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Abstract

For modelling the location of pyramidal cells in the human cerebral cortex we
suggest a hierarchical point process in R3. The model consists first of a gen-
eralised shot noise Cox process in the xy-plane, providing cylindrical clusters,
and next of a Markov random field model on the z-axis, providing either repul-
sion, aggregation, or both within specified areas of interaction. Several cases
of these hierarchical point processes are fitted to two pyramidal cell datasets,
and of these a model allowing for both repulsion and attraction between the
points seem adequate.

Keywords: Cylindrical K-function; Determinantal point process; Hierarchical
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1 Introduction and conclusions

The structuring of neurons in the human brain is a subject of great interest since
abnormal structures may be linked to certain neurological diseases (see Casanova,
2007; Esiri and Chance, 2006; Casanova et al., 2006; Buxhoeveden and Casanova,
2002). A specific structure that has been extensively studied in the biological lit-
erature is the so called ‘minicolumn’ structure of the cells in the cerebral cortex
(see Buxhoeveden and Casanova, 2002; Rafati et al., 2016, and references therein).
Rafati et al. (2016) characterised these minicolumns as ‘linear aggregates of neu-
rons organised vertically in units that traverse the cortical layer II-VI, and have in
humans a diameter of 35 um to 60 pm and consist typically of 80-100 neurons’.

1.1 Data

In this paper we analyse the structuring of pyramidal cells, which make up approx-
imately 75% to 80 % of all neurons (Buxhoeveden and Casanova, 2002) and are
pyramid shaped cells, where the apical dendrite extends from the top of the pyra-
mid. Specifically, the paper is concerned with two datasets consisting of the locations
and orientations of pyramidal cells in a section of the third, respectively, fifth layer
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of Brodmann’s fourth area of the human cerebral cortex. Here, each location is a
three-dimensional coordinate representing the centre of a pyramidal cell’s nucleo-
lus and each orientation is a unit vector representing the apical dendrite’s position
relative to the corresponding nucleolus.

Figure 1 shows the two point pattern datasets of 634 and 548 nucleolus locations
which will be referred to as L3 and L5, respectively (for plot of the orientations for L3,
see Mgller et al., 2019). Note that the observation window W for the cell locations is a
rectangular region with side lengths 492.70 pm, 132.03 pm, and 407.70 pm for L3 and
488.40 pm, 138.33 pm, and 495.40 pm for L5. Notice also that the nucleolus locations
are recorded such that the z-axis is perpendicular to the pial surface of the brain. In
accordance to the minicolumn hypothesis, this implies that the minicolumns extend
parallel to the z-axis.

i ] ° .
A i. : . :0 : LY Oo. ° o ° . O. 3. ° . . o . : .
I oo A : . .
S I AT IRLRRS I8 Bttt e e
o“o,' . °° R - .o'...o: . A acaete KT et e Y e A
% . ‘v..' v s o P ..‘- ...-...'. Seoee % o ‘.'..'. . L ' . o2 [ .o..: AL
. 03:..$ .‘- ...c...o...S o &N .:0 W oee -"‘ .~.C 0‘0:.:. ote O o % K]
g 0, % % oq 0% o V° o0» : . . 3 .. 0 ® .
...3' ..g *e » > ...'o'. ...ﬁ...:" .‘ .0.; .. 1. .:'o..'... d . “ :0 O:.
e '..‘.'Jo . p 3..‘ ..o. 003..' 2 o o o’ . “e )
LY ..: ° 8'..". . S .. .:..1 * . °.' ° ‘: o« %, S: . s b
T "'{'.' PR T N W . I P A A AU
. . .
"". ;'8 '\. oo '....':: gee’ 'o e ) e .'o. Py ‘:& . .'. o '~.' '!’..
e ° . e % (] (1) ()
c. 3 e .0. ‘e ® 0.0 .:. - ' oo . ’ o q: ..:..f .. . °
« @ ° 0% ceere ° o0 o B X 3% .o S L
* . %® 2 e o . LI P T L ) .
. :0 ....o.‘.-...o :‘ (..f: ~e o |®, o ¢ees® o0 : . ..“.". 0’4
1 .
K ,{.,0...""....:'5- r'.’” ° l;,!,:,,,.,',,:,,,-:,,,.i‘.:.,,'b,,.,,!.,,,,! 0% dle -
o 4 . T 79 0 e [ . e oe o e TN .« ol
o K ° x4 o . e [ R ~: * e o o F)
* : * . ° ° * ° ° . °
L] . ° L] ° L] ° . R ° °

Figure 1: Visualisations of the nucleolus locations for datasets L3 (left) and L5 (right).

1.2 Background and purpose

Moller et al. (2019) found independence between locations and orientations for L3
meaning that the two components may be modelled separately; the same conclusion
has afterwards been drawn for L5. As they also found a suitable inhomogeneous
Poisson process model for the orientations, and since it is hard by eye to see much
structure in the point patterns shown in Figure 1, the focus of this paper is on
modelling the nucleolus locations. In particular, we aim at modelling the nucleolus
locations for L3 respective L5 by a spatial point process with a columnar structure
and discuss to what extent this relates to the minicolumn hypothesis. Note that for
the two datasets we use the same notation X for the spatial point process, and we
view X as a random finite subset of W.

To the best of our knowledge the so-called Poisson line cluster point process (see
Mpoller et al., 2016) is the only existing point process model for modelling columnar
structures. This model was considered by Rafati et al. (2016) in connection to the
pyramidal nucleolus locations, but was not fitted to data. For each point pattern
considered in the present paper, we notice later that a more advanced model than
the Poisson line cluster point process is needed; below we describe such a model
for X.



1.3 Hierarchical point process models

Briefly, we consider a hierarchical model for X (further details are given in Sec-
tions 3-5), noting that the observation window is a product space, W = W, x W,
where W,, is a rectangular region in the xy-plane and W, is an interval on the
z-axis. First, we model the point process X,, given by the projection of X onto
the zy-plane; second, conditioned on X,,, we model the vector X, consisting of the
z-coordinates of the points in X. Note that the dimension of X, agrees with the
number of points in X,, and is denoted by n.

1.3.1 The model for X,,

For X, we consider the restriction of a cluster point process to W, defined briefly as
follows (further details are given in Sections 4-5). Let ® C R? be a stationary point
process with intensity x > 0, and associate to each point (£,7) € ® a point process
X(em C R? that is concentrated around the line in R?® which is perpendicular to the
ry-plane, with intersection point (&, n,0). We refer to X (¢, as the cylindrical cluster
associated to (§,7m). Let P,y (X, N W) denote the projection onto the xy-plane of
the observed part of the cylindrical cluster. For short we refer to the non-empty
Pyy(X(em N W) as the projected cluster with centre point (£,7). Then we let

X,y = U Poy(X(ey NW).
(&med

Further, conditional on ®, we assume that the projected clusters are independent
and each non-empty P, (X, NW) is distributed as the intersection of W, with
a finite planar Poisson process translated by the centre point (£,7); this Poisson
process has intensity function aa f, where a is the length of the interval W,, a > 0
is a parameter, and f is the probability density function of a bivariate zero-mean
isotropic normal distribution with standard deviation o > 0. Thus, ignoring bound-
ary effects, aa is the expected size (or number of points) of a projected cluster and
o controls the spread of points in a projected cluster. Specifically, we let first ® be a
planar stationary Poisson process and second a stationary determinantal point pro-
cess (Lavancier et al., 2015), since we observe in the first case a very low expected
number of points in a projected cluster and because in the second case we want a
repulsive model in order to obtain less overlap between the projected clusters.

The special case with ® a planar stationary Poisson process and X, a homo-
geneous binomial point process (that is, the n points in X, are independent and
uniformly distributed on W,) which is independent of X, corresponds to a degen-
erate case of a Poisson line cluster point process as considered in Mgller et al. (2016).
This becomes clear in Section 4.

1.3.2 The model for X, conditioned on X,

We consider several other cases than a homogeneous binomial point process for X,
which is independent of X,,. In general, conditioned on X,, = {(x;,v:)}i,, we
propose a Markov random field model, where the conditional probability density



function of X, is of the form

P | (i) o gy G il yfeans O adizg g )
X I(|[ (i, vir 2i) — (24,95, 25)|| > h for 1 <i < j<n),

with notation defined as follows. We consider {(z;, y;, 2;)}1-, as a realisation of X,
where (x;,y;) is the zy-point associated to z;, the realisation of the i’th point in X,
(as a technical detail, unless X, is a binomial point process, (1.1) is not invariant
under permutations of z1, ..., z, since we have associated (z;, y;) to z;, so we cannot
view (1.1) as the density of a point process where we are conditioning on the number
of points). Note that the right hand side in (1.1) is an unnormalised density and e.g.
(z;)i, is short hand notation for (z1,...,z2,). We let I(-) be the indicator function.
Further, 74 > 0, 75 > 0, and h > 0 are unknown parameters; if h > 0, it is a hard
core parameter ensuring a minimum distance h between all pair of points in X; for
the pyramidal cell data it seems natural to include a hard core condition since cells
cannot overlap; and when v; = 75 = 1 and h = 0, the conditional model simply
reduces to the homogeneous binomial point process. Furthermore, for k = 1,2,

5,0, (2)1m | @ v)ie) = > W(wi,vi, 1) € Bilw), y5, 255 6k),

1<i<j<n

where By(z,y,2;0;) C R?® is an interaction region, with centre of mass (x, v, z) and
a ‘size and shape parameter’ 0y, that determines the interaction between points. It is
additionally assumed that the hard core ball, given by the three-dimensional closed
ball of radius h and centre (z,y, z) does not contain Bi(x,y, z;01) or Bs(z,y, z;0s).
Finally, it is assumed that the symmetry condition

(75,93, z) € Bi(xj,9;,25;0,) if and only if  (x;,v;,2;) € Br(s, yi, 25 Ok)
and the disjointness condition
Bl(%l/v Z;5 01) N BQ(%Z/; Z; 02) == @

are satisfied.

These conditions ensure that we can view X, conditioned on X,, as a Markov
random field with second order interactions: for 1 < i < j < n, two z-coordinates
z; and z; interact (in Markov random field terminology, z; and z; are neighbours)
if and only if ||(z;, v, 2:) — (25,5, 2;)|| < h (that is, the hard core condition is not
satisfied, which happens with probability 0) or (x;,v;, ;) lies within the region of
interaction of z; given by the union of Bi(x;,y;, zj;61) and Ba(xj,y;, 2;;02) (here
the symmetry condition is needed to ensure that we can interchange the roles of i
and 7). The interaction can either cause repulsion/inhibition or attraction/clumping
of the points in X depending on whether v, < 1 or 74 > 1 for k = 1, 2. Thus, apart
from the hard core condition, the model allows for both repulsion and attraction
but within different interaction regions B; and B,.

1.3.3 The final hierarchical model and results

At the end of the paper (Section 5) we obtain a satisfactory fit of the following
hierarchical model, with the following interpretation of the estimated parameters.
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First, the model for X, is given as in Section 1.3.1 where the centre process
® is a most repulsive determinantal point process (as detailed in Section 5.1). The
parameter estimates are given in Table 1, where the estimated expected cluster
size aa is much smaller than expected for a minicolumn when restricting it to the
observation window — provided the minicolumn hypothesis is true; cf. personal com-
munication with Jens R. Nyengaard. So we neither claim that we have a fitted model
for minicolumns nor that the minicolumn hypothesis is true. Instead we have fitted
a model with cylindrical clusters: from Table 1 we see, if |[W,,| denotes the area of
Wy, the estimated number of projected clusters is |W,, |4, which is approximately
260 for L3 and 142 for L5; the estimated expected size of a projected cluster is only
2.42 for L3 and 3.87 for L5.

Table 1: Minimum contrast estimates for our final model of X, (the DLCPP model in
Section 5.1) for the datasets L3 and L5.

A

3 o aa
L3 0.0040 545 2.42
L5 0.0021 6.53 3.87

Second, the model of X, conditioned on X,, has cylindrical interaction regions
as illustrated in Figure 2, and (1.1) is the pairwise interaction Markov random field
density

G @ny)is) oo T T v, 21) = (25,95, 2)|| > 1)
1<i<j<n

I(| (zasy1) = (z5,y5) |1S71, |20 =25 <t1)
X7

5 ,yg(H(:vuyi)—(xj,yj)ﬂémt1<|2i—zj\§t2)7

where 71 > 0 and v, > 0 are interaction parameters and 0 < ro < r; and 0 <
t; < to are parameters which determine the ‘range of interaction’ such that h <
Vit + 73 for k = 1,2. The restrictions on 71, rq, t1, and ty are empirically motivated
by use of functional summaries as detailed in Section 5.2. The final fitted model
have parameter estimates as displayed in Table 2 where most notably 4; < 1 and
A9 > 1. In particular the final fitted model is in accordance to the empirical findings
as noted later when the so-called cylindrical K-function of Figure 3 is discussed:
we have modelled repulsion within stunted cylinders (corresponding to B;) and
aggregation within elongated cylinders (corresponding to Bs), see again Figure 2.
Moreover, the estimated hard core his greater than 6 pm, which is in accordance with
‘distance between the nucleolus and the membrane of a pyramidal cell’ (personal
communication with Jens R. Nyengaard). Note that the hard core ball is much
smaller than the interaction region B;: 2h (the diameter of the hard core ball) is
about half as small as 2, (the height of B;). Finally, comparing Tables 1-2, we note
that the two ‘clustering parameters’ 26 and 75 are of the same order.

In conclusion, for each dataset we have fitted a rather complex hierarchical point
process model describing columnar structures of the nucleolus locations. This model
included repulsion between nucleolus locations given by a hard core condition on a
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B,

Figure 2: Visualisation of the hard core region ball (in dark) and the cylindrical interaction
regions B; (the cylinder) and By (the union of the two elongated cylinders) used in our
final model for L3.

Table 2: Pseudo likelihood estimates of our final model (model 5 from Table 4 in Sec-
tion 5.2) for the datasets L3 and L5.

TR h ™ f Py £
L3 041 1.78 6.25 20 11.5 11 35.5
L5 051 1.68 6.77 2425 155 14.75 37.25

small scale and a stunted cylindrical interaction region on a larger scale, as well as
clustering between nucleolus locations given by an elongated cylindrical interaction
region.

1.4 Model fitting

In Mgller et al. (2016) parameter estimation for the degenerate PLCPP model was
simply done by a moment based procedure which included minimisation of a certain
contrast between a theoretical second order moment functional summary and its em-
pirical estimate. In the present paper we use a similar minimum contrast procedure
for estimating the parameters of models for X,,. For the models of X, conditioned
on X,, we find it convenient to use a maximum pseudo likelihood procedure as
detailed in Section 5.2. Moreover, each fitted model is evaluated by considering in-
formative global extreme rank length (GERL) envelope procedures (Mrkvicka et al.,
2018; Myllymaiki et al., 2017) for various functional summaries.

1.5 Outline

The remainder of this paper explains how we arrive at the final model given in
Section 1.3.3 after fitting several other models. In Section 2 we introduce some
basic concepts and definitions needed for the models in the subsequent sections. In
Section 3 we investigate how the nucleolus locations deviate from complete spatial



randomness (that is, when X is a homogeneous Poisson process), and in Section 4 we
also notice a deviation from a fitted degenerate PLCPP model. Finally, in Section 5
we introduce and fit various generalisations of the degenerate PLCPP model as
briefly described in Sections 1.3-1.4.

2 Preliminaries

The point processes X, X,,, and X, introduced above are viewed as the restriction
to the bounded sets W, W,,, and W, of a locally finite point process ¥ C R? with
d = 3,2, 1, respectively. Briefly speaking, this means that Y is a random subset of
R? satisfying that Yz = Y N B is finite for any bounded set B C R3; for a more
rigorous definition of point processes, see e.g. Daley and Vere-Jones (2003) or Mgller
and Waagepetersen (2004). Below we recall a few basic statistical tools needed in
this paper, using the generic notation Y for a locally finite point process defined on
R? (apart from the cases above, we have in mind that Y could also be the centre
process ® from Section 1.3).

2.1 Moments

For each integer n > 1, to describe the n’th order moment properties of Y, we
consider the so-called n’th order intensity function A(™ : (R%)" — [0,00) given

that it exists. This means that for any pairwise distinct and bounded Borel sets
Bi,...,B, C R%

En(Ys,) - -n(Ys,)] —/Bl'-'/n)\(")(xl,...,J:n)dx1~-~dxn

is finite, where n(Yp) denotes the cardinality of Yj.

The first order intensity function A() = X is of particular interest and is simply
referred to as the intensity function. Heuristically, A(u)du can be interpreted as
the probability of observing a point from Y in the infinitesimal ball of volume du
centred at w. If the intensity function A(-) = A is constant, then A\|B| = E [n(Y35)]
for any bounded Borel set B C RY, where | - | is the Lebesgue measure. In this case
Y is said to be homogeneous and otherwise inhomogeneous. Clearly, stationarity
of Y (meaning that its distribution is invariant under translations in R?) implies
homogeneity.

2.2 Functional summaries

In order to determine an appropriate model for an observed point pattern, we con-
sider functional summaries, which reflect /summarise different properties of the point
pattern and are useful for model fitting and control. The main examples are consid-
ered below.

To summarise the second order moment properties, it is custom to consider the
pair correlation function (PCF), g, which is defined as the ratio of the second and



first order intensity function, that is,

)\(2) (ZEl, 112)

_ R,
NoMNz)  mT2E

g(l’l,$2> =

Heuristically, g(z1,z9) can be interpreted as the probability of simultaneously ob-
serving a point from X in each of the two infinitesimal balls of volume dz; and dz,
centred at respectively x; and x5 relative to the probability of independently observ-
ing a point in the two infinitesimal balls. The PCF is said to be stationary when (with
abuse of notation) g(x1, ) = g(x; —x2) and isotropic when g(z1, x2) = g(||z1—22]|)-

If the PCF is stationary, it is closely related to the so-called second order reduced
moment measure, K, given by

K(B) = / 9(z) dz,

where B C R%is a Borel set (see Mgller and Waagepetersen, 2004). If Y is stationary
and B has centre of mass at the origin of R?, then MC(B) can be interpreted as the
expected number of further points falling within B given that Y has a point at the
origin; and when considering scalings of B, we refer to B as a structuring element.
The simplest example occurs when B is a ball centred at the origin and with radius
r > 0; then K(r) = K(B) becomes the K-function introduced by Ripley (1976);
and often we instead consider a transformation of the K-function, which is called
the L-function and defined by L(r) = (K (r)/ws)*?, where wy is the volume of the
d-dimensional unit ball. In particular, if Y is a stationary Poisson process, then
L(r)=r.

For detecting cylindrical structures, Mgller et al. (2016) introduced the cylindri-
cal K-function which corresponds to IC(B) when B is a cylinder of height 2¢, base-
radius r, and centre of mass at the origin. Note that Ripley’s K-function depends
only on one argument, r, while the cylindrical K-function depends both on 7, ¢, and
the direction of the cylinder. However, when d = 3 and since the minicolumns are
expected to extend along the z-axis, we only consider cylinders extending in this
direction, effectively reducing the number of arguments to two.

We will also consider the commonly used F-, G-, and J-functions when perform-
ing model control; see van Lieshout and Baddeley (1996) for definitions. Briefly,
if Y is stationary, F'(r) is the probability that Y has a point within distance r > 0
from a fixed location in R%; G(r) is the probability that Y has another point within
distance r > 0 from an arbitrary fixed point in Y; and J(r) = (1 - G(r))/(1 — F(r))
when F(r) < 1.

The functional summaries will in the following be used both for model fitting as
described in Section 2.3 and for model checking using GERL envelope procedures
as mentioned in Section 1.4. In the GERL envelope procedure, the distribution of
the empirical functional summary under the hypothesis of interest is estimated by
simulations. The procedure is a refinement of the global rank envelope procedure
(Myllyméki et al., 2017), where it is recommended to use 2499 simulations for a sin-
gle one-dimensional functional summary and at least 9999 simulations for a single
two-dimensional functional summary (Mrkvicka et al., 2016). However, we consider



a concatenation of the L-, G-, F-, and J-functions, as well as the cylindrical K-
function in which case Mrkvicka et al. (2017) recommend using more simulations.
Particularly for a concatenation of k one-dimensional summary functions they rec-
ommend using k x 2499 simulations. We do however have a different setup since
we are concatenating both one- and two-dimensional summary functions. For the
GERL envelope procedure, Mrkvicka et al. (2018) suggest that a lower number of
simulations may be enough. Therefore, we use 9999 simulations. Since we consider
a concatenation of one- and two-dimensional functional summaries, we ensure that
each of the functional summaries are weighted equally in the GERL envelope test by
evaluating them at the same number of arguments (Mrkvicka et al., 2017). Specif-
ically we consider 642 r-values for each of the L-, G- F-, and J-functions and a
square grid over 64 r-values and 64 t-values for the cylindrical K-function.

2.3 Minimum contrast estimation

For parametric point process models, minimum contrast estimation is a computa-
tionally simple fitting procedure introduced by Diggle and Gratton (1984) that is
applicable when a closed form expression of a functional summary, 7', exists. The
idea is to minimise the distance from the theoretical function T to its empirical
estimate 7' for the data. Specifically, if T" depends on the parameter vector 6 and is
a function of ‘distance’ r > 0 (as for example in case of Ripley’s K-function), the
minimum contrast estimate of 6 is given by

6= argmine/ ( ‘T(@, r)—T(r) pdr, (2.1)

Tmin

where T < Tmax, ¢, and p are positive tuning parameters. General recommen-
dations on ¢ are given in Guan (2009) and Diggle (2014), when T'(r) = g(r) or
T(r) = K(r). Unless otherwise stated, we let p = 2, ¢ = 1/4, rpin = 0, and 7pax
be one fourth of the shortest side length of the relevant observation window (the
rectangular window W,, in our case).

When the PCF has a closed form expression, alternative estimation procedures
can be used, including the second order composite likelihood (see Guan, 2006;
Waagepetersen, 2007), adapted second order composite likelihood (see Lavancier
et al., 2018), and Palm likelihood (see Ogata and Katsura, 1991; Prokesova et al.,
2016; Baddeley et al., 2016).

3 Complete spatial randomness

The most natural place to begin our point pattern analysis is by testing whether a
homogeneous Poisson process X with intensity A > 0 (we then view Y as a stationary
Poisson process with the same intensity), also called complete spatial randomness
(CSR), adequately describe each nucleolus point pattern dataset. Recall that this
means that n(X) is Poisson distributed with parameter A\|IV| and conditional on
n(X) the points in X are independent and uniformly distributed within W. Even
when CSR is not an appropriate model, deviations from the model can be useful for



determining whether the points of a homogeneous point pattern tend to e.g. attract
or repel each other.

The CSR model is fully specified by its intensity, which naturally is estimated by
n(X)/|W|, which is equal to 2.37 x 10~° for L3 and 1.63 x 10~° for L5. For this fitted
model Figure 3 summarises the results of the GERL envelope procedure based on
the concatenation of the L-, G-, -, J-, and cylindrical K-functions as discussed in
Section 2.2. Particularly, the left column depicts the part concerning the empirical
functional summaries L(r) —r, G(r), F(r), and J(r) along with the corresponding
95% envelope. The right column depicts the empirical cylindrical K-function along
with the areas at which it falls outside the 95% envelope. It is observed that the
empirical functional summaries L, F, and J fall strictly outside the envelope for
midrange values of r in a manner that indicates repulsion between points at this
range. For small and large r-values the observed point patterns resemble the Poisson
process. This behaviour could suggest a kind of clustering, where clusters of points
from a Poisson process are somewhat separated. The separation of these clusters
seems to be more pronounced for L3 than for L5. Further, in the right column of
Figure 3, the empirical cylindrical K-function falls above the upper global rank
envelopes for cylinders that have a height larger than approximately 35 pm for both
datasets and a base radius of approximately 5 pm to 15 pm for L3 and 5 pm to 20 pm
for L5. Furthermore, the observed cylindrical K-functions falls below the lower 95%
GERL envelope for cylinders with a height of approximately 10 pm to 30 pm and
a base radius larger than 5pm. Hence, for elongated cylinders extending in the z-
direction, we tend to see more points in the data than we expect under CSR, while
for stunted cylinders we tend to see fewer points. This seems to be in correspondence
with columnar structures where the columns extend in the z-direction.
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Figure 3: Results of the GERL envelope procedure under CSR based on a concatenation
of the empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatenation of the
one-dimensional empirical functional summaries for the data (solid line) together with
95% envelopes (grey region); for ease of visualisation, the functions have been scaled.
Right: empirical cylindrical K-function (grey scale) where shaded vertical /horizontal lines
indicate that the function falls above/below the 95% envelope. The white line indicates
the values for which the cylinder height is equal to the base diameter. Top: results for the
dataset L3. Bottom: results for the dataset L5.

11



4 The degenerate Poisson line cluster point
process

Moller et al. (2016) presented the so-called Poisson line cluster point process (PLCPP)
which is useful for modelling columnar structures. Specifically, we consider a degen-
erate PLCPP Y C R? constructed as follows.

1. Generate a stationary Poisson process ® = {(&,n;)}32, C R? with finite in-
tensity x > 0. Each point (&;,1;) € ® corresponds to an infinite line I; in R3
which is perpendicular to the zy-plane, that is, I; = {(&,m:, 2) | z € R}.

2. Conditional on ®, generate independent stationary Poisson processes L; C
l1, Ly C lg, ... with identical and finite intensity o > 0.

3. Generate point processes X1, Xo,... C R?® by independently displacing the
points of Ly, Lo, ... by the zero-mean isotropic normal distribution with stan-
dard deviation o > 0.

4. Finally, set Y = ;= X; and X = Y.

Some comments to the construction in items 1-4 are in order.

In the general definition of the PLCPP in Mgller et al. (2016), the lines Iy, [y, . . .
are modelled as a stationary Poisson line process. That is, the lines are not required
to be perpendicular to the xy-plane nor does the Poisson line process need to be de-
generate (meaning that the lines are not required to be mutually parallel). Further,
the dispersion density (used in item 3) can be arbitrary. However, the construction
is still such that Y becomes stationary. Furthermore, it turns out that it does not
matter whether we consider a three-dimensional normal distribution for displace-
ments in in item 3 or a bivariate normal distribution with displacements of the
xy-coordinates for the points of Ly, Lo, . ...

Returning to the degenerate PLCPP of items 1-4, we imagine that each X; is a
cylindrical cluster of points around the line [;, where these cylindrical clusters are
parallel to the z-axis. Furthermore, the interpretation of the parameters x, a, and o
in terms of a Poisson cluster point process is similar to that in Section 1.3.1 except
that we now also consider lines not intersecting W: if Y as defined by items 1-4 is
restricted to a subset S C R? bounded by two planes parallel to the zy-plane, for
specificity S = {(z,y, z) € R¥| 2 € W.}, this restricted point process can be seen as
a (modified) Thomas process (see Thomas, 1949; Mgller and Waagepetersen, 2004)
on R? along with independent z-coordinates following a uniform distribution on W,

To see this, first note that conditional on ® = {(&;,n;)}°, and foralli =1,2,...,
X; is a Poisson process in R? with intensity function \;((x,y,2)) = af(z — &,
y —1;), where f is the probability density function of the bivariate isotropic normal
distribution given in item 3. In turn, this implies that Y conditioned on ® is a Poisson
process in R?® with intensity function > °, A;((x,y, z)). Further, since \;(z,y, z) =
Ai(z,y) does not depend on z for all i = 1,2, ..., the projection of Yg onto the xy-
plane, P,,(Ys), conditioned on @ is a Poisson process with intensity a y .~ Xi(z,y),
where a is the length of the interval W,. Since ® is a stationary Poisson process,
P,,(Ys) is a Thomas process with centre process intensity x and expected cluster
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size aa (that is, the expected number of points in X; N.S). Finally, from items 24 it
follows that the z-coordinates of X, are independent and uniformly distributed on
W, and they are independent of X,,,.

Consequently, simulating X = Yy is straightforwardly done by simulating a
Thomas point process (on a larger set than W,, in order to avoid boundary effects)
along with independent uniform z-coordinates on W,. For simulating the Thomas
point process we apply standard software from the R-package spatstat (Baddeley
et al., 2016). Similarly, fitting a degenerate PLCPP to a realisation of X is simply
a matter of fitting a Thomas process to the point pattern consisting of the xy-
coordinates of the points in that realisation. Since the K-function of the Thomas
process has a closed form expression, the model can be fitted using minimum contrast
estimation with 7'(r) = K(r) in (2.1). Table 3 summarises the parameter estimates,
where most notably the expected cluster size aa is < 1 for both L3 and L5. Un-
derstanding each cylindrical cluster within W as (a part of) a minicolumn, ‘these
parameter estimates result in very unnatural models for the datasets, since each
minicolumn within W is expected to consist of less than one point’ (personal com-
munication with Jens R. Nyengaard).

Table 3: Minimum contrast estimates of the degenerate PLCPP.

A

i & aa
L3 0.027 2.86 0.36
L5 0.0085 4.58 0.95

Despite the fact that the fitted degenerate PLCPP models are somewhat unnat-
ural and hardly can be interpreted as a model with (hypothesised) minicolumnar
structures, GERL envelope procedure based on a concatenation of the F-, G-, and
J-functions show that the Thomas process suitably fit the projected locations with
a p-value of 0.76 for L3 and 0.87 for L5. However, results from the concatenated
GERL envelope procedure described in Section 2.2 indicated that the model did
not suitably describe the three-dimensional nucleolus locations with a p-value of
10~* for both L3 and L5. Specifically, Figure 4 shows the empirical cylindrical K-
function and indicates where it deviates from the 95% envelope. Clearly, the model
does account for some of the columnarity of the data as opposed to CSR, but the
empirical cylindrical K-function for L3 still falls above the 95% envelope. Further-
more, the empirical cylindrical K-function for both datasets falls below the 95%
envelope similar to what was seen under CSR, indicating a lack of regularity, which
in fact is supported by the one-dimensional functional summaries (not shown). This
could suggest that the cylindrical clusters should be more distinct; motivating us to
generalise the degenerate PLCPP model as in the following section.
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Figure 4: Empirical estimates of the cylindrical K-function (grey scale) where shaded
vertical /horizontal lines indicate that the function falls above/below the 95% GERL en-
velope under the fitted degenerate PLCPP and based on the concatenation described in
Section 2.2. The white line indicates the values for which the cylinder height is equal to
the base diameter. Top: results for the dataset L3. Bottom: results for the dataset L5.

5 A generalisation of the degenerate PLCPP

As some but not all features of the data were explained by the degenerate PLCPP
fitted in Section 4, we propose in this section two generalisations as follows.

1. The centre process ® is a planar stationary point process.

2. X, conditioned on X, follows a Markov random field model.

The first modification is straightforward and for this specific application we chose
a repulsive centre process to obtain more distinguishable cylindrical clusters; this
is detailed in Section 5.1. Further, the assumption of stationarity of ® is made in
order to apply a similar minimum contrast estimation procedure as in Section 4, so
implicitly we make the assumption that the PCF or the K-function is expressible
on closed form. For the second modification we suggest a conditional model inspired
by the multiscale point process and particularly the Strauss hard core point process
(see e.g. Mgller and Waagepetersen, 2004) which will allow for further repulsion or
even aggregation between the points; this is detailed in Section 5.2.

5.1 A determinantal point process model for the centre
points

Consider a point process Y C R? specified by items 1-4 in Section 4 with the
exception that the centre process ® now is an arbitrary stationary planar point
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process. Then, recalling the notation from Section 4, P,,(Ys) is a planar Cox pro-
cess (see Mpller and Waagepetersen, 2004) and even a planar generalised shot-noise
Cox process (see Mgller and Torrisi, 2005) driven by the random intensity func-
tion A(z,y) = ad ;o) Ni(z,y) for (z,y) € R%. Moreover, P,,(Ys) corresponds to the
Thomas process, but with a different centre point process (unless of course ® is a
stationary Poisson process).

In this section we focus on the case where ® is a stationary determinantal point
process (DPP; see Lavancier et al., 2015), in which case we will refer to Y as the
determinantal line cluster point process (DLCPP). A DPP is defined in terms of its
n’th order intensity function for n = 1,2,...: let C' : R? x R? — C be a function and
A" the n’th order intensity function of ®, then ® is called a DPP with kernel C' if

AV (zy, .. x,) = det[C)(2y, . . ., 2) forn=1,2,...,21,...,2, € R?,

where det[C](z1,...,x,) is the determinant of the n x n matrix with (7, j)’th entry
C(x;,x;). For further details on DPPs, we refer to Lavancier et al. (2015) and the
references therein. When @ is a DPP, we call P,,(Ys) a determinantal Thomas point
process (DTPP). The DTPP is discussed to some extent in Mgller and Christoffersen
(2018), where a closed form expression of its PCF is found. Thus, the DLCPP can be
fitted by fitting a DTPP to the projected data using a minimum contrast procedure
(see Section 2.3).

For our data we want to obtain a DLCPP with as much repulsion as possible
between the centre lines of the cylindrical clusters. Therefore, we let ® be the ‘most
repulsive DPP’ (in the sense of Lavancier et al., 2015), which is the jinc-like DPP
given by the kernel C(z1, ) = \/p/mJi (2/7p|lz1 — 22|)) /||21 — 2|, where J; is
the first order Bessel function of the first kind and || - || denotes the usual planar
distance (for more information on this particular DPP, see Lavancier et al., 2018;
Biscio and Lavancier, 2016).

Simulation of the DTPP is done by first simulating a DPP with intensity «
(on a larger region than W,, in order to avoid boundary effects), for which we use
the functionality of spatstat, then secondly generating for each cluster a Poisson
distributed number of points with intensity «a, and finally displacing these points
by a bivariate zero-mean isotropic normal distribution.

The parameter estimates of the jinc-like DTPP model were obtained by mini-
mum contrast with 7'(r) = g(r); see Table 1 for the results and the accompanying
discussion in Section 1.3.3. Despite the expectation under the minicolumn hypoth-
esis of having much higher values of @a than in Table 1 (see again Section 1.3.3),
simulations of the fitted jinc-like DPP in the xy-plane seem in reasonable corre-
spondence to the projected data; see Figure 5. Furthermore, results from the GERL
envelope procedure based on a concatenation of the F-, G-, and J-functions do not
provide any evidence against the jinc-like DPP model for the projected points with
p-values of 0.67 for L3 and 0.83 for L5.

Since the jinc-like DTPP model fits the projected data well, we proceeded and
added independent uniform z-coordinates on W, to the simulations, thereby ob-
taining simulations of the jinc-like DLCPP. Figure 6 summarises the result of the
95% GERL test based on the concatenation of functional summaries as described
in Section 2.2. The left column depicts the part of the one-dimensional functional
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Figure 5: Projection of observed nucleolus locations onto the xy-plane (left) and simula-
tions from the fitted jinc-like DTPP (right) for the datasets L3 (top) and L5 (bottom).

summaries along with 95% envelopes, while the right column shows the empirical
cylindrical K-function along with shaded regions that indicate where it deviates
from the corresponding envelope. These plots show that the models do not account
for the regularity of the data. This leads us to our next generalisation in Section 5.2.

5.2 A Markov random field model for the z-coordinates

Motivated by the observations at the end of the previous section, in this section we
propose to model the z-coordinates conditioned on the zy-coordinates by a pair-
wise interaction point process as given in (1.1). Thereby, our hierarchical model
construction yields a more flexible model for X but we ignore edge effects in the
sense that we have only specified a model for first P,,(Ys) and second X, condi-
tioned on X,, = P,,(Ys) N W,,, thereby ignoring a possible influence of points in
Y \ W when (1.1) is used in the latter step (unless it specifies a binomial point
process). This simplification is just made for mathematical convenience; indeed it
would be interesting to construct a model taking edge effects into account so that
Y becomes stationary, but we leave this challenging issue for future research. Below
we first specify the ingredients of the conditional probability density function given
n (1.1) for various models and discuss the overall conclusions, next describe how to
find parameter estimates, and finally discuss how well the estimated models fit the
data. Note that although we have not specified a stationary model for Y, it may
still make sense to interpret plots of empirical cylindrical K-functions and F G
J, and L-functions, since we have stationarity in the xy-plane and approximately
stationarity in the z-direction (as the density (1.1) is invariant under ‘translations
of (z1,...,2,) within W,’).

In our search for a suitable model for the nucleolus locations, we considered many
special cases of (1.1). Table 4 summarises five selected models, where b((z, y, z);r) is
the ball with centre (z,y, z) and radius r, and where c¢((x,y, z);r,t) and d((z,y, 2);
r,t) denote the cylinder and double cone, respectively, with centre of mass at (x, y, 2),
height 2¢, base radius r, and extending in the z-direction. First, we considered
model 1 which is a hard core model if A~ > 0 and one of the simplest ways of
modelling regularity; note that model 1 with A = 0 is the binomial point process
with a uniform density as considered in Section 4. Though accounting for small
distance repulsion, when fitted to the data, model 1 turned out not to account for
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Figure 6: Results of the GERL envelope procedure under the fitted DLCPP based on a
concatenation of the empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatena-
tion of the one-dimensional empirical functional summaries for the data (solid line) together
with 95% envelopes (grey region); for ease of visualisation, the functions have been scaled.
Right: empirical cylindrical K-function (grey scale) where shaded vertical /horizontal lines
indicate that the function falls above/below the 95% envelope. The white line indicates
the values for which the cylinder height is equal to the base diameter. Top: results for the
dataset L3. Bottom: results for the dataset L5.
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the repulsion at larger scales. Second, we considered model 2 which is a conditional
Strauss model with a hard core condition (see Mgller and Waagepetersen, 2004, and
the references therein). For this model the scale of repulsion for the z-coordinates
seemed too great for points with similar zy-coordinates, and therefore we found it
natural to replace the spherical interaction region with a cylinder, yielding model 3.
However, model 3 did not correct the problem, and continuing with a single region
of interaction we next suggested model 4 with a region given by a cylinder minus
a double cone. Model 4 does to a smaller degree penalise the occurrence of points
with similar xy-coordinates. However, this model was not suitable either. Models 1-4
were discarded by GERL tests with extremely small p-values. Finally, we considered
model 5 which is a more flexible model that allows for both repulsion and aggrega-
tion within cylinder shaped interaction regions, cf. the discussion in Section 1.3.3.
For simplicity all the models were also considered without a hard core condition,
that is A = 0, but was in every case found inadequate.

Table 4: Specific choices of the parameters ~1,72,61,02 and the interaction regions
Bi(-;61),Ba( - ;62) for five models given by the density (1.1). For each model, a hard
core parameter h > 0 is included. Apart from the specified restrictions, it is required for
models 2-5 that By(+;601) € b(-;h) (for model 2 this means that r > h as already indicated)
and in addition for model 5 that Ba( -;602) Z b( -;h) where 0y = (ra,t2) with r1 > 79 > 0
and to > t1.

Model Y1 72 By(-;01) Bsy( - 0,) th
1 11 0 0 -
2 >0 1 b(-;7) 0 r>h
3 >0 1 c(5m,t) 0 r,t >0
4 >0 1 c(rt)\d(-mt) 0 rt>0
5 >0 >0 C(';T17t1) C(';T27t2) \ C(';T‘l,t1> Tl,tl >0

The likelihood function corresponding to (1.1) involves a normalising constant
which needs to be approximated by Markov chain Monte Carlo methods. We propose
an easier alternative based on the pseudo likelihood function (Besag, 1975) defined
as follows when the data is given by {(x;, y;, 2;)}i-y C W. For i = 1,...,n, the i’th
full conditional density associated to (1.1) is

f(zi | (Z17 sy Zi—15 R4l - - ey Zn)? (:C]7 y])?:l)
= 1(||(i, yir 21) — (25,95, )| > b for j # i)y %" /e (5.1)

where we define

Ski = Z H((xjayja zj) € Bk((xzayhzz)vek’))a k= 1a 27

JigFi
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and where the normalising constant is given by

_.
|
—

n—l1Ln

= 30 S [ 103 2) — (a5, 5)] > o 20
k=0 (=0 z
j: j#i
X H(Z T((2},y;,2) € Ba((24, yi, 2): 02)) = z) dz.
ji j#i

To estimate the model parameters we maximise the log pseudo likelihood given by

LP(’VI; V2, h‘7 017 62)

" . (5.2)
= Zlog fzi| (21,00 Zim1, Zigts -+ - 20), (xja yj)j:l)'
i=1

Clearly, by (5.1) the maximum pseudo likelihood estimate (MPLE) h of h is the
minimum distance between any distinct pair of points (x;,v;, ;) and (x;,y;,2;) in
the data. This in fact also corresponds to the maximum likelihood estimate. For
h = h and for fixed 6; and 65, we easily obtain the following. For each of models 2—
4, the MPLE of v, exists if and only if 51, # 0 for some ¢, and then the log pseudo
likelihood function is strictly concave with respect to log~;. For model 5, the MPLE
of (71,72) exists if and only if s1,; # 0 for some i and s9; # 0 for some j, and then
the log pseudo likelihood function is strictly concave with respect to (log~,log~z).
Therefore, the (profile) log pseudo likelihood can be maximised by a combination of
a grid search over #; and Ay and numerical optimisation with respect to v; and .
Table 2 shows the maximum pseudo likelihood estimates of model 5 for the two
datasets, where for the numerical optimisation we used optim (a general-purpose
optimisation function from the R-package stats).

Each of the five models in Table 4 were fitted to L3 and L5 by finding the max-
imum pseudo likelihood estimate, and model checking was performed using GERL
envelope procedures based on the concatenation of functional summaries as discussed
in Section 2.2. For the fitted models, model 5 was the most appropriate with p-values
of 0.34 for L3 and 0.03 for L5 when using the GERL envelope procedure; the 95%
GERL envelope is visualised in Figure 7. Thus no evidence is seen against the fitted
models summarised in Table 2 for L3 while only slight evidence is present for L5.
We note that for both datasets the fitted models are such that B; is a stunted cylin-
der and models repulsion since 4; < 1, while ¢(+, 79, t5) is elongated and By models
aggregation, since 42 > 1. Hence, when standing in some point (z1,y1, 21) € X it is
less likely to observe a z-coordinate if the corresponding zy-coordinates are similar
to (x1,y1). Specifically, if (z1,y1) and (x2,ys2) lies within distance 20 pm for L3 and
24.25 nm for L5, it is less likely to observe a z-coordinate zo (associated to (x2,ys))
with |27 — 25| less than 11.5 pm for L3 and 15.5um for L5. Analogously, given that
(x1,71) and (z9,ys2) lies within distance 11 pm for L3 and 14.75pm L5, it is more
likely to observe zy if |21 — 25| is in the interval from 11.5 pm to 35.5 pm for L3 or
from 15.5 um to 37.25 pm for L5.
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Figure 7: Results of the GERL envelope procedure under the fitted model 5 based on a
concatenation of the empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatena-
tion of the one-dimensional empirical functional summaries for the data (solid line) together
with 95% envelopes (grey region); for ease of visualisation, the functions have been scaled.
Right: empirical cylindrical K-function (grey scale) where shaded vertical /horizontal lines
indicate that the function falls above/below the 95% envelope. The white line indicates
the values for which the cylinder height is equal to the base diameter. Top: results for the
dataset L3. Bottom: results for the dataset L5.
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Finally, note that simulations from each of models 1-5 can straightforwardly be
obtained using a Metropolis-Hastings algorithm for a fixed number of points and
given a realisation of the zy-coordinates. Specifically, we used (Algorithm 7.1 in
Mpgller and Waagepetersen, 2004) but with a systematic updating scheme cycling
over the point indexes 1 to n, using a uniform proposal for a new point in W, and
a Hastings ratio calculated from the full conditional (5.1). We successively updated
each point 100 times under the systematic updating scheme, corresponding to 63400
and 54800 point updates for L3 and L5, respectively.
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