦ dεit,

dR = hRt(π∗(dW )).
(4.2)

Here εt is a Brownian motion on Rd modeling increments of the iid. noise while
Xt is now a Brownian motion on Rk modeling the latent variables. This is a di-
rect extension of the PPCA model (2.2) and the latent variable model (1.1) using
the stochastic development construction (3.4). The horizontal fields and stochastic
development are defined on F kM in a similar way as on FM . However, in the no
noise situation σ = 0, the generated distributions µW would not have strictly pos-
itive density similarly to the Euclidean PPCA case in the limit σ → 0. This is a
consequence of the generated process not being full-rank on HFM if W ∈ F kM ,
k < d, and the isotropic noise dεt is not added.

Note that the system (4.2) could equivalently be formulated as

dR = Hi(Rt) ◦ ((WdBt)
i + σdεit), (4.3)

i.e. by multiplying the Brownian motion Xt with a fixed matrix W and adding
noise εt before multiply on Hi. In practice, with (4.2), we need only simulate the
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Wt evolution in F kM since the isotropic part Rt can be obtained up to rotation by
lifting any g orthonormal basis to an element of OM . For high dimensional systems,
simulating on F k, k � d can be computationally much more tractable than on
FM (or OM). The system (4.3) lives on OM and therefore does not have a similar
reduction property. Finally, the system (4.2) separates the latent process Xt ∈ Rk

from the geometric flow of the coefficient matrix Wt ∈ F kM . This view emphasizes
the role of the fiber bundle F kM in modeling the flow over M of the coefficient
matrix while the latent process Xt is Euclidean.

We saw earlier that u defined a sub-Riemannian structure on FM . The addition
in (4.2) can also be seen as a sub-Riemannian metric on FM on the form gW + σ2g̃
[21]. Here g̃ is a lift g̃(ξu, ηu) = g(π∗ξu, π∗ηu) to TFM∗ of the Riemannian metric g
on M , and gW is a rank k inner product on HFM defined from the map W .

In the following, to simplify notation, we mostly refer to the stochastic process as
just ut without distinguishing between the FM valued full rank version ut solution
to (3.4) and the low-rank version Wt in F kM solution to (4.2).

4.2 The Principal Components

Euclidean Probabilistic PCA reduces the dimensionality of the data by considering
the latent variables conditioned on the observed data x|yi. This random variable
converges to the principal components as σ2 → 0. In the proposed model (4.2), the
latent process Xt takes the place of x. With non-zero curvature, the latent process
cannot directly summarize the observations in single vectors: sample paths Xt(ω)
generating paths π(Wt(ω)) hitting the same endpoint yi on M will in general not
have the same endpoint XT (ω) in Rk, see Figure 4 in the experiments, section 6.
However, we can still consider the conditioned latent variable processXt|π(WT ) = yi.
Since the latent process lives in Rk where we can take expectation (in contrast to
on M), and summarize by the mean of latent sample paths reaching yi:

X̄i,t = E[Xt|π(WT ) = yi] (4.4)

Thus X̄i,t take the role of the latent variables in PPCA. Note that given the source
W ∈ F kM , the sample paths can be equivalently viewed as paths π(Wt(ω)) on
M or as paths Xt(ω) in Rk. Examples of mean paths are illustrated in Figure 3.
In Rk, the data can be further summarized by integrating out the time dependence
from X̄i summarizing the data yi only in the latent endpoint Xi,T with mean X̄i,t.
The conditioned latent variables in this way provide a Euclideanization of the data
similar to those provided by the manifold PCA methods PGA, GPCA, HCA, and
BSA. Because of the process nature of the latent variable, the linearization will be
quite different from the linearizations provided by the these methods.

4.3 Zero Noise Limit

In the σ → 0 limit, PPCA recovers the original PCA formulation with projec-
tions to the latent space that either minimize residual error or maximize variance
of the projected data. In the nonlinear case (4.2), as σ tends to 0, we get an
FM diffusion that progressively concentrates its infinitesimal displacements around
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HWtF
kM . The small-time limit of the likelihood behaves Gaussian-like [24] in the

sense , limt→0 2t log pµu,t(y) = −dΣ−1 (u0, π
−1(y))

2 with dgΣ−1 the distance on FM in-
duced by the sub-Riemannian metric gΣ. We can then conjecture that, in the limit,
we recover projections to the latent space in a similar sense. If we let Q(u) denote
the subspace of FM reachable by horizontal paths starting at u ∈ FM , a natural
limit notion of the principal components would be

argminũ∈Q(u) dgΣ−1 (ũ, π−1(x))2 . (4.5)

We return to the space Q briefly below, and leave the question if the actual σ → 0
limit of the principal components take a form similar to (4.5) to future work.

4.4 Rotations and Subbundles

As discussed in section 3.3, the above construction is over specified in the sense of an
arbitrary rotation being present in the representation u of the covariance similarly
to the Euclidean case of specifying covariance with a square root W instead of the
actual covariance matrix Σ = WW T . We can handle this by quotienting out O(d),
instead specifying the construction on Sym+, see section 3.3. This has however little
influence in practice where the rotation implicit in the matrix u can just be ignored.

4.5 Curvature and Nonintegrability

While principal subspaces in the Euclidean case are linear subspaces of Rd, the
space Q(W ) of endpoints of curves starting at W ∈ F kM , staying horizontal, and
generated by the flow equation (3.4) is not in general a k-dimensional submanifold
of F kM . The geometric reason is that curvature is equivalent to non-integrability
of the horizontal distribution of the vector horizontal fields H1, . . . , Hk on F kM , i.e.
the V FM valued Lie brackets [Hi, Hj], 1 ≤ i, j ≤ k are non-zero for some i, j. Thus,
the Frobenius theorem tells us that the span doesn’t integrate to a k-dimensional
submanifold. This can be seen as the key consequence of curvature for PCA like
constructions defined via infinitesimal flows. In the present case, we do not need to
truncate the non-integrable span to obtain a k-dimensional submanifold as is done
when e.g. considering geodesic sprays starting at π(u). Instead, we simply model
the data as being distributed according to the development of horizontal stochastic
flows and thus avoid referring to subspaces in the PCA construction. Note that we
can still extract principal components as discussed above.

In some cases, we can say more about the structure of Q(W ) or Q(u). If k = d
and the bracket span Lie(H1, . . . , Hd} of the horizontal fields has constant dimension
for any point at M , there exists a subbundle of FM on which H1, . . . , Hd satisfies
the Hörmander condition. In this case, the reachable set Q(u) is this subbundle of
FM , and π(U) is a submanifold of M . Note that nonzero curvature implies that the
dimension dim(Q(u)) is greater than d. An example of this case can be seen for the
sphere S2 where the bracket span has rank 3 and Q(u) ' OS2 for any orthonormal u.
However, if the sphere is deformed to be locally flat in a neighborhood of π(u), the
rank of the bracket span is lowered to 2 in this neighborhood and the constant rank
condition fails.
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4.6 Extensions

As noted in [26], the probabilistic formulation has advantages beyond the theoretical
insight and the ability to perform estimation with MLE. This includes extension to
mixed models where data are assumed distributed according to a sum of multiple
latent models of the form (1.1), in effect allowing different centers m1, . . . ,mj or
more complicated shaped distributions. Similar flexibility is present in the mani-
fold situation. The stochastic process ut or Wt can be started at multiple points
u1, . . . , uj ∈ FM and the resulting densities averaged.

5 Inference and Predictions

We here describe two estimation approaches. The first is based on the estimators
described in [20, 24] that use the anisotropically weighted energy of the most prob-
able paths as surrogates for the log data likelihood. The second approach outlines
a Monte Carlo method for estimating transition densities from which the likelihood
can be optimized.

5.1 Most Probable Paths

In [24], the small time asymptotic limit of pµu,t( · ) is used to suggest the estimator

argminu∈FM
N∑

i=1

(
dΣ−1

(
u, π−1

u (yi)
)2 −N log

(
det(u)g

))
(5.1)

for the maximum likelihood fit of an anisotropic normal distribution to data points
y1, . . . , yN ∈M . The FM distance dΣ−1 is dependent on u, and a minimizer for (5.1)
can be found by iterative optimization. Because the small time asymptotic limit is
used, the estimator is reasonable for data with limited variation around π(u). The
dΣ−1 distances are realized by most probable paths on FM [22], a family of paths
that generalizes geodesics when u is not orthonormal.

5.2 Bridge Simulation

We generally do not wish to restrict to cases where the data variation is small.
As data variation and curvature increases, the estimator (5.1) will provide a pro-
gressively less precise approximation of the optimal likelihood (4.1). Instead, we
here describe a bridge simulation scheme based on the conditioned diffusion bridge
simulation method of [2] and the maximum likelihood estimation in [23].

In [2], simulation of diffusion processes xt ∈ Rd given by the Itô SDE

dxt = b(t, xt)dt+W (t, xt)dBt (5.2)

conditioned on hitting a point v ∈ Rd at time T is considered based on the idea
of adding a drift term that guides the diffusion towards the target v. The resulting
modified SDE takes the form

dx̃t = b(t, x̃t)dt−
x̃t − v
T − t dt+W (t, x̃t)dBt . (5.3)
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Under reasonable assumptions, including that W is invertible for all t, x, [2] shows
that Ext|v[f(xt)] = Ex̃t [f(x̃t)ϕ(x̃t)] for measurable maps f on W ([0, T ],Rd). Here ϕ
is a correction factor that takes into account the difference of the laws of the process
xt|v that is conditioned on hitting v at time T , and the modified process x̃t. Note
that x̃t by construction will hit v a.s. The density of xT can be recovered from this
construction as

p(v;x, T ) =

( |Σ−1(v)|
2πT

) d
2

e−
‖W (x)−1(x−v)‖2

2T Ex̃t [ϕ(x̃t)] (5.4)

with Σ = WW T .
We now suggest to use a similar approach for estimating the likelihood of the

data under the proposed manifold PPCA model. Because we do not have a diffusion
process with invertible diffusion field W as above (the process ut (or Wt) is only
semi-elliptic on FM), we will not here give a rigorous argument for the convergence
of the procedure. We will instead sketch an approach that uses the fact that the
data in the model is only observed at M while the process ut lives in FM . This
situation is related to the case of partial observations treated in [14], see also the
semi-elliptic phase-space flows in [1]. We assume we have a chart that covers M
except for a set of measure zero, and we use this to write the process in coordinates.
This is for example the case in the experiments we present in the next section for
data on surfaces in R3.

The idea is now to take coordinates on FM as in [15] and write the ut diffusion
as a process in coordinates. The coordinates imply a trivialization of FM so we can
write ut = (xt, νt) with xt ∈M and νt frames. We write the system in short form as

(
dxt
dνt

)
=

(
bx
bν

)
dt+

(
Wx

Wν

)
◦ dW . (5.5)

The Wx part is actually just ν by construction of the process. We then make a
modified process ũt = (x̃t, ν̃t)

(
dx̃t
dν̃t

)
=

(
bx
bν

)
dt−

(
ν̃
Wν

)
ν̃−1(x̃t − v)

T − t dt+

(
ν̃
Wν

)
◦ dW . (5.6)

Intuitively, the use of ν̃−1 in the drift term produces a correction that after multi-
plication on (ν̃,Wν)

T points in the direction x̃t − v on M while staying horizontal
on TFM .

Without arguing for convergence here, we aim for x̃t to hit v at time T because
of the added drift term. We then find the correction term ϕ as in [2], and arrive at
the expression

p(v;u, T ) =
(
2πT |u|2g

)− d
2 e−

‖u−1(x−v)‖2
2T Eũt [ϕ(ũt)] (5.7)

for the density of the process with correction term ϕ.
We can now write the density with respect to µ0, e.g. volg with g a Rieman-

nian metric, and sample from Eũt [ϕ(ũt)] with a Monte Carlo scheme. We do this
with Hamiltonian updates to keep the acceptance rate high. We can then optimize
for u = (x, ν) either by directly taking gradients with respect to u of the sample
approximation of the likelihood, or by an EM-approach.
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6 Experiments

We aim here to visualize the effect of the method and the influence of curvature on
two low-dimensional manifolds, the sphere S2 and a non-spherical ellipsoid. While
curvature effects are visible in both cases, the non-symmetrical nature of the el-
lipsoid emphasizes the differences to the Euclidean situation. For both manifolds,
we illustrate samples from the model with fixed mean and covariance encoded in
the frame bundle element u. We then for optimal u illustrate how the non-linearity
affects the principal components (4.4). After this, we illustrate iterations of a direct
optimization of the approximate data likelihood from the density expression (5.7)
using Monte Carlo sampling.
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Figure 1: Samples with corresponding trajectories on the sphere S2 and an ellipsoid. The
variance is 1 in the axis of major variation, and noise with variance σ = .1 is added in the
orthogonal direction.
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Figure 2: Density plots on the generated distribution on both surfaces.
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The experiments are performed using the differential geometry library Theano
Geometry2 that is based on the Theano framework [25] for symbolic expression,
automatic differentiation, and subsequent numerical evaluation. See also [12] for an
extended description of the use of automatic differentiation for differential geomet-
ric and nonlinear statistical computations. Sampling from the likelihood expression
(5.7) with Hamiltonian updates coupled with gradients for u involves very complex
expressions with high order derivatives that would be practically infeasible to derive
by hand. Fortunately, the use of automatic differentiation removes this complexity.

6.1 Density and Forward Sampling

Figure 1 shows samples from the probability model on the sphere S2 and the ellip-
soid with variance 1 in one axis, and noise with variance σ = .1 in the orthogonal
axis corresponding to the model (4.2). The starting point of the diffusion π(u) cor-
responding to the mean is on both surfaces the north pole. The trajectories of the
anisotropic process leading to the generated samples are visualized along with the
endpoints. Figure 2 shows the corresponding density on both surfaces.
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Figure 3: Samples from the process (5.6) conditioned on hitting the point v. The mean
path (blue) plotted deviates from a geodesic (red) to v because of the coupling between
the curvature and the anisotropic covariance.

2https://bitbucket.com/stefansommer/theanogeometry
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Figure 4: Samples from the latent process Xt corresponding to the samples in Figure 3.
The mean latent path is plotted in blue. Even though the process is conditioned on hitting v,
the endpoints (black) of the latent path deviates. The mean path is not straight and
therefore does not correspond to a geodesic on the surfaces.
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Figure 5: Density plot of the trajectories in Figure 4. A straight line (red) corresponding
to a geodesic on the surface from the north pole to v is plotted for comparison with the
mean path (blue solid).
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Figure 6: Samples used for the ML estimation in Figure 7.
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Figure 7: (left) Estimated likelihood as a function of iterations of the iterative ML opti-
mization. (right) Evolution of the variance and noise σ during the iterations of the algo-
rithm. Ground truth values in red.

6.2 Principal Components

For a fixed point v on the surfaces, Figure 3 shows sample trajectories from the
bridge process (5.6) generated with a Hamiltonian MCMC sampler for approximate
evaluation of the expectation in the density expression (5.7). The corresponding
samples from the latent process Xt are shown in Figure 4. Notice how the endpoints
of the latent process samples vary even though the trajectories on the surfaces
always end at v. This effect is a direct consequence of non-zero curvature. Figure 5
shows a density plot of the latent process, still conditioned on v. The mean latent
path is plotted in blue in Figure 4 and 5, and the development of the mean path
together with the parallel transported frame along the path are plotted on Figure 3.
In Euclidean space, the mean path would be a straight line corresponding to the
geodesics in Figure 3. While the mean latent paths for both surfaces clearly deviate
from straight lines, the effect of the curvature is clearly more emphasized on the
non-symmetric ellipsoid.

6.3 Maximum Likelihood

For the samples in Figure 6, we plot in Figure 7 the negative log-likelihood com-
puted from a sample approximation of (5.7), the estimated variance in the axis of
major variation, and σ. The horizontal axis shows the evolution of the negative
log-likelihood and estimated variance during the evolution of an iterative maximum
likelihood optimization. The samples are generated with variance .4 in the major
axis and σ = .075 noise. The algorithm makes repeated sample approximations
of (5.7), calculates the gradient and updates the parameters. As can be seen from
the figure, the parameter estimates converges approximately to the true values.
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7 Conclusion and Outlook

The probabilistic formulation in PPCA allows to generalize the PCA procedure to
manifolds with a focus on data likelihoods in contrast to constructions of subspaces.
This has previously been pursued with probabilistic PGA [27]. Here, we provide a
generalization based on a different probability model using stochastic flows in the
frame bundle and related fiber bundles. The main feature of the model is the intrinsic
definition that does not refer to a linear tangent space approximation, is infinitesimal
in modelling stochastic differential flows, and focuses on the generated likelihood
and density instead of squared Riemannian distances. The model uses fiber bundle
geometry that reveals important geometric information about the construction. As
an example, the non-integrability of the horizontal subbundle is directly related to
the curvature of the manifold. Instead of truncating the non-closure of the bracket
of the horizontal basis fields to provide a submanifold, the construction allows the
diffusion to spread into higher-dimensional subspaces. The data manifold is thereby
not linearized and the curvature preserved in the analysis of the data.

The construction is based on the anisotropic normal distributions defined in
[20, 24]. In addition to the presented PCA formulation, a regression model based on
these distributions has been presented in [13]. We hope in future work to be able
to use this and similar geometric constructions that preserve the nonlinear nature
of the data space to generalize more statistical procedures to analysis of manifold
valued data in intrinsic ways.
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