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1 Introduction

This thesis gathers the results I have obtained during my graduate studies at University of
Aarhus. Through the last four years I have been working with problems in "representation
theory of Lie algebras in prime characteristic". First, I will give a historical review of the
subject.

E. Witt’s discovery of a non classical simple Lie algebra (a Lie algebra not associated
to a smooth algebraic group) is the starting point of the theory of modular Lie algebras.
Subsequently, more non classical simple Lie algebras were found and a new type of simple
restricted Lie algebras, simple restricted Lie algebras of Cartan type, were introduced.
They fall into four categories [27, 4]: Witt—Jacobson Lie algebras W (n), special Lie algebras
S(n), hamiltonian Lie algebras H(2n) and contact Lie algebras K(2n + 1).

In 1966, A. Kostrikin and I. Shafarevic enunciated their famous conjecture asserting
that any simple restricted finite dimensional Lie algebra is either classical or of Cartan
type. This was proved by R. Block and R. Wilson [1] in 1988 if the characteristic of the
ground field K is p > 7. Later, this was improved by A. Premet and H. Strade by managing
the case p = 7. For p > 5 the simple restricted finite dimensional Lie algebras then fall
into two categories: Classical Lie algebras and Lie algebras of Cartan type. For p = 5 one
has to add the series of Melikyan algebras constructed in [18].

The representation theory of Uy (g), where g is a classical Lie algebra, was first studied
by Kac and Weisfeiler [15, 28], and further developed by Friedlander and Parshall [8, 9]. In
1995, Premet [21] proved a conjecture of Kac and Weisfeiler on the dimension of irreducible
Uy (g)-modules, where g = Lie(G) is the Lie algebra of a simple, connected algebraic group
G such that g admits a non-degenerate trace form. On the other hand, for restricted Lie
algebras of Cartan type, Chang gave a classification of the irreducible U, (g)-modules, when
g is the smallest (rank 1) Witt—Jacobson Lie algebra [2|. Later, Strade [25] gave proofs
of many of Chang’s results in a different approach. N. Koreshkov [16] and T. Wichers
[29] studied the next smallest (rank 2) Witt—Jacobson Lie algebra. R. Holmes [10]| gave
a uniform treatment for irreducible modules of small height (the height is an invariant
attached to irreducible modules).

The main theme in the thesis concerns the classification of the irreducible U, (W )-
modules, where W denotes the next smallest Witt—Jacobson Lie algebra and x is an arbi-
trary p—character. Already, N. Koreshkov [16] and T. Wichers [29] have studied irreducible
modules for that algebra and this thesis contain improvements of the results obtained
there together with new results and examples. During the thesis, I will compare the results
obtained here with the results by Koreshkov and Wichers.

The first approach is to find a Lie p—subalgebra of W such that irreducible W—modules
are induced from irreducible modules for that subalgebra. It is well known that W is
a graduated restricted Lie algebra and it contains a Lie p—subalgebra of codimension 2
(the standard maximal subalgebra of W which I denote by Wx). We shall induce irre-
ducible Wxp-modules to W and try to decide whether the induced module is irreducible
li.e., if S is an irreducible U, (W>p)-module then the U, (W )-module induced from S is
Ux(W) ®y, (W) Sl- If we know that induction is a bijection between the set of irreducible
Uy (W>p)-modules and the set of irreducible U, (W )-modules, then questions, such as di-
mension and number of irreducible U, (W)-modules, are reduced to the same questions
for irreducible U, (W>g)-modules. Often, irreducible U, (W>)-modules are induced from
irreducible modules for a supersolvable Lie p—subalgebra of codimension 1, so we will take
a closer look at supersolvable Lie p—algebras also.



In some cases it will be convenient to induce from other Lie p-subalgebras than Wxg.
We shall define a Lie p—subalgebra g of W of codimension p and induce irreducible g—
modules to W. It often turns out to be best way when considering so—called exceptional
characters defined in Section 11.

1.1 Notation

In this paper p will always denote a prime number, K will always denote an algebraically
closed field of characteristic p and W will denote the Witt—Jacobson Lie algebra of rank 2.
The term K-algebra will mean associative K—algebra with a unit.

The height of a character x € W* is the unique integer r with —1 < r < 2p — 2 such
that x(Ws,) = 0 but x(W,_1) # 0. If the height is = 2p — 2 we say that x has maximal
height. The height was used implicit in Chang’s work [2], but explicitly defined for W (1),
the smallest Witt—Jacobson Lie algebra, in [25] by Strade. One can also find the height
introduced by Rudakov in [22].

We shall several times use the tensor product when studying irreducible representations.
Unless otherwise specified, it should be clear from the context what we are tensoring over.

Whenever we use the notation :=, we define what is on the left hand side to be equal
to what is on the right hand side. For example, W := W (2).

The following section contains a summary of the main themes in the thesis and the main
results obtained. For details on the statements one should read the respective sections.

1.2 Summary

The paper is organized in 14 sections. I include four appendices: In the first, we compute
the action of several matrices on W. In the second, we consider Jacobson’s formula for p = 3
and prove results about the [p]-mapping on elements in W. In Appendix C we consider
characters of height at most 1. The main source is [10]. The thesis will therefore mainly
concern irreducible W-modules with p—character y of height > 1. The final appendix
gathers questions which I have not been able to answer due to lack of time as well as my
mathematical limitations.
Below, I give a short review over all sections.

In Section 2, I settle the notation and recall well-known facts about Witt—Jacobson
Lie algebras. I restrict myself to the next smallest Witt—Jacobson Lie algebra in Section
3. The main sources for sections 2-3 are [4], [12], [16] and [27].

In Section 4 we prove that each W,_q, for s # p— 1, can be written as Ws_1 = U@V,
where U and V are irreducible GLo(K )-submodules of W,_1. Next, we identify each dual
space U* and V* with homogeneous polynomials of appropriate degree. The results from
Section 4 give us representatives for x € W* with respect to the GLa(K)-action on W*.
This is the subject for Section 5.

In Section 6 we give general criteria for irreducibility. The general setup is: We let
(g, [p]) be a finite dimensional restricted Lie algebra over an algebraically closed field K of
characteristic p > 0 and h C g is a Lie p-subalgebra. If N is an irreducible U, (h)-module,
then we give criteria for the induced g-module U, /(g) ®u,(p) N to be irreducible. The
first criterion [27, 5, 5.7] requires the existence of an ideal a C g with x([a,a]) = 0 and
h is defined via a. The sources are [25] and [26]. The second criterion [25] requires the
existence of a unipotent p—ideal a C h with y(a) = 0. The third criterion is used intensively
in sections 11-14 if none of criteria 1-2 can be used.



We apply the theory from the first criterion to g = Wsq, the standard maximal Lie
p—subalgebra of W, in Section 7. We denote by Wy12 a supersolvable Lie p—subalgebra in
W of codimension 1. We consider a p—character x of height » > 1 and prove, except
for a single type of characters, that there exists g € GL9(K) such that induction induces
a bijection between the isomorphism classes of irreducible Uys(Wpi2)-modules and the
isomorphism classes of irreducible Uyg (W>g)-modules. As a consequence, one can use the
theory for supersolvable Lie p-algebras and show that there exists a polarization P C Wxq
of some A € WX such that induction induces a bijection between the isomorphism classes of
irreducible U, (P)-modules and the isomorphism classes of irreducible U, (W=q)-modules.
The type of characters excluded are referred to as characters of height » = 2p — 3 and Type
IL.a (the notation comes from Section 5). The results obtained are an improvement of
Koreshkov’s results in [16] and Wichers’ results in [29]; they prove that induction induces a
surjection. In fact, Koreshkov claims that the result is true for characters of height 2p — 3
and Type Il.a also, but the example given in Section 13.13 shows a quite different behavior
than the one described above for those type of characters when p = 3.

In Section 8, we apply the theory from the second criterion to g = W and h = Wxo.
If x is a p—character of height r > 1, we prove that induction induces a bijection between
the isomorphism classes of irreducible U, (W>p)-modules and the isomorphism classes of
irreducible U, (W)-modules if st(x, W>,) = {z € W | x([z,y]) = 0 Vy € W>,} = W>o.
The results obtained are again a slightly an improvement of Koreshkov’s results in [16] and
Wichers’ results in [29]; they prove that induction induces a surjection. In fact, Koreshkov
claims that we can remove the additional assumption st(x, W>,) = Wxg, but computations
in sections 12—-13 show that he is wrong at that point.

If we consider a p—character x of height » > 1 such that st(x, W>,) = W>¢ and if x is
not of Type Il.a when r = 2p — 3, then the results from sections 7-8 say that questions,
such as dimension and number of irreducible U, (W )-modules, are reduced to the same
questions for irreducible modules for a supersolvable Lie p—algebra. Thus we take a closer
look at supersolvable Lie p—algebras in Section 9. If L is a supersolvable Lie p—algebra
and x € L*, then irreducible U, (L)-modules are induced from one dimensional modules
over some restricted Lie p—subalgebra of L. We describe a condition that tells us how to
find restricted Lie subalgebras P of L and one dimensional U, (P)-modules such that the
induced U, (L)-module is irreducible. I follow [6] and [13], where the description of the
theory is given.

Section 10 is very technical but we end up with some of the main results in this thesis.
After having introduced Vergne polarizations and compatible polarizations in Section 9, we
ask ourselves the following question (we now consider the supersolvable Lie p—subalgebra
Woi2 of W and Vergne polarizations are computed with respect to an appropriate chain
of ideals in Wy12): Given a p—character x € W*. Is it possible to find A € W}, such that
the Vergne polarization py of X is compatible with x and such that py = p,? The answer
is yes except possibly for a single type of characters when p, is unipotent. The existence
of A\ with that property now has the following application: If x € W* is a p—character of
height r > 1 but r < 2p — 3 with st(x, W>,) = W>¢ such that x does not have Type IL.a
if r = 2p — 3, then we can prove the following:

1) The dimension of any irreducible U, (W)-module is p*dm™wew (/2 where ¢y (y) is
the stabiliser of x in W. We have ¢y (x) C W>o.

2) The number of irreducible U, (W)-modules (up to isomorphism) is p™ W () where rk
e (x) is the dimension of any maximal torus in cy (). We have rk ey (x) € {0, 1}.



The number of irreducible U, (W)-modules and the dimension of all irreducibles are thus
completely determined by ¢y (x) (If we assume that st(x, Ws,) = Wxq and that x does
not have Type IL.a if r = 2p — 3). Note that codimyp ey (x) is even, since ¢y (x) is the
radical of the bilinear, antisymmetric form (z,y) — x([z, y]).

In Section 11, we take a closer look at the exceptional characters (i.e., characters x € W*
of height r > 1 with st(x, W>,) # W>0; one can check that r > p—2 for such x). We prove
that any exceptional character is conjugate under Aut(W) to exactly one of two types of
exceptional characters (referred to as Type A— and Type B characters) and we can easily
tell which one. We study Type A— and Type B characters and prove, among other things,
similar results to 1), 2) above under additional assumptions. [For Type B characters we
do not find the explicit dimension formula in 1) since the main theorem in Section 10.1
has not been proved for all characters and it has not been possible for me to improve the
result in that sense.|

The subject for Section 12 is characters of rank 2 (i.e., x € W* with rk ey (x) = 2).
We find that the only nonzero x with that property has height 1, height p — 1, height p or
maximal height. For x of height 1 and rk ¢y (x) = 2, we can apply the results in Appendix
C. For height p — 1 and 1k ¢y (x) = 2, we classify the irreducible U, (W )-modules and
we see in fact a quite different behavior as in 1),2) above. We apply results from the
representation theory of W (1), the smallest Witt—Jacobson Lie algebra. For y of height p
with rk ¢y (x) = 2, I have no ideas what happens; computations in Section 13.12 for p = 3
indicate that no methods from the height p — 1 case can be used. Finally, we consider
characters of maximal height with dimgew (x) = 2 and ey (x) N W>o = 0. We prove
that the dimension of any irreducible U, (W )-module is maximal in that case (i.e., equal
to pp2_1 by Mil'ner’s result [19]). In particular, we can apply the result above to some
characters x of maximal height and rk ey (x) = 2.

Section 13 contains the main examples in this thesis. We shall see that none of the
assumptions on x (i.e., x has height r > 1 with st(x, W>,) = Wxq but r # 2p — 3 if x
has Type II.a) can be removed in order to obtain 1),2) above. We give a classification
of the irreducible U, (W)-modules if x has height r = 2 or r = 3. If p > 3 we have
r < 2p — 3 and st(x, W>,) = W>, so the dimension formula in 1) and the formula for the
number of irreducibles in 2) can be applied. A complete list of the possibilities are given
for r = 2 and r = 3 when p > 3. The interesting part in Section 13 occurs when p = 3 and
st(x, W>r) # W>g or x has Type Il.a and r = 3.

If st(x, W>,) # W0, then we observe in some cases a behavior quite different from the
one described in 1),2) above. I will try to sketch the differences (for p = 3) in the following
items:

o Ifrk ey (x) = 0, one can have > 1 isomorphism classes of irreducible U, (W )-modules.

If rk ey (x) = 1, one can have > 3 isomorphism classes of irreducible U, (W')-modules.

It is possible to have rk ¢y (x) ¢ W>o and it is possible to have rk ey (x) = 2.

If rk ¢y () = 2, one can have 3% isomorphism classes of irreducible U, (W )-modules.
e All irreducible U, (W)-modules do not have the same dimension.
e The dimension of an irreducible U, (W )-module is not always divisible by 3.

As a consequence, induction does not always take irreducible U, (W>q)-modules to irre-
ducible U, (W)-modules if st(x, W>,) # Wxo.



If x has Type Il.a and r = 3 = 2p — 3, then we also observe a behavior different from
the one described in 1),2) above. The differences (for p = 3) are:

e The number of isomorphism classes of irreducible U, (W )-modules is not always
divisible by 3.

e All irreducible U, (W)-modules do not have the same dimension.

e The dimension of an irreducible U, (W )-module is not always divisible by 3.

Finally, we consider characters of maximal height in Section 14. The representation
theory here is not very well understood. Koreshkov [16] claim that we end up in three
possible cases, but his proof is very mysterious. In [16] and [29] there are examples where
one construct x such that all irreducible W>g-modules with p-character x have maximal
dimension equal to pp2_1 and hence they all extend to W. It is however not clear how to
compute the number of irreducibles.

We try to get a better understanding by looking at the case where p = 3. The most
interesting observation says that we can find x of maximal height and irreducible U, (W)~
modules of non—maximal dimension (without a classification of these).

Even for p = 3 it has not been possible to classify the set of irreducible W-modules (of
maximal height) and general statements on the irreducibles (arbitrary p) are therefore far
away (for me).
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2 The Witt—Jacobson Lie algebras

Let K be an algebraically closed field of characteristic p > 0. In [27, 4, §2|, Strade
and Farnsteiner define the generalized Witt—Jacobson Lie algebras over K. Here we will
focus on the restricted generalized Witt—Jacobson Lie algebras (or just Witt—Jacobson Lie
algebras). By [27, 4, Lemma 2.1 (3) and Theorem 2.4] they can be realized in the following
way: For any positive integer n set

By = K[X1, Xa, ..., Xa] (X0, XE, ... XP) (2.1)
where K[X7, Xo,...,X,] is the polynomial ring in n indeterminates X1, Xs,..., X,,. The
image of X; in B,, will be denoted by x;. For each a = (a1, 2,...,a;,) € N” set

z® = a{txy? . (2.2)
Set

In)={a=(a1,a9,...,0) € N" |0 < ; < pforall i}.

Then all % with « € I(n) form a K-basis for B,,; so dimg B,, = p".

Set W (n) equal to the set of all K-linear derivations of B,. Then W (n) is a restricted
Lie algebra over K (the n’th Witt—Jacobson algebra) where the Lie bracket is the usual
commutator and the p—mapping is given as p times composition; for D € W(n) we have
DIl = DoDo---oD (p times). It is easy to see that W (n) is a B,,—submodule of End g (B,,).

For i = 1,2,...,n set 9; = 8%1- (the partial derivative). Each 0; is a derivation of
K[Xy,Xo,...,X,] with 9; (Xp) = 0 for all j; hence it preserves the ideal generated by
all Xp and induces then a derlvatlon on B, as in (2.1). Denote (again) by 9; the induced
derlvatlon on By, with 0;(z;) = 6;; for all j. For any derivation D € W (n) we have D(1) =0
and D is uniquely determined by the values D(x1), D(x2),...,D(x,). This implies that

=1

So W(n) is free as a Bo—module with basis 01,0, ..., 0y; hence dimgxW(n) = np™.

Each W (n) is in fact a graded Lie algebra. Let me first discuss the natural grading on
By,: The K-algebra B, has a grading B,, = @,~(Bn); such that each z; is homogeneous
of degree 1. If a = (a1, ag,...,a,) € I(n) we define |a| = a3 +ag + -+ + a,. Then all 2¢
with @ € I(n) and |a| = i form a K-basis for (B,,);. It is easy to see that (B,); = 0 for
i > n(p—1). The grading on B,, now induce a grading on W (n) in the following way: For
all ¢ € Z set

W(n); ={D € W(n) | D((Bn);) C (Bn)i; for all j}.

Then W(n); is a subspace of W(n) and the sum of the W(n); is direct. We also have
(W (n);, W(n);] C W(n)i4; for all ¢, j and the graduation is restricted: If D € W (n), then
DIPl € W(n),;. The partial derivative 9; belongs to W (n)_; since 9;(z®) = a;x®~%, where
gi = (0,...,0,1,0,...,0) with 1 in the i’th position [define 7 = 0 if v ¢ N"|. It follows
that 290; € W(n)|q—1 for all i and all @ € I(n); in fact all 2%0; form a K-basis for
W(n)|q|—1 and we have that
n(p—1)—1
@ W (n
1=—1

is a graded restricted Lie algebra. For all integer s > —1, set W(n)>s = ;> W(n);. For
s = 0 we get the standard maximal subalgebra W (n)>q of W (n).



We have formulas for the commutator from [27, 4,2.1]: If fq, fo € By, and Dy,Dy €
W (n) then we have

[f1D1, faDo] = f1D1(f2)D2 — foDa(f1)D1 + fif2[D1, Da].

In particular,
[a:o‘&-,a:ﬂ@j] = ﬁil‘a+ﬂ_€i8j - ajl‘a+ﬂ_€j8i. (2.4)

Now it is easy to verify that [W(n)_1, W(n);] = W(n);—1 for all i (check the definitions).
[This is proved in the Kreknin paper [17] in a more general setup.] The [p|-mapping
operates on our basis elements via

(29, = {miai ifa=e, (2.5)

0 otherwise.

In order to see this, note that (z*9) P (z;) = (2“0} )P(x;) = 0 for all I # k. So we get that
(290))P) = (z%0;)P(x1,)0) since any derivation D € W (n) is uniquely determined by the
values D(z1), D(x3),...,D(xy,) (see (2.3)). If a = g; then (x%9;)(x;) = z;0;(x;) = x; and
so (x%0;)P(x;) = w; also. If @ = 0 then already (299;)?(x;) = 0;(1) = 0. If a; > 0, then
any (2%9;)"(z;) is by induction a multiple of z"*~ (=D& If a; # 0 for some j # i, then
pla;—1)+1 —0

(x%0;)P(x;) is a multiple of x;’aj = 05 if a; > 1, then we get a multiple of z;

2.1 Simplicity

The Witt—Jacobson Lie algebra W(n) is simple unless p = 2 and n > 1. The proof can
be found in [12, Thm. 1] or [27, 4, Thm. 2.4 (1)]. If p = 2 and n = 1 then e, e; form a
K-basis for W(1) and [eg, e1] = e1. Therefore, Ke; is a proper nonzero ideal in W (1).

The centre of W(n) is equal to 0 [for (p,n) # (2,1) this follows from the simplicity of
W (n) and it is easy to check for (p,n) = (2,1)].

2.2 Automorphisms

Let g € Aut(W(n)). The centre of W(n) is 0 so g is a restricted automorphism of the Lie
algebra W (n), i.e., g(DP)) = g(D)P! for all D € W (n): First, the adjoint representation
of W(n) is injective and for any D € W (n) the element D!?! is uniquely determined by the
condition that ad(DP)) = ad(D)?. Moreover, we have ad(g(D)) = go ad(D) o g~'; hence

ad(g(D))? = (gead(D)og™ ')’ = goad(D)P og~" = goad(DM) o g™ = ad(g(D¥))).

This implies that g(DP!) = g(D)P! for any automorphism g of the Lie algebra W (n) and
for any derivation D € W(n). Any element ¢ € Autg_,, By induces an automorphism

o, of the Lie algebra W (n) in the following way:

~— —~

0,(D):=poDoy ' ¥DeW(n)=Derg(B,). (2.6)

We have to check that o,(D) € W(n) for D € W(n). The linearity is clear and given any
f17f2 € Bn we get

(00(D))(f1f2) eo D (f1)e 1 (f2))
= o(D(e ' (f1)e H(f2) + e(e  (f1)D(p~ (f2)))

= (0p)(f1)f2+ f1(04)(f2)

10



which shows that o, (D) is a derivation — i.e., 0, (D) € Derg (B,) = W(n). Note that the
second equality follows since D is a derivation. Therefore o, is a linear isomorphism on

W(n) (with inverse o,-1). In order to show that o, € Aut(W(n)), we need to know that

the action of o, respects the commutator:
0o([D1,Ds]) = @o(DioDy—DyoDy)op!
= (poDiop )o(poDrop™t)—(poDrop )o(poDiop™)
= [U@(Dl)ymp(DQ)]-

The map ¢ —— o0, is therefore a homomorphism between the two automorphism groups.

Theorem 2.2.1. Suppose that p > 5. Then ¢ —— o, is a group isomorphism from
Autg a1, B, onto Aut(W(n)).

Proof. See [12, Thm.6| O

Remark 2.2.2. The theorem above is also true for p = 3 and n > 1. Indeed, consider
hi = 0; + x;0; for i =1,2,...,n and let h = @, Kh;. Then

[hi,hj]=0 and Kl =p (2.7)

for all 4,j. For the second claim use that hz[-p} (z;) = WP (z;) = 1+ x; = h;(z;) and that
hz[-p} (z;) = h¥(z;) = 0 = h;(zj) for j # i. Now, suppose that g is an automorphism on
W (n). Define D; := g(h;) and note that all D; satisfy (2.7) also, since ¢ is a restricted
automorphism. Since W(n)>o Nk = 0, we have W (n)>o N g(h) = 0 also. Indeed, for any
automorphism ¢ of the Lie algebra W (n), we have g(W(n)>o) = W(n)>o (see [17] or use
formula (2.14) in Section 2.3). Now, apply [4, Thm. 1| and find ¢ € Aut g1 By, such that
o,09(hi) = h; for all 4; hence o, 0 g = Idjyy () by [12, Thm. 5|. Therefore g = a;l =04,
and so the map in Theorem 2.2.1 is surjective. For the injectivity, use [12, Thm.5].

Proposition 2.2.3. Let D = > | f;0; € W(n) for some f; € By, and let p € Autg_a1¢Bn.
With the action in (2.6) we have

Rate Ao~ (zi) ,
0o(D) =D > file(@), .. p(an)) =52 (p(x1), ..., o(xn)) ;. (2.8)

: Oy
i=1 [=1
Proof. It is enough to find o,(D)(x;) for i =1,2,...,n by (2.3). We use (2.6) and get

op(D)(xi) = @oDoy !(x)

1

= (X, A2

which implies that

ADYE) = 3 A ot ) ()t
Now apply (2.3) and obtai;:
D)= 35 gt o pton) g B gt ot
The proof is complze;ed._ 0
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2.3 Decomposition

Set G = Autg_ae B, and m = (z1,22,...,%,) the unique maximal ideal in B,. Recall
that B,, has a grading B,, = @izo(Bn)i such that each z; is homogeneous of degree 1. For
any ¢ € G, we have ¢(m) = m; thus we can write

n
o(x;) :Zajixj—l—fi fori=1,2,...,n (2.9)
j=1
where aj; € K and f; € (By,)>2 for all 4,j. One checks easily that the map taking ¢ to the
matrix (aj;) is a group homomorphism from G to GL,(K). On the other hand, given a
matrix (aj;) in GL,(K) and elements f; € (B),)>2, then there exists ¢ € G such that (2.9)
is satisfied. So we get a short exact sequence of groups

1— G — G — GL(K) —1 (2.10)

where G := {p € G | p(x;) — z; € (By)>2 for all i}. Note that the short exact sequence
in (2.10) splits: Associate to any (aj;) € GLy(K) the automorphism as in (2.9) with all
fi = 0. We identify GL, (K) with a subgroup of G via

GLn(K)={p € G| ¢((Bn)i) = (By); foralli}.

From the splitting in (2.10), we have a decomposition of G: G = GL,(K) x G1. Now apply
Theorem 2.2.1 and Remark 2.2.2 and obtain a decomposition of Aut(W(n)):

Aut(W () = GLn(K) x Aut* (W (n)) (2.11)

where
GL,(K) :={g € Awt(W(n)) | gW(n);) = W(n); forall i} (2.12)
is a subgroup of Aut(W(n)) via Theorem 2.2.1. Moreover,

Aut*(W(n)) = {g € Aut(W(n)) | g(D) — D € W(n)>;41 forall D € W(n),; and all i}.
(2.13)
From (2.11), (2.12) and (2.13), we get also

g(W(n)>;) =Ws; for alli and all g € Aut(W(n)). (2.14)
Remark 2.3.1. In view of (2.14), the height function
ht: W(n)"* — {-1,0,1,...,n(p—1) — 1}
given by ht xy = min{s > —1 | x(W(n)>s) = 0} , for x € W(n)*, is an invariant of the
Aut(W (n))-orbits of W(n)*.
2.4 Maximal torus subalgebras

It has been proved in [4, §3| that there are n + 1 conjugacy classes under Aut(W(n)) of
maximal torus subalgebras (and Cartan subalgebras). Representatives are given as:

TO = Z?:leiaia
T o= S K0 @ K(1+ 2,)0,,

T, = i K(1+)0:.

Thus any two maximal torus subalgebras (or Cartan subalgebras) whose intersection with
W (n)>o have the same dimension are conjugate by elements of Aut(W (n)). The rank of
W (n) is n which is the dimension of any maximal torus in W (n). In the thesis we will
focus on the Witt—Jacobson Lie algebra of rank 2.
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3 The Witt—Jacobson Lie algebra W (2)

Let K be an algebraically closed field of characteristic p > 0. From now we will concentrate
on the restricted Witt—Jacobson Lie algebra W (2) of rank 2 defined (in a more general
setup) in the previous section. We have dim W (2) = 2p®. In the following, set

W= W(2).

It will be convenient to define basis elements

e i d
€ijk 1= T2y - O

if 7 and j are integers with 0 < 4,5 < p and k = 1,2 and we define e;j;, = 0 otherwise. If
we use (2.4) we get the following:

[67«31,%1} (i = 7r)eitr—1,j+s1; (3.1a)
[ersh %2] —8€i1rjts—1,1 T 1€i4r_1j+s,2, (3.1b)
[6r527 61‘;1] J€itrj+s—1,1 = T€itr—1,j+s2, (3.1c)
[6r5276i]2] = (J — 8)€itrjt+s—1.2- (3.1d)

Actually (3.1c) follows from (3.1b) and the antisymmetry of the commutator [, ]. The
p-mapping is p—fold composition and from (2.5) we have:

€012 if (ivja k) = (07172)’
eg}k = €101 if (ivja k) = (1707 1)’
0 otherwise.

For s > 0 and s < 2p — 2 we have

sl— Z ZKemk

i+j=s k=1,2

3.1 Ordering

Following Koreshkov’s paper [16] we introduce an order relation on the set of indices of
basis elements. Let (¢, 7' k") < (i,5,k) if (', 5", k") = (4,4, k) or

1) i/+j<i+j or
2) if k<k and i +j =i+j or
3) if i<i and K =k and i +j =i+j.
The ordering of indices looks like
002 <001 <102 <012 <101 %011 <202 <---<(p—1,p—1,1).
For any triple (ijk) with (002) < (ijk) = (p — 1,p — 1,1), set

Wz’jk = Z Keaﬁq,.
(:3:k)=(aB)

Note that Wyoe is just W and Wjgg is the standard maximal Lie subalgebra Wsq of W.
The ordering of indices induces a chain of subspaces:

W = Woo2 D Woor D Wioz D Worz D Wior D Worr D Wag2 D -+ D W1 p-1.1)-

They are all subspaces of W, by construction, and the next lemma says that most of
them are in fact Lie p—subalgebras of W.
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Lemma 3.1.1. All Wy, with (ijk) = (102) are Lie p—subalgebras of W.
[p]

Proof. Since all basis elements eqg, of W satisfy e apy = 00T €45 = €apy We only need
to check that all Wj;i are Lie subalgebras of W in order to show that all W;j; are Lie
p-subalgebras. Let (ijk) > (102) and consider (afv) = (ijk) and (o’3'") = (ijk). Then
it follows from (3.1a),(3.1b),(3.1d) that

(7]

(@' = @)eatar—1,5+5,1 y=1'=1,
[eaﬁfyy ea’,@’ﬂ/] = (ﬂ/ - ﬂ)ea+a’,ﬁ+ﬁ’—1,2 Y= P)/ = 27
—Beata’,grp—1,1 1 Oé,€a+a'—1,ﬁ+ﬁ’,2 y=1+=2.

Consider the case v =4’ = 1. Assume « # o/ |otherwise the commutator is zero|. If
a+d —1+p+p0 >a+Bora+d —1+8+3 > o + 3 we are done since (afy) = (ijk)
and (o/3'v') = (igk). Since a+o' =1+ 4+ >a+fand a+o —1+p+0 >+
for (aBv), (/') = (102) we may assume that a + o' —1+ 8+ 3 =a+ 8 =d + .
This implies that o + 8 =1 = o’ + 3 and hence « = 1,0/ = 0or a = 0,0/ = 1. If
a=1,0/ =0 wehave («+a' — 1,8+ 0,1) = (o, 3,1) = (ijk). If « = 0,0’ =1 we have
(a+a —1,8+05,1) = (o/,ﬁ’, 1) = (ijk). Hence the commutator lies in W

Consider the case v = 7/ = 2. Assume (§ # [ [otherwise the commutator is zero|. If
atd +8+0 —-1>a+fora+d +5+5 —1>a + 3 we are done since (afy) = (ijk)
and (o/3'") = (ijk). As above we may assume that a+o/ + 5+ —1=a+p=a+ 7.
This implies that o + 8 =1 = o’ + 3 and hence « = 1,0/ = 0or a = 0,0/ = 1. If
a=1,a =0 we have (a+ ', 8+ 5 —1,2) = (o, 3,2) = (ijk). If a = 0,0’ =1 we have
(a+d,0+0 —1,2) = (/,3,2) = (ijk). Hence the commutator lies in W;p.

Finally, let v = 1,7’ = 2. From the ordering we see easily that (o« +ao/, 0+ —1,1) =
(o/,f,2) = (ijk) and hence the first term lies in W;j;. For the second term note we may
assume that « + 8 =1 =o' + ' [apply similar arguments as above]. If « = o’ = 1 then
(a+ad —1,8+0,2) = (o,3,2) = (ijk). fa#a thena+d —1<aora+d —1<do
and hence [recall the ordering| the second term lies in W, also. O

3.2 Certain automorphisms

Let ¢ be a K—algebra automorphism on K[X1, Xa]/(X¥, X%) given by

S
o(xr1) =x1 + Z airtxy ™t and  @(re) = 19 + Z bixtxy
i 1=0

for some a;,b; € K and s > 2. Note that

w0~ :171 =21 — Zaleajg ‘ (degree > s+ 1)

0 (29) —xQ—mele "+ (degree > s+1).

Set x = Zf:o aiei7s_i71+zi:0 bie; s—i2 € Ws_1. I claim that the automorphism o, induced
by  satisfies
oo(y) =y +[z,y] (mod Ws,ys) forye W,. (3.2)
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Because of linearity, it is enough to check this for y = eg,,1 and y = egmo. First we calculate

p(x)fp(e)™ = afad + 37 aka M lag e
+ 300 bima it Tl (mod degree > k +m + s)
and )
&paix(lm)(go(wl), (z2)) = 1-30 jaizi ™ 2™ (mod degree > s)
8‘p;,;(lm)(go(:/cl),4,0(962)) = —>70, biixil_lxg_i (mod degree > s).
If we use Proposition 2.3, we get
Op(ekm1) = exm1 + 2 i—o(aik — aif)erpi1ms—i1

S
+ > o Mbi€htimts—i—1,1

—>i—otbiekri-tmrs—i2  (mod Wiimis 1)

which is exactly exm1 + [T, €xm1] with z defined above. In the same way, one can prove
that o, (erm2) has the desired form.

3.3 GLy(K)—action

Note that we have an inclusion Aut g _a; B2 O GLo(K) in the following way:

[ a b\ x = ax;+cxa
_<C d) To +H—— bwl—i-d:lig (3.3)

where ad —bc # 0. For any ¢ € GLy(K), the automorphism o, is determined by (2.8) and
(3.3). In Appendix A we have listed formulas for the GLo(K )-action on basis elements.
For ¢ € GLy(K) we will write p(w) instead of o, (w) whenever w € W.

Lemma 3.3.1. Suppose that ¢ € GLy(K) C Autg_a1 Ba. If o(Wo11) = Wori, then ¢ is
a diagonal matrix composed with some lower triangular matriz with 1 at the diagonal. In
particular, p(Wo12) = Woia.

Proof. Otherwise, ¢ is given by ¢1 00 0T o ¢}, where ¢1, ¢} are lower triangular matrices
and T is a diagonal matrix and © is the matrix

01
10 /)°
Use the Bruhat decomposition of GLy(K) described in [23, 8]. Now apply the relations in

Appendix A.1, A.2; A4 and get ¢(ep11) = (nonzero constant) - ejp2  (mod Wyi2). This is
however a contradiction. [l
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4 Decomposition

Let r > 0but r <2p—2. If r # p—1, then W,._1 has a K—basis given by a:g“),a:gr), . ,ng)

and ygr),yg), ... ,yt(gl)) defined below. The top index for {$§r) }t.OP isr+1whenr <p-—2

=0
and 2p—r—1 when r > p and the top index for {yZ(T)}Eozpl isTwhenr <p—2and2p—r—2

when 7 > p. In all cases, I will refer to the top index as "top" (this allow us to treat the
cases r < p— 2 and r > p at the same time).
The new basis elements are given by:

r<p—2: a;l(.r) = (r+1—1d)e,—ii2—t€ry1—ii—1,1 for 0<i<r+1,
yz-(r) = €ryl—ii-1,1 1t €r—ii2 for 1<i<r
rz2p: xgr) = €p—l—ir+l+i—p2 T Ep—ir+i—p,1 for 0<i<2p—1r—1,
yz-(r) = depi1—irtiti—p2+(r+i+1—plep_iryip1 for 1 <i<2p—r—2.

4.1 The case that r <p—2
Apply (3.1a),(3.1b),(3.1¢),(3.1d) and find:

[6011,%@] (r+1- i)a:gr)l for 0 <i<r+1,
[6012,33§r)] = (i— l)xzm for 0<i<r+1,
[6101,«TZ('T)] = (r— z'):z:l(.r) for 0<i<r+1,
[6102,$§T)] Zfl?gr_)l for 0<i<r+1,
[6011,y2-(r)] (r— i)yz-(i)l for 1<i<nm,
[6012,%@] = (i— 1)yzm for 1<i<r,
[6101, yzm] = (r— i)yz-(r) for 1<i<r,
[elozjyy)] = (i— 1)yl@1 for 1 <<

We define $§T+)1 =0fori=1r+1and 3557;)1 = (0 for ¢ = 0 and yz-(i)l = 0 for ¢ = r and
(r)

Y,y = 0 for i =1.
4.2 The case that r > p
Apply (3.1a),(3.1b),(3.1¢),(3.1d) and find:

] = —(i+Dal, for 0<i<Pp—r-1,
] = (T—i-i)l’(-r) for 0<i<2p—r—1,

7

ewo1, 2, | = —(z’—i—l)xf) for 0<i<2p—7r—1,
€102, T, (r+ z'):vl(-i)l for 0<i<2p—r—1,
[6011,y2-(r)] —z'yi(_i)l for 1<i:<2p—1r—2,
leor2, 0] = (r+i)y” for 1<i<2p—r—2,
[elol,yim] = —(i+ 1)%(7«) for 1<i<2p—7r—2,
[6102, yi(T)] (r+i+ 1)yi(i)1 for 1<i<2p—1r—2.

We define a:gr)l =0fort=2p—7r—1and 3:57;)1 =0 for ¢ = 0 and yz-(i)l = 0 for

z':2p—r—2andygi)lzoforizl.
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4.3 Decomposition of W,._; when r #£p—1

Proposition 4.3.1. Suppose thatr # p—1. Then U := Z;fo Ka:§ D and V = Zmp Ky; )
are irreducible G Lo(K)-submodules of W,_1 and W,_1 =U @ V.

Proof. For r < p — 2 the GLo(K)—-action on U is given by the following formulas (use the

relations in Appendix A and the definition of xl(-r)):

) mzm = _5”7(21—@

+1—4 (r41—
A = T (e,

(r  _ tr+l—2i$§T)’

)
)

(3 CI)-%“) = Yoo (Do,
)

th 0 ) i1 ()
<0t2>azi—t1t2xi.

Note that U = @TH Uy, (the top index is r 4 1) where U,, = K:IZZ(T) is the weight space
of U for the weight pu; : T — K*, where T is the subgroup of all diagonal matrices in
SLo(K). The weight p; is given by

t 0 —9i
,Uz< 0 t—l > :tr—i-l 22‘

If N # 0 1is a GLa(K)-submodule in U, then it is well known that N is a direct sum
of Ny, where N,,, = K:z:g-r) and where j € I for a nonempty subset I of {0,1,...,r+ 1}.
Since N is a GLo(K)-module, we must have I = {0,1,...,m + 1} (apply the GLy(K)-
action above); hence N = U. Similar arguments as those apphed to U can be used to show

that V is an irreducible G Lo(K )-module also. Finally, observe that :17(() ), azg ), . :L\EZ; and

ygr),yg“), e ,ygl)) are linear independent. Therefore U @V is a GLy(K)-submodule of

W,_1 of dimension 2r + 2 = dimgW,_1; hence W, =U P V.
If r > p the GLy(K)—action on U is given by the following formulas:

0 1 ™ _

< 1 0 > " Ty = Topp_1-i>
1 0
a 1
1l «
0 1

) = T e,

a) = Tl (e,

t2p 2i—r—1 (7”)

7 2 ’

7N
O
I

= O

)
)
)
)

p—1—i,r+i—p (r)
51 ty ;.

N
o &
~
N O
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Again we have U = @Z:& U,;, where U,, = K:rl(-T) is the weight space of U for the
weight p; : T'— K* and where T' is the subgroup all diagonal matrices in SLo(K). The

weight p; is given by
t 0 iy
L < 0 t—l > — tr—i—l 22'

We can now show that U is an irreducible GLs(K)-module (apply arguments similar to
those for » < p — 2) and that V is an irreducible GL2(K)-module. Finally, we obtain
W, =UV. O

4.4 SLy(K)—-action on polynomials

We still assume that r £ p — 1 and write W,._1 = U @& V as in Proposition 4.3.1. Then
.,i"_l =U*aV*, where U* =}, Kx; and V* = 3, Kx; and where X; and x/; are defined
via:
v ) =0 and X)) =0 Vi,

X X =8y and X)) =0 v

Let K[X,Y] be the polynomial ring in two variables. Each element in SLo(K) (and
GLy(K)) defines an automorphisms on K[X,Y] in the following way:

( ‘é 2 > FX,Y) = f(aX + ¢Y,bX +dY).

All L, = {f € K[X,Y] |f is homogeneous of degree n} are GLa(K)-submodules of
K[X,Y] with dimension n + 1.

Lemma 4.4.1. For 0<n <p—1 all L, are irreducible GLo(K)-modules.

Proof. Note that X", XY~ !, ... Y™ form a K-basis for L,,. We have

< é t_? ) L XY = XY for 0 < < .

Let T denote the subgroup of all diagonal matrices in SLo(K). Then L, = ,(Ln)u;,
where p; : T'— K* is given by
t 0 Y
Mz‘(o 41 > = "

(Lo ={F € Ln | t-f = ps(t)f V¢ €T} = KXY,

Any GLa(K)-submodule M,, # 0 of L,, is a direct sum @, ; K X" 'Y for a nonempty sub-
set I of {0,1,...,n}. Since M, is a GLy(K)-module and n < p, we have I = {0,1,...,n}
(use the GLo(K)-action on Ly); hence M,, = U. Indeed, for all 0 < i < n, we have:

and

I « n—ivysi i 1\ i—s yn—sy s
< 0 1 > - X Yyt = ZSZO (s)a X Y ’
a 1 s

< 1.0 > L Xyt — Z;L:—(Z) (n—i)an—z‘—sXsyn—s.

The proof is completed. [l
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4.5 Identification
We are now in position to identify U* and V* with appropriate L,,.

Theorem 4.5.1. As SLy(K)-modules we have isomorphisms

top top
U =P Kxj ~ Laimg v V=P KX ~ Laimgv-1-
i=0 =1

Proof. Let me concentrate on the case involving U* (one can use similar computations for
V*). The Bruhat decomposition of GLy(K') shows that any matrix in SLs(K) belongs to
{Dyo®1}U{P| 0O od,od;}, where

- 1 0 ;o 10
<I>1—<a 1> and @1—<a, 1>

denote matrices in the subgroup of all lower triangular matrices in SLo(K) with 1 at the
diagonal and Dy, d;, © are the matrices

t=1 0 —t=1 0 0 1
p=("y0) a=(T0 b)) e=(T0):

The SLo(K)-action on U* in the case where r < p — 2 is given via (use the formulas for
the action on U in the proof of Proposition 4.3.1):

d-x; = S, (Tﬁ;s)(—a)j‘sxs
Dy-x; = %y,

de-x; = (=172

O:-X; = —Xrt1-j-

We now define a K-linear map ¢ : U* — Ldimgu—1 by ¥(x;) = (—1)! (Tijl)XjY’"“_j
for j =0,1,...,r 4+ 1. Since 9 is a bijective and

P(@1-x5) = P1-9Y(xy)
Y(©odi-x;) = ©Oodi-(xy)

Y(Di-xj) = Di-(x;)

for all j, we conclude that v is a SLo(K )-isomorphism.
The SLo(K)-action on U* in the case where r > p is given via (use the formulas for
the action on U in the proof of Proposition 4.3.1):

®1x; = Yo (P75 () X,
Dy-y; = $2-rly

di-x; = (=172l
©-X; = Xpr-1-j-
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We now define a K-linear map ¢ : U* — Lgimgu—-1 by ¢(x;) = Xiy?2p—r—1-j
for j=0,1,...,2p —r — 1. Since ¢ is a bijection and

H(P1-x;) = P1-6(x;)
¢(9°dt'Xj) = 9°dt'¢(Xj)

(D~ x;5) = Di-o(x;)
for all j, then ¢ is a S Lo(K )—isomorphism O

4.6 SLy(K)—-orbits in L,

Let f be a homogeneous polynomial in two variables X, Y. We can write f as a product
of polynomials of degree 1: Assume that

n n .
. . X\?
f= E XY 't=Y" E cz(?) for some ¢; € K.
i=0 =0

Then > 7 ;¢ (%) ek [%] can be written in linear factors (since K is algebraically closed);

we then obtain .

X n
n
f=Y E(al? +b) = E(QZX +b;Y).
Eventually, one has to put b; = 1,a; = 0 for ¢ > m and some m < n. We can now
write f = af{" f3"* -+ fI", where a € K* and f1, fa,..., fs are linear, non—proportional
polynomials. For g € SLy(K) we have g- f = a(g- f1)™ (g - f2)™2---(g - fs)™, which
again is the factorization of g - f in linear, non—proportional polynomials. Therefore: If
two polynomials I, h with factorizations I = ayIf' 152 - I and h = aph¥ h52 .- b lie in
the same SLy(K)—orbit, then s = t. Moreover, (ni,ng,...,n;) € Sy - (k1,ka, ..., k) where
St is the permutations group on t elements.

In the next sections we consider a polynomial f = af{"! f5"*--- fI"s, where a € K* and
fi,..., fs are linear, non—proportional polynomials. We say that s is the length of f.

4.7 Length 1

Then f = a(f1)" for some a € K* and some n € N. There exists g € SLy(K) such that
g - f1 =bY for some b € K*; hence f and Y lie in the same SLo(K)-orbit. Moreover,

StabGLZ(K)<Y”) = { ( . 2 > & =1l,ae K* ce K}

is a linear algebraic group of dimension 2.

4.8 Length 2

Then f = a(f1)™ (f2)™2, where a € K* and fi, fo are non—proportional and mi,ms > 0.
Take g € SLy(K) such that g- f; = X and g- fo = bY for some b € K*. Now, observe that
all aX™ 'Y, where 7 is an integer with 0 < i < 5 and a € K*, are representatives for the
SLy(K)—orbit of f. This follows since aX™ Y* € SLy(K)-aX'Y™ " for i with ¥ < i < n:
Use © o < _(é a_(l] ) € SLy(K) where a € K* such that (—1)""a""% = 1.
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The stabilizer is a linear algebraic group of dimension 1 given by:

t1 O
0 to
t1 O 0 1
0t )V 1 0

4.9 Length >3

We have f = a(f1)™ (f2)™2(f3)™ --- with a € K* and my,ma,m3g > 0 and fi, fo, f3,. ..
are non—proportional polynomials. As in the case s = 2 we find g € SLy(K) such that
g-fi =X and g- fo = bY for some b € K*. Now the SLy(K)-orbit of f includes a
polynomial, which is divisible by both X and Y and involves at least 2 monomials (else f
is equal to a(f1)" 7 (f2)? for some j > 0 which is a contradiction to our assumption s > 3).
Therefore the SLo(K)—orbit of f has a representative given by

=1 0<i<Z,

Stabgr, o) (aX"7Y7) =

My =1 Q=

N3

n—1
Z a;Y X" where Jiy #ig: agy # 0 # ag,.
i=1

The stabilizer is finite.

5 Representatives of characters

In this section we shall use the results obtained in the previous section and find certain
representatives for y € W* with respect to the GLy(K)—action on W*. Suppose that
x € W* has height r (i.e., x(W>,) = 0 but x(W,_1) # 0). We assume that r # p — 1.
Write W,_1 = U @V as in Proposition 4.3.1.

5.1 Characters of Type I

Suppose that x(V) = 0 and x(U) # 0 (or equivalent xy € U*). The isomorphism in
Theorem 4.5.1 identifies x|y, _, with a homogeneous polynomial f = af{™ f3**--- fs for

some a € K* and linear, non—proportional factors f1, fo,..., fs. I will treat the cases
s =1, =2 and s > 3 separately. As in Section 4, I will refer to the top index for {xl(.T)}Ei%

as top.

a) Combine the case s = 1 discussed in Section 4.7 and the isomorphism from Theorem
4.5.1 to find a representative for the orbit of x as (abuse of notation):

X : X(a:g)) # 0, X(.CCZ(T)) =0 fori >0 and X(yi(r)) =0Vi.
b) Use the strategy in a) with s = 2 to find a representative for the orbit of x as:
X @ 3j # 0, top with X(arg-r)) #0, X(.CCZ(T)) =0 fori#j and X(ylm) =0Vi.
c¢) Use the strategy in a) with s = 3 to find a representative for the orbit of x as:

X 31 # g2 with x(2\) #0# x(2'7)) for ji,jo #0,t0p and

X@D) = x@i) =0 and  x(@") =0Vi.

Characters as in a),b) or ¢) above will be referred to as characters of type La, I.b or Lc.
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5.2 Characters of Type 11

Assume x(U) = 0 and x(V) # 0 which means x € V*. As above, I will refer to the top
. (r)ytop
index for {y; ' },Z, as top.
a) Combine the case s = 1 discussed in Section 4.7 and the isomorphism from Theorem
4.5.1 to find a representative for the orbit of x as (abuse of notation):

X : X(ygr)) #0, X(y(r)) =0 fori>1 and X(xir)) =0Vi.

b) Use the strategy in a) with s = 2 to find a representative for the orbit of x as:
X : 3j # 1,top with X(y](-’”)) #£0, x(y) =0 fori#j and x(z\”)=0Vi.
c¢) Use the strategy in a) with s = 3 to find a representative for the orbit of x as:
Xt 3gi # e with x(7) #0# x(y))) for ji,ja # 1,top  and
X =Xy =0 and (=) =0Vi.

Characters as in a),b) or ¢) above will be referred to as characters of type Il.a, IL.b or Il.c.

5.3 Characters of Type 111

Assume x(U) # 0 # x(V). If (ai)ig denote representatives for the SLy(K)-orbit on U*
and (a,b) € W} | = U*@ V™, then there exists ¢ € I such that ¢ - (a,b) = (a;,V') and O/
can only be changed by using Stabauw)(a:). A representative 7 for the orbit of x can
be chosen such that 7y« is a representative in U* and 7 is arbitrary on V. Characters T
as above, where the restriction to U* defines a character of type I and 7(V) # 0 will be
referred to as characters of type III.

5.4 A lemma

From the description of the representatives above, we have:

Lemma 5.4.1. Suppose that x € W* with height r > 0 but r # p — 1. Then there exists
g € Aut(W) and © € W,_1 such that x9([z, e102]) # 0 = x9([x, Wo12]) except for the case
where v = 2p — 3 and x has type Il.a as in 5.2.

Proof. The computations above say that we can find g € GLy(K) such that x¥ has the
following properties: Either we have 0 < ¢ := max{0 < j < top | Xg(a:y)) # 0} < top or

1 <s:=max{l <j < top | Xg(y](-r)) # 0} < top. Now, set z = a:gr)l or x = ygl and
apply the relations in Section 4.1, 4.2. It follows that x9([z, e102]) # 0 = x9([z, Wo12]) as
required. [l

6 Criteria for irreducibility

Let K be an algebraically closed field of characteristic p > 0 and (g, [p]) be a finite dimen-
sional restricted Lie algebra over K. Every irreducible g—module is finite dimensional and
therefore admits a p—character y € g* (see [14, 2.4]). Conversely, for any linear form x € g*,
there exists a finite dimensional associative algebra U, (g) which is a quotient of the uni-
versal enveloping algebra U(g) and whose irreducible modules are exactly the irreducible
g-modules with p-character x (see [14, 2.7]). Hence the algebras U, (g), where x € g*,
play a major role in studying the representations of g. If h C g is a Lie p—subalgebra, we
will use the notation Uy () for the reduced enveloping algebra Uy, (h).
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6.1 Setup
Let x € g* and let h C g be a Lie p—subalgebra. We shall define the stabilizer of x in § as

st(x,h) ={y€g|x(ly,z]) =0 forall z € h}. (6.1)

It is easy to verify that st(y,b) is a Lie p-subalgebra of g. In the following N will
denote an irreducible U, (h)-module. We will give criteria for the induced g—module

Ux(9) ®u, ) N

to be irreducible. The first criterion is described in |27, 5, 5.7] and the second in [25, I].
The third criterion has been made because none of the first two criteria could be applied
in examples for p = 3 in Section 13.

Let eq,. .., e, be a basis for a complement to b in g. For each o = (1, v, ..., ) € N
set e® = ef?ef? - e2m and |a| = > a;. Define ¢; = (0,0,...,0,1,0,...,0) € N", where
1 occurs at the j’'th place. Let I denote the set of all @« € N™ with «; < p for all . From
[14, 4.1] we have a direct sum decomposition as a vector space

Ur(8) ©uyy N = Pe” ® N. (6.2)
acel

For all uw € U(g) and all a € I, we have

wet = 30 (§)fad e e o (e ) o
> (5) !

where we sum over all 5 € I with §; < a; for all i and where ad’(z)(y) = [y, x] for all

x,y € g. The binomial coefficient is given by
o © (ay
o (2
(ﬁ) Zl;ll <5z>

Recall the further setup from [27, 5, 5.7]: Let a C g be an ideal such that x([a,a]) =0
and set b := st(x, a) where st(x,a) = {y € g | x([y,z]) =0 forall z € a}. Since a C g is
an ideal, b is a Lie p—subalgebra of g and moreover h contains a because x([a,a]) = 0. If
u € U(a) the factor after e in (6.3) belongs to U(a). We get then for all & € I and all
veN

6.2 Criterion 1

n
u(e* @v) € e* @ uv — Z ;e % @ [ej,ulv + Z e’ @ N. (6.4)
=1 181<]al—2

We need one further assumption: We shall assume that N is an irreducible U, (h)-
module such that y - v = x(y)v for all y € a and all v € N.

Lemma 6.2.1.
1) There ezist y1,y2,...,Yn € a such that x([yi, €j]) = 0ij.

2) For allv € N we have

(yi — x(:)) - e*®@v— e “®ue Z KeP @ N.
18I<|a| -2
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Proof. 1) Set U = " | Ke;. The bilinear form B,(z,y) := x([z,y]) defines a linear

mapping
0:U—a* z+— x([-,z]).

The definition of h and the assumption on e, es, ..., e, as a cobasis for § in g imply that ¢
is injective and the linear functionals p(e;), p(e2) ..., v(ey) are linear independent. Hence
there are y1,ya2,...,yn € a with ¢(e;)(y;) = d;5, 1 < 4,5 < n.

2) It follows from (6.4) and 1) that

n
(yi — x(¥i)) - e* @v e e*® (y; — x(yi))v + Z dija;e® % @uv+ Z KeP @ N.
j=1 18]<|er| -2

Now use that each y € a acts as multiplication by x(y) on N and obtain
(yi —x(yi)) - e ®@v— e T Que Z KeP @ N.
1B1<]al—2
The proof is completed. O

Remark 6.2.2. The previous lemma works for all finite dimensional U, (h)-modules N
such that y-v = x(y)v for all y € a and all v € N. The assumption on irreducibility is not
needed anywhere.

Proposition 6.2.3. Let M be a g—submodule of U,(g) ®u,(p) N. Then there exists a
h-submodule X of N such that M N (1@ N)=1® X and such that M ~ Uy (g) @y, () X

Proof. Set
X={veN|1l®ve M}

Clearly, X is a h—submodule of V. Since we have a direct sum decomposition of Ux(9)®UX(h)N
as in (6.2), we also obtain M N (1 ® N) =1® X. For the isomorphism, note that we have
a canonical embedding

¢ : Ux(9) @u, (5 X — Uyx(8) ®u, () N

with image > .; Ke® ® X inside Uy (g) ®y, (5) IV. Clearly, the image of ¢ is contained in
M since 1® X C M and M is a g-submodule of Uy(g) ®y, () V. I claim that the image
of ¢ is all M. This will follow if we prove that

MNY Ke*@N=Y e*®@X forallj>0.
|al<j <

I will use induction on j > 0. The case j = 0 follows directly from the first part of the
lemma. So let j > 0 and suppose that z € M C Uy(g) ®@y, ) IV such that

l
T = Z Z v(k, )e® ® v (mod Z Ke*® X) (6.5)

k=1|al<j |al<j

where v(k,a) € K and vy,vs,...,v; € N are chosen such that N = X & @élevk. We
shall prove that v(k,a) = 0 for all & € I with |a| = j.
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Use Lemma 6.2.1 to get

ZZ (k,a)e” ®vk—zz (k, @) e F @y € Z KeP @ N

k=1|a|<j k=1|al=j 181<j—2

for i =1,2,...,n [here y1,y2,...,yn are chosen such that x([y;, e;]) = d;; for 1 < 4,5 <mnl.
Now use induction to obtain

(i —x(:)-zeMn Y KeloN= ) KoX (6.6)
1Bl<i—1 18|<j—1

Since y - vk = x(y)vg for k =1,2,... 1 and all y € a we have:

(yi — xezz (k,0)a;e* % @ g, + Z KeP @ N + Z Ke*® X (6.7)

k=1|al=j 1B81<i—2 o <j—1

fori=1,2,...,n. Combine (6.6) and (6.7) and obtain «;y(k, ) = 0 for all a with |a| = j
and all £ =1,2,...,1. Since j > 0 there exists i such that a; > 0; hence v(k, o) = 0 for all
k=1,2,...,l and all @ € N" with |a| = j. Now induction induces that

reMnN Z KeP @ N = Z Keb © X.
|B]1<i—1 1B]<i—1

The proof is completed. O

Corollary 6.2.4. Let N be an irreducible U, (h)-module such that y -v = x(y)v for all
y€aandallve N. Then Uy(g) Qu, (p) N s wrreducible if and only if N is irreducible.

Proof. If Uy(g) ®y,(p) N is an irreducible g-module, it is clear that N is an irreducible
hb—module. Now suppose that N is an irreducible h—module and let M be a g—submodule
Ux(8) ®u,p) N. By virtue of Proposition 6.2.3, there exists a h-submodule X of N such
that M ~ U,(g) ®y, () X. Since N is an irreducible h-module, we have M = 0 or
M = U, (g) @y, () IV accordingly as X =0 or X = N. O

For any g—module M set MX := {m € M | z-m = x(x)m Vz € a}. Note that MX is a
h—submodule of M.

Corollary 6.2.5. If M is an irreducible Uy (g)-module with MX # 0, then MX is an
irreducible Uy (h)-module and M =~ U, (g) ®y, 5y MX.

Proof. There is a homomorphism of g-modules ¢ : Uy(g) @, () M* — M given by
plx ®v) = x-v for v € Uy(g) and v € MX. Since ¢ # 0 and M is irreducible, ¢
is surjective. The kernel of ¢ is a g-module of Uy(g) ®y, (y) MX and intersects 1 @ MX
trivially. Now use Proposition 6.2.3 to get Ker(¢) = 0. Hence ¢ is an isomorphism and
MX is now irreducible by Corollary 6.2.4. O

Definition 6.2.6. If M is a g—module, we say that y is an eigenvalue function for M if
MX ={me M|z -m= x(x)m Ve € a} # 0. In a similar way, we say that y is an
eigenvalue function for a h—module N if NX ={v € N |z -v = x(z)v Yz € a} # 0.

Remark 6.2.7. If N is an irreducible h—module with eigenvalue function x then NX = N:
Indeed, since a C b is an ideal and x([h, a]) = 0, it follows that NX is a (nonzero) U, (h)-
submodule of N. Therefore, NX = N by irreducibility.
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Theorem 6.2.8. The maps M —— MX and N — Uy (9)®y, ()N induce inverse bijections
between the isomorphism classes of irreducible U, (g)-modules with eigenvalue function x
and isomorphism classes of irreducible U, (h)-modules with eigenvalue function x.

Proof. Suppose that M is an irreducible U, (g)-module with eigenvalue function x. Then
MX # 0 and by Corollary 6.2.5 then MX is an irreducible U, (h)-module with eigenvalue
function x. Moreover M =~ U,(g) ®u, 5y MX. If N is an irreducible Uy (h)-module with
eigenvalue function x set M = Uy(g) @y, ) N. Then M is an irreducible U, (g)-module
(apply Corollary 6.2.4) and by Remark 6.2.7, we have 1@ N C MX. Since M ~ Uy (g)®y, (p)
MX by Corollary 6.2.5, we have dimgl ® N = dimgMX and so MX =1® N ~ N. O

Remark 6.2.9. Let g’ be a restricted Lie subalgebra of g with g’ D h. It follows that g’ D a,
that a is an ideal in g’, and that h = {y € ¢’ | x([y,z]) = 0 Vx € a}. We can therefore
apply everything above to g’ instead of g. So the isomorphism classes of irreducible U, (g’)-
modules with eigenvalue function x are in bijection with the same isomorphism classes of
irreducible U, (h)-modules with eigenvalue function x as in the theorem. Combining this
with the theorem we see that we have a bijection from the isomorphism classes of irreducible
U, (¢')-modules with eigenvalue function x to the isomorphism classes of irreducible U, (g)-
modules with eigenvalue function x. The isomorphism of tensor products

Uy (8) @, m) N =~ Uy () ®u, () (Ux(@) @, ) N)

shows that the bijection is induced by M’ +— U, (g) ®y, (y) M'. Clearly, the inverse map
is given by M +—— U, (g')MX.

6.3 Criterion 2

Fix the notation from Section 6.1. Recall that eq,eo, ..., e, form a basis for a complement
to b in g, where h C g is a Lie p-subalgebra. Let N be an irreducible U, (h)-module and
denote by o : h — gl(N) the corresponding representation. In the previous section a was
an ideal in g with x([a,a]) = 0. Now we will change our definition of a. In this section
a C b denotes a unipotent p—ideal with x(a) = 0. This implies that

a-N=0 or o(a)=0. (6.8)
This follows from:

Lemma 6.3.1. Let (b, [p]) be a restricted Lie algebra and a < b a p—ideal which is unipo-
tent. If V is an irreducible h—module with p—character x and x(a) =0, then a-V = 0.

Proof. Set
Vi={zeV|z-v=0 Vz€a}.

Note that V' C V is a h—submodule, since a <1 § is an ideal. I claim that V® is nonzero.
Indeed, since V is finite dimensional, it contains an irreducible restricted (x(a) = 0)
a-module M. Since a is unipotent M is isomorphic to the trivial module (see [14, 3.2])
and therefore contained V. So V% is a nonzero U, (h)-submodule of V; hence V = V¢ by
irreducibility. O

In the following, set [ := [g, a].
Remark 6.3.2. If [ C b, then [ C hand [[,[] C b are ideals. This follows from the definition
of I and the fact that a C b is an ideal.

26



Now we have to make our assumptions:

Theorem 6.3.3. Let N be an irreducible U, (h)-module. Suppose that | = [g,a] has a
basis Uy, la, ..., with ll[.p] =0 for all i and that the following conditions are satisfied:

1) L]g, (] Ch,

2) (L1 C b is a unipotent p—ideal with x([I,1]) =0,

3) st(x,a) =b.

Then
1®N:{w€UX(g) ®Ux(h)N ‘ CLUJZO} (69)

Before I start with the proof, let me make some remarks.

Remark 6.3.4. Remark 6.3.2 and 1) show that [, [, [] are ideals inside §. If [ has a basis as
in the theorem, then we can apply Jacobson's formula and show that [, [[,[] are p—ideals
inside . Indeed, consider x = a1l + aslo + - - - + arly € [ and obtain zlPl e [, C . By2),
we obtain that [[,[] C b is a unipotent p—ideal with x([[,]) = 0. It follows that [[,{]- N =0,
hence o([[,1]) = 0.

Remark 6.3.5. For 1 < 4,j < n, each [e;, f;]IP! acts trivially on any irreducible U, (h)-
module N. Indeed, [e;, fj] € [ and can be written as bily + baly + -+ + byli, for some
bi,b2,...,b; € K. The assumption on the basis elements of [ implies that [e;, fj][lﬂ e [L,1].
Now apply Remark 6.3.4.

Remark 6.3.6. We have defined ey, e, ..., ey, such that g = (@}, Ke;) ®h. It now follows
that st(x,a) = b if and only if

Ve (ZK@Z')* dfeca: pz)=x(zf]) Vze ZKei.
i=1 j=

For the "if" part: Consider ¢; € (3.7, Ke;)* with ¢;(e;) = 6;; and choose f; € a such
that ¢;(z) = x([z, fi]) for all z € > | Ke;. It follows that there exist fi, f2,...,fn € @
such that x([e;, f;]) = ;5 for 1 <4, j < n. Now, let y = a1e1+azea+- - -+ane,+h € st(x, a)
where a1, az,...,a, € K and h € . Since fi, fo,..., fn € a and a<h with y(a) = 0, the
relations x([y, f1]) = x([y, f2]) = -+ = x([y, fn]) = 0 imply that a1 = a2 = --- = a, = 0;
hence y = h € h. So the stabilizer of x in a is contained in . The other inclusion is
obvious.

If st(x,a) = b, then consider the linear mapping:

V:Kei®Keg®--- @ Kep — a*, @ — x([—,z]).

The assumption st(x,a) = b says that ¢ is injective and that ¥ (e1), ¢ (e2),...,¢¥(en ) are
linearly independent. Hence there are fi, fo,..., fn € a with ¢(e;)(f;) = X([eZ ])

for 1 < 4,57 < n. Now consider any ¢ € (>.;~, Ke;)* and assume that ¢(e;) = for
some r; € K and all i =1,2,...,n. If f=3"" rif; €awe have ¢o(z) = x([z, f] for all

z e Y. | Ke; as required.

It follows that st(x, a) = b if and only if there are f1, fo,..., fn € a with x([e;, f;]) = di;
for 1 <4,5 <n. So the existence of fi, fa,..., fn € a with x([e;, f;]) = 0;; for 1 <4i,j <n
is equivalent to statement 3) in Theorem 6.3.3.
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Now to the proof of Theorem 6.3.3.

Proof. Set b := a+ {z € | x(x) = 0}. Note that b C § is a Lie p—subalgebra. In order
to show that [b,b] C b, we only need to consider x,y € [ with x(z) = 0 = x(y): Apply
Remark 6.3.2 and 2) to get [z, y] € Ker(x)NI. Next, consider z = a1l; +aslo+---+agly € b
and use the assumption that ll[.p] = 0 for all i to obtain 2Pl € [I,1]  Ker(x)NI C b. Observe
that b is unipotent also since z[?! € a+ [, ] for all z € b. Now, we can use 2) to get 2Pl =0
for some r > 0. Therefore, x(b) = 0 implies:

The only irreducible U, (b)-module is the trivial one dimensional module K.  (6.10)

Let now J denote the subspace of End g (IN) spanned by all o(z1)o(x2) - o(xs) with s > 1
and all z; € b. Then J is obviously closed under multiplication; it is the associative algebra
"without 1" generated by o(b). Denote by J™ the span of all ujus - - - u,, with all u; € J.

Lemma 6.3.7. We have J™ =0 for all m > dim(N).

Proof. Choose a composition series
N=NrDNp_1DNp_9D---DN; DNy=0

of N considered as a U, (b)-module. Now (6.10) implies that dimgN;/N;_; =1 for all j
(hence k = dimg N) and o(b)N; C Nj_;. It follows that uN; C N;_; for all v € J and
hence J™N; C N,_,, for all j where we write NV; = 0 for [ < 0. We get in particular,
JEN = J¥N, ¢ Ny = 0, hence the claim. O

Set A equal to the associative algebra with 1 generated by o(a + [). So this is the
subspace of Endg (V) spanned by all o(y1)o(y2)---o(ys) with s > 0 and y; € a+ [ (for
s = 0 we pick up the identity). We have clearly J C A.

Lemma 6.3.8. The algebra A is commutative. The ideal AJ in A satisfies (AJ)™ =0 for
all m > dim(N).

Proof. We have [o(y1),0(y2)] = o([y1,y2]) for all y1,y2 € a+ . Since [y1,y2] € a+ [, ]]
we use (6.8) and Remark 6.3.4 to obtain [0(y1),0(y2)] = o([y1,y2]) = 0. So all generators
o(y) with y € a + [ commute with each other and A is commutative. Now AJ is the span
of all zu with z € A and u € J. The commutativity of A implies that AJ is an ideal in
A (a priori it is only a left ideal) and that (AJ)™ = AJ™ for all m. Now apply Lemma
6.3.7. O

Now we are in position to finish the proof. We only have to prove the inclusion ” O ” in
(6.9) because of (6.8). Let w be a nonzero element from the right hand side in (6.9). Write
w =) 7€ ®wy with w, € N. Let g(w) denote the maximum of all |a| with w, # 0.
The claim says that g(w) = 0 so let us assume that g(w) > 0 and get a contradiction. We

will use Remark 6.3.6 in order to use assumption 3) in the theorem: Solet f1, fo,..., fn € a
such that x([e;, f;]) = 0;; for 1 <i,j < n. Now apply (6.3) in order to evaluate f; - w for
i=1,2,...,n. Since f;-w =0 and f;-w, € a- N =0, we get from assumption 1):

0e Z Zaea @ e filwa+ > P @N foralli=1,2,...,n. (6.11)
la|=q(w) j= 18| <q(w)—2
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For each 8 with |3| = ¢(w) — 1 we have (use the direct sum in equation (6.2) together with
(6.11))

> (B +Dlej, filwge, =0 for i=1,2,...,n. (6.12)
j=1
The aim is to show that wgi., = 0 for all 5 and j with § +¢; € I. Then we get
wq = 0 for all @ with |a| = g(w), a contradiction to our definition of ¢(w). Consider g € I
with || = g(w) — 1 and define I(8) := {1 <t <n | +¢e; € I}. We need to show that
wgye, = 0 for I € I(f). By Remark 6.3.5 each [e;, f;]” acts as multiplication on N by
x([es, fi])P. Therefore the action of z; = x([e;, fi]) Po([es, fi])P~L € A is inverse to that of
lei, fi]. Now (6.12) gives

ware, = Y (B + Dales, fil(wpee,) (%)
J#i.JE1(B)

for all i € I(). Consider a numbering of the elements i1 < is < -+ < iz in I((3). If we
apply () successive we get for all » with 1 <r <s:

Wite, € AJ(Wp4e, ) + Z AJ(wﬁJraij )- (6.13)
j>r

In particular, we have wg,., = u(wgye, ) for some u € AJ. Hence wgye, = u™(wsie,,)
for all m > 0. Now apply Lemma 6.3.8 and get wgie,, = 0. Therefore Wote, | €

, = 0. Now,
continue this process and get wgy., = 0 for all [ € I(3). O

AJ (w5+5is_1) also and a similar calculation as before shows that wgie, -

Remark 6.3.9. The theorem shows that the isomorphism class of the g-module
Uyx(9) ®y, () N determines the isomorphism class of the h—module N. On the other hand,
we get from (6.9) the simplicity of Uy (g) ®y, () N: Any nonzero g-submodule M contains
an irreducible U, (a)-module V. We get then a-V =0, hence V' C 1 ® N by (6.9), hence
M N (1® N) # 0. This intersection is an h-submodule of 1 ® N. So the simplicity of
1® N ~ N implies that 1 @ N = M N (1 ® N) C M, hence U,(g)(1 ® N) C M and
M =U,(g) ®u, @ N-

For each g—module M set M® := {w € M | a-w = 0}. It is easy to see that M? is
a Uy (h)-module since a < b with x(a) = 0. One could hope that the functors F' and G
defined by

G : {U,(g) — modules} — {U,(h) — modules}, M — M*

and
F: {Uy(h) — modules} — {U,(g) — modules}, V +— Uy(g) ®@u, ) V

are inverse equivalence of categories. The hope turns out to be false: Take the reg-
ular U, (h)-module, then this is a free module over the local algebra U, (a) = Up(a),
so that dimgU,(h) = dimgU,(h)® - pH™mx® whence a = (0) and h = g. [In order
to get dimgU,(h) = dimgU,(h)" - pdimKe yse that Up(a) has a simple socle, hence
dimg Up(a)® = 1 since a is unipotent. Now U, (h) =~ Up(a)® implies that dimg U, (h)* = c.|
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One could perhaps hope the following: Abusing notation, we denote by x the linear
form on h/a induced by x € g*. Then G actually takes values in U, (h/a), and defines a
functor

G : {U,(g) — modules} — {U,(h/a) — modules}.

By composing F' with the pull-back along the projection U, (h) — U, (h/a), we obtain a
functor
F':{U,(h/a) — modules} — {U, (g) — modules}.

Frobenius reciprocity implies that (F’,G’) is an adjoint pair, so that the front and rear
adjunctions are candidates for the desired equivalences. In fact, if F/ and G’ are exact,
then (6.3.3) and induction would yield such an assertion. Since F’ is exact, the problem
resides in the exactness of G’, which is usually only left exact.

In fact, this hope turns out to be false also: Let g := slo(K) @ L(1) be the semidirect
product of sly(K') and its two dimensional standard module L(1). [Here L(1) is the abelian
restricted Lie algebra with bracket and p-mapping being zero.| Let {v1, v2} be the standard
basis of L(1), {e, h, f} the standard basis of sl3(K). Define x € g* via x(slo(K) = 0= x(v1)
and x(v2) = 1, so that a := Kv; and h :=st(y,a) = Kh® Ke® L(1). Then the conditions
in Theorem 6.3.3 are fulfilled (with [ = L(1)), and one would now hope for an equivalence
of Uy (g)-mod. and U, (Kh ® Ke ® Kvy)-mod.

However, take a look at the regular U, (g)-module U, (g). We have

dimKUX(g)“ — pding/a — p4
and if there is an equivalence, we should also have
Ur(8) = Uy (8) S0, (5) Un(0)™ (6.14)
It is not hard to see that o
Uy(9)* = @ KoP ™ kel b fL.
ijkl
Consider the module on the right hand side of (6.14): I claim that
dimg (Uy(a) ®u, (v Ux(8)")" > dimg Uy (g)° (6.15)
and thus an isomorphism as in (6.14) is impossible. In order to prove (6.15), take
r=feol vt
and note that v1 -z = f ® szvg_l -1® Uf_lvg = 0. It follows that

1@ Uy(g)" ® Kz C (Uy(9) ®p,0) Ux(9)%)"

such that we have (6.15).
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6.4 Criterion 3

Keep the notation from Section 6.1 but assume now that NN is a finite dimensional U, (h)—-

module (we do not require irreducibility). For a = (a1, o, ..., ay) € N set
e =efles? - -enn.

Let I denote the set of all @« € N™ with «; < p for all i. For each integer [ with 1 <1 <n+1,

set [ ={a€l|ag=ay=-=q_1 =0} Itiseasy to see that we have inclusions:
Inpi=0CI,C---ClyCI:=1 If NisaUy(h)-module we define
N =P Ke* ® N C Uy(g) ®u, () N- (6.16)
acl;

Proposition 6.4.1. Suppose that there exists | < n and f € g such that either [f,e;] acts
bijectively on Uy(g) ®u, ) N and (ad €)' (f) - Niy1 C Niga for all i or [f,e)] = pey for
some p € K*. If there exists A € K such that f -y = Ay for ally € Ny11q, then

{x e Ny | f-z=Xx} =Ny

Proof. The inclusion D is clear by our assumption. Choose x € N; such that f -z = Az. If
x & Npy1 we can find m with 0 < m < p such that

m
x = Z el -v; where v; € Ny for all i and vy, # 0. (%)
i=0
First, suppose that [f, e;] acts bijectively on U, (g) ®y, (i) IV and that (ad e))'(f)-Niy1 C
Npyq for all 4. Since f-x = Az and f - v; = Av; for all ¢ we get:

Az € Xe)" - vy, + )\e;”_l “Um—1 + melm_l If,e] vm+ Z el Niyi.
i<m—2
Here we use our assumption that (ad e;)*(f) - Niyx1 C Nj4q for all i. It follows from the
direct sum in (6.16) that me;" " - [f,e;] - v, = 0. This is a contradiction since m # 0 and
v, # 0 and since [f, ¢] acts bijectively on Uy () ®u, 5) N D Niy1.
Next, suppose that [f,e;] = pe; for some p # 0. Consider x as in (%) with f -z = Aa:
Since f - v; = A\v; for all i we get:

M eAN+p+m)e v+ A+pt+m—1)e v, + Z el N1
i<m—2
We conclude, by (6.16), that A = A+ p+ m but also A = A+ p+m — 1. This is a

contradiction.
The proof is completed. O

Remark 6.4.2. Note that [f,e] acts bijectively on Uy (g) @y, 5 N if x([f,e]) # 0 and
[f,e]P! = [f,e1] or [f, ]! = 0: Suppose that v € U, (g) ®u,(p) IV such that [f,e]-v = 0.
Then [f,e]P! - v = 0 also (since [f,e]]P! = [f,e;] or [f,e]P! = 0). We conclude that
X([f, e1])Pv = 0; hence v = 0 since x([f, er]) # 0.

Corollary 6.4.3. Suppose that there exist f1, fa,..., fn € @ such that each [f, e either
acts bijectively on Uy(g) @y, (5 N and (ad €)' (fi) - Niy1 C Niqa for all i or [fi,e] = e
for some p; € K*. If, for each l, there exists \j € K such that f;-y = Ny for ally € Niiq,
then

{33‘ € UX(g) ®Ux(h) N | fi-x =Nz VZ} =Npt1=1® N.

Proof. Apply Proposition 6.4.1 with our assumptions (n times). O
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7 Induction from Wy» to Wxg

Now consider the second restricted Witt—Jacobson algebra W = W (2) over an algebraically
closed field K of characteristic p > 0. We want to apply the theory in Section 6.2 to
g = W>o. Let x € W* of height r. Recall the Lie p-subalgeba W12 C W of codimension
3 defined in Section 3.1. We shall prove that there exists an automorphism g such that
induction induces a bijection between the isomorphism classes of irreducible Uyg(Wo12)—
modules and the isomorphism classes of irreducible Uy s (W>()-modules except possibly the
case where r = 2p — 3 and y has Type Il.a as in Section 5.2.

Suppose that » > 1. Then a = W>,_; is an unipotent ideal in g with x([a,a]) C

X(W>,) = 0. So x defines a one-dimensional a-module K,. This is actually a U, (a)-
[l

module since at least all basis elements e;j;, of a satisfy ey = 0. Ttis in fact the only
irreducible U, (a)-module since a is unipotent (see [14, 3.3]). Finally, b is the Lie p-
subalgebra of g = Wxq given by {y € Wxo | x([y,z]) =0 forallz € W>,_1}.

7.1 The case that r £ p—1

Keep the notation from above. Let M be an irreducible U, (g)-module. Then M contains
an irreducible U, (a)-module, which is a copy of K,. Hence MX = {m € M | x-m =
x(z)m Vx € a} is nonzero and by Corollary 6.2.5 an irreducible U, (h)-module. Hence
all irreducible U, (g)-modules have eigenvalue function x. In a similar way (since a C )
we could prove that all irreducible Uy (h)-modules have eigenvalue function x; hence, by
Theorem 6.2.8, the map M —— MX induces a bijection between the isomorphism classes
of irreducible U, (g)-modules and isomorphism classes of irreducible U, (h)-modules; the
inverse is given by induction.
The definition of § implies that

bh=Wx1®{y € Wo | x(ly, Wr—1]) = 0}. (7.1)

Indeed any y € Wxq satisfies [y, a] C W>, C Ker(x); if y € Wy then x([y, W>,—1]) =
X([y, Wr_1]) since x([y, W>,]) = 0. If there exists x € W,_; such that x([x,eip2]) # 0 =
X([z, W012]) then (7.1) shows that h C Wyio. Therefore we have (in fact for arbitrary
r>1):

Lemma 7.1.1. Suppose that r > 1. If there exists x € W,._1 such that x([x,e102]) # 0 =
X([z, Woi2]), then induction induces a bijection between the isomorphism classes of irre-
ducible U, (Woi12) -modules and the isomorphism classes of irreducible U, (W>qo)-modules.

Proof. Follows immediately from Remark 6.2.9 with g’ = Wy12 and g = W>. [l
It now follows from Lemma 5.4.1 that:

Proposition 7.1.2. If x € W* of height r > 1 and r # p—1, then there exists g € Aut(W)
such that induction induces a bijection between the isomorphism classes of irreducible
Uys (Woi2) -modules and isomorphism classes of irreducible Uys (W) -modules except pos-
sibly the case where r = 2p — 3 and x has Typell.a as in 5.2.

7.2 The case that r=p—1

Keep the notation from above. We shall prove the statement in Proposition 7.1.2 in the
case where = p — 1. Note that g(h) = {y € Wso | X ([y, Wsr_1]) = 0} for b is defined
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as in (7.1). We thus have to investigate the question: When does there exists g € Aut(W)
such that

9({y € Wo | x([y. Wr—1]) = 0}) C Wora.

If such a g exists, then we can apply Remark 6.2.9 with X971 instead of x, g(h) instead
of h and g’ = Wy12 and a = W>,_;. The proof is then completed.
Clearly it is enough to consider g € GLy(K). We have an isomorphism Wy =~ gly(K):

b
aeio1 + beip2 + cepr1 + degr — “ (7.2)
c d

for a,b,c,d € K. Since the GL2o(K)-action is compatible with this isomorphism we arrive
the question: For which Lie subalgebras s of gla(K) does there exists g € GLo(K) such

that
g-s-g ' C < i 0)- (1)

* %k

We will apply our discussion on s = {y € Wy | x([y, W,—1]) = 0}. If s is solvable
it follows from [24, Satz 3| that the dimension of each irreducible s—module is a power
of p. Therefore each irreducible submodule of the tautological representation on K2 has
dimension 1 (recall that p > 2 since r = p — 1 > 1). Pick such an irreducible submodule
Ko and extend to a basis 1,25 for K2. Then each y € s has a lower triangular matrix
with respect to x1,x5. With g = right base change, we have (f).1

This leaves us with the case where s is not solvable. In particular, we have dimgs > 3.
If dimgs = 4, then s = gla(K) and nothing can be done [but this case is not of our interest
since s = gly(K) corresponds to Wy = {y € Wy | x([y, Wy_1]) = 0} via the isomorphism in
(7.2) — contradiction since [Wy, W,_1] = W,_4].

If dimgs = 3 and dimg ([s,s]) < 3 then [s, s] is solvable, hence so is s — contradiction.
We can thus assume that s = [s,s] and that dimgs = 3. By dimension comparison this
yields s = sl3(K). So altogether there exists g € GLy(K) such that () above is satisfied
unless s D sl (K). Going back to Wy, we see that the bad case occurs when

g1 = Kejpz + K(epi2 — e1o01) + Keorr C {y € Wo | x(ly, Wr—1]) = 0}. (7.3)

Set W/_, = W,_1 NKer(x). This is a one codimensional subspace in W,_; and the
inclusion in (7.3) is equivalent to [y, W,_1] C W/_, for all y € g;. If we regard W, _; as
a module for g; =~ sly(K) via ad, then W/_; has to be a submodule and W,_1 /W/_; a
trivial one dimensional module. Now, let h = eg12 — e1091. Then ad(h) acts diagonalisably
on W,_1, hence also on W/_,. Since ad(h) acts trivially on W,_; /W/_;, we see that W/_,
contains all eigenspaces for ad(h) in W,_; corresponding to nonzero eigenvalues. In the
case 7 = p — 1 this means that W/_, contains all e;;;, with i+ j = p— 1 except possibly for
€0,p—1,2 and €0,p—1,1- But now [6011, 617p_271] = €0,p—1,1 and [6102, ep_17071] = —€p—1,0,2 show
that W)_, = W,_; — contradiction. So the inclusion in (7.3) is impossible.

Lemma 7.2.1. Suppose that x € W* has height r = p — 1. Then there ezists g € Aut(W)
and x € W,_1 such that x9([x,e102]) # 0 = x9([x, Wo12]).

Proof. The discussion above says that we can find an automorphism ¢ such that

{y € W=o [ X?(ly, Wr—1]) = 0} C Wona.

!Since Lie’s Theorem [11, p. 16] holds whenever the dimension of the relevant module is < p, one can
also use this result to obtain the desired presentation.
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Set h:={y € W>o | X9([y, W>,_1]) = 0}. Let e1,ea,...,e, be a cobasis for h in W>( such
that e; = e1g2 and e; € Wi for i > 1. The bilinear form By (x,y) := x9([z,y]) defines a
linear mapping
U= Kei — W,

given by ¢(z) = x9([z, —]). The assumption on ey, eg, ..., e, as a cobasis for h in W>¢ im-
plies that ¢ is injective and the linear functionals ¢(eq), p(e2) ..., ¢(e,) are linear indepen-
dent. Hence there are f1, fa,..., fn € Wx,—1 with o(e;)(f;) = 0i5, 1 < i, < n. It follows
that x9([e102, f1]) = 1 (e1 = e102). Moreover, any z € Woi2 can written as z = Y .., aje;+h
for some as,a3,...,a, € K and some h € b (note that Wo12 = > ;.| Ke; @ bh). Therefore,
X9([f1,2]) = 0 since x9([es, f1]) = 0 for i > 1 and x9([h, f1]) = 0. The proof is completed
by setting x = f1. O

Proposition 7.2.2. Suppose that x € W* has height r = p — 1. Then there exists g €
Aut(W) such that induction induces a bijection between the isomorphism classes of irre-
ducible Uys (Wo12)-modules and the isomorphism classes of irreducible Uyq (W>o)-modules.

Proof. Follows immediately from Lemma 7.1.1 and Lemma 7.2.1. O

7.3 Arbitrary r

If we combine the results in Lemma 5.4.1, 7.2.1 and Proposition 7.1.2, 7.2.2, we obtain:

Lemma 7.3.1. Let x € W* of height r > 0. Then there exists g € Aut(W) and x € W,
such that x9([z,e102]) # 0 = x9([x, Wo12]) except the case where r = 2p — 3 and x has
Typell.a as in 5.2.

Theorem 7.3.2. Suppose that x € W* with height r > 1. Then there exists g € Aut(W)
such that induction induces a bijection between the isomorphism classes of irreducible
Uys (Woi2) -modules and the isomorphism classes of irreducible Uyg(W>o)-modules except
possibly the case where r = 2p — 3 and x has Typell.a as in 5.2.

Remark 7.3.3. Let x € W* be a character of height » > 1 such that r # 2p — 3 if x has
TypeIl.a as in 5.2. Let g be as above. Then one can show that each irreducible Uyg (Wp12)—
module is induced from a one dimensional U, ¢ (P)-module where P C W is a polarization
of some A € W%, and the number of irreducible U,s (Wp12)-modules is equal to the number
of irreducible ﬁxg (P)—modules. Here we apply a result proved in Lemma 9.4.1 saying that
W12 is supersolvable. [In Section 9 we take a closer look at supersolvable Lie algebras and
one can check that the statements above follow from Proposition 9.3.5 and Lemma 9.3.2,
9.3.7.] It follows that induction induces a bijection between the isomorphism classes of
irreducible Uy g (P)-modules and the isomorphism classes of irreducible Uyg (W>()-modules.
This implies that induction induces a bijection between the irreducible U, (¢g(P))-modules
and the irreducible U, (W>g)-modules and g(P) C Wxq is a polarization of PURNNT WZ,.
This result is obtained in [29, 10.16] also but the statement there only says that induction
induces a surjection.

Remark 7.3.4. The bad case for induction from Wy12 to W is the situation where r =
2p—3 and x has Type Il.a as in 5.2. The hope was that Theorem 7.3.2 could be improved in
the following way: If x € W* of Type Il.a as in 5.2 with height r» = 2p — 3 then there exists
an automorphism ¢ such that induction is a bijection between the isomorphism classes
of irreducible Uys(Wpi2)-modules and the isomorphism classes of irreducible Uyg(W>g)—
modules. But the example in Section 13.13 shows that it turns out to be a false hope. This
is indicated in [29, p. 80| also but some of the arguments leading to |29, Satz 10.16] are
suspicious. We will discuss an example for p = 3 in Section 13.13.

34



8 Induction from W-y to W

In this section we will apply the results in Section 6.3 to g = W and h = W>q. Let x € W*
be a character of height » > 1 but » < 2p — 3. Clearly, a := W>, < b is a unipotent
p-ideal with x(W>,) = 0; hence W>, acts trivially on every irreducible U, (f)-module.
Note that [ == [W,Ws,] = Ws,_1 C b has a basis Iy, la,. .., such that I = 0 for
all ¢ and [W,[] = Wx,_o C h. Moreover, [[,[] C Wsg,_9 C W>, C b is a unipotent p—
subalgebra with x([[,]) = 0. If st(x, W>,) = W>g, then we can apply Theorem 6.3.3 and
Corollary ?7: Induction induces a bijection between the isomorphism classes of irreducible
Uy (W>g)-modules and isomorphism classes of irreducible U, (W')-modules.

8.1 Good induction

‘We have shown:

Theorem 8.1.1. Let x € W* be a character of height r > 1. If st(x, W>,) = W>q, then
induction induces a bijection between the isomorphism classes of irreducible Uy (W>q)-
modules and the isomorphism classes of irreducible U, (W')-modules.

In order to use Theorem 8.1.1 the following remark is important:

Remark 8.1.2. The result in Theorem 8.1.1 is true for y if and only if it is true for x9,
where g € Aut(W). This follows from the fact that g(Wso) = W>o.

Lemma 8.1.3. Let x € W* with height 1 < r < p — 2. Then the induction functor
induces a bijection between the isomorphism classes of irreducible U, (W>o)-modules and
the isomorphism classes of irreducible U, (W')-modules.

Proof. By Theorem 8.1.1 it is enough to prove that st(x, W>,) = W>o. The assumption
r < p—2 implies that x(eqy) = 0 for a4+ 3 > p —1. So there exists an index (4, j, k) with
i < p — 1 maximal such that x(e;jx) # 0 and an index (7', j/, k') with j* < p — 1 maximal
such that x(e;jiir) # 0. Now define e; = ego;, f1 = €i+1,5,k and fo = ey jr41 4 and observe:

x(le1, fi]) = (G + Dx(eijr) # 0=1x(esr—1+11) = x([e1, f2]),
x([e2, fo]) = (5" + Dx(ewrjrwr) # 0=jx(eir1,-1,k) = x([e2, f1])-

It follows that st(x, W>,) = W>o. O

Remark 8.1.4. The results obtained in Theorem 8.1.1 and Lemma 8.1.3 are also proved
in [29, 11.1], but the proof there only says that induction induces a surjection in the case
where st(x, W>,) = W>( (T.Wichers uses the notation WZLT for st(x, W>,)).

If st(x,W>,) = W>, then the classification and dimension formulas for the irre-
ducible U, (W)-modules are given in terms of the corresponding data for the irreducible
Uy(W>p)-modules (see Theorem 8.1.1). Except for an exceptional case (see Theorem
7.3.2), there exists g € GLy(K) such that induction induces a bijection between the iso-
morphism classes of irreducible Uy (Wp12)-modules and isomorphism classes of irreducible
Uys(W>g)-modules. Therefore: The classification and dimension formulas for the irre-
ducible U, (W)-modules are now reduced to the study of Wyja—modules with p—character
x? for a suitable g € GLo(K). Since Wyi2 is a supersolvable Lie p—subalgebra of W this
reduction turns out to be very useful. Let me summarize: If st(x, W>,) = W>(o and we
exclude the case where r = 2p — 3 and x has Type Il.a, then there exists g € GLo(K)
such that induction induces a bijection between the isomorphism classes of irreducible
Uys(Woi2)-modules and isomorphism classes of irreducible Uys (W )-modules.

Thus: We will study supersolvable Lie algebras a little closer.
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9 Supersolvable Lie-algebras
A finite dimensional Lie algebra L over K is called supersolvable if there exists a chain
O=ILgocLiCclyC---CL,=1L (9.1)

of ideals in L such that the factor algebras L ; / L;_; are one-dimensional for integers j with
1 < j < n. It is clear that subalgebras and factor algebras of supersolvable Lie algebras
are again supersolvable.

9.1 Restriction

In the rest of this section we restrict ourselves to supersolvable restricted Lie algebras L
over K such that L is a direct sum of a torus T (i.e., a commutative Lie p-subalgebra
with basis hi, ho, ..., h; such that hEp] = h; for all i) and a p-nilpotent ideal U in L (i.e.,
VeeU3Is>0: zlP’l =0): We assume that L =T @ U. It follows that any restricted Lie
subalgebra of L can decomposed in that way also.

Lemma 9.1.1. Let L' C L be a restricted Lie subalgebra. Then there exists a (mazximal)
torus T' C L' such that L' =T @& (L' NU).

Proof. First, note that we have an isomorphism L'/(L' N U) ~ (L' + U) /U of restricted
Lie algebras and an inclusion (L’ + U)/U C L/U. Since L/U ~ T is a torus and any
restricted subalgebra of a torus is again a torus, we conclude that L’ / (L'NU) is a torus.
Now apply [27, 2, Lemma 4.4 (2)] to find torus 77 C L' such that L' =T" 4+ (L' N U) (one
should check that the definition of a torus given in [27, 2] is equivalent to the definition
given just before the lemma, see [27, 2, Theorem 3.6]). Clearly 7/ N (L'NU) = 0 and thus
we have L' =T' @ (L' N U) as required. O

For any restricted L-module V' # 0 the subspace
Vi={veV|z-v=0VzecU}

of fixed points of U is nonzero. Indeed, since V is finite dimensional, it contains an ir-
reducible restricted U-module M. Since U is unipotent, by assumption, it follows from
[14, 3.2] that M is isomorphic to the trivial module and therefore contained in V. More-
over the set of fixed points of U is a L—submodule of V since U is an ideal in L. If V is
irreducible we then conclude that V' = VU. Therefore, if V is irreducible, then V is an
irreducible module for L / U ~ T. Since T is commutative, this implies dimgV = 1. We
have shown:

Lemma 9.1.2. All restricted irreducible L-modules are one dimensional.

Let me now consider U, (L)-modules for an arbitrary x € L*. Each linear form A €
L* with A(U) = 0 defines a one dimensional L-module K where each x € T acts as
multiplication with A(z) and where each y € U acts as A(y) = 0. Note that K, is restricted
if and only if A(hlP)) = A(h)P for all h € T. We do not have to worry about U, since it is a
p—ideal.

Lemma 9.1.3. Let E be any irreducible U, (L)-module. For A\ € L* with A({U) = 0 and
ARy = NP Vh € T, each E ®@p Ky is an irreducible U, (L)-module. Any irreducible
Uy (L)-module is isomorphic to one of these E @ K.
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Proof. Let now Vi, Vs be irreducible U, (L)-modules. Define the dual module V}* via
(x.f)(m) = —f(z.m). It follows that V}* has p—character —y. Moreover V;* ® i V5 becomes
an L—module via z.(f ® v3) = x.f ® va + f ® x.v9 with p—character —x + x = 0. Then
Hompg (Vi,V2) ~ Vi* @ Vo is a non-zero Up(L)-module. Since Hompg (V1,Va) is finite
dimensional, it contains an irreducible p-representation isomorphic to some K, where
A(APP) = X(h)P for h € T and \(z) = 0 for z € U (since U is unipotent it acts nilpotently
on each restricted U-module). Then the trivial one-dimensional L-module isomorphic to
K} ® K is contained in

K} ®x Vi @k Vo ~ Homg (V1 @k Ky, Va).

In other words, we have Hom g (V} @ ¢ K, V2) # 0. Observe that V; @ i K is an irreducible
Uy (L)-module (V; is irreducible). By Schur’s Lemma the proof is completed. O

Let E be an irreducible U, (L)-module. Set
Ly ={X€ L* | AU) = 0, A(hPl) = X(h)P V h € T}.

If | := dimgT then T has a basis hy, ho, ..., b with ") = h; for all i. Let A € L*
and note that A € Lp if and only if A(U) = 0 and A(h;) € Fp, for all i = 1,2,...,1.
Hence |Lf§p| = pl. The set of A € LEP with F @ K\ ~ E form an [F,-subspace of Lf;p.

l—m

If this subspace has dimension m then there are p isomorphism classes of irreducible

Uy (L)-modules.

Remark 9.1.4. If L is supersolvable and all irreducible U, (L)-modules are one dimen-
sional, then there are p! isomorphism classes of irreducible Uy (L)-modules, where [ is the
dimension of any maximal torus in L. Indeed, use the observations just above with &' = K,
for some p € L* to get m = 0 (m is the dimension of the subspace of Lf;p consisting of all
NS LEP with K, ®x Ky ~ K, and it is easy to see that only A = 0 has that property).
In fact, if there exists an irreducible U, (L)-module of dimension one, then all irreducible
Uy (L)-modules are one dimensional by Lemma 9.1.3.

For any U, (L)-module V denote by P(V) its projective cover in the category of U, (L)~
modules. We have for E' and X\ as above

P(E@K K)\) ZP(E) QK K.

See |6, Lemma 1]. Each P(F ®k K)) occurs dimgF @ K) = dimgE times in a direct
sum decomposition of U, (L) into indecomposables. This induces

P Mdimg E - dimg P(E) = pdimaUx(L), (9.2)
In particular, both dimg E and dimg P(E) are powers of p.

Lemma 9.1.5. Let x € L*, let H C L be a Lie p—subalgebra of codimension 1.

a) If M is an irreducible U, (H)-module, then either M can be extended to a U, (L)~
module or Uy (L) @y, () M is an irreducible Uy (L)-module.

b) If V is an irreducible U, (L)-module and M C V is an irreducible U, (H )-submodule,
then either M =V or V is isomorphic to Uy (L) @y, () M.
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Proof. a) There exists an irreducible U, (L)-module V with a surjective homomorphism
m: Ux(L) @y, oy M — V

of Uy, (L)-modules. This map is nonzero on 1® M since this subspace generates the induced
module over U, (L). Since 1@ M ~ M is an irreducible U, (H )-module it has to be mapped
injectively into V. This implies that

dimgM < dimgV < dimKUX(L) ®UX(H) M = pdimg M.

It follows from (9.2) that both dimgV and dimgM are powers of p. So we have either
dimgV = dimgM or dimgV = p-dimgM. In the second case the induced module is
irreducible. In the first case V' is isomorphic to M as a U, (H)-module. In that case we
can extend M to a U, (L)-module.

b) The inclusion of M into V' induces a homomorphism of L-modules
UX(L) ®UX(H) M—V (93)

that has to be surjective. If M # V then dimgV > dimg M. Since dimgV and dimzx M
are powers of p, by (9.2), this implies that dimgV > p - dimg M. In that case (9.3) is an
isomorphism. If M =V, then (9.3) shows that the induced module is not irreducible. [

Let P C L be a Lie subalgebra of L. Then any A € L* with A\([P, P]) = 0 defines a one
dimensional P-module K where each x € P acts as multiplication with A(x). Let x € L*
be a linear form such that K is a U, (P)-module, i.e, with

X(@)P = Aa)? — A=) (9.4)
We can then define the induced module
Uy (L) ®u, (p) K- (9.5)

The annihilator of the module in (9.5) is an ideal in L contained in P, in fact in the
kernel of \|p € P*. Indeed, if # € L with x ¢ P, then 2(1®1) = x®1 is a nonzero element
in the induced module [choose a basis for a complement to P in L containing x and apply
the PBW—theorem for reduced enveloping algebras|. If x € P then z(1® 1) = 1 ® A(x) is
zero if and only if A(z) = 0. On the other hand we also have:

Lemma 9.1.6. Let A C P be an ideal in L with \(A) = 0. Then A annihilates the module
in (9.5).

Proof. The set of v in the module with Av = 0 is a L-submodule, since A is an ideal in
L. It contains 1 ® 1 since A(A) = 0. Thus it contains U, (L)(1 ® 1) which is the entire
module. O

Consider the set B of all x € L that act on the module in (9.5) as a scalar. This set is an
ideal in L. Consider z € B and look at z(1®1). If t ¢ Pthen z(1®1) =2z®1 ¢ K(1®1);
Thus B C P. Then z(1® 1) = AM«)(1 ® 1) and it follows that each z € B acts as the
scalar \(x). So for all y € L and x € B the actions of z and y on the module commute.
Therefore the commutator [y, 2] annihilates the module. This implies A([L, B]) = 0 as we
have seen above. On the other hand:
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Lemma 9.1.7. Let B C P be an ideal in L with \([L, B]) = 0. Then each x € B acts as
multiplication by A(z) on the module in (9.5).

Proof. Denote that module by V' and set A = BN Ker(\). We have [L, B] C A. It follows
that A C P is an ideal in L with A(A) = 0. By Lemma 9.1.6 we get A-V = 0. Set

VA ={veV|zv=\z)vforal z € B}.
Clearly, 1® 1 € V*. Consider v € V* and € L. Then we get for all y € B:
y(xv) = [y, z]v + z(yv) = 0+ A(y)xv
since [y,z] € Aand A-V = 0. Thus V* is a L-submodule of V and it contains 1 ® 1;
hence V* = V. 0

9.2 Polarizations

The further development requires the notion of a polarization. We will do that in a general
setup; so let g be a Lie algebra (not necessarily supersolvable) defined over an arbitrary
field F. If A € g*, then a Lie subalgebra p of g is called a polarization of A, if p is a
maximal totally isotropic subspace with respect to the alternating form by, on g given by
ba(z,y) = A([z,y]) for z,y € g. As a consequence we have

dimpg + dimpeg(A)
2

dimpp = (9.6)
where ¢g(A) = {z € g | A([z,y]) = 0 for all y € g} denotes the stabilizer of A in g. Note that
cg(A) is the radical of the skew-symmetric bilinear form (x,y) — A([z,y]) on g; hence
cg(A) is a Lie p—subalgebra of g and its codimension in g is even.

Let h C g be a Lie subalgebra of g of codimension 1. Set A" = Xy and define ¢y(\') =
{x e | N([z,y]) =0forally € h}. We are now in one of the two following cases:

1) We have ¢g(A) C bh. Then cg()) is a subspace of codimension 1 in ¢y(N'). Each
polarization p C b of ) is also a polarization of \.

2) We have ¢g(A) ¢ h. Then c5(N) = ¢g(A) Nh. If p C b is a polarization of X', then we
can find a maximal totally isotropic subspace for by that contains p as a subspace of
codimension 1.

This is proved in [5, 1.12.2|. The general characteristic zero assumption of that book is
not needed here.

Finally: Suppose that g is a Lie p—algebra and that p is a polarization of some A € g*.
Then p is a Lie p-subalgebra of g. [Let = € p. We have for all y € p:

By, y) = A((adz")(y)) = A((ad 2)"(y)) = Bu(a, (ad )" (y)) = 0
since (adz)P~!(y) € p. Therefore the subspace p + Kxz[P) of g is totally isotropic. By
maximality, z[? € p|.
9.3 Vergne Polarization

Let us again consider supersolvable restricted Lie algebras over K (K is an algebraically
closed field of characteristic p > 0): We assume that L is supersolvable Lie algebra such
that L is a direct sum of a torus T and a p—nilpotent ideal U in L.
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Definition 9.3.1. Let x € L* and A € L*. A polarization P of )\ is said to be compatible
with x if M(x)? — X(zP!) = x(z)? for all z € P.

Lemma 9.3.2. Let x € L*. If P is a polarization of A € L* which is compatible with
X, then all irreducible U, (P)-modules are one dimensional and the number isomorphism

classes of irreducible Uy (P)-modules is p! where 1 is the dimension of any mazimal torus
n P.

Proof. 1t follows from Lemma 9.1.1 that P, as a restricted Lie subalgebra of L, is a direct
sum of a torus and a p—nilpotent ideal in P. If there exists a one dimensional (and hence
irreducible) U, (P)-module we can apply Lemma 9.1.3 and Remark 9.1.4 to complete the
proof. But A € L* defines a one dimensional P—module K, where each z € P acts
as multiplication with A(z) [note that A([P, P]) = 0 since P is a polarization|. Since
AMz)? — A(zP)) = x(z)P for all z € P we have that K is an irreducible U, (P)-module. [

Let A € L* and consider now a chain of ideals as in (9.1). Set for all ¢
s ={x e L | \z,y]) =0 Vy e L;}. (9.7)

Then p) = 5{‘ 4+ -+ 52 is a polarization of A with PaL, = AN L; [here we define
Py, = s) + -+ +52]. See [5, 1.12.3 and 1.12.10]. We shall call a polarization constructed

thus a Vergne polarization of A with respect to the chain (9.1). It also follows that p AL, is
a polarization of Ar,.

Remark 9.3.3. The annihilator {z € g : xz.v = 0} of an element v € V of a restricted
g-module V is a p—subalgebra of g: It is easy to see that the annihilator is a subspace of
g. lf z.v =0 = y.v, then
[z,y].v =z.(yv) —y.(z.v) =0
and
2Py = 2P v =0.

Hence {z € g : x.v =0} is a p—subalgebra of g.

In the following, we assume that all L; are p—ideals.
Lemma 9.3.4.

a) All 55‘ with 1 <1 <n are Lie p—subalgebras of L.

b) If 55‘ ¢ Li—1 for some 1 < i < n, then there exists a nonzero x € 55‘ such that
5?‘ =Kz (52)‘ N Lz’—l)-

Proof. a) Apply Remark 9.3.3 with g := L;, V := L} and v := \|,.

For the proof of b) let = € s} but # ¢ L; ;. I claim that s} = Kz @ (52 N L;_1). So
let y € 5?: If y € L;_1, then clearly y € 55‘ NLi—y. Ify ¢ L;_q, then there exists a € K
such that y —ax € L;_1 since L;/L;_1 is one-dimensional. Moreover, y — ax € 5?‘ and the
proof is then completed. [l

Proposition 9.3.5. Let A\ € L*, let p) be the Vergne polarization of A constructed via
(9.1). Let x € L* such that py is compatible with x; i.e., x(z)? = Mz)? — N«!?)) for all
z € px. Then Uy (L) @y, (py) K is an irreducible L-module.
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Proof. The condition on x ensures that K is a U, (p))-module and thus we can construct
the module Uy (L) ®y, (p,) Kx. We will use induction on dimg L. If ¢f(A) = L we have
p) = L and so the induced module has dimension 1. In that case the claim is trivial [this
takes care of dimg L < 1]. Assume from now on that ¢z (\) # L. In that case there exists
j > 0 such that L; ¢ ¢z (A) and L1 C cr(A). Set

H={zeL|X|zy])=0forally e L;}. (x)

It follows from Remark 9.3.3 that H is a Lie p-subalgebra of L. Choose yg € L; with
L; = Kyo ® Lj_1 and observe that

H ={z e L|A[z,yo]) =0}

[since L;j_1 C ¢z () by assumption|. Thus H is the kernel of the nonzero linear form on L
given by x — A([x, yo]) and hence H has codimension 1 in L. The chain

O=LyNnHCLiNHCLyNHC---CL,NH=H (%x)

is a chain as in (9.1). But there has to occur one repetition in (xx). We still can use it to
construct a Vergne polarization of p ANu of A\ as

A A A
Prg =51 +8" sy
where
5;)‘ ={xeL,NH|X[z,y]) =0forally € LN H}.
I claim that py, = px. Our choice of j says for all i < j that L; C c¢1()), hence s} =1;

and L; C H, which then implies that 55‘ =L, = 5g>‘. On the other hand, for ¢ > j

any x € 5 satisfies A([z,%]) = 0 for all y € L;. We have in particular ([, yo]) = 0 since
yo € Lj C L;. We get x € H and therefore x € 5;)‘. Hence 57 C 5;)‘. This implies px C pa ;-
Since ¢, (A) C H, any polarization of Ay is also a polarization of A [see statement 1) in
Section 9.2]. Apply this to PAy and get that p) and Py are both polarizations of A.
Hence they have the same dimension. We get p) = p Ay 88 claimed. That claim implies
that py is a polarization of A|z. Since dimg H < dimg L we may apply induction and get
that
V = Uy(H) ®u,(py) K

is an irreducible H—module. If we apply Lemma 9.1.7 to H instead of L and to the ideal
B = L; we see that each = € L; acts as scalar multiplication by A(z) on V' [note that (x)
says that A([H, B]) = 0 and that L; C py]. We have by transitivity of induction that

Uy (L) ®u, (py) K = Uy (L) @u, () V-

If the right hand side is not irreducible it follows from Lemma 9.1.5 that we can extend
V to a Uy(L)-module. Since any = € L; acts on V as scalar multiplication by A(z), it
commutes then with the action of each y € L. So [y,z] acts as 0 on V. But [y,z]| € Lj,
hence acts as A([y, z]) on V. We get thus A\([y,z]) = 0 for all y € L and all = € Lj, hence
Lj C ¢r(N) — a contradiction to the choice of Lj. O

Let A € L* and let x € L* such that the Vergne polarization py of A is compatible with
x. If P is any polarization of A, then A([P,P]) = 0 and so A defines a one-dimensional
P-module K. Since P is a polarization of A\ we have
dimKL + dichL()\)
2
where ¢, (A) = {z € L | A([z,y]) =0 Vy € L} denotes the stabiliser of \ in L.

dimg P = dipr)\ =
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Lemma 9.3.6. Let A € L* and let x € L* such that py is compatible with x. If P is any
polarization of X compatible with x, then Ky is a Uy (P)-module and the induced module

Uy (L) ®u, (p) K (9.8)
is an irreducible U, (L)-module.

Proof. The first claim is obvious. For irreducibility of the induced module, apply Lemma
9.1.3, 9.3.5 and find that all irreducible U, (L)-modules have dimension

dimpg L—dim g py

p
But this is the dimension of the module in (9.8) since dimx P = dimgp,. O

Lemma 9.3.7. Let A € L* and let x € L* such that py is compatible with x. If P is any
polarization of A compatible with x, then the number of isomorphism classes of irreducible
Uy (L)-modules is p', where 1 is the dimension of any mazimal torus in P. In particular, if
P is unipotent then the number of isomorphism classes of irreducible U, (L)-modules is 1.

Proof. We shall use a result by Feldvoss in [6, Theorem 5]. The result is proved for
supersolvable Lie algebras such that [L, L] is pnilpotent. For such type of Lie algebras
we have that every irreducible restricted L-module is one-dimensional. Feldvoss mentions
that in the first two lines of the proof and the rest of the proof can be applied to any
supersolvable Lie algebra. Thus: If we know that every irreducible restricted L-module is
one—dimensional we can use the result in [6, Theorem 5|. But this is proved in Lemma 9.1.2
(for L with L =T @ U which is our assumption, 7" is a torus and U is a p-nilpotent ideal
in L). The result in [6, Theorem 5] says then: If S is any irreducible module isomorphic
to some induced module
Uy (L) Q. (P) K,

where P is a polarization of some p € L* such that pu(z)? — p(zl?)) = y(z)P for all z € P,
then the number of isomorphism classes of irreducible U, (L)-modules is p! where [ is the
dimension of any maximal torus in P. But we may apply this to u = A\ and P =P and
let S be the induced module in (9.8). O

Remark 9.3.8. Let x € L* and suppose that A € L* such that p) is compatible with x.
If P is any polarization of A compatible with x, then the dimension /1 of any maximal
torus in py and the dimension Iy of any maximal torus in P are equal. Indeed, we apply
Lemma 9.3.7 to p) and P and get that the number of isomorphism classes of irreducible
Uy (L)-modules is p't and p'2; hence I; = ly. In particular, we cannot have p, unipotent
and P non unipotent or P unipotent and py non unipotent.

Lemma 9.3.9. Let x € L*, let \; € L} such that X\j(2)P — \;(x!P)) = x ()P for all x € py,.
Then there exists an extension A € L* such that the Vergne polarization py of A constructed
via (9.1) is compatible with x.

Proof. We can assume that L; # L (otherwise let A = \;). We use induction on dimg L. If
dimg L = 1 we necessarily have py = L. If x is a basis for L then there exists a € K such
that zl?) = az. Since K is algebraically closed we can find b € K such that b” —ab = x(z)P.
We define A € L* by A(x) = b.

Suppose now that dimg L > 1. Denote the last but one term in (9.1) by L' = L,,_1.
So we have dimyg L’ = dimgL — 1 and we can apply induction to L', working again with
the chain (9.1), just with the last term removed. So there is by induction an extension

42



N € (L")* of \; such that the Vergne polarization py of A with respect to that chain
satisfies N (z)? — N (zP!) = x(z)P for all z € py. We want to construct \ as an extension
of A (and so of \;). Since [L, L] C L' the Vergne polarization of any extension A of A’ to
L is equal to p) = py + s where

s={z € L|N(xL]) =0}

We have now two possibilities: If py = py/, then we take an arbitrary extension of \’ to L,
and the claim holds.

Assume now the other possibility holds, i.e., that py # py. Then s & py/, equivalently,
s ¢ L. So there exists y € L with y ¢ L' and y € py. We have then L = Ky ® L' and p) =
Ky ®py. We can find linear form A € L* such that A, = A" and A(y)? — Ay = x(y)P.

[We can write yP! = ay + 3 with a € K and 3/ € L'. Then A(y) can be chosen as any
element in K with A(y)? — aA(y) — N(v') = x(y)P.] Now p, is the Vergne polarization of
A with respect to our chain. We have to show that A(z)? — A(zP)) = y(z)? for all z € py,.
We can write 2 = by 4 z with b € K and z € py. Note that (by + 2)Pl — (by)P) — 2Pl is a
linear combination of terms

[33‘1, [33‘2,. ey [l‘p_l,$p] A H

where each z; is either by or z. Now each of these terms is in [py,py]. So they are all in
the kernel of A, since p) is a polarization of \. Our assumptions of A’ and the choice of

Ay) give:
)\(x[p]) - )\((by)[p])+)\(z[p])

= WPA(y)P — bPx(y)P + N (7).
Therefore we obtain:

AP = Mzll) = BPAY)? + A(2)P = AP + P x(y)? — N (2F)

= NP = NP + 0 x(y)P = x(2)P + x(by)P = x(2)?.
The proof is completed. [l

Proposition 9.3.10. Let x € L*, let E be an irreducible U, (L)-module. Then there exists
a linear form \ € L* such that the Vergne polarization py of A\ constructed via (9.1) is
compatible with x and E ~ U, (L) ®u (py) K-

Proof. There exists by Lemma 9.3.9 a linear form A € L* such that the Vergne polarization
constructed via (9.1) satisfies A(z)? — A(z[P)) = x ()P for all z € py. Proposition 9.3.5 says
that the L-module E' = U, (L) ®yp, (p,) K is irreducible. By Lemma 9.1.3 there exists
p € L* with u(hPl) = p(n)? for all h € T and p(U) = 0 such that £ ~ F' ® K,. We
get then E' ~ Uy (L) ®yp, (p,) Karpu- Clearly, py is also the Vergne polarization of A + p
constructed via (9.1) since p vanishes on U and hence on [L, L]. So the claim follows. O

9.4 A supersolvable subalgebra of W

Recall the ordering on page 13. In this section we consider the subspace Wyio. It is a Lie
subalgebra of W [see Lemma 3.1.1] of codimension 3 and can be written as a direct sum
of a torus Kegis @ Kejor and a pnilpotent ideal W11 in Wyi2. In fact we have:
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Lemma 9.4.1. The subspace Wy12 is a supersolvable restricted Lie algebra.

Proof. First notice, that each W, with (7,7,k) > (0,1,2) is an ideal in W12 and form a
chain
Wo12 D Wior D Woir D Wag2 D -+ D W1 p-1,1) 20 (9.9)

such that dimg W,/ Wirjny = 1, where (7, j', k') is a successor for (7,7,k). Indeed it is
clear that Wi, /Wi i is spanned by the coset of e;j,. For the ideal property, i.e., for

[WOlg,VVijk] C Wijk, one has to use the equations (3.1a), (3.1b), (3.1c), (3.1d) and the

ordering of indices. Furthermore W12 can be written as T'® U, where T' = Kegio ® Keqp1
is a torus and U = Wyy1 is a p-ideal that is unipotent. O

All Vergne polarizations of linear forms on Wy1o are constructed with respect to the
chain
Woia D Wiot D Woi1 D Waoga D -+- D Wp—l,p—l,l D 0. (9.10)

Let A € Wy;5. The Vergne polarization of A with respect to the chain above is defined as
A A A A
Px=58012 5101+ T 5 1p-12FSp—1p-1.1 (9.11)

where
5;\]-]C = {l‘ € Wijk’ | )\([ZL‘,y]) =0 forally € Wuk} (912)

Remark 9.4.2. Assume that » > 1 and A(W>,) = 0. Set s = [r/2]. So sis r/2 if r is
even and (r 4 1)/2 if r is odd. It follows that W, C py. This follows by observing that
Wss = 5§‘+1,072. Indeed, since W1, 02 = W>; (recall the ordering), and AN([Wsg, W>4]) C
A(W>25) C AM(W>,) = 0 the claim follows.

Lemma 9.4.3. Let A € W, such that py is non unipotent. Then py is a direct sum of
a torus and a p-nilpotent ideal in px. If Ay, # 0 there exists a nonzero toral element
h € py such that py = Kh ® py N Wo11 and )\([h,WOH]) = 0.

Proof. Let A\ € W{j;5 such that py non unipotent. It follows directly from Lemma 9.1.1
that py, as a Lie p—subalgebra of Wyjs, can be written as a direct sum of a torus and a
p—nilpotent ideal py N Wy1p in py. If )‘\Won = 0 it is clear that p) = Wpyi2 and so written
as a direct sum of a torus Kegis ® Kejg1 and a p—nilpotent ideal Wy11 in Woqo.

Suppose that Ay, # 0. Since py is non unipotent we have 5701 Z Woi1 or 5319 ¢
Woi1. Moreover, 7y, C Woir or 8315 C 595;- Indeed, let (ijk) be the maximal triple
[with respect to the ordering on page 13] such that A(e;;x) # 0. If k& = 1 we have
[Won,ei]’k] C Kei_17j+1,1 D W2i+j such that )\([Won,eijk]) =0 [recall the ordering]. If
k = 2 then [Woi1,eii] C Keijji @ Kej—1j4+1,2 ® Wsit; and so A([Woit,eijx)) = 0. Hence
M [Wort, ei5k]) = 0.

Suppose that e1g1 +2z € 5{‘01 for some z € Wy11. From the relations A([eio1 + 2, €;5%)) = 0
and A([z, Wiji]) =0we get i =1if k =1and i =0 if kK = 2. Next, consider aegi2 +beio1 +
z € 5812 for some z € Wpyi; and obtain from the relation A([aegi2 + beigr + 2, €5%)) = 0
that aj +0(i —1) =0if k =1and a(j — 1) +bi = 0if K = 2. Since (¢,5,k) = (0,1,1)
we conclude that @ = 0. This implies that 53,5 C §7; if 539; ¢ Wo11. Now apply Lemma
9.3.4.b to find nonzero element h € sj, U 53y, such that 57, = Kh @ s7y; N W1 or
5019 = Kh @ s)5 N Wigr. By Lemma 9.3.4.a and Lemma 9.1.1 we may assume that h
is toral. It follows that p) = Kh @ py N Wyy1 for some nonzero toral element h € py as
required. Finally, A([h, Wo11]) = 0 since h € 5315 U §70;- O
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Suppose that py is non unipotent and let 0 # h € py be a toral element. There exists
g € Aut(W) such that g(h) € Kegio @ Keipr (see [4, Thm.1]). The next lemma shows
that the GLo(K)—part of g is a lower triangular matrix; in particular, g(Woi2) = Wo12 and
g(Wo11) = Wohi1. Each g € Aut(W) can be written as g = g1 o g2, where g1 € GLy(K)
and g2 € Aut*(W). The GLo(K)-part of g will be defined as ¢g;. This is well defined since
Aut(W) is a semidirect product of GLo(K) and Aut* (V).

Lemma 9.4.4. Let 0 # h € Wyio with WPV = h. Then there exists g € Aut(W) such that
g(h) € Kegi2 ® Keyor and g(Woi2) = Woiz and g(Wor1) = Wori.

Proof. Let h = aegi2 + beior + cegi1 + v where v € Wsq. If there exists a lower triangular
matrix g with g(h) € Kegra® Kejg1+Ws1 we are done. Indeed, the proof of [4, Thm.1] says
that there exists ¢ € Aut*(W) such that (¢’ o g)(h) € Kepio @ Keipr. Now set g := ¢’ og.
Otherwise, let g be an automorphism on W such that g(h) € Keg12® Kejp1. There are two
possibilities for the GLo(K)—part g1 of g: Either g = Do®4 or g1 = ®;000Dody, where
D is a diagonal matrix and ®;,®)| are lower triangular matrices with 1 at the diagonal
and O is the matrix defined in Appendix A.4. We may assume that g = ®} c© o Do ®;
(since D and ®; preserves Wyi2). Moreover, assume that the coefficient of eg11 in Do®(h)
is nonzero |otherwise we are in the situation discussed in the beginning of the proof|. If
the coefficient of g1 in D o ®1(h) is nonzero then, by the relations in Appendix A.2, the
coefficient of ejgy in ®1(h) is nonzero — contradiction. O

Lemma 9.4.5. Suppose that A\ € W and let g € Aut(W) with g(Woi12) = Woi12. Then
Pro =g 1 (pA). In particular, py ¢ Woi1 if and only if pre & Wo11.

Proof. Since g preserves W2, the GLo(K) part of g must be a diagonal matrix composed

with some lower triangular matrix with 1 at the diagonal. For such a g we have sf‘;k =

g ! (52)‘] k), since g1 (W;jx) = Wijk (recall the ordering on the set of indices of basis elements

and the action of g on basis elements). In order to finish the proof, we just have to use
Sf‘jgk = g_l(ﬁf‘jk) for all (ijk) = (012) with (9.11): It follows that pxs = g~'(px). The proof
is completed. [l

Lemma 9.4.6. Assume that A € Wy,. Then px ¢ Woir if and only if there exists
g € Aut(W) with g(Woi12) = Woi such that aegi2 + beio1 € prs for a,b € F), with a # 0 or
b 7'5 0 and )\g([aemg + beio1, W()lg]) =0.

Proof. Apply Lemma 9.4.3 and find nonzero h € py with APl = h and A([h, Wo11]) = 0.
Let g~! be an automorphism on W preserving Woio such that g=1(h) € Kega @ Kejor
(see Lemma 9.4.4). Since g(Wo11) = W1 also, we have A ([g'(h), Wo11]) = 0. The
fact that g~!(h) € Kegia @ Kejo; implies that Ag([g_l(h), ng]) = 0, which implies that
g Y(h) € pys. The other implication follows immediately from Lemma 9.4.5. Since g~!
is a restricted automorphism, we have aega + beigr = g~ (h) = g~ (hlP)) = g~ 1(R)IP) =
aPeg1a + bPeigr, which implies that a,b € Fy. [l

Remark 9.4.7. Return to the case where y € W* is a p—character and let g € Aut(W)
with g(Woi2) = Wora. If A € W, satisfies that A\(2)P — A(2P)) = x(2)P for all z € py, it
follows from Lemma 9.4.5 that A9 (z)? — M (zl?)) = x9(z)? for all z € pys. It can also be
formulated as (Definition 9.3.1): If p is compatible with x then p)s is compatible with x9.
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10 Compatible polarizations

Let x € W* be a character of height r > 1. Note that we have defined the stabilizer of y
in Ws, as st(x, Ws,) ={x e W | x([z,y]) =0Vy € W>,}.
10.1 Existence

In the next two sections we will prove:

Theorem 10.1.1. There exists a linear form X\ € W5 such that the Vergne polarization
px of A constructed via (9.10) is compatible with x and such that

a) px =Py if py is non unipotent.
b) px = py if py is unipotent and r < p or st(x, W>,) = W>q or x([eo11, Wr—1]) # 0.

The existence of A € Wy, such that the Vergne polarization py of X is compatible
with x (i.e., that A\(z)? — M(zP!) = x(z)? for all z € p,) follows from the construction in
Lemma 9.3.9. The proof of Theorem 10.1.1 will be divided into two parts. In Section 10.2
we consider x such that p, is non unipotent and Section 10.3 deals with x such that p, is
unipotent. We will several times use the construction given in the proof of Lemma 9.3.9.

For A € Wy, and x € W, it will be convenient to define

AWag, = Aagy and X, = Xapy for any triple (a8v) = (012).
For any (afy) = (012) we define p,_, with respect to the chain
Wapy D Wargy Do CWp_1p-11 2D 0.
where (o/3'%') is the successor for (a/3v) with respect to the ordering < on page 13.
Lemma 10.1.2. We can choose A € W5 such that py is compatible with x and
a) If r > p then A\, = Xjws,-
b) If r < p then AWsy = X[Wa, -

Proof. a) Set A" := xw,. Then we have X'(z)? — N (zlPl) = x(x)P for all 2 € py since
2Pl = 0 for any z € Ws9. Now, by Lemma 9.3.9, let A € W, be an extension of X such
that p, is compatible with x.

b) In this case we let A" := x|y, ,. Note \'(z)P — N(zlPl) = x(z)? for all = € py since
2Pl € W, for any © € W>; and hence X (zPl) = y(2P)) = 0 (r < p). Now, by Lemma
9.3.9, let A € W5 be an extension of X’ such that py is compatible with x. O

10.2 The non unipotent case

Assume that the Vergne polarization p, of x is non unipotent. Then there exists a nonzero
toral element h such that p,, = Kh & p, N Woi1 and x([h, Wo11]) = 0 [see Lemma 9.4.3|.
In order to show that py = p, we may assume that h € Kegio ® Kejor. Indeed, use
Lemma 9.4.4 to find g € Aut(W) with g(Wy12) = Wy such that g(h) € Kepio ® Keqor-
Therefore, by Lemma 9.4.5, we have g(h) € p ,-1. If we can find N e Wio such that

p o1 is a polarization of A" compatible with x9 ' such that Pyo-1 =P o1 then, since
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Pyt = g(px) and Pt = g(py), we have py = p, and, by Remark 9.4.7, also that p) is

compatible with x |here A is the linear form ()\971)9]. So assume h = aegi2 + beipgr.

The proof of Theorem 10.1.1.a will be a consequence of several lemmas. Define (i, j, k)
as the maximal index with respect to the ordering < on page 13 such that x(e;;r) # 0. The
assumption r > 1 implies that 7 + j > 1. Define, for 0 < a,8 <pand v = 1,2, angy € K
via the formula [h,eqsy] = aagyeapy- It is easy to check, by (3.1a),(3.1b),(3.1c),(3.1d),
that

a=b (afy)=(011),
2b—a (afy) = (202),
b (afy) = (112),
Gafy = 4 @ (afy) = (022),
b (afy) = (201),
a (afy) = (111),
2a — b (afy) = (021).

Lemma 10.2.1. Suppose that agz1 = 0. Set X := X021 = X|wyy,- Then A(z)?P — Azl =
x ()P for all x € py.

Proof. We can assume that r > p [see Lemma 10.1.2.b]. This implies in particular that
p > 3 since r < 2p — 3 also. Set A" := xy,. Then N(z)? — N(zlPl) = y(x)P for all
z € py since 2Pl = 0 for any 2 € Wsa. Let A € Wy, be an extension of AW, such that

Az)P = \(zP)) = x ()P for all z € py. See Lemma 9.3.9. The claim says that we can choose
A such that A(eg21) = x(€g21). This will follow if we can prove that s8y; C W>2. Indeed,
for any extension A we have 5%, = 53y, [since x and X are equal on W5 by assumption.
Therefore the construction in the proof of Lemma 9.3.9 shows that we can choose A(eg21)
arbitrarily.

If there exists y € W,._y such that x([eo21,y]) # 0, then we can choose A(ep1) arbitrar-
ily. Indeed, it follows that x([W>2,y]) C x(W>,) = 0 such that s§; C W>a.

Let (i,7,k) be the maximal index such that x(e;jx) # 0 [note that i + j = r|. If
k=2 and ¢ < p—1 we have [e21, €i+1,r—i—22] = —2€i41,—i—11 + (i + 1)€; ;2 such that
X([eo21, €it1,r—i—2,2]) # 0. So we can assume that k =2 and i =p — 1 or k = 1 [otherwise
we can choose A(eg21) = x(ep21)]- If k=1 and i < p — 1 we have x([eo21, €it1,r—i—2.1]) =
(i + 1)x(€ir—in1) # 0.

Thus: In order to prove that we can choose A with A(ega1) = x(eg21) we can assume
that ¢ = p — 1. Next, use that 0 # h = aeg12 + beig1 € p, for some a,b € F,. Since
Wy_1 C py, by Remark 9.4.2, and x([py,py]) = 0 we have in particular x([h, W;,_1]) = 0.
We then have

a(r+1)—2b=0 ifk=1,

h, ep—1r+1-pk]) = 0=
X([h ep—1,r+1-p.1]) {ar—bzo if k= 2.

Since ag2;1 = 0 we also have 2a — b = 0. Putting all this together we get that

r=p+3 ifk=1,
r=p+2 ifk=2

Suppose that §35; ¢ W>2. Then there exists y € Wogy such that 8y, = Ky®siy, N1 W>o
and A(y) is defined via

A)? = Ay = x(y)*. (10.1)
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Write y = eg21 + 22 + 23 with 2o € Wy and 23 € W>3. Now ylrl — (eg21 + 22)[1”} - z:[,)p] is a
linear combination of terms

(21, [z2, .., [Tp—1,2p] .. ] (%)

where each z; is either ega; + 22 or z3. If z3 appears s times in (*) then

[z1,[z2, ..., [Tp—1,2p] ... ]] € Wspias.

We may assume that x1 = 23 in order to prove that A vanishes on terms in (). Indeed, if
1 is ego1 + 2o note that

)\([6021 + 29 + 23, [xQ, cey [:L’p_l,:L’p] . ]]) =0
since epo1 + 22 + 23 € 539, Therefore

Aeo21 + 22, [z2, .., [Tp—1,2p] ... ]]) = —=A([23, [T2, ..., [Tp—1,2p] . . . ]]).

That is; we may assume that x; = z3. This implies that s > 1 [since we can assume
xp # xp—1| such that all terms in (x) belong to W>,14. Hence A (which is equal to x on

Wso and so has height r also) vanishes on all terms in () since r < p 4 3. Since zgp l=0
we therefore obtain

)\(y[p}) — )\((6021 + 22)[10})_

Now (eg21 + 22)[p] — e([gl — zép ] is a linear combination of terms

[z1, (T2, ..., [Tp—1,2p] ... )] (5%)

where each x; is either ego; or zp. If 25 appears s > 0 (we can assume that x, # z,_1)
times in () then
[z1,[z2, ..., [Tp—1,2p] .. ]] € Wpys.

We want to prove that A vanishes on all terms as in (xx). If so; then, since zgp [

eggl = 0, we have A\(ylP) = 0. Hence, by (10.1), we have A(y)? = x(y)P. This implies that
AMy) = x(y) and therefore A(ep21) = X(eo21) [recall our assumption Ay, = Xjw.,|- If
s > 2 we see that A vanishes on all terms in (xx) since » < p + 3. So we need to handle
the cases where s =1 or s = 2.

First, write

3 3
2 = E aey3—t1 + g bier3—t2 € Wa
t=0 t=0

for some a;, by € K.
Note that ad(eg21)(22) € Z?:o Keiqt1 + E?:o Kety—to from (1.2a) and (1.2b). It
now follows that

(ad ean)*(22) € YioKers—t1+ Y —oKers o
(ad eg21)?(22) € Sy_oKero-t,1 + Keogo
(ad eg21)*(22) € Keor,

(ad6021)5(Z2) = 0.
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If s = 1 we can assume that x, = 23 such that (xx) is equal to ad? lego1(22). For
p > 5 this implies that ad? leg;(z2) = 0. If p = 5 we have adego; (22) € Kegy; which is
zero also (we have defined e,s; = a:{xga%t for 0 <r,s < pandt=1,2 and equal to zero
otherwise. If p =5 then eg7; = 0 since 7 > 5). So A vanishes on all terms in (xx*) if s = 1.

Suppose that s = 2. If K = 2 we have r = p + 2 and hence A vanishes on all
terms in (x*). So assume that & = 1 and then r = p+ 3. If 21 = egg; then y :=
(22, [23, ..., [Tp—1,2p] ... ]] € Wpi1 = W,_2. In that case we can assume that (xx) is zero.
Otherwise we have x([ep21,y]) # 0 and in that case we can choose A(eg21) arbitrarily [re-
call the arguments in the beginning of the proof|. Therefore we only need to show that A
vanishes on all terms in () with 1 = 2. We can also assume that x,, = 2. This implies
that

(29, [23, -, [Tp_1, 7] .. ]] = adP2(ega1 ) (22).
If p > 5 then ad? 2(eg21)(22) = 0. If p = 5 we have ad®(egg;)(22) = 0 since egg; =

eos2 = €151 = 0 for p = 5. So A vanishes on all terms in (x%) if s = 2. The proof is
completed. O

Lemma 10.2.2. There exists linear form A € W5 such that py is compatible with x and:
CL) [f an02 7& 0 then )\\Wzl = X|W217
b) If azo2 = 0 then Ai12 = X112

Proof. We may assume that r > p and that \y., = xjw., by Lemma 10.1.2. Since
W,_1 C py and 0 # h = aeg12 + bejor € py by assumption, we then have x([h, W,_1]) = 0.
It follows that (remember that (i,j, k) denotes the maximal index with respect to the
ordering < on page 13 such that x(e;jx) # 0):

(b, i) = 0= {C” T U=0 e

a(j—1)+bi if k= 2.
Since r = 14+ j > p we have ¢ > 1 and j > 1 and therefore ¢ # 0 and b # 0. We
conclude that aqg, # 0 for all (112) < (afy) =< (111) [use the relations on page 47 with
a # 0 # b|. Therefore x([h,easy]) = aapyx(€asy) = 0 implies that x(e.gy) = 0 for
(112) = (afy) = (111). If agpe # 0 we get also x(ez02) = 0 and if age; # 0 we get
X(ep21) = 0.

Now let (202) < (afy) = (021) and (o/f7') be the successor of (af7y) with respect
to the ordering < on page 13. We will only consider (afvy) = (202) in the case where
agp2 # 0 and we will only consider (a3vy) = (021) if ager # 0. If age; = 0 it follows
from Lemma 10.2.1 that X = xq2; satisfies that X (z)? — X (zP)) = x(2)P for all z € py.
So for the successor (o/('7’) we may assume, by induction, that Ayg = xap and
Ao g1 (2)P = A groy (2P1) = X1 g1 ()P for all @ € Py, There are now two possibilities:

1) If 52%67 C 52‘7&‘,3;7' we can choose Aug-(€qsy) arbitrarily. In that case set
Aagy(€apy) = x(€apy)-
2) Suppose that there exists y := eqgy — y' € Wag, with ¢/ € Wy, such that
S = Ky s n W gy

aBy afy
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The construction given in the proof of Lemma 9.3.9 shows that we shall define A,z (y)
from the relation

Xagy ()P — Aagy () = x(v)P.

Since x(eapy) = 0 and Aop,(y') = x(y') we get that

Aoy (eaﬁw)p = Nafy (y[p] )-

If Mg, (yP1) = 0 we have Aog(€asy) = 0 = X(eas,) as required. So assume that
Aagy (Y1) # 0 and hence Ay, (€ap,) # 0. Consider the Lie p-subalgebra of Wiz
given by

W' =Kh® Waﬁ,\/.

Any extension of Ay, to a character X € W’ satisfies that py/ is unipotent. Here py/
is constructed via the chain

W'D Wagy D Wargy Do D Wp_1p-11 D 0.

O/\therwise there exists z € Wy, such that X' ([h+ 2, W’]) = 0. Since y = eqpy — ¥y’ €
5(1%{7 we get
0 = N([hy]) +XN([z9])

= N([h,eapy]) = N[0 y']) + N[z, 9])
= aam)\(ea@y) — X([ha yl]) + X([zv y])

= aapyA(€apy)-
Since A(eqgy) # 0 by assumption and aap, # 0 this is impossible [we only consider
(aBy) = (202) if agge # 0]. That is; we have py C Wy, and can then choose X' (h)
arbitrarily. Suppose that X (h)? — XN (h[P)) = x(h)P.
Next, consider & € py N Wy I claim that [h,x] € py "Wy also. Indeed, since
W Byt = X/ B by assumption we have pyr N Wargryy = py N Wygyr. Now use that
h € p, to get [h,x] € Py N Wargyr = px N Wy Tt follows that

P = Kh@p)\/ M Wa’ﬁ’ﬂ/

is a Lie subalgebra of W’. In fact, it is restricted since APl = h and py N Wy By 18
restricted. Since Al 5., = Xagy and x([h, Woi2]) = 0 we then get:

N([P,P]) € X([lpx N Wargryr, px 0 Wargrr]) + N ([, oy N Wargy]) = 040 = 0.

Moreover, dimg P = dimgpy such that P is actually a polarization of \'. We also
have N (z)? — N (zPl) = x(z)? for all z € P [it is true for all basis elements!|. So
P is a non unipotent polarization of A’ compatible with y and p,/ is a unipotent
polarization of \" compatible with x. Now get a contradiction via Remark 9.3.8.

So if agee # 0 then N := x ., satisfies that \'(x)P — N (z[P)) = x ()P for all = € py. Now,
by Lemma 9.3.9, let A € W5 be an extension of A" such that py is compatible with x. If
age2 = 0 then X := y112 satisfies that X (z)P — )\’(a:[p]) = x(x)P for all x € py and then, by
Lemma 9.3.9, let A € W}, be an extension of A’ such that py is compatible with y. The
proof is completed. [l
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Proof of Theorem 10.1.1 for non unipotent p,: It follows from Lemma 10.2.2 that
we can choose A € Wi, such that py is compatible with x and Ay, = xjw., if aze2 # 0
or 1 <r <pand A2 = x112 if agge = 0 and r > p. If 56‘11 C 5%02, then we can choose
A(ep11) arbitrarily; in this case we choose A(egp11) = 0.

Note that we always have

A .
5011 = 5511 since [W()H, WOH] C WHQ.

Therefore p, N Wo11 = px N Wor1. If py is non unipotent, then Lemma 9.4.3 implies that
there exists a nonzero toral element h' € py such that py = Kh' & p, N Woiq. If py is
unipotent, then py = p, N Wo1s.

We have )\([h, Wzl]) =0: If a202 75 0, then )\([h, Wzl]) = X([h, Wzl]) =0. If aL02 — 0,
then )\([h, 6202]) = )\(0) =0 and )\([h, WllQ]) =0.

If now A([h,e011]) = 0, then A([h, Woi12]) = 0 since [h, eg12] = 0 = [h,e101]. It then
follows that h € 5812 C py and so we have py = Kh @ p, N Woi1 = py.

So assume that 0 # A([h,e011]) = aoiiA(ep11). It follows that A(egr1) # 0, hence
511 ¢ 5909 by our choice.

Consider first the case that py is non unipotent. There exists y = eg11 — 3 € 5811 for
some y' € W>;. From Lemma 9.4.3 there exists a nonzero toral element h’ € py such that
AW, Wo11]) = 0. Write b/ = d’eg12 + b'e1p1 + 2’ for some 2z’ € Wy and o', b’ € K. Note
that o’ # 0 or b’ # 0 since h’ is a toral element. Recall the definition of (4,7, k) as the
maximal index with respect to the ordering < defined on page 13 such that x(e;;r) # 0.
Then we have A([2/,e;5]) = 0 = x([#, €ij]) [use the ordering and that 2z’ € Woiy; for
details see the proof of Lemma 9.4.3]. Therefore the relation A([h', e;;]) = 0 implies that

dj+bi—-1) k=1,
d(j—-1)+0bi k=2

Since x([h, €;;x]) = 0 we also have

aj +b(i—1) k=1,
a(j—1)+bi k=2

This shows that if we evaluate the matrix
a b
(%)
<.j > ﬁk:lam1<]f1> if k=2
1 —1 )

we get zero. Since i+ 7 > 1 these vectors are nonzero and therefore the matrix is singular.
In other words, there exists ¢ € K* such that @’ = ca and ' = ¢b. Hence b’ = ch + 2.
Since y = ep11 — ¥ € §);; we get

at

0 = )‘([h,7y])
= cA([h, eon1]) + cA([h, —=y']) + (2, y])

= C)\([h, 6011]) + C)\([h, —y’]) +0.
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If ago2 # 0 we have Ay, = xyw., and hence A([h, —y']) = x([h, —y']) = 0. If a2 = 0
we have [h, —y'] € Wi12 and again, since 112 = x112 in that case, we get A([h, —y']) =
X([h, —=y']) = 0. It follows that A([h,ep11]) = 0 — contradiction.

Consider now the case that py is unipotent. Then the proof of Lemma 9.3.9, shows
that we can take an arbitrary extension of A\gi1 to Woia. Define A(h) via A(h)? — A(hlPl) =
x(h)?. Set P := Kh @ p, N W>1. Note that P C Wy is a Lie subalgebra of p, since
[h,py NWs1] C py N Wy, In fact, it is restricted since hlPl = h and p, N W1 is restricted.
Since py, N W1 = py N W>1 we also have

[Pv P] C [h7 Wzl] + [pAap)\]

and hence ([P, P]) = 0 since A([h, W>1]) = 0 = A([px,pa]) (the statement A([h, W>1]) =0
follows from a remark we made in the beginning of this proof). Finally, dim g P = dimgpy
and therefore P is a polarization of A.

We also have A(x)? — A\(z[P)) = x(x)? for all € P [true for all basis elements!|. So P is
a non unipotent polarization of A compatible with y and py is a unipotent polarization of
A compatible with y. Now get a contradiction by Remark 9.3.8. g

Corollary 10.2.3. If £ € W™ of height r > 1 with p¢ = Kh ® pe N Wo11 for some nonzero

toral element h € Kegia ® Keigr with £([h, Wo11]) = 0. Then £(yP)) = 0 for all y € 53&,
with (afy) = (112). Moreover,

1) If asos # 0 then E(ylP)) = 0 for all y € s5,.
2) If api1 # 0 then &(eo11) = 0.

Proof. 1) Use Lemma 10.2.1, 10.2.2 to find A € W5 with Ay, = &y, and )‘\W21 =
{ws, if azez # 0 such that A(z)? — AMzlPly = £(z)P for all z € py. So for (afBy) = (112)
and (afy) = (202) for agpy # 0 consider y € 5367 =5

Q,

By Then we get

AP — Ay = E(y)r = ) = AyP) =o.

2) This is obvious since £([h, ep11]) = ao11€(e011) = 0 and ap1; # 0 by assumption. O

10.3 The unipotent case

Let x € W* of height » > 1 with unipotent p,. We now prove that there exists a linear
form A € Wy, such that the Vergne polarization of A is compatible with x and unipotent
also.

Let A € W, such that py is compatible with x. We will assume that A(eqgy) = x(€asy)
whenever 53%’57 C 52‘7&%7 where (o/(37') is the successor for (afvy) with respect to the
ordering <. It is possible to construct A in this way such that p is compatible with y. See
the proof of Lemma 9.3.9.

Suppose that py is non unipotent. It follows, by Lemma 9.4.3, that there exists a
nonzero toral element h € py such that py = Kh @ py N W11 and A([h, Wo11]) = 0.
The aim is to prove that p, is non unipotent [and so to get a contradiction|. In order
to prove that we may replace x by any x9 where g is an automorphism on W such that
g(W012) = W012. See Lemma 9.4.5.

Let, by Lemma 9.4.4, g~! be an automorphism on W such that ¢~ '(Wpi2) = Wora
and g~!(h) € Kegi2 ® Keipr. Then apply Lemma 9.4.5 and Remark 9.4.7 to get pyg =
Kg='(h) ® pxe N Worq and M (z)? — N (z[P)) = x9(z)P for all € pyg. Therefore we may
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assume that h € Kega @ Kejgr and A([h, Wo11]) = 0 since g(Wp11) = W11 by Lemma
9.4.4.

By Corollary 10.2.3 it follows that A(yP)) = 0 for all y € s} 5. with (7) = (112) and
(afy) = (202) if agpy # 0. I claim that this implies that A112 = x112 and AWsy = X|W, if
asee # 0. Indeed, let (afBvy) = (112) [or (afBvy) = (202) if agpe # 0] with successor (o/3'7)
for () with respect to the ordering <. We may assume Ay = Xa/g/4 by induction.
Now, for any extension Ayg, of Ayg4» We either have

AaBy c 5>‘a’ﬁ/'y’ Aagy )\a/ﬁl,yl

Sapy CSapy 0T Sapy FSagy

In the first case we have Aog+(€agy) = X(€agy) by our choice. In the second case there
Aoy

exists y € LINE

with y ¢ Wy, and the assumption on A says that

A)? = Ay = x(y)”.

But we have A(yP!) = 0 and hence AaBy = XaBy- S0 A € W, defined in the beginning
of this section satisfies that X112 = x112 and Ay, = xw., if azp2 # 0. Therefore 5()3611 = 5811
since [W0117 WOll] C Wiis.

We have X([h, WZI]) =0: If a02 ?é 0, then X([h, Wzl]) = )\([h, Wzl]) =0. If ag202 = 0,
then x([h, e202]) = x(0) = 0 and x([h, W112]) = 0.

If now x([h,ep11]) = 0, then x([h, Wp12]) = 0 since [h,ep12] = 0 = [h,e101]. It then
follows that h € 5%, C p,, — contradiction.

So assume that 0 # x([h,e011]) = ao11x(eo11). In particular, x(ep11) # 0 # ap11. Since
A([h, e011]) = 0 we then have A(egi1) = 0. So A(eo11) # x(€o11) and hence 53, € 595 by
our choice. Then there exists y = eg11 — ¥’ € 831, = 56‘11 with ' € W>;. It follows that

p)\:Kh@Ky@p)\ﬂW21 and pX:Ky@pXﬂWZL

Set P := Kh ®p, N W>1. Note that P C Wy is a Lie subalgebra of p, since
[h,py NWs1] C py N Wy In fact, it is restricted since hlPl = h and p, N W1 is restricted.
Note that

[P7 P] C [haWZI] + [pX7pX]

such that x ([P, P]) = 0 since x([h, W>1]) =0 = x([py, py]) (the statement x([h, W>1]) =0
follows from a remark we made in the beginning of this proof). Finally, dim g P = dimg¥p,
and therefore P is a polarization of x. Now we can find 7 € W5 such that

T(z)P = x(x)? — X(xm) VaoePUpy.

This formula defines one linear form on p, and one on P. These coincide on p, N P. So
one can find a common extension to Wy12. Now, by Remark 9.3.8, we get a contradiction
if we consider the number of isomorphism classes of irreducible U, (Wp12)-modules: On
one hand we have y(z)P — x(z[P!) = 7(x)? V = € p, such that the number of isomorphism
classes of irreducible U, (Wp12)-modules is 1. On the other hand we have x(z)? — y(zlP) =
7(x)P V & € P for a polarization P of x, where any maximal torus has dimension 1. This
shows that the number of isomorphism classes of irreducible U,(Wp12)—modules is p. We
have a contradiction.

We have thus shown:

Lemma 10.3.1. If p, is unipotent then there exists X € W, such that py is compatible
with x and such that py is unipotent.
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Lemma 10.3.2. If r < p and p, is unipotent then there exists X € W5 such that py is
compatible with x and py = p,.

Proof. If r < p, then there exists by Lemma 10.1.2.b a linear form A € Wiy such that py
is compatible with x and Ay, = x|w.,; in particular, sNo = 5&6 for all (afy) = (011).
So we have p, N Wo11 = py N Woi1 and by the part of the claim already proved we have
that py is unipotent also. Hence py = px N Wo11 = p,, N Wo11 = p,. [l

Suppose in the rest of this section that » > p. Let A € W{j;5 such that p) is compatible
with x. We can assume that )\|W>2 = X|Ws,, by Lemma 10.1.2.a. Therefore PAw, =

Pxiwe, since 5267 =%, for all (afy) = (202). Now write

afy
pr =501 +5 and p, =5, +5 for 5:= Prws, = Pxgws, - (10.2)
Lemma 10.3.3. If x([eo11, Wr—1]) # 0 then py =5 = p,.

Proof. The assumption says that there exists y € W,_; such that x([ep11,y]) # 0. This
implies that s%,; C 855, C 6. Indeed, consider u = aep1 + z € 53, for some a € K and
z € Wx1. Then x([u,y]) = ax([eo11,y]) + x([z,y]) = 0. But [2,y] € W5, so we have
X([z,y]) = 0 and therefore a = 0 since x([eo11,y]) # 0 by assumption. The assumption on
A says in particular that Ay, = x|w., ,. This implies that A([eo11,y]) # 0 and hence

(apply the same arguments as before) we get 56‘11 C s also; therefore py =5 =p,. O

So assume that x([eo11, Wy—1]) = 0. We shall recall the basis for W,_; given in Section
(r) ,.(r) (r)

4.2: There exist basis elements zq ', 277, ..., 2, , 4
following properties:

and y§ )7y(T) .. ,yg:))_r_2 with the

[6011,x§r)] =—(i+ 1).562(:_)1 and [6011,y2-(r)] = —iygi)l.

Since x([eo11, Wr—1]) = 0 it follows from the relations above that X( (r)) = 0 for alli >0

7

and X(y](-r)) =0forall j > 1. But x(W,_1) # 0, so we also have X(l‘o ) # 0 or X(y1 ) # 0.
This implies that x(ep—1,r+1-p,2) # 0 or x(ep—2r42—p2) + (7 + 2)x(ep—1,r4+1-p,1) # 0. We
also have x(eqp1) = 0 for all o, f with 0 < «r, 8 < pand a+ = r and a < p—1. Moreover,
X(eap2) = 0 for all a, 5 with 0 < o, < p and a4+ 3 =r and a < p — 2. See Section 4.2
and use the assumptions on x just obtained.

Lemma 10.3.4. If st(x, W>,) = W>g and X(xgr)) =0, then

X(ep—2r+2-p2) = —X(ep-1,1+1-p1) # 0.

Proof. 1f x(ep—2r+2—p2) = 0, then we have egg; € st(x, W>,) — contradiction. So we have

X(ep—2,r4+2-p2) # 0. Now, since X(xgr)) = 0 we find that

0 = x([eo11, ep—l,r-&-l—p,?]) = —(X(ep—2,r+2—p,2) + X(ep—l,r+1—p,1))-
The proof is completed. [l
Lemma 10.3.5. Suppose that st(x, Ws,) = W>q and x([eo11, Wr—1]) = 0. Then:
a) We have inclusions sy C 8)q; C 83y C W>o and §35, C 5Y5.

b) We can choose A € W1, such that py is compatible with x and such that Xag1 = X201
and )\(6202) = X(€202).
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Proof. 1) Set yo21 = €p—1,r—p2 and y111 = €p—1,—p1 and Y201 = €p—2,—p4+1,1- Lhen, for
(201) =2 (afy) = (021), we have x([eagy; Yapy]) # O but X((Wargy, Yagy]) = 0, where
(&’#'4') is the successor for (aBv) with respect to <. The existence of y,3, implies that
52 y C W gi~r; hence 5267 C sz,ﬂ,vl

If r # 2p —4 we set yop2 = €p—3 r+2-p1 and find that [ezo2, y202] = (7 +2)ep—1r41-p,1 —
2ep_2 r+2-p,2; hence, by Lemma 10.3.4, we get x([e202, y202]) = (r + 4)x(€p—1,r+1—p1) # 0.
But also x([Wi12, y202]) = 0 from the assumptions on x (see the remarks done just before
Lemma 10.3.4). Hence s}, C 81, for r # 2p — 4.

If » = 2p — 4, set yoo2 = €p—a,43—p2 (since r = 2p —4 > p we have in particular,
p>3and r+3—p=p—1; 50y # 0). By Lemma 10.3.4, we get x([e202,¥y202]) =
(r+ 3 — p)x(ep—2,r+2-p2) # 0 but also x([Wii2,y202]) = 0 from the assumptions on x.
Therefore 53, C 1y, for r = 2p — 4 also.

2) Apply the construction in the proof of Lemma 9.3.9 with Lemma 10.1.2.a and the
inclusions obtained in 1) and choose then A such that A(eqnsy) = X(€agy) for (aBy) = (201)
and (afy) = (202). O

Lemma 10.3.6. Suppose that st(x, W) = Wxq and x([eo11, Wr—1]) = 0. If 8355 C 839,
or there exists T € 5\9y With 539y = Ko @ 839y N Wao1 and x(z[Pl) = 0, then there ewists
A € Wio such that py is compatible with x and such that py = p,.

Proof. First, by the construction in the proof of Lemma 9.3.9 and Lemma 10.3.5, choose
X201 € Wsy, such that Agg1 = x201 and such that Agp(2)P — >\201(z[p}) = x(2)? for all
Z € Prgy, - Let )\022 be an extension of Agg; such that Agg2(z)P — )\022(2@}) = x(z)P for all
Z € Prggs- I 8399 C 83y, then also 53‘222 C 5%‘8‘{1 and then choose Agaa(ep22) = x(€o22).
Otherwise, there exists = such that 5%, = Kz @ 5}y, N Wag1 and x(zlP)) = 0. Tt follows
that A2 ()P — Mooz (2P)) = x(2)P. Since Aoz (z!?)) = x(z[?)) = 0 we have A2 (z) = x(2);
hence Ag22(€eg22) = Xx(€g22). So it is possible, by Lemma 10.3.5.a and the construction in
the proof of Lemma 9.3.9, to find an extension A € W5 of Agaa = X022 such that py is
compatible with . Choose A € Wy, in that way.

Note that Lemma 10.3.5 implies that p, N Wx1 = p, N Wi12. Therefore
[5011> Px) C 8011, 5811) + [8011. Py N Wiia] C Ker(x)

since x([5911,5011)) € x([Worr,5611]) = 0 and x([5511, Py N Wii2]) = A([8311, bx N Wiia]) C
)\([56‘11, WOll]) =0 (here we use that [5311,]3)( N Wllg] C Wooo and that Agoo = X202 by our
choice). It follows that 5811 + p, is a totally isotropic subspace with respect to x; hence,
by maximality of p,, we have 56\11 C py. This implies that py C p,. By symmetry, we can
also prove that p, C py. O

So assume from now that:

1) x(leo11, Wr—1]) =0,

2) st(x, Wsr) = Wxo,

3) Sp0 7 01

4) 5511 & S0 OF 5311 € Spoa-

Assumption 3) implies that there exists z € Wyg1 such that x := egoo + 2z € 56%2. Write

z = aegoy + bejy + cegg + 2 for some 2’ € Wso.
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Since x([eo22; €p—2,r+1-p,1]) = 0= X([#, €p—2,11-p,1]) We get
X ([ae201 + berr1 + ceo21, €p—2.r41-p1]) =0

and hence a = 0 from the assumptions on x. Moreover, x([eg22 + 2, €p—1,r—p,1]) = 0 implies
that r = 2b.

Let A € W4 with )\|W22 = X|Ws, such that py is compatible with x. We can assume
that 53, 509 OF 8311 ¢ Sp9o by assumption 4) above.

Let A € Wgyo with Ay, = xjw., such that py is compatible with x. If there exists
y = eo11+Yy € sy, with ¢/ € Wsq, then [y, egea+2] € py. If there exists y = eg11 4y’ € 5811
with ¢/ € W1, then [y, eoz2 + 2] € py since egaz + 2 € §3py and §3py = Sp9y. 1t is easy to
obtain

leot1 + 4/, €022 + 2] = (b — 1)egar +w

for some w € WZQ. If eg11 + y’ € 5())611 then (b — 1)6021 +wep,n Woo1. If eg11 + y’ S 5811
then (b — 1)ega; +w € py N Woar = Py N Woai. But p, N Woa1 C W2 by Lemma 10.3.5.a;
hence b=1. Sincer =2band p<r <2p—3 we get r =p+ 2.

So we only need to handle r = p + 2. Write

T = ega + e111 + cega1 + 2 wherec € K and 2’ € Wsa.

The next lemma proves that X(:r[p]) = 0 and hence p) = p, by Lemma 10.3.6.
Lemma 10.3.7. Ifr = p+2, then x(«[") = 0.

Proof. First, note that (2/)P) = 0 since 2’ € Wso. Next, I claim that

(€022 + €111 + cega1)P! = 0.

Indeed, set z1 := eg22 + €111 and 2y := ep21. Then (eg22 + €111 + ceogl)m — ng} — zgp] is a

linear combination of terms

[z1, (T2, ..., [Tp—1,2p) ... ]| (%)

where each z; is either z; or z3. Set z,_; = 2z; and z, = 25. Note that [z1,epj1] =
(j — eoj+1,1 and [ega1,enj1] = 0 for all j. Hence (ad 21)*(22) € Keg g21. If there exists
1 <i < p—1 such that z; = z9, then the term in (x) is zero [let i« < p — 1 be maximal and
get:
(21, [T, - o, [Tp_1,mp) - )] = [21, [w2y - - s i1, [, (ad 22)P 1 (21)] .. L)
Since (ad 22)P~"1(z1) € Keg pt1-in and [z, €9 pt1—i,1] = 0, we have that terms in (x) with
x; = zo for some 1 <i < p—1 are zero|.
Suppose that x1 = 29 = -+ = xp_1 = z1. Then

(1, [22, .., [Tp—1,2p] ... ]] = (ad 22)P 7 (21) € Kegpr11 =0

since € p41,1 = 0. This implies that (eg22 + 5er11 + 06021)[p] — z{p] — ng} = 0. But ng} =0

: Pl _
since ey, = 0.

Next, consider z1 = egg2 + e111. Then ng I _ eg;]Q — e[ﬁ]l is a linear combination of terms

(@1, [T2, ... [Tp—1,2p] .. ]| (%)

where each z; is either egog or e111. We may assume that x,_1 = egz2 and x, = e111. Note
that [ep22, €151] = jei,j+1,1 and [e111, e151] = 0 for all j. Hence (ad eg22)"(€e111) € Keq gt1.1-

o6



If there exists 1 < i < p— 1 such that x; = ej11, then the term in (xx) is zero [let i < p—1
be maximal and get:
(21, [T2, .-, [Tp_1,2p) . ]] = [T, [T2, - -+ i1, [, (ad eg22)P ™ ernn)] - - ]]-

Since (ad ega2)*(e111) € Keqg+11 and [x;,e1p—i1] = 0, we have that terms in (xx) with
x; = eq11 for some 1 < i < p—1 are zero|.
Suppose that z1 = 2o = -+ = xp_1 = ep22. Then

[33‘1, [$2, cey [l‘p_l, xp] - ]] = (ad 6022)p_1(€111) € Kel,p,l =0
since ey 1 = 0. It follows, since egzg =0= 8[1%]17 that

(eg22 + €111 + 66021)[17} =0

as claimed in the beginning.
Since = egaa + e111 + cegz1 + 2 and (z’)[p} = 0 also, we get that 2P is a linear
combination of terms

(@1, [x2, .. [Tp—1,2p] .. ]| (k% %)
where each x; is either egos + e111 + ceger or 2'. If 2/ occurs s times in (x * x) then

[z1,[z2, ..., [Tp—1,2p] ... ]] € W>pis. We can assume that 21 = 2’ in order to prove that x
vanishes on all terms in (% * x). Indeed, if x1 = eg22 + €111 + cega1 note that

x([eo22 + €111 + cepar + 2, [w2, ..., [Tp—1,2p]...]]) =0

since egay + €111 + cega1 + 2 € 5322. Therefore

x([eo22 + €111 + ceoat, [T, - s [Tp—1,2p) - - ]]) = —x([2, [@2s - - -, [Tp—1, 2p) - .. ]])-

That is; we may assume that z; = 2’. So we have s > 1 [since we can assume z, # xp_1]
and hence x of height p + 2 vanishes on all terms in (% * *); therefore x(zP)) = 0 also. O

Corollary 10.3.8. Suppose that p, is unipotent and st(x, W>,) = Wxq. Then there exists
A € Wyio such that py is compatible with x and py = p,.

10.4 Applications
Let x € W*. The stabilisers of x in W and W and W2 are defined as (see Section 9.2):
av(x) = {yveW|x(ly,z]) =0forall x € W},

Wwao (X Wso) = {¥ € Wao [ X([y,2]) = 0 for all z € Wxo},

Wor (Xjwor,) = {y € Woiz | x([y, #]) = 0 for all x € W2}

Some general observations: If g is a Lie algebra over an arbitrary field and A € g*,
then it is well known that ¢4()) is a Lie subalgebra of g (in fact a Lie p-subalgebra if g is
restricted) and its codimension in g is even.

Suppose that g is restricted. Then we define the rank of ¢4(\) as the maximal dimension
of all tori in ¢g(A). We will write rk cg(A) for the rank of c¢4(A). Clearly, we have rk
cg(\) = 1k cg(\9) for any g € Aut(g) such that g(zPl) = g(z)lP! for all 2 € g (i.e., g is a
restricted automorphism on g).

Going back to W we get rk ey (x) = rk e (x?) for all g € Aut(WW) (since automor-
phisms on W are restricted). It follows by (2.14) that g(W>o) = W>o; therefore we have

rk ew, (Xws,) = 1K CWZO(X\QWEO) for g € Aut(W).
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Lemma 10.4.1. Let x € W* of height r > 1 such that x([Woi2,z]) = 0 # x([e102, z]) for
some x € Wy—1. Then ey, (Xw.,) is a subspace of cwyy, (X|wy,,) 0f codimension 1 and py
is a polarization of x|y, -

Proof. Let y = aeyg2 + begra + ce1p1 + degrn + v € W (X\Wgo) for some v € W>1 and get
a =0 from 0 = x([z,y]) = ax([e102, z]); thus we have ¢y (Xw.,) C Woia. Now conclude
by 1) in Section 9.2. - O

Lemma 10.4.2. Let x € W* of height r > 1. Then we have tk e, (Xjws,) € {0,1}.

Proof. If b := cw,(Xw>,) has rank 2, then b contains a maximal torus of W (2). Using
Demushkin’s result [4, Thm. 1] in conjunction with h being contained in W, we can
assume that Tj := Kegi2 @ Keqo1 C h. Since Tj is self-centralizing, it follows that W>; C
Ker(x), whence r < 1 — contradiction. O

Lemma 10.4.3. Let x € W* of height r > 1 such that x does not have Typell.a as in 5.2
if r =2p—3. We have rk ey (X|W>0) = 1 4f and only if all polarizations of x|, are non
unipotent. - -

Proof. First, note that both claims in the lemma are Aut(WW)-stable [let g € Aut(W):
Then rk ¢y, (X|W20) = 1 if and only if rk cho(XfW>0) = 1 and all polarizations of x .,

are non unipotent if and only if all polarizations of X|9W>o are non unipotent: For the

last statement note that the map P +—— g~ 1(P) induces a bijection between the set of
polarizations of xy ., and the set of polarizations of X|9W>o]'

Suppose that rk ey, (xjw>,) = 1 and let h € ey, (X|w>,) be a nonzero toral element.
If P C Wxq is any polarization of x ., then xyw. ([P + Kh, P + Kh]) = 0 since h €
W0 (X|Ws,); hence h € P by maximality. In particular, P is non unipotent.

Suppose that any polarization of x|y, is non unipotent. The remark in the beginning of
the proof together with Lemma 7.3.1 say that we can assume x([z, e102]) # 0 = x([z, Wo12])
for some x € W,_1. In particular, cw.,(xjw-,) € Woi2 and by 1) in Section 9.2 then:
Any polarization p C Woi2 of x|y, is a polarization of x|, also. In particular, the
Vergne polarization p, is a polarization of X, and therefore non unipotent. Write
py = Kh @ p, N Wo1 for some h with hlPl = h.

Let g be an automorphism on W with g(Wpi12) = W12 such that 0 # h € pys and
hlPl = h and x9([h, Woi2]) = 0 (see Lemma 9.4.6). Therefore, g(h) € cyq,, (X|Wora)-

[ claim that we can find ¢ € K such that h' = g(h) + cx € e (Xjw,). Indeed,
define ¢ € K such that x([h/,e102]) = 0 (here we use that x([z,e102]) # 0). There-
fore x([W',e102]) = 0. But we also have x([h', Wpi2]) = 0, since x([z, Wpi12]) = 0 and
x([g(h), Woi2]) = x?([h, Woi2]) = 0; it follows that h' € ey, (x|w.,). Since g(h) is a toral
element, we get rk ey, (Xjw.,) = 1 (see Lemma B.1.3). O

Remark 10.4.4. The proof of Lemma 10.4.3 shows: If x([e102,2]) # 0 = x([Wo12,x]) for
some x € W;_1, then p, is non unipotent if and only if tk ew.,(X|w-,) = 1. Indeed, the
assumption on x says that p, is a polarization of x.,. Therefore, rk ey, (xjw-,) = 1
implies that p, is non unipotent by Lemma 10.4.3. The other implication follows in a
similar way as the last part of the proof above.

Theorem 10.4.5. Let x be a character of height r > 1 such that x does not have Typell.a
as in 5.2 if r = 2p — 3. Then there are p isomorphism classes of irreducible U, (W>q)~
modules if and only if tk cw,(xjw~,) = 1. If tk ew (X)) = 0 and st(x, W>,) = Wxo
orr < p orx(leoi1, Wr—1]) # 0, then there is 1 isomorphism class of irreducible Uy (W>q) -
modules.
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Proof. First, note that both conditions in the theorem are Aut(WW)-stable: Indeed, the
number of isomorphism classes of irreducible U, (W>p)-modules is equal to the number
isomorphism classes of irreducible U, (W>g)-modules for any g € Aut(W), since we have
an isomorphism U, (W>o) =~ Uys(W>q) of K-algebras. We also have rk cyw,(X|w.,) =
rk chO(Xme) for any g € Aut(W).

Therefore we can assume, by Lemma 7.3.1, that x([e102, z]) # 0 = x([Wo12, #]) for some
x € W,_1 and by Theorem 7.3.2 then that induction induces a bijection between the iso-
morphism classes of irreducible U, (Wy12)-modules and isomorphism classes of irreducible
Uy (W>p)-modules.

To the proof: If rk ew.,(Xjw>,) = 1 then all polarizations of x|y, are non unipotent
by Lemma 10.4.3. It follows from Lemma 10.4.1 that p, is a polarization of x|y, and

therefore non unipotent. Choose A € W, such that A\(z)P — A(zlPl) = ()P for all
x € py and such that py = p,. See Theorem 10.1.1.a. Any maximal torus in py = p, has
dimension 1 if p, is non unipotent [see Lemma 9.4.3|, and so there are, by Lemma 9.3.7
with L = Wp12, exactly p isomorphism classes of irreducible U, (Wpi2)-modules and since
induction is a bijection (by assumption), we conclude that there are p isomorphism classes
of irreducible U, (W>g)-modules.

Suppose that there are p isomorphism classes of irreducible U, (W>¢)-modules. Since
induction is a bijection (by assumption), there exist p isomorphism classes of irreducible
Uy (Wo12)-modules or equivalently, by Lemma 9.3.7, py is non unipotent [for any A € W,
such that A(z)P? — A(zlP)) = x(x)P for all z € py|. Now apply Theorem 10.1.1 to get that
py is non unipotent also. Finally conclude via Remark 10.4.4 (recall our assumption on x
in the beginning of the proof).

If rk ew.,(xjw>,) = O then p, is unipotent by Remark 10.4.4. Now apply Theorem
10.1.1.b (recall our assumption in this case) and Lemma 9.3.7 with our assumption that
induction induces a bijection between the isomorphism classes of irreducible U, (Wpi2)—
modules and isomorphism classes of irreducible U, (W>g)-modules: It follows that there is
1 isomorphism class of irreducible U, (W>q)-modules. O

Theorem 10.4.6. Let x be a character of height 1 < r < 2p — 3 such that x does not
have Typell.a as in 5.2 if r = 2p — 3. If p, is non unipotent or st(x,W>,) = Wxg
or v < p or x([eoi1, Wr—1]) # 0, then each irreducible U, (W>q)-module has dimension

pcodimw20 W (X‘Wzo )/2

Proof. First, apply Lemma 7.3.1 and find g € Aut(W) such that x9([Woi2,2z]) = 0 #
X9([e102,x]) for some z € W,_;. But g(Wsg) = Wxo so ¢ induces an isomorphism
CWZO(X*‘(’WM) =~ .o (X|ws,)- Therefore, codimwzocwzo(xfwm) = codimp, ews, (X|ws,)
and we can thus assume that x([Woi2,7]) = 0 # x([e102,7]) for some z € W,_; (irre-
ducible U, (W>p)-modules and irreducible U,s(W>)-modules have the same dimension
since Uy (W) ~ Uys(W>0) as K-algebras).

Now apply Lemma 10.4.1 and get dim e, (X|ws,) = dimgcwe, (X|wp,,) — 1. More-
over, the existence of z says that induction induces a bijection between isomorphism classes
of irreducible U, (Wy12)-modules and isomorphism classes of irreducible U, (W>)-modules.
See Lemma 7.1.1.

Pick A € W, such that py is compatible with x (i.e., A(x)? — A(«lPl) = x(z)P for
all z € py) and such that py = p,. This can be done by Theorem 10.1.1 (recall our
assumptions). Now the dimension of each irreducible Wsp-module with p-character x
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(use that dimg ey, (XIWzo) = dimKCWom(X\Wm) —1):

- pCOdimeQPx _ pCOdiszo CWEO(X‘WZO)/2'

The proof is completed. [l

Suppose that st(x, W>,) = W>o. Then it is easy to see that ¢y (x) C st(x, W>,) from
the definitions; hence ey (x) C Wso. This implies that

cw (X) C ewsg (X|ay)- (10.3)

The next lemma says that ¢y (x) is a subalgebra of ¢y, (xw.,) of codimension 2 if (10.3)
holds. In the proof we only use (10.3) and not the assumption st(x, W>,) = Wsxo.

Lemma 10.4.7. Ifew (x) C ewoo(X|ws, ), then we have dimpew (x) = dimg ews o (X|w,) —
2. In particular; any polarization P C Wxo of X|w-, s polarization of x also.

Proof. In general, if V is a vector space and f : V x V — K is a bilinear, antisymmetric
form, then codimycy (f) is even, where ¢y (f) = {v € V | f(v,V) = 0}. Suppose that
codimycy (f) = 2my; then my is the maximal dimension of an isotropic subspace in
V/ey (f) and therefore my +dimg ey (f) is the maximal dimension of an isotropic subspace
in V. Apply these observations to V.= W (resp. V = W>x¢) and f = x([, ]) and use
that any isotropic subspace in W is also an isotropic subspace in W: We obtain that
dichW(X) > dichWZO(XWVZO) — 2.

We also have dimgew (x) — dimgew,(xjw.,) + 2 € 2Z since cyr(x) C W' is a
subspace of even codimension for W' = W or W' = Ws(. Together with the inclu-
sion ew (x) C ewso(X|ws,), this leave us with two possibilities: Either dimgew (x) =
dim g ews, (Xw,) — 2 or dimg ey (x) = dimgew,, (xjw.,)- The assumption on the height
of x says that W>, C CWZO(X\W>0)' But we have Ws, ¢ ey (x) since [W_1, W] = W,_;
and x(W,-1) # 0; hence we cannot have dimgcew (x) = dimgew.,(Xjw.,). We get
dimpew (x) = dimg ew o, (X|w,) — 2 as required.

The final statement follows since P C W is a Lie p—subalgebra with x([P, P]) = 0 and
the dimension formula given in (9.6) follows by the part of the claim already proved. O

In the next lemma we will only use the inclusion in (10.3) and not the assumption
5t(X7 WZT) = WZO-

Lemma 10.4.8. Let x € W* of height r > 1 with cw(Xx) C cw=,(Xjws,). Then we have
rk ey (x) =0 orrk ey (x) = 1. -

Proof. Follows immmediately from Lemma 10.4.2 and ew (x) C ews, (Xw,)- O

Lemma 10.4.9. Let x € W* of height r > 1 with st(x, W>,) = Wx>¢ such that x does not
have Typell.a as in 5.2 if r = 2p—3. We have tk ¢y (x) = 1 if and only if all polarizations
of x are non unipotent.

Proof. First, note that both claims in the lemma are Aut(W)-stable [let g € Aut(WW):
Then rk ¢ (x) = 1 if and only if rk ¢y (x¥9) = 1 and all polarizations of x are non
unipotent if and only if all polarizations of x9 are non unipotent: For the last statement
note that the map P —— ¢g~1(P) induces a bijection between the set of polarizations of y
and the set of polarizations of xY]|.
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Suppose that rk ¢y (x) = 1 and let h € ¢y (x) be a nonzero toral element. If P is
any polarization of x then x ([P + Kh, P + Kh]|) = 0 since h € ¢y (x); hence h € P by
maximality. In particular, P is non unipotent.

Suppose that any polarization of y is non unipotent. The remark in the beginning of
the proof together with Lemma 7.3.1 say that we can assume x([x, €102]) # 0 = x([x, Wo12])
for some z € W,_1. In particular, ey, (X|w.,) C Woi2 and by Lemma 10.4.1 then: Any
polarization p C Woi2 of Xy, 18 a polarization of x|y~ and so a polarization of x by
Lemma 10.4.7; hence non unipotent. In particular, the Vergne polarization p, is non
unipotent. Write p, = Kh @ p, N Wy11 for some h with hlPl = p.

Let g be an automorphism g on W with g(Woi2) = Wyi2 such that 0 # h € p,s and
hlPl = h and x9([h, Woi2]) = 0 (see Lemma 9.4.6). It follows that g(h) € ¢y, (X Wor2)-

I claim that we can find f € W, and ¢ € K such that b’ = g(h) + f + cz € cw(x)
for x € W,_1 defined such that x([z,e102]) # 0 = x([z, Wo12]). Indeed, define ¢ € K such
that x([#',e102]) = 0 (here we use that x([z,e102]) # 0). I claim that there exists f € W,
such that x([f,eo01]) = —x([g(h) + cz,e001]) and x([f,e002]) = —x([g(h) + cz,e002]):
Indeed, use that st(x, W>,) = W>( and apply Remark 6.3.6 with a = W, and h = W
to o(z) = —x([g(h) + cz, 2]) for z € W_;. Therefore x([h',W_1]) = 0. We have defined
¢ € K such that x([h/,e102]) = 0 and moreover x([h', Woi12]) = 0, since x([z, Wpi2]) =
0 = x([f, Woi2]) and x([g(h), Woi12]) = x9([h, Wo12]) = 0. Tt follows that h’ € e (x) and
therefore rk ¢y (x) = 1 since g(h) is toral (apply Lemma B.1.3 in Appendix B). The proof
is completed. [l

Lemma 10.4.10. Suppose that x € W* of height 1 < r < 2p — 3 with st(x, W>,) = W>o.
Then rk cho(Xleo) =1 if and only if tk ey (x) = 1.

Proof. The "if" part is easy by Lemma 10.4.2 and since we have ¢y (X) C cwwo(X|ws,)
by (10.3). Next, suppose that rk ey, (Xjws,) = 1 and let h € e, (x|w-,) be a nonzero
toral element. I claim that we can find f € W, such that b’ = h+ f € ¢y (x). Indeed,
apply Remark 6.3.6 with a = W>, and h = Wx¢ to ¢(z) = —x([h, 2]) for z € W_;: There
exists f € W, such that x([h + f,W_1]) = 0. It follows that A’ = h + f € ew(x) since
h € ewso(Xjws,) and X([f, W>o]) = 0. Therefore we have rk ¢y (x) = 1 since h is toral
(see Lemma B.1.3) and rk ¢y (x) <1 by Lemma 10.4.8. O

If st(x, W>,) = W>q then, by Theorem 8.1.1, induction induces a bijection between
the isomorphism classes of irreducible U, (W>q)-modules and the isomorphism classes of
irreducible U, (W)-modules. Now, apply Theorem 10.4.5 and Lemma 10.4.10 and find:

Theorem 10.4.11. Let x be a character of height 1 < r < 2p — 3 such that st(x, W>,) =
W= and such that x does not have Typell.a as in 5.2 if r = 2p — 3. Then there are
p isomorphism classes of irreducible U, (W)-modules if and only if vk ew(x) = 1. If
tk ey (x) = 0, then there is 1 isomorphism class of irreducible U, (W')-modules.

From Theorem 10.4.6 and Lemma 10.4.7 we get:

Theorem 10.4.12. Let x be a character of height 1 < r < 2p—3 such that x does not have
Typell.a as in 5.2 if r = 2p—3. Ifst(x, W>,) = W>q, then each irreducible U, (W)-module

has dimension pCOdlchW(X)/2.
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11 Exceptional characters

In this section we will study characters where we cannot apply Theorem 8.1.1 in order to
study induction from W to W. First, let us introduce those characters.

11.1 Definition

In the following we consider x € W* of height r» with p —2 < r < 2p — 3. We say that x is
exceptional if the stabilizer of x in W, intersects W_; non trivial or equivalent:

st(x, Wx,) # Wxo.

Note that st(x, W>,) = {w € W | x([w,z]) = 0Vz € W>,}. It is clear that there exist
characters with that property: Indeed, consider x of height r and let 0 < j < p — 2 such
that 7 = p — 1 + j. Suppose that x(eqsy) = 0 forally =1,2and all 0 < o, < p—1
with @« + 3 = r and @ < p — 1. Then epn € st(x, W>,) since we have [ego1, W>,| C
Zogaﬁgp_la@_l > =12 Keapy ® W, and hence x([eoo1, W>r]) = 0.

So st(x, W>,) = Kepgo1 & W>¢. In fact, we have:

Lemma 11.1.1. Let x € W* of height r. Then st(x, W>,) = Kego1 & W>¢ if and only if
X(easy) =0 forally=1,2 and all0 < o, <p—1witha+B=7r and o <p— 1.

Proof. The "if" part follows from the remarks we made just before the lemma. Now we
assume that st(y, W>,) = Kego1 & W>p. Then consider y =1,2 and 0 < o, < p—1 such
that « + 3 = r and o < p — 1. We find that eap, = (@ + 1) "'[eoo1, €at1,54) and so the
assumption st(x, W>,) = Kepo1 ® W>¢ implies that x(eqngy) = 0. O

11.2 Conjugation

Let x € W* be an exceptional character and let j € NU{0} with j < p—2andr =p—1+j.
In the following lemma we will often use the relations (A.4)—(A.11) in Appendix A.

Lemma 11.2.1. There exists g € GLo(K) such that st(x?, W>,) = Kego1 & W>o. More-
over, we can choose g such that x9(ep—1,51) = 1 and x9(ep—1,52) = 0 or x9(ep—1,52) =1
and x9(ep—1,4,1) = 0 also.

Proof. Since st(x, W>,) # Wxq there exists 7 € W_; such that st(x, Ws,) = K7 & W>.
Let m = aegor + begoe for some a,b € K and let 91_1 € GLy(K) be defined via

1 (01 e 1 (1 alb :
91 —<1 0 if a=0 and g; = 0 1 if a#0.

It follows that 0 # gl_l(ﬂ) € Kegor and st(x9', W>,) = gl_l(st(x, Wsp)) = Kego1 ®Wsg.
Therefore x9' (ep—1,j,1) # 0 or x9'(ep—1,5,2) # 0 by Lemma 11.1.1 and the fact that x9' has
height r also by [10, 1.2 (1)].

If x9* (ep—1,5,1) # 0 let g2 be the lower triangular matrix given by

B ( o 0 >
92 X (ep-1,j,2)X 7 (ep-1,5,1) 11 1
for some §; € K with 51f_2 = Xgl(ep_lvjyl)_l. Then we have x91°9%(e,—1;1) = 1 and

X919 (ep—1,5,2) = 0 and st(x91°92, W>,) = Kego1 & W since g;l(eom) = 51_16001. Now
set g = g1 © g2.
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If x9' (ep—1,j2) # 0 = x9'(ep—1,5,1) let 02 € K such that 65_1 = Xgl(ep_]-’ja)—l_ Then

the diagonal matrix
(10

satisfies that x91°92(e,—1 j2) = 1 and x9°92(ep—1,5,1) = 0. We still have st(x91°92, W, ) =
Kepo1 @ W since 951(6001) = ego1- The proof is now completed if we set g = g1 0g2. O

11.3 The case that x([ego1, W>,]) =0

Let x € W* of height r with p —2 < r < 2p — 3 such that st(x, W>,) = Kego1 & W>o
and let j be given such that 0 < j < p—2andr =p—1+4+j. Let p := p) be a
polarization of A\ € W, such that A(2)P — A(2/P1) = x(2)? for all z € p [the existence
follows from Lemma 9.3.9]. If we use Proposition 9.3.5 and Lemma 9.3.7 we see that
induction induces a bijection between the isomorphism classes of irreducible U, (p)-modules
and the isomorphism classes of irreducible U, (Wpi2)-modules. There exists z € W,_;
(= ep—2,j+1,k) such that x([z,e102]) # 0 = x([z, Woi2]): Clearly, x([ep—2 j+1,k €102]) # 0
by assumption and since

lep—2j41.0:Wor2l € D P Keapy ® Wor
0<a<p—1 a+p=r

we also have X([Cp_Q,jJ,-Lk, Wo12]) = 0. Now apply Lemma 7.1.1 and get that induction
induces a bijection between the isomorphism classes of irreducible U, (Wy12)-modules and
the isomorphism classes irreducible U, (W>()-modules also. Hence induction is a bijection
between the isomorphism classes of irreducible U, (p)-modules and the isomorphism classes
irreducible U, (W>¢)-modules.

Let K be the one dimensional U, (p)-module where each z € p acts as multiplication
with A(z). Set S\ := Uy(W>0) ®p, (p) Kx. Note that we have 1 ®, 1 € SocySy with
K -1®y1~y Ky (here ®y is a short notation for @y, (p))-

I claim that Soc, S\ = K-1®,1. Otherwise there exists a nonzero element w ¢ K-1®,1
in Socp Sy such that Kw is an irreducible p—submodule of Soc,S) [see Lemma 9.3.2] and
one of the following cases will occur:

If Kw e~ K, for some 1 # \ [ € Wiy such that pu(2)? — p(2P)) = x(2)? for all z € p|
we obtain from ’Frobenius reciprocity’ that S, ~ Sy which is a contradiction, since K
and K, are non isomorphic and induction is a bijection between the isomorphism classes
of irreducible U, (p)-modules and the isomorphism classes irreducible U, (W>q)-modules.

If Kw ~ K we apply 'Frobenius reciprocity’ again to get a U, (W>g)-endomorphism
S\ — S\ given by 1®,1 —— w and so not proportional to the identity map — contradiction
since S is irreducible. We have thus shown:

Lemma 11.3.1. Let x € W* of height r such that st(x, W>,) = Kego1&W>o. Let X € Wi
such that the Vergne polarization p of X satisfies A(x)? — A(zP)) = x(z)? for all z € p. Then
induction is a bijection between the isomorphism classes of irreducible U, (p)-modules and
the isomorphism classes irreducible Uy (W>q)-modules. We have SocySy ~p K.

11.4 Socle elements

Keep the assumptions from the previous section. Moreover, assume that x(ep—1,j1) = 0
or x(ep—1,5,2) = 0 |any exceptional character is conjugate to a character of that particular
type, see Lemma 11.2.1]. Define k € {1,2} be defined via x(ep—1;x) = 1.
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Since st(x, W>,) = Kego1 ® W it follows from Lemma 11.1.1 that x(eqsy) = 0 for all
0<a,f<p—1witha+f=randa<p—1][and v=1,2|.

There exists y := ep—1j4+1,6 € W, such that x([y,e002]) # 0 = x([y, eo01]). Set z :=
[y, epo1]. We will use that notation in the proof of the following lemma.

We can choose A € Wy, such that the Vergne polarization p of A is compatible with x
(ie., M(2)? = A(zlPl) = x(2)? for all z € p) and such that A[Wsy = X|Wsy- See Lemma 10.1.2.
Since [z, 6001][1’] = 0, it follows from the construction in the proof of Lemma 9.3.9 that we
can choose A([z,ep01]) = Xx([z,e001]). Let My = Uy (W) ®p, (w.,) Sx be the W-module
induced from Sy = Uy (W>0) @y, (p) K-

Lemma 11.4.1. If Kw is an irreducible p—submodule of Socp,M)y, then there exists a
nonzero v € Socyl ® Sy and 0 < b < p—1 such that

k<b—1 k4+m<b—1

Proof. Write
w= Z €601€062 - Wi
k+m<b

for some wg,, € 1® Sy and 0 < k,m < p — 1 and suppose that b is chosen such that
0 < b < 2p—2 and such that wg,, # 0 for some k,m with 0 < k,m <p—1and k+m =b.

Assume b > 0. For 0 < k,m < p—1 with K+ m = b we consider components in
ekoiemy -1 ® Sy from - w = 0 and obtain = - wy, = 0 for all 0 < k,m < p — 1 with
k +m = b. This follows since

k+m=b k+m<b

I

T-w= Z €001€002 @ Ust,  Ust € Sy
st
then we can use the PBW theorem and the assumption x - w = 0 to get vy, = 0 for all s, ¢.
In particular, vy, = 0 for all k£, m with kK +m = b. So the phrase "consider components
in ey elty ® Sy from z-w = 0" means that all v, = 0 when k +m = b.]

For ¢ > 0, consider components in egaf 66621 -1® Sy from y - w =0 and get

0 =1ily,eo02] - wp—ii + (b+1 =9 Wpy1-ii1+ Y Woii1

and hence [y, ego2] - wp—;; = 0 since & - wp41—ji—1 =0 =y - wp—; ;1 (note that y € W,
annihilates 1 ® Sy by Lemma 6.3.1 with h = W>g and a = W>,). But x([y, eoo2]) # 0
and therefore, since [y, egpa]”! = 0, it follows that [y, egpe] acts bijectively on My; hence
wp—;; = 0. We conclude that wy_; ; = 0 for all 7 with 0 <7 <b.
So we can write
w = e§y, “Wp0 + Z efo1ems - Wi (11.1)
k+m<b—1

Let us show that wpp € Socyl ® Sy. For z € p N Wy11 we have [ego1,2] € W since
[e0o1, €011] = 0. This implies that

26801 = 68012 + E 6180166’62%,% for some zj, € W>o.
k4+m<b—1

64



We also have

k m k m
z- E €001€002 € E €001€002 * W>0-
k+m<b—1 k-+m<b—1

If we use the previous remarks with (11.1) and the assumption z - w = \(z)w we get

_ b k m /
AM2)w = egoy - 2 - wpo + E €001€002 * Wkm
k+m<b—1

for some w), € 1® S). This equality shows [if we consider components in efy; - 1 ® Sy
that 2z - wpo = A(2)wp 0.

If p is non unipotent let 0 # h € p given by h = aegis + Beigr + 2z for some z € Woyyg.
Choose T € W5 such that Kw ~p, K. This implies that

T(h)w = efo; - (h — bB) w0 + Z €801€002 * Whm
k+m<b—1

for some wy,,, € 1® Sy and so h-wpo = (7(h) + bB)ws,0; hence wy o lies in Socy(1 ® Sy) as
required. [l

Corollary 11.4.2. If p C Kegi2 ® Woi1, then any irreducible p-submodule of Socy, M) is
isomorphic to K.

Proof. Let Kw be an irreducible p-submodule of Soc,M). It follows from Lemma 11.4.1
that there exists b with 0 < b < p — 1 such that

b b—1 k m
W = €gg; "V + €1 " Vb—1,0 T E E €001€002 * Vkm
k<b—1 k+m<b—1

where 0 # v € Socyl ® Sy and vp_1,0,Vkm € 1 ® Sy. If p is unipotent then it follows that
any irreducible U, (p)-module is isomorphic to K (apply Lemma 9.1.3 with 7" = 0). So we
are left with the case where p = Kh@®pNWy11 for some nonzero h = egro+ z with z € Wy
and hlPl = 1 [see Lemma 9.4.3]. There exists, by Lemma 9.1.3, a linear form p € W, with
WWorr = AW, and p(z)P — p(zlPly = x(z)? for all x € p such that Kw ~, K. I claim
that p(h) = A(h) such that Kw ~, K, ~, K). Since [egi2,e001] = 0 and zego1 = ego12
(mod Wxq) for z € Wy11 we get

_ b k m /
hw = A(h)ego; - v + E E €001€002 * Vkm
k<b k+m<b—1

for some v, € 1® Sy. But hw = p(h)w and hence

(A(h) — p(R))egor - v € Z €601€002 - 1 ® S
k4+m<b—1

which is a contradiction unless A(h) = u(h). O

As a consequence of Lemma 11.4.1 we get an upper bound for the dimension of
Endy (My).

Corollary 11.4.3. We have dimgEndy (M) < p.
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Proof. Since induction satisfies "Frobenius reciprocity’ we have functorial isomorphisms
Endw(M)\) ~ HOH]WZO (S)\, M)\) ~ HOH]p(K)\, M)\).

Define V) := {w € M) | Kw ~, K)}U{0}. We have an isomorphism V) ~ Homy (K, M})
as vector spaces. Let Socp,1®S) = Kv and define for b = 0, 1,. .., p the following subspaces:

b b k
VY :==spr{eg - v+ Z €002€001 * Vkm € Vx| Ugm € 1 ® Sy}
k+m<b—1

I claim that V) = Zi’;& V){’. Indeed, we know from from Lemma 11.4.1 that any w € V),
can be written as
w = €fo; v+ Z €002€001 * Vkm
k4+m<b—1
for some 0 < b < p and some Vi, € 1 ® S). We choose 0 < by < by < -+ < b < p such
that ij # 0 for all j € {1,2,...,7} and V! = 0 for nonzero b ¢ {by,bs,...,b.}. Take

nonzero elements wy, inside V;)j for j=1,2,...,r. Then
T
Vi =P Kwy, © Kv. (11.2)
j=1

To see that let w € V) \ {0}. If w € 1 ® S\ we have w € Kv. Otherwise w € V;”“ for
some k = 1,2,...,r and it follows from Lemma 11.3.1 that there exists a € K such that
w—awy, € Kvorw—awy, € VAbj for some 0 < j < k. In the last case we may use induction
on the set {1,2,...,r} to see that w — awy, € EB?;IIwa]. @ Kwv. Therefore (11.2) holds
and consequently dim g Endy (M) = dimg V) =7+ 1 < p. The proof is completed. O

Remark 11.4.4. If p C Kegi2 @ Woi1 and g € U, (W>g) such that (egp1 +¢) - v € Socy M)
for some v € Socyl ® Sy, then we have dimgEndw (M) = p. Indeed, consider the
W—endomorphism v : My — M), given by ¥(wxp) = (eoo1 + ¢q) - wrpo. I claim that

Y0 = Idjpr, 9, Y2, ..., P71 are linear independent. Otherwise there exists a dependence
relation

p—1

>t =0 (11.3)

k=0
where ag,a1,...,ap—1 € K [in (11.3) the zero on the right hand side is the zero map on
M,]. For each i =0,1,...,p — 1 we can write

¥ (wx0) = €or - WA + Z €602€001 * Vkmi (11.4)
k+m<i—1

for some vg,; € 1® S). Let i > 0 be maximal such that a; # 0 in (11.3). Now apply
(11.3) and (11.4) and get a relation a;ely - Wx0 + D imei1 €oo16062 - Vpmi = 0 for some
V) € 1 ® Sy. Since a; # 0 this is in contradiction with the PBW-theorem for reduced
enveloping algebras. We conclude that ¢° := Id |, s 2, ..., P71 are linear independent.
On the other hand; By Lemma 11.4.3 it follows that dimgEndy M), < p and therefore
Y0 = Id|MA,1/1,1/12, ...,¥P~1 form a basis for Endyy M.
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11.5 Two types of characters

Let x € W* of height » with p —2 < r < 2p — 3 and let j be defined viar = p — 1+ j.
It follows that 0 < j < p — 1. We will assume that y is an exceptional character; i.e., a
character with st(x, W>,) # Wxo.

Define the following subsets of W:

p—2
A= Z Z Kegn + ZKeajl S5 Z Z Kegpo, (11.5)
a=1

1<a+b<r—1 0<b<j+1 0<a+b<r—1 0<b<j

B = Z Z Z Z Keabc D K(6012 + j€101) ® K6102 D KCOOQ. (11.6)
2<a+b<r—1 a>0 0<b<j c=1,2

We shall consider two types of characters:

Type A : 7€ W* of height r with 7(ep—1,;1) = 1 and 7(ep—1,j2) = 0 = 7(A) and
5t(7’, WZT) = Kegy1 @ Wzo.
Type B : 7€ W* of height r with 7(ep—1,52) =1 and 7(ep—1,;,1) = 0 = 7(B) and

5t(’7’, WZT) = Kego @ WZO‘

For any r with p — 2 < r < 2p — 3 we define characters of Type A and Type B in the
way above.

Lemma 11.5.1. If 7 € W* has Type A or Type B, then induction induces a bijection
between the isomorphism classes of irreducible U, (Wyi2)—modules and the isomorphism
classes of irreducible U (W>q)-modules.

Proof. If T has Type A, then apply Lemma 7.1.1 with = e,_2 ;11,1 and if 7 has Type B
then apply Lemma 7.1.1 with z = e, _2 j112. [l

We say that two characters x and x’ are conjugate under Aut(W) if there exists an
automorphism g € Aut(W) such that x9 = x/.

Proposition 11.5.2. If x € W* of height r and st(x, W>,) # Wxq, then x is conjugate
under Aut(W) to a character of Type A or Type B. Moreover, no characters of Type A
and Type B are conjugate.

Proof. By Lemma 11.2.1 we can assume that either
1) x(ep—1,41) =1 and x(ep—1,5,2) = 0 and st(x, W>,) = Kegor @ W>q or
2) x(ep—142) =1 and x(ep—1,1) = 0 and st(x, W>,) = Kego1 & W>o.

Note that we have a decomposition of Aut(W): Aut(W) = GLo(K) x Aut™ (W), where
Aut* (W) = {g € Auwt(W) | g(D) — D € Wx;41 forall D € W; and all i}. See Section 2.3.
The idea is to find g € Aut* (W) such that x9(A) =0 for x asin 1) and x¥9(B) = 0 for x
as in 2). The construction of g will complete the proof.

If we for each character x as in 1) and each n with —1 < n < r — 2 can find an
automorphism g, € Aut*(W) with (g, — Idjw)(Wy) € W>,—1 and (gn — Idjw)(Wi) C
W, for m > n such that x9*(A N W,) = 0, then g can be constructed. Indeed; we
construct inductively g,_9,g,_3,... such that for each n the character x9—2°°9» satisfies
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that y9r—20"°9"(ANW,) =0. Now g := g,_20¢g,_30---0¢g_q1 works: To see that, let
x € ANW, for some n with —1 <n <r —2. Since gp—10---0g_1(z) =2 (mod W>,), it
follows that

() = X0 (2) =0,

In a similar way, we can prove: If we for each character x as in 2) and each n with
—1 <n <r—2can find an automorphism g,, € Aut*(W) with (g, — Idjw)(Wy) C Wx, 1
and (gn — Idjy)(Wm) C Wx, for m > n such that x9"(B N W,) = 0, then g can be
constructed.

So we only need to find an automorphism g, with the properties described above.

Consider an automorphism on W induced by a K-algebra automorphism ¢ on A(2) =
K[X1,X5]/(X?, X?) given by (z; is the image of X; in A(2))

p(r1) = z1+ Zk—i—l:r—n Zogk,Kp akll"fﬂcé,

p(r2) = 2+ Zk—i—l:r—n Zogk,Kp bkll"fxlz-

Set

Ty = agek + briexiz € Wi_1-n.
DRSS >, >

k+l=r—nm 0<k,l<p k+l=r—nm 0<k,l<p

The automorphism g, satisfies (see (3.2))

gn(y) =y+ [xna y] (HlOd Wr—n—l—s)

for each y € Wy. In particular, we have g, € Aut*(W) with (g, — Idjy)(W,) C Wxpy
and (g, — Idjy)(Win) C W, for m > n.

a) If x is a character as in 1) above and if 4 € ANW,, and epo € AN W, then it
follows from the formulas

Xgn(eabl) = X(eabl) + 2a - Ap—a,j—b +b- bp—l—a,j-l—l—ln
X9 (eav2) = X(€an2) — ap—1-aj+1-6(j +1—10)

that we can choose appropriate ap—1—q j+1—b, bp—1—a,j+1—b € K such that x9(eq1) =
0 = x9"(eap2): For each a,b with a +b =n+1 and b < j and a < p — 1 choose
ap—1—a,j+1—b € K such that x9"(eqp2) = 0 and for each a,b with a +b = n + 1 and
0<b<j+1anda<p—1choose b, 1_q;r1-p € K such that x9(eqp1) = 0. If
J =0 (and hence r = p — 1) we can choose a,_(n41),01 € K (for 1 <n+1<p-2)
such that x9"(ep41,01) = 0. It follows that there exists an automorphism g, such
that x9"(ANW,) = 0.

2) If x is a character as in 2) above and if ey € BN W, and ego € BN W, then it
follows from the formulas

X9 (eab1) = X(€ap1) +a-by_qjs,

X9 (eab2) = X(eab2) +a-apajb—bp-1-ajr1-5(j +1—2b)
that we can choose a,_q j—t,bp—a,j—p € K such that x9"(eq1) = 0 = x9"(eqp2). For
n > 1 and each a,b with a +b=mn+1 and a > 0 choose a,_q j—p,bp—q j—p € K such
that x9"(eqp1) = 0 = x9"(eap2). For a,b with a +b = 1 choose by_1j,bp—2j4+1 € K
such that x97(e102) = 0 and x9"(eg12 + jeio1) = 0. For n = —1 choose bp_1 ;41 € K
such that x9"(egp2) = 0. It follows that x9*(B N W,) = 0.

For the final remark apply Lemma 11.6.1 below. The proof is completed. [l
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11.6 A GLy(K)—submodule of W, ;4
For x of height r, where r is given by r = p — 1 + j, we define

p—1
Vo1 := Z K((T +1-— a)eam_aJ — aea_17r+1_a72). (117)
a=j+1

Note that V,_; is a GLy(K)-submodule of W,._1: To see this, define for each a with
j+1<a<p—1elements v, = (r+1—a)esr—q1 — a€e—1,r+1—a,2 and apply the relations

in Appendix A to get:
0 1
10 Vg = —Urtl—a

t1 O 1
( 0 t2>-va = tf ltg g for tq1,t9 € K*,

a 1

(10) o = So@or s aex

But any GLy(K)-matrix can be written as a diagonal matrix composed with a lower
triangular matrix with 1 at the diagonal or a composition of a diagonal matrix, lower
triangular matrices with 1 at the diagonal and the matrix

01
10/
Use the Bruhat decomposition of GLo(K) in [23, 8]. From the relations above, we
conclude that V.1 is a GLy(K)-submodule of W, _;.

Lemma 11.6.1. Suppose that st(x, W>,) # W>q and let V,_1 be defined as in (11.7). Then
X 1s conjugate under Aut(W) to a character of type Type A if and only if x(Vy—1) # 0.

Proof. We know that V,_; is a GLy(K)-submodule of W,_;. Therefore g(V,—1) C V,_1 +
W, (use the decomposition of Aut(W)). It follows that x(V,—1) # 0 if and only if
X9 (V1) # 0 for all g € Aut(W). Therefore: If y is conjugate to a character of Type A,
then we can use (11.7) and the definition of Type A characters to get x(V,—1) # 0. In a
similar way; if y is conjugate to a character of Type B then x(V,—1) = 0. O

11.7 Restricted subalgebras

In this section we will introduce two restricted Lie subalgebras of W. The subalgebras
defined below will be of great importance when we shall describe the set of irreducible
Uy (W)-modules for p = 3. First, define

g:= @ @ Keijg@ @ @ Keijl' (118)
0<i<p 0<j<p 0<i<p 0<j<p

We can think of g as W except all e;p2 for e =0,1,...,p— 1. Let us check that g is in fact
a restricted Lie subalgebra of W. Consider two basis elements egpc, €ag, € g. If we apply
the commutator relations (3.1a), (3.1b) and (3.1d) we get:

(v —a)eqta—1p+8,1 ife=vy=1,
[eabcv eoéﬁ’\/] = —bearaprp-11+ Xata—1p+52 ifc=1andy=2,
(B —b)eatap+p—1,2 ifc=~v=2.
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If ¢ = v =1 we clearly have [e41,€q0p1] € g. If c=1 and v = 2 then 5 > 0 and hence
b+ B > 0 also; it follows that [eqp1,€qp2] € g. Finally, [eqp2, €ap2] € g since b+ 3 —1>0

when b > 0 and 8 > 0. Moreover, g is restricted since el

abc
g (note that egpb} . = Cabe OF egz]c = 0 by the properties of the [p|-mapping).

In particular, gNWsq is a restricted Lie subalgebra of W>q: In fact it is a restricted Lie
subalgebra of Wp12 hence supersolvable. We have codimgg N W>¢ = 1 and codimpy g = p.
We define

h::ngZOZ @ @ Kez‘j2@ @ K€0j1@ @ @ Kez-jl. (11.9)

0<i<p 0<j<p 0<j<p 0<i<p 0<j<p

€ g for all basis elements ey, of

If we intersect the chain from (9.10) with b, then we get a chain
hbOohNWigr DhNWy1 D---D0 (11.10)

that we can use to construct Vergne polarizations (after moving repetitions).

Define
p—1

a:=> (ad ego1)" (W) (11.11)
k=0
where r is the height of the exceptional character y introduced in the beginning of this
section. Note that a C Wx,41-, C W>o. Let j be the integer with 0 < j < p — 1 defined
by r=p—1+7.

Lemma 11.7.1. Let a be defined as in (11.11). Then a is a p—ideal of g and for all s > 0
we have that a N W4 is a p—ideal of b.

Proof. Note that all elements ey, with b > j 4+ 1 and ¢ = 1,2 form a basis for a.

Consider eyy1 € g. If egp1 € a, then [ey1, €m1] = (@ — w)eyrq—1,0461 € a (clearly,
v+b>j+1whenbd>j+1)and [eyy1,€a2] = —Veytavtv—1,1 + Geyta—1v+b2 [if v >0
this element lies in a since v +b,v+b—12>j4+1if b > j+ 1. If v = 0 the first term is
zero and €, 4_1p2 € a since b > j + 1|. Hence [eyy1,a] C a for e, € g.

Next, let ey € g with v > 0. From the relations [eyv2,€qp1] = beytavrb—1,1 —
Ueyta—1v+b2 and [€yy2,eap2] = (b — v)eytqutp—1,2 it follows that [eyy2,a] C a since
v+b—1v+b>j+1forv>0and b > j+ 1. We have thus shown that a is an
ideal of g. All basis elements ey, of a satisfy eg’b]c = €gpe OT eg’b]c = 0; hence a is a p—ideal

of g. The final statement follows since h C g and [h, W4 C W, for s > 0. O

Proposition 11.7.2. If x(a) # 0 then induction induces a bijection between the iso-
morphism classes of irreducible U, (h)—modules and the isomorphism classes of irreducible
Uy (g) -modules.

Proof. Let s > 0 be defined such that x(a N Ws_1) # 0 but x(a N W>;) = 0. Let N be an
irreducible U, (h)-module. If f € a N W>, such that x([ego1, f]) # O then

To see this, adopt the notation from Section 6.4 with G = g and H = §h: Note that
f-y=0foralyel®N since aN W4 annihilates N by Lemma 6.3.1. Moreover,
(ad ego1)'(f) € a C b for all i we also have (ad eg1)(f)-1® N € 1 ® N. We can
assume that f = ey for appropriate a,b,c. It follows that [ego1, f] acts bijectively on

Uy(8) ®u,m) N since x([eoor, f]) # 0 and [egor, f]P = 0 or [egor, f]? = [eoo1, f] (see
Remark 6.4.2). Now apply Proposition 6.4.1 with n = 1 and e; = egp1 to get (11.12).
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This implies that Uy (g) @y, () N is irreducible: Any irreducible W-submodule M has
a nonzero intersection with 1 ® N (take an eigenvector for f considered as linear map on
M and use that fP) =0 and x(f) = 0). Therefore M N (1@ N) #0. But MN (1@ N) is a
nonzero Uy (h)-submodule of 1 ® N and therefore, by irreducibility, M N(1® N) =1® N.
In particular, we have M D 1 ® N and hence M is the entire induced module.

If N1, Ny are irreducible U, (h)-modules such that

¢ : Uy(9) ®u,(n) N1 = Uy(9) ®u, () N

is an isomorphism, then ¢ induces a U, (h)-isomorphism @ : N1 ~ Nj. Indeed, there exists
anonzero 1 € Nj such that p(1®z1) = 1®ze € 1®N; (look at ¢ applied to any eigenvector
for f and use (11.12)). It follows that ¢(1&N1) = p(Uy(h)-1®x1) = Uy (h)-1®x2 = 1& Na;
hence N1 ~ Ns. [l

We will return to the two types of characters introduced in Section 11.5.

11.8 Type A characters

Keep the notation from the previous section. In this section we will take a closer look at
characters of Type A. So let x € W* be a character of Type A defined in Section 11.5. Let
cw (x) be the stabilizer of y in W defined in Section 10.4. We also define rk ¢y (x) as the
dimension of any maximal torus in ¢y (x).

Theorem 11.8.1. Let x be a character of height r > p and Type A such that x(a) # 0
with a as in (11.11). Then any irreducible Uy (W)-module has dimension pedmwew()/2
and the number of isomorphism classes of irreducible U, (W) -modules is given by:

p ifrk ew(x) =1,
1 ifrk ew(x) = 0.

Proof. We proceed in several steps:

1) Let p be the integer with 1 < p < p—1 such that x(aNW>,41-,) =0 # x(aNW>,_,).
Such an integer exists since x(a) # 0 and a C Wxp41-p.

2 For any p with 1 < p <p—1, set

p—1
hp = [] D @Kéaog.

a=p

It is easy to check that any b, is a subalgebra of W (apply commutator relations).
Moreover, b, is stable under the p-mapping (true for all basis elements) such that b,
is a Lie p—subalgebra of W. It is supersolvable as a Lie p—subalgebra of Wys.

The idea is to use Theorem 6.3.3 and get for p as in 1): Induction is a bijection
between the isomorphism classes of irreducible U, (h,)-modules and the isomorphism
classes irreducible U, (W )-modules.

3) Let p be the integer from 1). Note that a N W>, 41—, has a basis consisting of all
elements egp. with b > j+1and a+b > r+ 2 — p and ¢ = 1,2. Moreover, since
r+1—p>3forr>pand p<p—1wehave aNWs, 1, C W>3. By Lemma 11.7.1
we have that a N W1, <b is a p-ideal. Moreover, [€a02,a N W2r+l—p] Cc Ws, C
anNWspy1-, for a > p. We conclude that a N Wx,41_, is a unipotent p-ideal in b,
with x(aN Ws,41-,) = 0.
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4)

Set [:= [W,aNW>,41-,]. Then [ C Wy and is generated by all egp. with b > j and
a+b>r+1—pandc=12 It follows that [ has a basis ly,lo,...,l, such that
lim =0foralli=1,2,...,n. Moreover [[,[] C W, is unipotent. Since [ C W>,_, we
conclude that [I, 1] C Wa,_2, and it follows from commutator relations that a subset
of {eape |b>2j—1and a+b > 2r —2p+1} form a basis for [[,[]. But2j —1>j+1
(since j > 1whenr =p—1+j >planda+b>2r—2p+1>r+2—pso
[L1] CanWs,q1-p; hence x([l,1]) = 0.

We have already observed that [ is contained in W2 and generated by elements egp.
with b > j > 0. Therefore [W,[] is contained in W>; and generated by elements eqp.
with b > j — 1 > 0; hence [ and [W, [] are contained in h C b,,.

We have st(x,a N W>,11-p) ={x € W | x([z,y]) =0Vy € anWx,41-,} = b,. To
see this note that we clearly have b, C st(x,aNWs,41-,) by 3). On the other hand,
consider an element

T = apego2 + aieip2 + -+ ap—1€p—1,0,2 + Ceoo1

in st(x,a N Wsy,41-,) for some ag,ai,...,a,-1,c € K.

We now define f; := (ad 6001)i(€p_17j+171) €canNWsyy1pfori=0,1,2,...,p— 1
By assumption on x (Type A) we have

x([eoor, (ad €g01)"(€p-1,41,1)]) = 0

for all i+ = 0,1,...,p — 1 since x vanishes on all e, ;41,1 with a > 0. Moreover,
X([eio2, fi]) # 0 for all i = 0,1,...,p — 1. Thus we get:

X([z, fo]) =0 = ap=0
X([z, f1])) =0 = a1 =0

X([xvfp—l])zo :> ap_1:0.

Moreover, the assumption on x implies that there exists f € a N Wx,11_, such that
x([eoo1, f]) # 0. Now use that x([z, f]) =0 and ag = a1 = --- = a,—1 = 0 to get
c = 0 also. Hence st(x,a N Wx,11-,) = bh,.

Set e; = €2 for i = 0,1,...,p— 1 and e, = egp1. Then eg,e1,...,¢, is a basis for
a complement to b, in W. We will apply Theorem 6.3.3: Adopt the notation from
Section 6.3 and set g = W and h = b, and a = a N W>,11_,. Then use step 6) and
Remark 6.3.9 to find fg, fi,..., f,_1, f, € a0 Wx,1-, such that x([e;, f}]) = di;.
We are now in position to apply Theorem 6.3.3: Induction is a bijection between
the isomorphism classes of irreducible U, (,)-modules and the isomorphism classes
irreducible U, (W)-modules.

Before we finish our proof we need two remarks:

Remark 11.8.2. Since induction is a bijection between the isomorphism classes of ir-
reducible U, (h,)-modules and the isomorphism classes irreducible U, (W )-modules and
since h, C W it follows that induction is a bijection between the isomorphism classes of
irreducible U, (W>¢)-modules and the isomorphism classes irreducible U, (W')-modules

Remark 11.8.3. The proof of st(x,aNW>,11_,) = b, has an important application: Use
Remark 6.3.6 and find f € a N Wx, 41—, such that x([eoo1, f]) # 0 but x([f, ej02]) = 0 for

I < p—1. Since x([f,h,]) = 0 also we get: x([f,e001]) # 0= x([f, eo02]) = x([f, W>0])-
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Now we are in position to prove the dimension formula for irreducible U, (W)-modules
where y is exceptional (under the additional assumption x(a) # 0): We will use results
from Section 10.4. But many results in that section may not be true if r = 2p — 3 and if
x has type Il.a as in 5.2. For our x this case does not occur so we do not have to worry
about that point!

Take A € Wjo such that the Vergne polarization py of A constructed via (9.10) is
compatible with x and equal to p,. The existence follows from Theorem 10.1.1. Thus it
follows from Theorem 10.4.6 that any irreducible U, (W>q)-module has dimension

pCOdimWZO wso(Xwso)/2

Finally, use that ¢y (x) C st(x,a N Ws,41-,) = b, C Wxo with Lemma 10.4.7 to get
dimgew (x) = dimgew,,(xjw,) — 2- Since induction takes irreducible Uy (W>o)-modules
to irreducible U, (W) we obtain the dimension formula: Any irreducible U, (W )-module
has dimension peodimwew (x)/2,

By Theorem 10.4.5 the number of irreducible U, (W>o)-modules is p if rk ey (X|w,) =
1 and 1 otherwise (i.e., if rk cw,,(Xjw=,) = 0 by Lemma 10.4.2).

If tk ew(x) = 1 then rk ew.,(xjw.,) = 1 (apply Lemma 10.4.2 together with the
inclusion ¢y (X) C ews, (X|w,)- Since induction from Wxq to W is a bijection the number
of irreducible U, (W)-modules is p as claimed.

If rk ey (x) = 0 then I claim tk ey, (x|w.,) = 0 [Otherwise there exists a nonzero
toral element h € ¢, (X|w.,). By Remark 11.8.3 above we can easily find a,b € K such
that 2’ := h+af +bep_1,4+11 € ew(x). But (W)Pl € b + Woiy. Therefore rk ey (x) # 0
which is a contradiction|. Now use that induction from Wq to W is a bijection to get that
the number of irreducible U, (W)-modules is 1.

The proof is completed. O

Remark 11.8.4. For r = p — 1 or r = p we cannot use the proof above. Whether one
can extend the proof above to r = p — 1,p, I don’t know. But examples for p = 3 (see
Theorem 13.3.2.a and Theorem 13.11.6.a) show that the theorem might extend to r = p
and r =p— 1.

Theorem 11.8.5. If x(a N Wy ,12-p1) = 0, then induction induces a bijection between

the isomorphism classes of irreducible U, (g)—modules and the isomorphism classes of irre-
ducible U, (W)-modules with g as in (11.8).

Proof. Set e; = e;02 for [ = 0,1,...,p—1. Then eg,eq,...,e,—1 form a basis for a comple-
ment to g in W. Set

= J o1t (DG +2) ey oty ifr<2p—3,
€p—1—-1,p—1,1 if r = 2]) -3

for | =0,1,2,...,p — 1 (note that » < 2p — 3 implies that j + 2 # 0). It is easy to see
that x([e;, fi]) # 0. Moreover, we have [e;, fi] € Ke,—1,j1® Kep_2 j11,2; hence [e;, fl][p] =0
since

[p] _
ep_17]71 - 07

[p] _
p-2ji12 = O
[ep—l,J}la[ep—l,j717€p—2,j+172]] = 0
[ep_z’]+1727 [ep_z’]+172’ ep_l’]71]:| = 0'
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Now adopt the notation from Section 6.4: Let N be an irreducible U, (g)-module and
define for [ =0,1,...,p— 1:

Ni= P el @N CU (W) @y, g N

0<ig,...,ip—1<p

Interpret N, as 1® N. Note that each N; with I > 0 is a Wjge-module (see page 13 for
notation and recall that Wy is a Lie p—subalgebra for [ > 0 by Lemma 3.1.1): Indeed, the
PBW theorem says that any element y € U, (Wjg2), where 0 < [ < p—1, can be written as

_ § i -1 o
Y= € ey 1 Wip iy for Wiy,...ip—1 € B (*)
0<iy,eyip—1<p

If x € Wigo then x - efl e e;p__ll € U, (Wjp2) and we can use (*) to get = - N; C N; for [ > 0.

I claim that f; - N3 = 0. For r < 2p — 3 we have [eg, fi] = 0 for & > [ and hence
fi-Niz1 =0if f;- N =0. If r = 2p—3 we have fle;ﬁff = e;ljllfl +(1+ 1)il+16;$11_16p_1,p_171
and since [fj,ex] =0 = [ep—1p—1,1,€x) for k with I +1 <k < p—1 we have f;- Njy1 =0
if i - N=0=¢ep_1p-11-N =0. But N is an irreducible U, (g)-module and therefore
a homomorphic image of Uy (g) ®y, () S, where S is an irreducible U, (h)-module. Now,
observe that f; € anWy ,12_p1 and that (ad ego1)(fi) = —(l+1) fi41 for all [; thus we have
(ad 8001)m(fl) € aﬁW07r+2_p71 for all m,l. Moreover, (ad 6001)m(6p_17p_171) € aﬁW07r+2_p71
for all m. So we only need to show that a N Wy 42,1 annihilates S in order to show
that f; - Njpp = 0. But a N Wy ,42-p1 is a unipotent ideal in b since [h,a] C a and
(b, Wor42-p1] C Woryo—p1 and x(a N Woryo-p1) = 0; hence (a N Woyyo-p1)-S =0 by
Lemma 6.3.1.

In order to apply Corollary 6.4.3 we only need that (ad e;)*(f;) - Niy1 C Ny for all k.
Since (ad ¢))*(f;) € Wit1,02 for all k we are done since each N; is a Wjpe—module for [ > 0.

Thus we have by Corollary 6.4.3:

{freUW)ey NI firz=0forl=0,1,...,p—1} =1®N.

Therefore,
{x e U,(W) Qu, (g) N|(anWyri2-p1)-2=0} C1®N.

This implies that U, (W)®, () &V is irreducible: Any irreducible W-submodule M has a
nonzero intersection with 1® N. [Since anWy r42_p 1 is unipotent with x(aNWo r12-p1) =0
the trivial aN Wy ,42-p 1-module K is the only irreducible Uy (a N Wy ;425 1)-module (up
to isomorphism) by [14, 3.2] so an irreducible U, (a N W y12-p 1)-submodule of M has a
nonzero intersection with 1® N.| But M N(1® N) is a nonzero U, (g)-submodule of 1® N
and therefore, by irreducibility, M N (1 ® N) =1 ® N. In particular, we have M D 1® N
and hence M is the entire induced module.

If N1, Ny are irreducible U, (g)-modules such that

o : Uy(W) ®p, (g) N1 = Uy(W) @y, (g) N2

is an isomorphism, then ¢ induces a U, (g)-isomorphism @ : N1 ~ Ny. Indeed, we have
©(1 ® N1) N (1 ® Na) # 0. (Look at the elements annihilated by a N Wy, 42-p51.) Since
©(1 ® Np) and 1 ® Ny are irreducible U, (g)-modules, we get ¢(1 ® N1) = 1 ® Na; hence
N1 ~ NQ. [l
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11.9 Type B characters

In this section we will take a closer look at characters of Type B. So let x € W* be a
character of Type B defined in Section 11.5.

Theorem 11.9.1. Let x be a character of height r > p and Type B such that x(a) # 0 with
a as in (11.11). Ifrk ew(x) = 1 then there exist up to isomorphism p irreducible U, (W)~
module of dimension pi™wWew()/2 - If vk ey (x) = 0 then there exists up to isomorphism

1 irreducible Uy (W)-module and the dimension is peodimwew()/2=1 o peodimwew (x)/2 o
pcodimw ew (x)/2+1 )

Proof. We proceed in several steps:

1)

2)

Define integer p with 1 < p <p — 1 such that x(a N Wx,41-,) =0 # x(aNW>,_,).
Such an integer exists since x(a) # 0 and a C Wxp41_p.

For p with 1 < p < p—1, set

p—1
by = & P Kean

a=p
as in the proof of Theorem 11.8.1. It is supersolvable as a Lie p—subalgebra of Wyqs.

The idea is to use Theorem 6.3.3 and get for p as in 1): Induction is a bijection
between the isomorphism classes of irreducible U, (h,)-modules and the isomorphism
classes irreducible U, (W )-modules.

Let p be the integer from 1). Set a, := aNWs,y1-, + Zz;g(ad 6001)k(€p_17]’71) C
W>,41-,. Note that a, has a basis consisting of all elements e, with b > j 41 and
a+b>r+2—pandey withdb>jfora+b>r+2—p.

Consider a basis element e, € h,. Then [eys1,€ap1] = (a—7)€rta—1,5151 € a, for all
eap1 € a, (clearly, s+b > j when b > j). Next, consider [e,s1, €qp2] = —S€r1as4b—1,1F
aeryq—1,s+b2. If s > 0 this element lies clearly in a,, since s +b,s +b—12>j+1if
b>j+ 1. If s =0 the first term is zero and e,44,_12 € a, since b > j + 1. Hence
lerst, ap] C a, for eqs1 € b,

Consider e,g with 7 + s > p and observe that [e,s2,a,] C W>, C a,. Finally, let
ers2 € b, with s > 0. From the relations [e,s2, €ap1] = beriastb—1,1 — T€ria—1,54+b2
and [e,s2, €qp2] = (b — 5)epqqs4+b—1,2 it follows that [e.s2,a,] C a, since s+b—12>j
fors>0andb>jand s+b,s+b—1>j+1forb>j+1. Sincea, C W>3 (r >p
and p < p— 1), we conclude that a,<b, is a unipotent p-ideal with x(a,) = 0 (since
x(aNWs,41-,) = 0 and since x(eqj1) = 0 for all a > 0 — Type B).

Set [:= [W,a,]. Then [ C W>, and is generated by all eqpo with b > j and a +b >
r+1—pand c=1,2and all e,y withb > j—1and a+b > r+1—p. It follows that [
has a basis Iy, s, ..., [, such that lim =0foralli=1,2,...,n. Moreover [[,[] C Wx4
is unipotent. Since [ C W>,_, we conclude that [[,[] C Wa,_s, and it follows from
commutator relations that a subset of

{ea1 |0>2j—2and a+b>2r—2p+1}U{eqe |b>2j—1and a+b> 2r—2p+1}

form a basis for [[,[]. But 2j —2 > j and 2j —1 > j + 1 (since j > 1 when
r=p—14+j>planda+b>2r—2p+1>r+2—pso I C a,; hence x([(,1]) = 0.

75



5) We have already observed that [ is contained in W9 and generated by elements egp2
with b > j > 0 and elements eq with b > j —1 > 0. Therefore [W,[] is contained in
W1 and generated by elements eqpe with b > 7 —1 > 0 and ey, with b > j —2 > 0;
hence [ and [W, [] are contained in h C b,,.

6) We have st(x,a,) = {z € W | x([z,y]) =0Vy € a,} = b,. To see this note that we
clearly have b, C st(x,a,) by 3). On the other hand, consider an element

T = apepo2 + aieio2 + -+ ap—1€p—1,0,2 + Ceoo1

in st(x,a,) for some ag,ai,...,a,—1,c € K.

Set fo = ep—1,+1,2 and f; := (ad 6001)1'_1(6]9_17]-71) €a,fori=12,...,p—1. By
assumption on x (Type B) we have

X([eoot, (ad ego1)™™ ! (ep-1,4,1)]) = 0

for all ¢ = 1,...,p — 1 since x vanishes on all e,;1 with a > 0. Moreover, we have
X ([€i02, fi]) # 0. Thus we get:

X[z, fo]) =0 = ag =0

X([%fl]) =0 = a1 =0

The assumption on x implies that there exists f € a, such that x([ego1, f]) # 0.

Now use that x([z, f]) =0 and ag = a1 = --- = ay,—1 = 0 to get ¢ = 0 also. Hence
.‘St(X, ap) = hp'
7) Set e; = ejop for i =0,1,...,p—1 and e, = ego1. Then eg,e1,...,e, is a basis for

a complement to b, in W. We will apply Theorem 6.3.3: Adopt the notation from
Section 6.3 and set g = W and h = b, and a = a,. Then use step 6) and Remark 6.3.9
to find fo, fi,..., f,—1, f, € a, such that x([e;, f;]) = di;. We are now in position
to apply Theorem 6.3.3: Induction is a bijection between the isomorphism classes of
irreducible U, (h,)-modules and the isomorphism classes irreducible U, (W)-modules.

Before we finish our proof we need two remarks:

Remark 11.9.2. Since induction is a bijection between the isomorphism classes of ir-
reducible U, (h,)-modules and the isomorphism classes irreducible U, (W )-modules and
since h, C W it follows that induction is a bijection between the isomorphism classes of
irreducible U, (W>g)-modules and the isomorphism classes irreducible U, (W')-modules

Remark 11.9.3. The proof of st(x,a,) = b, has an important application: Use Remark
6.3.6 and find f € a, such that x([ego1, f]) # 0 but x([f,ew2]) = 0 for I < p — 1. Since

X([f,b,]) = 0 also we get: x([f,eo01]) # 0 = x([f, eoo2]) = x([f, W>0])-

Now we are in position to prove the claims for the dimension of irreducible U, (W )-
modules where x is exceptional (under the additional assumption x(a) # 0): We will use
results from Section 10.4. But many results in that section may not be true if r = 2p — 3
and if x has type Il.a as in 5.2. For our x this case does not occur so we do not have to
worry about that point!

Take A € W, such that the Vergne polarization py of A constructed via (9.10) is
compatible with x and equal to p,. This time we cannot be sure that py = p,. [If p, is
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non unipotent we can choose A that way by Theorem 10.1.1.a but for unipotent p, the
computations in Section 10.3 require st(x, W>,) = Wxq or r < p or x([eoo1, Wr—1]) # 0,
but none of these conditions are satisfied for Type B characters of height > p; in the
unipotent case we can therefore only say that py is unipotent and that dimgpy = dimgp,
or dimgpy = dimgp, — 1 or dimgpy = dimgp, + 1]

If tk ew(x) = 1 then rk cw,(xjw>,) = 1 (apply Lemma 10.4.2 together with the
inclusion ew (x) C ew,(Xjws,))- Therefore py is non unipotent [since ew,(Xws,) is a
subspace of Wpi2 (use Lemma 10.4.1 with = e,_2 j41,2) and therefore contained in p,!|
Since induction from W to W is a bijection the number of irreducible U, (W )-modules
is p as claimed. The dimension is given by peodimw ew (x)/2 (in the non unipotent case we
can choose A such that py = p,; now conclude as in the proof of Theorem 11.8.1).

If rk ey (x) = 0 then I claim rk ey, (X|w,) = 0 (otherwise there exists a nonzero toral
element h € ey, (X|w-,)- By Remark 11.9.3 above we can easily find a,b € K such that
W =h+af+bey 1411 € cw(x). But (W)Pl € b+ Wyi1. Therefore rk ey (x) # 0 which
is a contradiction). Now use that induction from W to W is a bijection to get that the
number of irreducible U, (W)-modules is 1. But now we can either choose A such that
dimgpy = dimgp, or dimgpy = dimgp, — 1 or dimgpy = dimgp, + 1. Now the claim
on the dimension follows.

The proof is completed. O

Remark 11.9.4. For r = p — 1 or r = p we cannot use the proof above. Whether one
can extend the proof above to r = p — 1,p, I don’t know. But examples for p = 3 (see
Theorem 13.4.5.a and Theorem 13.12.6.a) show that the theorem might extend to r = p
and r=p— 1.

We now seek for an analogous result for Type B characters to the one proved for
Type A characters in Theorem 11.8.5. We will have to require x(a) = 0 instead of just
X(a N W07r+2_p71) =0.

Before we prove that result we need a lemma.

Lemma 11.9.5. Let g be as in (11.8) and let a be as in (11.11). If M is a Uy (W)-module
and M # 0, then
{reM|a-z=0}%£0

and there exists an irreducible U, (g)-submodule X C M with a- X = 0.

Proof. This is clear for » > p — 1 since a is unipotent in that case; thus we can take an
irreducible U, (a)-submodule of M which, by [14, 3.2|, is isomorphic to the trivial module
K. So there exists a nonzero x € M with a-x = 0. Consider the case that r = p — 1:
Set b = a@® Ke,_10,1. Since [b,b] C b N Wyiy there exists a Uy (b)-module K as being
equal to K as a vector space and where the module structure is given by: e-1 = 0 for
e € bN Wy and egia - 1 =1 (since egi2 € a with x(egi2) = 0 we have [ € Fp). Since
b C Woiz is supersolvable any irreducible U, (b)-module is isomorphic to some K; with
l € Fp by Lemma 9.1.3. So there exists a nonzero x € M with (b N Wy11) -2 = 0 and
eo12 - = lz for some [ € F,. If I > 0, set y := 6;_17072 -2z € M. Then y # 0 since
X(ep—1,0,2) # 0. Moreover, we have epi2-y = 6%—1,0,2(6012 —1)-x=0and (bNWy11)-y =0
since [ep—1,0,2, 06 N Wo11] C b N Woi1. We conclude that that a- 2 =0ifl=0and a-y =0
if I > 0; hence {z € M |a-z =0} #0.

The final statement in the lemma is now clear: Take nonzero x € M such that a-x = 0.
Then U, (g) - = is a U,/(g)-submodule of M annihilated by a (since a is an ideal in g and
a-x =0). Thus it contains an irreducible U, (g)-submodule X such that there exists an
irreducible U, (g)-submodule X C M with a-X =0. O

7



Theorem 11.9.6. If x(a) = 0, then induction induces a bijection between the isomor-

phism classes of irreducible U, (g)-modules annihilated by a and the isomorphism classes
of trreducible Uy (W')—modules.

Proof. Set e = ejp2 for l =0,1,...,p—1. Then eg,eq,...,e,—1 form a basis for a comple-
ment to g in W. Set

fl = €p—_1-1,j+1,2 for | = 0, 1, 2, ceey P — 1.

It follows that [e;, fi] € Kep—_1,;2; hence [ey, fillPl = 0. Tt is easy to see that x([e;, fi]) # 0
and that [eg, fi] =0 for k with [ <k <p—1.

Now adopt the notation from Section 6.4: Let N be an irreducible U, (g)-module with
a- N =0 and define for [ =0,1,...,p—1:

N; = @ 6? e G;p__ll QN C U, (W) ®u, (g) V-

0<iponyip 1 <P

Interpret N, as 1 ® N. Note that each N; with { > 0 is a Wjge—module (see the proof
of Proposition 11.8.5). For k > [ we have [eg, fi] = 0; hence f; - Nj41 = 0 since f; € a with
fi - N =0 by assumption.

In order to apply Corollary 6.4.3 we only need to prove that (ad e;)*(f;) - Nip1 € Nigq
for all k. Since (ad ))*(f;) € Wit1,02 for all & we can use that Ny is a W41 9 2-module;
hence (ad ¢;)*(f;) - Niy1 C Nyyq for all k. Thus we have by Corollary 6.4.3:

{xEUX(W)®UX(g)N|a'ZL‘ZO}=1®N.

This implies that U, (W) ®y, (g N is irreducible: Any irreducible W-submodule M has
a nonzero intersection with 1 ® N by Lemma 11.9.5. Therefore M N (1 ® NNV) is a nonzero
Uy (g)-submodule of 1 ® N and, by irreducibility, M N (1® N) =1® N. In particular, we
have M D 1® N and hence M is the entire induced module.

If N1, Ny are irreducible U, (g)-modules annihilated by a such that we have an isomor-
phism ¢ : Uy (W) @y, () N1 = Uy(W) ®yp, () N2, then ¢ induces a Uy (g)-isomorphism
@ : Ni >~ Ny since ¢(1 ® N1) N (1 ® N2) # 0 (look at elements annihilated by a). But
©(1® Ny) and 1 ® N» are irreducible U, (g)-modules so we get ¢(1 ® Ni) =1 ® Na; hence
Nl ~ Ng.

We have thus shown: Induction induces an injection from the isomorphism classes of
irreducible U, (g)-modules annihilated by a into the isomorphism classes of irreducible
Uy (W)-modules.

Now, let Y be an arbitrary irreducible U, (g)-module. I claim that we can find an
irreducible U, (g)-module X with a- X =0 and

Uy(W) @y, (g) X — Uy(W) Qu, (g Y-

First, apply Lemma 11.9.5 to find an irreducible U, (g)-submodule X C Uy (W)®y, ()Y
with a - X = 0; thus we have inclusion maps:

X = Uy(W) @y, (g Y-

Now apply 'Frobenius reciprocity’ on the inclusion X — U, (W) @y, (g ¥ and obtain a
(nonzero) U, (W)-homomorphism:

Uy (W) XU, (g) X — Uy (W) XU, (g) Y. (11.13)
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This implies that every U, (W )-module is induced from a U, (g)-module annihilated
by a: Indeed, any irreducible U, (W)-module V contains an irreducible U, (g)-module Y;
hence, by "Frobenius reciprocity’, V' is a homomorphic image of Uy (W) ®y, (g Y and by
(11.13) then also a homomorphic image of U, (W) @y, (g X for some irreducible U, (g)-
module X with a- X = 0. By the part of the claim already proved we therefore have
V = Uy (W) ®y, (g X The proof is completed. O

Remark 11.9.7. If » > p — 1 then a C W>; and therefore a is a unipotent ideal in
g with x(a) = 0; by Lemma 6.3.1 all irreducible U, (g)-modules are annihilated by a.
So Proposition 11.9.6 says for » > p — 1: If x(a) = 0, then induction induces a bijection
between the isomorphism classes of irreducible U, (g)-modules and the isomorphism classes
of irreducible U, (W)-modules.

12 Rank 2

Let p > 2 and let x be a character of height  such that rk ¢y () = 2. Define
Ty = Keo2 @ Kejor,
Ty = K(ego1 — ep—1,01) ® Kepia,
Ty, = K(eoo1 + e101) © K(eoo2 + €o12)-

It is easy to check that Ty and 75 are maximal tori. I claim that 7} is a maximal torus also:
Since [eg12, €001 —€p—1,0,1] = 0 we only need to prove that (ego1 —ep_Lo,l)[p} = €001 —€p—1,0,1-
This will be a consequence of the following: Let b € K* and let Dy = ego1 + bep—1,0,1 be
the derivation on By = K[X7, XQ]/(X{), XP) given by

0 1 0
Dy=— +brt — 12.1
b 83:1 + 1 83:1 ( )
where x7 is the image of X in By. Any derivation on By is determined (uniquely) by its
values on x1 and xo. If we evaluate Dy on x1 we get 1—|—b:c11”_1. Fors=2,3,...,p—1 we easily

find Dj(z1) = b]_[f:_pl_yr]L iz}~ ®. In particular, Dbp_l(azl) = —brysince1-2---(p—1) = -1
(mod p). Now we get

DPN(ay) = (eoor + bep-1.01)7(x1) = —b(1 + bt ™).

Finally, D][)p] (:EQ) = 0 so we have (6001 + bep—l,o,l)[p] (1171) = (b(eom + bep_L(),l)) (:El) and
(ego1 + bep_1,071)[p] (x2) = (eoo1 + bep—1,0,1)(z2). Therefore we have (egor + bep_lyoyl)m =
—b(ego1 + bep—1,0,1) and so D_; is a toral element. Moreover, K Dy is a torus since cDy, is
toral for some ¢ € K*: In fact, we shall choose ¢ € K such that ¢P~1b = —1.

Note that none of Ty, T1, T are conjugate under Aut(WW). In [4, Thm. 1|, Demushkin
proves that any maximal torus in W is conjugate under Aut(W) to exactly one of the
maximal tori Ty, T} or 1.

So we can find g € Aut(W) such that ¢y (x?) contains one of Ty, Ty or To. It is well
known that the representation theory of U, (W) depends only on the Aut(W)-orbit of x.
Thus: We will in the following assume that x # 0 and that ¢y (x) contains Ty or Ty or Tb.

Note: There exists a nonzero character x such that ¢y (x) contains Ty or T3 or T. In
fact, if T is any torus then T = @ ; Kh; for n <2 and hz[-p} = h; for all 7. It follows that
ad(h;)P = ad(hzm) = ad(h;) for all i so each ad(h;) acts diagonalisably on W. But all h;
commute so adyy T is simultaneously diagonalizable. Now T' is a adyT—submodule of W

so, by [3, 3.12], there exists a ady T—submodule V' of W such that W = T @®V. Now define
x € W* such that x(V) =0 and x(7T") # 0. Then x # 0 and ¢y (x) D 7.
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12.1 Stabilizers of rank 2
Lemma 12.1.1. If ey (x) D 1o then x =0 or x(Tp) # 0 = x(W_1 & Kejp2 ® Wp11) = 0.

Proof. Note that

jeijk k=1, (Z - 1)eijk k=1,
€012, Cijk| = and €101, €iik] =
[eo12, €ijk] {(j e k=2 [e101, €3] {ieijk .
It follows that x(ej;r) = 0 unless (ijk) = (012) or (ijk) = (101). O

Lemma 12.1.1 says that x has height —1 (or equivalent: x = 0) or x has height 1 if
cw (x) D To. The representation theory of x can be obtained from our computations in
the "height at most one" case. See Appendix C. If y = 0 we require p > 3 in order to use
[10].

Lemma 12.1.2. If x # 0 and cw(x) D T1 then x(eij1) = 0 if j # 0 and x(eij2) = 0 if
Jj # 1. We have x(eon1) = 2x(ep—1,0,1) and x(ejp1) = 0 for 1 < i < p —2 and we have
X(€012) = X(ep_LLQ) and X(eﬂg) =0 fOT‘ 1 S 7 § pP— 2.

Proof. Since ep12 € ey (x) we have x(e;j1) = 0 unless j = 0 and x(ejj2) = 0 unless j = 1.
This follows from

J€ijk k=1,

(] — 1)€ijk k=2.

[6012, ez'jk] = {

The assumption ego1 — €p—1,01 € ew (x) implies that:

: (12.2)
7 (12.3)

ix(ei—1,0,1) — (¢ + 1)x(ep—2+i0,1) =0
ix(€i-1,1,2) — ix(ep—2+i1,2) =0
for all ¢ with 0 < i < p—1 [we define e;_101 = 0 = €102 for i = 0 and we define
ep—2+i,01 = 0 = ep_o4;1,2 for i > 2|. The relations (12.2), (12.3) follow from our assump-
tion ego1r — ep—1,0,1 € ew (x) and x([eoo1 — €p—1,0,1,€i01]) = 0 = x([eoo1 — €p—1,0,1, €i12])-
For all ¢ > 2 we have x(e;—1,0,1) =0 by (12.2). For i = 1 we get x(ep01) = 2x(ep—1,0,1)
and x(ep—2,0,1) = 0 is just (12.2) with i = 0.
For all i > 2 we have x(ej—1,12) = 0 by (12.3). For ¢ = 1 we get x(eo12) = x(ep—1,1,2)
and x(ep—2,1,2) = 0 is just (12.3) with i = 0. O

The lemma above says that any nonzero x with ¢y (x) D 77 has height p — 1 or p.
In Section 12.2 we give a complete description of the irreducible U, (W)-modules for x of
height p — 1 and ey (x) D T1.

Lemma 12.1.3. If x # 0 and cw(x) D Ty then x(Wap_3) # 0; i.e., X has maximal height.

Proof. Otherwise we can find x € W,, where r = ht x, such that x([epo1,2]) # 0 or
X ([eoo2, z]) # 0 (use that [W,, W_;] = W,_;). Therefore

x(lecor +e101,2]) #0  or  x([egoz + €012, 2]) # 0
since x([e101,x]) = x([eo12, z]) = 0. We have a contradiction with ey (x) D Tb. O

Lemma 12.1.3 says that x has maximal height if cy(x) D T%. The representation
theory of x with maximal height is not very well understood. However, we will study x
with maximal height and rank 2 a little closer in Section 12.3.
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12.2 Some characters of height p — 1

Let a € K. We shall consider a character x, of height p — 1 such that x,(ep—1,0,1) 7 0 and
Xa(€001) = a. Moreover, xq(e;j2) = 0 for all 4,5 with (ij2) # (012) and x.(e;;1) = 0 for
all j > 0 and all . Finally, x4(ej01) = 0 for ¢ with 1 <4 < p — 2. Note that each x, is a
character of Type A where Type A—characters are defined in Section 11.5.
If a = 2xa(ep—1,0,1) and Xq(eo12) = 0, then cw(x,) D 71 by Lemma 12.1.2 so the
computations below contain the case, where x, has height p — 1 and rk ¢y (xq) = 2.
Define g as in (11.8):

g= @ @ Kez-]g@ @ @ Kez'jl-
0<i<p 0<j<p 0<i<p 0<j<p

We can think of g as W except all e;02 for 2 = 0,1,...,p — 1. Inside g we have a p—ideal
given by

|
—

p

a= Y (adego) (Wsp-1) ZZZK%k

k=1 j>1 i=0

~
Il
o

See (11.11) and Lemma 11.7.1.

It is easy to see that each x, vanishes on a; hence induction induces a bijection between
the isomorphism classes of irreducible U,,(g)-modules and the isomorphism classes of
irreducible Uy, (W)-modules by Theorem 11.8.5.

So we concentrate on the irreducible U,,(g)-modules from now. Let h = g N Wxg
as in (11.9). Since b is supersolvable we can construct Vergne polarizations with respect
to the chain (11.10). Let p, denote the Vergne polarization of (xq), with respect to
the chain (11.10). Since x, has height p — 1, it follows that WZP# Nbh C p, since

Xa([Wss, W>4]) C xa(W>p) = 0. In order to compute p, recall the definition given in (9.7):

a) ej—tt2 € 52@“2 for 0 <7 < % and 0 < ¢t < ¢ : This follows immediately from
the definition of y, and the inclusion:

2
lei—tt2, Wi—tea Nb] C Z Z Z Kegpe.

c=1 b>0 a+b>1i
b) sXy C X 11 for 0< < B5=: Use that ep_; 01 € Wio1 N'h and that

Xa([€io1, €p—i0,1]) 0 = xa([Wiz1,1,1 N b, ep—ioi])-

) €i—tt1 € 5z<ft,t,1 for 0 < i < 1%1 and 0 < t < ¢ : It follows immediately from the

2
lei—t,t1, Wi—ee1 N ] C Z Z Z Kegpe

=0 b>0 a+b>i

inclusion:

and the definition of y,.
d) eptl g € 5’%70’1 since Xa([e%%o’17 W%l’m np)) =0.

The observations in a)-d) and the definition of p, implies that

pa—@@KemH 11@K€p+101@@@f(62n+1 2Q@VV L- (12.4)

n=1 i=0 n=0 i=0
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It follows that p, has rank one (p, = Kegi2 @ p, N Woi1) and dimgg—dimgp, = p—;l.
Define v € K such that v® — v = y,(eo12)?. Let K, the one dimensional p,~module, where
x € po N Wo11 acts as multiplication by x,(z) and ep12 acts as multiplication by v. Since
Xa(:v[p]) = 0 for all x € p, N W11 (true for all basis elements!), it follows that K, is an
irreducible U, (p,)-module.

There exists A € h* such p, is the Vergne polarization of A and compatible with x,
(choose A such that A\jgaw,,, = (Xa)|prwie, and Aeo12)® — Meo12) = Xa(€012)?). Therefore.
by Proposition 9.3.5 and Lemma 9.3.7, there exist up to isomorphism p irreducible U, (h)—
modules represented by N, := Uy, (h) ®u, (p,) Kv, where v € K such that v* — v =
Xa(eo12)3. The set

i o Tt : : p—1
{61016201~HBPT,17071®1IOSZ]' §p—1forj:1,2,...,T}

form a basis for N,,. Since [eg12, exo1] = 0 for all k it follows that eg12 acts as multiplication
by v on N,. We define the U,, (g)-module induced from N, by

Sy 1= Uy,(9) Ouy, (5) No- (12.5)

If {v;} e form a basis for N, then the set {efy; @y @y v; |i=0,1,...,p—1, je J}
form a basis for S,. Since [eg12, €go1] = 0 and since ep12 acts as multiplication by v on N,
it follows that egio acts as multiplication by v on .S, also.

Lemma 12.2.1. If v # 0 then S, is irreducible and if v, # 0 and S, ~ S, then v = p.

Proof. Let v € K with v® — v = x,(eo12)?. Then
{’UGSV‘GHQ-U:O}:l(g)Ny. (126)

Note that ej12-1® N, = 0 (use that ej12 € aNW>; and that aNWs; <b is unipotent with
Xa(a N W>1) = 0; hence a N W5, annihilates all irreducible U,, (h)-modules by Lemma
6.3.1).

Suppose that there exists m > 0 and a nonzero element v,, € IN,, such that

m—1
k
v € eppp @ Uy + E ego1 @ Ny
k=0

is annihilated by ej15. Since ej12 - N, = 0 we get: 0 € 688]1 ® eg12Vm + ZZL:_O2 elgm ® N,.
Now apply the PBW theorem for reduced enveloping algebras and obtain egis - v, = 0;
hence v, = 0 since v # 0 by assumption and since ey acts as multiplication by v on S,.
We have a contradiction. It follows that (12.6) holds.

Therefore each S, is irreducible and if S, ~ S, then v = p: Indeed, let X be a
g-submodule of S,. Take a nonzero z € X such that ej12 - x = 0 (for instance, take
x € Socy, X). Then XN (1®N,) # 0. But then XN(1®N,) =1® N, since XN (1®N,)
is a Uy, (h)-submodule of 1 ® N, and since 1 ® N,, is an irreducible U,, (h)-module; hence
X D 1® N, and therefore also X D S5,,.

Since egi2 acts on each S, as multiplication by v it follows that v = p if S, ~ S5,. 0O

Proposition 12.2.2. If x,(ep12) # 0 then there exist up to isomorphism p irreducible
3p+1

Uy, (W)-modules of dimension p 2 .
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Proof. If xa(eo12) # 0 then all v € K with v® — v = x,(e012)? are nonzero and so, by the
lemma above, induction induces in that case a bijection between the isomorphism classes of
irreducible U, (h)-modules and the isomorphism classes of irreducible U, (g)-modules [we
could obtain this from Lemma 11.7.2 also]. Moreover, induction induces a bijection between
the isomorphism classes of irreducible U,,(g)-modules and the isomorphism classes of
irreducible Uy, (W)-modules by Theorem 11.8.5. There are up to isomorphism p irreducible
Uy. (h)—modules of dimension pprl and dimg W — dimgh = p+ 1. The proof is completed.

O

Proposition 12.2.3. Assume that xq(eo12) = 0. Then there exist up to isomorphism

2p — 1 irreducible Uy, (W) —modules ifa # 0,
2p — 2 irreducible Uy, (W) —modules ifa =0.

3p+1

There exist p — 1 representatives of dimension p~ 2 and
3p—1

p representatives of dimension ppT if a # 0,

p — 1 representatives of dimension p% ifa=0.

Proof. If xa(eo12) = 0 then S1,Ss,...,5,-1 are irreducible U,,(g)-modules and non-
isomorphic by Lemma 12.2.1. Note that any irreducible U,,(g)-module X contains an
irreducible Uy, (p,)-module which is a copy of some K,. By ’Frobenius reciprocity’ X
is isomorphic to some S, with v # 0 or a homomorphic image of Sy. If X is a homo-
morphic image of Sy then a- X = 0 since a- Sy = 0 [note that a C h with a- Ny = 0
since eg12 - No = 0 and since a N Wy > b is a unipotent p—ideal with x,(a N Wp11) = 0
and therefore annihilates all irreducible U,, (h)-modules by Lemma 6.3.1]. It follows that
representatives for irreducible Uy, (g)-modules are Sy, S, ..., S,—1 and representatives for
irreducible U, (g)-modules annihilated by a.
We take a closer look at irreducible Uy, (g)-modules annihilated by a. We can write

p—1

g= a@@Kem.
=0

We now observe that @f:_& Kej is isomorphic to the Witt—Jacobson algebra W (1) of
rank 1 defined in [7]. It has a K-basis e; where —1 < i < p — 2 and the Lie bracket and
the p—mapping are given by [e;, e;] = (j — i)eiy; for all =1 <i,j < p — 2 where €;4; :=0
ifi+j¢{-1,0,...,p—1} and egp] := djpe40 for any ¢ with —1 <4 < p — 2. Now the map
e;01 — €; 1S an isomorphism @;;;:—01 Kejor ~ W(1) of restricted Lie algebras.

It is well known that irreducible Uy, (g)-modules annihilated by a are in one to one cor-
respondence with irreducible Uy, (g/a) ~ Uy, (W (1))-modules. [Any irreducible U, (W (1))-
module X extends to g if we define a - X = 0. On the other hand: Any irreducible
Uy, (g)-module is an irreducible Uy, (W (1))-module. Therefore, we can think of irre-
ducible Uy, (g)-modules annihilated by a as irreducible Uy, (W (1))-modules extended to
g with trivial a—action.|

Since Xq(ep—1,0,1) # 0 we have 7(x,) = p — 1 with the definition of (x,) defined in |7,
p. 448]. So the irreducible U, (W (1))-modules are described in |7, Theorem Cl.

If a # 0 then ey (1y(Xa) = K (€001 + p%laxa(ep_l,o,l)_lep_l,(),l) is a torus and so we can
apply |7, Theorem C (i)] (in the beginning of this section we proved that K Dy, with Dy as
in (12.1) is a torus). If a = 0 then ¢y (1)(xa) = Kegor is unipotent and we can then apply
[7, Theorem C (ii)]. O
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Remark 12.2.4. Any character 7 of height p — 1 with rk ¢y (7) = 2 is conjugate under
Aut(W) to some x, with x,(ep12) = 0 for some a # 0: Since 79 has height p — 1 for any
automorphism ¢ we can find an automorphism g such that ¢y (79) D T7; hence 79 = x4,
and x4(€ep12) = 0 for some a € K by Lemma 12.1.2.

If a # 0 and x4 (ep12) = 0 then rk ¢y (x,) = 2: Take a diagonal matrix 7" with entries ¢;
and 1 (in that order) such that a = x4(ego1) = 2t’1’_lxa(ep_1,o71). Then xZ (e;;) = 0 unless
(ijk) = (001) and (ijk) = (p — 1,0,1) and we have xZ (epo1) = 2xZ(ep-1,0.1). Therefore,
T Y ew(x)) = ew(xL) D T1. So irreducible modules for characters x with rk ¢y (x) = 2
and height p — 1 are described in Proposition 12.2.3.

Finally, if a # 0 then x, and xo with xs(e012) = 0 = xo(ep12) are not conjugate
under Aut(W) because of Proposition 12.2.3. In particular, rk ¢y (xo) = 1 since already
eo12 € cw(Xo)-

12.3 Some characters of maximal height

First, we introduce another basis for By = K[X1, Xo]/(X}, X5). Let ; be the image of
X; in Bo. Set y; := 1+ x; € By. Note that each y; is a unit in By since y, = a:f +1=1.
Thus we can define y® for any a = (a1, az) € Z*:

y* =y (12.7)

Let I(2) be the set of a € Z2 with 0 < a; < p and 0 < ap < p. It is easy to see that
all y* with a € I(2) are a basis for Bs.

Define

eld) = yiyo‘i for i =1,2 and o € Z2 (12.8)
8332-

The y® with a € I(2) form a basis for Bs; so do the y;y* with o € I(2) since y; is a
unit in By. Therefore the el with i = 1,2 and « € I(2) defined above for a basis of W
(recall that W is a free By—module with basis 8%1, 8%2).

The commutator of any two basis elements as in (12.8) is given by (apply the Lie
bracket in W introduced in Section 3):

[eg), e(ﬁj)] = ﬁieglﬁ — aje((ﬁrﬁ. (12.9)
The p—mapping is given as follows:
(el — ] 0 if a; =0 (mod p), (12.10)
0 else.

In order to obtain (12.10), note that (efj))[ﬂ (z;) = (eg) )p(azi)a%i. Then use induction over
t to show that

t—1 -
(el (a;) = H(jai + 1)ytote, hence  (e()P H joi + 1y
i=1 i=1
where ¢; = (0,...,0,1,0,...,0) with 1 in the i—th position. In case a; = 0 (mod p) the
product in the last statement is equal to 1; if a; Z 0 (mod p), then there exists j with
0 < j < p such that ja; =p—1 (mod p — 1) and so the product is 0.

Set

2
hi=ey) for i=1,2 and b= Kh, (12.11)

We have hy = egp1 + €101 and ho = egg2 + ep12; hence h = Th.
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Lemma 12.3.1. If ey (x) D Ta and x(h1) # 0 # x(ha2) then ey (x) = Tb.

Proof. First, note that X(eg)) = 0 for all @ # 0 and i = 1,2 since hy,hs € ey (x) with
[h1, eg)] = aleg) and [hg, eg)] = ageg). In order to prove our claim suppose that

2
y= Z Z aa,ieg) €ay(x) forsome a,; € K.
i=1 a#0
Given a = (a1,a2) € I(2) such that o # 0 and aq; # O for some ¢ = 1,2. We
can assume that a1 # 0 for some a # 0 (apply the interchanging automorphism on W
introduced in Appendix A). Set o' = (p — a1,p — a2). Now use the relations

e, V)] = — 201 b, (12.12)
[6&1), eg,)] = — O(th — Oélhg, (12.13)
2
[e(ﬁr), ES)] € Z ZKeSf) for r,s € {1,2} and for § € I(2) with 5 # . (12.14)
=1 v#0

It follows from (12.12),(12.13) and (12.14) that we get a contradiction if a1 # 0 for some
a #0. O

Remark 12.3.2. If x(h1) = 0 or x(h2) = 0 we do not have ¢y (x) = T». Suppose that
X(h1) = 0 # x(h2): Then we can apply (12.12),(12.13) and (12.14) above to get:

p—1
w()=Te® Y el
j=1

If x(h2) # 0 = x(h2) one gets a similar result.

In the following we will take a closer look at the situation where x has maximal height
and dimgew (x) = 2 and ¢ (x) N W = 0. The computations below (of course) include
the case where

cw (x) =To = K(eoo1 + €101) @ K (ego2 + €o12)-

We shall prove that all irreducible U, (W)-modules have maximal dimension; i.e., any
irreducible U, (W )-module has dimension equal to pP°~1. See [20, 6.4, Remark 1|. First,
we need a reduction:

Lemma 12.3.3. If x € W* of mazimal height, then there exists g € Aut(W) such that
Xg(ep_Lp_lyz) =1 and Xg(ep_Lp_l’l) =0 and Xg(Wp_l ©® Wp ®©---B W2p_4) = 0.

Proof. 1f we use a suitable automorphism in GLy(K') we can assume that x(ep—1,p-12) =1
and x(ep—1,p—1,1) = 0 (the final part of the proof of Lemma 11.2.1 does not use the
assumption on the height in that section and can then be applied here). Let m be an
integer with p — 1 < m < 2p — 4 and define

Tm = E Qrs€rsl + § brsersa € W2p—3—m'
r4+s=2p—2—m r4+s=2p—2—m

From the formulas (i +j = m + 1)

X([Tmseij1]) = ibp—ip-1-;
X([Tm, €ije]) = dap—ip—1-j + 25bp-1-ip—;
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it follows from Section 3.2 that we can find automorphism g,, on W induced by x,, defined
as above (for suitable a4, b,s € K) such that x9m(W,,) = 0. For each g,, constructed in
this way note that va”‘}j = Xy, for j > m (this follows since [z, Wj] C Wx2p—o = 0).

We are now in position to construct g € Aut(W) with x9(W,_1®W,&---@Wap_4) =0
and x9(ep-1p-1,2) =1 and x9(ep—1p-1,1) = 0. Set g = gzp_40---0gp o gp—1 and suppose,
for p — 1 < i < 2p—4, that g; is chosen such that y92p—4°"°9i-1°9i(1}/;) = 0 (this can be
done by the calculations above). It follows that x9(Wp_1 & W, @ --- @ Wa,_4) = 0. O

In order to prove our claim (that all irreducible U, (WW)-modules have maximal dimen-
sion if dimgew (x) = 2 and ey (x) N Wso = 0) we can assume that x(ep—1,-12) =1 and
X(ep—1p—1,1) =0and x(Wp_1 & W, @ --- @ Wy,_4) = 0. Let that be our assumption from
now.

I claim that ey ,(xjw.,) = 0: First, use the assumption on ¢y (x) and find y1,y2 €
W>q such that ego1 + y1,€002 + y2 form a basis for ew(x). If y € cwoo(Xjws,), then
X([y;e001 + y1]) = 0 = x([y, €002 + ¥2]) implies that x([y,eo01]) = 0 = x([y, €oo2]) since
X([y,y1]) = 0 =x([y, y2]). It follows that y € ey (x) N W>o = 0.

Since ¢y, (X|ws,) = 0, we can apply 1) in Section 9.2 and get dim gy, (X|wy) = 1.

Therefore, any polarization of x has dimension LQ?’H = p? —1 by (9.6). I claim that the
Vergne polarization of x is given as

p—1 2
Py =W>p1 @ @ @Khom (12.15)

gty =]

where hogi = egg1 and hoga = egga — 2Be1 3—1,1. First, note that W>,_1 C p, since
[Wp—1, Wsp-1] C Wagp2 = 0 and therefore W1 =55 115 C py (see (9.11) and (9.12)
in Section 9.4). For g > p—;l and 3 < p—1 we have egg; € 56‘61 since our assumption on
X says that

leop1, Wop1] C Z Keap + Z Z Kegp C Ker(y).
a+b>p a+b>p a<p—1

For 5 > 1%1 and 3 < p—1 we also have hgg € 5&2: First, observe that

... pt+1
[6052 — 2561,5_171, el-jl] C E Keg E E Kegys C Ker(X) fori+j > —2 .
a+b>p a+b>p a<p—1

Ifi—l—jzp—;rlbuti#p—lwehave

[hog2, €ij2] C Z Keap + Z Z Kegpy C Ker(y).

a+b>p a+b>p a<p—1

Ifi—i—jzp—'glandi:p—lbutj#p—ﬁwehave

[hog2; €ija] C Z Keap + Z Z Kegape C Ker(y).

a+b>p a+b>p b<p—1

Finally, [hog2, ep—1,p—3,2] = 0 by construction of hoga. It follows that hogs € 5(>)<ﬁ2' We have
thus shown that the Vergne polarization of y contains

p—1 2
P:=Ws, 1® @ @Khoﬁ,y.

p-rpt =]
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But we easily get

-1
dimgP =2((p—1)+(p—2)+---+2+1) =p2—p+2(p—1—pT) =p?—1
which is the dimension of p,; hence p, = P and so (12.15) holds. In fact, p, is a polarization

of x compatible with x [i.e., x(z)? — x(zP)) = x(x)P for all z € p, since

r€Wsy1 = zall=0,
T =hogr = zlPl =0,

xr = hoﬁg - ill’[p} € Kel,(p—l),@’,l = 0]
Now we can define the induced module

Uy(Woi2) QU (py) K, (12.16)

where K is the one dimensional p,—module where each x € p, acts as multiplication with
Xx(x) (since py is a polarization of x compatible with x it follows that K, is a U, (py)—
module).

Next, apply Proposition 9.3.5 and Lemma 9.3.7 with L = Wy12 and A = x and P = p,
to get: There exists (up to isomorphism) one irreducible U, (Wyi2)-module of dimen-
sion pp2_2. Since induction induces a bijection between the isomorphism classes of irre-
ducible Uy (Wpi2)-modules and the isomorphism classes of irreducible U, (WW>¢)-modules
(use Lemma 7.1.1 with z = e,_1—1,1) and since pp2_1 is the maximal dimension for irre-
ducible U, (W)-modules we thus get:

Theorem 12.3.4. Suppose that x € W* has maximal height and dimgcy (x) = 2 and
cw (x) NWso = 0. Then there exists (up to isomorphism) one irreducible U, (W>q)-module
of dimension pp2_1. For any irreducible U, (W>q)-module S there exists a W -module
structure on S which extends the given Wso—module structure. In particular, all irreducible
Uy (W)-modules have dimension

pcodimw ew(x)/2 — pr -1
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13 Characters of height 2 and 3

Let K be an algebraically closed field of characteristic p > 2 and let W denote the second
Witt—Jacobson algebra over K. We will consider x € W* of height 2 and 3.

13.1 The good case

We assume that xy € W™ is a character of height r, where r = 2 or r = 3, such that
st(x, W>,) = W>q and such that x does not have Type I[L.aasin 5.2 if r =3 and p = 3. In
that case we can apply the main theorems in Section 10.4: The dimension of any irreducible
Uy (W)-module is, by Theorem 10.4.12, equal to peedimw ew (X)/2 " where e (x) denotes the
stabilizer of x in W. Theorem 10.4.11 says that the number of isomorphism classes of
irreducible U, (W)-modules is p if rk ¢y (x) = 1; otherwise (i.e., rk ey (x) = 0 by Lemma
10.4.8) the number of isomorphism classes of irreducible U, (W)-modules is 1.

Below we will describe the possible dimension for irreducible U, (W )-modules and the
number of isomorphism classes (denoted by |Irr(W, x)|) for characters as above. The rep-
resentation theory of U, (W) depends only on the Aut(W)-orbit of x, so we can assume
that there exists z € W,y with x([z, e102]) # 0 = x([x, Woi2]) by Lemma 7.3.1. Now use
Lemma 10.4.1 to get dimg cwy,, (X|wp,.) = dimg cws o (Xw,) + 1. Since st(x, W>2) = Wxo
we also have ew (X) C ews, (X|w,) by (10.3) and the arguments before that; hence

dlchW(X) = dichWZo (X|W2()) -2
by Lemma 10.4.7. We conclude that dim g ey (x) = dimg cwy,, (X|wy.,) — 3 o1, by (9.6),
codimpy ey (x)/2 = dimg W — dimgp, (13.1)

where p, denotes the Vergne polarization of x. Now (13.1) allows us to find the possible
dimension for irreducible U, (W)-modules. Note that either p, is unipotent or there exists
a nonzero toral element h € p, such that p,, = Kh @ p, N Woi1 (see Lemma 9.4.3).
For characters of height 2 we have W1 C p, by Remark 9.4.2. We get the following
possibilities:
Characters of height 2 with st(x, W>2) = Wxq :

|Irr(W, x)| | Possible dimension
1 p° or pb
p pt or p

For characters of height 3 we have W>2 C p,. In order to find p,, we now have to
compute all 523%; for (ijk) with (012) < (ijk) =< (021). We only consider representatives
from Section 5 and only characters of height 3 and of Type Il.a as in 5.2 if p > 3. One can
obtain the following scheme:

Characters of height 3 with st(x, W>3) = W>¢ :

Type |Irr(W, x)| | Possible dimension
Typel |t L
rypert | b
Type 111 ]19 5 gi ; ﬁi s
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As we shall see in the next sections the situation is much more complicated if we
consider x € W* of height r, where r = 2 or r = 3, such that st(x, W>,) # Wxq (x is
an exceptional character) or p = 3 and y is a character of Type IL.a as in 5.2 with height
r=3.

13.2 Exceptional characters of height 2

Suppose that p = 3 and let x € W* be a character of height 2 with st(x, W>2) # W>¢ (for
p > 3 we have st(x, W>2) = W>o by Lemma 8.1.3 and its proof). We shall see that the
situation is much more complicated when p = 3 and st(x, W>2) # W>o: Induction does
not always take irreducible U, (W>o)-modules to irreducible U, (W)-modules and we shall
see that not all irreducible U, (W)-modules have the same dimension and the number of
irreducible U, (W )-modules is not always a power of p. This is a quite different pattern
than we saw in the previous section.

We will study two types of characters (see Section 11.5):

Type A : 7 € W* of height 2 with 7(eg01) = 1 and 7(ez02) = 7(e102) = 7(€002)
and 7(e1p1) =0=7(eo11) and st(7,W>2) = Kepor & W>o.

Type B : 7 & W* of height 2 with 7‘(6202) =1 and 7'(6201) = 7’(6012) =0
and 7'(6102) = T(eoog) =0 and Ef(T, WZQ) = K6001 ) Wzo.

13.3 Type A characters of height 2

Consider x € W* be a character of height 2 and Type A. Recall the characters defined
in Section 12.2: There we consider arbitrary p > 2 and for a € K we define y, € W*
via xq(€ijr) = 0 unless (ijk) = (012) or (ijk) = (001) or (ijk) = (p —1,0,1). We have
Xa(€oo1) = a and xg(ep—1,0,1) # 0. The irreducible U, (W )-modules are described in
Proposition 12.2.2, 12.2.3.

In our situation, x = x, for a = x(ego1). Before we write down we need information
on the stabilizer ¢y (x) of x.

Lemma 13.3.1. Let x € W* be a character of height 2 and Type A. Then we have

8 if x(eo12) # 0,

dimeew () = {10 if x(eo12) = 0.

Moreover,

2 if x(eo12) = 0 # x(eo01),
where tk ey (x) is the dimension of any mazimal torus in ¢y (x). Finally, cw(x) C W>o
if and only if x(ep12) # 0.

PTOOf. First, note that €291, €222, €121, €122, €212 € CW(X)- Since X(€011) = X(eogl) =0
and x(e111) = x(e112) = 0 we also have ego1 € ¢ (x). Finally, epia € e (x) since
X (eo02) = 0 = x(e102) and since x([eg12, Wo12]) = 0.

Therefore we consider x € ¢y (x) written as

Tr = Z Qi5k€ijk (13.2)

(ijk)

ok e (x) = {1 if x(eo12) # 0 or x(eo12) = 0 = x(eoo1),
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where agi2 = ap21 = a121 = a122 = az12 = Az = aze = 0. Since ¢y (x) C st(x, W>2) =
Kego1 @ Wso we also have agp2 = 0.

The relations x([z,e111]) = 0 and x([z,e201]) = 0 say that ajp2 = a191 = 0 since
x(€e101) = 0 = x(ep11) and agg2 = 0 because x([z, ep11]) = 0. Next, observe that ag;; =0 =
ayp1: First use that x([z, e202]) = 0 = x(e102) = 0 to get ap1; = 0 and then x([z,e102]) =
0= X(eoog) to get aill = 0.

In order to determine x we now only have to consider the following relations:

1 [z, e112]) = 0 = ago1x(e012) =0,

X
2) x([z,e101] 0 = a201 = aoo1X(€001);
3) x

[z, e001]) = 0 = ar12x(e012) =0,

) x( ) =
) x( ) =
) x( ) =
) x([z; €002]) = 0 = az11 = aoz2x(en12)-

If x(eo12) # 0 it follows from 1)-3) that agy; = ag01 = a112 = 0 and by 4) we have
ep22 + x(€eo12)e211 € cw(x). Moreover, z as in (13.2) is unique (up to multiplication with
elements from K). We conclude that dimgep (y) = 8. Finally, Kegpi2 is a maximal torus
in e (x).

Next, suppose that x(ep12) = 0. We find that eq12, €922 and ego1 + x(€go1)e201 belong
to ew(x). Moreover, x as in (13.2) is a linear combination of these. We conclude that
dimg e (x) = 10 in that case.

Since x = xq Where a = x(ego1) and x4 is a character as in Section 12.2 with p = 3 we
can apply Remark 12.2.4 in order to find rk ¢y (x): If x(ego1) # O then rk ¢y (x) = 2 and
if x(eoo1) = 0 then rk ¢y (x) = 1 as required. O

We are now in position to describe the irreducible U, (W)-modules for Type A charac-
ters of height 2. We will formulate the results in terms of the ideal introduced in (11.11):

2 2 2
P Keowr & P Kerw © @ Keoor @ Ws. (13.3)
k=1 k=1 k=1

Note that x(a) = 0 if and only if x(eg12) = 0.

Theorem 13.3.2. Let x € W* be a character of height 2 and Type A and let a be as in
(13.3).

a) If x(a) # 0 then there exist up to isomorphism 8 irreducible U, (W')-modules all of
dimension 3° = 3°dmwew(0)/2 - Moreover, ey (x) C Wso with tk ey (x) = 1.

b) If x(a) = 0 = x(eoo1) then there exist up to isomorphism 4 irreducible U, (W')-
modules. Two representatives have dimension 3° = 3edmwew()/2+1 gnd two rep-
resentatives have dimension 3* = 3°4mwew()/2  Moreover, ¢y (x) ¢ Wso with
rk ey (x) = 1.

c) If x(a) = 0 # x(eoo1) then there exist up to isomorphism 5 irreducible U, (W)-
modules. Two representatives have dimension 35 = 3°dimwew(0)/2+1 4pd three rep-
resentatives have dimension 3* = 3°°4mwew()/2  Moreover, ey (x) ¢ Wso with
rk ey (x) = 2.

Proof. Use that x = x4 as in Section 12.2 with a = x(ego1) and p = 3. Then apply
Proposition 12.2.2, 12.2.3 and Lemma 13.3.1. O
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Remark 13.3.3. One can show that there are (up to isomorphism) 3 irreducible U, (W>q)—
modules all of dimension 32. If x(a) # 0 then induction induces a bijection between
the isomorphism classes of irreducible U, (W>p)-modules and the isomorphism classes of
irreducible U, (W)-modules. But Theorem 13.3.2 says that induction from Wsq to W does
not always take irreducible U, (W>g)-modules to irreducible U, (W )-modules. In fact, if
X(eo12) = 0 then there are (up to isomorphism) 3 irreducible U, (W>q)-modules Sy, S, S2
and one can prove that

Endw (Uy (W) U (Wo) S1) ~ K[X]/(X? — X% — x(eo01)?).

Moreover: Sy, Se are non isomorphic irreducible U, (W>g)-modules and the induced W—
modules Uy (W) @y, (w~) So and Uy (W) ®y, (w-,) S2 are irreducible and non isomorphic.

13.4 Type B characters of height 2

Let x € W* of height 2 with and Type B. In particular, x(ep12) = 0since j=r+1—p =0
in this case and x(eg12 + jeio1) = 0. The Vergne polarization p of x constructed via the
chain in (9.10) is given by

. Wou if x(eo11) # 0,
K(ep12 —e1o01) @ Wonr  if x(eo11) = 0.
We have x([Woi1, Woi1]) = 0 since [Wo11, Woi1] € Wiz and x(Wi12) = 0; hence W1 C

531, C p. If x(ep11) = 0 we have x([ep12 — €101, Woi2]) = 0 and hence eg12 — €101 € 5515. If
x(eo11) # 0 it is easy to check that s34 C 875, C Wo11.

Remark 13.4.1. We have rk ¢y (x) < 1 since any 7 € W* of height 2 and rk ey (7) = 2 is
conjugate under Aut(W) to a character of Type A by the results in Section 12.1. Moreover,
Proposition 11.5.2 (or Lemma 11.6.1) says that no characters of Type A and Type B are
conjugate. So rk ¢y (x) = 2 is impossible for x of height 2 and Type B.

Lemma 13.4.2. Let h := eg10 — e101. If x € W* is a character of height 2 and Type B,
then we have

8 if x(eo11) # 0,
dimgew (x) = 410 if x(eo11) =0 and x(h) #0 or x(eoo1) # 0,
12 if x(eo11) = x(h) = x(eoo1) = 0.

Moreover,

o= {} o

Finally; cw(x) € W>o if and only if x(eo11) = x(h) = x(epo1) = 0.

Proof. Our assumption on x (Type B) says that x(h) = 0 if and only if x(e191) = 0 since
X(6012) = 0. First, note that we always have €991, €999, €121, €122, €211, €021, €022 € CW(X)-
Therefore we only consider y € ¢y () written as

Yy = Z aijkeijk (13.4)
(ijk)
where a;j, = 0if j = 2 or (ijk) = (211). Since ey (x) C st(x, W>2) = Kego1 ® W we can
1

also assume that ago2 = 0. I claim that ey () C Woie unless x(epo1) = x(h) = x(eo11) = 0.
First, we prove that ey (x) C W>q (or agor = 0) unless x(ego1) = x(h) = x(eo11) = 0.
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If x(eo11) # 0, then agpr = 0 since x([y,e111]) = 0. If x(h) # 0, then we get agor = 0
from x([y,e112 + e201]) = 0. Finally; suppose that we have x(h) = 0 = x(ep11) but
X(€eoo1) # 0. Then agp; = 0: Combine the relations x([y, h]) = 0 and x([y, e201]) = 0 and
get ago1x(ego1) = 0; hence agp; = 0 by our assumption.

If ey (x) C Wo, then we clearly have an inclusion ew (x) C ews,(Xws,). Therefore
dimgew (x) = dimgews,(Xjws,) — 2 by Lemma 10.4.7. Next, apply Lemma 10.4.1 with
x = eqq2 and find that dimey, (x) = dimew,,,(x) — 1. We conclude by (9.6) that:

8 if X(eon) 75 0,

dimKCW(X) = dichW(m (X) —o = 2dipr — dimKW(nQ -3 = .
10 if X(eon) =0.

If x(eo11) # 0 then rk(cy (x)) = 0: Indeed, we have cyy(x) C Woi2 and therefore cyy(x)
is a subset of p [for any z € cy(x) we have x([p + Kz,p + Kz]) = 0 and hence z € p by
maximality]. But p is unipotent if x(eg11) # 0.

Next, suppose that y(eg11) = 0 but x(h) # 0 or x(epo1) # 0. We still have y € Wpio
where y € ¢y (x) as in (13.4), but we can find further conditions on y from x([y, W]) = 0
by looking at x([y, easy]) = 0 for all (a3v). We find that y € ey (x) N Wor2 if and only if
ag02 = 0 and that ag12, a101, @011, @201, @111, @112, €212 € K satisfy the following relations:

1) api2 + a1 =0,

2) aonix(h) + az0 — a2 =0,
3) —a101x(eo01) + a201x(e101) = 0,
4) —aopn1x(eoo1) — a1 x(eior) — ag12 = 0.

It is easy to check from 1)-4) that eg11 — x(e101)e112 — Xx(€oo1)e212 € cw(x). We also
have e111 — x(e101)e212 € ew(x). Since dimgeyw (x) = 10 in this case (i.e., the case where
X(eo11) = 0 but x(h) # 0 or x(ego1) # 0) we just have to find an element whose coefficients
satisfy 1)—4) and which is not a linear combination of

i) €221, €222, €121, €122, €211, €021, €022,
ii) e111 — x(e1o1)e212,

i) ep11 — x(e1o1)er12 — x(€oo1)e212.

If x(h) = 0 take ez01 + €112 € e (x) (it is easy to check that 1)-4) above are satisfied
for that element). In particular, ey () is unipotent.

If x(h) # 0 = x(ego1) take h € ey (x) (it is easy to check that 1)—4) above are satisfied
for that element). In particular, ¢y () has rank one since rk ¢y (x) = 2 is impossible by
Remark 13.4.1.

If x(h) # 0 # x(eoo1) take y as in (13.4) with aj12 = 1 = ager and ag12 = x(h)x(ego1)
and ajg1 = —ap12. Let aqg, = 0 otherwise. Now it is straightforward to check that y defined
that way satisfies 1)-4). By Lemma B.1.1 it follows that Ky is a torus and so ¢y (x) has
rank one by Remark 13.4.1.

Finally, assume that x(ego1) = x(h) = x(eo11) = 0. Then e111, €011 € e (x). Consider
now y € ¢y (x) written as in (13.4). Since ey (x) C st(x, W>2) = Kego1 @ W>o we have
ago2 = 0. The remarks just made show that we can assume that ag11 = a111 = 0. We will
find conditions on y from x([y, W]) = 0 by looking at x([y,easy]) = 0 for all (afy). We
get a192 = agge = a2 = 0 and agi2 + a191 = 0 and agp1 — a112 = 0. Thus it follows that
e201 + €112 € e (x) and that h € ¢y (), where h = eg12 — e101. Moreover, ego1 € ey (x)-
It follows that dimgew (x) = 12 if x(ep11) = x(h) = x(€po1) = 0. Since h € ¢y () we have
rk ¢y (x) = 1 by Remark 13.4.1. O
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First, we shall describe the irreducible U, (g)-modules in the situation where we have
x(eo11) # 0. Let K, be the one dimensional p-module where each x € p acts as multipli-
cation by x(x). Actually, K is a U, (p)-module since x(z[®) = 0 for all # € p. Moreover,
K, is the unique U, (p)-module since p is unipotent. Set S := U, (W>0) @y, (p) Ky and
note that S is irreducible with a basis given by e¥y,eb5e; ® 1 where 0 < k,I,m < 3 (the
PBW theorem). Define 2k, := ek el 0efh; @1 for 0 < k,I,m < 3.

Let M := Uy (W)®y, (w.,)S and let wg = 1® 2000 € Soc, M. Note that wg € Socy1®S;
thus it follows from Lemma 11.3.1 that Soc,1 ® S = Kwy.

Proposition 13.4.3. If x(eoi1) # 0 then Soc,M = Kwyg. In particular, there exist 1
isomorphism class of irreducible U, (W )-modules of dimension 3° represented by M.

Proof. We shall prove that Soc,M = Kwyg; so suppose otherwise that Soc,M # Kwg. Let
w € M such that Kw is an irreducible p-submodule of Soc,M; by Lemma 11.4.1 we have

b b—1 k
w € €pp1 @ 2000 t €gp; @ U+ Z Z €001€002 @ S
k<b—1k+m<b—1
for some b > 0 and some u € S. The assumption on w says that = - w — x(z)w = 0 for all
x € Wpi1. For = = eq11, ea02 we have:

x(@)w € x(z)efo; ® 2000 + €ho1 ® (b, eo01] - 2000 + T - u) + Z Z €601€002 ® S (%)
k<b—1 k+m<b—1

and therefore (z = ej11) in particular blei11, €go1] - zo00 + €111 - © = 0 by the PBW theorem.
It follows that eq11 - w = bx(eo11)2000. Write w = >4, @kimZkim. Note that eq11 - 215, =
0 = e111 - 2o1m since x(e112) = x(e111) = x(e201) = 0 (use the basis for S). Now the relation
e111 - u = by(eop11)z000 implies that

Z a21m€202 - Zoim — bx(€o11)z000 = 0. (**)

lm

It follows that agy, = 0if I > 0 or m > 0 and agpp = bx(ep11) # 0; so we can write

U = azopo + E agimZoim  for some agy, € K anda € K*. (% * %)

lm

Finally, use (%) with & = egp2 and get egg - u = u — bz1gp; next apply (x x x) to get
e202°U € az200+ )y, K 201m; We have a contradiction and so we cannot have Soc, M # Kwy.

Therefore M is the only irreducible U, (W)-module (up to isomorphism): For irre-
ducibility note that any nonzero W-submodule of M contains wg and then U, (W)-wy = M.
For uniqueness, let X be an irreducible U, (W )-module. It contains a copy of S [note that
S is the only irreducible U, (W>¢)-module (up to isomorphism)|. Now use 'Frobenius
reciprocity’ to produce a nonzero U, (W )-homomorphism M — X. Both modules are
irreducible; hence M ~ X. O

From now assume that y(eg11) = 0. Define £ as

£:= K(—epo1) ® K(2e101 + €012) ® K(e201 + €112)- (13.5)

We have [2e101 + €012, —€001] = —2(—ego1) and [2e101 + €012, €201 + €112] = 2(e201 +€112)
and [e201 + €112, —€001] = 2€101 + €o12. Moreover,

(2101 + €012)P = 2e101 + eo12, (13.6)

el =0, (13.7)

(e201 + e112) = 0. (13.8)
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Note that (13.6) holds since [ep12,e101] = 0 and e([)?’l}2 = ep12 and 6[1%]1 = e191 and

(13.7) follows from the properties of the [p]-mapping on W. Finally, (13.8) holds because
6[131]2 =0= 6[2?31 and [6201, [e201, 6112]] =0= [6112, le112, 6201]] (see (B.2) in Appendix B).

Therefore £ ~ sly(K) as restricted Lie algebras.

Let a be as in (13.3). By Lemma 11.7.1 we know that a<g is a p-ideal and the definition
of £ above implies that g = a ® £. Therefore g / a ~ £ as restricted Lie algebras. It is well
known that irreducible U, (g)-modules annihilated by a are in one to one correspondence
with irreducible Uy (g/a) ~ U, (£)-modules. [Any irreducible U, (£)-module X extends to
g if we define a- X = 0. On the other hand: Any irreducible U, (g)-module is an irreducible
Uy (£)-module. Therefore, we can think of irreducible U, (g)-modules annihilated by a as
irreducible U, (£)-modules extended to g with trivial a-action.] Since £ =~ sly(K) the
irreducible U, (£)-modules are classified. We now prove (the first claim being obvious):

Lemma 13.4.4. Suppose that x(eo11) = 0 or equivalently: x(a) = 0 for a as in (13.3).
Then irreducible Uy (g)-modules annihilated by a are in one to one correspondence with
irreducible Uy (£)-modules. The number of isomorphism classes and dimension formulas
are given as follows:

a) If x(eoo1) = 0 = x(e101) then there exist up to isomorphism 3 irreducible U, (g)—
modules annihilated by a of dimension 1,2, 3.

b) If x(eoo1) # 0 = x(eio1) then there exist up to isomorphism 2 irreducible U, (g)-
modules annihilated by a all of dimension 3.

c) If x(ei01) # O then there exist up to isomorphism 3 irreducible U, (g)-modules anni-
hilated by a oll of dimension 3.

Proof. In [27, 5, 5.2] the representation theory of sly(K) is described. If we apply the
description in [27] on £ we see that there are 3 isomorphism classes of irreducible U, (£)-
modules if x(£) = 0 or x(2e101 + eo12)? — X(eoo1)x(e201 + e112) # 0 and 2 isomorphism
classes of irreducible U, (£)-modules if x(2e101 + eo12)? — x(eoo1)x (€201 + €112) = 0.

Since x(e201 + e112) = 0 = x(ep12) we have three situations: If x(egp1) = 0 = x(e101)
then there exist up to isomorphism 3 irreducible U, (£)-modules of dimension 1,2,3 (in
this case x(£) = 0). If x(ego1) # 0 = x(e1o1) then there exist up to isomorphism 2
irreducible U, (g)-modules all of dimension 3. Finally, if x(e101) # O then there exist up to
isomorphism 3 irreducible U, (g)-modules all of dimension 3. The proof is completed. [

Theorem 13.4.5. Let x € W* be a character of height 2 and Type B and let a be as in
(13.3).

a) If x(a) # 0, then there exist up to isomorphism 1 irreducible U, (W )-module of
dimension 3° = 3°°dmwew(0)/2 " Moreover, ey (x) C Wso with tk ey (x) = 0.

b) If x(a) = x(e101) = x(eoo1) = 0 then there exist up to isomorphism 3 irreducible
U, (W)-modules of dimension 33 = 3°1mwew()/2 gpd 2.33 = 2. 3codimwew()/2 gpq
34 = geodimwew (/241 Moreover, ey (x) ¢ Wso with tk ey (x) = 1.

c) If x(a) = x(e101) = 0 # x(ego1) then there exist up to isomorphism 2 irreducible
U, (W)-modules all of dimension 3* = 3°°4mwew (/2 Moreover, ey (x) C Wso with

rk ey (x) = 0.

d) If x(ei01) # O then there exist up to isomorphism 3 irreducible U, (W')-modules all
of dimension 3* = 3°°4mwew()/2 " Moreover, ey (x) € Wso with vk ey (x) = 1.
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Proof. Use Lemma 13.4.2 and Proposition 13.4.3 for part a) and Theorem 11.9.6, Lemma
13.4.2 and Lemma 13.4.4 for b),c),d). O

Remark 13.4.6. If x(ei01) # 0 or x(a) # 0 then one can show that irreducible U, (W)-
modules are induced from irreducible U, (W>p)-modules. This is not the situation if
x(e101) = x(a) = 0: There exist (up to isomorphism) 3 irreducible U, (WW>q)-modules
S0, S1, 59 all of dimension 32. Theorem 13.3.2 says that induction from Wso to W does
not always take irreducible U, (W>g)-modules to irreducible U, (W)-modules. In fact, one
can prove that there exist nonzero U, (W )-homomorphisms

Ux(W) ®u, (we) S1 Y2, U (W) BU, (W) 52

such that o o1 = x(ego1)® - Id; and ¥ o o = x(ego1)? - Ida (Idy is the identity map on the
W-module induced by Sy for k = 1,2). If x(epo1) = 0 then Ker(v)) is a proper nonzero
W-submodule of Uy (W) @y, w.,) S1 and Ker(y) is a proper nonzero W-submodule of
Uy(W) ®u, (W) S2- Moreover, Uy (W) @y, (w-,) So is irreducible.

13.5 Original y

Consider an arbitrary character y € W* of height 2 with st(x, W>2) # W>¢. So there exists
a nonzero element m € W_; such that 7 € st(x, W>2). Suppose that m = aego1 + begoz for
some a,b € K. We cannot have W_; C st(x, W>2) since [W_1, Ws] = W; and x(W;) # 0
by assumption. We conclude that

5t(X, WZQ) =Knd Wzo.

We will classify the set of irreducible U, (WW)-modules. For any automorphism g on
W, the algebras U, (W) and U,s (W) are isomorphic. Thus: If we know the number of iso-
morphism classes of irreducible U,s (W )-modules and the dimension of all representatives,
then we know the number of isomorphism classes of irreducible U, (W )-modules and the
dimension of all representatives.

It follows from Proposition 11.5.2 that x € W* of height 2 with st(x, W>2) # Wxq is
conjugate to a character of Type A or Type B (defined in Section 11.5). Moreover, Lemma
11.6.1 says exactly when y is conjugate under Aut(WW) to a character of Type A. It turns
out that x is conjugate to a character of Type A if and only if x (V) # 0, where

V = K(eao1 + e112) © K(e111 + ep22)- (13.9)

In the next sections we will use the following properties whenever we consider two
conjugate characters: Suppose that xy ~ x’. Then we have dimgew (x) = dimgew (})
and rk ey (x) = rk e (}') and ey (x) C Wxp if and only if ey (x') € Wxp. If induction
induces a bijection between the isomorphism classes of irreducible U,/ (W>g)-modules and
the isomorphism classes of irreducible U,/ (W)-modules, then induction induces a bijection
between the isomorphism classes of irreducible Uy (W>q)-modules and the isomorphism
classes of irreducible U, (W )-modules.

By Lemma 11.2.1 there exists g € GLa(K) such that st(x9, W>2) = Kego1 & W>q and
either x9(e201) = 1, x9(e202) = 0 or x9(e202) = 1, x9(e201) = 0 and Proposition 11.5.2 says
that we can find automorphism ¢* such that x9°9" has Type A or Type B. For y ~ Type
A-character we will find equivalent conditions for x9°9" (egi2) = 0 and x7°9 (ego1) = O.
For y ~ Type B-character we will find equivalent conditions for y9°9"(eg;1) = 0 and
X997 (h) = 0 (h = eq12 — e101) and x9°9" (ego1) = 0.
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First, we will determine the action of g* on appropriate basis elements. We will consider
the two types of characters separately.

Lemma 13.5.1. Let x € W* of height 2 be an exceptional character and let g € GLo(K)
such that st(x9, Ws2) = Keoo1 ® W>¢ and x9(e201) = 1, x9(e202) = 0. Then there exists g*
such that x9°9" has Type A and we have the following properties:

g (eo12) € eoiz + [eo12, Wa1] + W,

g*(eoo1) € eoor — x(e101)eror + x(eor1)x(er02)e201 — x(€102)e011 — x(€o11)e102 + Ker(x).

Proof. If we look at the proof of Proposition 11.5.2 it follows that g* = g_1 o gg where

g-1, 9o are automorphisms on W induced by K—-algebra automorphisms ¢_1,pg on A(2) =
K[X1,X5]/(XY, XL) given by (z; is the image of X; in A(2)):

p_1(z1) = z1 + x(eoo2)riTa,

p-1(z2) = w3,
eo(z1) = w1+ x(e102)z122 + X(€101)27,
¢o(z2) = x2— x(eo11)z? + x(eio1)z?.

For the explicit formulas one has to go through step 1) in the proof of Proposition 11.5.2.
The inverses satisfy:

e 1(r1) € a1 — x(eon2)7ime + Kalad,

¢Zi(z2) € a2+ Kaiad,

vo (1) = @1 —x(ew)zize — x(e101)2] + X0, 55 Kafad,
o (22) = @2+ x(eon)2t — x(eon)a] + iy 55 Kaias.

The formula for g*(ep12) = (9—1 © go)(eo12) follows from (3.2): We get
(g-10°90)(eo12) € g-1(eoi2 + [eo12, W1] + W>2)

€ ez + [eo12, W>1] + W>o

as required.
Finally, we shall use Proposition 2.2.3 to get a formula for (g_1 o go)(ego1). First, we
obtain:

go(eoo1) € ego1 — x(e1o1)ero1 + x(eo11)x(€102)e201 — x(e102)eo11

—x(€eo11)€102 + Dojq 0 2o 2ico Keijh-

Now use the action of g_; (see (3.2)) and get (note that all e;;p with i + j > 2 but i < 2
are contained in Ker(x)):

9" (e0o1) € epo1 — x(e101)e101 + x(eo11)x(€102)e201 — x(e102)eo11 — x(eo11)ern2 + Ker(x).

The proof is completed. [l
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Lemma 13.5.2. Let x € W* of height 2 be an exceptional character and let g € GLo(K)
such that st(x9, W>2) = Kego1 & Wxo and x9(e202) = 1, x%(e201) = 0. Set h := ep12 —e101-
Then there exists g* such that x9°9" has Type B and we have the following properties:

g (eo11) € eoir + [eorr, Ws1] + W,
g*(h) € h+ [h, W21]7
g*(eoo1) € eoo1 + x(eoi2)ero2 + x(e102)x(€o12)e202 + Ker(x).

Proof. If we look at the proof of Proposition 11.5.2 it follows that g* = g_1 o gg where
g—1, 9o are automorphisms on W induced by K—algebra automorphisms ¢_1,pg on A(2) =
K[X1,X2]/(XY, XE) given by (z; is the image of X; in A(2)):

o_1(z1) = 1+ x(eoo2)x37a,
v 1(z2) = w2,
900(331) = i,
wo(r2) = x9+ x(e102)T122 — X(€012)73.

For the explicit formulas one has to go through step 2) in the proof of Proposition 11.5.2.
The inverses satisfy:

80:%(331) € x1 — x(epo2)rimy + K223,

¢ i(z2) € xo+ Kalzd,

po (x1) = @1+ Y s Kaiad, N
vo (x2) = @2 — x(erw2)m1m2 + x(e012)7] + X, oy Ky,

The formula for g*(ep11) = (9-1 © go)(eo11) and g*(h) = (g—1 o go)(h) follows from (3.2):
We get for all y € Wy (in particular; y = eg11 and y = h)

(g-1090)(y) € g-1(y+ [y, Wi]+ W>2)
€ y+ [y, Wx1] + Wxo

as required.
Finally, we shall use Proposition 2.2.3 to get a formula for (g_1 o go)(ego1). First, we
obtain:

go(€oo1) € eoo1 + x(eo12)er02 + X(€102)x(€012)€202 + D p12D iy >0 Dico Keijk

Now use the action of g_1 (see (3.2)) and get (note that all ;5 with i + j > 2 but ¢ < 2
are contained in Ker(y)):

9" (eoo1) € eoo1 + x(€eo12)e102 + x(€102)x(€o12)e202 + Ker(x).
The proof is completed. O

Now we are in position to find equivalent conditions for x9°9" (eg12) = 0 and x9°9 (ego1) =
0 if x ~ Type A-—character and equivalent conditions for x9°9" (eg11) = 0 and x9°9 (k) = 0
(h = eg12 — e101) and x9°9" (ego1) = 0 if x ~ Type B-character. Here and in the rest of this
section, g € GLy(K) is an automorphism such that st(x9, W>2) = Kego1 @ W>¢ and either
X9(e201) = 1,x(e202) = 0 [if x9°9" has Type A] or x¥(e02) = 1, x9(e201) = 0 [if x9°9" has
Type BJ. The explicit formula for g can be found in the proof of Lemma 11.2.1.
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Proposition 13.5.3. Let x € W* of height 2 with st(x, W>2) = Km & W>(o (where m =
aego1 + begoz) such that x(V) # 0 and let h := eg12 — e101- Let g, g* be automorphisms on
W such that x9°9" has Type A. Then:

a) x9°9 (ep12) = 0 if and only if

al) x(eo22)x(aeo11 — beior) — x(€o21)Xx(aeo12 — beipz) = 0 and
a?) X(a6201 + begog)x(aemg — 66102) — X(egog)x(azeon + abh — b2€102) =0.

b) x9°9 (ego1) = 0 if and only if

b]) X(a6201 + begog)x(aeom + beoog) — a2 (X(h)2 + X(elog)x(eou)) =0 and
62) X(a6021 + beogg)x(aeom + beoog) — b2 (X(h)2 + x(elog)x(eon)) =0.

Proof. a) First suppose that a = 0. Then x(eq01) = 0 = x(e202) since eap1 = [ego2, €211] and
e202 = [e00z, €212] and ego2 € st(x, W>2). Our statement in a) then says: x9°9 (eg12) = 0
if and only if x(eg22)x(€101) — Xx(€021)x(€102) = 0. Let g, g* be automorphisms on W such
that x9°9" has Type A. It follows that

(50 (e )
10 x(eo21)x(eo22) ™ 1
and ¢* is the automorphism on W from Proposition 11.5.2. Note that x9([egi2, W>1]) =0
since x9([e201, €012]) = 0. Therefore, x9°9 (ep12) = x?(eo12) by Lemma 13.5.1 and so
X9°9" (eg12) = 0 if and only if x9(eg12) = 0.

Since g(ep12) = e101 — x(eo21)x(€o22) teio2 we see that x9(epr2) = 0 if and only if

x(€o22)x(e101) — x(€o21)x(€102) = 0 as required.
Next, suppose that a # 0. Now g is given by

. < 1 —a b > < X(6201 +a_1b6202)_1 0 >
g 0 1 x(e202)x(ea01 + a thea2)™2 1 -
Since

g(eo12) = eo1a — a tberna — x(e202)x (€201 + a beanz) " eor1 + aT bh — a"2b%e102)

we have x9(ep12) = 0 iff x(ae201 +b€202)x(a6012—b€102)—X(6202)X(CL2€011 +abh—b26102) =0
or equivalent:

X (e201)x(aeo12 — bero2) — x(e202)x(aeprr — beipr) = 0. (%)

If b = 0 we have X(€022) =0= X(€021) since €021 — [6001,6121] and €022 — [6001,6122]
and ego1 € st(x, W>2). Our statement in a) then says: x9°9 (eg12) = 0 if and only if
x(e201)x(eo12) — x(e202)x(eo11) = O equivalent to () for b = 0. If b # 0 then, since
aepo1 + bepoz € st(x, W>2), we have

ax(eo2) = bx(e12),
ax(e1i2) = bx(e22),
ax(eo21) = bx(ein),
ax(e111) bx(e201)

and so (*) is equivalent to x(ep21)x(aeoi2 — beio2) — x(eo22)x(aeo11 — beipr) = 0. But
if a # 0 # b we have x(ep21)x(aepi2 — beioz2) — x(eo22)x(aep1r — beor) = 0 if and only
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if x(ae201 + beaoa)x(acor2 — beroz) — x(e202)x(aeor1 + abh — b?e1p2) = 0 because of the
relations listed just above. Therefore the conditions al) and a2) in the proposition are
equivalent and equivalent to (). The proof of a) is completed.
b) Let g,¢* be automorphisms on W such that x9°9" has Type A. By Lemma 13.5.1
we have
X9 (eoo1) = x?(eoo1) — x?(e101)” — X (e011)X? (€102)- (13.10)

First suppose that a = 0. Then x(e201) = 0 = x(e202) since eap1 = [ego2, €211] and
e202 = [eooz, e212] and egp2 € st(x, W>2). Our statement in b) then says: Xg"g*(eom) =0
if and only if X(EOQQ)X(GOOQ) — X(h)2 — X(elog)x(eon) =0 (note that h = €012 — 6101). It

follows that
(20 ()
10 x(eo21)x(eo22)™2 1 )°

If we apply (13.10) with the relations in Appendix A we get x9°9" (ego1) = X (eo22)x(€002) —

x(h)? — x(e102)x(eo11) as required.
Next, suppose that a # 0. Then

B < 1 —a1b > < X(€201 +a_1b€202)_1 0 >
g 0 1 X (e202)x (€201 + @~ tbegn2) 2 1
and if we apply (13.10) with the formulas in Appendix A we find x9°9 (ego1) = 0 if and
only if

x(aea01 + beaga)x(aegor + begoz) — a? (X(h)2 + X(€102)X(6011)) =0. (x)

If b= 0 we have x(ep22) = 0 = x(ep21) since ega1 = [600176*121] and eg22 = [eoo1, €122]
and eppr € st(x, W>2). Our statement in b) then says: x99 (egp1) = 0 if and only if
x(e201)x(€001) — X(h)2 — x(e102)x(€e011) = 0 equivalent to (x) for b = 0.

If b # 0 then, since aegor + begoz € st(x, W>2), we have

ax(eo22) = bx(e112),
ax(e1i2) = bx(e22),
ax(eo21) = bx(ein),
ax(ei11) = bx(e1)

and therefore we get x(aezo1 + beag2)x(aego1 + begoz) — a? (X(h)2 + X(€102)X(€011)) =0
if and only if x(aega1 + beg22)x(aegor + begoz) — bQ(x(h)2 + X(€102)X(6011)) = 0. That
is: Both conditions in the proposition are equivalent and equivalent to (x). The proof is
completed. [l

Proposition 13.5.4. Let x € W* of height 2 with st(x, W>2) = Km & W>(o (where m =
aegor + begoz) such that x(V) = 0. Let g,g* be automorphisms on W such that x9°9" has
Type B. Set h := eg12 — e101- Then:

a) x99 (ep11) = 0 if and only if x(a’ep11 + abh — b?e1p2) = 0.
b) If x9°9" (eg11) = O then x9°9" (h) = 0 if and only if x(aeo11 — bh) = 0 = x(ah+ beigs).
¢) If x9°9" (eg11) = x9°9" (h) = 0 then x9°9" (ego1) = 0 if and only if

C]) X(eogl)x(aeom + beoog) — X(eon)x(aeou + b€012) =0 and
c2) x(e202)x(aeoo1 + begoz) — Xx(e102)x(aeo12 + bejoz) = 0.
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Proof. a) Let g, g* be an automorphisms on W such that y9°9" has Type B. It follows from
Lemma 11.2.1 and its proof that

0 1 1 0 , 1 —a ' 1 0 .
g—<1 0><O X(6021)>1fa—0 and g—<0 1 ><0 X(6202)>1fa750.

Moreover, x9°9" (eg11) = Xx9(eg11), since g*(eo11) = eo11 (mod Ker(x9)) by Lemma 13.5.2.

If a =0, then g(eg11) = x(eop21)e102 such that x9(ep11) = 0 if and only if x(ejp2) = 0 if
and only if x(a?eg11 + abh — b2e1p2) = 0 (since a = 0).

If a # 0, then g(eo11) = x(eo21)(eo11 + a~1bh — a=2b%e102) from the G'Lo(K )-action in
Appendix A. We conclude that x9(ep11) = 0 if and only if x(aep11 + abh — b%e1g2) = 0.
The proof of a) is completed.

b) Note that ¢*(h) € h+ [h, W>1] + W>g by Lemma 13.5.2. Since [h, e202] = 0 we have
[h, W>1] C W12 C Ker(x). Therefore x9°9" (h) = 0 if and only if x9(h) = 0.

First suppose that a = 0. Let g be as above (in the a = 0 case). Since x9(ep11) = 0, by
assumption, we have x(ejp2) = 0 by a); hence x(ah + bejg2) = 0 for a = 0. We also have
x?(h) = —x(h). Therefore x9(h) = 0 if and only if x(aep11 — bh) = 0 for a = 0.

Next, suppose that a # 0. Let g be as above (in the a # 0 case). Now, use the
G Ly(K)-action in Appendix A and obtain x9(h) = x(h)+a~tbx(e102). Since x9(ep11) = 0
by assumption we have x(a%egi; + abh — b%e102) = 0 by a). Now it is easy to get x9(h) = 0
if and only if x(aepi1 — bh) = 0 and x(ah + bejg2) = 0. This completes the proof of b).

c) First, apply Lemma 13.5.2 and get

X7 (eo01) = X (eo01) — X% (eo12)x? (e102). (%)

Again we treat a = 0 and a # 0 separately. First suppose that a = 0. Let g be as above
(in the a = 0 case). Now use () to get x9°9 (ego1) = 0 if and only if x(epo2)x(€021) —
x(eo11)x(e101) = 0 (use the GLo(K) action in Appendix A). But x9°9 (h) = —x(h) = 0
implies that x(eg12) = X(e101); therefore x9°9" (ego1) = 0 if and only if x(ego2)x(€021) —
x(eo11)x(eo12) = 0. But x(ejp2) = 0 (apply b)) and since egp2 € st(x, W>2) we also have
X(€e202) = 0 from the relation esgy = [ego2, €212]. It follows that the condition in ¢2) is
always true and moreover, the condition in c1) is just x(ego2)x(€021) — x(€o011)x(€012) = 0
for a = 0.

Let a # 0 and let g be as above (in the a # 0 case). Now we have x9°9 (ego1) = 0 if
and only if x(e202)Xx(aeoo1 + begoz) — x(€102)x (aco12 + beip2) = 0.

If b =0 then x(ep21) = 0 since egp1 € st(x, W>2) and eg21 = [ego1, €121]. It follows that
the condition in c1) is always true and the condition c2) is equivalent to x9°9 (eg1) = 0.

Finally, suppose that a # 0 # b. Then c1) and ¢2) are equivalent and so equivalent
to x(e202)x(aeoo1 + begoz) — x(e102)x(aegr2 + bergz) = 0 as required. In order to obtain
the equivalence of cl) and c2) use that aegor + begoz € st(x, W>2) and find the following
relations:

ax(eo22) bx(e112),
ax(en2) = bx(e2n2),
ax(eo21) = bx(ein),
ax(enl) = bx(€201)-

Moreover, x9(ez01) = 0 since x9 has Type B; hence ax(e201) + bx(e202) = 0. It follows
that y(ez2) = —a3b™3x(eg21). By assumption we have x9°9" (h) = 0 and hence, by a),
x(aep11 —bh) = 0 = x(ah+beyge); it follows that ax(eg11) = bx(h) and —bx(e102) = ax(h).
With these relations in mind it is easy to check that c1) is equivalent with c¢2). 0
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13.6 Stabilizer of dimension 8

Theorem 13.6.1. Let x € W* of height 2. If st(x, W>2) # W>¢ and if dimgew (x) = 8
then any irreducible Uy (W )-module has dimension 3° = geodimwew (00/2 - gnd induction
induces a bijection between the isomorphism classes of irreducible U, (W>o)-modules and
the isomorphism classes of irreducible U, (W')-modules. The number of isomorphism classes
of irreducible Uy, (W)-modules is 1 if x(V) = 0 and 3 if x(V) # 0 with V as in (13.9).
Finally; ey (x) C Wso and tk e (x) =0 if x(V) =0 and tk ey (x) = 1 if x(V) # 0.

Proof. If x(V') # 0, then x is conjugate to a character of Type A by Lemma 11.6.1. Now
apply Lemma 13.3.1 and Theorem 13.3.2.a: It follows that there exist 3 isomorphism classes
of irreducible U, (W)-modules; each representative has dimension 3° = geodimwew(x)/2
(note that dimgW = 18 for p = 3).

If x(V) = 0, then x is conjugate to a character of Type B by Lemma 11.6.1. Now
apply Lemma 13.4.2 and Theorem 13.4.5: It follows that there exist 1 isomorphism class
of irreducible U, (W)-modules; any representative has dimension 35 = geodimwew (x)/2,

Moreover, by Remark 13.3.3 (if x(V') # 0) and Remark 13.4.6 (if x(V') = 0) induction
induces a bijection between the isomorphism classes of irreducible U, (W>()-modules and
the isomorphism classes of irreducible U, (W )-modules.

The final statement follows from Lemma 13.3.1 and Lemma 13.4.2. O

The next lemmas say exactly when we have dimgcpy (x) = 8 for x € W* of height 2
with st(x, W>2) # W>o. We will discuss x(V) = 0 and x (V') # 0 separately. Recall that
we have defined a,b € K such that 0 # 7 = aepo1 +bepoz € st(x, W>2). Set h := eg12—e101-

Lemma 13.6.2. Let x € W* of height 2 with st(x, W>2) # Wxq such that x(V) = 0.
Then dimg ey (x) = 8 if and only if x(a’eg11 + abh — b?e1g2) # 0.

Proof. Follows immediately from Lemma 13.4.2 and Proposition 13.5.4.a. O

Lemma 13.6.3. Let x € W™ of height 2 such that st(x, W>2) # W and x(V) # 0.
Then dimg ey (x) = 8 if and only if x(ep22)x(aco11 — betor) — x(€o21)x(aepr2 — beipz) # 0
or x(aean + beap2)x(aeo12 — bero2) — x(e202)x(aPeor1 + abh — b?e1p2) # 0.

Proof. Follows immediately from Lemma 13.3.1 and Proposition 13.5.3.a. O

13.7 Stabilizer of dimension 10 and x(V) =0

In this section we consider xy € W* of height 2 with dimg ey (x) = 10 such that x(V) =0
and st(x, W>2) # Wx. We define a,b € K such that 0 # 7 = aego1 + begoz € st(x, W>2).
Set h := eg12 — e101. Note that x is conjugate to a character of Type B by Lemma 11.6.1.
Since dimg e (x) = 10 we have, by Lemma 13.4.2, either rk ey (x) = 1 or tk ey (x) = 0.

Lemma 13.7.1. Let x € W* of height 2 such that x(V) = 0 and st(x, W>2) # W>q and
dimgew (x) = 10. Then tk ey (x) = 1 if and only if x(aep11 — bh) # 0 or x(ah+beygz) # 0
and tk ey (x) = 0 if and only if x(aepr1 — bh) = 0 = x(ah + beipz).

Proof. Note that y9°9" has Type B for some g¢,¢g* € Aut(W) by Lemma 11.6.1. The
assumption dimg ey (x9°9 ) = dimgep(x) = 10 implies that x9°9 (ep11) = 0. Moreover,
rk ¢y (x9°9) = 0 if and only if x9°9" (h) = 0 and rk ¢y (x9°9") = 1 if and only if x9°9" (h) # 0
by Lemma 13.4.2. Now conclude by Proposition 13.5.4.b. O

101



Lemma 13.7.2. Let x € W* of height 2 such that x(V') = 0 and st(x, W>2) # W>o. Then
we have dimg ey (x) = 10 if and only if x(a?eo11 + abh — b?e192) = 0 and either 1) or 2)
are satisfied:

1) x(aegi1 — bh) # 0 or x(ah + beygz) # 0 or

2) one of the following conditions are satisfied:

X (€e021)x(aeoo1 + begoz2) — x(eo11)x(aeorr + bepr2) # 0  or
X (e202)x (aego1 + beoo2) — x(€102)Xx(aeo12 + beinz) # 0.

Proof. Follows immediately from Lemma 13.4.2 and Proposition 13.5.4. O

Theorem 13.7.3. Let x € W* of height 2 such that x(V') = 0 and st(x, W>2) # W>o and
dimgew (x) = 10. Then cw(x) C Wso and any irreducible Uy (W)-module has dimension
34 = geodimwew (/2 The number of isomorphism classes of irreducible Uy (W)-modules is
3ifrkew(x) =1 and 2 if rk e (x) = 0.

Proof. Suppose that x9°9" has Type B for automorphism g, g*. Since dim gy (x) = 10 we
have in particular x9°9" (eg11) = 0. Moreover, it follows from Lemma 13.4.2 that ¢y (x) C
Wsp. Our assumption dimg ey (x) = 10 implies, again by Lemma 13.4.2, that rk ¢y (x) =
rk ey (x9°9°) = 1 if and only if x9°9" (h) # 0. If tk ey () = 1 we thus have x9°9" (e101) # 0
since x9°9" (e101) = x9°9" (h); now apply Theorem 13.4.5.c on x9°9". If rk ¢y (x) = O then
X9°9" (e101) = x9°9" (h) = 0 # x9°9 (ego1) # 0; now apply Theorem 13.4.5.b on x9°9". The
proof is completed. O

13.8 Stabilizer of dimension 10 and (V) #0

In this section we consider y € W* of height 2 and dimgcy (x) = 10 such that x(V) # 0
and st(x, W>2) # W>q. We define a,b € K such that 0 # 7 = aego1 + begoz € st(x, W>2).
Set h := eg12 — e101. First, apply Lemma 13.3.1 and Lemma 13.6.3 and get:

Lemma 13.8.1. Let x € W* of height 2 such that st(x, W>2) # W>q and x(V) # 0. Then
dimgew (x) = 10 if and only if x(ep22)x(aep11 — beio1) — x(eo21)x(aepr2 — beipz) = 0 and
x(ae201 + beaga) x(aepr2 — bero2) — x(e202)x(a?ep11 + abh — b%eqp2) = 0.

Lemma 13.8.2. Let x € W™ of height 2 such that st(x, W>2) # W and x(V) # 0.
Suppose that dimgey (x) = 10. Then rk ey (x) = 1 or rk cW( ) = 2. Moreover, we have
rkew (x) = 1 if and only if x(aez01 +bezp2)X (a6001 +begoz) —a® (x(h)? +X(6102)X(6011)) =0
and x(aeg21 + beoza)x(aeoor + beooz) — b (x(h)* + x(e102)x (6011))

Proof. Since x (V') # 0 it follows that y is conjugate to a character of Type A. Therefore
rk ey (x) = 1 or rk ey (x) = 2 by Lemma 13.3.1. Let g,¢* be automorphisms such that
x9°9" has Type A. Since dimg ¢y (x) = 10 it follows from Lemma 13.3.1 that rk ey (y) = 1
if and only if x9°9 (ego1) = 0. Now conclude by Proposition 13.5.3.b O

Theorem 13.8.3. Let x € W* of height 2 such that st(x, W>2) # W>¢ and x(V) # 0.
Suppose that dimgew (x) = 10. If tk ew (x) = 2, then there exist 5 isomorphism classes
of irreducible U, (W')-modules; two representatives have dimension 35 = geodimwew (x)/2+1
and three representatives have dimension 3* = 3°°4mwew(X)/2 " If vk ey (y) = 1, then there
exist 4 isomorphism classes of irreducible U, (W')-modules; two representatives have dimen-
sion 35 = 3eodimwew (/241 gnd two representatives have dimension 3* = 3eedimwew(x)/2,
Finally; ew(x) ¢ W>o.
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Proof. Since x(V) # 0 it follows that y9°9" for some automorphisms g, g*. We also have
dimg ey (x9°97) = dimgep (x) = 10 and therefore x9°9 (eg12) = 0 (see Lemma 13.3.1).
Now apply Theorem 13.3.2.b,c and note that x9°9" (ego;) = 0 if and only if rkey(x) = 1 by
Lemma 13.3.1. Finally; ¢y (x) ¢ W>o by Lemma 13.3.1 again. The proof is completed. O

13.9 Stabilizer of dimension 12

Theorem 13.9.1. Let x € W* of height 2. If st(x, W>2) # W>¢ and if dimgew (x) = 12,
then x(V) = 0 with V' as in (13.9) and cw(x) ¢ Wso with vk ey (x) = 1. There exist
3 isomorphism classes of irreducible U, (W')-modules; one representative has dimension
33 = geodimw ew (X)/2 " ope representative has dimension 2 - 3% = 2 . 3cdimwew (/2 gnd one
representative has dimension 3* = 3codimw aw (00)/2+1

Proof. It follows from Lemma 13.3.1 that x isn’t conjugate to a character of Type A; hence
x(V) =0 by Lemma 11.6.1. Next, apply Lemma 13.4.2 and Theorem 13.4.5.a and obtain
the required result (note that dimxW = 18 for p = 3 such that codimpy ey (x) =6). O

The next lemma says exactly when we have dimgcy (x) = 12 for y € W* of height
2 with st(x, W>2) # W>o. We have defined a,b € K such that 0 # m = aepo1 + bego2 €
Et(x, WZQ). Set h := €012 — €101-

Lemma 13.9.2. Let x € W* of height 2 such that st(x, W>2) # Wso. Then we have
dimgew (x) = 12 if and only if x(aep11 + abh — b%e1p2) = 0 and x(aegry — bh) = 0 =
X(ah + b6102) and

X(eo21)x(aeoo1 + beoo2) — x(eo11)x(aeo11 + begi2) = 0 and
x(e202)x(aeoo1 + beooz) — x(€102)x(aeoi2 + berp2) = 0.
Proof. Follows immediately from Proposition 13.5.4 and Lemma 13.4.2. O

13.10 Exceptional characters of height 3

Let p = 3 and let x € W* be a character of height 3 such that st(x, W>3) # W>o. We will
study two types of characters introduced in Section 11.5 (and I will use the terminology
from the height 2 situation):

Type A : 7€ W* of height 3 with 7(e211) = 1, 7(e212) = 0 and 7(egp2) = 0 and
7(e102) = 7(eo12) = T(eo11) = 0 and T(ez02) = T(e112) = 7(e111) = 7(€p21) =0
and 5t(7’, Wzg) = Kegp1 @ Wzo.

Type B : 7 & W* of height 3 with 7(e212) = 1,7(e211) = 0 and 7(egp2) = 0 and
T(e102) = T(eo12 + e101) = 0 and T(e202) = 7(e112) = T(e201) = 7(e111) =0
and 5t(7’, Wzg) = Kegp1 @ Wzo.

The definition of a in (11.11) now reads:

2 2
a= ZK€02k@ZK€12k@WZ3- (13.11)
k=1 k=1

Note that x(a N Wye1) = 0 for x € W* of Type A. Thus we can apply Theorem 11.8.5
for x of Type A.
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13.11 Type A characters of height 3

Consider xy € W* of height 3 and Type A. We shall classify the irreducible U, (g)-modules
(for g as in (11.8) with p = 3) and then use Proposition 11.8.5 to get information on the
irreducible U, (W)-modules.

Proposition 13.11.1. If x(ep22) # O then there exists up to isomorphism 1 irreducible
Uy(g)-module of dimension 3°.

Proof. Note that h = g N W is supersolvable and the Vergne polarization p of x con-
structed with respect to the chain (11.10) is given by

p = K(e112 + e201) ® Kegar @ Kein1 ® Kegar @ Wxa.

Indeed: By Remark 9.4.2 we have W9 C p1 and ep21 € 83y, and ejq1 € 875, follows
immediately. Since x([e201,€111]) # 0 = Xx([ea01, Wo21]) we have s3;; C s);;. Moreover,
€022 € 56622 and ej12 + €991 € 5>1<12 since X([eogg, WOQQ]) =0 and X([6112 + e201, Wllg]) = 0.
Next, s3;; C W1 since x([eo11, €212]) # 0 = x([W>1, e212]). We also have s)5, C s3;; by
observing that x([e101,€211]) # 0 = x([Wo11, e211]). Finally, s8,, C sY;; otherwise there
exists z € Wyg1 such that eg12 + 2 € 53,5 and hence x([eg12 + 2, €g22]) = 0. But this implies
that x([z, eo22]) = —x(eo22) # 0 since x(eg22) # 0 — contradiction since [e191, €g22] = 0 and
X ([Wo11, eo22]) = 0.

Let A € h* with A = xp: Then the Vergne polarization of A is equal to p and compatible
with x (i.e., AM(z)? — AP} = x(z)? for all € p;). Therefore, by Proposition 9.3.5 and
Lemma 9.3.7, there exists up to isomorphism 1 irreducible U, (h)-module of dimension 34,
Now apply Proposition 11.7.2 and the fact that y(a) # 0 if and only if x(eg22) # 0. O

The idea now is to describe the irreducible U, (g)-modules when x(eg22) = 0. We define
(as in the height 2 situation) £ = K(—epo1) ® K(2e101 + eo12) @ K(e201 + e112). It is a
restricted Lie algebra isomorphic to sly(K). Set b := Kegio ® Kepi1 @ Kejpp and define

s:=LDadb. (13.12)

It is easy to verify that s is a restricted Lie subalgebra of g and that a @ b is a p-ideal in
s (apply commutator relations). Moreover, x(a ® b) = 0 and s/(a ® b) ~ £ ~ sly(K) as
restricted Lie algebras.

We shall prove that induction induces a bijection between the isomorphism classes of
irreducible U, (s)-modules annihilated by a @ b and the isomorphism classes of irreducible
Uy (g)-modules. In order to prove this we need a lemma.

Lemma 13.11.2. Suppose that x(a @ b) = 0. If M is a U, (g)-module and M # 0, then
{xe M| (a®b) -z =0} #0 and there exists an irreducible U, (s)-submodule X C M with
(a®db)- X =0.

Proof. Since [a @ b,a @ b] C (a @ b) N Wy there exists a Uy (a @ b)-module K; as being
equal to K as a vector space and where the module structure is given by: e -1 = 0 for
e € (a®b)NWyi1 and eprz - 1 = [ (since ez € a with x(ep12) = 0 we have [ € Fg).
But a ® b C Wyo is supersolvable so we can apply Lemma 9.1.3: It follows that any
irreducible U, (a @ b)-module is isomorphic to some K; with [ € F3. So there exists a
nonzero x € M with (a® b) N Wy11 - 2 = 0 and eg12 - & = lz for some [ € Fs. If [ = 1, set
y:=e€3, v €M andifl =2 lety:=ed; -z M. Then (a®b)N Wy -y = 0 since
[e211, (a @ b) N Wo11] C (a® b) N Wopi1 and epi2 - y = 0 by construction. We conclude that
{reM|(adb) -2=0}#0.
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The final part of the lemma is now easy: Take a nonzero x € M with (a® b) -2 =0
and take an irreducible U, (s)-submodule X of U, (s) - . Since a ® b is an ideal of s with
(a@b) -2 =0 we have (a®b)-Uy(s) = = 0 and therefore (a @ b) - X = 0 as required. 0O

Proposition 13.11.3. Suppose that x(ega2) = 0. Let s be defined as in (13.12). Then
induction induces a bijection between the isomorphism classes of irreducible U, (s)-modules
annihilated by a @ b and the isomorphism classes of irreducible U, (g)-modules.

Proof. The assumption x(ep22) = 0 implies that x(a @ b) = 0. Set e; = e112 and ez = €212
and es = esq1. Then eg,es,e3 form a basis for a complement to s in g. Let X be an
irreducible U, (s)-module annihilated by a @ b. The idea is to prove that

{z € Uy(9) @y X [(a@b) -2 =0} =1® X. (13.13)

In order to prove (13.13) we will apply Proposition 6.4.1 with h = s and N = X. Adopt
the notation from Section 6.4: We define

X, = @®eédedoX,
Xy = PeebeX,

X3 = @eiwex,

where all 7,7,k run over {0,1,2}. Note that (s ® Kes) - X3 C X3 since e3 - X3 C X3
and [e3,s ® Kes] C Kes @ s. We also have (s N Wxo @ Kea @ Kes) - Xo C Xy since
er X9 C X9 Deg-Xo and [62,5 N WZO @ Key P K€3] CsnN WZO @ Keg ® Kes. Finally,
observe that (a @ b) N W11 - X3 = 0 and (a @ b) N W - Xo = 0. We will use these
observations in the following.

Our aim is to prove that (13.13) holds; i.e., that any x € Uy(g) ®y, (s) X such that
(a®b) -2 =0liesin X4 := 1®X. Solet x € Uy(g) ®p,(s) X denote an element with
(a®b) -z=0.

Set fi = ej11. Since f; € a it follows that f; -z = 0. Moreover, x([e112, f1]) #
0 but [ellg,fl][?’} = (ea11 — 6122)[3] = 0. We also have (ad e112)'(f1) - Xo C X since
(ad e112)'(f1) € 5 ® Kea @ Keg for all i. Finally, f; - X2 = 0 since f1 € (a®b) N W>1.

Next, set fo = eo11. Then fo-z = 0 and x([e212, f2]) # 0 = [e212, F2)B = (eg11 +e122) B
Since (ad e212)"(f2) € Kes @ s for all i we also have (ad e212)"'(f2) - X3 C X3. Finally,
fo- X3 =0 since fy € (a@ b) N Woir.

Finally, set f3 = ep12. Then [f3, e3] = es. We are now in position to apply Corollary
6.4.3 (with eq, ea,e3 and fi, fo, f3 and G, H, N defined above): We find that

{:EEUX(Q)®UX(5)X|(a@b)'xZO}C1®X

and since (a @ b) - X = 0 the other conclusion is clear. We conclude that (13.13) holds.
This implies that Uy (g) ®y, (s) X is irreducible: Any irreducible g-submodule M has a
nonzero intersection with 1® X [Apply Lemma 13.11.2|. Therefore M N(1® X) is a nonzero
Uy (s)-submodule of 1 ® X and, by irreducibility, M N (1 ® X) = 1® X. In particular, we
have M D 1® X and hence M is the entire induced module.
If X1, X5 are irreducible U, (g)-modules such that (a@®b)-X; =0=(a®b) - Xy and

¢ Ux(9) ®@u, (s) X1 = Ux(8) @p, (s) X2

is an isomorphism, then ¢ induces a U, (s)-isomorphism @ : X; ~ X5. Indeed, we have
e(1® X7)N(1® Xs) #0. (Look at the elements annihilated by a @ b.) Since ¢(1 ® X1)
and 1 ® Xy are irreducible U, (g)-modules, we get p(1 ® X;) =1 ® Xp; hence X; ~ Xo.
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We have thus shown: Induction induces an injection from the isomorphism classes of
irreducible Uy (s)-modules annihilated by a @ b into the isomorphism classes of irreducible
U, (g)-modules.

Now, let Y be an arbitrary irreducible U, (s)-module. I claim that we can find an
irreducible U, (s)-module X with (a @ b) - X =0 and

Ux(8) ®u, (s) X — Uyx(9) ®@p,(s) Y-

First, apply Lemma 13.11.2 to find an irreducible Uy (s)-submodule X C Uy (g)®y, (s Y
with (a @ b) - X = 0; thus we have inclusion maps: X — Uy(g) ®p, (s Y- Now apply
"Frobenius reciprocity’ on the inclusion X — Uy (g) ®y, (s Y to produce a (nonzero) Uy (g)-
homomorphism:

Ux(8) ®u,(s) X — Ux(9) @uy(s) Y- (13.14)

This implies that every U, (g)-module is induced from a U, (s)-module annihilated by
a @ b: Indeed, any irreducible U, (g)-module V' contains an irreducible U, (s)-module Y;
hence, by 'Frobenius reciprocity’, V' is a homomorphic image of Uy(g) ®y, (s) ¥ and by
(13.14) then also a homomorphic image of Uy (g) ®y, (s) X for some irreducible U, (s)-
module X with (a® b)- X = 0. By the part of the claim already proved we therefore have
V =~ U,(g) ®y, (s) X. The proof is completed. O

It is well known that irreducible U, (s)-modules annihilated by a @ b are in one to
one correspondence with irreducible Uy (s/(a @ b)) ~ U,(£)-modules. [Any irreducible
Uy (s)-module X extends to g if we define (a © b) - X = 0. On the other hand: Any
irreducible U, (g)-module is an irreducible U, (s)-module. So we can think of irreducible
Uy (g)-modules annihilated by a®b as irreducible U, (s)-modules extended to g with trivial
a @ b—action.|

Thus we obtain from the proposition above:

Corollary 13.11.4. Suppose that x(eg22) = 0. The number of isomorphism classes and
dimension formulas for irreducible U, (g)-modules are given as follows:

a) If x(e101) # 0 = x(e201) then there exist up to isomorphism 3 irreducible U, (g)—
modules all of dimension 3*.

b) If x(e101) = x(e201) = 0 # x(eoo1) then there exist up to isomorphism 2 irreducible
Uy (g)-modules all of dimension 3%.

c) If x(e101) = x(e201) = x(epo1) = O then there exist up to isomorphism 3 irreducible
Uy (g)-modules of dimension 33,2 - 3% and 3.

d) If x(ea1) # 0 = x(2e101 + eo12)? — Xx(eoo1)x(e201 + e112) then there exist up to
isomorphism 2 irreducible Uy (g)-modules all of dimension 3*.

e) If x(e201) # 0 # x(2e101 + eo12)® — x(eoo1)x(e201 + e112) then there exist up to
isomorphism 3 irreducible Uy, (g)-modules all of dimension 3*.

Proof. In [27, 5, 5.2] the representation theory of sly(K) is described. If we apply the
description in [27] on £ we see that there are 3 isomorphism classes of irreducible U, (£)-
modules if x(£) = 0 or x(2e101 + e012)? — Xx(eoo1)x(e201 + e112) # 0 and 2 isomorphism
classes of irreducible U, (£)-modules if x(2e101 + eo12)? — x(eoo1)x(e201 + e112) = 0. If
X(£) # 0 then each irreducible U, (£)-module has dimension 3 and if x(£) = 0 then there
exist 3 irreducible U, (£)-modules of dimension 1,2,3. Now it is straightforward to verify
a)—e) by using Proposition 13.11.3. O
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Lemma 13.11.5. Let x € W* be a character of height 3 and Type A. Then we have

dimgew (x) = 2 and rk ey (x) = 0 and cw(x) C W if x(eo22) # 0. If x(ep22) = 0 we
have the following:

6 if x(e201) = x(e101) = x(ego1) =0,

dimgcew (x) = {4 else

and

0 if x(e1o1) = 0= x(e201) and x(ego1) # 0,
rk e (x) =0 if x(e201) # 0 = x(2e101 + €012)* — X(eoo1)x (€201 + €111),
1 else,

Finally, ¢y (x) C Wso unless x(e201) # 0 or x(e101) = x(e201) = x(eoo1) = 0.

Proof. First, note that cyw(x) C g [Let y € ey (x) and use the relations x([y, e221]) =
X([y,e121]) = x([y,e021]) = 0]. This leaves two possibilities for dimpgep (x): Either
dimgew (x) = dimgeg(x) — 1 or dimgew (x) = dimgeg(x) — 3 (use similar ideas as in
the proof of Lemma 10.4.7). If dimgew (x) = dimgeg(x) — 1 then there exists = € cg(x)
such that cg(x) = ew(x) ® Kz. But we easily check that eja1,e021 € cg(x) and since
(Kei21 @ Kega1) New(x) = 0 it follows that dimgew (x) = dimgeg(x) — 1 is impossible.
Let me summarize: ¢y (x) C g of codimension 3.

If x(eg22) # 0 then we have ¢g4(x) C ¢g N Wxo = b since we have x([ego1,€122]) # 0
but x([g N W>o, e122]) = 0. Now use that h C g of codimension 1 to get dimgeg(x) =
dimgcy(x) — 1. But the dimension of dimgecy(x) can be determined by the Vergne polar-
ization of x|, (computed in the proof of Proposition 13.11.1); if we use (9.6) in Section 9.2
we get:

dimgew (x) = dimgey(x) —4 =2 - dimgp — dimgh —4 = 2.

Since ¢y (x) C b we have ¢y(x) C p; hence ey (x) C Wxo and 1k ey (x) = 0.
From now suppose that y(eg22) = 0. Let

y= airein € cw(x)
ijk

for some a;;, € K. Since ¢y (x) C g we have agp2 = a102 = ago2 = 0. Moreover, it is easy

to check that ager = aj21 = @211 = ag12 = ag21 = a111 = ap11 = 0 also [use x([y, €qpc)) =0

for appropriate a, b, ¢|]. The final relations give the following conditions on the coefficients
in the expression of y:

G201 — G112

ao2 + a1 =

a1o1X(eoo1) — a2o01x(e101)

aoo1 X (eoo1) — az201x(€201)

aio1x(e201) — apo1x(e101) =

I
coooo

It follows that €999, €122, €022 € Cw(X) and that €001, €101 — €012,€201 € Cw(X) if

x(e201) = x(e101) = x(eoo1) = 0 and x(e201)eoo1 +Xx(e101) (€101 —€o12)+x(€oo1)e201 € cw (Xx)
otherwise. Moreover, y is a linear combination of these elements.
The dimension formula for ¢y (x) now follows and ¢y (x) C Wxq unless x(e201) 7# 0 or

X (e201) = x(e101) = x(ego1) = 0.
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If X(6201) = 0 then

0 if x(e101) = 0 # x(eo11),
1 else.

rk e (x) = {

Clearly, rk ey (x) = 0 if x(e101) = 0 # x(ep11) since ey (x) C Woi1 in that case. Suppose
that x(e101) = 0 = x(ep11)- Then ep12 — e101 € e (x) is a toral element. If rk ¢y (x) = 2
then x is conjugate under Aut(W) to a character of Type B by the results in Section 12.1.
But this is a contradiction since no characters of Type A and Type B are conjugate. So rk
cw (x) = 2 is impossible for x of height 3 and Type A.

Finally, suppose that x(e191) # 0. Then K (x(e101)(e101 — €o12) + X (€001 )e201) is a torus
since any ejg; — eg12 + cegp1 for ¢ € K is a toral element by Lemma B.1.1. In fact, it is a
maximal torus also.

If x(e201) # 0 set a := x(e201)eoo1 + x(e101)(€101 — €012) + X (€oo1)e201 and use (B.2) in
Appendix B to get:

¥l = (X(2€101 + 6012)2 — x(eoo1)x (€201 + 6111))0“

Therefore

0 if x(2e101 + eo12)? — x(eoo1)x(e201 + €111) = 0,
e () = 1 else

If X(2€101 + 6012)2 — X(eo()l)x(egm + 6111) 75 0 then rk Cw(X) =1 by Lemma B.1.2.
Suppose that x(2e101 +€o12)? — X (€001 ) x (€201 +e111) = 0. If rk ¢y () > O then there exists
a nonzero toral element h € ¢y (x). It is easy to see that we can write

h=a+z
for some z € Kegao @ Keiao & Kegs. But hbPl € Wso by (B.2) in Appendix B (use that
aldl = ); therefore hBl = h is impossible.
The proof is completed. O

The irreducible U, (W )-modules are now described by using Theorem 11.8.5, Propo-
sition 13.11.1, Corollary 13.11.4 and Lemma 13.11.5 (note that x(a) # 0 if and only if

X(eo22) # 0):

Theorem 13.11.6. Let x € W* be a character of height 3 and Type A and let a be as in
(11.11) with r = 3.

a) If x(a) # 0 then dimgew (x) = 2 and there exists up to isomorphism 1 irreducible
Uy (W)-module of dimension 3% = 3°dmwew()/2 We have vk c(x) = 0 and
Cw(X) C Wzo.

Suppose that x(a) = 0.

b) If x(e101) # 0 = x(e201) then dimgcew(x) = 4 and there exist up to isomor-
phism 3 irreducible U, (W)-modules all of dimension 37 = geodimwew (X)/2 - We have
rk e (x) =1 and ew(x) C W>o.

c) If x(e101) = x(e201) = 0 # x(epo1) then dimgew (x) = 4 and there exist up to
isomorphism 2 irreducible U, (W )-modules all of dimension 37 = geodimw ew (x)/2
We have tk ey (x) = 0 and cw(x) C W>o.
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d) If x(e101) = x(e201) = x(epo1) = 0 then dimgcew (x) = 6 and there exist up to isomor-
phism 8 irreducible U, (W)-modules of dimension 3% = geodimw ew (x)/2
230 = 2. gcodimwew(0)/2 gpd 37 = Feodimwew ()/2+L - We have tk e (x) = 1
and ey (x) & W>o.

e) If x(ea01) # 0 = x(2e101 + eo12)® — x(eoo1)x(e201 + e112) then dimgew (x) = 4
and there exist up to isomorphism 2 irreducible U, (W)-modules all of dimension
37 = geodimwew (/2 We have tk ey (x) = 0 and ey (x) ¢ Wso.

F) If x(e201) # 0 # x(2e101 + e012)® — x(eoor)x(e201 + en2) then dimgew (x) = 4
and there exist up to isomorphism 3 irreducible U, (W)-modules all of dimension
37 = geodimwew (/2 We have tk ey (x) = 1 and e (x) ¢ Wso.

Remark 13.11.7. One can show that induction induces a bijection between the isomor-
phism classes of irreducible U, (W>()-modules and the isomorphism classes of irreducible
Uy(W)—modules if x(a) # 0 or x(a) = x(e201) = 0 # x(e101)-

But Theorem 13.11.6 says that induction from Wy to W does not always take irre-
ducible U, (W>g)-modules to irreducible U, (W)-modules.

In fact, if x(a) = x(e101) = x(€201) = 0 then one can prove that there exist 3 irreducible
Uy (W>g)-modules Sy, S1,S2 and nonzero U, (W)-homomorphisms

Ux(W) ®@u,(w0) So ¥ Zo Ux(W) @u (wsg) S2

such that ¢ 09 = x(ego1)? - Idg and ¥ o = x(ego1)? - Ida (Idj, denotes the identity map on
the W-module induced by Sj, for k = 0,2). If x(epo1) = 0 then Ker(¢) is a proper nonzero
W-submodule of U, (W) ®u, (w-,) So and Ker(y) is a proper nonzero W-submodule of
Uy(W) ®u, (W) S2- Moreover, Uy (W) @y, (ws,) S1 is irreducible.

If x(a) = 0 # x(e201) one can prove that there exists one irreducible U, (W>g)-module
S with

EndW(Ux(W)(g)UX(WZO)S) ~ K[X]/(X? - X2~ (x(2e101 +e012)* — X (eo01) x (€201 +€112))3).

13.12 Type B characters of height 3

Consider y € W* of height 3 and Type B. The Vergne polarization of y constructed via
the chain (9.10) is given by

B {K6012 ® Keor1 @ Wozz if x(eo11) = x(eo22) = x(eo21) = 0,
K(eo11 — x(eo21)e202 — Xx(e022)e201) ® Wo2o  otherwise.
(13.15)

In order to see this we have to consider all 5;3'1@ for (ijk) >~ (012). First, we observe that
€afy € 5257 for (afy) = (022); hence Wy C p. Moreover, 5715 C 6399 and 835 C 5779
since x([e112,e201]) # 0 = x([Wo22, €201]) and x([e202, e111]) # 0 = x([Whi12, e111))-

Next, observe that y := eg11 — x(€021)e202 — X (€022)e201 € 831, (one has to check that
X([y, eo22]) = x([y, e111]) = x([, €021]) = 0).

Finally, we have to consider s7, and sY,. Since x([e101,€212]) # 0 = x([Wo11, €212))
we have s, C s3;;. Finally, suppose that h € s%,5 but h & Wip1: Since x([eo12, e212]) =0
it follows that h = eg12 + 2z for some z € Wyi1. If x(ep21) # 0, then x([ep12 + 2, €p21]) # 0
implies that x([z,e021]) # 0 — contradiction since x([eg21, Wo11]) = 0 for x of Type B. If
X(eo22) # 0 but x(ep21) = 0, then x([ep12 + 2, €022]) # 0 implies that x([z, e22]) # 0 and
therefore

z € K¥egpo + Z Keagy.
(af)#(202)
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But x([eo12 + 2, e111]) = 0 = x(e111) implies that x([e111,2]) = 0 — contradiction for z
written as above.

Suppose that x(eg11) # 0 but x(W;) = 0 (or equivalent: x(ep22) = x(€p21) = 0). Then
X([eo11, Woi11]) = 0 and so we get a contradiction from x([eoi2 + 2,e011]) = x(eo11). It
follows that s%,; C 57, C sg1; if x(eo11) # 0 or x(eo21) # 0 or x(eg22) # 0.

Finally, if x(ep11) = x(W1) = 0 (or equivalent: x(ep11) = x(€022) = x(€g21) = 0) then
eo12 € 5310 since x([eg12, €212]) = 0. Therefore, the formula for p in (13.15) holds.

At this point it will be convenient to describe the centralizer of .

Lemma 13.12.1. If x € W* is a character of height 3 and Type B, then we have

4 if x(eonn) # 0 or x(eo21) # 0 or x(eo22) # 0,

dimgcew (%) = {8 else

Moreover,

0 if x(eo11) # 0 or x(ep21) # 0 or x(ep22) # 0,
tk e (x) = 41 if x(eo12) =0 and x(eo11) = x(eo21) = x(eo22) =0,
2 if x(eo12) # 0 and x(eo11) = x(eo21) = x(eo22) = 0.

Finally; cw(x) € W>o if and only if x(eo11) = x(eo21) = x(eo22) = 0.
Proof. Let

Yy = Z GaB~yCafBy € CW(X) (*)
(aB7)

for aqs, € K. First, let us show that agoa = a102: Since ey (x) C st(x, W>3) = Kegor &
Wso we have agpe = 0. Next, use the relations x([y,e211]) = 0 # x([e102,€211]) and
X([6001,€211]) = X([ng,@gn]) = 0 to get aig2 = 0. It follows that y = agpiegor (mod
Woiz).

If x(eg21) # O then x([y,e121]) = 0 implies that ago; = 0 since x([ego1, €121]) # 0 and
since x([Woi2, €121]) = 0.

If x(eg22) # 0 then x([y, e122]) = 0 implies that ago; = 0 since x([ego1, €122]) # 0 and
since x([Wo1i2, e122]) = 0.

Finally, suppose that x(ep21) = Xx(eg22) = 0 but x(ep11) # 0. It follows that agsge = 0
since 0 = x([y, ep22]) = 2a202x(e212). Now use that x([y, e111]) = 0 to get app1 = 0.

Therefore, ¢y (x) C cho(Xleo) if x(eo11) # 0 or x(ep21) # 0 or x(eg22) # 0. Since
ajp2 = 0 for any y as in (x) we also have CWEO(XWVZO) C Wora (XWp12)- Now apply
Lemma 10.4.1 and Lemma 10.4.7 to get dimgew (x) = dimgewy, (Xjwy,,) — 3. But
dim g ¢y, (X|wp,) can be obtained by combining the dimension for p and (9.6). Thus
we get (see the formula for p in (13.15)):

dimKtw(X) =2 dipr —dimgWp12 — 3 = 4.

Moreover, rk ¢y (x) = 0 since ey (x) C p and p is unipotent.
Assume from now that y(eg11) = x(€021) = x(€022) = 0 and let

Y=Y apyCapy € w(X)
(aB)

for ans, € K. It follows from the calculations above that ago2 = a102 = age2 = 0 (in order
to get agge = 0 we use that x([y,eo22]) = 0 and x(ep22) = x(eg21) = 0). It is easy to
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verify (use the assumptions on x) that egi2, €p21, €121, €221 € e (x). Therefore we can also
assume that agio = ago1 = a121 = a991 = 0 in the expression for y. Moreover, we also have
a1p1 = 0 since 0 = x([y, e212]) = 2a101x(e212) (here we use that x(e112) = 0). The final
relations (i.e., x([y, €apc]) = O for appropriate a,b,c) give the following conditions on the
coefficients in the expression of y:

ap22 —ainn =

aporX(eo12) +agor =

apo1X(€o12) — a2 =

aoor X (eoo1) + @212

az11 + a122 — ap11x(eo12)

(ao22 + a111)x(€012) — ao11x(€o01) + @222
(a112 + a2o1)x(€012) =

Il
coooooo

If x(ep12) = 0 then
y € K(e211 — e122) ® K (eo22 + e111) © K (eoo1 — x(eoo1)e212) ® K (eo11 + X (eoo1 )eazz)
and by the list of relations above we have

ea11 — e122 € ew(X),
eo22 + e111 € ew(X)
eoo1 — X(€o01)e212 € ew (X),
eo11 + x(€oo1)e222 € cw (X)-

)

It follows that dimgep () = 8. We also have rk ¢y () > 1 since eg12 € ey (x) is a toral
element. If we have rk ey (x) = 2 then it is easy to that there exists a toral element
h € cw(x) given by h = ego1 + 2z for some z € Kegy @ Kegoo @ Wipp. This implies, by
(B.2) in Appendix B, that RB3l e W=( and therefore hB £ h — contradiction.

If X(e()lg) 7’5 0 then

y € K(ean — e122) ® K(epaz2 + e111 + x(eo12)e222) @ K (eo11 + x(eoo1)e222 + x(eo12)eai1)
@K (epo1 — x(€eoo1)e212 + x(eo12) (€112 — €201))
and by the list of relations above we also have

ea11 — e122 € e (X),

eo22 + e111 + X (eo12)e222 € ew (X

eoo1 — X(eoo1)e212 + x(eo12)(e112 — e201) € ew(x
eo11 + x(eoo1)e222 + x(eo12)e211 € ew ().

I

)
);
)
)

It follows that dim ey (x) = 8. In this case we have rk ey () = 2: To see this, set

h := epo1 — Xx(€eoo1)e212 + x(€eo12)(e112 — €201).

If we apply (B.2) in in Appendix B we get hl¥l = h + y(ego1)eo12. It follows that we can
choose v € K such that h+~yeq;2 is toral [since [h, eg12] = 0 we shall choose v € K such that
R+ ~3eg1a = h47egi2 or equivalent: We shall choose v € K such that v = 4 + x(ego1)]-
We conclude that Kegia & K(h + vepi2) is a (maximal) torus. O

Let us describe the irreducible U, (WW)-modules. First, suppose that x(ep11) # 0 or
x(e021) # 0 or x(eg22) # 0.
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Let K, be the one dimensional p-module where each x € p acts as multiplication by
x(z). Actually, K, is a U,(p)-module since x(zl) = 0 for all z € p [in order to get
X(ym) =0 for y = eg11 — x(eo21)e202 — Xx(€o22)e201 one has to use (B.2) in Appendix B].
Moreover, K, is the unique U, (p)-module since py is unipotent.

Set S = Uy(Wx0) ®y,(p) Ky and note that S is irreducible with a basis given by
Zsthim i= €}0a€haetia€io1€ly ® 1 for 0 < s,t,k,1,m < 3 (the PBW theorem).

Let M = Uy(W) ®u, (w-y) S and let wg = 1 ® zgo000 € SocpM. Note that wg €
Socyl ® S; thus it follows from Lemma 11.3.1 that Socpl ® S = Kwyp.

We shall obtain results similar to those in Theorem 10.4.11 and Theorem 10.4.12 [in
Theorem 10.4.11 and 10.4.12 we consider x of height r with st(x, W>,) = W>q: Except
for one type of characters of height 2p — 3 the dimension of all irreducible U, (W )-modules
is peodimwew(X)/2 and the number of isomorphism classes is p if rk ¢y (x) = 1 and 1 if rk
cw (x) = 0]. This is illustrated by the following result.

Proposition 13.12.2. If x(ep11) # 0 or x(eg22) # 0 or x(ep21) # 0 then there exist one
irreducible U, (W)-module of dimension 37 = 3eodimwew (x)/2,

Proof. Keep the notation from above. The idea is to prove that Soc, M = Kwy; so suppose
otherwise that Soc,M # Kwg. Then there exists w € M such that Kw is an irreducible
p—submodule of Soc,M and by Lemma 11.4.1 we have

w € efo; ® 200000 + €hor @ U+ Z Z by ems, @ S (13.16)
k<b—1 k+m<b—1

for some b > 0 and some u € S. The assumption on w says that « - w — x(z)w = 0 for all
x € Worr. For € {e111, €022, €211, €122, €121} we have:

x(@)w € x(x)efo; ® 200000+ €501 @ (B[, €001]- 200000+ 1) + Z Z €h01€002 @S- (*)
k<b—1 k+m<b—1

In particular, b[z, epo1] - 200000 + « - v = 0 by the PBW theorem. Use that relation with
x = eg11 and & = epze and get (note that [ego1, eg22] = 0 and that [ego1, €211] - 200000 = 0)

ea1-u = 0,
€22 " U = 0.

This implies that v € )", . K 2ookim since

{u es | eo11 - u =0 =eqp - u} C Z KZOOklm- (13.17)
klm

In order to prove (13.17) use Proposition 6.4.1 with g = W>p and H = p and N = K.
The cobasis is given by e; = ejg2, €2 = €992,€3 = €g12,€4 = €101,65 = €112. Lhere exists
fi = ean1 such that [er, f1] acts bijectively on S (since x([e1, fi]) # 0 = [e1, f1]l¥]) and
J1 2 ki K Zotkim = 0 (note that Ny in Proposition 6.4.1 with N = K, corresponds to
> ikt K Zotkim)- Finally, (ad eq)(f1) - N2 C N and thus we can use Proposition 6.4.1: It
follows that w € >, K 2otkim if €211 - u = 0.

Next, we can use that egeo-u = 0. Set fo = eg22 and note that [es, f2] acts bijectively on
S (since x([ea, f2]) # 0 = [ea, f2]*)) and J2-> st K 200k1m = 0 (note that N3 in Proposition
6.4.1 with N = K, corresponds to ;. K zoorim). Finally, (ad e2)(f2) - N3 C N3 and thus
we can use Proposition 6.4.1 again: It follows that w € >, K Zookim if €211-u = 0 = epaa-u.
Therefore, (13.17) holds.
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So for any w € M but w ¢ Kwg such that Kw is a ps—submodule of M we have
U E Y pim K Z00kim for w written as in (13.16).

The assumption in the theorem implies that we can find = € py such that [z, egp1] -
200000 75 0 [take r = €121 if X(eogl) 7'5 0 and z = €122 if X(eogg) 75 0 and x = €111 if
x(eo11) # 0]. Tt follows from (x) that - u # 0 for = ej91 or x = ej92 or x = ey11. But
now we have a contradiction since u € ), K zoogim by (13.17) and since x - zookim = 0
for all k,I,m if x = e121 or £ = €192 Or & = eq11.

We conclude that SocyM = Kwgy. This implies that M is irreducible and in fact the
only irreducible U, (W )-module up to isomorphism: Indeed, any nonzero W-submodule X
of M contains wgy (X has p-—socle inside Soc, M = Kwy); therefore X is the entire module.
Any irreducible module M’ contains a copy of K, and so a copy of S (use 'Frobenius
reciprocity’). Thus we have a nonzero W—-homomorphism M — M’. Since both M and
M’ are irreducible we have M ~ M’.

Note that dimgx M = 37. Now the dimension formula (i.c., 37 = 3°°dimwew ()/2) follows
from Lemma 13.12.1 The proof is completed. O

Finally we shall consider the case where x(ep11) =0 = x(W1). It follows from (13.11)
that y(a) = 0. Set b := Keg11 ® Keq11 @ Keapp. It is easy to check that a @ b is a p-ideal
in g with x(a @ b) = 0; hence a @ b annihilates all irreducible U, (g)-modules. Moreover,
let £ be the restricted Lie algebra isomorphic to sla(K) defined in (13.5) and define

H:=L£& Kepgia ® Keqpro @ Keao. (13.18)

It is a Lie p-subalgebra of g with g = (a @ b) ® 9; hence g/(a ® b) ~ $H. Note that
a @ b annihilates all irreducible U, (g)-modules and that g/(a @ b) ~ §. Thus irreducible
Uy (g)-modules are in one to one correspondence with irreducible U, ($))-modules. [We
can think of irreducible U,(g)-modules as irreducible U, ($))-modules where a @ b acts
trivially.] Moreover, induction induces a bijection between the isomorphism classes of
irreducible U, (g)-modules and the isomorphism classes of irreducible U, (W )-modules by
Theorem 11.9.6 and Remark 11.9.7. Thus it will be enough for us to describe the irreducible
Uy ($)-modules in detail. This is the subject for the next propositions.

First, we define

5o = HNWso = Kegi2 @ Keior @ Keq12 © Keaor © Kearo. (13.19)

Note that $g, as a Lie p—subalgebra of W9, is supersolvable. If we intersect the chain
from (9.10) with $)o, then we get a chain

HoDODHoNWigt D HoNWp11 D---D0 (13.20)

that we can use to construct Vergne polarizations (after moving repetitions). It is easy to
see that the Vergne polarization po of x|g, with respect to (13.20) is given by

po = Kegro ® Keggr @ Keoro.

For any v € K with 13 —v = x(ep12)® we can define an (irreducible) Uy, (pg)-module K,

where each x € pgNWy11 acts as mutiplication by x(z) and eg12 acts as multiplication by v.
Moreover, any U, (po)—module is isomorphic to one of these K, . It follows from Proposition
9.3.10 that any irreducible U, (£)9)-module is isomorphic to some Uy ($0) @, (py) Kv (Where

v € K with v® — v = x(ep2)?). Set N, := U, () QU (po) K- Then all z;; 1= elo1€l1y ®1
with 0 <14,j < 3 form a basis for N,,. Set
M, := Uy(9) ®u, () Vv

and define w, o := 1 ® 299 € Socp, M, .
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Proposition 13.12.3. For v € K with v® — v = x(ep12)® we have
(€001 — €112 — €101€112) - Wy0 € Socp, M,,.

Proof. First, note that egi2 - (ego1 — €112 — e101€112) - Wy0 = V(€01 — €101€112) - Wy,0 Since
leoo1, eo12] = [e101, €012] = [e112,€012] = 0 and eq12 - wy, 0 = vw, 0. Next, [e201, €o01] - wy,0 =
e101 - Wy,0 and ezq - (€112 + ep1€112) - Wy0 = €101 - Wy0. Therefore we have

e201 - (001 — €112 — ero1e112) - Wy =0

as required. Finally, we get e212 - (€112 + €101€112) - Wy = €101 - Wy,0 = [€212,€001] - Wy 0
implying that e212 - (ego1 — €112 — e101€112) - Wy,0 = (€001 — €112 — €101€112) - Wy 0- O

Set ¢, = ego1 — e112 — eip1e112 and w, = ¢, - w,p. Then Kw, is a po—submodule of
M, by Proposition 13.12.3 and so Homy, (K, M,) # 0 (take ¢ : K, — M, defined by
¥ (1) = w,). Now apply "Frobenius reciprocity’ once to produce a U, ($9)-homomorphism
o : N, — M, given by ¥(z99) = w, and secondly use 'Frobenius resiprocity’ to produce
Uy ($)-homomorphism ¢ : M, — M, given by ¥ (w,o) = w,. It is easy to see that
Idys,, % and 1?2 are linear independent Uy ($)-homomorphisms [one can use quite similar
arguments as in Remark 11.4.4; the setup in Remark 11.4.4 is a little different from here
but the type of arguments are exactly the same|. It follows that dimgEndg(M,) = 3 |we
have to argue as before: One can use similar arguments as in Corollary 11.4.3; the setup
is a little different from here but the type of arguments are exactly the same].

Proposition 13.12.4. We have an isomorphism as K—algebras
K[X]/(X? —vX — x(eo01)?) = Endg(M,) ; X + (X® —vX — x(ego1)*) — ¥
where 1 is the H—endomorphism given by ¥(w,0) = (€go1 — €112 — €101€112) * Wy0-

Proof. Define K—algebra homomorphism K[X] — Endg(M,) sending X to ¢ (¢ as in
the proposition). If we can prove that 3 — vy — X(6001)3Id\MV = 0 (where 0 is the zero
endomorphism on M), then we are done (compare dimension). Clearly, it is enough to
prove that 13(w,.0) — v¥(wy,0) — X(eoo1)? - wy0 = 0 or equivalent:

(eoo1 — e112 — e101e112)> w0 — V(o1 — €112 — ero1€112) - Wy0 — X (€001)* - wy o = 0. (13.21)
First, observe that

(eoo1 — e112 — ero1e112)® = x(e001)® — [eoot, [eoor, €112 + e101€112]]
+ [[60017 e112 + erore112), €112 + 61016112]
—(er12 + 61016112)3-

Now use [27, 1, Prop. 1.3 (2)] to get:

= €012 T €po1€112 + €101€012,
=  —€001€012;

= 0,

= —(e12 + ew1e112)eon2-

leoot, e112 + e1o1€112

[eoo1, €012 + €oo1€112 + e101€012
leo12, e112 + e1o1€112

[eoo1€112 + e101€012; €112 + €101€112

[ i R

It follows that

(001 — €112 — ero1e112)® = X(eo01)® + (001 — €112 — ero1€112)e012 — (€112 + ero1e112)®. (%)

) 3
But (e112 + ejorer12)® = (er12(1 + e01))® = 0 since 6%12 = 6[11]2 + x(e112)® = 0 and

since (e101 + a)erie = eqr2(e101 + a + 1) for any a € K. Now use (x) and the fact that
€012 - Wy,0 = YWy to get (13.21). O
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Proposition 13.12.5. Suppose that x(ep11) = x(eo22) = x(ep21) = 0.

a) If x(eo12) # O then there exist up to isomorphism 3% irreducible U, ($)-modules all
of dimension 32.

b) If x(eo12) = O then there exist up to isomorphism 2-3+1 irreducible U, ($))-modules
all of dimension 32.

Proof. We shall consider irreducible $—submodules of M,,.

If v # 0, then X3 —vX —x(ego1)? has three (different) roots ag, a1, as € K and therefore
M, decomposes into its isotypic components M, ; := Ker(¢—a;-Idyy, ) fori = 0,1,2 (apply
Proposition 13.12.4). There results an embedding

2
@Endf)(Mu,i) — Endg(M,) 5 (fo, f1, f2) = fo© f1 D fo
i=0

of K—algebras, which, for dimension reasons, is also onto. Consequently, dim g Endg(M,, ;) =
1 as well as Homg(M, ;, M, ;) = (0) for i # j, implying that the M, ; are pairwise non-
isomorphic (recall that dimg Endg(M,) = 3). Each M, ; contains a simple U, ($)o)-module
and thus has dimension > p?. In view of 3p? = p? = dimg M,,, each M, ; is an irreducible
$Ho-module; thus we obtain the irreducibility of each $-module M, ;. Finally, note that
M,, is semisimple for v # 0.

For v = 0, we have Endg(My) ~ K[T]/(T®). Let t := T + (T?) and consider the
filtration

(0) € #*My C tMy & My

of $-modules. The foregoing dimension arguments imply that this is a composition series.
Moreover, multiplication by ¢ induces isomorphisms between the composition factors. It is
easy to verify that Mj is indecomposable.

We are now in position to finish the proof:

If x(eg12) # 0 then v # 0 for all v € K with v® — v = x(eg12)®. Let vg,v1,v0 € K* be
the roots in X3 — X — y(eg12)®. Then {M,,; | 0 < i,j < 2} is a set of representative of
non-isomorphic irreducible U, ($))-modules.

If x(ep12) = 0 then {M;;,t*Moy | i = 1,2,0 < j < 2} is a set of representative of
non-isomorphic irreducible U, ())-modules. [If ¢ : M; ; ~ t2 My take nonzero xg € t2M)y
such that K is po-submodules of t2Mj and x; € M; ; such that Kz; is pp-submodules of
M, ;; in particular, Kz; ~ K; and Kzg ~ K. Then ¢(x;) € t2My and K ¢(x;) C My is a
po—submodule; hence isomorphic to K. We conclude that K; ~, Ko—contradiction.] O

Theorem 13.12.6. Let x € W* be a character of height 8 and Type B.

a) If x(eo11) # 0 or x(ega2) # 0 or x(ep21) # 0 then there exists up to isomorphism
1 irreducible Uy (W)-module of dimension 37 = 3°dmwew()/2 - Moreover, ey (x) C
WZO and rk Cw(X) =0.
Suppose that x(ep11) = x(eo21) = x(ep22) = 0.
b) If x(eo12) # O then there are up to isomorphism 32 irreducible U, (W)-modules all of
dimension 3° = 3°°dmwew00/2 - Moreover, ey (x) ¢ Wso and tk ey (x) = 2.

c) If x(ep12) = 0 then there are up to isomorphism 2 -3 + 1 irreducible U, (W')-modules
of dimension 3° = 3°4mwew()/2 " Moreover, ey (x) ¢ Wso and tk ey (x) = 1.

Proof. Apply Proposition 13.12.2 and Lemma 13.12.1 for part a). For b),c) apply Lemma
13.12.1 and and Proposition 13.12.5. O
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13.13 Type 1l.a characters of height 3

In this section we consider x € W* of height 3 such that x has Type Il.a as in Section 5.2.
Since x has Type Il.a we have

x(e122) = —x(e211) # 0

and x(e212) = 0 = x(e121). The representation theory of U, (W) depends only on the
Aut(W)-orbit of x, so we may replace x with any y¢, for an automorphism g, in order to
describe the irreducible U, (W)-modules. Thus the next result becomes useful.

Lemma 13.13.1. There ezists an automorphism g € Aut(W) with g(Wo12) = Woia such
that x9(W1) =0 = x9(ep12 + €101)-

Proof. Set © = ajegpe +asei1o +asepas +biespr +boeq11 + bzegar and denote by g; the auto-
morphism on W induced by z (see Section 3.2). It follows that g1 (y) = y+[z,y] (mod W>3)
for all y € Wy. The formulas

x([z,e202]) = —4bsx(ea11),
x([z en2]) = (a3 —2ba)x(ean1),
x([z,e022]) = —aax(ean),
x([z,e201]) = bax(eanr),

x([z, e201]) = (2a2 — bi)x(ean1),
X([z,e021]) = 4daix(ean),

say that we can find appropriate a1, as,as, b1,be,bs € K such that x9'(W;) = 0 (note that

x(e211) # 0).

Finally, denote by g2 the automorphism on W induced by y = aeaq; (see Section 3.2).
It follows that ga2(z) = z (mod Ws3) for all z € W>1; hence x91°92(W;) = 0 if we choose
g1 as above. Moreover, we can choose o € K such that x91°92(eg12 + €101) = 0 since

X919 ([y, eo12 + e101]) = —2ax(e211)-

We have x91°92(eg12 + e101) = x9' (€012 + €101) — 2ax9* (e211) = 0 for some a € K and also
x91°92(W7) = 0. The proof is completed. [

The discussion before Lemma 13.13.1 says that we can assume that y is a character of
height 3 with x(W7) = 0 = x(ep12 + €101). First, we will prove a result on the stabilizer
of X|w., in Wxo. In fact, we only need the assumption x(W1) = 0 in order to prove this
result.

Lemma 13.13.2. Let x € W* be a character of height 3 and of Typell.a as in 5.2.
Suppose that x(W1) = 0. Set h := eg12 — e101- Then

8 if x(ew02) = x(h) = x(eo11) =0,

dimKCWZo(XIWzo) - {6 else

Moreover,
L if x(e102) = x(h) = x(eo11) =0,
rk ews (Xwse) = 1 #f x(h)? + x(e102)x(€011) # 0,
0 else.

Finally; cw.,(X|ws,) € Woi2 if and only if x(eo11) # 0 or x(e102) = x(h) = x(eo11) = 0.
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Proof. 1t is easy to verify that

€222 € CWEO(X|W20)7
€221 € CWEO(X|W70)7
€121 € CWZO(X|W70)7
a1 +e122 € sy (X W)
€212 € cW>0(X|W 0)

Let

Y= Gagyasy € woo(Xws,) ()
afy
with as99 = @991 = a121 = as12 = 0 and as11+aq22 = 0. It follows from X([y, 6012+6101]) =0
that ag;1 = a122 = 0 since x([ep12 + €101, Wo + W1]) = 0. Moreover, from the relations
X([y, eapy]) = 0, where (afy) denote all triples with o + = 2 and v = 1,2, we obtain
aapy = 0 for all (afBy) with o + 3 = 2 and v = 1,2. Thus we can assume that y written
as in (%) belongs to Wy. Since x([y, e211]) = 0 we have api2 + a101 = 0.

If X(elog) = X(h) = X(eOH) = 0 then ey € CWZO(X\WEO) and h € CWZO(X\WEO)
and ep11 € oW, (X|w.,) and y is a linear combination of these elements. In particular,
dimgews,(Xjw>,) = 8. In this case we have rk ey, (xyw.,) = 1: Clearly, Kh is a torus
inside ey o (X|ws,); i 1k ewe o (Xjws,) > 1, then it is easy to see that there exists a nonzero
toral element h' € e, (Xws,) given by

h = e102 + 2z for some z € Wyi1

such that Kh@® Kh' is a (maximal) torus. But [h, h'] = ejp2 (mod Wy12) is a contradiction.
Finally, CWZO (X\Wzo) §Z W012.

Suppose that x(e1g2) # 0 or x(h) # 0 or x(ep11) # 0. Since y written as in (x) with
aapy = 0 for a + 3 > 2 and agi2 + a101 = 0 satisfies that x([y, W>1]) = 0, we have
Y € ewso(Xjw,) if and only if x([y, Wo]) = 0. We can assume that y € Wy is given by

Yy = aejg2 + bh + cepr1
for some a,b,c € K. We now get the following relations:

bx(eloz) + Cx(h) = 0,
ax(eiz2) — cx(eo1n1) = 0,
ax(h) + bx(eg11) = 0.

It is easy to see that a,b, c are determined uniquely by the relations above: We get a =
x(eo11) and b = —x(h) and ¢ = x(e102). In particular, dim ke, (X|w.,) = 6. Moreover,
cwso (Xwso) € Worz if and only if x(ep11) # 0.

In order to determine the rank of cw.,(X|w-,) We can first use (B.2) in appendix B
with commutator relations and get

(3]

¥ = (x(h)* + x(e102)x(e011))y.-

If x(h)2+x(e102)x(€011) # 0 then Ky is a torus by Lemma B.1.2; hence rk Wao (X W) =
1 in that case.

If x(h)* + x(e102)x(eo11) = O then rk cw.,(Xjw.,) = 0: Otherwise there exists a
nonzero toral element h' € CWg (X|W>o)' It is easy to see that b’ € K*y + W>2 and hence

(WHBl € K*yl3l 4+ Wsy = Wy since yl¥l = 0. Therefore (/)1 = 1/ is impossible. O
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Theorem 13.13.3. Suppose that p > 3 and let x € W* be a character of height 3 and
of TypeIl.a as in 5.2. Then rk cw(x) = 1 or tk cw(x) = 0 and all irreducible Uy (W)~
modules have dimension pedimwew()/2 — 1f rk cw(x) = 1, then there exist up to isomor-

phism p irreducible Uy, (W)-modules and if tk ¢y (x) = 0, then there exists up to isomor-
phism 1 irreducible U, (W')-module.

Proof. The fact that rk ey (x) = 1 or rk ¢y (x) = 0 follows from Lemma 10.4.8 in Section
10.4 (here we use that r = 3 < 2p — 3 when p > 3 and that st(x, W>3) = W>( since

X([eoo1, €222]) # 0 = X ([eonz, e222]) and since x([eoo2, €221]) # 0 = X ([eqo1, €221]))-
For the final statements use Theorem 10.4.11, 10.4.12 in Section 10.4. [l

Remark 13.13.4. Since dimgcew(x) = dichWZO(X|W>O) — 2 and dimgW = 2p® we
can use Lemma 13.13.2 and find the possible dimension of all irreducible U, (W )-modules
combined with the number of irreducible in the following scheme (|Irr(W, x)| denotes the
number of irreducible):

Type Il.a and height 3 and p > 3

|Irr(W, x)| | Possible dimension
1 P2
p 3 or pr?

In the rest of this section we assume that p = 3. This is the critical situation when we
consider x of height 3 and of Type Il.a as in 5.2 (remember the exceptions from Section
10.4). By Lemma 13.13.1 we may consider y € W* of height 3 and of Type Il.a as in 5.2
such that x(W7) = 0 = x(ep12 + €101). In the following, set (as in Lemma 13.13.2)

h :=ep12 — eio1.-

Now observe that Kejo2 @ K (ep12 — e101) @ Kepr1 is a restricted Lie subalgebra of Wsq
isomorphic to sly(K). The isomorphism is given by

6’_>OO 6_6’_>10 6r_)Ol
102 1 0 ) oz~ e 0 -1 ) cou 00/

Thus we set
sla(K) = Kejpe @ Kh @ Keg. (13.22)

Next, define elements in Wi:

Tp = €3—pn—1,1 T €2-nn2 for 0 <n < 3. (1323)

It is easy to verify the following relations:

le102,2n] = (n—1)zp_1 (=0ifn < 1),
leo12,2n] = (n— 1)ay,
101, 2n] = (2—n)zp,
leoi,zn] = —(n+ 1Dz (=0ifn>2),
[:EOv:El] = 0>
[.730,.732] = 07
[:El,:EQ] = 0.
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From the relations above it follows that s defined by

2
5= 5[2(K) D K(6012 + 6101) D @ Kx;® K(6211 + 6122) ® Kejo1 @ Kegro @ Wzg (13.24)
i=0
is a restricted Lie subalgebra of Wxq. Moreover, a defined by
2
a:= K(6012 + 6101) D @ Kx; @ K(egll + 6122) ® Keia @ Kego @ Wzg (13.25)
i=0
is an ideal in s with y(a) = 0 (in order to show the ideal property we use in particular that
[e102, €012 + €101] = 0 = [eo11, €012 + €101])-

It is well known that irreducible U, (s)-modules annihilated by a are in one to one corre-
spondence with irreducible U, (s/a) =~ U, (slz(K))-modules. [Any irreducible U, (sly(K))-
module X extends to s if we define a- X = 0. On the other hand: Any irreducible
Uy (s)-module is an irreducible U, (sl (K))-module. So we can think of irreducible U, (s)-
modules annihilated by a as irreducible U, (sla(K))-modules extended to s with trivial
a—action. |

Now the next results are essential in the description of the irreducible U, (W>q)—
modules.

Lemma 13.13.5. If M is a U, (W>q)-module and M # 0, then
{reM|a-z=0}%£0
and there exists an irreducible U, (s)-submodule X C M with a-X = 0.

Proof. Since [a,a] C a N Wyy there exists Uy (a)-module K; as being equal to K as a
vector space and where the module structure is given by: e-1 = 0 for e € a N W11 and
(e012 + €101) - 1 =1 (since eg12 + €101 € a with x(ep12 + €101) = 0 we have [ € F3z). But
a C Wy is supersolvable so we can apply Lemma 9.1.3: Any irreducible U, (a)-module
is isomorphic to some K; with [ € [F3. It follows that there exists a nonzero x € M with
anNWpip-x =0 and (eg12 + €101) - = lx for some | € F3. Let y := 61211 -x € M. Then
anN Wopip -y = 0 since [e211,a N Woi1] C anNWpip and (epi2 + €101) - ¥y = 0 by construction.
We conclude that {zx € M |a-z =0} #0.

The final part of the lemma is now easy: Take a nonzero x € M with a-x = 0 and take
an irreducible U, (s)-submodule X of U, (s) - «. Since a is an ideal of s with a-2 = 0 we
have a - U,(s) - = 0 and therefore a- X = 0 as required. O

Proposition 13.13.6. Let s be defined as in (13.24). Then induction induces a bijection
between the isomorphism classes of irreducible U, (s)-modules annihilated by a and the
isomorphism classes of irreducible U, (W>q)-modules.

Proof. Set e1 = eg91 and es = eq11 and e3 = eg21 and e4 = eo11. Then eq,eq, e3,e4 form
a basis for a complement to s in W>q. Let X be an irreducible U, (s)-module annihilated
by a. The idea is to prove that

{z € Uy(W>o) Qu,(s) X la-z2=0}=1® X. (13.26)

In order to prove (13.26) we will apply Proposition 6.4.1. Adopt the notation from
Section 6.4 with g = W>¢ and h = s and NV = X: We define

X, = @eédeke @ X,
Xy = Pejele ® X,
X3 = Pele,®X,

Xy = PeieX,
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where all i, 7, k,l run over {0,1,2}. Note that (s® Key) Xy C X4 with (anWpi1)- X4 =0.
The first claim follows from e4 - X4 C X4 and [eq,5® Key] C Key @ s and the second claim
follows from (a N Wop11) - X = 0 and [eq, a N Wo11] C a N Wyyp. We also have

(5ﬂW012@K6i@"'@K64) - X; C X,
for all ¢ = 1,2, 3,4. This follows from the fact that

[Ej,ﬁﬂW()lQ] C sNWye®Ke; @--- @ Key forany j =1,2,3,4,

lej.ex] C sNWoi2 & €D, Key for any k, 1.

Finally, observe that
(K:IZl ®KzoDan Wzg) - X3 =0,

(K:IZQ@CIQWZQ) - X9 =0,

aﬁWZQ'Xlzo.

We will use these observations in the following. Our aim is to prove that (13.26)
holds; i.e., that any z € Uy(W>0) ®@p, sy X with a-2z = 0 lies in X5 := 1 ® X. So let
z € Uy(W>0) ®p, (s) X denote an element such that a-z = 0.

Set f1 = x9 asin (13.23). Since f1 € a it follows that f1-z = 0. Moreover, x([e1, f1]) #
but [e1, f1]P = (—e211)B = 0. We also have (ad e1)'(f1) - X2 C Xo since (ad e1)*(f1)
(s " Woi2) @ Key for all 4. Finally, fi - Xo =0.

Next, set fo = x;. Then fo-x = 0 and x([e2, f2o]) # 0 = [eg,fQ][?’} = 6[132}2. Since
(ad e2)(f2) € (s N Woi2) @ Key for all i we also have (ad e2)!(f2) - X3 C X3. Finally,
fo-X3=0.

Set f3 = xo. Then f3-z = 0 and x([es, f3]) # 0 = [e3, f3]¥ = (e211 — e122)?. Since
(ad e3)(f3) € (s N Wo12) @ Key for all i we also have (ad e3)'(f3) - X4 C X4. Finally,
f1- X4 = 0.

Finally, set e4 = ep12 + €101 and note that [e4, f4] = e4. We are now in position to
apply Corollary 6.4.3 (with eq,eq,e3,e4 and f1, fo, f3, fs and G, H, N defined above): We
find that

0
€

{:EEUX(Q)@UX(S)X|a'ZL‘:O}C1®X

and since a - X = 0 the other conclusion is clear. We conclude that (13.26) holds.

This implies that U, (W>o) ®yp, () X is irreducible: Any irreducible W>¢-submodule
M has a nonzero intersection with 1 ® X [Apply Lemma 13.13.5]. Therefore M N (1 ® X)
is a nonzero U, (s)-submodule of 1 ® X and, by irreducibility, M N(1® X) =1® X. In
particular, we have M D 1 ® X and hence M is the entire induced module.

If X1, X5 are irreducible U, (W>q)-modules such that a- X; =0=a- X5 and

¢ Uy(W>0) ®u, () X1 = Uy (W>0) ®u, () X2

is an isomorphism, then ¢ induces a U, (s)-isomorphism @ : X; ~ X,. Indeed, we have
©(1®X1)N(1® X2) #0. (Look at the elements annihilated by a.) Since ¢(1 ® X1) and
1 ® Xy are irreducible U, (W>q)-modules, we get ¢(1 ® X1) =1 ® Xo; hence X; ~ X».

We have thus shown: Induction induces an injection from the isomorphism classes
of irreducible U, (s)-modules annihilated by a into the isomorphism classes of irreducible
Uy (W>p)-modules.
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Now, let Y be an arbitrary irreducible U, (s)-module. I claim that we can find an
irreducible U, (s)-module X with a-X =0 and

Uy(W>0) ®u, (s) X — Ux(W>0) ®u,(s) Y-

First, apply Lemma 13.13.5 to find an irreducible Uy (s)-submodule X C U, (W>0)®y, ()Y
with a- X = 0; thus we have inclusion maps: X — U x(W20)®UX(5)Y Now apply "Frobenius
reciprocity’ on the inclusion X — Uy(W>¢) ®p, () Y to produce a (nonzero) Uy (W>q)-
homomorphism:

Uy (W>o) Qu,(s) X — Uy(W>o) Quy(s) Y- (13.27)

This implies that every U, (W>g)-module is induced from a U, (s)-module annihilated
by a: Indeed, any irreducible U, (W>g)-module V' contains an irreducible Uy (s)-module
Y’; hence, by 'Frobenius reciprocity’, V' is a homomorphic image of U, (W) Qu, (s) Y and
by (13.27) then also a homomorphic image of Uy (g) ®p, (5) X for some irreducible U, (s)-
module X with a- X = 0. By the part of the claim already proved we therefore have
V =~ Uy (W>0) ®y, (s) X. The proof is completed. O

Theorem 13.13.7. Let x € W* be a character of height 3 and of Type Il.a as in 5.2.
Suppose that x(W1) = 0 = x(ep12 + €101)-

a) If X(h)2 + x(e102)x(e011) # O then rk cho(Xleo) =1 and dimKCWZO(X\Wzo) =6
and there exist up to isomorphism 3 irreducible Uy (W=o)-modules of dimension 3°> =

geodimws ewso (w202 - proreoper, W (X|wae) € Worz if and only if x(eon1) # 0.

Suppose that x(h)? + x(e102)x(eo11) = 0.

b) If x(h) # 0 or x(e102) # 0 or x(ep11) # 0 then rk CWzo(XlVVzo) = 0 and we have
dimgew., (X|ws,) = 6 and there exist up to isomorphism 2 irreducible Uy(W>o)-

. . codim c 2
modules of dimension 35 = 3 W0 W0 XiWo)/

if and only if x(ep11) # 0.

c) If x(h) = x(e102) = x(eo11) = 0 then rk cho(XlVVzo) =1 and dichWzo(XIWzo) =
8 and there exist up to isomorphism 3 irreducible U, (Wx>q)-modules of dimension
34 _ 3c0dimW20cWZO(X‘W20)/2 and 2-34 = 2. 3C0dimWZOCWZO(X\W20)/2 and finally 35 —
3codimWZO CWEO(X‘WEO)/2+1

. Moreover, cw.,(X|w~,) € Woi2

. Moreover, ¢y, (X\ws,) ¢ Woiz-

Proof. Tt follows from Proposition 13.13.6 that induction induces a bijection between the
isomorphism classes of irreducible U, (s)-modules annihilated by a and the isomorphism
classes of irreducible U, (W>g)-modules. But irreducible U, (s)-modules annihilated by a
are just irreducible U, (s/a) ~ U, (sla(K))-modules extended to s with trivial a-action.

If we apply the description in [27, 5, 5.2] on sly(K) defined in (13.22), we see that
there are 3 isomorphism classes of irreducible U, (sla(K))-modules if x(sla(K)) = 0 or
x(h)? + x(e102)x(eo11) # 0 and 2 isomorphism classes of irreducible U, (slz(K))-modules
if x(h)? + x(e102)x(eo11) = 0. If x(sl2(K)) # 0 then each irreducible U, (sly(K))-module
has dimension 3 and if x(sla(K)) = 0 then there exist 3 irreducible U, (sla(K))-modules
of dimension 1,2,3. Now it is straightforward to verify a)—c) by using Proposition 13.13.6
and Lemma 13.13.2. O

Note that st(x,W>3) = Wsq since x([eoo1,€222]) # 0 = x([eoo2, €222]) and since
X([eoo2, €221]) # 0 = x([eoo1, e221]). It follows that induction induces a bijection between
the isomorphism classes of irreducible U, (W>p)-modules and the isomorphism classes of
irreducible Uy (W)-modules. See Theorem 8.1.1. Moreover, ¢y (x) C cws,(X|ws,) since
ew (x) C st(x, W>3). Now apply Lemma 10.4.7 and Theorem 13.13.7 and get:
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Theorem 13.13.8. Let x € W* be a character of height 3 and of Type Il.a as in 5.2.
Suppose that x(W1) = 0 = x(ep12 + €101)-

a) If x(h)?+x(e102)x(eo11) # 0 then dimgcey (x) = 4 and there exist up to isomorphism
3 irreducible U, (W)-modules of dimension 37 = 3eodimw ew ()/2,

Suppose that x(h)? + x(e102)x(eo11) = 0.

b) If x(h) # 0 or x(e102) # 0 or x(eo11) # 0 then dimgcy (x) = 4 and there exist up to
isomorphism 2 irreducible U, (W)-modules of dimension 37 = 3°°dimwew (x)/2,

c) If x(h) = x(ew2) = x(eo11) = 0 then dimgcew (x) = 6 and there exist up to
isomorphism 3 irreducible U, (W)-modules of dimension 36 = 3%°dimwew()/2 gpq
2.30 = 2. 3c0dimwew (x)/2 gpg 37 = geodimwew (00)/2+1 - Moreover, ey (x) ¢ Woia.

Remark 13.13.9. Note that Theorem 13.13.8 says in particular that Theorem 10.4.11,
10.4.12 in Section 7 cannot be improved to include characters of height 2p — 3 and of
Type Il.a as in 5.2 [characters of height 2p — 3 and of Type Il.a as in Section 5.2 are
excluded in most of the results in Section 10.4].

We also see that Theorem 7.3.2 does not hold for all characters of height 2p — 3 and
of Type Il.a as in 5.2: So there does not exists an automorphism ¢ such that induction
is a bijection between the isomorphism classes of irreducible Uyg(Wpi2)-modules and the
isomorphism classes of irreducible Uy (W>o)-modules. First, let us investigate what we can
say about the irreducible U, (W>g)-modules if there exists an automorphism g with these
properties. Since W12 is supersolvable it follows from Proposition 9.3.5 that the number
of irreducible Uys(Wpi2)-modules is p! for some integer [ (in fact we have 0 < 1 < 2). By
Lemma 9.3.7 the number of irreducible U,s (Wp12)-modules is p™ for some integer m > 0.
Now use the assumption on g and the fact that Uys(W>0) =~ U, (W>q) to get:

1) There exists an integer [ with 0 < [ < 2 such that the number of irreducible U, (W)~
modules is p'.

2) There exists an integer m > 1 such that the dimension of any irreducible U, (W)~
modules is p™.

We have seen that both 1) and 2) break down if we consider x of Type Il.a as in 5.2 of
height = 2p — 3 (at least for p = 3).
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14 Maximal height

In this section we consider x € W* of maximal height (i.e., x € W* with x(Wa,_3) # 0).
The representation theory of x with maximal height is not very well understood. So far,
I have only seen examples in [29, §12|, [16, p.45-46] and [20 6 4], where one constructs
x such that irreducible U, (W>p)-modules have dimension pp 1 and then concludes that
any irreducible U (WZO)—module extends to W by Mil'ner’s result |19, §7, Remark after
Prop. 19]. In Section 14.4 we shall see an example (when p = 3) where some irreducible
Uy (W)-modules have dimension < 33*~1_ From now we will assume that p = 3.

14.1 Representatives

First, we need to find certain representatives for the Aut(W)-orbit of .

Lemma 14.1.1. If x has mazximal height, then x is conjugate under Aut(W) to a character
X' with x'(e222) =1 and x'(e221) = 0 such that one of the following situations occur:

(M1) x'(W2) = x'(e202) = x'(e112) = x'(eo22) = 0 and x’(e201) = x'(e111) = 0 # x'(eo21)
and x'(e102) = X'(eo12) = 0.

(M2) x'(W2) = x'(e201) = x'(e111) = x'(eo21) = 0 and x’(e202) = x'(e112) = 0 # x'(en22)
and x/(e102) = x/(

(M3) x/(W2) = x'(W71) =0 and x'(e102) = x'(e012) = 0.

Proof. We can assume that x(ez22) = 1 and x(e221) = 0 = x(W3) by Lemma 12.3.3. If
X(ep21) # 0, then we can apply a lower triangular matrix

1 0
Y1 = x(eo22)—x(e111) 1
2x(eo021)

and (A.6),(A.7) to get x¥'(ep22) = x¥'(e111). We still have x¥1(e222) = 1 and x%'(e221) =
0 = x¥'(W2). So we can assume that y(ez22) = 1 and x(e221) = 0 = x(W2) and that

x(e111) = x(eo22) if x(ep21) # 0.
Now, let

T = aiez12 + azerzz + breart + baeqor

and denote by g the automorphism on W induced by x (see Section 3.2). It follows that
g9(y) =y + [z, y] for all y € Wy since W>4 = 0. But Xg([:zt, WZQ]) =0= Xg([a:,eogl]) and

X ([z,eam]) = —as,
Xg([m,elll]) = a,

X9 ([z,e202]) = —ba,

X ([z, e112]) = b1 —as,
X ([z,e022]) = a1,

so there exist appropriate aj,as,b;,by € K such that x9(ea2) = 1 and x9(e21) =
xI(W3) = 0 and x9(e201) = x?(e111) = x?(e202) = x9(e112) = 0. Moreover, x9(ep22) =
x9(e111) = 0 if x(eg21) # 0. Finally, we apply a suitable automorphism ¢’ on W induced
by some x = aeggs + beggr (Section 3.2) such that Xgog’(6102) = Xgofi/(emg) = 0; this can
be done since

Xgog:([m,eloz]) = b,

x99 ([z,e012]) = —a.
It follows that x9°9 (ezp2) = 1 and x9°9 (eg1) = 0 and that x9°9" cither satisfies (M1),
(M2) or (M3). O
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14.2 Three types of characters

We consider three types of characters:

(M1) x : x(e222) =1 and x(e21) = 0 and x(W2) = x(e202
x(e201) = x(e111) = 0 # x(eo21) and x(e102) = x(eo12
(

(M2) x : x(ea22) = 1 and x(e221) = 0 and x(W2) = x(e201
x(e202) = x(e112) = 0 # x(en22) and x(e102) =

(M3) x : x(e222) =1 and x(e291) = 0 and x(Ws2) = x(W1) = 0 and x(e102) = x(eg12) = 0.

The result in the previous section says that any character of maximal height is conjugate
under Aut(W) to a character of Type M1, Type M2 or Type M3.

So let x be a character of Type M1, Type M2 or Type M3. We will find dim g ey (x)
and rk cy(x) for x € W* of maximal height. Let

Yy = Z AaByeapy € W (X)- (14.1)
(eB7)

The possible values for aqg, can be found from x([y, eqpc]) = 0, where (abc) runs over all
valid triples (i.e., (002) < (abc) < (221)). We find:

15) a101x(€001) — a201x(€101) + a111x(€011) + a122x(€022) = O.

1) aijp2 = a112 = aiz1 = 0.
2) ap12 = aio1-
3) a202 + aoo1x(ep21) = 0.
4) ago + ago1x(eo22) = 0.
5) apge + a1 = 0.
6) ago2x(€o11) = ao12X(eo21)-
7) aopi2x(eo22) — ao11x(eo21) + azi2 = 0.
8) aoo1x(eo11) + aoo2x(e101) + ao11Xx(eo21) + azi2 = 0.
9) a211 — a122 + ao11x(eo22) =
10) ai22 + aoo1x(e101) = 0.
11) agozx(€o01) — a111Xx(€021) =
12) ago1x(€oo1) + ao11x(€o11) + ao21Xx(eo21) + aze2 = 0.
13) agozx(€o02) — ao11x(€o11) + @o21Xx(€021) — an22X (eo22) — aze2 = 0.
14) ago1x(€oo2) — ao11x(€101)
) (eoo1) (e101)
) ( (eoo1)

(€021)
(€021)
+ ag21x(eg22) + age1 = 0.
(€o11)
(e101)

aoi2X(€002) + aoi1x(eoo1) + a1 x(e1o01) — ao21x(eo11) = 0.

First, we will use the relations above to get results on ¢y (x) N W>q for x of Type M1,
Type M2 or Type M3.
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Lemma 14.2.1. If x has Type M1, then ¢y (x) N Wso = 0.

Proof. Let y be as in (14.1) with agp2 = 0 = agp1. Then asp; = 0 = agpe by 3),4) and 2)
and 6) imply that agi2 = 0 = ay91. Next, use 5) and 7)-11) to get apgi1 = a2 = a1 =
agsil = a122 = 212 = 0. Finally, 12)—14) imply that ap21 — a2992 = 49921 — 0. It fOHOWS that
yinfa002:0:a001. O

Lemma 14.2.2. If x has Type M2, then

2 if x(epo1) = 0 = x(eo11),

dimgc NWsg =
xew(x) =0 {1 otherwise,

and rk ey (x) N Wso = 0.

Proof. Let y be given as in (14.1) with agg2 = 0 = agp1. Then asge = 0 = agpy by 3),4) and
ag12 = a122 = api2 = aip1 = 0 by 2), 7), 8), 10). In particular, Cw(X) N WZO C Wpy11 and
so rk ey (x) N W>p = 0. If we add 12) and 13) we get age2 = 0 since x(ep22) # 0; hence
a111 = 0 by 5). The only conditions on the coefficients are now:

ap11x(eo11) +aze = 0,
aori1x(eio1) — ao21x(eo22) —azer = 0,
ao11X(€o01) — ao21Xx(€o011) 0,
az11 + aorix(eo22) = 0.
The claim on the dimension follows. O

Lemma 14.2.3. If x has Type M3, then

2 if x(eo11) # 0 or x(eo11) = 0 # x(eoo1)s
dim Wer — if x(eo11) = x(eoo1) = 0 # x(e101),
xew () N Wao 3 if x(eo11) = x(eoo1) = x(e101) = 0 but x(epo2) # 0,
4 if x(eo11) = x(eoo1) = x(e101) = x(€o02) = 0,
and
1 if x(eo11) # 0,
0 if x(eo11) = 0 # x(eoo1),
rk e (X) N Wxo = q 1 if x(eo11) = x(eoo1) = 0 # x(e101),
0 if x(eo11) = x(eo01) = x(e101) = 0 but x(ego2) # 0,
1 if x(eo11) = x(eoo1) = x(e101) = x(€002) = 0,

Proof. Let y be given as in (14.1) with agp2 = 0 = ago1. Then we use 3),4) and 8)-10) to
get ago2 = ag01 = a212 = a122 = az11 = 0. Then ap12 = a1p1 and:

ap22 +ain1 = 0,

aor1x(eo11) +aze = 0,

aorix(eior) —age1 = 0,

a101x(€o02) + aor1Xx(€oo1) — ao21Xx(eo11) + ar1ix(er) = O,
aio1x(eoo1) + arix(eorr) = 0.

If we compute the rank of the matrix determined by the system of equations the claim on
the dimension of ¢y (x) N W follows immediately. It is easy to see that agi2 = aj01 =0
if x(eo11) = 0 # x(eoo1) or x(eo11) = x(€o01) = Xx(e101) = 0 but x(ego2) # 0. If x(eo11) =
0 # x(epo1) or x(eo11) = x(eoo1) = x(e101) = x(ego2) = 0, then there exists nonzero toral
element h € ¢y (x)NWso; hence rk ey (x) "W = 1 since already rk ey (x)N"W>o < 1. O
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In order to compute ¢y () note that we have
dimgew (x) < dimgew (x) N Wso + 2 (14.2)

since W>o C W is a subalgebra of codimension 2. It is well known that ¢y (x) is a Lie
p—subalgebra of W and its codimension in W is even. We also have ¢y (x) # 0: Indeed,
there exists & € W* such that ¢y (€) is a two dimensional torus and, by [20, 4.4], it then
follows that dimgcey (¢) > 2 for all ¢ € W™,

We will consider characters of Type M1 and prove that all irreducible U, (W )-modules
have maximal dimension (irreducible Wsp-modules with p-character x extend to W).
Finally, we consider irreducible U, (W )-modules for x of Type M3. We cannot give a
complete classification, but as a result of our computations we will see that: There exists
x of Type M3 such that irreducible U, (W )-modules have non-maximal dimension (i.e.,
dimension < 33*~1 = 38).

14.3 Type M1 characters
First, let us compute ¢y ().

Lemma 14.3.1. If x has Type M1, then cyw(x) is 2-dimensional and cy (x) N Wso = 0.

Proof. Since cyy(x) has even dimension > 0, we can apply (14.2) and find that ¢y (x) is
2—dimensional. The statement follows from Lemma 14.2.1. O

We can now apply Theorem 12.3.4:

Theorem 14.3.2. If x € W* has Type M1, then there ezists (up to isomorphism) one
irreducible Uy (Wsq)-module of dimension 3%. For any irreducible U, (Wso)-module S
there exists a W—module structure on S which extends the given W>q-module structure. In
particular, all irreducible U, (W')-modules have dimension

3codimw ew(x)/2 — 38 )

Remark 14.3.3. I can’t say anything about the number of irreducible U, (W )-modules.
Of course, the number is less than or equal to p? and equal to p? if and only if Uy(W) is
semisimple.

14.4 Type M3 characters

There are a number of cases to consider. First, let us see what we can say in general: If
y € cw(x) asin (14.1), then ajg2 = a121 = a112 = 0 and agp; = 0 = agp2 by the relations 1),
3) and 4) in Section 14.2 (since x has Type M3 we have x(eg22) = 0 = x(ep21)). Moreover,
as12 = 0 and as211 — 4129 by 7) and 9)

a) If x(eo11) # 0, then agpr = 0 = agoz by 6) and 8). Therefore, ey (x) = ew (x) N W>o.
It follows that dimgcw (x) = 2 and rk ¢y (x) = 1 by Lemma 14.2.3.

b) If X(eon) = 0 but x(6001) 7'5 0, then applr — 0 = apno2 by 11)—13). Therefore,
ew (x) = ew (x) N Wsq. It follows that dimgew (x) = 2 and rk ey (x) = 0 by Lemma
14.2.3.
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c) If x(eo11) = x(eoo1) = 0 # x(e101), then dimgew (x) < 5 by Lemma 14.2.3 and
(14.2). This implies that dimgep (x) = 4 and it is easy to see that

CW(X) = K(eom - X(€101)€211 - X(€101)€122 - X(€002)€221) ¥ (CW(X) N Wzo)-
It follows that rk ¢y (x) = 1.

d) If x(ego1) = x(e101) = x(eo11) = 0 but x(ego2) # 0, then dimgey (x) < 5 by Lemma
14.2.3 and (14.2). This implies that dimgew (x) = 4 and it is easy to see that
€egol — X(€002)€221,6011,€111 — eg22, €021 form a basis for CW(X)- It follows that rk

CW(X) =0.

e) If x(epo1) = x(e101) = x(eo11) = x(€oo2) = 0, then dimgcy (x) = 6: It is easy to see
that €001, €002, €012 —1—6101, €011, €111 — €022, €021 form a basis for w (X) It follows that

rk ey (x) = 1.
We can now write down our observations:

Lemma 14.4.1. If x has Type M3, then

2 if x(eo11) # 0 or x(eo11) = 0 # x(eoo1),
4 = =0
dim e () = Z.f x(eo11) = x(eoo1) # x(eo1),
4 if x(eo11) = x(eoo1) = x(e101) = 0 but x(eoo2) # 0,
6 if x(eo11) = x(eoo1) = x(e101) = x(eon2) =0,
and
1 Zf X(@Oll) 7é 07
0 if x(eo11) = 0 # x(eoo1),
tkew(x) =<1 if x(eo11) = x(eoo1) = 0 # x(e101),
0 if x(eo11) = x(eoo1) = x(e101) = 0 but x(ego2) # 0,
L1 if x(eo11) = x(eoo1) = x(e101) = x(€002) = 0,
Theorem 14.4.2. If x has Type M3 and x(eo11) # 0, then there exist 3 irreducible

Uy (W)-modules all of dimension

300dimW v (x)/2 38 )

Proof. Let g be defined as in Section 11.8 (i.e., all e;;, where (ijk) # (002), (102), (202)
form a basis for g). Let h = gn Wxo.

First, we prove that induction induces a bijection between the isomorphism classes of
irreducible Uy (h)-modules and the isomorphism classes of irreducible U, (g)-modules. We
shall apply Theorem 6.2.8 in Section 6.2 with

a= Kei11 ® Kego1 ® Kegao @ Kejo1 @ Kejoo @ Keop1 @ Kegor @ Kegos.

All irreducible U, (g)-modules have eigenvalue function x since a is unipotent with x(a) =0
(see Definition 6.2.6). It is easy to verify that a is an ideal in g with x([a, a]) = 0. We also
have st(x,a) = bh: Indeed, consider y € st(x, a) given by y = egp1 + « for some x € h. Since
X([y, e022]) = 0 = x([eoo1, €o22]) we have x([ep22,x]) = 0. Therefore,

rebhNWo+bhNWi+ Kegrr + Kejor + Kejoo + Wi,
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This implies that x([z,e111]) = 0, which is a contradiction since x([ego1,e111]) # 0. We
can now apply Theorem 6.2.8.

Since b is supersolvable we can determine the irreducible U, (h)-modules from the
Vergne polarization of x with respect to the chain (11.10) in Section 11.7: One can show
that

Pylp = K (eo12 + e101) © Keorr @ K(eo22 — e111) © Kegar © W

and from the construction in the proof of Lemma 9.3.9, there exists A € h* such that
the Vergne polarization py of A is compatible with x and equal to p,|. Thus we obtain
from Lemma 9.3.6, 9.3.7: There exist (up to isomorphism) 3 irreducible U, (h)-modules
all of dimension 3*. So, by the first part of the proof, there exist (up to isomorphism) 3
irreducible U, (g)-modules all of dimension 3°.

Next, we will use Theorem 6.3.3 in Section 6.3 and study the induction functor from g
to W. Set b := Kepa © Kejo1  Keogoy. It is easy to verify that b is a unipotent p—ideal in
g with x(b) = 0. Moreover, we have st(x, b) = g since x([eo21, €002]) # 0 = x([eo21, €102]) =
X([eo21, €202]) and x([e221, e102]) # 0 = x([e221, €202]) and x([e121, €202]) # 0.

Note that

[VV7 [l] =bP Kegi1 ® Kegao @ Keqos B Kegoo

has a basis I1,ly, ..., 1 with I/ = 0 for all i and that [[W,b],[W,b]] C b is a unipotent
p-ideal contained in Ker(x). Finally, we have [VV, W, b]] C g and hence we can apply Theo-
rem 6.3.3 in Section 6.3 with the results already obtained: There exist (up to isomorphism)
3 irreducible U, (W)-modules all of dimension 3% = geodimwew ()/2, O

Now suppose that x(ep11) = 0. We shall use the restricted Lie algebra g defined in
Section 11.7. The idea is to find a restricted Lie subalgebra s of g and a unipotent ideal
a<s with x(a) = 0 such that the following conditions are satisfied:

1) Induction induces a bijection between the isomorphism classes of irreducible U, (s)-
modules and the isomorphism classes of irreducible U, (g)-modules.

2) s/a ~ gla(K) as restricted Lie algebras.

Note that Kegio @ Kepor @ K(eg12 — e101) ® K(e201 + e112) is a restricted Lie algebra
isomorphic to gla(K) (The isomorphism sends Kegp1 @ K (ep12 — e101) ® K(ea01 + €112) to
slo(K) and eg12 to the identity matrix). Therefore, set

glo(K) = Kepi2 ® Kego1 ® K(eogi2 — e101) ® K(ea01 + e112),

a = Keg1 ® Kei11 ® Kepo1 & Kegaa @ Kejoa @ Kejor B Keaa.

It is clear that we now shall define
s:=glh(K) @ a.

It is easy to verify that s is a restricted Lie subalgebra of g and that a is a unipotent ideal
a<s with x(a) = 0. In particular, a acts trivially on any irreducible U, (s)-module (apply
Lemma 6.3.1). Moreover, s/a ~ gly(K).

Lemma 14.4.3. Let x be a character of Type M3 with x(eo11) = 0. If M is a U,(g)-
module and M # 0, then
{e€M|a-z=0}#0

and there exists an irreducible Uy (s)-submodule X C M with a- X = 0.
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Proof. Since [a,a] C a N Wy there exists a Uy (a)-module K; as being equal to K as a
vector space and where the module structure is given by: e-1 = 0 for e € a N W11 and
ep12-1 = [ (since eg12 € a with x(eg12) = 0 we have [ € IF))). Since a C Wy is supersolvable
any irreducible U, (a)-module is isomorphic to some K; with I € F), by Lemma 9.1.3. So
there exists a nonzero x € M with (a N Wpyi1) - & = 0 and eg2 - * = lx for some [ € [F).
Ifl > 0, set y := 632_; -2 € M. Then y # 0 since x(e222) # 0. Moreover, we have
eo12 Y = 632_21(6012 +(3—=1))-x=0and (aNWp11) -y = 0 since [eg22,a N Wo11] C aNWo1g.
We conclude that that a-2 =0ifl =0and a-y =0if [ > 0; hence {x € M | a-z =0} #0.

The final statement in the lemma is now clear: Take nonzero x € M such that a-x = 0.
Then U, (g) - = is a U,/(g)-submodule of M annihilated by a (since a is an ideal in g and
a-x =0). Thus it contains an irreducible U, (g)-submodule X such that there exists an
irreducible U, (g)-submodule X C M with a-X =0. O

Proposition 14.4.4. Let x be a character of Type M3 with x(eg11) = 0. Induction induces
a bijection between the isomorphism classes of irreducible U, (s)—modules annihilated by a
and the isomorphism classes of irreducible U, (g)-modules.

Proof. We shall apply Corollary 6.4.3 in Section 6.4: Let e, es, eg3 be a basis for a comple-
ment to s in g. We can choose

€1 = €112,
€2 = €212,
€3 = €222.

Let N be an irreducible U, (s)-module annihilated by a. Adopt the notation from Section
6.4: ,

N1 = @ Keiehe @ N,

Ny = @jleeéeé”@N,

The idea is to prove that
{z € Uy(g) ®UX(5)N| a-x=0}=1® N. (14.3)

First, let fi = e211. Observe that x([f1,e1]) # 0; hence [f1,e1] acts bijectively on
Uy(9) ®u, sy N. It is easy to verify that (ad e;)'(f1) - No C Na for all i. Moreover,
f1- No =0 since eo11 € a and therefore e - N = 0.

Next, let fo = ejj1. Observe that x([f2,e2]) # 0; hence [f2,e2] acts bijectively on
Uy(9) ®u,(s) N. It is easy to verify that (ad e2)(f2) - N3 C N3 for all j. Moreover,
fo - N3 =0 since e111 € a and therefore e;1; - N = 0.

Finally, set f3 = eg12. Observe that [fs, e3] = e3 and that f3- Ny € a- N = 0.

We are now in a position, where we can use Corollary 6.4.3 in Section 6.4 with the
observations just made to show that (14.3) holds.

This implies that Uy (g) ®p, (s) NV is irreducible: Any irreducible g-submodule M has a
nonzero intersection with 1® N [Apply Lemma 14.4.3]. Therefore M N (1® N) is a nonzero
Uy (s)—submodule of 1 ® N and, by irreducibility, M N (1® N) =1® N. In particular, we
have M D 1® N and hence M is the entire induced module.

If X, Xy are irreducible U, (g)-modules such that a- X; =0 =a- X5 and

¢ : Ux(9) @u, (s) X1 = Ux(8) @u, (s) X2

is an isomorphism, then ¢ induces a U, (s)-isomorphism @ : X; ~ X5. Indeed, we have
e(1® X1)N(1® Xy) #0. (Look at the elements annihilated by a.) Since ¢(1 ® X;) and
1 ® Xy are irreducible U, (s)-modules, we get ¢(1 ® X1) =1 ® Xy; hence X; ~ Xs.
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We have thus shown: Induction induces an injection from the isomorphism classes
of irreducible U, (s)-modules annihilated by a into the isomorphism classes of irreducible
U, (g)-modules.

Now, let Y be an arbitrary irreducible U, (g)-module. I claim that we can find an
irreducible U, (s)-module X with a- X =0 and

Ux(8) ®u, (s) X — Uyx(9) ®@u,(s) Y-

First, apply Lemma 14.4.3 to find an irreducible U, (s)-submodule X C Uy(g) @y, (s) Y
with a- X = 0; thus we have inclusion maps:

X = Uy(9) ®y,(s) Y-

Now apply 'Frobenius reciprocity’ on the inclusion X < U,(g) ®p,(s) ¥ and obtain a
(nonzero) U, (g)-homomorphism:

Ux(9) XU, (s) X — Uy(g) AU, (s) Y. (14.4)

This implies that every U, (g)-module is induced from a U, (s)-module annihilated by
a: Indeed, any irreducible U, (g)-module V' contains an irreducible U, (s)-module Y’; hence,
by "Frobenius reciprocity’, V' is a homomorphic image of Uy (g) ®y, () Y and by (14.4) then
also a homomorphic image of Uy (g) ®p, (s) X for some irreducible U, (s)-module X with
a-X = 0. By the part of the claim already proved we therefore have V' ~ U, (g) ®u, (s) X-
The proof is completed. [l

Corollary 14.4.5. Let x be a character of Type M3 with x(ep11) = 0. The dimension
of irreducible U, (g)-modules and the number of irreducible U, (g)-modules (up to isomor-
phism) are given as:

1) Each irreducible U, (g)-module has dimension 3° if x(eon1) # 0 or x(e101) # 0. The
number of irreducibles is 3% if x(e101) # 0 and 2 - 3 if x(e101) = 0.

2) If x(ego1) = 0 = x(e101), then the number of irreducibles is 3% and there exist irreducible
Uy (g)-modules of dimension 34,2 - 3% 35,

Proof. The result follows immediately from Proposition 14.4.4 and from the representation
theory of glo(K). By Proposition 14.4.4 induction induces a bijection between the isomor-
phism classes of irreducible U, (s)-modules annihilated by a and the isomorphism classes
of irreducible U, (g)-modules. But s/a ~ gly(K) as restricted Lie algebras, so we can just
think of irreducible U, (s)-modules annihilated by a as irreducible U, (gla(K'))-modules.
But glo(K) = slao(K) @ Z(gla(K)), where Z(gla(K)) denotes the centre of gly(K)), and
sly(K) and Z(gla(K)) commute. This implies that any irreducible U, (gl (K))-module is
isomorphic to S1 ® g S2, where Sy is an irreducible U, (sl (K'))-module and S is an irre-
ducible U, (Z(gl2(K)))-module (see [3, Thm. 10.38]). Since Z(gla(K)) is abelian, there
exist (up to isomorphism) three irreducible U, (Z(gl2(K)))-modules of dimension 1 and
the representation theory of sly(K) is described in [27, 5, 5.2]. Now 1) and 2) are easy to
obtain (we use that y(e201 + e112) = 0 for x of Type M3). O

Remark 14.4.6. If y has Type M3 and x(ego1) = x(e101) = 0, then it follows from
Corollary 14.4.5 that there exist irreducible U, (W )-modules of non-mazimal dimension
(i.e., of dimension strictly less than 3%). Indeed, there exists an irreducible U, (W)-module
M such that M contains an irreducible U, (g)-module X of dimension 3% or 2 - 3% and by
"Frobenius reciprocity’ there exists a (surjective) U, (W)-homomorphism:

UX(W) ®UX(9) X —» M.

In particular, dimgM < 33 - dimg X < 3%.
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But I do not know whether Uy (W) ®y, (g X is irreducible (when X is an irreducible
Uy (g)-module). If, for instance, induction induces a bijection between the isomorphism
classes of irreducible U, (g)-modules and the isomorphism classes of irreducible U, (W)-
modules, then we could apply the results in Corollary 14.4.5 and get a description of the
irreducible U, (W)-modules (when x(eg11) = 0). But all methods in Section 6 breaks down
in order to show that result.
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A GLy(K)-action on basis elements
Any element ¢ €Autg_,, Bs induces an automorphism o, of the Lie algebra W such that
0,(D):=poDoy t VDeW =Derg(By). (A.1)

It is easy to see that o = o,-1. So the map ¢ — 0, is a homomorphism between the two
automorphism groups. In fact, by Theorem 2.2.1 and Remark 2.2.2, it is an isomorphism
of groups for p > 3.

For D = fla%l + fga%2 € W and ¢ € Autg_, By we have, with the action given in
(A.1), that

2 2 8@0_1(.731)
7e(D) = 3237 fl@n),plwa) S P (o) ()

=1 1i=1

0
8.%1' '

(A.2)

See Proposition 2.2.3. Note that we have an inclusion Autg_,, Bo O GL2(K) in the
following way:

<a b> x| — ax] +cxo

c d : To +H—— bwl—i-d:lig (A?))

where ad — bc # 0. For any ¢ € GLy(K), the automorphism o, is determined by (A.2)
and (A.3). For ¢ € GLy(K) we will define o,(w) := p(w) for w € W.

A.1 Diagonal matrices

Let t1,t9 € K* and define automorphism on Bs given by

T_ tr 0\ x1 > ft121,
- 0 t2 ) ro FH— th‘Q.

Now apply (A.2) and find:
T(eijl) = O'T(eijl) =T eijl = ti_ltgeijl, (A4)
T(eijg) = O'T(eijg) =T. eijg = tzitg_leijg. (A5)

A.2 Lower triangular matrices

Let a € K and consider the automorphism on By by

<1 0> rK = I1+o-T,
P11 = :

a1l ) x9 — 9.

Now apply (A.2) and obtain:

7 .
7
p1(eij1) =g (€ij1) = < >€z‘—s,j+s,1 -, (A.6)
s=0 §
p1(eij2) =04, (€ij2) = <8> (€imsjrs2—a-eigjren)-a’. (A7)
s=0
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A.3 Upper triangular matrices

Let a € K and consider the automorphism on Bs by

(1 a) x 1,
v2 = 0 1 ’ Tog —— T1+Q-To.

Now apply (A.2) and obtain:

J .
J s
302(62‘]‘1) 20202(62‘]‘1) = Z <S> (€i+s,j—s,1 — Q- ez’—i—s,j—s,Q) ca, (A-8)
s=0
J s
p2(eija) =0, (eij2) = ) <S> Cits,j—s2 " O (A.9)
s=0

A.4 Interchanging

Finally consider the interchanging given by

@:<0 1>:x1 — X9,

1 0 To +——  Tq.
Next, apply (A.2) and get:

G(eijl) :U@(eijl) = €42 (AlO
O(eij2) =oe(eij2) = €ji1- (A.11

~— —

B Jacobson’s formula for p = 3

Let K be an algebraically closed field of characteristic p = 3 and let W be the second
Witt—Jacobson algebra over K. For Dy, Dy € W we have

2
(D1 + Do)P = D 4 DI 4 Z si(D1, D2)
i=1

where the s;(D1, D2)’s are elements in W such that

2
(ad(D, @ t+ Dy @ 1))*(Dy ® 1) = > isi(Dy, Dy) @t (B.1)

=1

in W ®g K[t]. The vector space W ® g K[t] obtains the structure of a Lie algebra via the
commutator

[dox f(t),d @k g(t)] = [d,d] @k f(t)g(t) for d,d € W and f,g€ K[t].
Now, apply (B.1) and get:
s1(D1,D3) = [Dy,[D2,D1]] and s2(D1, D2) = [D1, [D1, Ds]].
It follows that

(D1 + Dy)B = DB 4 DB 4 [Dy [Dy, D] + [D1, (D1, Ds]]. (B.2)
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B.1 Toral elements

Lemma B.1.1. For all c,c’ € K the element egia — €101 + cea01 + c'e112 45 a toral element
m W.

Proof. Set D1 = eg12 — e101 and Dy = cego1 + c'ej12). Then DF’} = Dy and Dgﬂ = 0.
Moreover, [D2, [Da, Dl]] =0 and [Dl, [Dl,Dg]] = Dy. Now apply (B.2). O

Lemma B.1.2. If D € W and 0 # DB € KD, then there exists ¢ € K* such that cD is
a toral element.

Proof. Suppose that DBl = sD for some s € K*. Then c¢ is determined by (cD)[?’} =cD
or equivalent ¢3s = ¢. Since s # 0 we shall choose ¢ # 0 as a root in X3 —s7 !X =0. O

Lemma B.1.3. If D € W with DBl = ¢D (mod Woi1) for some ¢ € K*, then there exists
N >0 and ¢ € K* such that ¢/ DB"] is toral.

N
Proof. Since W11 is unipotent there exists N > 0 such that (D[?’} - CD)[3 - 0. Note
that D1, D" commute for all j > 0 since [D[?’Hl],D[S”] = (ad D¥1)3(DP'l) = 0. The
choice of N now implies that that

pBYNT _ N pBNT

Therefore (D[?’N])[g} € KDB"]. Now apply Lemma B.1.2. [l

C Characters of height at most 1

Let K be an algebraically closed field of characteristic p > 0. I will consider the case where
X(W>1) = 0; i.e., the height of x is at most 1. [In [10] the height ht x of a character is
defined as

ht x = min{j > —1 | x(W>;) = 0} ]

Since W>1 < Wsg, any Wy-module becomes a Wsg-module via the canonical map
Wso — Wso/W>1 >~ Wy. Since ht x < 1 we have x(W>1) = 0, so any irreducible
Uy (Wp)-module is an irreducible U, (W>()-module via the canonical map (apply Lemma
6.3.1 in Section 6.3 with g = W>g and h = W>1). On the other hand: Any irreducible
Uy (W>p)-module is an irreducible U, (Wy)-module, since W>; annihilates all irreducible
Uy (W>p)-modules and since Wxo/W>1 ~ Wy. We can think of irreducible U, (W>¢)-
modules as irreducible U, (Wy)-modules, where W>; acts trivially.

Let S be an irreducible U, (Wp)-module. If we extend S to W in the way above, then
S is an irreducible U, (W>g)-module and we can define the induced module

Uy (W) QU (Wso) S.

We have a triangular decomposition Wy = Kejgo @ (Keqo1 @ Kegi2) ® Kegp. Set
t= Kejo1 @ Kepi2 and n = Kegi1 @ W>1. Let b = t@n and let M be a b-module. If A € t*
we define My = {m € M | e101 - m = A(ejo1)m and epia - m = A(ep12)m}. An element of
M, is called a weight vector of weight A. A nonzero element m € M} is a maximal vector
(of weight A\) provided that n-m = 0. If M has p—character x and 0 # m € M,, then
we have A(e101)Pm — A(e101)m = x(e101)Pm and A(eg12)Pm — A(eg12)m = x(ep12)Pm. This
implies that A € A, = {X € t* [ A(h)P — A(hPP)) = x(h)P forall het}.
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C.1 Irreducible W-j,—modules

Suppose that p > 2. Observe that Wy can be written as A; & Z(Wy), where A; is the three
dimensional Lie algebra with basis e1p2, €11, €101 — €012 and Z(Wy) = K (e101 +€p12) is the
center in Wy. It is easy to verify that A; is a restricted Lie subalgebra of W{ isomorphic
to sly(K): The isomorphism is given by

e — 00 e —e — L 0 e — 0 1
102 1 0 ) 012 101 0 —1 ) 011 0 0 .

Since Wy = A1 & Z(Wp) and [A1, Z(Wy)] = 0, it follows from [3, Thm.10.38| that
each irreducible U, (Wj)-module S is isomorphic to S1 ®x Sa, where S; is an irreducible
Uy (Ai)-module and S; is an irreducible U, (Z(Wp))-module. The number of irreducible
Uy (Wp)-modules is now just the number of irreducible U, (A;)-modules times the num-
ber of irreducible U, (Z(Wp))-modules. The irreducible U, (A;)-modules and irreducible
Uy (Z(Wp))-modules are well described so we can use the observations just made to describe
the irreducible U, (Wp)-modules. Recall that we can think of irreducible U, (W>()-modules
as irreducible U, (Wp)-modules, where W1 acts trivially.

Denote by W, the subalgebra Ay & W>;.

Proposition C.1.1. Suppose that x(W() # 0 but x(ep11) = 0. Then each irreducible
Uy (W>o)-module has dimension p and the number of irreducible Uy (W>o)—modules are:

. ptl

p? if x(eo12 — e1o1) # 0,
p- 5= if x(eo12 — e101) = 0.

Proof. Since x(Wj) # 0 we have x(A1) # 0; therefore irreducible U, (A;)-modules are
of dimension p by [14, Prop.5.3]. Moreover, all irreducible U, (Z(W}))-modules have di-
mension 1 since Z(Wj) is abelian. So any irreducible U, (Wy)-module has dimension p
and the number of irreducible U, (Wj)-modules is p? if x(e101 — eo12) # 0 and p - 1%1 if
x(e101 — €ep12) = 0: The number of irreducible U, (A1)-modules is p if x(e101 — ep12) # 0
and p—;rl if x(e101 —ep12) = 0 by [27, 5, 5.2| (here we use that y(eg11) = 0) and the number

of irreducible U, (Z(Wp))-modules is p. The proof is completed. O

Lemma C.1.2. If x(W{() # 0, then there exists an automorphism ® € Aut(W) such that
P
x*(eo11) = 0.

Proof. If x(ep11) # 0 we can apply an automorphism ¥ € GLy(K) given by < 014 [1) >

We can now find an appropriate o € K such that

x” (e102) = —x(eo11) - &* = (x(e101) — x(eo12)) - @ + x(e102) # 0.

/

1
If we apply an automorphism I" € GLo(K) given by ( 0 al > we get for an appropriate

o € K, that

\IIOF(

XV (eon1) = —x¥(e102) - (@) + (x ¥ (e101) — X (e012)) - &’ + x¥ (eo11) = 0.

The formulas for ¥(ep;1) and I'(ejg2) follows from Appendix A. Set & = W ol O
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Suppose now that x(W{J) = 0. As in the proof of Proposition C.1.1, irreducible
Uy (W>g)-modules are determined by irreducible U, (A;)-modules and irreducible U, (Z(Wjy))—-
modules. Since Z(W)) is abelian, each irreducible U, (Z(W))-module is given by some
K,,, where ejo1 + epi2 acts as multiplication by p € K and pu? — p = x(eio1 + eo12)”.
The irreducible modules for A; ~ sly(K) are described in {14, 5.2 and [11, 7.2|: For any
irreducible U, (A;)-module S; there exist 0 < n < p such that S; has dimension n + 1.
Given a basis vy, ..., v, for S1 the Aj-action is given by

(n —1+ 1)%_1 1> 0,

€102 " V; =
102 * Vi 0 iZ0
(i + 1)U¢+1 1 <n,
€o11 "V = .
0 1=n
(e101 —eo12) -vi = (n—2i)v;.

In this way any irreducible U, (W>g)-module is uniquely determined by a pair (u,n)
where 0 < n < p and p € K with pu? — p = x(ejo1 + ep12)P. In particular, there are p?
irreducible U, (W>q)-modules.

Proposition C.1.3. If x(W{) = 0, then there are p* irreducible Uy (Ws=o)-modules. For
any integer n with 0 < n < p there exist p irreducible Uy (W>q)-modules of dimension n+1.
Any irreducible Uy (W>o)-module is isomorphic to a Wxo—submodule in Uy (W>0)®u, (wy,5) Kv
of dimension n + 1, where Kv is a one-dimensional U, (Woi2)-module with the action of
e101, €012 given by multiplication with (i +n +2),3(u — n — 2) for some p € K with
wP — 1= x(e101 + eo12)? and some 0 < n < p.

Proof. From the descriptions above, any irreducible U, (W>¢)-module S has a basis v, . .. , vy,
where the Wy-action is given by

(n—i—i—l)vi_l 1> 0,

€102 " V; = 0 i=0
1+ 1)UZ'+1 1< n,
€o11 " Vi = 0 .
1=n.
€101 - V; = %(u +n — 2i)v;,
€012 " V; = %(,u —-n—+ Qi)UZ'

and where W>; acts trivially. The formulas for ejo; - v; and eg12 - v; is a consequence of
(6101—6012) «v; = (n—24)v; and (6101+6012) -v; = uv;. One can show that S is isomorphic to
a submodule in Uy (W>0) @, (wy,,) Kv where the action on the one-dimensional Uy (Wo12)-
module Kv is given by
1 1
€101 v = §(u+n+ 2) ep2-v= 5(,u —n—2) e -v=0 forall (rst) = (101).

More explicitly, the isomorphism of U, (W>p)-modules is given by
918 S NN, Kelpn © 0 C Uy(Wo) O (wyrs) Ko

—1
vg —— €y Q.

The proof is completed. [l
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C.2 Irreducible W—modules

Suppose that p > 2. If ht x = 1 it turns out that induction induces a bijection between the
isomorphism classes of irreducible U, (W>()-modules and isomorphism classes of irreducible
Uy (W)-modules. For ht x < 0 we assume that p > 3 in order to use results proved in [10].

Following [10], we introduce the exceptional weights: The exceptional weights wg, w1, ws
are elements in t* defined via

wo(e1o1) = —1 wo(eo12) = —1,
wi(e1o1) =0 wi(ep12) = —1,
wa(e1o1) =0 wa(ep12) = 0.

Proposition C.2.1. Suppose that p > 2. If x € W* with ht x = 1, then induction
induces a bijection between the isomorphism classes of irreducible U, (W>o)-modules and
isomorphism classes of irreducible U, (W' )-modules.

Proof. It x(W{) # 0, we may assume that y(e102) # 0. Indeed, apply an automorphism ¥
0

induced by a lower triangular matrix in GLo(K) given by < ; 1 > . Then we can find an

appropriate o € K such that x¥(e102) = —x(eo11)-a? — (x(e101) — x(€o12)) -a+x(e102) # 0.

In order to prove that induction induces a bijection between the isomorphism classes
of irreducible U, (W>g)-modules and isomorphism classes of irreducible U, (W )-modules,
we may replace y with any y Y.

If x(e102) # 0 and p > 3, then the result is proved in [10, 2.4]: R. Holmes prove, for an
irreducible Uy (W>¢)-module S, that any maximal vector v € Uy (W) @y, (w,) S of weight
A has the form 1® s for some maximal vector s € S. Thus, U, (W) ®y, (w.,)S is irreducible
and if Uy (W) @, (w) S1 = Uy (W) ®p, () S2 for irreducible Uy (W>g)-modules Sy, .52,
then Sl ~ SQ.

For p = 3 let S be an irreducible Uy (W>q)-module and let v € Uy (W) @y, (w.) S be
a maximal vector of weight A\ given by

2 : k m
v = €002€001 & Thm,- (Cl)
0<k,m<3

We shall prove that x,, = 0 unless K = m = 0. Note that esgs - v = 0 and eggo - Ty, = 0
for all k,m. Now use that [e202, ego2] = 0 and [27, 1, 1.3(4)] to get:

2

— — k. m—1 mY k+1 m-—2
0=eg2 v=-2 E megpaoor & €102 * Thm + 2 E ( >€002 eoor @ Trm- (C.2)
0<k,m<3 0<k,m<3

This implies that e1gs - 299 = €192 T12 = €102 - To2 = €102 - o1 = 0; hence x99 = 112 = 202 =
xo1 = 0 since x(e1g2) # 0. Since x12 = 0 we have ejg2 - 91 = 0 also and then z9; = 0.
Since xgs = 0 we also obtain eqge - 11 = 0 and then x;; = 0. Next, use that ega; -v =0
and ego1 * Ty, = 0 for all k, m to get:

k
= = k-1 k-2 _m+1
0=-¢ego1 -v=—2 E kegos €001 @ €011 * Thm + 2 E <2 €003 €001 © Thm- (C.3)
0<k,m<3 0<k,m<3

This implies that x99 = 0 since x17 = 0. In order to prove that x19g = 0, we use that
e112 - v = 0 and that ej10 - gy, = 0 for all k,m to get: 0 = —egp2 ® e192 - £10. Therefore
e102 - 19 = 0 and then x19 = 0. We conclude that zj,, = 0 unless k = m = 0 and, since v
is a maximal vector so is xgg € S.
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If x(W{) = 0 we have x(e101 + €012) # 0 and x(e101) = x(eo12) # 0. If v is a maximal
vector in Uy (W) @y, (w.,) S (where S is an irreducible Uy(W>g)-module) of weight A,
then there exist A1, Ao € K such that ejg; - v = Av and eg12 - v = Aywv. It follows that
N =M = x(ei)? = x(eo12)? = Ay — X2, Hence A\, A2 ¢ F,. Therefore, A € t* given
by A(e101) = A1 and A(epi2) = A2 is not an exceptional weight (as introduced just before
the proposition). In particular, S has no maximal vectors of weights wg,w; or we and it
follows from [10, 2.4] when p > 3 that v = 1 ® s for some maximal vector s € S. For p =3
consider v as in (C.1). The equations

k m k m
E €002€001 @ M Tpm = AU = €101 -V = E €502€001 © (€101 * Thm — MTim)
0<k,m<3 0<k,m<3
k m k m
E €002€001 @ A2Tm = A2V = €012 + v = g €602€001 @ (€012 * Thm — kTkm)
0<k,m<3 0<k,m<3

imply that ej01 - Txm = (A1 +m)Tkm, and ep12 - Trm = (A2 + k) Tgm. Now, since Wyip-v =0
and W>1 - S =0 we get (apply 27, 1, 1.3(4)]):

k -1_m
0 =€p22 * UV = Z 2(<2> — ]C()\Q + k))€§0216001 & Tm, (04)
0<k,m<3
m _
0 =€901 "V = Z 2(<2> — m()\l + m))elgme%l 1 &Q Tlm- (05)
0<k,m<3

Thus, if xg,, # 0 then 0 < k,m < 3 and

a) If m # 0 then Ay + m = 221,

b) If k # 0 then Ay + k = £7L.

We conclude that zy,,, = 0 unless k = m = 0: Indeed, if zp,, # 0 we get from either a)
or b) that either \; € IF,, or A\g € F,, — contradiction. Hence v =1 ® s for some s € S.

It follows that induction induces a bijection between the isomorphism classes of irre-
ducible U, (W>g)-modules and isomorphism classes of irreducible U, (W )-modules. O

Theorem C.2.2. Suppose that p > 2 and let x € W* be a character of height 1. Then there
are p?* irreducible Uy (W)-modules and the dimension of any irreducible is p if x(W{) # 0.
If x(W() = 0, then, for any integer n with 0 < n < p, there exist p irreducible Uy (W)~
modules of dimension n + 1.

Proof. Use Lemma C.1.2 and assume that x(egi1) = 0 if x(W]) # 0. Then combine
Proposition C.1.1 and Proposition C.2.1. If x(W/) = 0 we combine Proposition C.1.3 and
Proposition C.2.1. The proof is completed. [l

Suppose that that p > 3 and that y € W* is a character of height 0. Let S be an
irreducible U, (W>¢)-module. The proof of Proposition C.1.3 says that there exists n with
0<n<pand pu € K with u? — o = 0 such that S has a basis vg,v1,...,v,, where the
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Wo-action is given by

(n—i—i—l)vi_l 1> 0,

€102 " Vi =
R 0 i=0.
(i + 1)UZ'+1 1< n,
€o11 -V = .
0 T =n.
€101 * V; = %(,u +n— 2i)vi,
€012 " V; = %(,u -n+ Qi)Ui.

There are p? irreducible U, (Wsq)-modules represented by all S(u,n) for n with 0 <
n < p and pu € K such that p? — pu = 0; each S(u,n) is an irreducible U, (W>g)-module
with a basis vg,v1,...,v, where the Wy—action is given as above and W1 acts trivially.
Note that S(p, n) has maximal vector v, of weight 7 € t* given by 7(e101) = (1 —n) and
T(ep12) = %(,u + n). We can now describe the exceptional weights wg,w1,ws in terms of
1, n in the following way:

wg «— p=-—2and n=0,
wp N:—l and 77,:1,
Wy ,u:O and n = 0.

Proposition C.2.3. Suppose that p > 3 and let x € W* with ht x = 0. Then induction
induces a bijection between the isomorphism classes of irreducible Uy (W>q)-modules with
(n,n) # (—1,1) and the isomorphism classes of irreducible U, (W)-modules. In particular,
there are p* — 1 irreducible U, (W)-modules.

Proof. This follows from [10, 4.3 (1), (2)] and description of the exceptional weights in
terms of u,n just above. [l

Remark C.2.4. Consider the case where (p,n) = (—1,1). Then the induced U, (W)~
module U, (W) ®p, (w-,) S(—1,1) contains a unique W-submodule M(—1,1) of dimension
p? (see [10, 3.10 (3), 3.12]) determined by the kernel of the W-homomorphism 6% introduced
in [10, 3.8]. Since n = 1 we have dimgS(—1,1) = 2. From [10, 4.3 (1)], it follows
that the quotient (Uy(W) @y, ws,) S(—1,1)) /M(—1,1) is an irreducible U, (W)-module
isomorphic to Uy (W) ®y, w) S(0,0).

Proposition C.2.5. Suppose thatp > 3 and that ht x = —1 or equivalent x(W) = 0. Then
there are p? isomorphism classes of irreducible W —modules with p—character x represented
by:

1) UX(W) ®UX(W20) S(:uvn) if (N?n) 7é (_270)7 (_17 1)7 (070);

2) L(,LL,?’L) = (UX(W) ®Ux(W20) S(lu’vn))/M(:u7n) Zf (M)n) € {(_an)v (_17 1)a (Oa 0)}
where M(p,n) is the unique maximal W -submodule of Uy (W) ®y, (w~y) S(1;1).

If (u,n) = (—2,0) the W-submodule M(—2,0) is one-dimensional and is equal to
Kega;egall ® w where S(—2,0) = Kw. If (u,n) = (—1,1) we have dimxg M (—1,1) =
p? +1 and dimg S(—1,1) = 2 when (u,n) = (=1,1). Finally, if (u,n) = (0,0) then
L(0,0) is the one-dimensional trivial module equal to S(0,0) as a Wx¢-module. For
the dimensions we have:

p2 -1 (M?n) = (_270)7 (_L 1)7

dimp L(p,n) = {1 (1,n) = (0,0).
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Proof. The statement on the number of isomorphism classes of irreducible U, (W)-modules
follows from [10, 4.2 (1)] and the proof of 1), 2) is a consequence of [10, 4.1 and 4.2 (1), (2)].
If (1, n) equals (=2,0),(—1,1) or (0,0) the W-module Uy (W) @y, (w-) S(i,n) contains
(see [10, 4.1]) a unique maximal W-submodule M (u,n) determined by the kernel of the
W-homomorphism 6} introduced in [10, 3.8].

If (u,n) = (—=2,0) we have dimgS(—2,0) = 1 and L(—2,0) has dimension p? — 1 (see
[10, 4.2 (3)]). Here M(—2,0) is the unique maximal submodule of dimension 1 equal to
K 6180_216180_11 ® w where S(—2,0) = Kw. Indeed, this is the only choice since every W-—
submodule must contain 6852168511 ® w after a suitable multiply by egg2, €ego1-

Suppose that (u,n) = (—1,1). Then dimgS(—1,1) = 2 and L(—1,1) has dimension
p? — 1, which also shows that dimy M (—1,1) = p? + 1 (see [10, 4.2 (3)]).

Finally, if (u,n) = (0,0) we use [10, 4.2 (3)] to conclude that L(0,0) is the one-
dimensional trivial module equal to S(0,0) as a Wx>p—module. O

D Comments

Here, I will comment on the problems which are left open in this thesis. I have gathered
questions which I have not been able to answer due to lack of time as well as my mathe-
matical limitations.

Questionl : How can we classify the set of irreducible U, (W)-modules in the case where
st(x, W>r) # W>¢ (r denotes the height of x and we assume that r > 1 but r < 2p — 3).

The assumption st(y, W>,) # W>¢ implies that p—2 < r < 2p —3. We have only been
able to answer Question 1 in the situation where p = 3 and y € W™ of height 2,3 or x has
height p — 1 and rk ¢y () = 2. For simplicity, we only consider x of Type A or Type B as
defined in Section 11.5.

Strictly speaking, the idea is the following: Let g be the Lie p—subalgebra of W such that
all e;j, with (ijk) ¢ {(002),(102),...,(p —1,0,2)} form a basis for g. Then h = gnN W
is a supersolvable Lie p—subalgebra of g. We define an ideal a in g via

p—1

a=">ad(eoo1)(Wy).

J=0

TypeA — characters : For Type A—characters we have, so far, seen the following results:

A1) If x(a) # 0, then each irreducible U, (W)-module has dimension p°°dimwew()/2 and
the number of irreducibles is p'* W), This result has been proved for general p if
r > p and we find the same results when r = p — 1,p and p = 3. Can one extend the
given proof to hold for r = p — 1, p and arbitrary p 7

A2) If x(a) = 0, then induction induces a bijection between the isomorphism classes
of irreducible U, (g)-modules and the isomorphism classes of irreducible U, (W)
modules; hence the classification of the irreducible U, (W )-modules are reduced to
the classification of irreducible U, (g)-modules.

al) If r =2 and p = 3 or r = p — 1 for arbitrary p but rk ¢y (x) = 2, then irre-
ducible U, (g)-modules are a (disjoint) union of p—1 irreducible U, (g)-modules
all induced from irreducible U, (h)-modules and the set of irreducible U, (g)-
modules annihilated by a. Since § is supersolvable, we can classify the p — 1
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irreducible U, (g)-modules induced from irreducible U, (h)-modules and the ir-
reducible U, (g)-modules annihilated by a correspond to irreducible U, (W (1))~
modules, where W(1) is the smallest Witt-Jacobson Lie algebra. We do not
observe the same pattern as in the Al)—case.

a2) For r = 3 = p we find a Lie p—subalgebra s C g with the property that induc-
tion induces a bijection between the isomorphism classes of irreducible U, (s)—-
modules and the isomorphism classes of irreducible U, (g)-modules and such
that s/a ~ sly(K). It follows that the classification of irreducible U, (W )-
modules are reduced to the well-known classification of slo(K) (or W(1) since
W (1) =~ sla(K) as restricted Lie algebras when p = 3). We do not observe the
same pattern as in the Al)—case.

The reason for the difference when r = p — 1 and r = p is, that a is unipotent for
r > p—1 and hence x(a) = 0 automatically implies that a annihilates all irreducible
Uy (g)-modules. This is not the case when » = p — 1 and we have to add extra
irreducibles. I suggest that one, for arbitrary p, should prove similar statements as
those in the al)—case for r = p — 1 and similar statements as those in the a2)—case
for r > p — 1. I don’t know whether it is possible to find s such that s/a ~ W (1) or
s/a =~ sly(K), but the representation theory of s/a should at least be well-described.

TypeB — characters : For Type B—characters we have, so far, seen the following results:

B1)

B2)

If x(a) # 0, then each irreducible U, (W)-module has dimension pedimwew()/2 and
the number of irreducibles is p™* W) This result has almost been proved for general
p if 7 > p and we find the same results when » = p — 1, p and p = 3. Can one extend
the given proof to hold for » = p — 1, p and arbitrary p 7

If x(a) = 0, then induction induces a bijection between the isomorphism classes
of irreducible U, (g)-modules annihilated by a and the isomorphism classes of irre-
ducible U, (W)-modules; hence the classification of the irreducible U, (W')-modules
are reduced to the classification of irreducible U, (g/a)-modules.

bl) If r = 2 and p = 3 we have g/a ~ sl(K) and so irreducible U, (g/a)-modules
are just irreducible U, (sla(K'))-modules. We do not observe the same pattern
as in the Bl)-case.

b2) For r = 3 = p the situation is very complicated and requires computations,
which are impossible to carry out for arbitrary p.

At the moment, I have no suggestions of what to do in the bl) and b2)—case (for
arbitrary p). Maybe, one should try to find a Lie p-subalgebra s inside g such that
induction induces a bijection between the isomorphism classes of irreducible U, (s)—
modules and the isomorphism classes of irreducible U, (g)-modules annihilated by a.
Moreover, one should know the representation theory of s/a.

Question 2 : How can we classify the set of irreducible U, (IW)-modules in the case
where x has height r = 2p — 3 and Type [l.a.

It is enough to consider irreducible U, (W>()-modules since induction induces a bijec-
tion between the isomorphism classes of irreducible U, (W>g)-modules and the isomorphism
classes of irreducible U, (W)-modules. The computations for p = 3 say that we can find a
Lie p-subalgebra s of W>( and a p-ideal a <s such that irreducible U, (W>g)-modules are
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induced from irreducible U, (s/a)-modules. Now we are done since irreducible U, (s/a)—-
modules are well described (s/a ~ sly(K)). But for p = 3, already, the computations are
difficult.

Is it possible, for arbitrary p, to find s and a with the properties as above? Maybe one
cannot prove s/a ~ slo(K) but as long the representation theory of s/a is well known the
reduction is useful.

Question 3 : How can we classify the set of irreducible U, (IW)-modules in the case
where y has maximal height.

The representation theory of U, (W) when x has maximal height is not very well un-
derstood. In the examples I have seen so far, one constructs x such that W>¢-modules
with p—character x has maximal dimension pr—l. Therefore, they all extend to W. It is
however not clear how to compute the number of irreducibles in those cases.

I have considered the case where p = 3 but a complete understanding in this simple
case is still far away (for me). The computations for p = 3 show that there exists x of
maximal height and an irreducible U, (W )-module of non-maximal dimension (without a
classification of these); this is in fact the most interesting observation.
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