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Abstract

The Matérn family of isotropic covariance functions has been central to the
theoretical development and application of statistical models for geospatial
data. For global data defined over the whole sphere representing planet Earth,
the natural definition of the distance between two locations is the great-circle
distance. In this setting, the Matérn family is no longer valid, and finding a
suitable analogue for modelling data on the sphere has for some time been an
open problem.

This paper proposes a new family of isotropic covariance functions for
random fields defined on the sphere. The family has four parameters, one of
which indexes the mean square differentiability of the corresponding Gaussian
field. The new family also allows for any admissible range of fractal dimension.

We describe a simulation to show the behaviour of the maximum likeli-
hood parameter estimation under fixed domain asymptotics, this being the
relevant asymptotic regime for sampling a closed set. As expected, the results
support the analogous result for planar processes that not all parameters can
be estimated consistently under fixed domain asymptotics.

We apply the proposed model to a data-set of precipitable water content
over a large portion of the Earth and show that the model gives more precise
predictions of the underlying process at unsampled locations than does Matérn
model using chordal distances. Technical details are given in an Appendix.

Keywords: Great-circle distance; Fractal Dimensions; Matérn covariance; Mean
Square Differentiability
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1 Introduction

The last decades have seen an unprecedented increase in the availability of georef-
erenced data-sets of global extent, for example in the form of environmental mon-
itoring networks or climate model ensembles (Castruccio and Stein, 2013; Porcu
et al., 2018a), and motivated by the increasing interest in climate-change (IPCC,
2013). This increase in data-availability has in turn motivated the mathematical
and statistical communities to develop models for random fields defined on the two-
dimensional surface of the sphere, representing our planet.

By far the most tractable class of random fields is a Gaussian field, whose prop-
erties are completely determined by its first two order moments. Thus, correct spec-
ification of the covariance function is crucial for parametric inference and optimal
spatial prediction (Stein, 1999).

Valid covariance functions are positive definite functions. Proving positive-def-
initeness for a candidate covariance function is non-trivial. We refer the reader to
Schoenberg (1942), Gneiting (2013), Berg and Porcu (2017) and Porcu et al. (2016)
for the established theory about positive definite functions on d-dimensional spheres
of Rd+1. Also, comprehensive recent reviews can be found in Jeong et al. (2017) and
Porcu et al. (2018a).

In spatial statistics, it is very common to assume the covariance function of a
random field Z(x) to be isotropic, that is the covariance between Z(x1) and Z(x2)
depends only on the distance between x1 and x2. For global data, the natural metric
is the geodesic or great-circle distance, defined as the shortest arc joining two points
located over the spherical shell. If the domain of interest covers a small portion of
the Earth, then the curvature of the Earth has a negligible impact and Euclidean
distance based on some map projection can be used, but this becomes increasingly
inaccurate as the spatial coverage of the data increases.

The chordal distance has been used as an alternative to the geodesic (see Jun
and Stein, 2007, with the references therein), but has obvious limitations when the
data extend over a substantial proportion of the planet. A detailed critique on the
use of chordal distance is provided by Gneiting (2013) and by Porcu et al. (2018a).

The Matérn covariance function (Stein, 1999) is widely considered as the default
choice for modelling spatial covariance. Its main attractive feature is its inclusion
of a parameter that alows the user to control the mean square differentiability of
the associated Gaussian process. This is a key consideration because mean square
differentiability is difficult to estimate empirically, but materially affects the proper-
ties of spatial prediction under infill asymptotics (see Stein, 1999, and the references
therein) and of parameter estimation (Zhang, 2004). The Matérn covariance also has
a nice closed form for the associated spectral density, which is convenient for the-
oretical analysis of the properties of maximum likelihood (ML) estimators (Zhang,
2004), approximate likelihood (Bevilacqua et al., 2012; Furrer et al., 2006; Kaufman
and Shaby, 2013) and misspecified linear unbiased prediction (Stein, 1999) under
infill asymptotics. A wealth of results is also available within SPDE’s with Gaussian
Markov approximations (Lindgren et al., 2011) as well as in the numerical analysis
literature. We refer the reader to Scheuerer et al. (2013) for more details.

Gneiting (2013) and Porcu et al. (2018a) show that differentiable Matérn covari-
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ance functions are no longer positive definite on the sphere when coupled with the
geodesic distance. Jeong and Jun (2015a) and Guinness and Fuentes (2016) have
addressed the problem of obtaining a spherical analogue of the Matérn function
that allows different degrees of flexibility. Jeong and Jun (2015a) suggest smoothing
a process with non-differentiable covariance over a spherical cap with given radius.
Their approach does not allow for closed forms. Guinness and Fuentes (2016) propose
two examples that use Bernoulli polynomials and linear combinations of hypergeo-
metric polynomials. These models do not allow for a continuous parameterisation
of differentiability. Also, the authors find that their performance is poorer than the
Matérn coupled with chordal distance, both for estimation and prediction, leading
them to claim that they do not see any evidence that the use of chordal distance
introduces any distortions. This is in sharp contrast with Banerjee (2005), Jeong
and Jun (2015b) and Porcu et al. (2016) who show exactly the opposite.

Spectral representations can be useful to understand the properties of the asso-
ciated Gaussian field. Guinness and Fuentes (2016) proposed the so called Circular
Matérn model based on Fourier series expansions with a parameter that controls
mean square differentiability. A drawback of this construction is that no closed forms
are in general available, so that in practice truncated versions of the series have to
be used, in which case the resulting covariance function is no longer strictly positive
definite (Porcu et al., 2018a). Furthermore, when the smoothing parameter is small,
the convergence of the series is very slow. Despite these theoretical objections, the
Circular Matérn model can perform well in practice, and we will use it as a valid
competitor to our proposed model.

In conclusion, the search for covariance functions on spheres that allow for a con-
tinuous parameterisation of smoothness has proved elusive, and has been explicitly
stated as an open problem in two collections of challenges posed by Gneiting (2013)
and by Porcu et al. (2018a). We provide a solution to this problem.

The plan of the paper is the following. Section 2 contains preliminaries needed
for the subsequent presentation. Section 3 introduces the F -Family of covariance
functions on spheres. We then study mean square differentiability and fractal di-
mension properties of spherical Gaussian fields with the new covariance function.
Section 4 describes a simulation study to understand how well the paramaters of
the new covariance function can be estimated through ML. Our simulation study
mimics the infill asymptotic framework (Stein, 1999) that is relevant for processes on
a closed and bounded set. We especially focus on the estimation of scale, variance,
and microergodic parameter when the smoothing parameter is fixed. Our simula-
tions suggest, as expected, that consistent estimation of the scale and variance pa-
rameters is not achieveable, but that the microergodic parameter can be estimated
consistently. Section 5 analyses a dataset of precipitable water content over a large
portion of the planet. We show that the new model of covariance functions has a
better predictive performance on this data-set than the Matérn and the Circular
Matérn. The paper concludes with discussion. Technical details and generalisations
that might be useful for future research are given in Appendix A and B respectively.
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2 Background

This section provides a background on random fields on spheres, their covariance
functions and their spectral representation. We first introduce some notation. For
a positive integer d, Sd = {x ∈ Rd+1, ‖x‖ = 1} denotes the surface of the d-
dimensional unit sphere embedded in Rd+1, with ‖ · ‖ denoting Euclidean distance.
We shall sometimes refer to the Hilbert sphere S∞ = {x ∈ RN, ‖x‖ = 1}. The
natural metric on Sd is the great-circle distance,

θ(x1,x2) = arccos(x>1 x2) ∈ [0, π],

for x1,x2 ∈ Sd, where > denotes transpose. The chordal distance on Sd is

dCH(x1,x2) = 2 sin

(
θ(x1,x2)

2

)
, x1,x2 ∈ Sd. (2.1)

One can compute the Euclidean distance between any two points on a planar map
projection of Sd.

We denote by {Z(x),x ∈ Sd} a stationary random field on Sd, with constant
mean and covariance function C(x1,x2) = cov{Z(x1), Z(x2)}, for x1,x2 ∈ Sd. The
requirement for validity of a candidate function C(x1,x2) is that for any positive
integer n, {x1, . . . ,xn} ⊂ Sd and {c1, . . . , cn} ⊂ R,

var

( n∑

i=1

ciZ(xi)

)
=

n∑

i,j=1

cicjC(xi,xj) ≥ 0. (2.2)

Mappings C that satisfy Equation (2.2) are called positive definite, or strictly posi-
tive definite if the inequality is strict for any non-zero vector (c1, . . . , cn)>.

If in addition

C(x1,x2) = σ2ψ(θ(x1,x2)), xi ∈ Sd, i = 1, 2, (2.3)

for some value σ2 > 0 and mapping ψ : [0, π] → R such that ψ(0) = 1, then
C is called a geodesically isotropic covariance (Porcu et al., 2018a), and σ2 is the
variance of Z(x). Throughout, we use θ to denote great-circle distance whenever no
confusion can arise. Also, we shall not distinguish between positive and strict positive
definiteness unless specifically required. We define Ψd as the class of continuous
functions ψ with ψ(0) = 1 associated to the covariance function C on Sd through
the identity (2.3). We also define Ψ∞ =

⋂∞
d=1 Ψd, with the strict inclusion relation

Ψ1 ⊃ Ψ2 ⊃ · · · ⊃ Ψd ⊃ · · · ⊃ Ψ∞.

Spectral representations for positive definite functions on spheres are equivalent to
Bochner and Schoenberg’s theorems in Euclidean spaces (see Daley and Porcu, 2013,
and references therein). Schoenberg (1942) showed that a mapping ψ : [0, π] → R
belongs to the class Ψd if and only if it can be uniquely written as

ψ(θ) =
∞∑

n=0

bn,d
P

(d−1)/2
n (cos θ)

P
(d−1)/2
n (1)

, θ ∈ [0, π], (2.4)
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Table 1: Parametric families of members of the classes Ψ∞ whose Schoenberg coefficients
are available in closed form.

Family Analytic expression Parameters range

Negative Binomial ψ(θ) =
(

1−δ
1−δ cos θ

)τ
δ ∈ (0, 1), τ > 0

Multiquadric ψ(θ) =
(

(1−p)2
1+p2−2p cos θ

)τ
p ∈ (0, 1), τ > 0

Sine Power ψ(θ) = 1− 2−α(1− cos θ)α/2 α ∈ (0, 2]

Poisson ψ(θ) = exp
(
λ(cos θ − 1)

)
λ > 0

where P λ
n denotes the λ-Gegenbauer polynomial of degree n (Abramowitz and Ste-

gun, 1964), and {bn,d}∞n=0 is a probability mass sequence. On the two dimensional
sphere of R3, Gegenbauer polynomials simplify to Legendre polynomials (Abramo-
witz and Stegun, 1964).

Schoenberg (1942) also showed that ψ belongs to the class Ψ∞ if and only if

ψ(θ) =
∞∑

n=0

bn(cos θ)n, θ ∈ [0, π], (2.5)

with {bn}∞n=0 being again a probability mass sequence. We follow Daley and Porcu
(2013) in calling the sequences {bn,d}∞n=0 in (2.4) d-Schoenberg sequences of coeffi-
cients, to emphasise the dependence on the index d in the class Ψd. Analogously, we
call {bn}∞n=0 Schoenberg coefficients. Fourier inversion allows for an explicit repre-
sentation of the sequences {bn,d}. Specifically,

bn,d = κ(n, d)

∫ π

0

ψ(θ)P (d−1)/2
n (cos θ) (sin θ)d−1 dθ, ψ ∈ Ψd, (2.6)

where κ(n, d) is a positive constant (see Berg and Porcu, 2017).
Lang and Schwab (2013) show that the rate of decay of the d-Schoenberg co-

efficients determines the regularity properties of the associated Gaussian field in
terms of interpolation spaces and Hölder continuities of the sample paths. The d-
Schoenberg coefficients are useful in contexts as diverse as spatial statistics (Guinness
and Fuentes, 2016), equivalence of Gaussian measures and infill asymptotics (Arafat
et al., 2018), approximation theory (Menegatto et al., 2006; Beatson et al., 2014;
Ziegel, 2014; Massa et al., 2017) and spatial point processes (Møller et al., 2018).

Parametric families within the class Ψ∞ are listed in Table 1. Each is obtained by
evaluating the probability generating function associated with a particular probabil-
ity mass sequence. The Schoenberg sequence of the last entry is provided in Porcu
et al. (2016). For the Sine Power family, the Schoenberg coefficients have been ob-
tained by Soubeyrand et al. (2008). Other parametric families whose Schoenberg
coefficients are not available are listed in Gneiting (2013).

The first entry in Table 1 is called the Negative Binomial family, which we denote
byNδ,τ for it. The name comes from the fact that it corresponds to using the negative
binomial probability distribution,

bn(δ, τ) =

(
n+ τ − 1

n

)
δn(1− δ)τ , δ ∈ (0, 1), τ > 0, (2.7)
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for the coefficient sequence bn in (2.5). The Multiquadric family is obtained through
the same Schoenberg sequence but under the change of variable δ = 2p/(1 + p2).

The d-Schoenberg coefficients can be calculated explicitly using Theorem 4.2(b)
in Møller et al. (2018). We refer the leader to Appendix A for details about d-
Schoenberg coefficients and spectral representations over spheres.

One limitation of both the negative binomial and multiquadric families is that
they are infinitely differentiable at the origin, making them not very appealing for
spatial interpolation, as explained in Stein (1999). Nevertheless, we shall use the
function Nδ,τ as the starting point for the construction of our proposed more flexible
family.

The Matérn class of covariance functions specifies that cov{Z(x1), Z(x2)} =
σ2Mν,α(‖x1 − x2‖) where

Mν,α(t) =
21−ν

Γ(ν)

(
t

α

)ν
Kν
(
t

α

)
, t ≥ 0, (2.8)

α > 0, ν > 0 and Kν is a modified Bessel function of the second kind (Abramowitz
and Stegun, 1964). The importance of the Matérn class stems from the parame-
ter ν that controls the differentiability (in the mean square sense) of the associated
Gaussian field. Specifically, for any positive integer k, a Gaussian field with Matérn
covariance function is k-times mean square differentiable if and only if ν > k. Also
the Matérn function converges to the Gaussian kernel as ν →∞. When ν = k+1/2,
for k a positive integer, the Matérn simplifies into the product of an exponential
covariance with a polynomial of order k. For instance, M1/2,1(t) = exp(−t) and
M3/2,1(t) = exp(−t)(1 + t).

The Matérn covariance function is not in general a valid covariance function
on S2. Lemma 1 in Gneiting (2013) shows that the restriction Mν,α(θ), θ ∈ [0, π],
is not a member of the class Ψ1 if ν > 1/2. Thus, the Matérn class cannot be
used to recover arbitrary degrees of differentiability on spheres. Note also that all
the parametric families listed in Table 1 are either nondifferentiable or infinitely
differentiable at the origin, and therefore cannot mimick the role of the Matérn
function over spheres. The Matérn covariance functions is valid on the sphere in
conjunction with chordal distance, but for the reasons given above this is generally
unsatisfactory.

For data on the surface of the sphere, Guinness and Fuentes (2016) have proposed
the Circular Matérn covariance function, Cν,α, given by

Cν,α(θ) =
∞∑

n=0

bn,1 cos(nθ), 0 ≤ θ ≤ π. (2.9)

In (2.9), the 1-Schoenberg coefficients are

bn,1 =
1

S(α, ν)
(n2 + α2)−ν−1/2,

with S(α, ν) =
∑∞

n=0(n
2 + α2)−(ν+1/2). The function Cα,ν belongs to the class Ψ1

for any positive α and ν. Further, arguments in Gneiting (2013) show that Cα,ν

6



belongs to the class Φ3. The 3-Schoenberg coefficients can be determined according
to Lemma 1 in Gneiting (2013). This model is an adaptation of the classical spectral
representation of the Matérn covariance on Euclidean spaces to the spherical case.
Guinness and Fuentes (2016) show that the parameter ν controls the mean square
differentiability of the associated Gaussian field on S2, but no closed form expressions
are available.

3 The F-Family of Covariance Functions

We now let

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, z ∈ R,

denote the Gauss Hypergeometric function, where (·)n denotes the Pochammer sym-
bol and B(·) the Beta function (Abramowitz and Stegun, 1964). We now define the
F = Fτ,α,ν family of functions through the identity

Fτ,α,ν(θ) =
B(α, ν + τ)

B(α, ν)
2F1(τ, α, α + ν + τ ; cos θ), θ ∈ [0, π], (3.1)

Where τ, α and ν are strictly positive parameters. The main result of this section is
the following Theorem.

Theorem 3.1. Let τ , α and ν be strictly positive. Then, the function Fτ,α,ν(·) defined
through Equation (3.1) is a member of the class Ψ∞.

Proof. We give a constructive proof on the basis of the following criterion that can
be found in Lemma 1 in Gneiting (2013), adapted to our notation.

Lemma 3.2. Let A be a subset of the Euclidean space and let µ be a Borel probability
measure on A. Let ψc : [0, π] → R be an element of the class Ψ∞ for any c ∈ A.
Then the function ψ : [0, π]→ R defined by

ψ(θ) =

∫

A

ψc(θ)µ(dc), θ ∈ [0, π], (3.2)

belongs to the class Ψ∞.

We now consider the Negative Binomial family Nδ,τ and the Beta probability
measure

µα,ν(dδ) =
1

B(α, ν)
δα−1(1− δ)ν−1dδ, δ ∈ (0, 1), α, ν > 0. (3.3)

We now invoke Lemma 3.2 to claim that Fτ,α,ν ∈ Ψ∞ because

Fτ,α,ν(θ) =

∫

(0,1)

Nδ,τ (θ)µα,ν(dδ), θ ∈ [0, π]. (3.4)
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In fact, direct inspection shows that, for θ ∈ [0, π],

1

B(α, ν)

∫ 1

0

(
1− δ

1− δ cos θ

)τ
δα−1(1− δ)ν−1dδ

=
1

B(α, ν)

∫ 1

0

( ∞∑

n=0

(
n+ τ − 1

n

)
(1− δ)τδn(cos θ)n

)
δα−1(1− δ)ν−1dδ

=
B(α, ν + τ)

B(α, ν)

∞∑

n=0

(∫ 1

0

δn
δα−1(1− δ)τ+ν−1
B(α, ν + τ)

dδ

)
(τ)n
n!

(cos θ)n, (3.5)

where the second equality comes from (2.7), and the last equality comes from
bounded convergence. Note that the integral of the last expression corresponds to
the n-th moment of a Beta distribution with shape parameters α and τ + ν, which
is given by (α)n/(α + τ + ν)n (Johnson et al., 1995). Thus, it follows that (3.5) is
identically equal to

B(α, ν + τ)

B(α, ν)

∞∑

n=0

(α)n(τ)n
(α + ν + τ)n

(cos θ)n

n!

=
B(α, ν + τ)

B(α, ν)
2F1(τ, α, α + ν + τ ; cos θ),

(3.6)

θ ∈ [0, π], which shows that (3.4) and (3.1) agree as asserted. The proof is completed
by invoking the Schoenberg (1942) theorem together with Equation (2.5).

The proof of Theorem 3.1 also shows that the Schoenberg coefficients related to
the spectral expansion of Fτ,α,ν on the Hilbert sphere S∞ are uniquely defined as

bn(τ, α, ν) =
B(α, ν + τ)

B(α, ν)

(α)n(τ)n
(α + ν + τ)nn!

, n = 0, 1, . . . (3.7)

Theorem 4.2(b) in Møller et al. (2018) can be used to calculate the associated
d-Schoenberg coefficients bn,d(τ, α, ν). The detailed calculations are given in Ap-
pendix A.

3.1 Mean Square Differentiability

Let Z(x), for x ∈ Sd, be a Gaussian random field with geodesically isotropic co-
variance function C specified, as in Equation (2.3), by some member ψ within the
class Ψd. Let Hψ be the Hilbert space of linear combinations of Z(x) with finite vari-
ance. A great-circle of Sd is the intersection between Sd with any plane that passes
through the origin. We let X denote the set of great circles. Because X is isometri-
cally isomorphic to S1, there exists a distance-preserving mapping φ : X 7→ [0, 2π)
that associates each point in X with an angle. Next, let ZX(φ(x)) = Z(x) be the
restriction of Z to X. Then, we say that ZX is mean squared differentiable at x if
the limit

Z
(1)
X (φ(x)) = lim

ε→0

ZX(φ(x) + ε)− ZX(φ(x))

ε
, x ∈ Sd,
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exists in Hψ, Z is mean square differentiable at x if Z(1)
X (φ(x)) exists for every X

that contains x, and the entire field Z is mean square differentiable if Z is mean
square differentiable at every x ∈ Sd. As detailed in Guinness and Fuentes (2016), for
isotropic random fields, mean square differentiability at one point along one great-
circle implies mean square differentiability of the entire field. Higher order mean
square differentiability is defined analogously.

We denote as ψ̃ the even extension of ψ to the interval [−π, π] and write ψ̃(n) for
the n-th order derivative of ψ̃. Similarly to the Euclidean case, Guinness and Fuentes
(2016) show that Z(x) with covariance ψ is n times mean square differentiable if and
only if ψ̃(2n)(0) exists. They provide an analogous characterisation in the spectral
domain, which we do not use in this paper.

The following result shows that the parameter ν controls the smoothness of
a random field with covariance Fτ,α,ν(θ). In what follows, bxc denotes the largest
integer less than or equal to x ∈ R.

Proposition 3.3. Let d and n be positive integers. Let Z(x), x ∈ Sd, be a stationary
and isotropic Gaussian random field with covariance function given by Fτ,α,ν(θ) as
in Equation (3.1). Then, Z(x) is n times mean square differentiable if and only if
bν
2
c > n.

Proof. We give a constructive proof. Consider the even extension of Fτ,α,ν(θ) to the
interval [−π, π] and denote this by F̃τ,α,ν(θ). The n-th order differentiability in the
mean square sense of Z(x), x ∈ Sd with covariance Fτ,α,ν (or, equivalently, F̃τ,α,ν)
is equivalent to 2n-th order differentiability of F̃τ,α,ν(θ) at θ = 0. Using properties
of the Gauss hypergeometric function 2F1 (Prudnikov et al., 1983) we have

∂n2F1(a, b, c; ξ)

∂ξn
=

(a)n(b)n
(c)n

2F1(a+ n, b+ n, c+ n; ξ), |ξ| ≤ 1, (3.8)

where the right hand side of (3.8) is well defined for |ξ| = 1 provided

Re(c− a− b− n) > 0. (3.9)

This fact, together with Faà–di Bruno’s formula (Mortini, 2013), gives the n-th
derivative of F̃τ,α,ν(θ) as

F̃ (n)
τ,α,ν(θ) =

B(α, ν + τ)

B(α, ν)

∂nFτ,α,ν(θ)
∂θn

=
n∑

k=1

∂n

∂ξn
2F1(τ, α, τ + α + ν; ξ)

∣∣∣
ξ=cos θ

Bn,k(cos(1) θ, . . . , cos(n−k+1) θ), (3.10)

where Bn,k are the Bell polynomials (Abramowitz and Stegun, 1964) and cos(n) is
the n-th derivative of the cosine function. Hence, according to the condition (3.9),
Equation (3.10) is well defined at θ = 0 if and only if ν > n.

To prove that Fτ,α,ν allows for a continuous parameterisation of smoothness
through the parameter ν we need to assess the limiting behaviour of Fτ,α,ν when
ν →∞. This needs some care as discussed at the end of Section 3.3.
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3.2 Fractal Dimensions

As noted by Hansen et al. (2015) the roughness or smoothness of a surface at an
infinitesimal scale is quantified by the Hausdorff or fractal dimension, D, which for
a surface in R3 must lie in the interval [2, 3), attaining the lower limit when the
surface is differentiable. Hansen et al. (2015) investigate the properties of Gaussian
surfaces under several choices of geodesically isotropic covariance functions.

An isotropic random field Z(x) on the sphere S2 with correlation function C(x,y)
= ψ(θ(x,y)), for ψ ∈ Ψ2, has fractal index a if there exists a constant b > 0 such
that

lim
θ↘0

ψ(0)− ψ(θ)

θa
= b, (3.11)

where limθ↘0 is taken from the right. The fractal index exists for most parametric
families of correlation functions, in which case the fractal dimension D and fractal
index a are related by D = 3− a/2, so that a = 2 and a→ 0 correspond to extreme
smoothness and roughness, respectively.

Proposition 3.4. Let Z(x), x ∈ S2, be a Gaussian random field on the sphere with
geodesically isotropic covariance function given by Fα,τ,ν(θ), θ ∈ [0, π]. Then, the
fractal index of Z is 2ν if ν < 1, 2 if ν > 1 and does not exist if ν = 1.

Before providing a formal proof, some comments are in order. According to
Proposition 3.4, a realisation of a Gaussian field with covariance function belonging
to the F -Family will be smooth when ν ≥ 1 and becomes rough when ν is smaller
than one. In fact, D = 3− ν when ν < 1, and D = 2 whenever ν ≥ 1. The fact that
we can characterise the fractal dimension through the parameter ν gives an addi-
tional way to interpret the effect of the value of this parameter on the properties of
the process Z(x).

A Gaussian field with Matérn covariance function has fractal dimension D =
min(ν, 1). Amongst the examples proposed by Hansen et al. (2015), only the power
kernel allows the fractal dimension to vary; for the other kernels the fractal dimension
is constant whatever the parameter setting. The covariances proposed by Guinness
and Fuentes (2016) also do not allow different fractal dimensions. We now prove
formally the assertion above.

Proof. We give a proof of the constructive type. First, application of De L’Hôpithal’s
rule gives

lim
θ↘0

Fα,τ,ν(0)−Fα,τ,ν(θ)
θa

=
B(α, τ + ν)

B(α, ν)
lim
θ→0

sin θ 2F1(α + 1, τ + 1, α + τ + ν + 1, cos θ)

aθa−1
.

(3.12)

Let us first suppose that ν > 1. Then (3.12) is well defined if a = 2. When ν < 1,
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we have

lim
θ↘0

Fα,τ,ν(0)−Fα,τ,ν(θ)
θa

=
B(α, τ + ν)

aB(α, ν)
lim
θ↘0

sin θ

θ
2F1(α + 1, τ + 1, α + τ + ν + 1, cos θ)

(1− cos θ)ν−1
(1− cos θ)ν−1

θa−2

=
B(α, τ + ν)

aB(α, ν)

Γ(α + τ + ν + 1)Γ(1− ν)

Γ(α + 1)Γ(τ + 1)
lim
θ↘0

(
1− cos θ

θ(a−2)/(ν−1)

)ν−1
, (3.13)

where the last statement is justified in Prudnikov et al. (1983). Also,

lim
x↘0

2F1(α + 1, τ + 1, α + τ + ν + 1, x)

(1− x)ν−1
=

Γ(α + τ + ν + 1)Γ(1− ν)

Γ(α + 1)Γ(τ + 1)
.

Hence,

lim
θ↘0

(
1− cos θ

θ(a−2)/(ν−1)

)ν−1
=





1
2ν−1 if a = 2ν,

0 if a < 2ν,

∞ if a > 2ν.

Finally, for ν = 1 we have that

lim
θ↘0

Fα,τ,ν(0)−Fα,τ,ν(θ)
θa

=
B(α, τ + ν)

aB(α, ν)
lim
θ↘0

sin θ

θ
2F1(α + 1, τ + 1, α + τ + ν + 1, cos θ)

− log(1− cos θ)

− log(1− cos θ)

θa−1
,

which exists and is identically equal to zero for a = 1.

3.3 Special Cases

We now show that the F -family admits closed form expressions when the smoothing
parameter is of the form ν = 1/2 + k, for positive integers k. We use the following
recurrence formula (Prudnikov et al., 1983); for 0 < |z| ≤ 1,

2F1(a, b, c+ 1; z) =
1

(c− a)(c− b)z
(
c(1− c)(z − 1)2F1(a, b, c− 1; z)

− c(c− 1− {2c− a− b− 1}z)2F1(a, b, c; z)
)
. (3.14)

Note that Equation (3.14) is not defined at z = 0. However, by definition, the Gauss
Hypergeometric function is identically equal to 1 at z = 0.

To iterate the recurrence in Equation (3.14), we need to provide two initial
conditions on the right hand side of the equation. For |z| ≤ 1 let g(z) = 1

2
+ 1

2
(1−z)1/2.

Also, for α > 0 let a = α and b = α + 1/2. We then have the following identities
(Prudnikov et al., 1983)

2F1(a, b, a+ b− 1/2; z) =
1

(1− z)1/2
g(z)1−2α (3.15)

2F1(a, b, a+ b+ 1/2; z) = g(z)−2α. (3.16)

In particular, Equation (3.16) provides a covariance function that is continuous
but not differentiable at the origin. Thus, any Gaussian random field with such a
covariance would be mean square continuous but non-differentiable.

11
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Figure 1: Simulated data sets from the F-family with σ2 = 1 and an approximated
practical range of 0.75 radians. We consider ν = 1/2 (Left) and ν = 5/2 (Right). We have
used the same random seed for both realisations.

To obtain special cases with higher degrees of differentiability at the origin, we can
combine Equation (3.14) with the special cases (3.15) and (3.16):

2F1(a, b, a+ b+ 3/2; z) =
(2α + 1)g(z)−2αp(z)

(α + 1)(α + 1/2)z
,

where p(z) = −(α+ 1/2)(1− z) +α(1− z)1/2 + 1/2. Iterating the formula one more
time, we obtain a covariance function generating once mean square differentiable
Gaussian random fields:

2F1(a, b, a+ b+ 5/2; z) =
(2α + 2)g(z)−2α

(α + 2)(α + 3/2)z2

·
(

(−2α− 1 + {2α + 5/2}z)(2α + 1)p(z)

(α + 1)(α + 1/2)
+ (2α + 1)(1− z)z

)
. (3.17)

Figure 1 depicts two realisations from the F -family, with ν = 1/2 and ν = 5/2.
In order to control the variance, we have used rescaled versions of Equations (3.16)
and (3.17). We choose α such that both covariance functions have an approximate
practical range (the great circle distance at which the correlaition reaches 0.05) of
0.75 radians. We shall use this parameterisation in Sections 5 and 6.

3.4 Limit Cases

Note how the proof of Theorem 1 emphasises that Fτ,α,ν is the scale mixture of Nδ,τ
with a Beta distribution with parameters α and ν, where the scale mixing is taken
with respect to δ ∈ (0, 1). A similar argument is used to show that a reparameterised
version ofMα,ν(‖ · ‖) converges to exp(−‖ · ‖2/α) when ν → ∞, uniformly on any
compact set of Rd. In particular, when ν →∞, the Beta density function tends to a
delta measure with single atom at the origin. Therefore, the corresponding limiting
covariance is identically one. To proceed formally, we consider the reparameterisation
from (τ, α, ν) to (τ, α∗, ν) where α∗ = αν and τ , α∗ and ν are all positive. The next
result illustrates the limiting behaviour of the F covariance when ν →∞.

12



Proposition 3.5. Let Fτ,α,ν be the family defined through (3.1). Let α∗ = αν, for α
and τ be fixed positive parameters. Let Nδ,τ be the Negative Binomial family, being
the first entry in Table 1, with δ ∈ (0, 1) and τ > 0. Then, for each θ ∈ [0, π],

lim
ν→∞
Fτ,α∗,ν(θ) = Nα/(α+1),τ (θ).

Proof. To prove our assertion, we invoke again the scale mixture argument as in
Lemma 1 of Gneiting (2013), i.e.

Fτ,α∗,ν(θ) =

∫ 1

0

Nδ,τ (θ)
δαν−1(1− δ)ν−1

B(αν, ν)
dδ, θ ∈ [0, π]. (3.18)

The proof follows from the fact that when ν →∞, the Beta distribution converges
to a delta measure, with a single atom at its expected value α/(α + 1).

4 Simulation Study

The ML method is generally considered to be an efficient method for estimating
the parameters of statistical models, although the thoeretical justification for this
stems primarily from the asymptotic properties of ML estimators. In the present
context, the study of asymptotic properties of ML estimators is complicated by the
fact that the only physically sensible asymptotic regime for a process on the unit
sphere is fixed domain asymptotics, i.e. increasingly dense sampling of Z(x) on its
fixed domain, the unit sphere.

It is generally the case that for spatially continuous processes under fixed domain
asymptotics, prediction is consistent but parameter estimation is not (Stein, 1999).
The rationale for this simulation study is therefore to explore the finite sample
behaviour of ML estimates for the F -Family of covariance functions.

A key theoretical result for fixed domain asymptotics is the equivalence of Gaus-
sian measures associated with random fields defined over bounded sets of Rd (Sko-
rokhod and Yadrenko, 1973). Equivalence of Gaussian measures has specific con-
sequences for both ML estimation and for kriging predictions. Firstly, equivalence
implies that the ML estimates of the parameters of a given class of covariance func-
tions cannot be estimated consistently. Secondly, the miss-specified minimum mean
square error predictor under the wrong covariance model is asymptotically equivalent
to the kriging predictor under the true covariance. For the Matérn covariance func-
tion, using Euclidean distance and assuming the smoothing parameter to be fixed,
Zhang (2004) shows that the scale and the variance cannot be estimated consis-
tently. Instead, a specific function of the variance and the scale (called microergodic
parameter – see below) can be estimated consistently.

4.1 Maximum likelihood estimates

We first study the influence of the correlation range and differentiability on the
variability of the ML estimators. Intuitively, we expect the performance of the es-
timators to deteriorate as the correlation range increases. For the simulations we
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parameterise the F -Family of covariance functions as

F1/α,1/α+0.5,ν(θ)

= σ2Γ( 1
α

+ 1
2

+ ν)Γ( 1
α

+ ν)

Γ( 2
α

+ 1
2

+ ν)Γ(ν)
2F1

(
1

α
,

1

α
+

1

2
,

2

α
+

1

2
+ ν, cos θ

)
,

(4.1)

with ,0 ≤ θ ≤ π, so that increasing α corresponds to increasing correlation range.
We also set σ2 = 1 and consider four scenarios for α and ν: (a) (α, ν) = (0.3, 0.5),
(b) (α, ν) = (0.6, 0.5), (c) (α, ν) = (0.3, 2.5), and (d) (α, ν) = (0.6, 2.5). Scenarios
(a) and (b) correspond to a continuous, non-differentiable random field, whereas
Scenarios (c) and (d) to a once differentiable random field. Each simulated realisation
generates N = 256 data-values on a 14 by 14 grid of longitudes and latitudes.

Figure 2 reports the centered boxplots of the ML estimates under Scenarios
(a)–(d), based on 1000 independent replications. Larger values of α or ν correspond
to higher variability, but there is no evidence of significant bias.

4.2 Microergodic parameter

Zhang (2004) has shown that, for the Matérn class of covariance functions as in
Equation (2.8), not all parameters can be estimated consistently under infill asymp-
totics. However, using the parameterisation analogous to ours, in which σ2 is the
variance and ν determines the degree of differentablity of Z(x), the ML estimator
of the microergodic parameter φ = σ2/α2ν is consistent.

To mimic an infill asymptotic scheme, for each scenario we now generate 1000
realisations of Z(x) at N = 300, 600, 900, 1200, 1500, 1800, 2100 and 2400 locations
uniformly distributed on the unit sphere, with parameter values σ2 = 1, α = 0.2 and
ν = 1/2. Table 2 summarises the properties of the ML estimates by their emprical
bias and relative variance, i.e. the ratio between their sample variance at each value
of N and their sample variance when N = 300. The biases are again negligible. The
standard asymptotic result for parameter estimation is that the variance, v say, of
an ML estimator is proportional to N−1, hence the log of the relative variance is
linear in log(N) with slope −1. Figure 3 shows the empirical relationship between
log-transformed relative variance and sample size from our simulation experiment.
For the microergodic parameter φ, the relationship is close to linear, with estimated
slope −1.048, whereas for σ2 and α, the estimated slopes are −0.872 and −0.913,
respectively. Also, as N approaches 2400, there is at least a hint that the linearity
is breaking down.

In summary, the experiment suggests that ML estimates for the parameters of
the F -family behave similarly to those of the planar Matérn model under infill
asymptotics.
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Figure 2: Centered boxplots of the Maximum Likelihood estimates for the F-Family under
Scenarios (a)–(d), based on 1000 independent repetitions.

Table 2: Bias and Relative Variance (RV) for the maximum likelihood estimates of σ2, α
and φ = σ2/α2ν against sample size, N .

σ2 α φ

Sample Size Bias RV Bias RV Bias RV

300 −0.00511 1 −0.00041 1 0.04908 1
600 −0.00044 0.784 0.00145 0.661 −0.00914 0.393
900 −0.00446 0.633 −0.00005 0.494 −0.00183 0.251

1200 −0.00147 0.586 0.00042 0.404 −0.00516 0.171
1500 0.00029 0.548 0.00052 0.378 −0.00054 0.135
1800 0.00047 0.574 0.00073 0.397 −0.00537 0.110
2100 0.00174 0.520 0.00097 0.338 −0.00740 0.093
2400 −0.00142 0.516 0.00009 0.327 −0.00228 0.076
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Figure 3: Relationship between log-transformed relative variance and sample size from
our simulation experiment.

5 Data Illustration

We illustrate the predictive performance of the F class of covariance functions
on a dataset of Precipitable Water Content (PWC) in kg/m2, donwloadable at
www.esrl.noaa.gov. This data-product is considered to be representative of the state
of the Earth system (Kalnay et al., 1996) and has been used in regional studies of
seasonal stream flow and water scarcity (Müller et al., 2014; Müller and Thompson,
2016).

Here, we analyse the 2017 average of PWC on a grid with spacing 2.5◦ degrees
of longitude and latitude. Figure 4 (left panel) shows that the mean structure de-
pends strongly on latitude. We remove the spatial trend through simple harmonic
regression model,

mean (Z(L, `)) = η0 + η1 cos

(
πL

90◦

)
+ η2 sin

(
πL

90◦

)
,

where L and ` denote latitude and longitude, respectively, in degrees. We then
analyse the residual spatial variation, restricted to latitudes between 0◦ and 70◦

North in order to mitigate the effect of non-stationarities over southern latitudes
(Stein, 2007) and to avoid numerical instabilities around the North Pole (Castruccio
and Stein, 2013). These residuals are shown in the right panel of Figure 4.

We now compare the performance of the F class of covariance functions in Equa-
tion (3.1) with respect to ML estimation and kriging predictions. The comparator
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Figure 4: (Left) Average for Precipitable Water Content for 2017. (Right) Precipitable
Water Content for the northern hemisphere, after removing its trend through simple har-
monic regression.

families of correlation functions are the following.

1. The F correlation function, defined according to Equation (4.1)

2. The Circular-Matérn correlation function (Guinness and Fuentes, 2016) as
given in Equation (2.9).

As explained in Section 2, in practice we need to truncate the series ex-
pansion in Equation (2.9). Here, we truncate the sum after 1000 terms; see
Lang and Schwab (2013), who adoptsthe same strategy and give bounds for
the approximation in the mean square sense.

3. A Matérn correlation functionMν,α(dCH), where dCH denotes the chordal dis-
tance.

Following Stein (2007), to control the latitude-dependent variance we augment
the three families of correlation functions with multiplicative terms. For the corre-
lations based on the great-circle distance, we therefore consider models of the form

σ(L1)σ(L2)ψ(θ(x1,x2)),

where xi ∈ S2 has associated latitude Li, for i = 1, 2. We use an analogous structure
for the Matérn correlation function based on chordal distance. Here,

σ(L) =
M∑

k=0

%kPk(cosL), (5.1)

where Pk is the Legendre polynomial of degree k (Dai and Xu, 2013) and the coeffi-
cients %i are unknown parameters. To alleviate computational burden and numerical
instabilities we fixM = 1 in Equation (5.1). The resulting parameter vector for each
of the three models is (%0, %1, α, ν)>.

We use the following two-step procedure:

Step 1: We first sample 200 data-locations independently at random over the region
delimited by latitudes 0◦ to 70◦ and longitudes −180◦ to 180◦. We use this
data as a training set to calculate the ML estimates for each of the three
models.
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Step 2: Then, we reserve the residuals at 20 sampled locations in the region delim-
ited by 0◦ to 70◦ latitude and 120◦ to 180◦ in longitude as a validation set.
We repeat this step 100 times in order to evaluate the predictive performance
of the models.

A similar experiment has been carried out by Jeong and Jun (2015b). They note
that this scenario may arise in practice when the interest is in predicting over the
ocean but most observations are on land.

Table 3 reports the ML estimates for each model, their empirical standard errors
and the maximised log-likelihood. In all three cases, the estimate ν̂ corresponds to
a continuous but non-differentiable field. The values of the maximised log-likelihood
are very similar.

Table 3: ML estimates and Log-Likelihood value attained at the optimum, for each model.
Standard errors are specified in parentheses.

Model %̂0 %̂1 α̂ ν̂ Log-Likelihood

F -Family −0.275 10.503 0.573 0.675 −522.18
(0.942) (2.831) (0.361) (0.112)

Circular-Matérn −0.279 10.466 0.384 0.644 −521.83
(0.935) (2.376) (0.173) (0.094)

Matérn Chordal −0.271 9.876 0.388 0.646 −521.67
(0.880) (2.159) (0.189) (0.095)

Figure 5 shows the empirical semi-variogram using points within a horizontal
window at latitudes 20◦, 35◦ and 50◦, together with the fitted F and Matérn Chordal
models, using a tolerance region of 10◦; the fitted variogram for the Matérn and
Circular-Matérn model is not shown, because it is very similar to the curves shown
here. From this perspective, all three models fit equally well.

We now compare the models in terms of their predictive performance. From the
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Figure 5: Empirical semi-variogram at latitudes L = 20◦, 35◦ and 50◦, and the fitted
curves for the F covariance function.
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results for repetitions i = 1, . . . , 100 we calculate

RMSEi =

(
1

ni

ni∑

j=1

(Z(xij)− Ẑ(xij))
2

)1/2
,

and

MAEi =
1

ni

ni∑

j=1

|Z(xij)− Ẑ(xij)|,

where xij : j = 1, . . . , ni is the validation set from repetition i, and Z(x) and Ẑ(x)
denote the true and predicted values, respectively, of the field at the site x.

Figure 7 depicts, for each model, the distribution of RMSE and MAE over the
100 repetitions of the experiment, whilst Table 4 gives their average values. In each
case, the F model gives the lowest of the three values, although the improvements
over the other two models are modest: 2.2% and 8% in terms of relative RMSE,
1.8% and 6.9% in terms of relative MAE, compared with the Circular-Matérn and
the Matérn Chordal models, respectively.

-150 -100 -50 0 50 100 150

0
10

20
30

40
50

60
70

Lon

La
t

-150 -100 -50 0 50 100 150

0
10

20
30

40
50

60
70

Lon

La
t

Figure 6: Training (∆) and validation (X) sets for the prediction experiment. We illustrate
only over 100 repetitions of this experiment.

Table 4: RMSE and MAE averages, for each model, based on 100 repetitions.

F -Family Circular-Matérn Matérn chordal

RMSE 3.535 3.613 3.844
MAE 2.910 2.964 3.128
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Figure 7: Boxplots for RMSE and MAE, for each model.

6 Discussion

Our simulation experiment supports the view that the consistency properties of
ML estimation under our proposed model mirror known results for the analagous
parameterisation of the planar Matérn model. Proving this is a challenging problem.
A possible line of attack would be to use the theory developed by Arafat et al. (2018)
about equivalence of Gaussian measures on spherical spaces. This would amount to
use the d-Schoenberg sequences associated to the F class, which are provided in
Appendix A.

Our illustrative analysis based on the PWC data-set shows the limitations of
using a model based on chordal distances. These limitations become more apparent
as data-locations cover an increasing proportion of the sphere, and when prediction
locations become more remote from data-locations. In additional simulation experi-
ments not reported here, we have found that within the span of the data-locations,
predictions based on the F and Matérn Chordal models are often almost identical,
which is as expected because spatial interpolations based on Gaussian models are
driven primarily by local properties of the covariance function (Stein, 1999).

The reported differences in predictive performance for the PWC data-set are
similar to those reported in other comparative studies. For example, in Gneiting et al.
(2010), the multivariate Matérn model and the Linear Model of Coregionalisation
show a discrepancy of approximately 1% in terms of MAE, whilst in Jeong et al.
(2017) reported relative differences in MAE of 6% to 8% when comparing several
parametric non-stationary models for fields on spheres.

One thing that might be worth being considered is that Stein (2007) proposes to
control the latitude-dependent variance and the measurement error by augmenting
the correlation function with an additive nugget effect. In our experiments, we always
found that our estimates for the nugget where identically equal to zero, so that we
excluded this from the presentation in Section 5.

One important thing to be mentioned is that often climate data are not isotropic
on the sphere. In particular, Stein (2007) evokes Jones (1963) to call those covariance
functions defined over S2 that are nonstationary over latitudes but stationary over
longitudes axially symmetric. Appendix B shows that the F -Family introduced in
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this paper can be used as a building block to create models that satisfy Jones
hypothesis.
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Appendices

A d-Schoenberg Coefficients for the F Covariance

Let p and q be positive integers. The generalised hypergeometric functions (Abra-
mowitz and Stegun, 1964) are defined as

pFq

[
a1 · · · ap
b1 · · · bq

; z

]
=
∞∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
, z ∈ R.

The special case 2F1

[
a b
c

; z
]

= 2F1(a, b, c; z) has been used in Section 3 to introduce
the F -Family in Equation (3.1).

Let d be a positive integer. We now provide detailed calculations for the d-
Schoenberg coefficients associated to (3.1) through the identity (2.6). Theorem 3.1
has provided an expression for the Schoenberg coefficients related to the Hilbert
sphere S∞.

Property A.1. Let Fτ,α,ν be the family of functions defined through Equation (3.1).
Let d be a positive integer. Then, the d-Schoenberg sequence of coefficients {bn,d}∞n=0

related to Fτ,α,ν through Equation (2.6) are uniquely determined by

bn,d =




Keven(α, τ, ν, n, d)5F4

[
α
2
+n α+1

2
+n τ

2
+n τ+1

2
+n 1

α+ν+τ
2

+n α+ν+τ+1
2

+n n
2
+1 3n+d+1

2

; 1
]

if n is even,

Kodd(α, τ, ν, n, d)5F4

[
α
2
+n+1 α+1

2
+n τ+1

2
+n τ

2
+n+1 1

α+ν+τ+1
2

+n α+ν+τ
2

+n+1 n+3
2

3n+d+2
2

; 1
]

if n is odd,

where

Keven(α, τ, ν, n, d)

=
B(α, ν + τ)

B(α, ν)

(α)2n(τ)2n(2n+ d− 1)Γ(d−1
2

)

(α + ν + τ)2n22n+1Γ(n+2
2

)Γ(3n+d+1
2

)

(
n+ d− 2

n

)
,

and

Kodd(α, τ, ν, n, d)

=
B(α, ν + τ)

B(α, ν)

(α)2n+1(τ)2n+1(2n+ d− 1)Γ(d−1
2

)

(α + ν + τ)2n+122n+2Γ(n+3
2

)Γ(3n+d+2
2

)

(
n+ d− 2

n

)
.
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Proof. The proof of Theorem 1 has shown that the Schoenberg coefficients related
to the Ψ∞ representation of the family F are defined by

bn =
B(α, ν + τ)

B(α, ν)

(α)n(τ)n
(α + ν + τ)n(n!)

. (A.1)

Theorem 4.1 in Møller et al. (2018) shows that, since the function Fτ,α,ν belongs to
the class Ψ∞, its d-Schoemberg coefficients bn,d are uniquely determined through

bn,d =
∞∑

l=n
n−l≡0 (mod 2)

bnγ
(d)
n,l (A.2)

where bn is defined in (A.1) and

γdn,l =
(2n+ d− 1)(l!)Γ(d−1

2
)

2l+1{( l−n
2

)!}Γ( l+n+d+1
2

)

(
n+ d− 2

n

)
.

We can now plugin (A.1) into (A.2) to get

bn,d = K1(α, τ, ν, n, d)
∑

l=n
n−l≡0 (mod 2)

(α)l(τ)l

(α + ν + τ)l2l+1{( l−n
2

)!}Γ( l+n+d+1
2

)

= K1(α, τ, ν, n, d)Sn(α, τ, ν, n, d),

where

K1(α, τ, ν, n, d) = (2n+ d− 1)Γ

(
d− 1

2

)(
n+ d− 2

n

)
B(α, ν + τ)

B(α, ν)
.

When n is an even positive integer, we get that

Sn(α, τ, ν, n, d) =
∞∑

j=n

(α)2j(τ)2j

(α + ν + τ)2j22j+1{(2j−n
2

)!}Γ(2j+n+d+1
2

)
.

We now define i = j − n to obtain

Sn(α, τ, ν, n, d) =
∞∑

i=0

(α)2i+2n(τ)2i+2n

(α + ν + τ)2i+2n22i+2n+1{(i+ n
2
)!}Γ(i+ 3n+d+1

2
)
.

We can now make use of the following factorisation for Pochhammer symbols (Prud-
nikov et al., 1983)

(α)2i+2n = (α)2n(a+ n)2i,

so to obtain

Sn(α, τ, ν, n, d)

=
(α)2n(τ)2n

(α + ν + τ)2n22n+1

∞∑

i=0

(α + n)2i(τ + n)2i

(α + ν + τ + n)2i22i+1{(i+ n
2
)!}Γ(i+ 3n+d+1

2
)
.
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Using the dimidiation formula for the Pochhammer symbol (Prudnikov et al., 1983)

(α)2i = 22i(α/2)i((α + 1)/2)i,

and completing terms, the series Sn is

Sn(α, τ, ν, n, d) = K2(α, τ, ν, n, d)

·
∞∑

i=0

(α+1
2

+ n)i(
α
2

+ n)i(
τ
2

+ n)i(
τ+1
2

+ n)i(1)i

(α+ν+τ
2

+ n)i(
α+ν+τ+1

2
+ n)i(

n
2

+ 1)i(
3n+d+1

2
)ii!

,

= K2(α, τ, ν, n, d)5F4

[
α
2

+ n α+1
2

+ n τ
2

+ n τ+1
2

+ n 1
α+ν+τ

2
+ n α+ν+τ+1

2
+ n n

2
+ 1 3n+d+1

2

; 1

]
,

where
K2(α, τ, ν, n, d) =

(α)2n(τ)2n

(α + ν + τ)2n22n+1Γ(n
2
)Γ(3n+d+1

2
)
.

Keven(α, τ, ν, n, d) = K1(α, τ, ν, n, d)K2(α, τ, ν, n, d).

When n is an odd positive integer, the proof works mutatis mutandis through similar
calculations.

B Axially Symmetric Version of the F Class

For phenomena covering a big portion of our planet, isotropy is a questionable
assumption. On the one hand, isotropy might be expected for microscale metereology
on a sufficiently temporally aggregated level for many physical quantities. On the
other hand, mesoscale and synoptic scale meteorology are not even approximately
isotropic, due to the highly nonlinear nature of the Earth’s system. Indeed, Stein
(2007) shows that total column ozone data show significant changes over latitude.
Castruccio and Stein (2013) argued that both inter and intra annual variability
for surface temperature is depent on latitude. For the sequel, we refer to the unit
sphere S2 of R3 with coordinates x = (L, `)>, with L ∈ [0, π] denoting latitude and
` ∈ [0, 2π) denoting longitude. In particular, Stein (2007) resorts to the results in
Jones (1963) to call the covariance C axially symmetric when

C(x1,x2) = C(L1, L2, `1 − `2), (Li, `i) ∈ [0, π]× [0, 2π), i = 1, 2.

Axially symmetric processes have a well understood spectral representation that
includes as a special case the geodesic isotropy illustrated through Equations (2.3)
and (2.4). For details, the reader is referred to Jones (1963) and more recently to
Stein (2007).

The literature on axially symmetric models is sparse, with the attempt in Porcu
et al. (2018b) being a notable exception. Let dCH(`1, `2) denote the chordal distance
between two longitudes `1 and `2. LetMα,ν denote the Matérn class defined at (2.8).
Then, Porcu et al. (2018b) propose an axially symmetric model of the type

C(L1, L2, `1 − `2) = σ(L1, L2)Mα(L1,L2),ν(L1,L2)

(
dCH(`1, `2)

)
,

23



(Li, `i) ∈ [0, π]× [0, 2π), i = 1, 2, where σ, α and ν are strictly positive functions that
must be carefully chosen in order to preserve positive definiteness. The interpretation
of these functions is very intuitive, as they indicate how, respectively, variance,
scale and smoothness can vary across latitudes. Usually σ is modeled through a
linear combination of Legendre polynomial (Jun and Stein, 2007). To illustrate the
new model, we need to define a stochastic process {X(L), L ∈ [0, π]} and we
call variogram the quantity var

(
X(L2) − X(L1)

)
/2, L1, L2 ∈ [0, π] (see Chiles and

Delfiner, 1999, with the references therein).

Theorem B.1. Let F be the family of functions defined at Equation (3.1). Let τ > 0.
Let σ : [0, π]2 → R+ be positive definite and let α, ν : [0, π]2 → R+ be continuous
functions such that the functions (L1, L2) 7→ α(L1, L2) and (L1, L2) 7→ ν(L1, L2)
define two variograms on [0, π]2. Then, the function

C(L1, L2, `1 − `2) = σ(L1, L2)Fτ,α(L1,L2),ν(L1,L2) (θ(`1, `2)) ,

for (Li, `i) ∈ [0, π]× [0, 2π), is positive definite.

Proof. We give a constructive proof. We consider the scale mixture
∫ 1

0

(1− δ)τ
(1− δ cos θ(`1, `2))τ

δα(L1,L2)−1(1− δ)ν(L1,L2)−1dδ.

Clearly, the function (`1, `2) 7→ (1 − δ)τ/(1 − δ cos θ(`1, `2))
τ is positive definite for

any τ > 0 and δ ∈ (0, 1). Invoking Schoenberg’s theorem (Schoenberg, 1942), it is
easy to show that both functions aα and aν are positive definite on [0, π]2 provided
0 ≤ a ≤ 1. Since the scale mixture above is well defined, the proof is completed by
using the same arguments as in Theorem 3.1.
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