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Abstract

We propose a new method for analysis of multivariate point pattern data ob-
served in a heterogeneous environment and with complex intensity functions.
We suggest semi-parametric models for the intensity functions that depend
on an unspecified factor common to all types of points. This is for example
well suited for analyzing spatial covariate effects on events such as street crime
activities that occur in a complex urban environment. A multinomial condi-
tional composite likelihood function is introduced for estimation of intensity
function regression parameters and the asymptotic joint distribution of the
resulting estimators is derived under mild conditions. Crucially, the asymp-
totic covariance matrix depends on the cross pair correlation functions of the
multivariate point process. To make valid statistical inference without restric-
tive assumptions, we construct consistent non-parametric estimators for cross
pair correlation function ratios. Finally, we construct standardized residual
plots and predictive probability plots to validate and to visualize findings of
the model. The effectiveness of the proposed methodology is demonstrated
through extensive simulation studies and an application to analyzing effects
of socio-economic and demographical variables on occurrences of street crimes
in Washington DC.

Keywords: Conditional likelihood, Cross pair correlation functions, multino-
mial logistic regression, multivariate point process, semi-parametric.

1 Introduction

Multivariate point pattern data with many types of points are becoming increasingly
common. Ecologists collect large data sets on locations and species of plants and
animals, while police authorities gather ever increasing data sets on times, locations,
and types of crimes. In epidemiology, multivariate point pattern data sets concern
geo-referenced occurrences of different types of disease or bacteria. While the lit-
erature of bivariate point patterns is fairly well-developed (see e.g. the review in
Waagepetersen et al., 2016), much less work has been done on statistical analysis of
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point patterns with more than two types of points. Diggle et al. (2005) and Badde-
ley et al. (2014) considered four- and six-variate multivariate Poisson processes and
more recently Jalilian et al. (2015) and Waagepetersen et al. (2016) considered five-
and nine-variate multivariate Cox processes. Rajala et al. (2018) and Choiruddin
et al. (2019) consider penalized estimation for respectively multivariate Gibbs and
log Gaussian Cox point processes for data sets containing locations of more than 80
species of rain forest trees.

This paper is concerned with statistical modeling of the first-order intensity
functions of a multivariate spatial point process with an arbitrary number of types
of points. For clarity of exposition we discuss our proposal in relation to the specific
problem of street crime analysis where we focus on the spatial aspects of street
crimes aggregated over a time span of interest, see also the data example in Section 6.
To model street crime activities as a multivariate point process poses three major
challenges: (1) to handle the high complexity of the first-order intensity function
for each type of points; (2) to relate the street crime locations to available spatial
covariates; (3) to take into account spatial correlations within and between different
types of crimes. The first challenge arises because street crime activities depend in
a complicated way on the layout of the city (streets, squares, malls,...) as well as
the typically unknown population density at any location. Moreover, the intensity of
crime activities may change abruptly from one area to neighboring areas. The second
challenge arises because it is of great interest to police and criminologists to gain
information on how street crime occurrences are related to demography and socio-
economic variables. Finally, it is reasonable to expect spatial correlation between
street crimes, which leads to the third challenge.

In this paper, inspired by the aforementioned first two challenges, we propose
a semi-parametric regression model for the first-order intensity functions. Specifi-
cally, we propose a multiplicative model where the intensity function for each type
of points is a product of a non-parametric component common to all types of points
and a parametric component that models the influence of the covariates on the inten-
sity function. The common non-parametric component models background factors
such as population density or variation in intensity due to the layout of a city.
To fit the model we propose a conditional composite likelihood function that does
not depend on the non-parametric factor and is formally equivalent to multinomial
logistic regression. We derive the asymptotic joint distribution of the resulting esti-
mators and provide an estimator of the asymptotic covariance matrix. This matrix
depends critically on the so-called cross pair correlation functions of the multivariate
point process, which we estimate non-parametrically to avoid restrictive parametric
assumptions.

Our approach is inspired by the case-control methodology introduced in Diggle
and Rowlingson (1994) and further considered in Guan et al. (2008) and Xu et al.
(2019). However, we do not restrict attention to the bivariate case considered in
these references. Our approach also has some resemblance to Diggle et al. (2005)
who considered spatially varying risks of occurrence of one type of bacteria relative
to occurrence of other types. We, however, estimate relative risks using parametric
models depending on covariates, where Diggle et al. (2005) applied non-parametric
kernel estimation. Diggle and Rowlingson (1994), Guan et al. (2008), and Xu et al.
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(2019) further assume independence between different types of points and that points
of at least one type forms a Poisson process while Diggle et al. (2005) assume that all
the different types of points form Poisson processes which are independent. Accord-
ing to the third challenge mentioned above, we do not assume that any of the point
processes are Poisson and we do not assume independence between different types
of points. This significantly expands the applicability of the proposed methodology
to ever growing multivariate point pattern data collected in the big data era.

The rest of the paper is organized as follows. Section 2 provides an overview
of multivariate point processes with focus on intensity and cross pair correlation
functions. The semi-parametric model and its inference is introduced in Section 3
and theoretical investigations are given in Section 4. Simulation studies are presented
in Section 5 and an application to Washington DC street crime data is given in
Section 6. Concluding remarks are given in Section 7 and all technical proofs are
collected in the supplementary material (Hessellund et al., 2019).

2 Background on multivariate point processes

Denote by X = (X1, . . . , Xp) a multivariate spatial point process, where Xi is a
random subset of Rd with the property that Xi ∩ B is of finite cardinality for all
bounded B ⊆ Rd and i = 1, . . . , p. We assume that each Xi is observed in a bounded
window W ⊂ Rd and Xi ∩Xj = ∅ for any i 6= j. Assume that for each m ≥ 1 and
i = 1, . . . , p, there exists a non-negative function λ(m)

i (·) such that

E

6=∑

u1,...,um∈Xi

1[u1 ∈ A1, . . . ,um ∈ Am] =

∫
∏m

j=1 Aj

λ
(m)
i (u1, . . . ,um)du1 · · · dum,

where Aj ⊂ Rd for j = 1, . . . ,m, and
∑6= indicates that u1, . . . ,um are pairwise

distinct. The function λ(m)
i (·) is called the m’th order joint intensity function of Xi.

For the special case with m = 1, the function λ(1)
i (·) is referred to as the intensity

and is denoted λi(·).
Assume further that for each n,m ≥ 1 and i, j = 1, . . . , p, there exists a non-

negative function λ(m,n)
ij (·, ·) such that

E

6=∑

u1,...um∈Xi

6=∑

v1,...,vn∈Xj

1[u1 ∈ A1, . . . ,um ∈ Am,v1 ∈ B1, . . . ,vn ∈ Bn] (2.1)

=

∫
∏m

j=1 Aj

∫
∏m

j=1Bj

λ
(m,n)
ij (u1, . . . ,um,v1, . . . ,vn)du1 · · · dumdv1 · · · dvn,

where Ak ⊂ Rd and Bl ⊂ Rd for k = 1, . . . ,m and l = 1, . . . , n. The function
λ

(m,n)
ij (·, ·) is referred to as the (m,n)’th order cross-intensity function between Xi

and Xj, i, j = 1, . . . , p. The normalized (cross) joint intensities g(m)
i (·) and g(n,m)

ij (·, ·)
are defined as

g
(m)
i (u1, . . .um) = λ

(m)
i (u1, . . . ,um)

/ m∏

l=1

λi(ul),
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and

g
(m,n)
ij (u1, . . . ,um,v1, . . . ,vn) =

λ
(m,n)
ij (u1, . . . ,um,v1, . . . ,vn)∏m

l=1 λi(ul)
∏n

k=1 λj(vk)
, (2.2)

provided the denominators on the right hand sides are positive (otherwise we define
g

(m)
i (u1, . . . ,um) = 0 and g(m,n)

ij (u1, . . . ,um,v1, . . . ,vn) = 0). For i 6= j, g(1,1)
ij (·, ·) is

referred to as the cross pair correlation function (cross PCF) and g(1,1)
ii (·, ·) coincides

with g
(2)
i (·, ·) which is known as the pair correlation function (PCF). From now

on, we write gi(·, ·) for g(2)
i (·, ·) and gij(·, ·) for g(1,1)

ij (·, ·). The notion of cross joint
intensities and their normalized versions can be generalized in an obvious way to
joint cross intensities λ(n1,...,nk)

i1i2···ik and normalized cross joint intensities g(n1,...,nk)
i1i2···ik for

Xi1 , . . . , Xik for any k ≥ 1, {i1, . . . , ik} ⊆ {1, 2, . . . , p}, and integers n1, . . . , nk ≥ 1.
Suppose that a point from Xi is observed at u. Then λj(v)gij(u,v) can be

interpreted as the conditional intensity of Xj at v given that u ∈ Xi. Thus the
cross pair correlation function informs on how presence of a point in u affects the
intensity of further points inXj. In the special case whenXi andXj are independent,
gij(u,v) ≡ 1. If X = (X1, . . . , Xp) consists of independent Poisson processes, we
call X a multivariate Poisson process. Then λ

(m)
i (u1, . . . ,um) =

∏m
l=1 λi(ul) and

λ
(m,n)
ij (u1, . . . ,um,v1, . . . ,vn) =

∏m
l=1 λi(ul)

∏n
k=1 λj(vk). Consequently, gij(u,v) =

1, i, j = 1, . . . , p, for a multivariate Poisson process which is the reference model of
complete spatial independence.

Throughout the paper, we assume that the multivariate point process is second
order cross-intensity reweighted isotropic meaning that gij(u,v) depends only on
the distance ‖u − v‖. For this reason, we abuse notation and denote by gij(r) the
value of gij(u,v) when ‖u−v‖ = r. We often refer to so-called Campbell’s formulae.
For example, by standard measure theoretical arguments, the definition of λ(m)

i (·)
implies

E

6=∑

u1,...,um∈Xi

f(u1, . . . ,um) =

∫

(Rd)m
f(u1, . . . ,um)λ

(m)
i (u1, . . . ,um)du1 · · · dum

for any non-negative function f on (Rd)m. Similar Campbell formulae hold for the
cross joint intensities.

3 Semi-parametric multinomial logistic regression

In this section we detail the proposed semi-parametric model and the multinomial lo-
gistic regression approach to statistical inference. Formal asymptotic considerations
are deferred to Section 4.

3.1 Semi-parametric model and multinomial logistic
regression

For spatial point pattern data in an environment like a city, the intensity function
can be rather complex due to the city layout and variations in population density.
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To overcome this difficulty, we follow Diggle and Rowlingson (1994) and assume that
for each point pattern Xi, the intensity function takes the multiplicative form

λi(u;γi) = λ0(u) exp[γT
i z(u)], i = 1, . . . , p, (3.1)

where λ0(·) is an unknown background intensity function, z(u) is a q-dimensional
vector of spatial covariates at location u, and γi ∈ Rq is the vector of regression
parameters. The background intensity λ0(·) can be interpreted as the spatial effects
of latent factors such the urban structure and population density and is assumed to
be common for all point types. The model (3.1) is also closely related to the Cox
regression model widely used for the conditional intensity in survival analysis (Cox,
1972).

We tackle the estimation of model (3.1) by conditional composite likelihood.
Conditioned on that an event is observed at location u, under model (3.1), the
probability that it is from the point process Xi is

λi(u;γi)∑p
k=1 λk(u;γk)

=
exp

[
γT
i z(u)

]
∑p

k=1 exp
[
γT
k z(u)

] , γ = (γT
1 , . . . ,γ

T
p )T, (3.2)

which does not depend on the background intensity λ0(·). Clearly, the γk’s are
not identifiable from the probabilities (3.2). To address this issue, we pick a base-
line process, say Xp, and define βi = γi − γp for i = 1, . . . , p − 1. Denoting
β = (βT

1 , . . . ,β
T
p−1)T, the conditional probabilities (3.2) become

pi(u;β) =





exp[βT
i z(u)]

1+
∑p−1

k=1 exp[βT
kz(u)]

, i = 1, . . . , p− 1,

1

1+
∑p−1

k=1 exp[βT
kz(u)]

, i = p.
(3.3)

Using the new parameterization (3.3), we can evaluate the effects of the covari-
ates z(·) relative to the baseline process Xp similar to matched case-control studies
and Cox regression in survival analysis. To estimate β, we define the multinomial
conditional composite likelihood as

L(β) =

p∏

i=1

∏

u∈Xi∩W
pi(u;β).

This is formally equivalent to a multinomial logistic regression likelihood function. It
is a composite likelihood function because it ignores possible dependencies between
types of points given their locations. The log multinomial conditional composite
likelihood function is of the form

`(β) =

p∑

i=1

∑

u∈Xi∩W

[
βT
i z(u)− log

(
1 +

p−1∑

k=1

exp[βT
k z(u)]

)]
, (3.4)

and the conditional composite likelihood estimator is defined as β̂ = arg maxβ `(β).
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3.2 Estimation of the asymptotic covariance matrix of β̂

In this section we consider the problem of estimating the asymptotic covariance
matrix of β̂, which is challenging due to the highly complex between- and within-
type correlation structure of the multivariate point process.

We denote by E(·) and Var(·), expectation and variance with respect to the
data generating distribution of X = (X1, . . . , Xp), where we assume the intensity
function of Xi is of the form (3.1) with the parameters γi given by some specific
values γ∗i ∈ Rq and we let β∗i = γ∗i − γ∗p for i = 1, . . . , p− 1. In this section and the
rest of the paper we will refer to the ‘pooled’ point process Xpl = ∪pk=1Xi, whose
intensity function and pair correlation function are

λpl(u;β) =

p∑

k=1

λk(u;γk)

and gpl(u,v;β, g) =

p∑

l=1

p∑

l′=1

pl(u;βl)pl′(v;βl)gll′(u,v).

(3.5)

The “g” inside gpl(u,v;β, g) signifies the dependence on the gll′ . We use in the follow-
ing the short forms λ∗k(·), p∗l (·), λpl(·), and gpl(·, ·) for λk(·;γ∗i ), pl(·;β∗l ), λpl(·;β∗),
and gpl(·, ·;β∗, g).

It is trivial to see that `(β) in (3.4) is a concave function of β and thus maximizing
`(β) is equivalent to solving the estimating equation e(β) = 0 where

e(β) = [e1(β)T, . . . , ep−1(β)T]T, (3.6)
with

ei(β) =
d

dβi
`(β) =

∑

u∈Xi∩W
z(u)−

p∑

l=1

∑

u∈Xl∩W

z(u) exp[βT
i z(u)]

1 +
∑p−1

k=1 exp[βT
k z(u)]

, (3.7)

for i = 1, . . . , p − 1. According to standard estimating equation theory (see, for
example, Crowder, 1986) and formally justified by Theorem 2 in Section 4.1, the
asymptotic covariance matrix of β̂ is of the form

[S(β∗)]−1 Σ(β∗, g) [S(β∗)]−1

where S(β∗) = E[− d
dβT e(β∗)] is the so-called sensitivity matrix and Σ(β∗, g) =

Var [e(β∗)] is the covariance matrix of e(β∗). The “g” inside Σ(β∗, g) emphasizes
that Var [e(β∗)] depends on the underlying cross-pair correlation functions.

The explicit forms of S(β∗) and Σ(β∗, g) are derived in Section A of the supple-
mentary material. The (i, j)’th block of S(β∗) is of the form

S(β∗)ij =

{∫
W

Z(u,u) [1− p∗i (u)]λ∗i (u)du i = j,

−
∫
W

Z(u,u)p∗j(u)λ∗i (u)du i 6= j,
(3.8)

for i, j = 1, . . . , p − 1 with Z(u,v) = z(u)z(v)T. The (i, j)’th block of Σ(β∗, g)
corresponding to Cov [ei(β

∗), ej(β∗)] takes the form

Σ(β∗, g)ij = S(β∗)ij

+

∫

W 2

Z(u,v)λ∗i (u)λ∗j(v)gpl(u,v;β∗, g)Tij(u,v;β, g)dudv,
(3.9)
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where the function Tij(u,v;β∗, g) is defined as

1 +
gij(u,v)

gpl(u,v;β∗, g)
−

p∑

l=1

[p∗l (v)gil(u,v) + p∗l (u)gjl(u,v)]

gpl(u,v;β∗, g)
. (3.10)

By Campbell’s formulae we can approximate S(β∗) and Σ(β∗, g) by Ŝ(β∗) and
Σ̂(β∗, g), whose (i, j)’th blocks are defined as

Ŝ(β∗)ij =





∑

u∈Xpl

Z(u,u) [1− p∗i (u)] p∗i (u) i = j,

−
∑

u∈Xpl

Z(u,u)p∗i (u)p∗j(u) i 6= j,
(3.11)

Σ̂(β∗, g)ij = Ŝ(β∗)ij +

6=∑

u,v∈Xpl:‖u−v‖≤R
Z(u,v)p∗i (u)p∗j(v)Tij(u,v;β∗, g), (3.12)

for i, j = 1, . . . , p− 1. Here R denotes a ‘correlation range’ such that gij(r) ≈ 1 for
r > R. In practice we replace β∗ by β̂ in (3.11)–(3.12) and the notion “g” emphasizes
their dependence on the underlying cross-pair correlation functions, which will be
replaced by non-parametric estimators discussed in the next sections.

3.3 Naive kernel estimation of cross PCF ratios

The empirical covariance matrix (3.12) depends critically on cross PCFs which need
to be estimated. The definition of a cross PCF in (2.2) suggests that its estimation
requires consistent estimators of the intensity functions which are not available under
the model (3.1), since λ0(·) is unknown. However, a closer look at (3.10) reveals that
for computation of (3.10) it suffices to estimate the cross pair correlation functions
up to a common multiplicative factor, or, equivalently, to estimate ratios of cross
PCFs, i.e.

gij,kl(u,v) = gij(u,v)/gkl(u,v), i, j = 1, . . . , p, (3.13)

for some arbitrary fixed pair of types of points k and l. These ratios are also of great
interest in their own right as they measure the strength of correlation among two
types of points relative to the strength of correlation between two other types of
points. Consider the quantity

Fij(r; b,β) =

6=∑∑

u∈Xi∩W
v∈Xj∩W

kb(‖u− v‖ − r)
pi(u;β)pj(v;β)

, (3.14)

where kb(·) = k(·/b)/b with k(·) being a kernel function defined on a bounded
interval in R and b > 0 is a bandwidth. Using Campbell’s formula together with
equation (3.3), it follows that under model (3.1),

E[Fij(r; b,β
∗)] =

∫

W 2

λpl(u)λpl(v)gij(u,v)kb(‖u− v‖ − r)dudv,
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where λpl was defined in (3.5). Under suitable conditions and appropriately chosen
bandwidth b, it is reasonable to expect that Fij(r; b, β̂) ≈ c(r)gij(r), where

c(r) =

∫

W 2

λpl(u)λpl(v)kb(‖u− v‖ − r)dudv,

is a multiplicative factor which, as desired, does not depend on ij. Consequently,

ĝn
ij,kl(r; b, β̂) = Fij(r; b, β̂)/Fkl(r; b, β̂) (3.15)

becomes an estimator of (3.13).
Note that the estimator (3.15) does not depend on the unknown background

intensity λ0(·). The superscript “n” stands for “naive” kernel estimator (a refined
estimator will be introduced in the next section). Our Theorem 3 in Section 4.2
states that under mild conditions, (3.15) is consistent for gij,kl(r). The naive plug-in
estimator Σ̂(β̂, ĝn) is then obtained by replacing β∗ and the cross PCFs in (3.10)
by β̂ and the estimators (3.15) of cross PCF ratios. For the rest of the paper, we
use the PCF of the baseline process Xp as the fixed denominator in (3.13), letting
k = l = p.

3.4 Refined cross PCF ratio estimators

Even though Theorem 3 in Section 4.2 shows that the naive kernel estimator (3.15)
is consistent under mild conditions, the finite sample performance of the plug-in
estimators Σ̂(β̂, ĝn) may be unsatisfactory due to high variabilities of the ĝn

ij,pp(·)’s.
In particular, our numerical experiments suggest that when the number of observed
points is small, some diagonal elements of the Σ̂(β̂, ĝn) may be negative, resulting
in negative estimated variances for some components of β̂.

We notice that this phenomenon is mainly caused by the existence of a large
number of negative values of Tii(u,v; β̂, ĝn) when ‖u−v‖ is large, leading to negative
values in the diagonal of Σ̂(β̂, ĝn)ii as defined in (3.12). This issue can be resolved
or alleviated by imposing constraints on the cross PCFs. In this paper, we impose
the following constraints

gij(r) ≤
√
gii(r)gjj(r) for r ≥ R∗, i, j = 1, . . . , p, (3.16)

for some R∗ ≥ 0. Intuitively, condition (3.16) means that for lags r ≥ R∗, the spatial
correlation between different point processes is weaker than the (geometric) average
of spatial correlation within each individual point process. Condition (3.16) is not
necessarily true for any multivariate point process but is indeed valid with R∗ = 0
for a large class of multivariate log Gaussian Cox processes (Waagepetersen et al.,
2016) (see also Section 5) and for a large subclass of the multivariate shot-noise Cox
processes proposed in Jalilian et al. (2015).

To enforce the constraint (3.16) on the naive kernel estimators, let Ĝn
r be a p×p

matrix whose (i, j)’th element is ĝn
ij,pp(r; b, β̂) for some distance r > R∗. The refined

nonparametric estimators, denoted as ĝr
ij,pp(r; b, β̂), are collected in the matrix Ĝr

r

obtained by

Ĝr
r = arg min

Θ=[θij ]ij
‖Θ− Ĝn

r‖2
F , with θij = θji, θpp = 1, θ2

ij ≤ θiiθjj, (3.17)

where ‖ · ‖F is the Frobenius norm of a matrix.
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It can be shown (Section B in the supplementary material) that for ‖u−v‖ > R∗,
the plug-in estimator with ĝr

ij,pp(·)’s satisfies

min
1≤i≤p

Tii(u,v; β̂, ĝr) ≥ 1− max
1≤l≤p

ĝr
ll,pp(‖u− v‖; b, β̂)

/
gpl(u,v; β̂, ĝr).

In contrast, using the naive ĝn
ij,pp(·)’s, we can only achieve the lower bound

1−
[
2 max

1≤l,l′≤p
ĝn
ll′,pp(‖u− v‖; b, β̂)− min

1≤l≤p
ĝn
ll,pp(‖u− v‖; b, β̂)

]/
gpl(u,v; β̂, ĝn).

Note that the first lower bound above can be much larger than the second lower
bound, which partly explains why the refined cross PCF ratio estimators would
produce much fewer large negative Tii(u,v; β̂, ĝr) when ‖u − v‖ > R∗, leading
to a better covariance matrix estimator. In Section 5.3, we give a more detailed
demonstration through numerical examples.

Remark 1. Our numerical investigations suggest that the refined estimator is quite
robust to the choice of R∗. The simplest choice is to set R∗ = 0. Otherwise we
recommend the choice R∗ = arg minr≥0{maxi Pii(r) > 0.05}, where Pii(r) is the per-
centage of pairs (u,v) that give Tii(u,v; β̂, ĝn) < 0 within the set {(u,v) : u,v ∈
Xpl and ‖u − v‖ ∈ (r − h, r + h)}. In other words, when the percentage of nega-
tive Tii(u,v; β̂, ĝn)’s exceeds 5% around the distance R∗ for any i = 1, . . . , p, the
restriction (3.16) will be enforced for r > R∗.

4 Asymptotic properties

In this section we study asymptotic properties of β̂ in the case where X is ob-
served on a sequence of increasing windows Wn. Denote by e(n)(β) the multinomial
estimating function (3.6) evaluated on Wn and by β̂n the sequence of estimators
obtained as solutions to e(n)(β) = 0. The quantities γ∗, β∗, Σn(β∗, g) and Sn(β∗)
are defined as in Section 3.2 with W = Wn for the last two. We also define ‘av-
eraged’ versions, Σ̄n(β∗, g) = Σn(β∗, g)/|Wn| and S̄n(β∗) = Sn(β∗)/|Wn|. Finally,
‖A‖max = maxij aij denotes the maximum norm of A = [aij]ij.

4.1 Consistency and asymptotic normality of β̂n
The following conditions are sufficient to establish the consistency of β̂n.

C1 W1 ⊂ W2 ⊂ . . . and |⋃∞l=1Wl| =∞.

C2 There exists an 0 < K1 < ∞ such that ‖z(u)‖max, λ∗i (u) and gij(u,v) are
bounded above by K1 for all u,v ∈ ⋃∞l=1Wl and i, j = 1, . . . , p.

C3 There exists an 0 < K2 < ∞ so that
∫
Rd |gij(0,u) − 1|du < K2 for all i, j =

1, . . . , p.

C4 lim infn→∞ λmin

[
|Wn|−1

∫
Wn

Z(u,u)λ∗i (u)pp(u;β∗)du
]
> 0 for i = 1, . . . , p− 1,

where λmin[A] denotes the minimal eigenvalue of a matrix A.
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C1–C3 are mild conditions that have been widely used in the literature. C4 ensures
that the averaged sensitivity matrix S̄n(β∗) is invertible for sufficiently large n, which
is commonly used in the estimating equation literature. Heuristically speaking, C4
requires that sufficient information regarding β∗ need to be accumulated across space
and it could be violated if z(·) is close to constant.

Theorem 1. Under conditions C1–C4, there exists a sequence of solutions β̂n to
the estimating equation en(β) = 0 for which

β̂n
p−−→ β∗, as n→∞.

The proof of Theorem 1 is given in Section C.1 of the Appendix.
Next, we proceed to establish asymptotic normality of β̂n. Following Biscio and

Waagepetersen (2019), we define an α-mixing coefficient by regarding X as a marked
point process with points in Rd and marks in M = {1, . . . , p}. That is, a point u
in Xi corresponds to a marked point (u, i). We then for sets A ⊆ Rd and B ⊆ M ,
define XA,B = X ∩ A× B as the set of marked points in X whose ‘point parts’ fall
in A and whose marks fall in B.

To define the α-mixing coefficient for X we first define an α-mixing coefficient
for two σ-algebras F and G on a common probability space,

α(F ,G) = sup{|p(F ∩G)− p(F )p(G)| : F ∈ F , G ∈ G}.

Define d(u,v) = max{|ui− vi| : 1 ≤ i ≤ d} for u,v ∈ Rd. The marked point process
α-mixing coefficient of X is then for s, c1, c2 ≥ 0 given by

αXc1,c2(s) = sup{α(σ(XE1,M), σ(XE2,M)) :

E1 ⊂ Rd, E2 ⊂ Rd, |E1| ≤ c1, |E2| ≤ c2, d(E1, E2) ≥ s},

where |A| is the Lebesgue measure of A and d(A,B) = inf{d(u,v) : u ∈ A,v ∈ B}.
This coefficient measures the dependence between X ∩ E1 ×M and X ∩ E2 ×M ,
where E1 and E2 are arbitrary Borel subsets of Rd with volumes less than c1 and c2

and separated by the distance s.
The following extra conditions are needed to establish asymptotic normality.

N1 There exists ε > 0 such that αX2,∞(s) = O(1/sd+ε).

N2 There exist an integerm > 2d/ε+2 and Cg such that g(n1,n2,...,nk)
i1i2···ik (·, . . . , ·) ≤ Cg

for any {i1, . . . , ik} ⊆ {1, 2, . . . , p}, and integers n1 + · · ·+ nk ≤ m.

N3 It holds that lim infn→∞ λmin

[
Σ̄n(β∗, g)

]
> 0.

N1 is a standard mixing condition that, e.g., holds for multivariate log Gaussian Cox
processes with pair correlation functions of bounded range (meaning gij(r) = 1 when
r is larger than some 0 ≤ R <∞) or Poisson cluster point processes with sufficiently
quickly decaying cluster densities. Condition N2 of bounded normalized joint cross
intensities is satisfied for most multivariate point process models. N3 is a standard
condition which ensures that the variance of |Wn|−1e(n)(β) is not degenerate for
sufficiently large n.
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Theorem 2. Under conditions C1–C4 and N1–N3, as n→∞, we have that

|Wn|1/2Σ̄−1/2
n (β∗, g)S̄n(β∗)(β̂n − β∗) d−−→ N(0, I(p−1)q).

The proof of Theorem 2 is given in Section C.2 of the Appendix.
Theorem 2 implies that the asymptotic variance of β̂n is of the form

|Wn|−1[S̄n(β∗)]−1Σ̄n(β∗, g)[S̄n(β∗)]−1 = [Sn(β∗)]−1Σn(β∗, g)[Sn(β∗)]−1,

where the left hand side suggests that the variance of β̂n is of order |Wn|−1. Based
on Theorem 2, one can make statistical inference regarding β∗ and other quantities
of interest. For example, as in classical multinomial regression models, one may be
interested in the probability of a certain event at a given location, i.e., p∗i (u), or the
log-odds log

p∗i (u)

p∗p(u)
= z(u)Tβ∗i for i = 1, . . . , p− 1.

Denote by µ(β∗) a parameter of interest where µ : R(p−1)q → R is differentiable. A
simple application of the Delta method gives for 0 < α < 1 the 100α% approximate
confidence interval for µ(β∗),

µ(β̂)± z1−α/2

√
[µ(1)(β̂)]T[Ŝn(β̂)]−1Σ̂n(β̂, ĝr

n)[Ŝn(β̂)]−1µ(1)(β̂), (4.1)

where zα is the 100α’th percentile of a standard normal distribution, µ(1)(β) =
dµ(β)/dβ, and estimators of β and cross PCFs have been plugged into (3.11) and
(3.12), see also Sections 3.3–3.4 and Section 4.2.

4.2 Asymptotic properties of ĝnij,kl(r; b, β̂) and ĝrij,kl(r; b, β̂)

Let Wn and bn be sequences of observation windows and bandwidths, respectively.
Denote by ĝn

ij,kl,n(r; bn, β̂n) a sequence of estimators that is given by

ĝn
ij,kl,n(r; bn, β̂n) = Fij,n(r; bn, β̂n)/Fkl,n(r; bn, β̂n),

where the Fij,n’s are defined as in (3.14) with W = Wn. In this subsection, we show
that ĝn

ij,kl,n(r; bn, β̂n) is a consistent estimator of gij,kl(r) for any i, j = 1, . . . , p, under
the following conditions.

K1 For i, j = 1, . . . , p, the cross joint intensity g
(2,2)
ij is translation invariant:

g
(2,2)
ij (u1,u2,v1,v2) = g

(2,2)
ij (0,u2−u1,v1−u1,v2−u1), u1,u2,v1,v2 ∈

⋃∞
l=1Wl,

and there exists K3 <∞ so that
∫

Rd

|g(2,2)
ij (0,u,v,w+u)−gij(0,v)gij(0,w)|du < K3 for all u,v,w ∈

∞⋃

l=1

Wl.

K2 There exists K4 < ∞ so that g(m,n)
ij (u1, . . . ,um,v1, . . . ,vn) < K4 for all

um,vn ∈
⋃∞
l=1 Wl with m+ n < 4 and i, j = 1, . . . , p.

K3 The kernel function k(·) has a compact support [−1, 1] and the bandwidth bn
satisfies that (a) bn → 0; and (b) |Wn|bn →∞ as |Wn| → ∞.
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Theorem 3. Under conditions C2 and K1–K3, one has that

ĝn
ij,kl,n(r; bn, β̂)

p−−→ gij,kl(r), as n→∞, for i, j, k, l = 1, . . . , p. (4.2)

If we further assume that constraint (3.16) holds true, then

ĝr
ij,kl,n(r; bn, β̂)

p−−→ gij,kl(r), as n→∞, for i, j, k, l = 1, . . . , p. (4.3)

The proof of Theorem 3 is given in Section C.3 of the Appendix.

5 Simulation studies

In this section we assess the finite sample performance of the proposed methodology
through simulation studies. To evaluate our estimators we need to simulate from
a model with known forms of the intensity functions and of the ratios of cross
pair correlation functions. This precludes the use of multivariate Gibbs processes as
considered e.g. in Rajala et al. (2018) and we consider instead a Cox process model.
Specifically, the multivariate point patterns are simulated from a multivariate log-
Gaussian Cox process where for i = 1, . . . , p, Xi has a random intensity function of
the form

Λi(u) = λ0(u) exp[γi0 + γi1z(u)] exp[αiY (u) + σiUi(u)− α2
i /2− σ2

i /2], (5.1)

where λ0(·) is the inhomogeneous background intensity, z(·) is a spatial covariate,
and Y (·) and Ui(·) are independent zero-mean unit variance Gaussian random fields.
The spatial correlation functions of Y (·) and Ui(·) are assumed to be exponential
cY (u,v) = exp(−‖u−v‖/ξ) and cUi

(u,v) = exp(−‖u−v‖/φi) with scale parameters
ξ and φi. Conditional on the Λi, the Xi are independent Poisson processes. This
model has a natural interpretation and can generate both positive and negative
correlations between different types of points.

The process Y (·) can be viewed as an unobserved factor that affects all types of
points and hence induces spatial correlations both within and between different types
of points. The latent Gaussian process Ui(·) is a type-specific factor that only affects
the i’th type of points. Conditional on λ0(·) and z(·), E[Λi(u)] = λ0(u) exp[γi0 +
γi1z(u)] and the cross PCF between Xi and Xj is of the form

gij(r;θ) = exp
[
αiαj exp(−r/ξ) + 1[i = j]σ2

i exp(−r/φi)
]
, (5.2)

where θ = (α1, . . . , αp, ξ, σ
2
1, . . . , σ

2
p, φ1, . . . , φp) ∈ R3p+1. For i 6= j, αiαj > 0 (< 0)

implies positive (negative) correlation between points from Xi and Xj whereas
αiαj = 0 implies that Xi and Xj are independent given λ0(·) and z(·).

5.1 Simulation settings

More specifically, we consider the multivariate log-Gaussian Cox process with p = 4
and observed within a sequence of increasing square windows Wl = [0, l] × [0, l],
1 ≤ l ≤ 2. The baseline intensity function in (5.1) is λ0(u) = exp [0.5V (u)− 0.52/2],
where V (u) is a realization of zero-mean unit variance Gaussian random field with
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the exponential correlation function and a scale parameter 0.05. The spatial covariate
z(u) is chosen as an independent copy of V (u), see Figure 1(a)–(b).

The parameters for the multivariate log-Gaussian Cox process are listed in Ta-
ble 1, where the intercept parameters γ∗i0, i = 1, . . . , p, are chosen so that there
are on average Ni points in the point pattern Xi in W1 with the Ni’s specified in
Table 1. We use Xp as the baseline point process and consider three parameters of
interest: the intercepts β∗0i = γ∗0i − γ∗0p, the slopes β∗1i = γ∗1i − γ∗1p, and the log-odds
θ∗i (u) = log pi(u;β∗)

pp(u;β∗) = β∗0i + β∗1iz(u), for i = 1, . . . , p − 1. The log-odds θ∗i (u) rep-
resent the elevated (or reduced) likelihood of a point in Xi at location u with an
observed covariate z(u) relative to the probability of a point in Xp at u. For the log
odds we consider z(u) = 0.5. The αi’s are chosen such that there are positive and
negative spatial correlations among the Xi’s. The resulting PCFs and cross PCFs
show (Figure 1(c)) strong spatial between and within dependence.

Table 1: The true parameters for the multivariate LGCP.

X αi σ2
i ξ φi γ∗i0 γ∗i1 Ni

X1 0.5 0.5 0.1 0.05 5.17 0 150
X2 −0.4 0.5 0.1 0.05 5.44 0.3 200
X3 0.6 0.5 0.1 0.05 5.88 −0.6 300
X4 −0.3 0.5 0.1 0.05 6.13 0.6 400

In the following Section 5.2 we evaluate estimation accuracies for the parameters
of interest and the coverage probabilities of their associated confidence intervals.
The performances of the non-parametric cross PCF estimators proposed in Sec-
tion 3.3–3.4 are considered in Section 5.3.
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Figure 1: The log-background intensity (left panel); The spatial covariate (middle panel);
The true PCFs and cross PCFs (right panel).

5.2 Estimation accuracies and coverage probabilities

In this simulation study, we evaluate estimation accuracies for the The log odds
θ∗i (u) are estimated by replacing the βi’s in the definition of the θ∗i (u)’s by their
estimates β̂i. Four types of confidence intervals are investigated, denoted CIĝn , CIĝr ,
CIgPoisson , and CIgtrue . All confidence intervals are constructed using (4.1) with the
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Table 2: Estimation accuracies and coverage probabilities of confidence intervals.

CIĝn CIĝr CIgPoisson CIgtrue

Bias SE 90% 95% 90% 95% 90% 95% 90% 95%

β̂01 −0.002 0.246 66.1 71.8 87.0 92.6 47.6 54.6 89.3 93.8
β̂02 0.002 0.155 66.5 72.2 93.6 97.1 62.6 70.5 90.5 94.9
β̂03 0.002 0.254 67.0 74.4 84.7 90.8 39.3 45.5 89.7 94.4

β̂11 −0.001 0.135 88.6 94.4 88.2 94.4 68.5 77.6 90.4 95.9
W1 β̂12 0.002 0.105 89.5 94.4 89.1 94.6 75.7 83.3 90.5 95.4

β̂13 −0.001 0.127 87.4 93.5 86.9 92.6 63.9 73.3 89.6 94.5

θ̂1 −0.003 0.246 68.4 75.4 87.0 93.0 44.3 52.2 89.8 94.5

θ̂2 −0.008 0.157 70.5 77.6 92.2 96.0 61.4 70.6 89.7 95.3

θ̂3 −0.002 0.261 72.6 80.7 86.2 91.3 44.1 51.3 90.8 94.5

β̂01 −0.001 0.131 82.1 89.2 86.7 92.3 46.1 52.7 88.0 93.8
β̂02 −0.006 0.080 83.3 90.4 92.3 95.7 62.0 68.5 89.6 94.7
β̂03 0.005 0.137 81.5 88.3 86.2 92.3 34.8 42.6 87.9 94.0

β̂11 −0.002 0.067 91.2 96.0 91.6 96.0 71.1 80.4 91.6 96.4
W2 β̂12 −0.001 0.054 89.7 95.5 89.7 95.5 78.1 85.8 90.5 95.6

β̂13 −0.001 0.067 88.7 95.4 88.8 95.4 63.6 72.6 89.2 95.4

θ̂1 −0.002 0.130 83.9 88.7 88.0 92.4 45.4 52.4 88.8 94.2

θ̂2 −0.006 0.083 84.0 89.7 91.2 96.0 59.4 69.0 89.2 95.2

θ̂3 0.005 0.143 83.7 88.2 86.0 91.8 40.2 47.9 88.7 93.9

sensitivity and the covariance matrices estimated using equations (3.11) and (3.12)
with R = 0.4 but with different choices of cross PCF estimators. The CIĝn and CIĝr
use respectively the “naive” and “refined” kernel cross PCF ratio estimators (3.15)
and (3.17). The R∗ used for the “refined” kernel estimators is obtained with the
data-driven procedure in Remark 1. The CIgPoisson is obtained by assuming gij(·) ≡ 1
for i, j = 1, . . . , p, and CIgtrue is constructed using the true gij(·)’s. The coverage
probabilities of CIgtrue serve as bench marks while CIgPoisson may reveal potential
problems of using multivariate Poisson point process models in presence of spatial
correlations. Summary statistics based on 1000 simulations are given in Table 2 and
also illustrated in Figure 2.

The first column in Table 2 shows that the parameter estimates are close to
unbiased. Further, as predicted by Theorem 2, the standard errors are approximate
halved when the observation window is increased from W1 to the four times larger
W2. The coverage probabilities of CIgtrue are all close to the nominal levels, sug-
gesting that statistical inferences based on Theorem 2 are valid provided all cross
PCF functions are correctly specified. On the contrary, in almost all cases, CIgPoisson

suffers from severe undercoverage that may lead to wrong conclusions in practical
applications.Confidence intervals based on the “naive” kernel estimator of cross PCF
ratios, i.e. CIĝn , achieve nominal levels for all slope parameters but suffer from se-
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rious undercoverage for intercepts and the log-odds when the observation window
is small (W1 = [0, 1] × [0, 1]). The undercoverage of CIĝn becomes much less severe
when the window expand to W2 = [0, 2]× [0, 2]. Finally, confidence intervals based
on the “refined” cross PCF ratio estimators, i.e. CIĝr , can effectively correct the un-
dercoverage of CIĝn and achieve nominal levels for all parameters of interest. This
suggests that it is important to apply the modification proposed in Section 3.4 for
practical applications with only limited sample sizes.

Figure 2 paints a more complete picture of how estimation accuracies and cov-
erage probabilities change as Wl expands. The root mean squared error (RMSE)
of all estimators decrease as the window size increases, supporting our theoretical
findings in Section 4.1. Figure 2 also reveals that while the coverage probabilities
of CIĝn for intercepts and log-odds are getting closer to the nominal level as Wl

expands, the undercoverage of CIgPoisson does not improve at all. This emphasizes
the importance of taking into account spatial correlations to make valid statistical
inferences. Lastly, the coverage probabilities of CIĝr are close to the nominal level
for all parameters and window sizes and only slightly worse than those of CIgtrue .
Therefore, we recommend CIĝr for practical use.
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Figure 2: Top panels: the root mean squared errors (RMSE) of multinomial composite
likelihood estimators; Bottom panels: coverage probabilities of various confidence intervals.
Observation windows range from W1 to W2.

5.3 Performances of kernel estimators of cross PCF ratios

Following the last paragraph in Section 3.3, Figure 3 illustrates the performances of
the “naive” kernel estimator and “refined” kernel estimator for some ratios gij(r)/g44(r)
under various window sizes. Both estimators are unbiased and the “refined” kernel
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estimator has a slightly narrower 95% probability band than the “naive” kernel esti-
mator for the window W1. As the observation window is increased from W1 to W2,
all probability bands become much tighter, supporting the theoretical findings in
Theorem 3. However, we do not observe appreciable differences between these two
non-parametric estimators in terms of estimation accuracies.
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n

Mean of ĝ
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(b) Estimation of g24,44(r) with W1
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m

95% PI ĝ
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(c) Estimation of g33,44(r) with W1
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m

0.0 0.1 0.2 0.3 0.4

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(d) Estimation of g12,44(r) with W2
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n

95% PI ĝ
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(e) Estimation of g24,44(r) with W2
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(f) Estimation of g33,44(r) with W2
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Figure 3: Means of estimated cross PCF ratios and point-wise 95% probability intervals
for cross PCF ratios. Upper row: W1, lower row: W2.

To shed more light on why CIĝr outperforms CIĝn , we study the diagonal blocks
of the covariance matrix estimator (3.12) and focus on the diagonal elements in each
Σ̂(β∗, g)ii corresponding to the intercept, which can be rewritten as

τ̂ i(β
∗, g) =

∑

u∈Xpl

[1− p∗i (u)]p∗i (u) +
L−1∑

l=1

φi,l(β
∗, g), (5.3)

for i = 1, . . . , p− 1, where for L ≥ 1 and l = 1, . . . , L− 1,

φi,l(β
∗, g) =

6=∑

u,v∈Xpl

p∗i (u)p∗i (v)Tii(u,v;β∗, g)1(rl < ‖u− v‖ ≤ rl+1), (5.4)

for an equally-spaced partition 0 = r1 < r2 < · · · < rL = R of the interval [0, R] and
with Tii(u,v;β∗, g) defined in (3.10).

The τ̂ i(β∗, g)’s are estimators of variances. However, after plugging in β̂ and
estimated cross PCFs, the resulting τ̂ i(β̂, ĝ)’s are not guaranteed to be positive.
This issue is especially severe for the “naive” kernel cross PCF ratio estimators.
Figure 4 compares the means of φi(r;β∗, g), φi(r; β̂, ĝn) and φi(r; β̂, ĝ

r) based on
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1000 simulations together with point-wise 95% probability bands for i = 1, 2, 3.
While there exist little differences between the means of φi(r; β̂, ĝn) and φi(r; β̂, ĝr),
the low quantiles of φi(r; β̂, ĝn) can take very large negative values, which may lead
to a small and even negative value of τ̂ i(β̂, ĝn). In contrast, the lower quantiles
of φi(r; β̂, ĝr) are always close to 0, and thus the associated τ̂ i(β̂, ĝr)’s are bounded
away from negative values. Since the estimated covariance matrix of β̂ takes the form
[Ŝn(β̂)]−1Σ̂n(β̂, ĝ)[Ŝn(β̂)]−1, it is generally the case that larger diagonal elements in
Σ̂n(β̂, ĝ) leads to larger estimated variances for β̂. Therefore, CIĝr tends to achieve
higher coverage probability than that of CIĝn .
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n

95% PI ĝ
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m

Figure 4: Means of φi,l(β∗, g), φi,l(β, ĝn) and φi,l(β̂, ĝr) against rl, l = 1, . . . , L, i = 1, 2, 3,
and point-wise 95% probability bands.

6 Washington DC street crime data

Figure 5: Left: street crimes locations (n = 5378); Right: a map of Washington DC.

Figure 5 shows spatial locations of nine types of street crimes committed in Wash-
ington DC in January and February 2017, which can be downloaded from http:
//opendata.dc.gov/datasets/crime-incidents-in-2017. Nine types of street
crime are included: (1) Other theft, (2) Robbery, (3) Theft from automobile, (4)
Motor vehicle theft, (5) Assault with weapon, (6) Sex abuse, (7) Arson, (8) Bur-
glary and (9) Homicide. The numbers of each crime type are n1 = 2254, n2 = 366,
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Table 3: List of spatial covariates.

Name Definition

1. % African Square root of percentage of African American residents
2. % Hispanic Square root of percentage of Hispanic residents
3. % Male Square root of percentage of male residents with age 18-24
4. % HouseRent Percentage of housing units occupied by renters
5. % Bachelor Percentage of residents over age 25 with a bachelor’s degree
6. MedIncome Logarithm of median annual per capita income (in $1000)
7. Pdist Logarithm of the distance to the nearest police station

n3 = 1832, n4 = 335, n5 = 332, n6 = 44, n7 = 1, n8 = 259 and n9 = 14. We omit
the rare street crimes “Sex abuse”, “Arson” and “Homicide”. Using spatial covariates
similar to those suggested in Reinhart and Greenhouse (2018), the first 6 spatial co-
variates listed in Table 3 are obtained from US census data and are constant within
each of 179 census tracts partitioning Washington DC, see also Section 6.2. We cal-
culated ourselves the last covariate (distance to nearest police station) which varies
smoothly across the city. Square root and log transformations have been applied to
some covariates to achieve approximate normal distributions.

6.1 Inference regarding regression coefficients and cross
PCFs

Using model (3.1), we assume that the intensity of each street crime is given by

λi(u;γi) = λ0(u) exp[γi0 + γi1z1(u) + · · ·+ γi7z7(u)], i = 1, . . . , 5, 8.

where the zk(·)’s are listed in Table 3. The common first street crime “Other theft”
is used as the baseline. The regression parameters are estimated by maximizing the
composite likelihood (3.4). The asymptotic standard errors and p-values are com-
puted with R = 3 km and either of two types of cross PCFs: using the “refined” kernel
estimator ĝr proposed in Section (3.4) with b = 0.2km, or assuming all gij(·) ≡ 1
(“Poisson”) for any i, j = 1, . . . , 5, 8. The R∗ used for the “refined” kernel estimators
is obtained through the data-driven procedure outlined in Remark 1. Estimated re-
gression coefficients, standard deviations, and p-values are summarized in Table 4,
and estimated PCF ratios and cross PCF ratios are illustrated in Figure 6.

Figure 6(a) indicates that within and between clustering for crimes types other
than “Other theft” is less strong than for “Other theft” up to around 250 meters.
After that some crime types appear to be more clustered than “Other theft” but
the difference in clustering strength vanishes around 3km distance. In particular,
Figure 6 suggests that a multivariate Poisson model is not appropriate for the street
crime data.

In Table 4, the Poisson model as expected always gives smaller standard errors
for all coefficients. As a result, more regression coefficients appear to be statistically
significant at the α = 0.05 level (highlighted in blue) compared to those for the pro-
posed method where cross PCFs are estimated from the data. In some cases, the two
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Figure 6: (a) Estimated PCF ratios gii(r)/g11(r) for i = 2, . . . , 5, 8; (b) estimated cross
PCF ratios gij(r)/g11(r) for i, j = 2, . . . , 5, 8 and i 6= j.

methods reach contradictory conclusions. For example, the covariate “% HouseRent”
is significant under the Poisson model (p-value 0.028) when comparing “Theft from
auto” to the baseline process “Other theft”, while the proposed model asserts other-
wise with a p-value of 0.352. In such cases, considering the strong spatial correlations
displayed in Figure 6, we argue that the proposed method is more reliable.

Based on the proposed method, all estimated coefficients for “% HouseRent” are
negative and many of them are significant, suggesting that when “% HouseRent” is
large, “Other theft” becomes relatively more frequent compared to all other crime
types. Second, no covariate elevates or reduces the relative risk of “Robbery” com-
pared to “Other theft” and no covariate other than “% HouseRent” is significant
for the relative risk between “Motor vehicle theft” and “Other theft”. Third, “Theft
from automobile” tend to occur more often in a neighborhood with more African
American/Hispanic population, less young male percentage and residents with rel-
atively low education level, as compared to “Other theft”. Fourth, “Assault with
weapon” is more likely to occur in a neighborhood with low young male population
and low income levels compared to “Other theft”. Finally, compared to “Other theft”,
“Burglary” tends to occur more in areas with low African American population, low
education level and larger distance to a police station.

6.2 Residual analysis

In this subsection, we perform a residual analysis to assess goodness of model fit.
We divide the data according to the 179 census tracts in Washington DC. Denoting
the census tracts A1, A2, . . . , AK , K = 179, we define the raw residual for the i’th
type of street crime in Ak as

ε̂i,k(β̂) =
∑

u∈Xi

I(u ∈ Ak)−
∑

u∈Xpl∩Ak

pi(u; β̂), (6.1)

for i = 1, . . . , p and k = 1, . . . , K. Equation (6.1) is essentially a restricted version
(within Ak) of the intercept component of ei(β̂) defined in (3.7). By definition of
β̂, ei(β̂) = 0, implying

∑K
k=1 ε̂i,k = 0 for i = 1, . . . , p. If the model fits the data

reasonably well, one should expect most ε̂i,k to be relatively close to 0.

19



Table 4: Estimated regression coefficients, standard errors, and p-values for street crime
data.

Std. err. P-values

Street crime Covariate Coef. ĝr Poisson ĝr Poisson

% African 0.894 0.867 0.697 0.302 0.199
% Hispanic 0.669 0.685 0.499 0.329 0.180
% Male 0.141 1.183 0.962 0.905 0.884

Robbery % HouseRent −0.783 0.442 0.352 0.077 0.026
(n2 = 366) % Bachelor −1.130 0.970 0.760 0.244 0.137

MedIncome −0.071 0.371 0.304 0.847 0.814
Pdist 0.176 0.108 0.086 0.102 0.040

% African 2.318 0.813 0.346 0.004 <0.0001
% Hispanic 2.369 0.760 0.286 0.002 <0.0001
% Male −2.332 1.049 0.500 0.026 <0.0001

Theft from % HouseRent −0.412 0.444 0.188 0.352 0.028
automobile % Bachelor 2.936 0.891 0.417 0.001 <0.0001
(n3 = 1832) MedIncome −0.461 0.339 0.164 0.174 0.004

Pdist 0.071 0.107 0.047 0.508 0.131

% African −0.451 0.872 0.702 0.605 0.520
% Hispanic −0.556 0.724 0.533 0.443 0.297

Motor vehicle % Male −0.139 1.174 0.962 0.906 0.885
theft % HouseRent −1.295 0.443 0.355 0.003 0.0003

(n4 = 335) % Bachelor −1.767 0.993 0.785 0.075 0.024
MedIncome −0.174 0.361 0.300 0.630 0.563
Pdist 0.205 0.113 0.089 0.070 0.022

% African 1.346 1.004 0.806 0.180 0.095
% Hispanic −0.101 0.794 0.541 0.898 0.851
% Male −2.76 1.358 1.132 0.042 0.0145

Assult with % HouseRent −1.229 0.494 0.377 0.013 0.001
weapon % Bachelor −0.619 1.124 0.839 0.582 0.461

(n5 = 332) MedIncome −0.798 0.391 0.314 0.041 0.011
Pdist 0.145 0.122 0.088 0.235 0.100

% African −2.332 1.187 0.801 0.050 0.003
% Hispanic −0.029 0.983 0.583 0.977 0.961
% Male 0.776 1.555 1.039 0.618 0.455

Burglary % HouseRent −1.930 0.670 0.376 0.001 <0.0001
(n8 = 259) % Bachelor −3.374 1.327 0.875 0.011 0.001

MedIncome −0.352 0.432 0.300 0.415 0.240
Pdist 0.359 0.168 0.105 0.033 0.0006
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Following the arguments in Section (3.2) leading to (3.12), we can approximate
the variance of ε̂i,k(β∗) by

σ̂2
i,k(β

∗, g) =
∑

u∈Xpl∩Ak

[1− p∗i (u)]p∗i (u) +

u6=v∑∑

u,v∈Xpl∩Ak

p∗i (u)p∗i (v)Tii(u,v;β∗, g),

where Tii(u,v;β∗, g) is defined in (3.10). Consequently, by replacing β and cross
PCFs by their estimates, the standardized residual can be defined as

ε̂i,k(β̂) = ε̂i,k(β̂)/σ̂i,k(β̂, ĝ
r), (6.2)

for i = 1, . . . , p and k = 1, . . . , K.
Standardized residuals for all census tracts in Washington DC are illustrated

in Figure 7. One census tract that does not have any reported street crime activ-
ities in January and February 2017 is indicated by black color. Most standardized
residuals are inside the range of [−3, 3] for all six types of street crimes, indicating
an adequate model fit. Finally, the apparent strong spatial correlations among the
residuals further support the use of the proposed method.

Figure 7: Standardized residuals for 179 census tracts for six types of street crimes.

6.3 Conditional probability maps

We conclude the data analysis by creating a series of conditional probability maps.
For any location u, using the fitted β̂, we can compute pi(u, β̂) for i = 1, . . . , p, us-
ing (3.3). Figure 8 shows the pi(u, β̂), i = 1, . . . , 5, 8 computed at the 5378 observed
crime locations. Recall that given a street crime occurs at location u, pi(u, β̂) is the
fitted probability that the crime is of the i’th type. The strong spatial patterns in
these conditional probabilities are remarkable. For instance, in the southeast part
of the city (southeast to the Anacostia river), given a crime occurs, it is much more
likely to be of type “Robbery” or “Assault” than in other parts of the city. In contrast,

21



“Theft from automobile” is more likely to be reported in the middle and northern
part of the city while the hot spot for “Other theft” is located in the middle-west
part of the city.
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Figure 8: Estimated conditional probability maps for Washington DC.

7 Concluding remarks

We propose a flexible semi-parametric model for multivariate point pattern data.
The non-parametric component of the model takes into account features of the mul-
tivariate intensity function that are difficult to model or specify while the parametric
part facilitates a study of effects of covariates on relative risks of occurrence of dif-
ferent types of points. Moreover, from the parametric part of the model it is possible
to construct interesting conditional probability maps.

Our multinomial logistic composite likelihood estimation approach does not re-
quire knowledge of the non-parametric model component. It is moreover well founded
theoretically since we established the asymptotic properties of the estimation ap-
proach in a very general setting that does not require any independence assumptions,
neither within or between the different types of points.

Our non-parametric estimation approach allows to estimate cross PCFs up to a
common multiplicative factor. This is sufficient for estimating the covariance matrix
of regression parameter estimates and for inferring ratios of cross PCFs. However,
to infer individual cross PCFs, it seems necessary to introduce parametric models
for the cross PCFs. We plan to pursue this in future work.

Our methodology is applicable in very diverse fields. Our example application is
within criminology where the estimated conditional probability maps disclose a re-
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markable structure in the occurrence of various types of street crimes in Washington
DC. Other obvious areas of applications are disease mapping in epidemiology and
studies of spatial distributions of plant and animal species in ecology. Our approach
can further be extended to space-time multivariate point pattern data, which have
attracted much interest in various research areas including criminology, see e.g. the
thorough review in the the recent paper Reinhart and Greenhouse (2018).
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Appendix: Supplement

A Sensitivity and covariance matrices for e(β)

Theorem 1. The sensitivity matrix of the estimating function e(β) is a symmetric
(p− 1)q × (p− 1)q matrix S(β), where the diagonal blocks are given by:

S(β)ii =

∫

W

Z(u,u) [1− pi(u;β)] pi(u;β)λpl(u)du

for i = 1, . . . , p− 1 and the off-diagonal blocks are given by:

S(β)ij = −
∫

W

Z(u,u)pi(u;β)pj(u;β)λpl(u)du

for distinct i, j = 1, . . . , p− 1. When β = β∗ these results simplify to

S(β∗)ii =

∫

W

Z(u,u) [1− pi(u;β∗)]λ∗i (u)du

and

S(β∗)ij = −
∫

W

Z(u,u)pj(u;β∗)λ∗i (u)du.

Proof. Some straightforward algebra yields that

d

dβT
i

ei(β) = ∇βT
i

∑

u∈Xi∩W
z(u)−

p∑

l=1

∑

u∈Xl∩W
z(u)∇βT

i
pi(u;β)

= −
p∑

l=1

∑

u∈Xl∩W
Z(u,u)

exp[βT
i z(u)]

(
1 +

∑p−1
k=1 exp[βT

k z(u)]− exp[βT
i z(u)]

)
(
1 +

∑p−1
k=1 exp[βT

k z(u)]
)2

= −
p∑

l=1

∑

u∈Xl∩W
Z(u,u)pi(u;β) [1− pi(u;β)] . (A.1)
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The expectation of (A.1) negated is by Campbell’s formula:

S(β)ii = E
[
− ∂

∂βT
i

ei(β)
]

=

∫

W

Z(u,u)[1− pi(u;β)]pi(u;β)λpl(u)du.

Similarly, for the off-diagonal blocks of the Hessian matrix of `(β), we have that

d

dβT
j

ei(β) = ∇βT
j

∑

u∈Xi∩W
z(u)−

p∑

l=1

∑

u∈Xl∩W
z(u)∇βT

j
pi(u;β)

=

p∑

l=1

∑

u∈Xl∩W
Z(u,u)pi(u;β)pj(u;β). (A.2)

The expectation of (A.2) negated is

S(β)ij = E
[
− ∂

∂βT
j

ei(β)
]

= −
∫

W

Z(u,u)pi(u;β)pj(u;β)λpl(u)du.

Finally, when β = β∗, we have that pi(u;β∗)λpl(u) = λ∗i (u) due to (3.2), which
completes the proof of Theorem 1.

Theorem 2. The variance-covariance matrix of e(β∗) is a (p−1)q×(p−1)q matrix
with blocks given by (3.9) for i, j = 1, . . . , p− 1.

Proof. It is straightforward to prove that E[e(β∗)] = 0 by showing that

E[ei(β
∗)] =

∫

W

z(u)λ∗i (u)du−
p∑

l=1

∫

W

z(u)pi(u;β∗)λ∗l (u)du

=

∫

W

z(u)λ∗i (u)du−
∫

W

z(u)λ∗i (u)du = 0,

where the second last equality follows from the fact that pi(u;β∗)λpl(u) = λ∗i (u)
due to (3.2).

The diagonal blocks of Var[e(β∗)] are then given by Var[ei(β
∗)] = E[ei(β

∗)ei(β∗)T]
for i = 1, . . . , p− 1, where ei(β

∗)ei(β∗)T is

ei(β
∗)ei(β

∗)T

=
∑

u∈Xi∩W
z(u)

∑

v∈Xi∩W
z(v)T −

∑

u∈Xi∩W
z(u)

p∑

l=1

∑

v∈Xl∩W
z(v)Tpi(v;β∗)

−
p∑

l=1

∑

u∈Xl∩W
z(u)pi(u;β∗)

∑

v∈Xi∩W
z(v)T

+

p∑

l=1

∑

u∈Xl∩W
z(u)pi(u;β∗)

p∑

l=1

∑

v∈Xl∩W
z(v)Tpi(v;β∗), (A.3)

where the first term in (A.3) is

∑

u∈Xi∩W
z(u)

∑

v∈Xi∩W
z(v)T =

6=∑

u,v∈Xi∩W
Z(u,v) +

∑

u∈Xi∩W
Z(u,u),
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and the second and third terms are of the form

∑

u∈Xi∩W
z(u)

p∑

l=1

∑

v∈Xl∩W
z(v)Tpi(v;β∗)

=

p∑

l=1
l 6=i

∑

u∈Xi∩W
v∈Xl∩W

Z(u,v)pi(v;β∗)

+

6=∑

u,v∈Xi∩W
Z(u,v)pi(v;β∗) +

∑

u∈Xi∩W
Z(u,u)pi(u;β∗)

(A.4)

and the fourth term is
p∑

l=1

∑

u∈Xl∩W
z(u)pi(u;β∗)

p∑

l′=1

∑

v∈Xl′∩W
z(v)Tpi(v;β∗)

=

p∑

l,l′=1
l 6=l′

∑

u∈Xl∩W
v∈Xl′∩W

Z(u,v)pi(u;β∗)pi(v;β∗)

+

p∑

l=1

6=∑

u,v∈Xl∩W
Z(u,v)pi(u;β∗)pi(v;β∗)

+

p∑

l=1

∑

u∈Xl∩W
Z(u,u)[pi(u;β∗)]2.

(A.5)

The variance of ei(β
∗) is by Campbell’s formula

Var[ei(β
∗)]

=

∫

W 2

Z(u,v)λ∗i (u)λ∗i (v)gii(u,v)dudv

−
∫

W 2

Z(u,v)pi(v;β∗)λ∗i (u)

p∑

l=1

λ∗l (v)gil(u,v)dudv

−
∫

W 2

Z(u,v)pi(u;β∗)λ∗i (v)

p∑

l=1

λ∗l (u)gil(u,v)dudv

+

∫

W 2

Z(u,v)pi(u;β∗)pi(v;β∗)
p∑∑

l,l′=1

λ∗l (u)λ∗l′(v)gll′(u,v)dudv + Sii(β
∗)du

=

∫

W 2

Z(u,v)λ∗i (u)λ∗i (v)gii(u,v)dudv

−
∫

W 2

Z(u,v)λ∗i (u)λ∗i (v)
[ p∑

l=1

[pl(v;β∗)gil(u,v) + pl(u;β∗)gil(u,v)]
]
dudv

+

∫

W 2

Z(u,v)λ∗i (u)λ∗i (v)gpl(u,v)dudv + Sii(β
∗)
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= Sii(β
∗) +

∫

W 2

Z(u,v)λ∗i (u)λ∗i (v)[gpl(u,v) + gii(u,v)]dudv

−
∫

W 2

Z(u,v)λ∗i (u)λ∗i (v)
[ p∑

l=1

[pl(v;β∗)gil(u,v) + pl(u;β∗)gil(u,v)]
]
dudv

The calculation of Cov[ei(β
∗), ej(β∗)] is similar to (A.3) with the first term re-

placed by
∑

u∈Xi∩W z(u)
∑

v∈Xj∩W z(v)T =
∑

u∈Xi∩W,v∈Xj∩W z(u)z(v)T. Following
the same calculations as for the diagonal blocks of Var[e(β∗)], the off-diagonal blocks
are given by

Cov[ei(β
∗), ej(β

∗)]

= Sij(β
∗) +

∫

W 2

Z(u,v)λ∗i (u)λ∗j(v)[gpl(u,v) + gij(u,v)]dudv

−
∫

W 2

Z(u,v)λ∗i (u)λ∗j(v)
[ p∑

l=1

[
pl(v;β∗)gil(u,v) + pl(u;β∗)gjl(u,v)

]]
dudv.

The result now follows by the definition of Tij in (3.10).

B Lower bound for Tii(u,v;β∗, g)

The proof of lower bounds for Tii(u,v; β̂, gn) and Tii(u,v; β̂, gr) are identical to the
proof of Tii(u,v;β∗, g), therefore, we only provide proofs of Tii(u,v;β∗, g).

B.1 Lower bounds under constraint (3.16)

Tii(u,v;β∗, g)

= 1 +
gii(u,v)

gpl(u,v;β∗, g)
−

p∑

l=1

[p∗l (v)gil(u,v) + p∗l (u)gil(u,v)]

gpl(u,v;β∗, g)

= 1 +
gii(u,v)

∑p
l=1[p∗l (v) + p∗l (u)]/2

gpl(u,v;β∗, g)

−
p∑

l=1

[p∗l (v) + p∗l (u)] gil(u,v)

gpl(u,v;β∗, g)

≥ 1 +
gii(u,v)

∑p
l=1[p∗l (v) + p∗l (u)]/2

gpl(u,v;β∗, g)

−
p∑

l=1

[p∗l (v) + p∗l (u)]
√
gii(u,v)gll(u,v)

gpl(u,v;β∗, g)

= 1 +

p∑

l=1

[p∗l (u) + p∗l (v)](gii(u,v)− 2
√
gii(u,v)gll(u,v))

2gpl(u,v;β∗, g)

= 1 +

p∑

l=1

[p∗l (u) + p∗l (v)]
[(√

gii(u,v)−
√
gll(u,v)

)2 − gll(u,v)
]

2gpl(u,v;β∗, g)
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≥ 1−
p∑

l=1

[p∗l (u) + p∗l (v)]gll(u,v)

2gpl(u,v;β∗, g)

≥ 1− max1≤l≤p gll(u,v)

gpl(u,v;β∗, g)

Since the right-hand side of the last inequality does not depend on i, we have that

min
1≤i≤p

Tii(u,v;β∗, g) ≥ 1− max1≤l≤p gll(u,v)

gpl(u,v;β∗, g)
.

B.2 Lower bounds without constraint (3.16)

Tii(u,v;β∗, g) = 1 +
gii(u,v)

gpl(u,v;β∗, g)
−

p∑

l=1

[p∗l (v)gil(u,v) + p∗l (u)gil(u,v)]

gpl(u,v;β∗, g)

≥ 1 +
gii(u,v)

gpl(u,v;β∗, g)
− 2 max1≤l≤p gil(u,v)

gpl(u,v;β∗, g)
.

Therefore,

min
1≤i≤p

Tii(u,v;β∗, g) ≥ 1 +
min1≤i≤p gii(u,v)

gpl(u,v;β∗, g)
− 2 max1≤i≤p max1≤l≤p gil(u,v)

gpl(u,v;β∗, g)

≥ 1− 2 max1≤l,l′≤p gll′(u,v)−min1≤i≤p gii(u,v)

gpl(u,v;β∗, g)
.

C Proofs regarding consistency and asymptotic
normality

In the following proofs we several times refer to auxiliary lemmas stated in Section D.

C.1 Proof of Theorem 1

For ease of notation we use the abbreviations pi(u) and p∗i (u) for pi(u;β) and
pi(u;β∗), respectively. To prove Theorem 1 we invoke Theorem 2 in Waagepetersen
and Guan (2009) with Vn = |Wn|1/2Iq where Iq is the q × q identity matrix and
we define J̄(β) = − d

dβT en(β) to be the ‘average’ observed information over Wn. It
suffices to verify the following conditions

W1 There exists a t′ > 0 such that t′n ≥ t′ for all sufficiently large n where

t′n = inf‖x‖=1x
TS̄n(β∗)x.

W2 As n→∞, ‖J̄n(β)−S̄n(β)‖max converges to zero in probability for any β ∈ Rq.

W3 For any δ > 0, sup‖|Wn|−1/2(β−β∗)‖≤δ‖J̄n(β)− J̄n (β∗)‖max → 0 in probability as
n→∞.

W4 As n→∞, the sequence |Wn|−1/2e(n)(β∗) is bounded in probability.
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Proof of W1. Consider a unit length (p − 1)q × 1 vector x = [xT
1 , . . . ,x

T
p−1]T with

sub-vectors xi = (xi1, . . . , xiq)
T for i = 1, . . . , p− 1. By (3.8),

S̄n(β∗) = |Wn|−1

∫

Wn

A(u)⊗ Z(u,u)λpl(u)du,

where ⊗ denotes the Kronecker product and A(u) = [aij(u)]ij is a (p− 1)× (p− 1)
symmetric matrix of the form

A(u) =




[1− p∗1(u)]p∗1(u) −p∗1(u)p∗2(u) · · · −p∗1(u)p∗p−1(u)
−p∗1(u)p∗2(u) [1− p∗2(u)]p∗2(u) −p∗2(u)p∗p−1(u)

... . . . ...
−p∗1(u)p∗p−1(u) · · · [1− p∗p−1(u)]p∗p−1(u)


 . (C.1)

Defining now bi(u) = z(u)Txi,

xTS̄n(β∗)x = |Wn|−1

∫

Wn

p−1∑

i,j=1

aij(u)bi(u)bj(u)λpl(u)du

= |Wn|−1

∫

Wn

bT(u)A(u)b(u)λpl(u)du,

where b(u) = [b1(u), . . . , bp−1(u)]T. Using Lemma 1 in the supplementary material,
it immediately follows that

bT (u)A(u)b(u) ≥ p∗p(u)

p−1∑

i=1

b2
i (u)p∗i (u) = p∗p(u)

p−1∑

i=1

xT
i [z(u)z(u)Tp∗i (u)]xi

= xTZD(u)x,

where ZD(u) is the (p− 1)q × (p− 1)q block-diagonal matrix with diagonal blocks
z(u)z(u)Tp∗i (u)p∗p(u). Therefore, it follows that

xTS̄n(β∗)x ≥ xT
[
|Wn|−1

∫

Wn

ZD(u)λpl(u)du
]
x

≥ λmin

[
|Wn|−1

∫

Wn

ZD(u)λpl(u)du
]

= min
1≤i≤p−1

{
λmin

[
|Wn|−1

∫

Wn

z(u)z(u)Tp∗i (u)p∗p(u)λpl(u)du
]}

= min
1≤i≤p−1

{
λmin

[
|Wn|−1

∫

Wn

z(u)z(u)Tλ∗i (u)p∗p(u)du
]}
,

where the second-last equality follows from the block-diagonal structure of the ma-
trix ZD(u). The result now follows from C4.

Proof of W2. The proof of W2 follows directly from Lemma 2 in the supplementary
material and a straightforward application of Chebyshev’s inequality.
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Proof of W3. Consider the following inequality

‖J̄n(β∗)− J̄n(β)‖max

≤ ‖J̄n(β∗)− S̄n(β∗)‖max + ‖S̄n(β∗)− S̄n(β)‖max + ‖S̄n(β)− J̄n(β)‖max.

The first and third terms on the right hand side tends to zero as n → ∞ by W2.
To show that the second term tends to zero for |Wn|−1/2‖(β − β∗)‖ ≤ δ, we use
Theorem 1 in the supplementary material and consider first the diagonal blocks of
S̄n(β∗) and S̄n(β):

‖S̄n(β∗)ii − S̄n(β)ii‖max

≤ 1

|Wn|

∫

Wn

‖Z(u,u)‖maxλ
pl(u)

∣∣[1− p∗i (u)]p∗i (u)− [1− pi(u)]pi(u)
∣∣du

≤ 1

|Wn|

∫

Wn

K3
1p
∣∣[1− p∗i (u)]p∗i (u)− [1− pi(u)]pi(u)

∣∣du,

where the last inequality follows from condition C2. Let ti,β(u) = [1 − pi(u)]pi(u).
By straightforward calculations it can be shown that ‖ d

dβ
ti,β̃(u)‖max ≤ C for some

constant C > 0 under condition C2 for any ‖β̃ − β∗‖ ≤ |Wn|1/2δ, which in turn
gives that

|ti,β∗(u)− ti,β(u)|
|Wn|

≤
‖ d

dβ
ti,β̃(u)‖max‖β∗ − β‖

|Wn|
≤ C

|Wn|1/2
‖β∗ − β‖
|Wn|1/2

,

where the second fraction is bounded by δ while the first fraction converge to 0
as n → ∞. Therefore, ‖S̄n(β∗)ii − S̄n(β)ii‖max → 0 when n → ∞, i = 1, . . . , p.
Similarly, ‖S̄n(β∗)ij−S̄n(β)ij‖max → 0 when n→∞ for any i 6= j = 1, . . . , p−1.

Proof of W4. By Theorem 2,

Σn(β∗, g)ij = Var[e(n)(β∗)]

=

∫

Wn

∫

Wn

Z(u,v)λ∗i (u)λ∗j(u)hij(u,v)dudv + Sij(β
∗),

where the functions

hij(u,v) = gij(u,v) +

p∑

l=1

p∑

l′=1

p∗l (u)p∗l′(v)gll′(u,v)

−
p∑

l=1

p∗l (v)gil(u,v)−
p∑

l=1

p∗l (u)gjl(u,v),

(C.2)

i, j = 1, . . . , p− 1, can be bounded as follows:

|hij(u,v)| =
∣∣∣gij(u,v)− 1 +

p∑

l=1

p∑

l′=1

p∗l (u)p∗l′(v) [gll′(u,v)− 1]

−
p∑

l=1

p∗l (v)[gil(u,v)− 1]−
p∑

l=1

p∗l (u)[gjl(u,v)− 1]
∣∣∣
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≤ |gij(u,v)− 1|+
p∑

l=1

p∑

l′=1

|gll′(u,v)− 1|

+

p∑

l=1

[
|gil(u,v)− 1|+ |gjl(u,v)− 1|

]

≤ 4

p∑

l=1

p∑

l′=1

|gll′(u,v)− 1|.

Therefore, under conditions C2 and C3 and recalling that gij is isotropic, it is
straightforward to show that

‖Σn(β∗, g)ij‖max

≤ K4
1

∫

Wn

∫

Wn

|hij(u,v)|dudv +K3
1 |Wn|

≤ 4K4
1

∫

Wn

∫

Wn

p∑

l=1

p∑

l′=1

|gll′(u,v)− 1|dudv +K3
1 |Wn|

≤ 4K4
1

∫

Wn

p∑

l=1

p∑

l′=1

K2du +K3
1 |Wn| = (4K4

1K2p
2 +K3

1)|Wn|,

which implies that ‖Wn‖−1‖Σn(β∗, g)ij‖max is asymptotically bounded for any i, j =
1, . . . , p − 1. It then follows from Chebychev’s inequality that |Wn|−1/2e(n)(β∗) is
(element-wise) bounded in probability as n→∞.

C.2 Proof of Theorem 2

By a first-order Taylor-expansion of e(n)(β̂) = 0 around β∗,

0 = e(n)(β∗)− Jn(β̃)(β̂ − β∗)
= e(n)(β∗)− [Jn(β̃)− Sn(β∗)](β̂ − β∗)− Sn(β∗)(β̂ − β∗)

where ‖β̃ − β∗‖ ≤ ‖β̂ − β∗‖. Under condition C4, S̄−1
n (β∗) is well defined for suffi-

ciently large n and thus
√
|Wn|(β̂ − β∗) = S̄−1

n (β∗)[|Wn|−1/2e(n)(β∗)]

− S̄−1
n (β∗)[J̄n(β̃)− S̄n(β∗)][|Wn|−1/2(β̂ − β∗)]

= S̄−1
n (β∗)[|Wn|−1/2e(n)(β∗)] + op(1),

(C.3)

where the last equality follows from W1–W3 in the proof of Theorem 1 and the
conclusion of Theorem 1. Therefore, to prove Theorem 2, it suffices to prove the
asymptotic normality of |Wn|−1/2e(n)(β∗).

Let for l ∈ Zd, C(l) denote the unit volume hypercube centered around l and let
Dn =

{
l ∈ Zd : Cn(l) ∩Wn 6= ∅

}
. Furthermore, define

Zn(l) = [(Z(1)
n (l))T, . . . , (Z(p−1)

n (l))T]T
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where

Z(i)
n (l) =

∑

u∈Xi∩C(l)∩Wn

z(u)−
p∑

l=1

∑

u∈Xl∩C(l)∩Wn

z(u)
exp[β∗Ti z(u)]

1 +
∑p−1

k=1 exp[β∗Tk z(u)]

is the restriction of ei(β
∗) to C(l) ∩Wn.

The asymptotic normality of |Wn|−1/2e(n)(β∗) then follows from Theorem 3.1 in
Biscio and Waagepetersen (2019) provided the following holds

H1 W1 ⊂ W2 ⊂ . . . and |⋃∞l=1Wl| =∞.

H2 There exists ε > 0 such that αX2,∞(s) = O(1/sd+ε).

H3 There exists τ > 2d/ε such that supn∈N supl∈Dn
E‖Zn(l)− EZn(l)‖2+τ <∞.

H4 We have 0 < lim infn→∞ λmin[Σ̄n(β∗, g)], where λmin(M) denotes the smallest
eigenvalue of a symmetric matrix M .

Conditions H1 and H2 are assumed in conditions C1 and N1, and condition H4
is ensured by condition N3. Therefore, it suffices to show that H3 holds under the
conditions of Theorem 2.

Proof of H3. Since E [Zn(l)] = 0 and m − 2 > 2d/ε it suffices to show that supn∈N
supl∈Dn

E‖Zn(l)‖m < ∞ (i.e. we take τ = m − 2). Moreover, letting Z(i)
n,j(l) denote

the jth component of Z
(i)
n (l),

E‖Zn(l)‖m ≤ (q(p− 1))m/2
p−1∑

i=1

q∑

j=1

E|Z(i)
n,j(l)|m

so we just need to show the boundedness of E|Z(i)
n,j(l)|m.

The binomial formula (x+ y)m =
∑m

k=0

(
m
k

)
xkym−k gives that

E[|Z(i)
n,j(l)|m]

=
m∑

k=0

(
m

k

)
E
[( ∑

u∈Xi∩C(l)∩Wn

zj(u)
)k(
−

p∑

l=1

∑

u∈Xl∩C(l)∩Wn

zj(u)p∗i (u)
)m−k]

≤
m∑

k=0

(
m

k

)
E
[( ∑

u∈Xi∩C(l)∩Wn

K1

)k( p∑

l=1

∑

u∈Xl∩C(l)∩Wn

K1

)m−k]

= Km
1

m∑

k=0

(
m

k

)
E
[( ∑

u∈Xi∩C(l)∩Wn

1
)k( p∑

l=1

∑

u∈Xl∩C(l)∩Wn

1
)m−k]

where the inequality follows from assumption C2.
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Regarding the expression inside the expectation,

( ∑

u∈Xi∩C(l)∩Wn

1
)k( p∑

l=1

∑

u∈Xl∩C(l)∩Wn

1
)m−k

=
∑

u1∈Xi∩C(l)∩Wn

∑

u2∈Xi∩C(l)∩Wn

· · ·
∑

uk∈Xi∩C(l)∩Wn

p∑

l1=1

∑

v1,l1
∈Xl1

∩C(l)∩Wn

p∑

l2=1

∑

v2,l2
∈Xl2

∩C(l)∩Wn

· · ·
p∑

lm−k=1

∑

vm−k,lm−k
∈Xlm−k

∩C(l)∩Wn

1

The above sum consists of pm−k terms of the form
∑

u1∈Xi∩C(l)∩Wn

∑

u2∈Xi∩C(l)∩Wn

· · ·
∑

uk∈Xi∩C(l)∩Wn∑

v1,l1
∈Xl1

∩C(l)∩Wn

∑

v2,l2
∈Xl2

∩C(l)∩Wn

· · ·
∑

vm−k,lm−k
∈Xlm−k

∩C(l)∩Wn

1

which again can be split into a number of terms according to the possible com-
binations of ties between the summation indices uj, j = 1, . . . , k and vj′,lj′ , j

′ =
1, . . . ,m− k, lj′ = 1, . . . , p. By Campbell’s formula, the expectations of these terms
can be evaluated as integrals with respect to cross joint intensities. For the sum
where all indices are distinct, the expectation becomes an integral over C(l)m with
respect to the appropriate joint cross intensity λ(k1,k2...,kN )

j1...jN
of total order m, where

j1 = i, N ≤ p, k1 ≥ k,
∑N

l=1 kl = m and {j2, . . . , jN} ⊆ {1, 2, . . . , p} \ {i}. For
example, if l1 = l2 = · · · = lm−k = i then N = 1 and k1 = m so that the cross joint
intensity becomes the mth order joint intensity λ(m)

i of Xi. The joint cross intensity
λ

(k1,k2...,kN )
j1...jN

is bounded above by Km
1 Cg by conditions C2 and N2.

If not all indices are distinct we obtain lower order integrals involving lower order
joint cross densities. These integrals are of a smaller magnitude compared to the case
where all indices are distinct. Therefore, under conditions C2 and N2, we have that

E
( ∑

u∈Xi∩C(l)∩Wn

1
)k( p∑

l=1

∑

u∈Xl∩C(l)∩Wn

1
)m−k

≤ pm−kKKm
1 Cg|C(l)|m

= pm−kKKm
1 Cg

where K <∞ is an upper bound for the number of combinations of ties mentioned
above. This completes the proof of H3.

C.3 Proof of Theorem 3

The proof of (4.2) in Theorem 3 can be separated into the following steps

A1. ĝn
ij,kl,n(r; bn,β

∗)
p−→ gij,kl(r) as n→∞.

A2. ĝn
ij,kl,n(r; bn, β̂)

p−→ ĝn
ij,kl,n(r; bn,β

∗) as n→∞.
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Proof of A1. In the following, we ease the notation by omitting function arguments.
We need to show that

ĝn
ij,kl,n =

Fij,n
Fkl,n

=
gij
gkl

gkl|Wn|−1Fij,n/[gijE(Fkl,n)|Wn|−1]

|Wn|−1Fkl,n/[E(Fkl,n)|Wn|−1]

p−−→ gij,kl,

as n→∞, which is equivalent to showing that as n→∞
|Wn|−1[gklFij,n − gijE(Fkl,n)]

p−−→ 0 (C.4)
and

|Wn|−1[Fkl,n − E(Fkl,n)]
p−−→ 0. (C.5)

By rewriting (C.4), we can see that

1

|Wn|
[gklFij,n − gijE(Fkl,n)] =

gkl
|Wn|

[Fij,n − E(Fij,n)]

+
1

|Wn|
[gklE(Fij,n)− gijE(Fkl,n)].

For the first term on the right hand side it follows from Chebychev’s inequality that

p
(∣∣gkl|Wn|−1[Fij,n − E(Fij,n)]

∣∣ > ε
)
<
g2
kl Var(|Wn|−1Fij,n)

ε2

for any ε > 0. Thus the first term converges to zero in probability as n→∞ due to
Lemma 5 in the supplementary material along with condition C2. The second term
can be expanded as

1

|Wn|

∫

Wn

∫

Wn

[
gkl(r)gij(‖u− v‖)− gij(r)gij(‖u− v‖)

]

×
[ p∑

i=1

λ∗i (u)
][ p∑

j=1

λ∗j(v)
]
kbn(‖u− v‖ − r)dudv. (C.6)

By the continuity of gij(·) and gkl(·), for any δ > 0, we can choose an ε > 0 such that
|gkl(r)gij(‖u−v‖)− gkl(‖u−v‖)gij(r)| < δ provided that |‖u−v‖− r| < ε. By the
definition of the kernel function k(·), a bandwidth bn < ε implies that the integral
is only over u and v with |‖u − v‖ − r| < ε. By Lemma 3 in the supplementary
material, this further implies that (C.6) is bounded by δp2K2

1 C̃1r
d−1. Since δ > 0 can

be arbitrarily chosen and bn → 0, we have that (C.6) converges to zero as n → ∞.
Finally, (C.5) follows from a simple application of Chebyshev’s inequality using the
conclusion of Lemma 5.

Proof of A2. We show that ĝn
ij,kl,n(r; bn, β̂)→ ĝn

ij,kl,n(r; bn,β
∗) by using a multivari-

ate Taylor approximation:

ĝn
ij,kl,n(r; bn, β̂)− ĝn

ij,kl,n(r; bn,β
∗) = ∇ĝn

ij,kl,n(r; bn,β
′)(β̂ − β∗)T, (C.7)

where β′ is on the line segment that connects β∗ and β̂. Since the estimator β̂ is
consistent, i.e. (β̂ − β∗)T p−→ 0 as n→∞, it suffices to show that ∇ĝn

ij,kl,n(r; bn,β
′)

is bounded. Some tedious algebra yields that under condition C2,

‖∇Fij,n(r; bn,β
′)‖max ≤ 2

[
sup
u
‖z(u)‖max

]
Fij,n(r; bn,β

′) ≤ 2K1Fij,n(r; bn,β
′),
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which further gives that

‖∇ĝn
ij,kl,n(r; bn,β

′)‖max

=

∥∥∥∥∇
Fij,n(r; bn,β

′)

Fkl,n(r; bn,β′)

∥∥∥∥
max

≤ 4K1
Fij,n(r; bn,β

′)

Fkl,n(r; bn,β′)

= 4K1
Fij,n(r; bn,β

∗)

Fkl,n(r; bn,β∗)

Fij,n(r; bn,β
′)

Fij,n(r; bn,β∗)

Fkl,n(r; bn,β
∗)

Fkl,n(r; bn,β′)

= 4K1ĝ
n
ij,kl,n(r; bn,β

∗)
Fij,n(r; bn,β

′)/|Wn|
Fij,n(r; bn,β∗)/|Wn|

Fkl,n(r; bn,β
∗)/|Wn|

Fkl,n(r; bn,β′)/|Wn|
.

It follows immediately from A1, that ĝn
ij,kl,n(r; bn,β

∗)
p−→ gij,kl(r) as n→∞. Now it

remains to show that (Fij,n(r; bn,β
∗)/|Wn|)/(Fij,n(r; bn,β

′)/|Wn|) p−→ 1 as n → ∞
or equivalently,

1

|Wn|
|Fij,n(r; bn,β

∗)− Fij,n(r; bn,β
′)| p−−→ 0 as n→∞. (C.8)

Using the inequality ‖∇Fij,n(r; bn,β
′)‖max ≤ 2K1Fij,n(r; bn,β

′) and a Taylor expan-
sion,

1

|Wn|
|Fij,n(r; bn,β

∗)− Fij,n(r; bn,β
′)|

=
1

|Wn|
|∇Fij,n(r; bn,β

′′)T(β∗ − β′)|

≤ 2K1(p− 1)q‖β∗ − β′‖max

|Wn|
Fij,n(r; bn,β

′′),

(C.9)

where β′′ is between β∗ and β′. Recalling the definition of Fij,n,

Fij,n(r; bn,β
′′) =

6=∑

u∈Xi∩Wn
v∈Xj∩Wn

kbn(‖u− v‖ − r)
pi(u;β′′)pj(v;β′′)

=

6=∑

u∈Xi∩Wn
v∈Xj∩Wn

kbn(‖u− v‖ − r)
pi(u;β∗)pj(v;β∗)

× pi(u;β∗)pj(v;β∗)

pi(u;β′′)pj(v;β′′)
.

Under condition C2, ‖z(u)‖max ≤ K1 ensures that there exists a c > 0 such that

pi(u;β∗) ≥ c, i = 1, . . . , p,

for any u ∈ {u ∈ ⋃∞l=1Wl : λ0(u) > 0}. By consistency of β̂n we have that β′ p−→ β∗

and hence β′′ p−→ β∗, which implies that with a probability tending to 1,

pi(u;β′′) ≥ c, i = 1, . . . , p,

for any u ∈ {u ∈ ⋃∞l=1Wl : λ0(u) > 0}. Consequently, with a probability tending
to 1, we can bound Fij,n(r; bn,β

′′) as

Fij,n(r; bn,β
′′) ≤ 1

c2

6=∑

u∈Xi∩Wn
v∈Xj∩Wn

kbn(‖u− v‖ − r)
pi(u;β∗)pj(v;β∗)

=
1

c2
Fij,n(r; bn,β

∗). (C.10)
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Using equality (C.5),

|Wn|−1Fij,n(r; bn,β
∗)

p−−→ |Wn|−1E[Fij,n(r; bn,β
∗)]

= |Wn|−1

∫

W 2
n

λpl(u)λpl(v)gij(u,v)kb(‖u− v‖ − r)dudv

≤ p2K3
1

|Wn|

∫

W 2
n

kbn(‖u− v‖ − r)dudv

≤ p2K3
1

∫

Rd

kbn(‖x‖ − r)dx,

where the first inequality follows from condition C2. Combining the above inequality
with Lemma 3 gives that, with a probability tending to 1, there exists a constant
CF such that

|Wn|−1Fij,n(r; bn,β
∗) ≤ CF . (C.11)

Finally, for any ε > 0 and letting F̄ ∗ij,n = Fij,n(r; bn,β
∗)/|Wn|,

P (‖β′ − β∗‖maxF̄
∗
ij,n > ε) ≤ P (‖β′ − β∗‖maxCF > ε) + P (F̄ ∗ij,n > CF )

Thus, since β′ p−→ β∗ as n→∞, (C.8) immediately follows from inequalities (C.9)–
(C.11), which completes the proof of A2.

Therefore, the proof of (4.2) in Theorem 3 is finished.
To show (4.3) in Theorem 3, note that

|ĝr
ij,kl,n(r; bn, β̂n)− gij,kl(r)|
≤ |ĝr

ij,kl,n(r; bn, β̂n)− ĝn
ij,kl,n(r; bn, β̂n)|

+ |ĝn
ij,kl,n(r; bn, β̂n)− gij,kl(r)|,

so that it is enough to show that

|ĝr
ij,kl,n(r; bn, β̂n)− ĝn

ij,kl,n(r; bn, β̂n)| p−−→ 0 for r ≥ R∗ as n→∞. (C.12)

Combining restriction (3.16) and the convergence ĝn
ij,kl,n(r; bn, β̂n)

p−→ gij,kl(r), as
n → ∞, we obtain that with a probability tending to 1, ĝn

ij,kl,n(r; bn, β̂n) satisfies
restriction

ĝij,kl,n(r; bn, β̂n) ≤
√
ĝii,kl,n(r; bn, β̂n)ĝjj,kl,n(r; bn, β̂n)

for a sufficiently large n, in which case |ĝr
ij,kl,n(r; bn, β̂n) − ĝn

ij,kl,n(r; bn, β̂n)| = 0 by
the design of algorithm (3.17). Therefore, (C.12) follows, which completes the proof
of (4.3) in Theorem 3.

D Auxiliary Lemmas

Lemma 1. Define A(u) as in (C.1). Then for any b = (b1, . . . , bp−1)T ∈ Rp−1,

bTA(u)b ≥ p∗p(u)

p−1∑

i=1

b2
ip
∗
i (u).
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Proof. Using the Cauchy-Schwartz inequality,

bTA(u)b =

p−1∑

i=1

b2
ip
∗
i (u)−

[ p−1∑

i=1

bip
∗
i (u)

]2

=

p−1∑

i=1

b2
ip
∗
i (u)−

[ p−1∑

i=1

bi
p∗i (u)

1− p∗p(u)

]2

[1− p∗p(u)]2

≥
p−1∑

i=1

b2
ip
∗
i (u)−

[ p−1∑

i=1

b2
ip
∗
i (u)

]
[1− p∗p(u)] = p∗p(u)

p−1∑

i=1

b2
ip
∗
i (u).

Lemma 2. Assume C1–C3 holds true. Then as n→∞, |Wn|−1 Var�[Jn(β)ij] ≤ C
for some constant 0 < C <∞ for any i, j = 1, . . . , p−1. Here, for a random matrix
A, Var�(A) denotes the element-wise variance of A.

Proof. Denote by A�2 the element-wise square of the matrix A and by A�B the
element-wise product of matrices A and B. Recall that E[Jn(β)ij] = −Sn(β)ij,
i, j = 1, . . . , p− 1. Clearly, Var�[Jn(β)ij] = E[J�2

n (β)ij]− S�2
n (β)ij. Let

Hii(u) = Z(u,u)pi(u;β)[1− pi(u;β)]

and
Hij(u) = Z(u,u)pi(u;β)pj(u;β).

The block elements in J�2
n (β) are of the form

J�2
n (β)ij =

p∑∑

l,l′=1

∑

u∈Xl∩Wn
v∈Xl′∩Wn

Hij(u)�Hij(v),

for i, j = 1, . . . , p− 1, whose expectations are of the form

E[J�2
n (β)ij] =

p∑∑

l,l′=1

∫

Wn

∫

Wn

Hij(u)�Hij(v)λll′(u,v)dudv

+

p∑

l=1

∫

Wn

Hij(u)�Hij(u)λ∗l (u)du.

Using Theorem 1, it follows that the squared sensitivity is given by

S�2
n (β)ij =

p∑∑

l,l′=1

∫

Wn

∫

Wn

Hij(u)�Hij(v)λ∗l (u)λ∗l (v)dudv

for i, j = 1, . . . , p − 1. By condition C2, ‖Hij‖max ≤ K2
1 for any i, j = 1, . . . , p − 1,
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which, together with condition C3 and isotropy of gll′ , further implies that

Var�[Jn(β)ij]

=

∫

W 2
n

Hij(u)�Hij(v)

p∑∑

l,l′=1

[λll′(u,v)− λ∗l (u)λl′(v)]dudv

+

∫

Wn

Hij(u)�Hij(u)λpl(u)du

≤
∫

W 2
n

K4
1

p∑∑

l,l′=1

|λll′(u,v)− λ∗l (u)λ∗l′(v)|dudv +

∫

Wn

K4
1λ

pl(u)du

≤
p∑∑

l,l′=1

∫

W 2
n

K6
1 |gll′(u,v)− 1|dudv +

p∑

l=1

∫

Wn

K5
1du

≤
p∑∑

l,l′=1

∫

Wn

K6
1K2du + pK5

1 |Wn|

= |Wn|(p2K6
1K2 + pK5

1),

which yields that |Wn|−1 Var�[Jn(β)]ij ≤ C with C = p2K6
1K2 + pK5

1 , for any
i, j = 1, . . . , p− 1.

Lemma 3. Let b > 0 be a bandwidth and kb(·) = k(·/b)/b with a kernel function
k(·) defined on a bounded support in R. Then for b small enough, we have that

∫

Rd

kb(‖u‖ − r)du ≤ C̃1r
d−1

∫

Rd

k2
b (‖u‖ − r)du ≤ C̃2

1

b
rd−1,

where C̃1 and C̃2 are some positive constants.

Proof. Without loss of generality we assume that the kernel function k(·) has a
bounded support [−1, 1]. Using the polar coordinates transformation

∫

Rd

f(u)du =

∫

Sd−1

∫ ∞

0

f(tv)td−1dtνd(dv),

where νd(·) is surface measure on the unit sphere Sd−1 in Rd, we have that

I(r; b) ≡
∫

Rd

kb(‖u‖ − r)du =
1

b

∫

Rd

k

(‖u‖ − r
b

)
du

=
1

b

∫

Sd−1

∫ ∞

0

k

(
t− r
b

)
td−1dtνd(dv)

=
νd
(
Sd−1

)

b

∫ ∞

0

k

(
t− r
b

)
td−1dt.
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When substituting the variable s = (t− r)/b, we have that

I(r; b) = νd(Sd−1)

∫ ∞

−r/b
k(s)(bs+ r)d−1ds

≤ νd(Sd−1)
[

sup
s∈[−1,1]

k(s)
] ∫ 1

max{−1,−r/b}
(bs+ r)d−1ds.

= νd(Sd−1)
[

sup
s∈[−1,1]

k(s)
] 1

db

[
(b+ r)d − (bmax{−1,−r/b}+ r)d

]
.

Applying L’Hospital’s rule,

lim
b→0

1

b

[
(b+ r)d − (bmax{−1,−r/b}+ r)d

]
= 2drd−1.

Hence, for b small enough, there exists a constant C̃1 so that

I(r; b) ≤ C̃1r
d−1.

The second inequality follows the same way.

Lemma 4. The variance of Fij(r; b,β∗) in (3.15) for i 6= j is:

Var[Fij(r; b,β
∗)]

=

∫

W 4

[g
(2,2)
ij (u1,u2,v1,v2)− gij(u1,v1)gij(u2,v2)]

× t(u1,v1)t(u2,v2)du1du2dv1dv2

+

∫

W 3

g
(1,2)
ij (u,v1,v2)t(u,v1)

λpl(v2)

pi(u;β∗)
kb(‖u− v2‖ − r)dudu1dv2

+

∫

W 3

g
(2,1)
ij (u1,u2,v)t(u1,v)

λpl(u2)

pj(v;β∗)
kb(‖u2 − v‖ − r)du1du2dv

+

∫

W 2

g
(1,1)
ij (u,v)t(u,v)[pi(u;β∗)pj(v;β∗)]−1kb(‖u− v‖ − r)dudv

and for i = j:

Var[Fii(r; b,β
∗)]

=

∫

W 4

[g
(4)
i (u1,u2,u3,u4)− gi(u1,u2)gi(u3,u4)]

× t(u1,u2)t(u3,u4)du1du2du3du4

+ 4

∫

W 3

g
(3)
i (u1,u2,u3)t(u1,u2)

λpl(u3)

pi(u1;β∗)
kb(‖u1 − u3‖ − r)du1du2du3

+ 2

∫

W 2

gi(u1,u2)t(u1,u2)[pi(u1;β∗)pi(u2;β∗)]−1kb(‖u1 − u2‖ − r)du1du2,

where t(u,v) = kb(‖u− v‖ − r)λpl(u)λpl(v).
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Proof. The variance is

Var[Fij(r; b,β
∗)] = E[Fij(r; b,β

∗)2]− E[Fij(r; b,β
∗)]2,

where E[Fij(r; b,β
∗)]2 =

[∫
W 2 gij(u,v)t(u,v)dudv

]2. In the following we denote by
sij(u,v) = [pi(u;β∗)pj(v;β∗)]−1 and suppose first that i 6= j. Then we have that

E[Fij(r; b,β
∗)2]

= E

6=∑

u1∈Xi∩W
v1∈Xj∩W

sij(u1,v1)kb(‖u1 − v1‖ − r)
6=∑

u2∈Xi∩W
v2∈Xj∩W

sij(u2,v2)kb(‖u2 − v2‖ − r)

= E

6=∑

u1,u2∈Xi∩W
v1,v2∈Xj∩W

sij(u1,v1)sij(u2,v2)kb(‖u1 − v1‖ − r)kb(‖u2 − v2‖ − r)

+ E

6=∑

u∈Xj∩W
v1,v2∈Xj∩W

sij(u,v1)sij(u,v2)kb(‖u− v1‖ − r)kb(‖u− v2‖ − r)

+ E

6=∑

u1,u2∈Xi∩W
v∈Xj∩W

sij(u1,v)sij(u2,v)kb(‖u1 − v‖ − r)kb(‖u2 − v‖ − r)

+ E

6=∑

u∈Xi∩W
v∈Xj∩W

sij(u,v)2kb(‖u− v‖ − r)2,

where we recall that
∑ 6= means summation over distinct points. If i = j we can

rename the indices and have that

E[Fii(r; b,β
∗)2]

= E

6=∑

u1,u2∈Xi∩W
sii(u1,u2)kb(‖u1 − u2‖ − r)

6=∑

u3,u4∈Xi∩W
sii(u3,u4)kb(‖u3 − u4‖ − r)

= E

6=∑

u1,u2,u3,u4∈Xi∩W
sii(u1,u2)sii(u3,u4)kb(‖u1 − u2‖ − r)kb(‖u3 − u4‖ − r)

+ 4E

6=∑

u1,u2,u3∈Xi∩W
sii(u1,u2)sii(u1,u3)kb(‖u1 − u2‖ − r)kb(‖u1 − u3‖ − r)

+ 2E

6=∑

u1,u2∈Xi∩W
sii(u1,u2)2kb(‖u1 − u2‖ − r)2.

Lemma 4 then follows directly from applying Campbell’s formula to each expec-
tation.

Lemma 5. Under conditions C2, K1–K3, the variance of |Wn|−1Fij,n(r; bn,β
∗
ij) con-

verges to zero in probability as n→∞.
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Proof. Following Lemma 4 we have two cases for Var[Fij,n(r; bn,β
∗
ij)] when i 6= j and

i = j. For i 6= j we write Var[Fij,n(r; bn,β
∗
ij)] as a sum of four terms T1,n, . . . , T4,n

and for i = j we write Var[Fii,n(r; bn,β
∗
ii)] as a sum of three terms T ′1,n, . . . , T ′3,n.

First we consider i 6= j and applying condition C2, translation invariance of g(2,2)
ij

(condition K1) and a change of variable, it follows that T1,n is bounded as

T1,n ≤ p4K4
1

∫

W 4
n

∣∣g(2,2)
ij (0,u,v,w + u)− gij(0,v)gij(0,w)

∣∣

kbn(‖v‖ − r)kbn(‖w‖ − r)du1dudvdw.

Using the second part of condition K1, the above upper bound can be simplied to

p4K4
1K3|Wn|

∫

Wn

kbn(‖v‖ − r)dv

∫

Wn

kbn(‖w‖ − r)dw.

Consequently, it follows from Lemma 3 and condition K3 that

T1,n

|Wn|2
≤ p4K4

1K3(C̃1r
d−1)2

|Wn|
→ 0, as n→∞.

Using similar arguments for T ′1,n is can be shown that T ′1,n tend to zero. Regarding
T2,n, first note that under condition C2, ‖z(u)‖max ≤ K1 ensures that there exists a
c > 0 such that

pi(u;β∗) ≥ c, i = 1, . . . , p, (D.1)

for any u ∈ {u ∈ ⋃∞l=1Wl : λ0(u) > 0}. Applying further condition K2, T2,n is
bounded as

T2,n ≤
K4K

3
1

c

∫

W 3
n

kbn(‖u− v1‖ − r)kbn(‖u− v2‖ − r)dudv1dv2

By Lemma 3,

T2,n ≤
K4K

3
1

c
|Wn|(C̃1r

d−1)2.

Hence T2,n/|Wn|2 → 0 as n→∞. It follows along the same lines that T3,n and T ′2,n
tend to zero as n→∞.

Regarding the fourth term T4,n, we have

T4,n ≤
2K4p

2K2
1

|Wn|2c2

∫

W 2
n

k2
bn(‖u− v‖ − r)dudv

≤ 2K4p
2K2

1

|Wn|c2

∫

Rd

k2
bn(‖u‖ − r)du

Applying Lemma 3 and the last part of condition K3, T4,n tends to zero as n→∞.
Using similar arguments for T ′3,n it can be shown that T ′3,n tends to zero as n→∞.
Thus Var [|Wn|−1Fij,n(r; bn,β

∗)]→ 0 as n→∞.
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