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Abstract

We define and study the existence of log Gaussian Cox processes (LGCPs)
for the description of inhomogeneous and aggregated /clustered point patterns
on the d-dimensional sphere, with d = 2 of primary interest. Useful theore-
tical properties of LGCPs are studied and applied for the description of sky
positions of galaxies, in comparison with previous analysis using a Thomas
process. We focus on simple estimation procedures and model checking based
on functional summary statistics and the global envelope test.

Keywords: Holder continuity, minimum contrast estimation, model checking,
point processes on the sphere, reduced Palm distribution, second order inten-
sity reweighted homogeneity.

1 Introduction

Statistical analysis of point patterns on the sphere have been of interest for a long
time (e.g. Pebles, 1974; Pebles and Groth, 1975; Ripley, 1977; Bahcall and Soneira,
1981; Scott and Tout, 1989; Raskin, 1994; Robeson et al., 2014; Lawrence et al., 2016;
Mpgller and Rubak, 2016). Although models and methods developed for planar and
spatial point processes may be adapted, statistical methodology for point processes
on the sphere is still in its infancy.

Recently, the focus has been on developing functional summary statistics and
parametric models. For homogeneous point patterns, Robeson et al. (2014) stud-
ied Ripley’s K-function on the sphere (Ripley, 1976, 1977), and Lawrence et al.
(2016) provided a careful presentation of Ripley’s K-function and other functional
summary statistics such as the empty space function F', the nearest-neighbour dis-
tance function G, and the J = (1 — G)/(1 — F) function, including how to account
for edge effects. See also Mgller and Rubak (2016) for details and the connection
to reduced Palm distributions. For inhomogeneous point patterns, Lawrence et al.
(2016) and Mgller and Rubak (2016) studied the pair correlation function and the
inhomogeneous K-function. The models which have been detailed are rather scare:
Homogeneous Poisson point process models (Raskin, 1994; Robeson et al., 2014),
inhomogeneous Poisson point process models and Thomas point process models for
aggregated /clustered point patterns (Lawrence et al., 2016; Section 2.2-2.3 in the



present paper), and determinantal point processes (Mgller and Rubak, 2016; Mgller
et al., 2018) for regular/repulsive point patterns.

This paper concerns inhomogeneous aggregated /clustered point patterns on the
sphere and studies how the theory of log Gaussian Cox processes (LGCP Mgller
et al., 1998) can be adapted to analysing such data. In particular, we demonstrate
that an inhomogeneous LGCP provides a better description of the sky positions
of galaxies analysed in Lawrence et al. (2016) by using an inhomogeneous Thomas
process. For comparison, as in Lawrence et al. (2016), we use a minimum contrast
procedure for parameter estimation, where we discuss the sensibility of the choice of
user-specified parameters. No model checking was done for the fitted inhomogeneous
Thomas process in Lawrence et al. (2016). We show how a thinning procedure apply
to generate homogeneous point patterns so that the F, G, J-functions can be used
for model checking.

The paper is organised as follows. Section 2 provides the setting and needed back-
ground material on point processes, particularly on Poisson and Cox processes, the
data example of sky positions of galaxies, and the inhomogeneous Thomas process
introduced in Lawrence et al. (2016). Section 3 contains the definition and existence
conditions for LGCPs on the sphere, studies their useful properties, and compares
the fitted Thomas processes and LGCPs for the data example. Finally, Section 4
summarizes our results and discusses future directions for research.

2 Background

2.1 Setting

Let S¢ = {x € R : ||z| = 1} denote the d-dimensional unit sphere included in the
(d + 1)-dimensional Euclidean space R**! equipped with the usual inner product
(x,y) = Z?:o x;y; for points x = (z9,...,24),y = (Yo, . ..,y4) € R¥! and the usual
length ||z|| = v/(z, z). We are mainly interested in the case of d = 2. For unit vectors
u,v € S let d(u,v) = arccos({u, v)) be the geodesic distance on the sphere.

By a point process on S% we understand a random finite subset X of S¢. We
say that X is isotropic if OX is distributed as X for any (d + 1) x (d + 1) rotation
matrix O. We assume that X has an intensity function, A(u), and a pair correlation
function, g(u,v), meaning that if U,V C S? are disjoint regions on the sphere and
N(U) denotes the cardinality of X NU, then

E[N(U)] :/U)\(u)du, E[N(U)N(V)] :/U/V)\(u))\(v)g(u,v)dudv,

where du is the Lebesgue/surface measure on S¢. We say that X is (first order)
homogeneous if A(u) = A is constant, and second order intensity reweighted homo-
geneous if g(u,v) = g(r) only depends on r = d(u, v). Note that these properties are
implied by isotropy of X, and second order intensity reweighted homogeneity allows
to define the (inhomogeneous) K-function (Baddeley et al., 2000) by

K(r) = /OTg(S) ds, >0 2.1)



2.2 Poisson and Cox processes

For a Poisson process X on S¢ with intensity function A, N(S¢) is Poisson distributed
with mean | A\(u)du and the points in X are independent identically distributed
with a density proportional to A. The process is second order intensity reweighted
homogeneous, with K-function

Kpis(r) = 2m(1 — cosr) ifd=2. (2.2)

Let Z = {Z(u) : u € S?} be a non-negative random field so that almost surely
[ Z(u) du is well-defined and finite, and each random variable Z(u) has finite vari-
ance. We say that X is a Cox process driven by Z if X conditional on Z is a Poisson
process on S¢ with intensity function Z. Setting 0/0 = 0, define the residual driving
random field by Zg = {Zo(u) : u € S?} where Zo(u) = Z(u)/A(u). Then the intensity
function and pair correlation function are

Au) =E[Z(u)],  g(u,v) = E[Zo(u)Zo(v)]. (2.3)

Thus X is second order intensity reweighted homogeneous if Zg is isotropic, that is,
{Zo(Ou) : u € S?} is distributed as Zg for any (d + 1) x (d + 1) rotation matrix O.
We shall naturally specify such Cox processes in terms of A and Zj.

2.3 Data example and inhomogeneous Thomas process

Figure 1a shows the sky positions of 10546 galaxies from the Revised New General
Catalogue and Index Catalogue (RNGC/IC) (Steinicke, 2015). Here, we are following
Lawrence et al. (2016) in making a rotation of the original data so that the two circles
limit a band around equator, which is an approximation of the part of the sky
obscured by the Milky Way, and the observation window W C S? is the complement
of the band; 64 galaxies contained in the band are omitted.

(a) Sky positions of galaxies before thinning. (b) Sky positions of galaxies after thinning.

Figure 1: The sky positions of (a) 10546 galaxies and (b) 3285 galaxies obtained after a
thinning procedure so that a homogeneous point pattern is expected to be obtained. The
circles limit the part of the sky obscured by the Milky Way.

Different plots and tests in the accompanying supporting information to Law-
rence et al. (2016) clearly show that the galaxies are aggregated and not well-
described by an inhomogeneous Poisson process model. Lawrence et al. (2016) fitted
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the intensity function
Au) = 6.06 — 0.112sin 6 cos ¢ — 0.149sin O sin ¢ 4 0.320 cos § + 1.971 cos* 0, (2.4)

where u = (sin  cos ¢, sin fsin ¢, cos #), 6 € [0, 7] is the colatitude, and ¢ € [0, 27)
is the longitude. Throughout this paper, we use this estimate.

Lawrence et al. (2016) proposed an inhomogeneous Thomas process, that is, a
Cox process with intensity function (2.4) and isotropic residual driving random field
given by

Zo(u) = Z fye(w)/k, u € S (2.5)

yeY

where Y is a homogeneous Poisson process on S? with intensity x > 0, and where

) = bl ue

is the density for a von Mises-Fisher distribution on S? with mean direction y and
concentration parameter £ > 0. They estimated x and 1 by a minimum contrast pro-
cedure (Diggle and Gratton, 1984; Diggle, 2013), where a non-parametric estimate
K is compared to

cosh(2¢) — cosh(/2€2(1 + cosr))

K = K = K 0is .
(7’) (R’n)(r) P (T) * 4K sm2§

Specifically, the minimum contrast estimate (%, 7) is minimising the contrast

/ (K ()" = K (r)**) " dr, (2.6)

where b > a > 0 are user-specified parameters. Lawrence et al. (2016) used the inte-
gration interval [a,b] = [0, 1.396], where 1.396 is the maximal value of the smallest
distance from the north pole respective south pole to the boundary of W. They
obtained & = 5.64 and é = 266.6.

3 Log Gaussian Cox processes

3.1 Definition and existence

Let Y = {log Y (u) : u € S} be a Gaussian random field (GRF), that is, > | ;Y (u;)
is normally distributed for any integer n > 0, numbers a,, . . ., a,, and u, ..., u, € S%
Let p(u) = EY (u) be its mean function and c(u, v) = E[(Y (u) — p(w)) (Y (v) — pu(v))]
its covariance function. Assuming that almost surely Z := exp(Y) is integrable, the
Cox process X driven by Z is called a log Gaussian Cox process (LGCP; Mgller
et al., 1998; Moller and Waagepetersen, 2004).

Define the corresponding mean-zero GRF, Y := Y —p, which has also covariance
function ¢, and let Xy be the LGCP driven by Zg := exp(Yy). Assuming  is a Borel
function with an upper bounded, then almost sure continuity of Z, implies almost
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sure integrability of Z, and so X is well-defined. In turn, almost sure continuity of
Z, is implied if almost surely Y is locally sample Holder continuity of some order
k > 0, which means the following: With probability one, for every s € S¢, there is a
neighbourhood V' of s and a constant Cy;, so that

Yo(u) — Y()(U)
d(u,v)k

sup < Cyg. (3.1)

u,veV,u#v

The following proposition, which follows from Lang et al. (2016, Corollary 4.5),
provides a simple condition ensuring (3.1).

Proposition 3.1. Let
Y(u,v) = E[(Yo(u) — Yo(v))?]
be the variogram of a mean-zero GRF Y. Suppose there exists numbers s € (0, 1],

e (0,1), and m > 0 such that

/2

v(u,v) < md(u,v) whenever d(u,v) < s. (3.2)

Then, for any k € (0,¢/2), almost surely Y is locally sample Héolder continuous of
order k.

3.2 Properties

The following proposition is verified along similar lines as Proposition 5.4 in Mgller
and Waagepetersen (2004) using (2.3) and the expression for the Laplace transform
of a normally distributed random variable.

Proposition 3.2. A LGCP X has intensity function and pair correlation functions
given by
A(u) = exp(p(u) + c(u,u)/2),  g(u,v) = exp(c(u, v)), (3.3)
where |1 and ¢ are the mean and covariance functions of the underlying GRF.
In other words, the distribution of X is specified by (A, g) because p(u) =
log A(u) —log g(u, u)/2 and c(u,v) = log g(u, v) specify the distribution of the GRF.
Proposition 3.2 extends as follows. For a general point process on S¢, the n-th order

pair correlation function g(uq,...,u,) is defined for integers n > 2 and multiple
disjoint regions U ..., U, C S by

BN (0 N @) = [ o [ M) M) gl ) -

provided this multiple integral is well-defined and finite. For the LGCP, this is the
case for any n and

glug, ..., uy) = exp< Z c(u;, u])> (3.4)

1<i<j<n

This follows as in Mgller and Waagepetersen (2003, Theorem 1).
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By (3.3), second order intensity reweighted homogeneity of the LGCP is equiv-
alent to isotropy of the covariance function, that is, ¢(u,v) = ¢(r) depends only on
r = d(u,v). Parametric classes of isotropic covariance functions on S are provided
by Gneiting (2013) and Mgller et al. (2018). In this paper, we use the so-called
multiquadric covariance function which is isotropic and given by

_ (1-0)? ’
Cloom)(T) =0 (1 5 asconr ) r € 0,7, (3.5)
where (0,0, 7) € (0,00) x (0,1) x (0, 00).

Proposition 3.3. A mean-zero GRF Y with multiquadric covariance function is
locally sample Hélder continuous of any order k € (0,1).

Proof. By (3.5), for r = d(u,v),
V(U V) = 2¢(6,5,1)(0) — 2¢(0,5.)(1) = 202 (1 — 0(17571)(7‘)7) . (3.6)
Here, letting p = 26/(1 + 6?),

B (1—6)2 _1-p
 1462—25cosr 1—pcosr

C(1,5,1)(7“)

> 1 —pr2/2, (3.7)

where the first inequality follows from 0 < p < 1 because 0 < § < 1, and the second
inequality follows from 1 — cosz < 22/2 whenever 0 < x < 1. If 7 < 1, then

¥(u,v) < 202 (1 — 0(1,571)(7")) < po?r?,

where the first inequality follows from (3.6) and the second from (3.7). If 7 > 1,
then for any « € (0, 2],

Y(u,v) < 20%(1 = (1 —pr?/2)7) < po*rr? < po’rre,

where the first inequality follows from (3.6)-(3.7) and the second from 1 — (1 —z)" <
x7 whenever 0 < x < 1. Hence, for any (0,d,7) € (0,00) x (0,1) x (0,00) and
any a € (0,2), (3.5) satisfies (3.2) with s = 1, £ = 2a, and m = po®7, where
7 =max(1, 7). O

Incidentally, a word about the reduced Palm distribution of X at a given point
u € S¢. Intuitively, this is the distribution of X \ {u} conditional on that u € X;
see Lawrence et al. (2016) and Mgller and Rubak (2016). Along similar lines as in
Coeurjolly et al. (2017, Theorem 1), we obtain the following result.

Proposition 3.4. Consider a LGCP X those underlying GRF has mean and cova-
riance functions p and c. For any u € S¢, the reduced Palm distribution of X at u
is a LGCP where the underlying GRF has mean function m,(v) = m(v) + c(u,v)
and unchanged covariance function c.



3.3 Comparison of fitted Thomas processes and LGCPs for
the data example

In this section, to see how well the estimated Thomas process, Xnom Say, obtained
in Lawrence et al. (2016) fits the sky positions of galaxies discussed in Section 2.3, we
use methods not involving the K-function (or the related pair correlation function,
cf. (2.1)) because it was used in the estimation procedure.

The point pattern in Figure 1b was obtained by an independent thinning pro-
cedure of the point pattern in Figure la, with retention probability Ay, /A(u) at
location u € W, where A(u) is given by (2.4) and Ay = inf,ew /A(u). Thus the
corresponding thinned Thomas process, XininThom Say, is homogeneous so that the
F, G, J-functions apply (see Section 1 and the references therein). Empirical esti-
mates F G J can then be used as test functions for the global rank envelope test,
which is supplied with graphical representations of global envelopes for F G J as
described in Myllyméki et al. (2017). As we combined all three test functions as
discussed in Mrkvicka et al. (2016) and Mrkvicka et al. (2017), we followed their
recommendation of using 3 x 2499 = 7497 simulations of XininThom for the calcula-
tion of p-values and envelopes. In Table 1, the limits of the p-intervals correspond to
liberal and conservative versions of the global rank envelope test (Myllymaéki et al.,
2017). Table 1 and Figure 2a—2c clearly show that the estimated Thomas process
is not providing a satisfactory fit no matter if in the contrast (2.6) the long inte-
gration interval [a,b] = [0, 1.396] from Lawrence et al. (2016) or the shorter interval
[a,b] = [0,0.175] (corresponding to 0-10 degrees) is used for parameter estimation.
When [a,b] = [0,0.175], larger estimates & = 6.67 and £ = 353.94 are obtained as
compared to & = 5.64 and £ = 266.6 from Lawrence et al. (2016). Note that the
p-values and envelopes are not much affected by the choice of integration interval
in the minimum contrast estimation procedure, cf. Table 1 and Figure 2a—2c. The
envelopes indicate that at short inter-point distances r, there is more aggregation in
the data than expected under the two fitted Thomas processes.

Table 1: Intervals for p-values obtained from the global envelope test based on combin-
ing the F, G, J-functions and using either a short or long integration interval [a,b] when
calculating the contrast used for parameter estimation in the Thomas process or the LGCP.

[a,b] = [0,0.175]  [a,b] = [0, 1.396]

Thomas process 0.01% - 1.05% 0.01% —1.28%
LGCP 24.02% —24.09% 0.01%-1.23%

We also fitted an inhomogeneous LGCP, Xy gcp say, still with intensity function
given by (2.4) and with multiquadric covariance function as in (3.5). The same min-
imum contrast procedure as above was used except of course that in the contrast
given by (2.6), the theoretical K-function was obtained by combining (2.1), (3.3),
and (3.5), where numerical calculation of the integral in (2.1) was used. The esti-
mates are (62,0,7) = (4.50,0.99,0.25) if [a, b] = [0,0.175] is the integration interval,
and (62,6,7) = (1.30,0.87,2.03) if [a,b] = [0,1.396]. For each choice of integration
interval, Figure 3 shows the estimated log pair correlation function, that is, the esti-



(d) F-function (LGCP).

(e) G-function (LGCP)

(f) J-function (LGCP).
Figure 2: Empirical functional summary statistics and 95% global envelopes under (a)—(c)
fitted Thomas process and (d)—(f) fitted LGCPs for the sky positions of galaxies after
thinning. The solid lines show F(r),G(r), J(r) versus distance r (measured in radians).

a
The dotted and dashed lines limit the global envelopes and correspond to the short and
long integration intervals [a,b] = [0,0.175] and [a, b] = [0, 1.396], respectively, used in the
minimum contrast estimation procedure.

Figure 3: Plot of estimated pair correlation functions g(r) (on a logarithmic scale)
versus r € [0,7] for the LGCP when different integration intervals [a,b] were used in
la,b] = [0,1.396]).

the minumum contrast estimation procedure (dotted line: [a,b] = [0,0.175]; dashed line:




mated covariance function of the underlying GRF, cf. (3.3). Comparing the two pair
correlation functions, the one based on the short integration interval is much larger
for very short inter-point distances r, then rather similar to the other at a short
interval of r-values, and afterwards again larger, so the fitted LGCP using the short
integration interval is more aggregated than the other case. Further, Figure 4 shows
the empirical K-function and the fitted K-functions for both the Thomas process
and the LGCP when using the different integration intervals (for ease of comparison,
we have subtracted Kpos, the theoretical K-function for a Poisson process, cf.(2.2)).
The fitted K-functions are far away from the empirical K-function for large values
of r. However, having a good agreement for small and modest values of r is more
important, because the variance of the empirical K-function seems to be an increas-
ing function of r and the interpretation of the K-function becomes harder for large
r-values. For small and modest r-values, using the LGCP model and the short inte-
gration interval provides the best agreement between the empirical K-function and
the theoretical K-function, even when r is outside the short integration interval.

0.05 0.10

0.00

-0.05

00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14

(a) Integration interval [0,0.175]. (b) Integration interval [0,1.396].

Figure 4: Fitted K-functions minus the theoretical Poisson K-function versus distance r
for the sky positions of galaxies when using different integration intervals in the minumum
contrast estimation procedure. The solid lines correspond to the empirical functional sum-
mary statistics, and the dashed and dotted lines correspond to the theoretical functional
summary statistics under the fitted Thomas processes and LGCPs, respectively.

Table 1 and Figure 2d-2f show the results for the fitted LGCPs when making
a model checking along similar lines as for the fitted Thomas processes (i.e., based
on a thinned LGCP and considering the empirical F, G, J-functions together with
global envelopes). Table 1 shows that the fitted LGCP based on the long integration
interval gives an interval of similar low p-values as for the fitted Thomas process in
Lawrence et al. (2016), and Figure 2e-2f indicate that the data is more aggregated
than expected under this fitted LGCP. Finally, the fitted LGCP based on the short
integration interval gives p-values of about 24%, and the empirical curves of the
functional summary statistics appear in the center of the envelopes, cf. Figure 2d-2f.



4 Concluding remarks

As demonstrated in this paper, a LGCP on the sphere possesses useful theoretical
properties, in particular moment properties and a simple characterization of the
reduced Palm distribution as another LGCP. We exploited the expressions for the
intensity and pair correlation function when dealing with the inhomogeneous K-
function, which concerns the second moment properties of a second order intensity
reweighted homogeneous point process. Higher-order pair correlation functions as
given by (3.4) may be used for constructing further functional summaries e.g. along
similar lines as the third-order characteristic studied in Mgller et al. (1998). It would
also be interesting to exploit the result for the reduced Palm distribution as discussed
in Coeurjolly et al. (2017).

For comparison with the analysis of the sky positions of galaxies in Lawrence
et al. (2016), we used a minimum contrast estimation procedure, but other simple
and fast methods such as composite likelihood (Guan, 2006; Mgller and Waage-
petersen, 2017, and the references therein) could have been used as well. It is well-
known that such estimation procedures can be sensitive to the choice of user-specified
parameters. We demonstrated this for the choice of integration interval in the con-
trast, where using a short interval and an inhomogeneous LGCP provided a satisfac-
tory fit, in contrast to using an inhomogeneous Thomas process or a long interval.
It could be interesting to use more advanced estimation procedures such as maxi-
mum likelihood and Bayesian inference. This will involve a time-consuming missing
data simulation-based approach (Mgller and Waagepetersen, 2004, 2017, and the
references therein).

The Thomas process is a mechanistic model since it has an interpretation as a
cluster point process (Lawrence et al., 2016). The original Thomas process in R3
(i.e., using a 3-dimensional isotropic zero-mean normal distribution as the density
for a point relative to its cluster centre) may perhaps appear natural for positions
of galaxies in the 3-dimensional space — but we question if the Thomas process from
Lawrence et al. (2016) is a natural model for the sky positions because these points
are obtained by projecting clusters of galaxies in space to a sphere which may not
produce a clear clustering because of overlap. Rather, we think both the inhomoge-
neous Thomas and the inhomogeneous LGCP should be viewed as empirical models
for the data. Moreover, it could be investigated if the Thomas process replaced by
another type of Neyman-Scott process (Neyman and Scott, 1958, 1972) or a (gener-
alised) shot noise Cox process (Moller, 2003; Mgller and Torrisi, 2005) would provide
an adequate fit.

As a specific model, we only considered the multiquadric covariance function for
the underlying GRF of the LGCP. A more flexible model could be the spectral model
studied in Mgller et al. (2018), where a parametric model for the eigenvalues of the
spectral representation of an isotropic covariance function ¢(r) (r > 0) in terms
of spherical harmonics is used (incidentally, the eigenvalues are also known for the
multiquadric covariance function if 7 = 1/2). The spectral representation allows a
Karhunen-Loéve representation which could be used for simulation. However, for
the data analysed in this paper, we found it easier and faster just to approximate
the GRF Y = {Y(u) : u € $?}, using a finite grid I C S* so that each Y (u) is
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replaced by Y (v) if v is the nearest grid point to u, and using the singular value
decomposition when simulating the finite random field {Y (v) : v € I'}. When using
spherical angles (0,1) as in (2.4), a regular grid over [0, 7] X [0,27) can not be
recommended, since the density of grid points will large close to the poles and small
close to equator. Using a regular grid I C S? avoids this problem, nonetheless, there
are only five regular grids on the sphere (Coxeter, 1973). We used a nearly-regular
grid consisting of 4098 points on the sphere (Szalay et al., 2007, and the references
therein) and computed using the R package mvmesh (Nolan, 2016).
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