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1 Introduction

This thesis gathers the results I have obtained during my graduate studies at University of
Aarhus. Through the last four years I have been working with problems in "representation
theory of Lie algebras in prime characteristic". First, I will give a historical review of the
subject.

E. Witt’s discovery of a non classical simple Lie algebra (a Lie algebra not associated
to a smooth algebraic group) is the starting point of the theory of modular Lie algebras.
Subsequently, more non classical simple Lie algebras were found and a new type of simple
restricted Lie algebras, simple restricted Lie algebras of Cartan type, were introduced.
They fall into four categories [27, 4]: Witt–Jacobson Lie algebrasW (n), special Lie algebras
S(n), hamiltonian Lie algebras H(2n) and contact Lie algebras K(2n+ 1).

In 1966, A. Kostrikin and I. Shafarevic enunciated their famous conjecture asserting
that any simple restricted finite dimensional Lie algebra is either classical or of Cartan
type. This was proved by R. Block and R. Wilson [1] in 1988 if the characteristic of the
ground field K is p > 7. Later, this was improved by A. Premet and H. Strade by managing
the case p = 7. For p > 5 the simple restricted finite dimensional Lie algebras then fall
into two categories: Classical Lie algebras and Lie algebras of Cartan type. For p = 5 one
has to add the series of Melikyan algebras constructed in [18].

The representation theory of Uχ(g), where g is a classical Lie algebra, was first studied
by Kac and Weisfeiler [15, 28], and further developed by Friedlander and Parshall [8, 9]. In
1995, Premet [21] proved a conjecture of Kac and Weisfeiler on the dimension of irreducible
Uχ(g)–modules, where g = Lie(G) is the Lie algebra of a simple, connected algebraic group
G such that g admits a non-degenerate trace form. On the other hand, for restricted Lie
algebras of Cartan type, Chang gave a classification of the irreducible Uχ(g)–modules, when
g is the smallest (rank 1) Witt–Jacobson Lie algebra [2]. Later, Strade [25] gave proofs
of many of Chang’s results in a different approach. N. Koreshkov [16] and T. Wichers
[29] studied the next smallest (rank 2) Witt–Jacobson Lie algebra. R. Holmes [10] gave
a uniform treatment for irreducible modules of small height (the height is an invariant
attached to irreducible modules).

The main theme in the thesis concerns the classification of the irreducible Uχ(W )–
modules, where W denotes the next smallest Witt–Jacobson Lie algebra and χ is an arbi-
trary p–character. Already, N. Koreshkov [16] and T. Wichers [29] have studied irreducible
modules for that algebra and this thesis contain improvements of the results obtained
there together with new results and examples. During the thesis, I will compare the results
obtained here with the results by Koreshkov and Wichers.

The first approach is to find a Lie p–subalgebra of W such that irreducible W–modules
are induced from irreducible modules for that subalgebra. It is well known that W is
a graduated restricted Lie algebra and it contains a Lie p–subalgebra of codimension 2
(the standard maximal subalgebra of W which I denote by W≥0). We shall induce irre-
ducible W≥0–modules to W and try to decide whether the induced module is irreducible
[i.e., if S is an irreducible Uχ(W≥0)–module then the Uχ(W )–module induced from S is
Uχ(W )⊗Uχ(W≥0) S]. If we know that induction is a bijection between the set of irreducible
Uχ(W≥0)–modules and the set of irreducible Uχ(W )–modules, then questions, such as di-
mension and number of irreducible Uχ(W )–modules, are reduced to the same questions
for irreducible Uχ(W≥0)–modules. Often, irreducible Uχ(W≥0)–modules are induced from
irreducible modules for a supersolvable Lie p–subalgebra of codimension 1, so we will take
a closer look at supersolvable Lie p–algebras also.
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In some cases it will be convenient to induce from other Lie p–subalgebras than W≥0.
We shall define a Lie p–subalgebra g of W of codimension p and induce irreducible g–
modules to W . It often turns out to be best way when considering so–called exceptional
characters defined in Section 11.

1.1 Notation

In this paper p will always denote a prime number, K will always denote an algebraically
closed field of characteristic p and W will denote the Witt–Jacobson Lie algebra of rank 2.
The term K–algebra will mean associative K–algebra with a unit.

The height of a character χ ∈ W ∗ is the unique integer r with −1 ≤ r ≤ 2p − 2 such
that χ(W≥r) = 0 but χ(Wr−1) 6= 0. If the height is r = 2p− 2 we say that χ has maximal
height. The height was used implicit in Chang’s work [2], but explicitly defined for W (1),
the smallest Witt–Jacobson Lie algebra, in [25] by Strade. One can also find the height
introduced by Rudakov in [22].

We shall several times use the tensor product when studying irreducible representations.
Unless otherwise specified, it should be clear from the context what we are tensoring over.

Whenever we use the notation :=, we define what is on the left hand side to be equal
to what is on the right hand side. For example, W := W (2).

The following section contains a summary of the main themes in the thesis and the main
results obtained. For details on the statements one should read the respective sections.

1.2 Summary

The paper is organized in 14 sections. I include four appendices: In the first, we compute
the action of several matrices onW . In the second, we consider Jacobson’s formula for p = 3
and prove results about the [p]–mapping on elements in W . In Appendix C we consider
characters of height at most 1. The main source is [10]. The thesis will therefore mainly
concern irreducible W–modules with p–character χ of height > 1. The final appendix
gathers questions which I have not been able to answer due to lack of time as well as my
mathematical limitations.

Below, I give a short review over all sections.

In Section 2, I settle the notation and recall well–known facts about Witt–Jacobson
Lie algebras. I restrict myself to the next smallest Witt–Jacobson Lie algebra in Section
3. The main sources for sections 2–3 are [4], [12], [16] and [27].

In Section 4 we prove that each Ws−1, for s 6= p− 1, can be written as Ws−1 = U
⊕
V ,

where U and V are irreducible GL2(K)–submodules of Ws−1. Next, we identify each dual
space U ∗ and V ∗ with homogeneous polynomials of appropriate degree. The results from
Section 4 give us representatives for χ ∈ W ∗ with respect to the GL2(K)–action on W ∗.
This is the subject for Section 5.

In Section 6 we give general criteria for irreducibility. The general setup is: We let
(g, [p]) be a finite dimensional restricted Lie algebra over an algebraically closed field K of
characteristic p > 0 and h ⊂ g is a Lie p–subalgebra. If N is an irreducible Uχ(h)–module,
then we give criteria for the induced g–module Uχ(g) ⊗Uχ(h) N to be irreducible. The
first criterion [27, 5, 5.7] requires the existence of an ideal a ⊂ g with χ([a, a]) = 0 and
h is defined via a. The sources are [25] and [26]. The second criterion [25] requires the
existence of a unipotent p–ideal a ⊂ h with χ(a) = 0. The third criterion is used intensively
in sections 11–14 if none of criteria 1–2 can be used.
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We apply the theory from the first criterion to g = W≥0, the standard maximal Lie
p–subalgebra of W , in Section 7. We denote by W012 a supersolvable Lie p–subalgebra in
W≥0 of codimension 1. We consider a p–character χ of height r > 1 and prove, except
for a single type of characters, that there exists g ∈ GL2(K) such that induction induces
a bijection between the isomorphism classes of irreducible Uχg(W012)–modules and the
isomorphism classes of irreducible Uχg(W≥0)–modules. As a consequence, one can use the
theory for supersolvable Lie p–algebras and show that there exists a polarization P ⊂W≥0

of some λ ∈W ∗
≥0 such that induction induces a bijection between the isomorphism classes of

irreducible Uχ(P )–modules and the isomorphism classes of irreducible Uχ(W≥0)–modules.
The type of characters excluded are referred to as characters of height r = 2p−3 and Type
II.a (the notation comes from Section 5). The results obtained are an improvement of
Koreshkov’s results in [16] and Wichers’ results in [29]; they prove that induction induces a
surjection. In fact, Koreshkov claims that the result is true for characters of height 2p− 3
and Type II.a also, but the example given in Section 13.13 shows a quite different behavior
than the one described above for those type of characters when p = 3.

In Section 8, we apply the theory from the second criterion to g = W and h = W≥0.
If χ is a p–character of height r > 1, we prove that induction induces a bijection between
the isomorphism classes of irreducible Uχ(W≥0)–modules and the isomorphism classes of
irreducible Uχ(W )–modules if st(χ,W≥r) = {x ∈ W | χ([x, y]) = 0 ∀y ∈ W≥r} = W≥0.
The results obtained are again a slightly an improvement of Koreshkov’s results in [16] and
Wichers’ results in [29]; they prove that induction induces a surjection. In fact, Koreshkov
claims that we can remove the additional assumption st(χ,W≥r) = W≥0, but computations
in sections 12–13 show that he is wrong at that point.

If we consider a p–character χ of height r > 1 such that st(χ,W≥r) = W≥0 and if χ is
not of Type II.a when r = 2p − 3, then the results from sections 7–8 say that questions,
such as dimension and number of irreducible Uχ(W )–modules, are reduced to the same
questions for irreducible modules for a supersolvable Lie p–algebra. Thus we take a closer
look at supersolvable Lie p–algebras in Section 9. If L is a supersolvable Lie p–algebra
and χ ∈ L∗, then irreducible Uχ(L)–modules are induced from one dimensional modules
over some restricted Lie p–subalgebra of L. We describe a condition that tells us how to
find restricted Lie subalgebras P of L and one dimensional Uχ(P )–modules such that the
induced Uχ(L)–module is irreducible. I follow [6] and [13], where the description of the
theory is given.

Section 10 is very technical but we end up with some of the main results in this thesis.
After having introduced Vergne polarizations and compatible polarizations in Section 9, we
ask ourselves the following question (we now consider the supersolvable Lie p–subalgebra
W012 of W and Vergne polarizations are computed with respect to an appropriate chain
of ideals in W012): Given a p–character χ ∈ W ∗. Is it possible to find λ ∈ W ∗

012 such that
the Vergne polarization pλ of λ is compatible with χ and such that pλ = pχ? The answer
is yes except possibly for a single type of characters when pχ is unipotent. The existence
of λ with that property now has the following application: If χ ∈ W ∗ is a p–character of
height r > 1 but r ≤ 2p − 3 with st(χ,W≥r) = W≥0 such that χ does not have Type II.a
if r = 2p− 3, then we can prove the following:

1) The dimension of any irreducible Uχ(W )–module is pcodimW cW (χ)/2, where cW (χ) is
the stabiliser of χ in W . We have cW (χ) ⊂W≥0.

2) The number of irreducible Uχ(W )–modules (up to isomorphism) is prk cW (χ), where rk
cW (χ) is the dimension of any maximal torus in cW (χ). We have rk cW (χ) ∈ {0, 1}.
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The number of irreducible Uχ(W )–modules and the dimension of all irreducibles are thus
completely determined by cW (χ) (If we assume that st(χ,W≥r) = W≥0 and that χ does
not have Type II.a if r = 2p − 3). Note that codimW cW (χ) is even, since cW (χ) is the
radical of the bilinear, antisymmetric form (x, y) 7−→ χ([x, y]).

In Section 11, we take a closer look at the exceptional characters (i.e., characters χ ∈W ∗

of height r > 1 with st(χ,W≥r) 6= W≥0; one can check that r > p−2 for such χ). We prove
that any exceptional character is conjugate under Aut(W ) to exactly one of two types of
exceptional characters (referred to as Type A– and Type B characters) and we can easily
tell which one. We study Type A– and Type B characters and prove, among other things,
similar results to 1), 2) above under additional assumptions. [For Type B characters we
do not find the explicit dimension formula in 1) since the main theorem in Section 10.1
has not been proved for all characters and it has not been possible for me to improve the
result in that sense.]

The subject for Section 12 is characters of rank 2 (i.e., χ ∈ W ∗ with rk cW (χ) = 2).
We find that the only nonzero χ with that property has height 1, height p− 1, height p or
maximal height. For χ of height 1 and rk cW (χ) = 2, we can apply the results in Appendix
C. For height p − 1 and rk cW (χ) = 2, we classify the irreducible Uχ(W )–modules and
we see in fact a quite different behavior as in 1),2) above. We apply results from the
representation theory of W (1), the smallest Witt–Jacobson Lie algebra. For χ of height p
with rk cW (χ) = 2, I have no ideas what happens; computations in Section 13.12 for p = 3
indicate that no methods from the height p − 1 case can be used. Finally, we consider
characters of maximal height with dimKcW (χ) = 2 and cW (χ) ∩ W≥0 = 0. We prove
that the dimension of any irreducible Uχ(W )–module is maximal in that case (i.e., equal
to pp

2−1 by Mil’ner’s result [19]). In particular, we can apply the result above to some
characters χ of maximal height and rk cW (χ) = 2.

Section 13 contains the main examples in this thesis. We shall see that none of the
assumptions on χ (i.e., χ has height r > 1 with st(χ,W≥r) = W≥0 but r 6= 2p − 3 if χ
has Type II.a) can be removed in order to obtain 1),2) above. We give a classification
of the irreducible Uχ(W )–modules if χ has height r = 2 or r = 3. If p > 3 we have
r < 2p− 3 and st(χ,W≥r) = W≥0, so the dimension formula in 1) and the formula for the
number of irreducibles in 2) can be applied. A complete list of the possibilities are given
for r = 2 and r = 3 when p > 3. The interesting part in Section 13 occurs when p = 3 and
st(χ,W≥r) 6= W≥0 or χ has Type II.a and r = 3.

If st(χ,W≥r) 6= W≥0, then we observe in some cases a behavior quite different from the
one described in 1),2) above. I will try to sketch the differences (for p = 3) in the following
items:

• If rk cW (χ) = 0, one can have > 1 isomorphism classes of irreducible Uχ(W )–modules.

• If rk cW (χ) = 1, one can have > 3 isomorphism classes of irreducible Uχ(W )–modules.

• It is possible to have rk cW (χ) 6⊂W≥0 and it is possible to have rk cW (χ) = 2.

• If rk cW (χ) = 2, one can have 32 isomorphism classes of irreducible Uχ(W )–modules.

• All irreducible Uχ(W )–modules do not have the same dimension.

• The dimension of an irreducible Uχ(W )–module is not always divisible by 3.

As a consequence, induction does not always take irreducible Uχ(W≥0)–modules to irre-
ducible Uχ(W )–modules if st(χ,W≥r) 6= W≥0.
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If χ has Type II.a and r = 3 = 2p− 3, then we also observe a behavior different from
the one described in 1),2) above. The differences (for p = 3) are:

• The number of isomorphism classes of irreducible Uχ(W )–modules is not always
divisible by 3.

• All irreducible Uχ(W )–modules do not have the same dimension.

• The dimension of an irreducible Uχ(W )–module is not always divisible by 3.

Finally, we consider characters of maximal height in Section 14. The representation
theory here is not very well understood. Koreshkov [16] claim that we end up in three
possible cases, but his proof is very mysterious. In [16] and [29] there are examples where
one construct χ such that all irreducible W≥0–modules with p–character χ have maximal
dimension equal to pp

2−1 and hence they all extend to W . It is however not clear how to
compute the number of irreducibles.

We try to get a better understanding by looking at the case where p = 3. The most
interesting observation says that we can find χ of maximal height and irreducible Uχ(W )–
modules of non–maximal dimension (without a classification of these).

Even for p = 3 it has not been possible to classify the set of irreducible W–modules (of
maximal height) and general statements on the irreducibles (arbitrary p) are therefore far
away (for me).
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2 The Witt–Jacobson Lie algebras

Let K be an algebraically closed field of characteristic p > 0. In [27, 4, §2], Strade
and Farnsteiner define the generalized Witt–Jacobson Lie algebras over K. Here we will
focus on the restricted generalized Witt–Jacobson Lie algebras (or just Witt–Jacobson Lie
algebras). By [27, 4, Lemma 2.1 (3) and Theorem 2.4] they can be realized in the following
way: For any positive integer n set

Bn = K[X1, X2, . . . , Xn]/(X
p
1 , X

p
2 , . . . , X

p
n) (2.1)

where K[X1, X2, . . . , Xn] is the polynomial ring in n indeterminates X1, X2, . . . , Xn. The
image of Xi in Bn will be denoted by xi. For each α = (α1, α2, . . . , αn) ∈ Nn set

xα = xα1

1 xα2

2 · · · x
αn
n . (2.2)

Set
I(n) = {α = (α1, α2, . . . , αn) ∈ Nn | 0 ≤ αi < p for all i}.

Then all xα with α ∈ I(n) form a K–basis for Bn; so dimKBn = pn.
Set W (n) equal to the set of all K–linear derivations of Bn. Then W (n) is a restricted

Lie algebra over K (the n’th Witt–Jacobson algebra) where the Lie bracket is the usual
commutator and the p–mapping is given as p times composition; for D ∈ W (n) we have
D[p] = D◦D◦· · ·◦D (p times). It is easy to see that W (n) is a Bn–submodule of EndK(Bn).

For i = 1, 2, . . . , n set ∂i = ∂
∂xi

(the partial derivative). Each ∂i is a derivation of
K[X1, X2, . . . , Xn] with ∂i(X

p
j ) = 0 for all j; hence it preserves the ideal generated by

all Xp
j and induces then a derivation on Bn as in (2.1). Denote (again) by ∂i the induced

derivation on Bn with ∂i(xj) = δij for all j. For any derivationD ∈W (n) we have D(1) = 0
and D is uniquely determined by the values D(x1), D(x2), . . . , D(xn). This implies that

D =

n∑

i=1

D(xi)∂i. (2.3)

So W (n) is free as a B2–module with basis ∂1, ∂2, . . . , ∂n; hence dimKW (n) = npn.
Each W (n) is in fact a graded Lie algebra. Let me first discuss the natural grading on

Bn: The K–algebra Bn has a grading Bn =
⊕

i≥0(Bn)i such that each xj is homogeneous
of degree 1. If α = (α1, α2, . . . , αn) ∈ I(n) we define |α| = α1 +α2 + · · ·+αn. Then all xα

with α ∈ I(n) and |α| = i form a K–basis for (Bn)i. It is easy to see that (Bn)i = 0 for
i > n(p− 1). The grading on Bn now induce a grading on W (n) in the following way: For
all i ∈ Z set

W (n)i = {D ∈W (n) | D((Bn)j) ⊂ (Bn)i+j for all j}.

Then W (n)i is a subspace of W (n) and the sum of the W (n)i is direct. We also have
[W (n)i,W (n)j ] ⊂W (n)i+j for all i, j and the graduation is restricted: If D ∈W (n)i then
D[p] ∈W (n)pi. The partial derivative ∂i belongs to W (n)−1 since ∂i(xα) = αix

α−εi , where
εi = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i’th position [define xγ = 0 if γ 6∈ Nn]. It follows
that xα∂i ∈ W (n)|α|−1 for all i and all α ∈ I(n); in fact all xα∂i form a K–basis for
W (n)|α|−1 and we have that

W (n) =

n(p−1)−1⊕

i=−1

W (n)i

is a graded restricted Lie algebra. For all integer s ≥ −1, set W (n)≥s =
⊕

i≥sW (n)i. For
s = 0 we get the standard maximal subalgebra W (n)≥0 of W (n).
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We have formulas for the commutator from [27, 4,2.1]: If f1, f2 ∈ Bn and D1, D2 ∈
W (n) then we have

[f1D1, f2D2] = f1D1(f2)D2 − f2D2(f1)D1 + f1f2[D1, D2].

In particular,
[xα∂i, x

β∂j] = βix
α+β−εi∂j − αjx

α+β−εj∂i. (2.4)

Now it is easy to verify that [W (n)−1,W (n)i] = W (n)i−1 for all i (check the definitions).
[This is proved in the Kreknin paper [17] in a more general setup.] The [p]–mapping
operates on our basis elements via

(xα∂i)
[p] =

{
xi∂i if α = εi,

0 otherwise.
(2.5)

In order to see this, note that (xα∂k)
[p](xl) = (xα∂k)

p(xl) = 0 for all l 6= k. So we get that
(xα∂k)

[p] = (xα∂k)
p(xk)∂k since any derivation D ∈ W (n) is uniquely determined by the

values D(x1), D(x2), . . . , D(xn) (see (2.3)). If α = εi then (xα∂i)(xi) = xi∂i(xi) = xi and
so (xα∂i)

p(xi) = xi also. If α = 0 then already (xα∂i)
2(xi) = ∂i(1) = 0. If αi > 0, then

any (xα∂i)
r(xi) is by induction a multiple of xrα−(r−1)εi . If αj 6= 0 for some j 6= i, then

(xα∂i)
p(xi) is a multiple of x

pαj

j = 0; if αi > 1, then we get a multiple of xp(αi−1)+1
i = 0.

2.1 Simplicity

The Witt–Jacobson Lie algebra W (n) is simple unless p = 2 and n > 1. The proof can
be found in [12, Thm. 1] or [27, 4, Thm. 2.4 (1)]. If p = 2 and n = 1 then e0, e1 form a
K–basis for W (1) and [e0, e1] = e1. Therefore, Ke1 is a proper nonzero ideal in W (1).

The centre of W (n) is equal to 0 [for (p, n) 6= (2, 1) this follows from the simplicity of
W (n) and it is easy to check for (p, n) = (2, 1)].

2.2 Automorphisms

Let g ∈ Aut(W (n)). The centre of W (n) is 0 so g is a restricted automorphism of the Lie
algebra W (n), i.e., g(D[p]) = g(D)[p] for all D ∈ W (n): First, the adjoint representation
of W (n) is injective and for any D ∈W (n) the element D [p] is uniquely determined by the
condition that ad(D[p]) = ad(D)p. Moreover, we have ad(g(D)) = g◦ ad(D) ◦ g−1; hence

ad(g(D))p = (g ◦ ad(D) ◦ g−1)p = g ◦ ad(D)p ◦ g−1 = g ◦ ad(D[p]) ◦ g−1 = ad(g(D[p])).

This implies that g(D[p]) = g(D)[p] for any automorphism g of the Lie algebra W (n) and
for any derivation D ∈ W (n). Any element ϕ ∈ AutK−alg Bn induces an automorphism
σϕ of the Lie algebra W (n) in the following way:

σϕ(D) := ϕ ◦D ◦ ϕ−1 ∀D ∈W (n) = DerK(Bn). (2.6)

We have to check that σϕ(D) ∈W (n) for D ∈W (n). The linearity is clear and given any
f1, f2 ∈ Bn we get

(
σϕ(D)

)
(f1f2) = ϕ ◦D(ϕ−1(f1)ϕ

−1(f2))
= ϕ

(
D(ϕ−1(f1))ϕ

−1(f2)
)

+ ϕ
(
ϕ−1(f1)D(ϕ−1(f2))

)

=
(
σϕ
)
(f1)f2 + f1

(
σϕ
)
(f2)
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which shows that σϕ(D) is a derivation — i.e., σϕ(D) ∈ DerK(Bn) = W (n). Note that the
second equality follows since D is a derivation. Therefore σϕ is a linear isomorphism on
W (n) (with inverse σϕ−1). In order to show that σϕ ∈ Aut(W (n)), we need to know that
the action of σϕ respects the commutator:

σϕ
(
[D1, D2]

)
= ϕ ◦ (D1 ◦D2 −D2 ◦D1) ◦ ϕ

−1

= (ϕ ◦D1 ◦ ϕ
−1) ◦ (ϕ ◦D2 ◦ ϕ

−1)− (ϕ ◦D2 ◦ ϕ
−1) ◦ (ϕ ◦D1 ◦ ϕ

−1)
=

[
σϕ(D1), σϕ(D2)

]
.

The map ϕ 7−→ σϕ is therefore a homomorphism between the two automorphism groups.

Theorem 2.2.1. Suppose that p ≥ 5. Then ϕ 7−→ σϕ is a group isomorphism from
AutK−alg Bn onto Aut(W (n)).

Proof. See [12, Thm.6]

Remark 2.2.2. The theorem above is also true for p = 3 and n > 1. Indeed, consider
hi = ∂i + xi∂i for i = 1, 2, . . . , n and let h =

⊕
iKhi. Then

[hi, hj ] = 0 and h
[p]
i = hi (2.7)

for all i, j. For the second claim use that h[p]
i (xi) = hpi (xi) = 1 + xi = hi(xi) and that

h
[p]
i (xj) = hpi (xj) = 0 = hi(xj) for j 6= i. Now, suppose that g is an automorphism on
W (n). Define Di := g(hi) and note that all Di satisfy (2.7) also, since g is a restricted
automorphism. Since W (n)≥0 ∩ h = 0, we have W (n)≥0 ∩ g(h) = 0 also. Indeed, for any
automorphism g of the Lie algebra W (n), we have g(W (n)≥0) = W (n)≥0 (see [17] or use
formula (2.14) in Section 2.3). Now, apply [4, Thm. 1] and find ϕ ∈ AutK−algBn such that
σϕ ◦ g(hi) = hi for all i; hence σϕ ◦ g = Id|W (n) by [12, Thm. 5]. Therefore g = σ−1

ϕ = σϕ−1

and so the map in Theorem 2.2.1 is surjective. For the injectivity, use [12, Thm.5].

Proposition 2.2.3. Let D =
∑n

i=1 fi∂i ∈W (n) for some fi ∈ Bn and let ϕ ∈ AutK−algBn.
With the action in (2.6) we have

σϕ(D) =

n∑

i=1

n∑

l=1

fl(ϕ(x1), . . . , ϕ(xn))
∂ϕ−1(xi)

∂xl

(
ϕ(x1), . . . , ϕ(xn)

)
∂i. (2.8)

Proof. It is enough to find σϕ(D)(xi) for i = 1, 2, . . . , n by (2.3). We use (2.6) and get

σϕ(D)(xi) = ϕ ◦D ◦ ϕ−1(xi)

= ϕ
(∑n

l=1 fl
∂ϕ−1(xi)

∂xl

)

which implies that

σϕ(D)(xi) =
n∑

l=1

fl(ϕ(x1), . . . , ϕ(xn))
∂ϕ−1(xi)

∂xl

(
ϕ(x1), . . . , ϕ(xn)

)
.

Now apply (2.3) and obtain:

σϕ(D) =

n∑

i=1

n∑

l=1

fl(ϕ(x1), . . . , ϕ(xn))
∂ϕ−1(xi)

∂xl
(ϕ(x1), . . . , ϕ(xn))∂i.

The proof is completed.
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2.3 Decomposition

Set G = AutK−alg Bn and m = (x1, x2, . . . , xn) the unique maximal ideal in Bn. Recall
that Bn has a grading Bn =

⊕
i≥0(Bn)i such that each xj is homogeneous of degree 1. For

any ϕ ∈ G, we have ϕ(m) = m; thus we can write

ϕ(xi) =
n∑

j=1

ajixj + fi for i = 1, 2, . . . , n (2.9)

where aji ∈ K and fi ∈ (Bn)≥2 for all i, j. One checks easily that the map taking ϕ to the
matrix (aji) is a group homomorphism from G to GLn(K). On the other hand, given a
matrix (aji) in GLn(K) and elements fi ∈ (Bn)≥2, then there exists ϕ ∈ G such that (2.9)
is satisfied. So we get a short exact sequence of groups

1 −→ G1 −→ G −→ GLn(K) −→ 1 (2.10)

where G1 := {ϕ ∈ G | ϕ(xi) − xi ∈ (Bn)≥2 for all i}. Note that the short exact sequence
in (2.10) splits: Associate to any (aji) ∈ GLn(K) the automorphism as in (2.9) with all
fi = 0. We identify GLn(K) with a subgroup of G via

GLn(K) = {ϕ ∈ G | ϕ
(
(Bn)i

)
= (Bn)i for all i}.

From the splitting in (2.10), we have a decomposition of G: G = GLn(K)nG1. Now apply
Theorem 2.2.1 and Remark 2.2.2 and obtain a decomposition of Aut(W (n)):

Aut(W (n)) = GLn(K) n Aut∗(W (n)) (2.11)

where
GLn(K) := {g ∈ Aut(W (n)) | g(W (n)i) = W (n)i for all i} (2.12)

is a subgroup of Aut(W (n)) via Theorem 2.2.1. Moreover,

Aut∗(W (n)) = {g ∈ Aut(W (n)) | g(D) −D ∈W (n)≥i+1 for all D ∈W (n)i and all i}.
(2.13)

From (2.11), (2.12) and (2.13), we get also

g(W (n)≥i) = W≥i for all i and all g ∈ Aut(W (n)). (2.14)

Remark 2.3.1. In view of (2.14), the height function

ht : W (n)∗ −→ {−1, 0, 1, . . . , n(p− 1)− 1}

given by ht χ = min{s ≥ −1 | χ(W (n)≥s) = 0} , for χ ∈ W (n)∗, is an invariant of the
Aut(W (n))–orbits of W (n)∗.

2.4 Maximal torus subalgebras

It has been proved in [4, §3] that there are n + 1 conjugacy classes under Aut(W (n)) of
maximal torus subalgebras (and Cartan subalgebras). Representatives are given as:

T0 =
∑n

i=1Kxi∂i,

T1 =
∑n−1

i=1 Kxi∂i ⊕K(1 + xn)∂n,
...

Tn =
∑n

i=1K(1 + xi)∂i.

Thus any two maximal torus subalgebras (or Cartan subalgebras) whose intersection with
W (n)≥0 have the same dimension are conjugate by elements of Aut(W (n)). The rank of
W (n) is n which is the dimension of any maximal torus in W (n). In the thesis we will
focus on the Witt–Jacobson Lie algebra of rank 2.
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3 The Witt–Jacobson Lie algebra W (2)

Let K be an algebraically closed field of characteristic p > 0. From now we will concentrate
on the restricted Witt–Jacobson Lie algebra W (2) of rank 2 defined (in a more general
setup) in the previous section. We have dimKW (2) = 2p2. In the following, set

W := W (2).

It will be convenient to define basis elements

eijk := xi1x
j
2 · ∂k

if i and j are integers with 0 ≤ i, j < p and k = 1, 2 and we define eijk = 0 otherwise. If
we use (2.4) we get the following:

[
ers1, eij1

]
= (i− r)ei+r−1,j+s,1, (3.1a)[

ers1, eij2
]

= −sei+r,j+s−1,1 + iei+r−1,j+s,2, (3.1b)[
ers2, eij1

]
= jei+r,j+s−1,1 − rei+r−1,j+s,2, (3.1c)[

ers2, eij2
]

= (j − s)ei+r,j+s−1,2. (3.1d)

Actually (3.1c) follows from (3.1b) and the antisymmetry of the commutator [ , ]. The
p–mapping is p–fold composition and from (2.5) we have:

e
[p]
ijk =





e012 if (i, j, k) = (0, 1, 2),

e101 if (i, j, k) = (1, 0, 1),

0 otherwise.

For s ≥ 0 and s ≤ 2p− 2 we have

Ws−1 =
∑

i+j=s

∑

k=1,2

Keijk.

3.1 Ordering

Following Koreshkov’s paper [16] we introduce an order relation on the set of indices of
basis elements. Let (i′, j′, k′) � (i, j, k) if (i′, j′, k′) = (i, j, k) or

1 ) i′ + j′ < i+ j or

2 ) if k < k′ and i′ + j′ = i+ j or

3 ) if i < i′ and k′ = k and i′ + j′ = i+ j.

The ordering of indices looks like

002 � 001 � 102 � 012 � 101 � 011 � 202 � · · · � (p− 1, p− 1, 1).

For any triple (ijk) with (002) � (ijk) � (p− 1, p− 1, 1), set

Wijk :=
∑

(i,j,k)�(αβγ)

Keαβγ .

Note that W002 is just W and W102 is the standard maximal Lie subalgebra W≥0 of W .
The ordering of indices induces a chain of subspaces:

W = W002 ⊃W001 ⊃W102 ⊃W012 ⊃W101 ⊃W011 ⊃W202 ⊃ · · · ⊃W(p−1,p−1,1).

They are all subspaces of W , by construction, and the next lemma says that most of
them are in fact Lie p–subalgebras of W .

13



Lemma 3.1.1. All Wijk with (ijk) � (102) are Lie p–subalgebras of W .

Proof. Since all basis elements eαβγ of W satisfy e
[p]
αβγ = 0 or e[p]αβγ = eαβγ we only need

to check that all Wijk are Lie subalgebras of W in order to show that all Wijk are Lie
p–subalgebras. Let (ijk) � (102) and consider (αβγ) � (ijk) and (α′β′γ′) � (ijk). Then
it follows from (3.1a),(3.1b),(3.1d) that

[eαβγ , eα′β′γ′ ] =





(α′ − α)eα+α′−1,β+β′,1 γ = γ′ = 1,

(β′ − β)eα+α′ ,β+β′−1,2 γ = γ′ = 2,

−βeα+α′,β+β′−1,1 + α′eα+α′−1,β+β′,2 γ = 1, γ′ = 2.

Consider the case γ = γ ′ = 1. Assume α 6= α′ [otherwise the commutator is zero]. If
α+α′−1+β+β′ > α+β or α+α′−1+β+β′ > α′ +β′ we are done since (αβγ) � (ijk)
and (α′β′γ′) � (ijk). Since α+ α′ − 1 + β + β′ ≥ α+ β and α+ α′ − 1 + β + β′ ≥ α′ + β′

for (αβγ), (α′β′γ′) � (102) we may assume that α + α′ − 1 + β + β′ = α + β = α′ + β′.
This implies that α + β = 1 = α′ + β′ and hence α = 1, α′ = 0 or α = 0, α′ = 1. If
α = 1, α′ = 0 we have (α + α′ − 1, β + β′, 1) � (α, β, 1) � (ijk). If α = 0, α′ = 1 we have
(α+ α′ − 1, β + β′, 1) � (α′, β′, 1) � (ijk). Hence the commutator lies in Wijk.

Consider the case γ = γ ′ = 2. Assume β 6= β ′ [otherwise the commutator is zero]. If
α+α′ +β+β′−1 > α+β or α+α′ +β+β′−1 > α′ +β′ we are done since (αβγ) � (ijk)
and (α′β′γ′) � (ijk). As above we may assume that α+α′ +β+β′− 1 = α+β = α′ +β′.
This implies that α + β = 1 = α′ + β′ and hence α = 1, α′ = 0 or α = 0, α′ = 1. If
α = 1, α′ = 0 we have (α + α′, β + β′ − 1, 2) = (α, β, 2) � (ijk). If α = 0, α′ = 1 we have
(α+ α′, β + β′ − 1, 2) = (α′, β′, 2) � (ijk). Hence the commutator lies in Wijk.

Finally, let γ = 1, γ ′ = 2. From the ordering we see easily that (α+α′, β + β′− 1, 1) �
(α′, β′, 2) � (ijk) and hence the first term lies in Wijk. For the second term note we may
assume that α + β = 1 = α′ + β′ [apply similar arguments as above]. If α = α′ = 1 then
(α+α′ − 1, β + β′, 2) = (α, β, 2) � (ijk). If α 6= α′ then α+α′ − 1 < α or α+α′ − 1 < α′

and hence [recall the ordering] the second term lies in Wijk also.

3.2 Certain automorphisms

Let ϕ be a K–algebra automorphism on K[X1, X2]/(X
p
1 , X

p
2 ) given by

ϕ(x1) = x1 +
s∑

i=0

aix
i
1x
s−i
2 and ϕ(x2) = x2 +

s∑

i=0

bix
i
1x

s−i
2

for some ai, bi ∈ K and s ≥ 2. Note that

ϕ−1(x1) = x1 −

s∑

i=0

aix
i
1x
s−i
2 + (degree ≥ s+ 1)

ϕ−1(x2) = x2 −

s∑

i=0

bix
i
1x
s−i
2 + (degree ≥ s+ 1).

Set x =
∑s

i=0 aiei,s−i,1+
∑s

i=0 biei,s−i,2 ∈Ws−1. I claim that the automorphism σϕ induced
by ϕ satisfies

σϕ(y) ≡ y + [x, y] (mod W≥r+s) for y ∈Wr. (3.2)
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Because of linearity, it is enough to check this for y = ekm1 and y = ekm2. First we calculate

ϕ(x1)
kϕ(x2)

m ≡ xk1x
m
2 +

∑s
i=0 aikx

i+k−1
1 xm+s−i

2

+
∑s

i=0 bimx
k+i
1 xm+s−i−1

2 (mod degree ≥ k +m+ s)

and
∂ϕ−1(x1)

∂x1
(ϕ(x1), ϕ(x2)) ≡ 1−

∑s
i=0 aiix

i−1
1 xs−i2 (mod degree ≥ s)

∂ϕ−1(x2)
∂x1

(ϕ(x1), ϕ(x2)) ≡ −
∑s

i=0 biix
i−1
1 xs−i2 (mod degree ≥ s).

If we use Proposition 2.3, we get

σϕ(ekm1) ≡ ekm1 +
∑s

i=0(aik − aii)ek+i−1,m+s−i,1

+
∑s

i=0mbiek+i,m+s−i−1,1

−
∑s

i=0 ibiek+i−1,m+s−i,2 (mod Wk+m+s−1)

which is exactly ekm1 + [x, ekm1] with x defined above. In the same way, one can prove
that σϕ(ekm2) has the desired form.

3.3 GL2(K)–action

Note that we have an inclusion AutK−alg B2 ⊃ GL2(K) in the following way:

ϕ =

(
a b
c d

)
:
x1 7−→ ax1 + cx2

x2 7−→ bx1 + dx2
(3.3)

where ad− bc 6= 0. For any ϕ ∈ GL2(K), the automorphism σϕ is determined by (2.8) and
(3.3). In Appendix A we have listed formulas for the GL2(K)–action on basis elements.
For ϕ ∈ GL2(K) we will write ϕ(w) instead of σϕ(w) whenever w ∈W .

Lemma 3.3.1. Suppose that ϕ ∈ GL2(K) ⊂ AutK−alg B2. If ϕ(W011) = W011, then ϕ is
a diagonal matrix composed with some lower triangular matrix with 1 at the diagonal. In
particular, ϕ(W012) = W012.

Proof. Otherwise, ϕ is given by ϕ1 ◦Θ ◦ T ◦ϕ′
1, where ϕ1, ϕ

′
1 are lower triangular matrices

and T is a diagonal matrix and Θ is the matrix
(

0 1
1 0

)
.

Use the Bruhat decomposition of GL2(K) described in [23, 8]. Now apply the relations in
Appendix A.1, A.2, A.4 and get ϕ(e011) ≡ (nonzero constant) · e102 (mod W012). This is
however a contradiction.
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4 Decomposition

Let r ≥ 0 but r ≤ 2p−2. If r 6= p−1, then Wr−1 has a K–basis given by x(r)
0 , x

(r)
1 , . . . , x

(r)
top

and y(r)
1 , y

(r)
2 , . . . , y

(r)
top defined below. The top index for {x(r)

i }
top
i=0 is r + 1 when r ≤ p− 2

and 2p−r−1 when r ≥ p and the top index for {y(r)
i }

top
i=1 is r when r ≤ p−2 and 2p−r−2

when r ≥ p. In all cases, I will refer to the top index as "top" (this allow us to treat the
cases r ≤ p− 2 and r ≥ p at the same time).

The new basis elements are given by:

r ≤ p− 2 : x
(r)
i = (r + 1− i)er−i,i,2 − ier+1−i,i−1,1 for 0 ≤ i ≤ r + 1,

y
(r)
i = er+1−i,i−1,1 + er−i,i,2 for 1 ≤ i ≤ r

r ≥ p : x
(r)
i = ep−1−i,r+1+i−p,2 + ep−i,r+i−p,1 for 0 ≤ i ≤ 2p− r − 1,

y
(r)
i = iep−1−i,r+i+1−p,2 + (r + i+ 1− p)ep−i,r+i−p,1 for 1 ≤ i ≤ 2p− r − 2.

4.1 The case that r ≤ p− 2

Apply (3.1a),(3.1b),(3.1c),(3.1d) and find:
[
e011, x

(r)
i

]
= (r + 1− i)x

(r)
i+1 for 0 ≤ i ≤ r + 1,[

e012, x
(r)
i

]
= (i− 1)x

(r)
i for 0 ≤ i ≤ r + 1,[

e101, x
(r)
i

]
= (r − i)x

(r)
i for 0 ≤ i ≤ r + 1,[

e102, x
(r)
i

]
= ix

(r)
i−1 for 0 ≤ i ≤ r + 1,

[
e011, y

(r)
i

]
= (r − i)y

(r)
i+1 for 1 ≤ i ≤ r,[

e012, y
(r)
i

]
= (i− 1)y

(r)
i for 1 ≤ i ≤ r,[

e101, y
(r)
i

]
= (r − i)y

(r)
i for 1 ≤ i ≤ r,[

e102, y
(r)
i

]
= (i− 1)y

(r)
i−1 for 1 ≤ i ≤ r.

We define x(r)
i+1 = 0 for i = r + 1 and x

(r)
i−1 = 0 for i = 0 and y

(r)
i+1 = 0 for i = r and

y
(r)
i−1 = 0 for i = 1.

4.2 The case that r ≥ p

Apply (3.1a),(3.1b),(3.1c),(3.1d) and find:
[
e011, x

(r)
i

]
= −(i+ 1)x

(r)
i+1 for 0 ≤ i ≤ 2p− r − 1,[

e012, x
(r)
i

]
= (r + i)x

(r)
i for 0 ≤ i ≤ 2p− r − 1,[

e101, x
(r)
i

]
= −(i+ 1)x

(r)
i for 0 ≤ i ≤ 2p− r − 1,[

e102, x
(r)
i

]
= (r + i)x

(r)
i−1 for 0 ≤ i ≤ 2p− r − 1,

[
e011, y

(r)
i

]
= −iy

(r)
i+1 for 1 ≤ i ≤ 2p− r − 2,[

e012, y
(r)
i

]
= (r + i)y

(r)
i for 1 ≤ i ≤ 2p− r − 2,[

e101, y
(r)
i

]
= −(i+ 1)y

(r)
i for 1 ≤ i ≤ 2p− r − 2,[

e102, y
(r)
i

]
= (r + i+ 1)y

(r)
i−1 for 1 ≤ i ≤ 2p− r − 2.

We define x
(r)
i+1 = 0 for i = 2p − r − 1 and x

(r)
i−1 = 0 for i = 0 and y

(r)
i+1 = 0 for

i = 2p− r − 2 and y(r)
i−1 = 0 for i = 1.
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4.3 Decomposition of Wr−1 when r 6= p− 1

Proposition 4.3.1. Suppose that r 6= p−1. Then U :=
∑top

j=0Kx
(r)
j and V :=

∑top
j=1Ky

(r)
j

are irreducible GL2(K)-submodules of Wr−1 and Wr−1 = U
⊕
V .

Proof. For r ≤ p− 2 the GL2(K)–action on U is given by the following formulas (use the

relations in Appendix A and the definition of x(r)
i ):

(
0 1
1 0

)
· x

(r)
i = −x

(r)
r+1−i,

(
1 0
α 1

)
· x

(r)
i =

∑r+1−i
s=0

(r+1−i
s

)
αsx

(r)
i+s,

(
1 α
0 1

)
· x

(r)
i =

∑i
s=0

(
i
s

)
αsx

(r)
i−s,

(
t 0
0 t−1

)
· x

(r)
i = tr+1−2ix

(r)
i ,

(
t1 0
0 t2

)
· x

(r)
i = tr−i1 ti−1

2 x
(r)
i .

Note that U =
⊕r+1

i=0 Uµi
(the top index is r + 1) where Uµi

= Kx
(r)
i is the weight space

of U for the weight µi : T −→ K∗, where T is the subgroup of all diagonal matrices in
SL2(K). The weight µi is given by

µi

(
t 0
0 t−1

)
= tr+1−2i.

If N 6= 0 is a GL2(K)–submodule in U , then it is well known that N is a direct sum

of Nµj
, where Nµj

= Kx
(r)
j and where j ∈ I for a nonempty subset I of {0, 1, . . . , r + 1}.

Since N is a GL2(K)–module, we must have I = {0, 1, . . . ,m + 1} (apply the GL2(K)–
action above); hence N = U . Similar arguments as those applied to U can be used to show

that V is an irreducible GL2(K)–module also. Finally, observe that x(r)
0 , x

(r)
1 , . . . , x

(r)
top and

y
(r)
1 , y

(r)
2 , . . . , y

(r)
top are linear independent. Therefore U

⊕
V is a GL2(K)–submodule of

Wr−1 of dimension 2r + 2 = dimKWr−1; hence Wr−1 = U
⊕
V .

If r ≥ p the GL2(K)–action on U is given by the following formulas:
(

0 1
1 0

)
· x

(r)
i = x

(r)
2p−r−1−i,

(
1 0
α 1

)
· x

(r)
i =

∑2p−r−1−i
s=0

(
p−1−i
s

)
αsx

(r)
i+s,

(
1 α
0 1

)
· x

(r)
i =

∑i
s=0

(r+i−p
s

)
αsx

(r)
i−s,

(
t 0
0 t−1

)
· x

(r)
i = t2p−2i−r−1x

(r)
i ,

(
t1 0
0 t2

)
· x

(r)
i = tp−1−i

1 tr+i−p2 x
(r)
i .
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Again we have U =
⊕r+1

i=0 Uµi
where Uµi

= Kx
(r)
i is the weight space of U for the

weight µi : T −→ K∗ and where T is the subgroup all diagonal matrices in SL2(K). The
weight µi is given by

µi

(
t 0
0 t−1

)
= tr+1−2i.

We can now show that U is an irreducible GL2(K)–module (apply arguments similar to
those for r ≤ p − 2) and that V is an irreducible GL2(K)–module. Finally, we obtain
Wr−1 = U

⊕
V .

4.4 SL2(K)–action on polynomials

We still assume that r 6= p − 1 and write Wr−1 = U ⊕ V as in Proposition 4.3.1. Then
W ∗
r−1 = U∗⊕V ∗, where U ∗ =

∑
jKχj and V ∗ =

∑
jKχ

′
j and where χj and χ′

j are defined
via:

χj : χj(x
(r)
i ) = δij and χj(y

(r)
i ) = 0 ∀i,

χ′
j : χ′

j(y
(r)
i ) = δij and χ′

j(x
(r)
i ) = 0 ∀i.

Let K[X,Y ] be the polynomial ring in two variables. Each element in SL2(K) (and
GL2(K)) defines an automorphisms on K[X,Y ] in the following way:

(
a b
c d

)
· f(X,Y ) = f(aX + cY, bX + dY ).

All Ln := { f ∈ K[X,Y ] | f is homogeneous of degree n} are GL2(K)–submodules of
K[X,Y ] with dimension n+ 1.

Lemma 4.4.1. For 0 ≤ n ≤ p− 1 all Ln are irreducible GL2(K)–modules.

Proof. Note that Xn, XY n−1, . . . , Y n form a K–basis for Ln. We have
(

t 0
0 t−1

)
·Xn−iY i = tn−2iXn−iY i for 0 ≤ i ≤ n.

Let T denote the subgroup of all diagonal matrices in SL2(K). Then Ln =
⊕

i(Ln)µi
,

where µi : T −→ K∗ is given by

µi

(
t 0
0 t−1

)
= tn−2i

and
(Ln)µi

= {f ∈ Ln | t · f = µi(t)f ∀t ∈ T} = KXn−iY i.

AnyGL2(K)–submodule Mn 6= 0 of Ln is a direct sum
⊕

i∈I KX
n−iY i for a nonempty sub-

set I of {0, 1, . . . , n}. Since Mn is a GL2(K)–module and n < p, we have I = {0, 1, . . . , n}
(use the GL2(K)–action on Ln); hence Mn = U . Indeed, for all 0 ≤ i ≤ n, we have:

(
1 α
0 1

)
·Xn−iY i =

∑i
s=0

(i
s

)
αi−sXn−sY s,

(
1 0
α 1

)
·Xn−iY i =

∑n−i
s=0

(n−i
s

)
αn−i−sXsY n−s.

The proof is completed.
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4.5 Identification

We are now in position to identify U ∗ and V ∗ with appropriate Ln.

Theorem 4.5.1. As SL2(K)–modules we have isomorphisms

U∗ =

top⊕

j=0

Kχj ' LdimK U−1 V ∗ =

top⊕

j=1

Kχ′
j ' LdimK V−1.

Proof. Let me concentrate on the case involving U ∗ (one can use similar computations for
V ∗). The Bruhat decomposition of GL2(K) shows that any matrix in SL2(K) belongs to
{Dt ◦ Φ1} ∪ {Φ

′
1 ◦Θ ◦ dt ◦ Φ1}, where

Φ1 =

(
1 0
α 1

)
and Φ′

1 =

(
1 0
α′ 1

)

denote matrices in the subgroup of all lower triangular matrices in SL2(K) with 1 at the
diagonal and Dt, dt,Θ are the matrices

Dt =

(
t−1 0

0 t

)
, dt =

(
−t−1 0

0 t

)
, Θ =

(
0 1
1 0

)
.

The SL2(K)–action on U ∗ in the case where r ≤ p− 2 is given via (use the formulas for
the action on U in the proof of Proposition 4.3.1):

Φ1 · χj =
∑j

s=0

(r+1−s
j−s

)
(−α)j−sχs

Dt · χj = tr+1−2jχj

dt · χj = (−1)r−jtr+1−2jχj

Θ · χj = −χr+1−j.

We now define a K-linear map ψ : U ∗ −→ LdimKU−1 by ψ(χj) = (−1)j
(r+1
j

)
XjY r+1−j

for j = 0, 1, . . . , r + 1. Since ψ is a bijective and

ψ(Φ1 · χj) = Φ1 · ψ(χj)

ψ(Θ ◦ dt · χj) = Θ ◦ dt · ψ(χj)

ψ(Dt · χj) = Dt · ψ(χj)

for all j, we conclude that ψ is a SL2(K)–isomorphism.
The SL2(K)–action on U ∗ in the case where r ≥ p is given via (use the formulas for

the action on U in the proof of Proposition 4.3.1):

Φ1 · χj =
∑j

s=0

(p−1−s
j−s

)
(−α)j−sχs

Dt · χj = t2p−2j−r−1χj

dt · χj = (−1)jt2p−2j−r−1χj

Θ · χj = χ2p−r−1−j.
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We now define a K-linear map φ : U ∗ −→ LdimKU−1 by φ(χj) = X iY 2p−r−1−j

for j = 0, 1, . . . , 2p− r − 1. Since φ is a bijection and

φ(Φ1 · χj) = Φ1 · φ(χj)

φ(Θ ◦ dt · χj) = Θ ◦ dt · φ(χj)

φ(Dt · χj) = Dt · φ(χj)

for all j, then φ is a SL2(K)–isomorphism

4.6 SL2(K)–orbits in Ln

Let f be a homogeneous polynomial in two variables X,Y . We can write f as a product
of polynomials of degree 1: Assume that

f =
n∑

i=0

ciX
iY n−i = Y n

n∑

i=0

ci

(X
Y

)i
for some ci ∈ K.

Then
∑n

i=0 ci

(
X
Y

)i
∈ K[XY ] can be written in linear factors (sinceK is algebraically closed);

we then obtain

f = Y n
n∏

i=1

(ai
X

Y
+ bi) =

n∏

i=1

(aiX + biY ).

Eventually, one has to put bi = 1, ai = 0 for i ≥ m and some m ≤ n. We can now
write f = afm1

1 fm2

2 · · · fms
s , where a ∈ K∗ and f1, f2, . . . , fs are linear, non–proportional

polynomials. For g ∈ SL2(K) we have g · f = a(g · f1)
m1(g · f2)

m2 · · · (g · fs)
ms , which

again is the factorization of g · f in linear, non–proportional polynomials. Therefore: If
two polynomials l, h with factorizations l = all

n1

1 ln2

2 · · · l
nt
t and h = ahh

k1
1 h

k2
2 · · · h

ks
s lie in

the same SL2(K)–orbit, then s = t. Moreover, (n1, n2, . . . , nt) ∈ St · (k1, k2, . . . , kt) where
St is the permutations group on t elements.

In the next sections we consider a polynomial f = afm1

1 fm2

2 · · · fms
s , where a ∈ K∗ and

f1, . . . , fs are linear, non–proportional polynomials. We say that s is the length of f .

4.7 Length 1

Then f = a(f1)
n for some a ∈ K∗ and some n ∈ N. There exists g ∈ SL2(K) such that

g · f1 = bY for some b ∈ K∗; hence f and Y n lie in the same SL2(K)–orbit. Moreover,

StabGL2(K)

(
Y n
)

=
{( a 0

c ξ

) ∣∣ ξn = 1, a ∈ K∗, c ∈ K
}

is a linear algebraic group of dimension 2.

4.8 Length 2

Then f = a(f1)
m1(f2)

m2 , where a ∈ K∗ and f1, f2 are non–proportional and m1,m2 > 0.
Take g ∈ SL2(K) such that g · f1 = X and g · f2 = bY for some b ∈ K∗. Now, observe that
all aXn−iY i, where i is an integer with 0 < i ≤ n

2 and a ∈ K∗, are representatives for the
SL2(K)–orbit of f . This follows since aXn−iY i ∈ SL2(K) ·aX iY n−i for i with n

2 < i < n:

Use Θ ◦

(
−α 0

0 α−1

)
∈ SL2(K) where α ∈ K∗ such that (−1)n−iαn−2i = 1.
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The stabilizer is a linear algebraic group of dimension 1 given by:

StabGL2(K)

(
aXn−iY i

)
=





(
t1 0

0 t2

)∣∣∣ tn−i1 ti2 = 1 0 < i < n
2 ,

(
t1 0

0 t2

)
,

(
0 1

1 0

)∣∣∣ tn−i1 ti2 = 1 i = n
2 .

4.9 Length ≥ 3

We have f = a(f1)
m1(f2)

m2(f3)
m3 · · · with a ∈ K∗ and m1,m2,m3 > 0 and f1, f2, f3, . . .

are non–proportional polynomials. As in the case s = 2 we find g ∈ SL2(K) such that
g · f1 = X and g · f2 = bY for some b ∈ K∗. Now the SL2(K)–orbit of f includes a
polynomial, which is divisible by both X and Y and involves at least 2 monomials (else f
is equal to a(f1)

n−j(f2)
j for some j ≥ 0 which is a contradiction to our assumption s ≥ 3).

Therefore the SL2(K)–orbit of f has a representative given by

n−1∑

i=1

aiY
iXn−i where ∃ i1 6= i2 : ai1 6= 0 6= ai2 .

The stabilizer is finite.

5 Representatives of characters

In this section we shall use the results obtained in the previous section and find certain
representatives for χ ∈ W ∗ with respect to the GL2(K)–action on W ∗. Suppose that
χ ∈ W ∗ has height r (i.e., χ(W≥r) = 0 but χ(Wr−1) 6= 0). We assume that r 6= p − 1.
Write Wr−1 = U

⊕
V as in Proposition 4.3.1.

5.1 Characters of Type I

Suppose that χ(V ) = 0 and χ(U) 6= 0 (or equivalent χ ∈ U ∗). The isomorphism in
Theorem 4.5.1 identifies χ|Wr−1

with a homogeneous polynomial f = afm1

1 fm2

2 · · · fms
s for

some a ∈ K∗ and linear, non–proportional factors f1, f2, . . . , fs. I will treat the cases
s = 1, s = 2 and s ≥ 3 separately. As in Section 4, I will refer to the top index for {x(r)

i }
top
i=0

as top.

a) Combine the case s = 1 discussed in Section 4.7 and the isomorphism from Theorem
4.5.1 to find a representative for the orbit of χ as (abuse of notation):

χ : χ(x
(r)
0 ) 6= 0, χ(x

(r)
i ) = 0 for i > 0 and χ(y

(r)
i ) = 0 ∀ i.

b) Use the strategy in a) with s = 2 to find a representative for the orbit of χ as:

χ : ∃ j 6= 0, top with χ(x
(r)
j ) 6= 0, χ(x

(r)
i ) = 0 for i 6= j and χ(y

(r)
i ) = 0 ∀ i.

c) Use the strategy in a) with s = 3 to find a representative for the orbit of χ as:

χ : ∃ j1 6= j2 with χ(x
(r)
j1

) 6= 0 6= χ(x
(r)
j2

) for j1, j2 6= 0, top and

χ(x
(r)
0 ) = χ(x

(r)
top) = 0 and χ(y

(r)
i ) = 0 ∀ i.

Characters as in a),b) or c) above will be referred to as characters of type I.a, I.b or I.c.
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5.2 Characters of Type II

Assume χ(U) = 0 and χ(V ) 6= 0 which means χ ∈ V ∗. As above, I will refer to the top

index for {y(r)
i }

top
i=0 as top.

a) Combine the case s = 1 discussed in Section 4.7 and the isomorphism from Theorem
4.5.1 to find a representative for the orbit of χ as (abuse of notation):

χ : χ(y
(r)
1 ) 6= 0, χ(y

(r)
i ) = 0 for i > 1 and χ(x

(r)
i ) = 0 ∀ i.

b) Use the strategy in a) with s = 2 to find a representative for the orbit of χ as:

χ : ∃ j 6= 1, top with χ(y
(r)
j ) 6= 0, χ(y

(r)
i ) = 0 for i 6= j and χ(x

(r)
i ) = 0 ∀ i.

c) Use the strategy in a) with s = 3 to find a representative for the orbit of χ as:

χ : ∃ j1 6= j2 with χ(y
(r)
j1

) 6= 0 6= χ(y
(r)
j2

) for j1, j2 6= 1, top and

χ(y
(r)
1 ) = χ(y

(r)
top) = 0 and χ(x

(r)
i ) = 0 ∀ i.

Characters as in a),b) or c) above will be referred to as characters of type II.a, II.b or II.c.

5.3 Characters of Type III

Assume χ(U) 6= 0 6= χ(V ). If
(
ai
)
i∈I

denote representatives for the SL2(K)–orbit on U ∗

and (a, b) ∈ W ∗
r−1 = U∗

⊕
V ∗, then there exists i ∈ I such that g · (a, b) = (ai, b

′) and b′

can only be changed by using StabAut(W )(ai). A representative τ for the orbit of χ can
be chosen such that τ|U∗ is a representative in U ∗ and τ is arbitrary on V . Characters τ
as above, where the restriction to U ∗ defines a character of type I and τ(V ) 6= 0 will be
referred to as characters of type III.

5.4 A lemma

From the description of the representatives above, we have:

Lemma 5.4.1. Suppose that χ ∈ W ∗ with height r ≥ 0 but r 6= p − 1. Then there exists
g ∈ Aut(W ) and x ∈ Wr−1 such that χg([x, e102]) 6= 0 = χg([x,W012]) except for the case
where r = 2p− 3 and χ has type II.a as in 5.2.

Proof. The computations above say that we can find g ∈ GL2(K) such that χg has the

following properties: Either we have 0 ≤ t := max{0 ≤ j ≤ top | χg(x(r)
j ) 6= 0} < top or

1 ≤ s := max{1 ≤ j ≤ top | χg(y(r)
j ) 6= 0} < top. Now, set x = x

(r)
t+1 or x = y

(r)
s+1 and

apply the relations in Section 4.1, 4.2. It follows that χg([x, e102]) 6= 0 = χg([x,W012]) as
required.

6 Criteria for irreducibility

Let K be an algebraically closed field of characteristic p > 0 and (g, [p]) be a finite dimen-
sional restricted Lie algebra over K. Every irreducible g–module is finite dimensional and
therefore admits a p–character χ ∈ g∗ (see [14, 2.4]). Conversely, for any linear form χ ∈ g∗,
there exists a finite dimensional associative algebra Uχ(g) which is a quotient of the uni-
versal enveloping algebra U(g) and whose irreducible modules are exactly the irreducible
g–modules with p–character χ (see [14, 2.7]). Hence the algebras Uχ(g), where χ ∈ g∗,
play a major role in studying the representations of g. If h ⊂ g is a Lie p–subalgebra, we
will use the notation Uχ(h) for the reduced enveloping algebra Uχ|h

(h).
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6.1 Setup

Let χ ∈ g∗ and let h ⊂ g be a Lie p–subalgebra. We shall define the stabilizer of χ in h as

st(χ, h) := {y ∈ g | χ([y, x]) = 0 for all x ∈ h}. (6.1)

It is easy to verify that st(χ, h) is a Lie p–subalgebra of g. In the following N will
denote an irreducible Uχ(h)–module. We will give criteria for the induced g–module

Uχ(g)⊗Uχ(h) N

to be irreducible. The first criterion is described in [27, 5, 5.7] and the second in [25, I].
The third criterion has been made because none of the first two criteria could be applied
in examples for p = 3 in Section 13.

Let e1, . . . , en be a basis for a complement to h in g. For each α = (α1, α2, . . . , αn) ∈ Nn

set eα = eα1

1 eα2

2 · · · e
αn
n and |α| =

∑n
i=1 αi. Define εj = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Nn, where

1 occurs at the j’th place. Let I denote the set of all α ∈ Nn with αi < p for all i. From
[14, 4.1] we have a direct sum decomposition as a vector space

Uχ(g)⊗Uχ(h) N =
⊕

α∈I

eα ⊗N. (6.2)

For all u ∈ U(g) and all α ∈ I, we have

ueα =
∑

β

(
α

β

)
eβad′(en)

αn−βn ◦ · · · ◦ ad′(e1)
α1−β1(u) (6.3)

where we sum over all β ∈ I with βi ≤ αi for all i and where ad′(x)(y) = [y, x] for all
x, y ∈ g. The binomial coefficient is given by

(
α

β

)
=

n∏

i=1

(
αi
βi

)
.

6.2 Criterion 1

Recall the further setup from [27, 5, 5.7]: Let a ⊂ g be an ideal such that χ([a, a]) = 0
and set h := st(χ, a) where st(χ, a) = {y ∈ g | χ([y, x]) = 0 for all x ∈ a}. Since a ⊂ g is
an ideal, h is a Lie p–subalgebra of g and moreover h contains a because χ([a, a]) = 0. If
u ∈ U(a) the factor after eβ in (6.3) belongs to U(a). We get then for all α ∈ I and all
v ∈ N

u(eα ⊗ v) ∈ eα ⊗ uv −

n∑

j=1

αje
α−εj ⊗ [ej , u]v +

∑

|β|≤|α|−2

eβ ⊗N. (6.4)

We need one further assumption: We shall assume that N is an irreducible Uχ(h)–
module such that y · v = χ(y)v for all y ∈ a and all v ∈ N .

Lemma 6.2.1.

1) There exist y1, y2, . . . , yn ∈ a such that χ([yi, ej ]) = δij.

2) For all v ∈ N we have

(yi − χ(yi)) · e
α ⊗ v − αie

α−εi ⊗ v ∈
∑

|β|≤|α|−2

Keβ ⊗N.
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Proof. 1) Set U =
∑n

i=1Kei. The bilinear form Bχ(x, y) := χ([x, y]) defines a linear
mapping

ϕ : U −→ a∗, x 7−→ χ([−, x]).

The definition of h and the assumption on e1, e2, . . . , en as a cobasis for h in g imply that ϕ
is injective and the linear functionals ϕ(e1), ϕ(e2) . . . , ϕ(en) are linear independent. Hence
there are y1, y2, . . . , yn ∈ a with ϕ(ei)(yj) = δij , 1 ≤ i, j ≤ n.

2) It follows from (6.4) and 1) that

(yi − χ(yi)) · e
α ⊗ v ∈ eα ⊗ (yi − χ(yi))v +

n∑

j=1

δijαje
α−εj ⊗ v +

∑

|β|≤|α|−2

Keβ ⊗N.

Now use that each y ∈ a acts as multiplication by χ(y) on N and obtain

(yi − χ(yi)) · e
α ⊗ v − αie

α−εi ⊗ v ∈
∑

|β|≤|α|−2

Keβ ⊗N.

The proof is completed.

Remark 6.2.2. The previous lemma works for all finite dimensional Uχ(h)–modules N
such that y · v = χ(y)v for all y ∈ a and all v ∈ N . The assumption on irreducibility is not
needed anywhere.

Proposition 6.2.3. Let M be a g–submodule of Uχ(g) ⊗Uχ(h) N . Then there exists a
h–submodule X of N such that M ∩ (1⊗N) = 1⊗X and such that M ' Uχ(g)⊗Uχ(h) X.

Proof. Set
X = {v ∈ N | 1⊗ v ∈M}.

Clearly, X is a h–submodule ofN . Since we have a direct sum decomposition of Uχ(g)⊗Uχ(h)N
as in (6.2), we also obtain M ∩ (1⊗N) = 1⊗X. For the isomorphism, note that we have
a canonical embedding

φ : Uχ(g)⊗Uχ(h) X ↪→ Uχ(g)⊗Uχ(h) N

with image
∑

α∈I Ke
α ⊗X inside Uχ(g)⊗Uχ(h) N . Clearly, the image of φ is contained in

M since 1⊗X ⊂ M and M is a g–submodule of Uχ(g) ⊗Uχ(h) N . I claim that the image
of φ is all M . This will follow if we prove that

M ∩
∑

|α|≤j

Keα ⊗N =
∑

|α|≤j

eα ⊗X for all j ≥ 0.

I will use induction on j ≥ 0. The case j = 0 follows directly from the first part of the
lemma. So let j > 0 and suppose that x ∈M ⊂ Uχ(g)⊗Uχ(h) N such that

x ≡
l∑

k=1

∑

|α|≤j

γ(k, α)eα ⊗ vk (mod
∑

|α|≤j

Keα ⊗X) (6.5)

where γ(k, α) ∈ K and v1, v2, . . . , vl ∈ N are chosen such that N = X ⊕ ⊕lk=1Kvk. We
shall prove that γ(k, α) = 0 for all α ∈ I with |α| = j.
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Use Lemma 6.2.1 to get

(yi − χ(yi)) ·

l∑

k=1

∑

|α|≤j

γ(k, α)eα ⊗ vk −

l∑

k=1

∑

|α|=j

γ(k, α)αie
α−εi ⊗ vk ∈

∑

|β|≤j−2

Keβ ⊗N

for i = 1, 2, . . . , n [here y1, y2, . . . , yn are chosen such that χ([yi, ej ]) = δij for 1 ≤ i, j ≤ n].
Now use induction to obtain

(yi − χ(yi)) · x ∈M ∩
∑

|β|≤j−1

Keβ ⊗N =
∑

|β|≤j−1

Keβ ⊗X. (6.6)

Since y · vk = χ(y)vk for k = 1, 2, . . . , l and all y ∈ a we have:

(yi − χ(yi)) · x ∈
l∑

k=1

∑

|α|=j

γ(k, α)αie
α−εi ⊗ vk +

∑

|β|≤j−2

Keβ ⊗N +
∑

|α|≤j−1

Keα ⊗X (6.7)

for i = 1, 2, . . . , n. Combine (6.6) and (6.7) and obtain αiγ(k, α) = 0 for all α with |α| = j
and all k = 1, 2, . . . , l. Since j > 0 there exists i such that αi > 0; hence γ(k, α) = 0 for all
k = 1, 2, . . . , l and all α ∈ Nn with |α| = j. Now induction induces that

x ∈M ∩
∑

|β|≤j−1

Keβ ⊗N =
∑

|β|≤j−1

Keβ ⊗X.

The proof is completed.

Corollary 6.2.4. Let N be an irreducible Uχ(h)–module such that y · v = χ(y)v for all
y ∈ a and all v ∈ N . Then Uχ(g)⊗Uχ(h) N is irreducible if and only if N is irreducible.

Proof. If Uχ(g) ⊗Uχ(h) N is an irreducible g–module, it is clear that N is an irreducible
h–module. Now suppose that N is an irreducible h–module and let M be a g–submodule
Uχ(g) ⊗Uχ(h) N . By virtue of Proposition 6.2.3, there exists a h–submodule X of N such
that M ' Uχ(g) ⊗Uχ(h) X. Since N is an irreducible h–module, we have M = 0 or
M = Uχ(g)⊗Uχ(h) N accordingly as X = 0 or X = N .

For any g–module M set Mχ := {m ∈M | x ·m = χ(x)m ∀x ∈ a}. Note that Mχ is a
h–submodule of M .

Corollary 6.2.5. If M is an irreducible Uχ(g)–module with Mχ 6= 0, then Mχ is an
irreducible Uχ(h)–module and M ' Uχ(g)⊗Uχ(h) M

χ.

Proof. There is a homomorphism of g–modules φ : Uχ(g) ⊗Uχ(h) M
χ −→ M given by

φ(x ⊗ v) = x · v for x ∈ Uχ(g) and v ∈ Mχ. Since φ 6= 0 and M is irreducible, φ
is surjective. The kernel of φ is a g–module of Uχ(g) ⊗Uχ(h) M

χ and intersects 1 ⊗Mχ

trivially. Now use Proposition 6.2.3 to get Ker(φ) = 0. Hence φ is an isomorphism and
Mχ is now irreducible by Corollary 6.2.4.

Definition 6.2.6. If M is a g–module, we say that χ is an eigenvalue function for M if
Mχ = {m ∈ M | x · m = χ(x)m ∀x ∈ a} 6= 0. In a similar way, we say that χ is an
eigenvalue function for a h–module N if Nχ = {v ∈ N | x · v = χ(x)v ∀x ∈ a} 6= 0.

Remark 6.2.7. If N is an irreducible h–module with eigenvalue function χ then N χ = N :
Indeed, since a ⊂ h is an ideal and χ([h, a]) = 0, it follows that N χ is a (nonzero) Uχ(h)–
submodule of N . Therefore, Nχ = N by irreducibility.
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Theorem 6.2.8. The maps M 7−→Mχ and N 7−→ Uχ(g)⊗Uχ(h)N induce inverse bijections
between the isomorphism classes of irreducible Uχ(g)–modules with eigenvalue function χ
and isomorphism classes of irreducible Uχ(h)–modules with eigenvalue function χ.

Proof. Suppose that M is an irreducible Uχ(g)–module with eigenvalue function χ. Then
Mχ 6= 0 and by Corollary 6.2.5 then Mχ is an irreducible Uχ(h)–module with eigenvalue
function χ. Moreover M ' Uχ(g) ⊗Uχ(h) M

χ. If N is an irreducible Uχ(h)–module with
eigenvalue function χ set M = Uχ(g) ⊗Uχ(h) N . Then M is an irreducible Uχ(g)–module
(apply Corollary 6.2.4) and by Remark 6.2.7, we have 1⊗N ⊂M χ. SinceM ' Uχ(g)⊗Uχ(h)

Mχ by Corollary 6.2.5, we have dimK1⊗N = dimKM
χ and so Mχ = 1⊗N ' N .

Remark 6.2.9. Let g′ be a restricted Lie subalgebra of g with g′ ⊃ h. It follows that g′ ⊃ a,
that a is an ideal in g′, and that h = {y ∈ g′ | χ([y, x]) = 0 ∀x ∈ a}. We can therefore
apply everything above to g′ instead of g. So the isomorphism classes of irreducible Uχ(g′)–
modules with eigenvalue function χ are in bijection with the same isomorphism classes of
irreducible Uχ(h)–modules with eigenvalue function χ as in the theorem. Combining this
with the theorem we see that we have a bijection from the isomorphism classes of irreducible
Uχ(g

′)–modules with eigenvalue function χ to the isomorphism classes of irreducible Uχ(g)–
modules with eigenvalue function χ. The isomorphism of tensor products

Uχ(g)⊗Uχ(h) N ' Uχ(g)⊗Uχ(g′)

(
Uχ(g

′)⊗Uχ(h) N
)

shows that the bijection is induced by M ′ 7−→ Uχ(g)⊗Uχ(g′) M
′. Clearly, the inverse map

is given by M 7−→ Uχ(g
′)Mχ.

6.3 Criterion 2

Fix the notation from Section 6.1. Recall that e1, e2, . . . , en form a basis for a complement
to h in g, where h ⊂ g is a Lie p–subalgebra. Let N be an irreducible Uχ(h)–module and
denote by σ : h −→ gl(N) the corresponding representation. In the previous section a was
an ideal in g with χ([a, a]) = 0. Now we will change our definition of a. In this section
a ⊂ h denotes a unipotent p–ideal with χ(a) = 0. This implies that

a ·N = 0 or σ(a) = 0. (6.8)

This follows from:

Lemma 6.3.1. Let (h, [p]) be a restricted Lie algebra and a C h a p–ideal which is unipo-
tent. If V is an irreducible h–module with p–character χ and χ(a) = 0, then a · V = 0.

Proof. Set
V a =

{
x ∈ V | x · v = 0 ∀x ∈ a

}
.

Note that V a ⊂ V is a h–submodule, since a C h is an ideal. I claim that V a is nonzero.
Indeed, since V is finite dimensional, it contains an irreducible restricted (χ(a) = 0)
a–module M . Since a is unipotent M is isomorphic to the trivial module (see [14, 3.2])
and therefore contained V a. So V a is a nonzero Uχ(h)–submodule of V ; hence V = V a by
irreducibility.

In the following, set l := [g, a].

Remark 6.3.2. If l ⊂ h, then l ⊂ h and [l, l] ⊂ h are ideals. This follows from the definition
of l and the fact that a ⊂ h is an ideal.

26



Now we have to make our assumptions:

Theorem 6.3.3. Let N be an irreducible Uχ(h)–module. Suppose that l = [g, a] has a

basis l1, l2, . . . , lk with l[p]i = 0 for all i and that the following conditions are satisfied:

1) l, [g, l] ⊂ h,

2) [l, l] ⊂ h is a unipotent p–ideal with χ([l, l]) = 0,

3) st(χ, a) = h.

Then
1⊗N = {w ∈ Uχ(g)⊗Uχ(h) N | a · w = 0}. (6.9)

Before I start with the proof, let me make some remarks.

Remark 6.3.4. Remark 6.3.2 and 1) show that l, [l, l] are ideals inside h. If l has a basis as
in the theorem, then we can apply Jacobson′s formula and show that l, [l, l] are p–ideals
inside h. Indeed, consider x = a1l1 + a2l2 + · · ·+ aklk ∈ l and obtain x[p] ∈ [l, l] ⊂ l. By 2),
we obtain that [l, l] ⊂ h is a unipotent p–ideal with χ([l, l]) = 0. It follows that [l, l] ·N = 0,
hence σ([l, l]) = 0.

Remark 6.3.5. For 1 ≤ i, j ≤ n, each [ei, fj ]
[p] acts trivially on any irreducible Uχ(h)–

module N . Indeed, [ei, fj] ∈ l and can be written as b1l1 + b2l2 + · · · + bklk for some
b1, b2, . . . , bk ∈ K. The assumption on the basis elements of l implies that [ei, fj ]

[p] ∈ [l, l].
Now apply Remark 6.3.4.

Remark 6.3.6. We have defined e1, e2, . . . , en such that g = (⊕ni=1Kei)⊕h. It now follows
that st(χ, a) = h if and only if

∀ ϕ ∈ (

n∑

i=1

Kei)
∗ ∃ f ∈ a : ϕ(z) = χ([z, f ]) ∀ z ∈

n∑

i=1

Kei.

For the "if" part: Consider ϕi ∈ (
∑n

i=1Kei)
∗ with ϕi(ej) = δij and choose fi ∈ a such

that ϕi(z) = χ([z, fi]) for all z ∈
∑n

i=1Kei. It follows that there exist f1, f2, . . . , fn ∈ a

such that χ([ei, fj]) = δij for 1 ≤ i, j ≤ n. Now, let y = a1e1+a2e2+· · ·+anen+h ∈ st(χ, a)
where a1, a2, . . . , an ∈ K and h ∈ h. Since f1, f2, . . . , fn ∈ a and a / h with χ(a) = 0, the
relations χ([y, f1]) = χ([y, f2]) = · · · = χ([y, fn]) = 0 imply that a1 = a2 = · · · = an = 0;
hence y = h ∈ h. So the stabilizer of χ in a is contained in h. The other inclusion is
obvious.

If st(χ, a) = h, then consider the linear mapping:

ψ : Ke1 ⊕Ke2 ⊕ · · · ⊕Ken −→ a∗, x 7−→ χ([−, x]).

The assumption st(χ, a) = h says that ψ is injective and that ψ(e1), ψ(e2), . . . , ψ(en) are
linearly independent. Hence there are f1, f2, . . . , fn ∈ a with ψ(ei)(fj) = χ([ei, fj]) = δij
for 1 ≤ i, j ≤ n. Now consider any ϕ ∈ (

∑n
i=1Kei)

∗ and assume that ϕ(ei) = ri for
some ri ∈ K and all i = 1, 2, . . . , n. If f =

∑n
i=1 rifi ∈ a we have ϕ(z) = χ([z, f ]) for all

z ∈
∑n

i=1Kei as required.
It follows that st(χ, a) = h if and only if there are f1, f2, . . . , fn ∈ a with χ([ei, fj ]) = δij

for 1 ≤ i, j ≤ n. So the existence of f1, f2, . . . , fn ∈ a with χ([ei, fj ]) = δij for 1 ≤ i, j ≤ n
is equivalent to statement 3) in Theorem 6.3.3.
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Now to the proof of Theorem 6.3.3.

Proof. Set b := a + {x ∈ l | χ(x) = 0}. Note that b ⊂ h is a Lie p–subalgebra. In order
to show that [b, b] ⊂ b, we only need to consider x, y ∈ l with χ(x) = 0 = χ(y): Apply
Remark 6.3.2 and 2) to get [x, y] ∈ Ker(χ)∩l. Next, consider z = a1l1+a2l2+· · ·+aklk ∈ b

and use the assumption that l[p]i = 0 for all i to obtain z[p] ∈ [l, l] ⊂ Ker(χ)∩ l ⊂ b. Observe
that b is unipotent also since z [p] ∈ a+[l, l] for all z ∈ b. Now, we can use 2) to get z [pr] = 0
for some r > 0. Therefore, χ(b) = 0 implies:

The only irreducible Uχ(b)–module is the trivial one dimensional module K. (6.10)

Let now J denote the subspace of EndK(N) spanned by all σ(x1)σ(x2) · · · σ(xs) with s ≥ 1
and all xi ∈ b. Then J is obviously closed under multiplication; it is the associative algebra
"without 1" generated by σ(b). Denote by Jm the span of all u1u2 · · · um with all ui ∈ J .

Lemma 6.3.7. We have Jm = 0 for all m ≥ dim(N).

Proof. Choose a composition series

N = Nk ⊃ Nk−1 ⊃ Nk−2 ⊃ · · · ⊃ N1 ⊃ N0 = 0

of N considered as a Uχ(b)–module. Now (6.10) implies that dimKNj

/
Nj−1 = 1 for all j

(hence k = dimKN) and σ(b)Nj ⊂ Nj−1. It follows that uNj ⊂ Nj−1 for all u ∈ J and
hence JmNj ⊂ Nj−m for all j where we write Nl = 0 for l < 0. We get in particular,
JkN = JkNk ⊂ N0 = 0, hence the claim.

Set A equal to the associative algebra with 1 generated by σ(a + l). So this is the
subspace of EndK(N) spanned by all σ(y1)σ(y2) · · · σ(ys) with s ≥ 0 and yi ∈ a + l (for
s = 0 we pick up the identity). We have clearly J ⊂ A.

Lemma 6.3.8. The algebra A is commutative. The ideal AJ in A satisfies (AJ)m = 0 for
all m ≥ dim(N).

Proof. We have [σ(y1), σ(y2)] = σ([y1, y2]) for all y1, y2 ∈ a + l. Since [y1, y2] ∈ a + [l, l]
we use (6.8) and Remark 6.3.4 to obtain [σ(y1), σ(y2)] = σ([y1, y2]) = 0. So all generators
σ(y) with y ∈ a + l commute with each other and A is commutative. Now AJ is the span
of all zu with z ∈ A and u ∈ J . The commutativity of A implies that AJ is an ideal in
A (a priori it is only a left ideal) and that (AJ)m = AJm for all m. Now apply Lemma
6.3.7.

Now we are in position to finish the proof. We only have to prove the inclusion ” ⊃ ” in
(6.9) because of (6.8). Let w be a nonzero element from the right hand side in (6.9). Write
w =

∑
α∈I e

α ⊗ wα with wα ∈ N . Let q(w) denote the maximum of all |α| with wα 6= 0.
The claim says that q(w) = 0 so let us assume that q(w) > 0 and get a contradiction. We
will use Remark 6.3.6 in order to use assumption 3) in the theorem: So let f1, f2, . . . , fn ∈ a

such that χ([ei, fj]) = δij for 1 ≤ i, j ≤ n. Now apply (6.3) in order to evaluate fi · w for
i = 1, 2, . . . , n. Since fi · w = 0 and fi · wα ∈ a ·N = 0, we get from assumption 1):

0 ∈
∑

|α|=q(w)

n∑

j=1

αje
α−εj ⊗ [ej , fi]wα +

∑

|β|≤q(w)−2

eβ ⊗N for all i = 1, 2, . . . , n. (6.11)
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For each β with |β| = q(w)−1 we have (use the direct sum in equation (6.2) together with
(6.11))

n∑

j=1

(βj + 1)[ej , fi]wβ+εj
= 0 for i = 1, 2, . . . , n. (6.12)

The aim is to show that wβ+εj
= 0 for all β and j with β + εj ∈ I. Then we get

wα = 0 for all α with |α| = q(w), a contradiction to our definition of q(w). Consider β ∈ I
with |β| = q(w) − 1 and define I(β) := {1 ≤ t ≤ n | β + εt ∈ I}. We need to show that
wβ+εl

= 0 for l ∈ I(β). By Remark 6.3.5 each [ei, fi]
p acts as multiplication on N by

χ([ei, fi])
p. Therefore the action of zi = χ([ei, fi])

−pσ([ei, fi])
p−1 ∈ A is inverse to that of

[ei, fi]. Now (6.12) gives

wβ+εi
=

∑

j 6=i,j∈I(β)

(βj + 1)zi[ej , fi](wβ+εj
) (∗)

for all i ∈ I(β). Consider a numbering of the elements i1 < i2 < · · · < is in I(β). If we
apply (∗) successive we get for all r with 1 ≤ r ≤ s:

wβ+εir
∈ AJ(wβ+εir

) +
∑

j>r

AJ(wβ+εij
). (6.13)

In particular, we have wβ+εis
= u(wβ+εis

) for some u ∈ AJ . Hence wβ+εis
= um(wβ+εis

)
for all m > 0. Now apply Lemma 6.3.8 and get wβ+εis

= 0. Therefore wβ+εis−1
∈

AJ(wβ+εis−1
) also and a similar calculation as before shows that wβ+εis−1

= 0. Now,
continue this process and get wβ+εl

= 0 for all l ∈ I(β).

Remark 6.3.9. The theorem shows that the isomorphism class of the g–module
Uχ(g)⊗Uχ(h) N determines the isomorphism class of the h–module N . On the other hand,
we get from (6.9) the simplicity of Uχ(g)⊗Uχ(h) N : Any nonzero g–submodule M contains
an irreducible Uχ(a)–module V . We get then a · V = 0, hence V ⊂ 1 ⊗N by (6.9), hence
M ∩ (1 ⊗ N) 6= 0. This intersection is an h–submodule of 1 ⊗ N . So the simplicity of
1 ⊗ N ' N implies that 1 ⊗ N = M ∩ (1 ⊗ N) ⊂ M , hence Uχ(g)(1 ⊗ N) ⊂ M and
M = Uχ(g)⊗Uχ(h) N .

For each g–module M set M a := {w ∈ M | a · w = 0}. It is easy to see that M a is
a Uχ(h)–module since a / h with χ(a) = 0. One could hope that the functors F and G
defined by

G : {Uχ(g)−modules} −→ {Uχ(h) −modules}, M 7−→M a

and
F : {Uχ(h)−modules} −→ {Uχ(g)−modules}, V 7−→ Uχ(g)⊗Uχ(h) V

are inverse equivalence of categories. The hope turns out to be false: Take the reg-
ular Uχ(h)–module, then this is a free module over the local algebra Uχ(a) = U0(a),
so that dimKUχ(h) = dimKUχ(h)a · pdimKa, whence a = (0) and h = g. [In order
to get dimKUχ(h) = dimKUχ(h)a · pdimKa, use that U0(a) has a simple socle, hence
dimKU0(a)

a = 1 since a is unipotent. Now Uχ(h) ' U0(a)
c implies that dimKUχ(h)a = c.]
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One could perhaps hope the following: Abusing notation, we denote by χ the linear
form on h/a induced by χ ∈ g∗. Then G actually takes values in Uχ(h/a), and defines a
functor

G′ : {Uχ(g)−modules} −→ {Uχ(h/a) −modules}.

By composing F with the pull-back along the projection Uχ(h) � Uχ(h/a), we obtain a
functor

F ′ : {Uχ(h/a) −modules} −→ {Uχ(g)−modules}.

Frobenius reciprocity implies that (F ′, G′) is an adjoint pair, so that the front and rear
adjunctions are candidates for the desired equivalences. In fact, if F ′ and G′ are exact,
then (6.3.3) and induction would yield such an assertion. Since F ′ is exact, the problem
resides in the exactness of G′, which is usually only left exact.

In fact, this hope turns out to be false also: Let g := sl2(K) ⊕ L(1) be the semidirect
product of sl2(K) and its two dimensional standard module L(1). [Here L(1) is the abelian
restricted Lie algebra with bracket and p–mapping being zero.] Let {v1, v2} be the standard
basis of L(1), {e, h, f} the standard basis of sl2(K). Define χ ∈ g∗ via χ(sl2(K) = 0 = χ(v1)
and χ(v2) = 1, so that a := Kv1 and h := st(χ, a) = Kh⊕Ke⊕L(1). Then the conditions
in Theorem 6.3.3 are fulfilled (with l = L(1)), and one would now hope for an equivalence
of Uχ(g)–mod. and Uχ(Kh⊕Ke⊕Kv2)–mod.

However, take a look at the regular Uχ(g)–module Uχ(g). We have

dimKUχ(g)a = pdimKg/a = p4

and if there is an equivalence, we should also have

Uχ(g) ' Uχ(g)⊗Uχ(h) Uχ(g)a. (6.14)

It is not hard to see that
Uχ(g)a =

⊕

ijkl

Kvp−1
1 vi2e

jhkf l.

Consider the module on the right hand side of (6.14): I claim that

dimK

(
Uχ(g)⊗Uχ(h) Uχ(g)a

)a
> dimKUχ(g)a (6.15)

and thus an isomorphism as in (6.14) is impossible. In order to prove (6.15), take

x = f ⊗ vp−1
1 vp−1

2

and note that v1 · x = f ⊗ vp1v
p−1
2 − 1⊗ vp−1

1 vp2 = 0. It follows that

1⊗ Uχ(g)a ⊕Kx ⊂
(
Uχ(g)⊗Uχ(h) Uχ(g)a

)a

such that we have (6.15).
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6.4 Criterion 3

Keep the notation from Section 6.1 but assume now that N is a finite dimensional Uχ(h)–
module (we do not require irreducibility). For α = (α1, α2, . . . , αn) ∈ Nn set

eα = eα1

1 eα2

2 · · · e
αn
n .

Let I denote the set of all α ∈ Nn with αi < p for all i. For each integer l with 1 ≤ l ≤ n+1,
set Il = {α ∈ I | α1 = α2 = · · · = αl−1 = 0}. It is easy to see that we have inclusions:
In+1 = 0 ⊂ In ⊂ · · · ⊂ I2 ⊂ I1 := I. If N is a Uχ(h)–module we define

Nl =
⊕

α∈Il

Keα ⊗N ⊂ Uχ(g)⊗Uχ(h) N. (6.16)

Proposition 6.4.1. Suppose that there exists l ≤ n and f ∈ g such that either [f, el] acts
bijectively on Uχ(g) ⊗Uχ(h) N and (ad el)

i(f) · Nl+1 ⊂ Nl+1 for all i or [f, el] = µel for
some µ ∈ K∗. If there exists λ ∈ K such that f · y = λy for all y ∈ Nl+1, then

{x ∈ Nl | f · x = λx} = Nl+1.

Proof. The inclusion ⊃ is clear by our assumption. Choose x ∈ Nl such that f · x = λx. If
x 6∈ Nl+1 we can find m with 0 < m < p such that

x =
m∑

i=0

eil · vi where vi ∈ Nl+1 for all i and vm 6= 0. (∗)

First, suppose that [f, el] acts bijectively on Uχ(g)⊗Uχ(h)N and that (ad el)
i(f)·Nl+1 ⊂

Nl+1 for all i. Since f · x = λx and f · vi = λvi for all i we get:

λx ∈ λeml · vm + λem−1
l · vm−1 +mem−1

l · [f, el] · vm +
∑

i≤m−2

eil ·Nl+1.

Here we use our assumption that (ad el)
i(f) ·Nl+1 ⊂ Nl+1 for all i. It follows from the

direct sum in (6.16) that mem−1
l · [f, el] · vm = 0. This is a contradiction since m 6= 0 and

vm 6= 0 and since [f, el] acts bijectively on Uχ(g)⊗Uχ(h) N ⊃ Nl+1.
Next, suppose that [f, el] = µel for some µ 6= 0. Consider x as in (∗) with f · x = λx:

Since f · vi = λvi for all i we get:

λx ∈ (λ+ µ+m)eml · vm + (λ+ µ+m− 1)em−1
l · vm−1 +

∑

i≤m−2

eil ·Nl+1.

We conclude, by (6.16), that λ = λ + µ + m but also λ = λ + µ + m − 1. This is a
contradiction.

The proof is completed.

Remark 6.4.2. Note that [f, el] acts bijectively on Uχ(g) ⊗Uχ(h) N if χ([f, el]) 6= 0 and

[f, el]
[p] = [f, el] or [f, el]

[p] = 0: Suppose that v ∈ Uχ(g)⊗Uχ(h) N such that [f, el] · v = 0.

Then [f, el]
[p] · v = 0 also (since [f, el]

[p] = [f, el] or [f, el]
[p] = 0). We conclude that

χ([f, el])
pv = 0; hence v = 0 since χ([f, el]) 6= 0.

Corollary 6.4.3. Suppose that there exist f1, f2, . . . , fn ∈ g such that each [fl, el] either
acts bijectively on Uχ(g)⊗Uχ(h) N and (ad el)

i(fl) ·Nl+1 ⊂ Nl+1 for all i or [fl, el] = µlel
for some µl ∈ K∗. If, for each l, there exists λl ∈ K such that fl · y = λly for all y ∈ Nl+1,
then

{x ∈ Uχ(g)⊗Uχ(h) N | fi · x = λix ∀ i} = Nn+1 = 1⊗N.

Proof. Apply Proposition 6.4.1 with our assumptions (n times).
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7 Induction from W012 to W≥0

Now consider the second restricted Witt–Jacobson algebra W = W (2) over an algebraically
closed field K of characteristic p > 0. We want to apply the theory in Section 6.2 to
g = W≥0. Let χ ∈ W ∗ of height r. Recall the Lie p–subalgeba W012 ⊂ W of codimension
3 defined in Section 3.1. We shall prove that there exists an automorphism g such that
induction induces a bijection between the isomorphism classes of irreducible Uχg (W012)–
modules and the isomorphism classes of irreducible Uχg(W≥0)–modules except possibly the
case where r = 2p− 3 and χ has Type II.a as in Section 5.2.

Suppose that r > 1. Then a = W≥r−1 is an unipotent ideal in g with χ([a, a]) ⊂
χ(W≥r) = 0. So χ defines a one–dimensional a–module Kχ. This is actually a Uχ(a)–

module since at least all basis elements eijk of a satisfy e
[p]
ijk = 0. It is in fact the only

irreducible Uχ(a)–module since a is unipotent (see [14, 3.3]). Finally, h is the Lie p–
subalgebra of g = W≥0 given by {y ∈W≥0 | χ([y, x]) = 0 for all x ∈W≥r−1}.

7.1 The case that r 6= p− 1

Keep the notation from above. Let M be an irreducible Uχ(g)–module. Then M contains
an irreducible Uχ(a)–module, which is a copy of Kχ. Hence Mχ = {m ∈ M | x · m =
χ(x)m ∀x ∈ a} is nonzero and by Corollary 6.2.5 an irreducible Uχ(h)–module. Hence
all irreducible Uχ(g)–modules have eigenvalue function χ. In a similar way (since a ⊂ h)
we could prove that all irreducible Uχ(h)–modules have eigenvalue function χ; hence, by
Theorem 6.2.8, the map M 7−→ Mχ induces a bijection between the isomorphism classes
of irreducible Uχ(g)–modules and isomorphism classes of irreducible Uχ(h)–modules; the
inverse is given by induction.

The definition of h implies that

h = W≥1 ⊕ {y ∈W0 | χ([y,Wr−1]) = 0}. (7.1)

Indeed, any y ∈ W≥1 satisfies [y, a] ⊂ W≥r ⊂ Ker(χ); if y ∈ W0 then χ([y,W≥r−1]) =
χ([y,Wr−1]) since χ([y,W≥r]) = 0. If there exists x ∈ Wr−1 such that χ([x, e102]) 6= 0 =
χ([x,W012]), then (7.1) shows that h ⊂ W012. Therefore we have (in fact for arbitrary
r > 1):

Lemma 7.1.1. Suppose that r > 1. If there exists x ∈ Wr−1 such that χ([x, e102]) 6= 0 =
χ([x,W012]), then induction induces a bijection between the isomorphism classes of irre-
ducible Uχ(W012)–modules and the isomorphism classes of irreducible Uχ(W≥0)–modules.

Proof. Follows immediately from Remark 6.2.9 with g′ = W012 and g = W≥0.

It now follows from Lemma 5.4.1 that:

Proposition 7.1.2. If χ ∈W ∗ of height r > 1 and r 6= p−1, then there exists g ∈ Aut(W )
such that induction induces a bijection between the isomorphism classes of irreducible
Uχg(W012)–modules and isomorphism classes of irreducible Uχg (W≥0)–modules except pos-
sibly the case where r = 2p− 3 and χ has Type II.a as in 5.2.

7.2 The case that r = p− 1

Keep the notation from above. We shall prove the statement in Proposition 7.1.2 in the
case where r = p− 1. Note that g(h) = {y ∈ W≥0 | χ

g−1

([y,W≥r−1]) = 0} for h is defined
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as in (7.1). We thus have to investigate the question: When does there exists g ∈ Aut(W )
such that

g
(
{y ∈W0 | χ([y,Wr−1]) = 0}

)
⊂W012.

If such a g exists, then we can apply Remark 6.2.9 with χg
−1

instead of χ, g(h) instead
of h and g′ = W012 and a = W≥r−1. The proof is then completed.

Clearly it is enough to consider g ∈ GL2(K). We have an isomorphism W0 ' gl2(K):

ae101 + be102 + ce011 + de012 7−→

(
a b
c d

)
(7.2)

for a, b, c, d ∈ K. Since the GL2(K)–action is compatible with this isomorphism we arrive
the question: For which Lie subalgebras s of gl2(K) does there exists g ∈ GL2(K) such
that

g · s · g−1 ⊂

(
∗ 0
∗ ∗

)
. (])

We will apply our discussion on s = {y ∈ W0 | χ([y,Wr−1]) = 0}. If s is solvable
it follows from [24, Satz 3] that the dimension of each irreducible s–module is a power
of p. Therefore each irreducible submodule of the tautological representation on K 2 has
dimension 1 (recall that p > 2 since r = p − 1 > 1). Pick such an irreducible submodule
Kx2 and extend to a basis x1, x2 for K2. Then each y ∈ s has a lower triangular matrix
with respect to x1, x2. With g = right base change, we have (]).1

This leaves us with the case where s is not solvable. In particular, we have dimKs ≥ 3.
If dimKs = 4, then s = gl2(K) and nothing can be done [but this case is not of our interest
since s = gl2(K) corresponds to W0 = {y ∈W0 | χ([y,Wr−1]) = 0} via the isomorphism in
(7.2) – contradiction since [W0,Wr−1] = Wr−1].

If dimKs = 3 and dimK([s, s]) < 3 then [s, s] is solvable, hence so is s — contradiction.
We can thus assume that s = [s, s] and that dimKs = 3. By dimension comparison this
yields s = sl2(K). So altogether there exists g ∈ GL2(K) such that (]) above is satisfied
unless s ⊃ sl2(K). Going back to W0, we see that the bad case occurs when

g1 := Ke102 +K(e012 − e101) +Ke011 ⊂ {y ∈W0 | χ([y,Wr−1]) = 0}. (7.3)

Set W ′
r−1 = Wr−1 ∩ Ker(χ). This is a one codimensional subspace in Wr−1 and the

inclusion in (7.3) is equivalent to [y,Wr−1] ⊂ W ′
r−1 for all y ∈ g1. If we regard Wr−1 as

a module for g1 ' sl2(K) via ad, then W ′
r−1 has to be a submodule and Wr−1

/
W ′
r−1 a

trivial one dimensional module. Now, let h = e012 − e101. Then ad(h) acts diagonalisably
on Wr−1, hence also on W ′

r−1. Since ad(h) acts trivially on Wr−1

/
W ′
r−1, we see that W ′

r−1

contains all eigenspaces for ad(h) in Wr−1 corresponding to nonzero eigenvalues. In the
case r = p− 1 this means that W ′

r−1 contains all eijk with i+ j = p− 1 except possibly for
e0,p−1,2 and e0,p−1,1. But now [e011, e1,p−2,1] = e0,p−1,1 and [e102, ep−1,0,1] = −ep−1,0,2 show
that W ′

r−1 = Wr−1 — contradiction. So the inclusion in (7.3) is impossible.

Lemma 7.2.1. Suppose that χ ∈W ∗ has height r = p− 1. Then there exists g ∈ Aut(W )
and x ∈Wr−1 such that χg([x, e102]) 6= 0 = χg([x,W012]).

Proof. The discussion above says that we can find an automorphism g such that

{y ∈W≥0 | χ
g([y,W≥r−1]) = 0} ⊂W012.

1Since Lie’s Theorem [11, p. 16] holds whenever the dimension of the relevant module is < p, one can
also use this result to obtain the desired presentation.
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Set h := {y ∈W≥0 | χ
g([y,W≥r−1]) = 0}. Let e1, e2, . . . , en be a cobasis for h in W≥0 such

that e1 = e102 and ei ∈ W012 for i > 1. The bilinear form Bχg(x, y) := χg([x, y]) defines a
linear mapping

ϕ : U :=
∑n

i=1Kei −→ W ∗
≥r−1

given by ϕ(z) = χg([z,−]). The assumption on e1, e2, . . . , en as a cobasis for h in W≥0 im-
plies that ϕ is injective and the linear functionals ϕ(e1), ϕ(e2) . . . , ϕ(en) are linear indepen-
dent. Hence there are f1, f2, . . . , fn ∈ W≥r−1 with ϕ(ei)(fj) = δij , 1 ≤ i, j ≤ n. It follows
that χg([e102, f1]) = 1 (e1 = e102). Moreover, any z ∈W012 can written as z =

∑
i>1 aiei+h

for some a2, a3, . . . , an ∈ K and some h ∈ h (note that W012 =
∑

i>1Kei ⊕ h). Therefore,
χg([f1, z]) = 0 since χg([ei, f1]) = 0 for i > 1 and χg([h, f1]) = 0. The proof is completed
by setting x = f1.

Proposition 7.2.2. Suppose that χ ∈ W ∗ has height r = p − 1. Then there exists g ∈
Aut(W ) such that induction induces a bijection between the isomorphism classes of irre-
ducible Uχg(W012)–modules and the isomorphism classes of irreducible Uχg (W≥0)–modules.

Proof. Follows immediately from Lemma 7.1.1 and Lemma 7.2.1.

7.3 Arbitrary r

If we combine the results in Lemma 5.4.1, 7.2.1 and Proposition 7.1.2, 7.2.2, we obtain:

Lemma 7.3.1. Let χ ∈W ∗ of height r ≥ 0. Then there exists g ∈ Aut(W ) and x ∈Wr−1

such that χg([x, e102]) 6= 0 = χg([x,W012]) except the case where r = 2p − 3 and χ has
Type II.a as in 5.2.

Theorem 7.3.2. Suppose that χ ∈ W ∗ with height r > 1. Then there exists g ∈ Aut(W )
such that induction induces a bijection between the isomorphism classes of irreducible
Uχg(W012)–modules and the isomorphism classes of irreducible Uχg(W≥0)–modules except
possibly the case where r = 2p− 3 and χ has Type II.a as in 5.2.

Remark 7.3.3. Let χ ∈ W ∗ be a character of height r > 1 such that r 6= 2p− 3 if χ has
Type II.a as in 5.2. Let g be as above. Then one can show that each irreducible Uχg (W012)–
module is induced from a one dimensional Uχg(P )–module where P ⊂W≥0 is a polarization
of some λ ∈W ∗

≥0 and the number of irreducible Uχg (W012)–modules is equal to the number
of irreducible Uχg (P )–modules. Here we apply a result proved in Lemma 9.4.1 saying that
W012 is supersolvable. [In Section 9 we take a closer look at supersolvable Lie algebras and
one can check that the statements above follow from Proposition 9.3.5 and Lemma 9.3.2,
9.3.7.] It follows that induction induces a bijection between the isomorphism classes of
irreducible Uχg (P )–modules and the isomorphism classes of irreducible Uχg(W≥0)–modules.
This implies that induction induces a bijection between the irreducible Uχ(g(P ))–modules
and the irreducible Uχ(W≥0)–modules and g(P ) ⊂ W≥0 is a polarization of λg

−1

∈ W ∗
≥0.

This result is obtained in [29, 10.16] also but the statement there only says that induction
induces a surjection.

Remark 7.3.4. The bad case for induction from W012 to W≥0 is the situation where r =
2p−3 and χ has Type II.a as in 5.2. The hope was that Theorem 7.3.2 could be improved in
the following way: If χ ∈W ∗ of Type II.a as in 5.2 with height r = 2p−3 then there exists
an automorphism g such that induction is a bijection between the isomorphism classes
of irreducible Uχg(W012)–modules and the isomorphism classes of irreducible Uχg(W≥0)–
modules. But the example in Section 13.13 shows that it turns out to be a false hope. This
is indicated in [29, p. 80] also but some of the arguments leading to [29, Satz 10.16] are
suspicious. We will discuss an example for p = 3 in Section 13.13.
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8 Induction from W≥0 to W

In this section we will apply the results in Section 6.3 to g = W and h = W≥0. Let χ ∈W ∗

be a character of height r > 1 but r ≤ 2p − 3. Clearly, a := W≥r / h is a unipotent
p–ideal with χ(W≥r) = 0; hence W≥r acts trivially on every irreducible Uχ(h)–module.

Note that l := [W,W≥r] = W≥r−1 ⊂ h has a basis l1, l2, . . . , lk such that l[p]i = 0 for
all i and [W, l] = W≥r−2 ⊂ h. Moreover, [l, l] ⊂ W≥2r−2 ⊂ W≥r ⊂ h is a unipotent p–
subalgebra with χ([l, l]) = 0. If st(χ,W≥r) = W≥0, then we can apply Theorem 6.3.3 and
Corollary ??: Induction induces a bijection between the isomorphism classes of irreducible
Uχ(W≥0)–modules and isomorphism classes of irreducible Uχ(W )–modules.

8.1 Good induction

We have shown:

Theorem 8.1.1. Let χ ∈ W ∗ be a character of height r > 1. If st(χ,W≥r) = W≥0, then
induction induces a bijection between the isomorphism classes of irreducible Uχ(W≥0)–
modules and the isomorphism classes of irreducible Uχ(W )–modules.

In order to use Theorem 8.1.1 the following remark is important:

Remark 8.1.2. The result in Theorem 8.1.1 is true for χ if and only if it is true for χg,
where g ∈ Aut(W ). This follows from the fact that g(W≥0) = W≥0.

Lemma 8.1.3. Let χ ∈ W ∗ with height 1 < r ≤ p − 2. Then the induction functor
induces a bijection between the isomorphism classes of irreducible Uχ(W≥0)–modules and
the isomorphism classes of irreducible Uχ(W )–modules.

Proof. By Theorem 8.1.1 it is enough to prove that st(χ,W≥r) = W≥0. The assumption
r ≤ p− 2 implies that χ(eαβγ) = 0 for α+β ≥ p− 1. So there exists an index (i, j, k) with
i < p− 1 maximal such that χ(eijk) 6= 0 and an index (i′, j′, k′) with j′ < p− 1 maximal
such that χ(ei′j′k′) 6= 0. Now define ei = e00i, f1 = ei+1,j,k and f2 = ei′,j′+1,k′ and observe:

χ([e1, f1]) = (i+ 1)χ(eijk) 6= 0 = i′χ(ei′−1,j′+1,k′) = χ([e1, f2]),
χ([e2, f2]) = (j′ + 1)χ(ei′ ,j′,k′) 6= 0 = jχ(ei+1,j−1,k) = χ([e2, f1]).

It follows that st(χ,W≥r) = W≥0.

Remark 8.1.4. The results obtained in Theorem 8.1.1 and Lemma 8.1.3 are also proved
in [29, 11.1], but the proof there only says that induction induces a surjection in the case
where st(χ,W≥r) = W≥0 (T.Wichers uses the notation W⊥

≥r for st(χ,W≥r)).

If st(χ,W≥r) = W≥0, then the classification and dimension formulas for the irre-
ducible Uχ(W )–modules are given in terms of the corresponding data for the irreducible
Uχ(W≥0)–modules (see Theorem 8.1.1). Except for an exceptional case (see Theorem
7.3.2), there exists g ∈ GL2(K) such that induction induces a bijection between the iso-
morphism classes of irreducible Uχg(W012)–modules and isomorphism classes of irreducible
Uχg(W≥0)–modules. Therefore: The classification and dimension formulas for the irre-
ducible Uχ(W )–modules are now reduced to the study of W012–modules with p–character
χg for a suitable g ∈ GL2(K). Since W012 is a supersolvable Lie p–subalgebra of W this
reduction turns out to be very useful. Let me summarize: If st(χ,W≥r) = W≥0 and we
exclude the case where r = 2p − 3 and χ has Type II.a, then there exists g ∈ GL2(K)
such that induction induces a bijection between the isomorphism classes of irreducible
Uχg(W012)–modules and isomorphism classes of irreducible Uχg(W )–modules.

Thus: We will study supersolvable Lie algebras a little closer.
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9 Supersolvable Lie-algebras

A finite dimensional Lie algebra L over K is called supersolvable if there exists a chain

0 = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln = L (9.1)

of ideals in L such that the factor algebras Lj
/
Lj−1 are one–dimensional for integers j with

1 ≤ j ≤ n. It is clear that subalgebras and factor algebras of supersolvable Lie algebras
are again supersolvable.

9.1 Restriction

In the rest of this section we restrict ourselves to supersolvable restricted Lie algebras L
over K such that L is a direct sum of a torus T (i.e., a commutative Lie p-subalgebra

with basis h1, h2, . . . , hl such that h[p]
i = hi for all i) and a p–nilpotent ideal U in L (i.e.,

∀x ∈ U ∃ s > 0 : x[ps] = 0): We assume that L = T ⊕U . It follows that any restricted Lie
subalgebra of L can decomposed in that way also.

Lemma 9.1.1. Let L′ ⊂ L be a restricted Lie subalgebra. Then there exists a (maximal)
torus T ′ ⊂ L′ such that L′ = T ′ ⊕ (L′ ∩ U).

Proof. First, note that we have an isomorphism L′
/
(L′ ∩ U) ' (L′ + U)

/
U of restricted

Lie algebras and an inclusion (L′ + U)
/
U ⊂ L

/
U . Since L

/
U ' T is a torus and any

restricted subalgebra of a torus is again a torus, we conclude that L′
/
(L′ ∩ U) is a torus.

Now apply [27, 2, Lemma 4.4 (2)] to find torus T ′ ⊂ L′ such that L′ = T ′ + (L′ ∩ U) (one
should check that the definition of a torus given in [27, 2] is equivalent to the definition
given just before the lemma, see [27, 2, Theorem 3.6]). Clearly T ′ ∩ (L′ ∩U) = 0 and thus
we have L′ = T ′ ⊕ (L′ ∩ U) as required.

For any restricted L–module V 6= 0 the subspace

V U = {v ∈ V | x · v = 0 ∀ x ∈ U}

of fixed points of U is nonzero. Indeed, since V is finite dimensional, it contains an ir-
reducible restricted U–module M . Since U is unipotent, by assumption, it follows from
[14, 3.2] that M is isomorphic to the trivial module and therefore contained in V U . More-
over the set of fixed points of U is a L–submodule of V since U is an ideal in L. If V is
irreducible we then conclude that V = V U . Therefore, if V is irreducible, then V is an
irreducible module for L

/
U ' T . Since T is commutative, this implies dimKV = 1. We

have shown:

Lemma 9.1.2. All restricted irreducible L–modules are one dimensional.

Let me now consider Uχ(L)–modules for an arbitrary χ ∈ L∗. Each linear form λ ∈
L∗ with λ(U) = 0 defines a one dimensional L–module Kλ where each x ∈ T acts as
multiplication with λ(x) and where each y ∈ U acts as λ(y) = 0. Note that Kλ is restricted
if and only if λ(h[p]) = λ(h)p for all h ∈ T . We do not have to worry about U , since it is a
p–ideal.

Lemma 9.1.3. Let E be any irreducible Uχ(L)–module. For λ ∈ L∗ with λ(U) = 0 and
λ(h[p]) = λ(h)p ∀h ∈ T , each E ⊗K Kλ is an irreducible Uχ(L)–module. Any irreducible
Uχ(L)–module is isomorphic to one of these E ⊗K Kλ.
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Proof. Let now V1, V2 be irreducible Uχ(L)–modules. Define the dual module V ∗
1 via

(x.f)(m) = −f(x.m). It follows that V ∗
1 has p–character −χ. Moreover V ∗

1 ⊗K V2 becomes
an L–module via x.(f ⊗ v2) = x.f ⊗ v2 + f ⊗ x.v2 with p–character −χ + χ = 0. Then
HomK(V1, V2) ' V ∗

1 ⊗K V2 is a non-zero U0(L)–module. Since HomK(V1, V2) is finite
dimensional, it contains an irreducible p–representation isomorphic to some Kλ, where
λ(h[p]) = λ(h)p for h ∈ T and λ(x) = 0 for x ∈ U (since U is unipotent it acts nilpotently
on each restricted U–module). Then the trivial one-dimensional L–module isomorphic to
K∗
λ ⊗Kλ is contained in

K∗
λ ⊗K V ∗

1 ⊗K V2 ' HomK(V1 ⊗K Kλ, V2).

In other words, we have HomK(V1⊗KKλ, V2) 6= 0. Observe that V1⊗KKλ is an irreducible
Uχ(L)–module (V1 is irreducible). By Schur’s Lemma the proof is completed.

Let E be an irreducible Uχ(L)–module. Set

L∗
Fp

= {λ ∈ L∗ | λ(U) = 0, λ(h[p]) = λ(h)p ∀ h ∈ T}.

If l := dimKT then T has a basis h1, h2, . . . , hl with h
[p]
i = hi for all i. Let λ ∈ L∗

and note that λ ∈ L∗
Fp

if and only if λ(U) = 0 and λ(hi) ∈ Fp for all i = 1, 2, . . . , l.

Hence |L∗
Fp
| = pl. The set of λ ∈ L∗

Fp
with E ⊗K Kλ ' E form an Fp–subspace of L∗

Fp
.

If this subspace has dimension m then there are pl−m isomorphism classes of irreducible
Uχ(L)–modules.

Remark 9.1.4. If L is supersolvable and all irreducible Uχ(L)–modules are one dimen-
sional, then there are pl isomorphism classes of irreducible Uχ(L)–modules, where l is the
dimension of any maximal torus in L. Indeed, use the observations just above with E = Kµ

for some µ ∈ L∗ to get m = 0 (m is the dimension of the subspace of L∗
Fp

consisting of all
λ ∈ L∗

Fp
with Kµ ⊗K Kλ ' Kµ and it is easy to see that only λ = 0 has that property).

In fact, if there exists an irreducible Uχ(L)–module of dimension one, then all irreducible
Uχ(L)–modules are one dimensional by Lemma 9.1.3.

For any Uχ(L)–module V denote by P (V ) its projective cover in the category of Uχ(L)–
modules. We have for E and λ as above

P (E ⊗K Kλ) ' P (E)⊗K Kλ.

See [6, Lemma 1]. Each P (E ⊗K Kλ) occurs dimKE ⊗K Kλ = dimKE times in a direct
sum decomposition of Uχ(L) into indecomposables. This induces

pl−mdimKE · dimKP (E) = pdimKUχ(L). (9.2)

In particular, both dimKE and dimKP (E) are powers of p.

Lemma 9.1.5. Let χ ∈ L∗, let H ⊂ L be a Lie p–subalgebra of codimension 1.

a) If M is an irreducible Uχ(H)–module, then either M can be extended to a Uχ(L)–
module or Uχ(L)⊗Uχ(H) M is an irreducible Uχ(L)–module.

b) If V is an irreducible Uχ(L)–module and M ⊂ V is an irreducible Uχ(H)–submodule,
then either M = V or V is isomorphic to Uχ(L)⊗Uχ(H) M .
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Proof. a) There exists an irreducible Uχ(L)–module V with a surjective homomorphism

π : Uχ(L)⊗Uχ(H) M −→ V

of Uχ(L)–modules. This map is nonzero on 1⊗M since this subspace generates the induced
module over Uχ(L). Since 1⊗M 'M is an irreducible Uχ(H)–module it has to be mapped
injectively into V . This implies that

dimKM ≤ dimKV ≤ dimKUχ(L)⊗Uχ(H) M = pdimKM.

It follows from (9.2) that both dimKV and dimKM are powers of p. So we have either
dimKV = dimKM or dimKV = p · dimKM . In the second case the induced module is
irreducible. In the first case V is isomorphic to M as a Uχ(H)–module. In that case we
can extend M to a Uχ(L)–module.

b) The inclusion of M into V induces a homomorphism of L–modules

Uχ(L)⊗Uχ(H) M −→ V (9.3)

that has to be surjective. If M 6= V then dimKV > dimKM . Since dimKV and dimKM
are powers of p, by (9.2), this implies that dimKV ≥ p · dimKM . In that case (9.3) is an
isomorphism. If M = V , then (9.3) shows that the induced module is not irreducible.

Let P ⊂ L be a Lie subalgebra of L. Then any λ ∈ L∗ with λ([P, P ]) = 0 defines a one
dimensional P–module Kλ where each x ∈ P acts as multiplication with λ(x). Let χ ∈ L∗

be a linear form such that Kλ is a Uχ(P )–module, i.e, with

χ(x)p = λ(x)p − λ(x[p]) (9.4)

We can then define the induced module

Uχ(L)⊗Uχ(P ) Kλ. (9.5)

The annihilator of the module in (9.5) is an ideal in L contained in P , in fact in the
kernel of λ|P ∈ P

∗. Indeed, if x ∈ L with x /∈ P , then x(1⊗1) = x⊗1 is a nonzero element
in the induced module [choose a basis for a complement to P in L containing x and apply
the PBW–theorem for reduced enveloping algebras]. If x ∈ P then x(1⊗ 1) = 1 ⊗ λ(x) is
zero if and only if λ(x) = 0. On the other hand we also have:

Lemma 9.1.6. Let A ⊂ P be an ideal in L with λ(A) = 0. Then A annihilates the module
in (9.5).

Proof. The set of v in the module with Av = 0 is a L–submodule, since A is an ideal in
L. It contains 1 ⊗ 1 since λ(A) = 0. Thus it contains Uχ(L)(1 ⊗ 1) which is the entire
module.

Consider the set B of all x ∈ L that act on the module in (9.5) as a scalar. This set is an
ideal in L. Consider x ∈ B and look at x(1⊗1). If x /∈ P then x(1⊗1) = x⊗1 /∈ K(1⊗1);
Thus B ⊂ P . Then x(1 ⊗ 1) = λ(x)(1 ⊗ 1) and it follows that each x ∈ B acts as the
scalar λ(x). So for all y ∈ L and x ∈ B the actions of x and y on the module commute.
Therefore the commutator [y, x] annihilates the module. This implies λ([L,B]) = 0 as we
have seen above. On the other hand:
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Lemma 9.1.7. Let B ⊂ P be an ideal in L with λ([L,B]) = 0. Then each x ∈ B acts as
multiplication by λ(x) on the module in (9.5).

Proof. Denote that module by V and set A = B ∩Ker(λ). We have [L,B] ⊂ A. It follows
that A ⊂ P is an ideal in L with λ(A) = 0. By Lemma 9.1.6 we get A · V = 0. Set

V λ = {v ∈ V | xv = λ(x)v for all x ∈ B}.

Clearly, 1⊗ 1 ∈ V λ. Consider v ∈ V λ and x ∈ L. Then we get for all y ∈ B:

y(xv) = [y, x]v + x(yv) = 0 + λ(y)xv

since [y, x] ∈ A and A · V = 0. Thus V λ is a L–submodule of V and it contains 1 ⊗ 1;
hence V λ = V .

9.2 Polarizations

The further development requires the notion of a polarization. We will do that in a general
setup; so let g be a Lie algebra (not necessarily supersolvable) defined over an arbitrary
field F . If λ ∈ g∗, then a Lie subalgebra p of g is called a polarization of λ, if p is a
maximal totally isotropic subspace with respect to the alternating form bλ on g given by
bλ(x, y) = λ([x, y]) for x, y ∈ g. As a consequence we have

dimF p =
dimF g + dimF cg(λ)

2
(9.6)

where cg(λ) = {x ∈ g | λ([x, y]) = 0 for all y ∈ g} denotes the stabilizer of λ in g. Note that
cg(λ) is the radical of the skew–symmetric bilinear form (x, y) 7−→ λ([x, y]) on g; hence
cg(λ) is a Lie p–subalgebra of g and its codimension in g is even.

Let h ⊂ g be a Lie subalgebra of g of codimension 1. Set λ′ = λ|h and define ch(λ
′) =

{x ∈ h | λ′([x, y]) = 0 for all y ∈ h}. We are now in one of the two following cases:

1) We have cg(λ) ⊂ h. Then cg(λ) is a subspace of codimension 1 in ch(λ
′). Each

polarization p ⊂ h of λ′ is also a polarization of λ.

2) We have cg(λ) 6⊂ h. Then ch(λ
′) = cg(λ) ∩ h. If p ⊂ h is a polarization of λ′, then we

can find a maximal totally isotropic subspace for bλ that contains p as a subspace of
codimension 1.

This is proved in [5, 1.12.2]. The general characteristic zero assumption of that book is
not needed here.

Finally: Suppose that g is a Lie p–algebra and that p is a polarization of some λ ∈ g∗.
Then p is a Lie p–subalgebra of g. [Let x ∈ p. We have for all y ∈ p:

Bλ(x
[p], y) = λ

(
(ad x[p])(y)

)
= λ

(
(ad x)p(y)

)
= Bλ

(
x, (ad x)p−1(y)

)
= 0

since (ad x)p−1(y) ∈ p. Therefore the subspace p + Kx[p] of g is totally isotropic. By
maximality, x[p] ∈ p].

9.3 Vergne Polarization

Let us again consider supersolvable restricted Lie algebras over K (K is an algebraically
closed field of characteristic p > 0): We assume that L is supersolvable Lie algebra such
that L is a direct sum of a torus T and a p–nilpotent ideal U in L.
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Definition 9.3.1. Let χ ∈ L∗ and λ ∈ L∗. A polarization P of λ is said to be compatible
with χ if λ(x)p − λ(x[p]) = χ(x)p for all x ∈ P .

Lemma 9.3.2. Let χ ∈ L∗. If P is a polarization of λ ∈ L∗ which is compatible with
χ, then all irreducible Uχ(P )–modules are one dimensional and the number isomorphism
classes of irreducible Uχ(P )–modules is pl where l is the dimension of any maximal torus
in P .

Proof. It follows from Lemma 9.1.1 that P , as a restricted Lie subalgebra of L, is a direct
sum of a torus and a p–nilpotent ideal in P . If there exists a one dimensional (and hence
irreducible) Uχ(P )–module we can apply Lemma 9.1.3 and Remark 9.1.4 to complete the
proof. But λ ∈ L∗ defines a one dimensional P–module Kλ where each x ∈ P acts
as multiplication with λ(x) [note that λ([P, P ]) = 0 since P is a polarization]. Since
λ(x)p−λ(x[p]) = χ(x)p for all x ∈ P we have that Kλ is an irreducible Uχ(P )–module.

Let λ ∈ L∗ and consider now a chain of ideals as in (9.1). Set for all i

si
λ = {x ∈ Li | λ([x, y]) = 0 ∀y ∈ Li}. (9.7)

Then pλ = sλ1 + · · · + sλn is a polarization of λ with pλ|Li
= pλ ∩ Li [here we define

pλ|Li
= sλ1 + · · ·+ sλi ]. See [5, 1.12.3 and 1.12.10]. We shall call a polarization constructed

thus a Vergne polarization of λ with respect to the chain (9.1). It also follows that pλ|Li
is

a polarization of λ|Li
.

Remark 9.3.3. The annihilator {x ∈ g : x.v = 0} of an element v ∈ V of a restricted
g–module V is a p–subalgebra of g: It is easy to see that the annihilator is a subspace of
g. If x.v = 0 = y.v, then

[x, y].v = x.(y.v) − y.(x.v) = 0

and
x[p].v = xp.v = 0.

Hence {x ∈ g : x.v = 0} is a p–subalgebra of g.

In the following, we assume that all Li are p–ideals.

Lemma 9.3.4.

a) All sλi with 1 ≤ i ≤ n are Lie p–subalgebras of L.

b) If sλi 6⊂ Li−1 for some 1 ≤ i ≤ n, then there exists a nonzero x ∈ sλi such that
sλi = Kx⊕ (sλi ∩ Li−1).

Proof. a) Apply Remark 9.3.3 with g := Li, V := L∗
i and v := λ|Li

.
For the proof of b) let x ∈ sλi but x /∈ Li−1. I claim that sλi = Kx ⊕ (sλi ∩ Li−1). So

let y ∈ sλi : If y ∈ Li−1, then clearly y ∈ sλi ∩ Li−1. If y /∈ Li−1, then there exists a ∈ K
such that y − ax ∈ Li−1 since Li/Li−1 is one–dimensional. Moreover, y− ax ∈ sλi and the
proof is then completed.

Proposition 9.3.5. Let λ ∈ L∗, let pλ be the Vergne polarization of λ constructed via
(9.1). Let χ ∈ L∗ such that pλ is compatible with χ; i.e., χ(x)p = λ(x)p − λ(x[p]) for all
x ∈ pλ. Then Uχ(L)⊗Uχ(pλ) Kλ is an irreducible L–module.
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Proof. The condition on χ ensures that Kλ is a Uχ(pλ)–module and thus we can construct
the module Uχ(L) ⊗Uχ(pλ) Kλ. We will use induction on dimKL. If cL(λ) = L we have
pλ = L and so the induced module has dimension 1. In that case the claim is trivial [this
takes care of dimKL ≤ 1]. Assume from now on that cL(λ) 6= L. In that case there exists
j > 0 such that Lj 6⊂ cL(λ) and Lj−1 ⊂ cL(λ). Set

H = {x ∈ L | λ([x, y]) = 0 for all y ∈ Lj}. (∗)

It follows from Remark 9.3.3 that H is a Lie p–subalgebra of L. Choose y0 ∈ Lj with
Lj = Ky0 ⊕ Lj−1 and observe that

H = {x ∈ L | λ([x, y0]) = 0}

[since Lj−1 ⊂ cL(λ) by assumption]. Thus H is the kernel of the nonzero linear form on L
given by x 7−→ λ([x, y0]) and hence H has codimension 1 in L. The chain

0 = L0 ∩H ⊂ L1 ∩H ⊂ L2 ∩H ⊂ · · · ⊂ Ln ∩H = H (∗∗)

is a chain as in (9.1). But there has to occur one repetition in (∗∗). We still can use it to
construct a Vergne polarization of pλ|H of λ|H as

pλ|H = s′1
λ

+ s′2
λ

+ · · ·+ s′n
λ

where
s′i
λ

= {x ∈ Li ∩H | λ([x, y]) = 0 for all y ∈ Li ∩H}.

I claim that pλ|H = pλ. Our choice of j says for all i < j that Li ⊂ cL(λ), hence sλi = Li

and Li ⊂ H, which then implies that sλi = Li = s′i
λ. On the other hand, for i ≥ j

any x ∈ sλi satisfies λ([x, y]) = 0 for all y ∈ Li. We have in particular λ([x, y0]) = 0 since
y0 ∈ Lj ⊂ Li. We get x ∈ H and therefore x ∈ s′i

λ. Hence sλi ⊂ s′i
λ. This implies pλ ⊂ pλ|H .

Since cL(λ) ⊂ H, any polarization of λ|H is also a polarization of λ [see statement 1) in
Section 9.2]. Apply this to pλ|H and get that pλ and pλ|H are both polarizations of λ.
Hence they have the same dimension. We get pλ = pλ|H as claimed. That claim implies
that pλ is a polarization of λ|H . Since dimKH < dimKL we may apply induction and get
that

V = Uχ(H)⊗Uχ(pλ) Kλ

is an irreducible H–module. If we apply Lemma 9.1.7 to H instead of L and to the ideal
B = Lj we see that each x ∈ Lj acts as scalar multiplication by λ(x) on V [note that (∗)
says that λ([H,B]) = 0 and that Lj ⊂ pλ]. We have by transitivity of induction that

Uχ(L)⊗Uχ(pλ) Kλ ' Uχ(L)⊗Uχ(H) V.

If the right hand side is not irreducible it follows from Lemma 9.1.5 that we can extend
V to a Uχ(L)–module. Since any x ∈ Lj acts on V as scalar multiplication by λ(x), it
commutes then with the action of each y ∈ L. So [y, x] acts as 0 on V . But [y, x] ∈ Lj,
hence acts as λ([y, x]) on V . We get thus λ([y, x]) = 0 for all y ∈ L and all x ∈ Lj, hence
Lj ⊂ cL(λ) – a contradiction to the choice of Lj .

Let λ ∈ L∗ and let χ ∈ L∗ such that the Vergne polarization pλ of λ is compatible with
χ. If P is any polarization of λ, then λ([P, P ]) = 0 and so λ defines a one–dimensional
P–module Kλ. Since P is a polarization of λ we have

dimKP = dimKpλ =
dimKL+ dimKcL(λ)

2

where cL(λ) = {x ∈ L | λ([x, y]) = 0 ∀ y ∈ L} denotes the stabiliser of λ in L.
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Lemma 9.3.6. Let λ ∈ L∗ and let χ ∈ L∗ such that pλ is compatible with χ. If P is any
polarization of λ compatible with χ, then Kλ is a Uχ(P )–module and the induced module

Uχ(L)⊗Uχ(P ) Kλ (9.8)

is an irreducible Uχ(L)–module.

Proof. The first claim is obvious. For irreducibility of the induced module, apply Lemma
9.1.3, 9.3.5 and find that all irreducible Uχ(L)–modules have dimension

pdimKL−dimKpλ .

But this is the dimension of the module in (9.8) since dimKP = dimKpλ.

Lemma 9.3.7. Let λ ∈ L∗ and let χ ∈ L∗ such that pλ is compatible with χ. If P is any
polarization of λ compatible with χ, then the number of isomorphism classes of irreducible
Uχ(L)–modules is pl, where l is the dimension of any maximal torus in P . In particular, if
P is unipotent then the number of isomorphism classes of irreducible Uχ(L)–modules is 1.

Proof. We shall use a result by Feldvoss in [6, Theorem 5]. The result is proved for
supersolvable Lie algebras such that [L,L] is p–nilpotent. For such type of Lie algebras
we have that every irreducible restricted L–module is one–dimensional. Feldvoss mentions
that in the first two lines of the proof and the rest of the proof can be applied to any
supersolvable Lie algebra. Thus: If we know that every irreducible restricted L–module is
one–dimensional we can use the result in [6, Theorem 5]. But this is proved in Lemma 9.1.2
(for L with L = T ⊕ U which is our assumption, T is a torus and U is a p–nilpotent ideal
in L). The result in [6, Theorem 5] says then: If S is any irreducible module isomorphic
to some induced module

Uχ(L)⊗Uχ(P̃ ) Kµ

where P̃ is a polarization of some µ ∈ L∗ such that µ(x)p − µ(x[p]) = χ(x)p for all x ∈ P̃ ,
then the number of isomorphism classes of irreducible Uχ(L)–modules is pl where l is the
dimension of any maximal torus in P̃ . But we may apply this to µ = λ and P̃ = P and
let S be the induced module in (9.8).

Remark 9.3.8. Let χ ∈ L∗ and suppose that λ ∈ L∗ such that pλ is compatible with χ.
If P is any polarization of λ compatible with χ, then the dimension l1 of any maximal
torus in pλ and the dimension l2 of any maximal torus in P are equal. Indeed, we apply
Lemma 9.3.7 to pλ and P and get that the number of isomorphism classes of irreducible
Uχ(L)–modules is pl1 and pl2 ; hence l1 = l2. In particular, we cannot have pλ unipotent
and P non unipotent or P unipotent and pλ non unipotent.

Lemma 9.3.9. Let χ ∈ L∗, let λi ∈ L∗
i such that λi(x)p− λi(x[p]) = χ(x)p for all x ∈ pλi

.
Then there exists an extension λ ∈ L∗ such that the Vergne polarization pλ of λ constructed
via (9.1) is compatible with χ.

Proof. We can assume that Li 6= L (otherwise let λ = λi). We use induction on dimKL. If
dimKL = 1 we necessarily have pλ = L. If x is a basis for L then there exists a ∈ K such
that x[p] = ax. Since K is algebraically closed we can find b ∈ K such that bp−ab = χ(x)p.
We define λ ∈ L∗ by λ(x) = b.

Suppose now that dimKL > 1. Denote the last but one term in (9.1) by L′ = Ln−1.
So we have dimKL

′ = dimKL − 1 and we can apply induction to L′, working again with
the chain (9.1), just with the last term removed. So there is by induction an extension
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λ′ ∈ (L′)∗ of λi such that the Vergne polarization pλ′ of λ′ with respect to that chain
satisfies λ′(x)p − λ′(x[p]) = χ(x)p for all x ∈ pλ′ . We want to construct λ as an extension
of λ′ (and so of λi). Since [L,L] ⊂ L′ the Vergne polarization of any extension λ of λ′ to
L is equal to pλ = pλ′ + s where

s = {x ∈ L | λ′([x,L]) = 0}.

We have now two possibilities: If pλ = pλ′ , then we take an arbitrary extension of λ′ to L,
and the claim holds.

Assume now the other possibility holds, i.e., that pλ 6= pλ′ . Then s 6⊂ pλ′ , equivalently,
s 6⊂ L′. So there exists y ∈ L with y /∈ L′ and y ∈ pλ. We have then L = Ky⊕L′ and pλ =
Ky⊕ pλ′ . We can find linear form λ ∈ L∗ such that λ|L′ = λ′ and λ(y)p − λ(y[p]) = χ(y)p.

[We can write y[p] = ay + y′ with a ∈ K and y′ ∈ L′. Then λ(y) can be chosen as any
element in K with λ(y)p − aλ(y) − λ′(y′) = χ(y)p.] Now pλ is the Vergne polarization of
λ with respect to our chain. We have to show that λ(x)p − λ(x[p]) = χ(x)p for all x ∈ pλ.
We can write x = by + z with b ∈ K and z ∈ pλ′ . Note that (by + z)[p] − (by)[p] − z[p] is a
linear combination of terms

[x1, [x2, . . . , [xp−1, xp] . . . ]]

where each xi is either by or z. Now each of these terms is in [pλ, pλ]. So they are all in
the kernel of λ, since pλ is a polarization of λ. Our assumptions of λ′ and the choice of
λ(y) give:

λ(x[p]) = λ((by)[p]) + λ(z[p])

= bpλ(y[p]) + λ′(z[p])

= bpλ(y)p − bpχ(y)p + λ′(z[p]).

Therefore we obtain:

λ(x)p − λ(x[p]) = bpλ(y)p + λ(z)p − bpλ(y)p + bpχ(y)p − λ′(z[p])

= λ′(z)p − λ′(z[p]) + bpχ(y)p = χ(z)p + χ(by)p = χ(x)p.

The proof is completed.

Proposition 9.3.10. Let χ ∈ L∗, let E be an irreducible Uχ(L)–module. Then there exists
a linear form λ ∈ L∗ such that the Vergne polarization pλ of λ constructed via (9.1) is
compatible with χ and E ' Uχ(L)⊗Uχ(pλ) Kλ.

Proof. There exists by Lemma 9.3.9 a linear form λ ∈ L∗ such that the Vergne polarization
constructed via (9.1) satisfies λ(x)p−λ(x[p]) = χ(x)p for all x ∈ pλ. Proposition 9.3.5 says
that the L–module E ′ = Uχ(L) ⊗Uχ(pλ) Kλ is irreducible. By Lemma 9.1.3 there exists

µ ∈ L∗ with µ(h[p]) = µ(h)p for all h ∈ T and µ(U) = 0 such that E ' E ′ ⊗ Kµ. We
get then E ' Uχ(L) ⊗Uχ(pλ) Kλ+µ. Clearly, pλ is also the Vergne polarization of λ + µ
constructed via (9.1) since µ vanishes on U and hence on [L,L]. So the claim follows.

9.4 A supersolvable subalgebra of W

Recall the ordering on page 13. In this section we consider the subspace W012. It is a Lie
subalgebra of W [see Lemma 3.1.1] of codimension 3 and can be written as a direct sum
of a torus Ke012 ⊕Ke101 and a p–nilpotent ideal W011 in W012. In fact we have:
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Lemma 9.4.1. The subspace W012 is a supersolvable restricted Lie algebra.

Proof. First notice, that each Wijk with (i, j, k) ≥ (0, 1, 2) is an ideal in W012 and form a
chain

W012 ⊃W101 ⊃W011 ⊃W202 ⊃ · · · ⊃W(p−1,p−1,1) ⊃ 0 (9.9)

such that dimKWijk/Wi′j′k′ = 1, where (i′, j′, k′) is a successor for (i, j, k). Indeed it is
clear that Wijk/Wi′j′k′ is spanned by the coset of eijk. For the ideal property, i.e., for[
W012,Wijk

]
⊂ Wijk, one has to use the equations (3.1a), (3.1b), (3.1c), (3.1d) and the

ordering of indices. Furthermore W012 can be written as T ⊕U , where T = Ke012⊕Ke101
is a torus and U = W011 is a p–ideal that is unipotent.

All Vergne polarizations of linear forms on W012 are constructed with respect to the
chain

W012 ⊃W101 ⊃W011 ⊃W202 ⊃ · · · ⊃Wp−1,p−1,1 ⊃ 0. (9.10)

Let λ ∈W ∗
012. The Vergne polarization of λ with respect to the chain above is defined as

pλ = sλ012 + sλ101 + · · ·+ sλp−1,p−1,2 + sλp−1,p−1,1 (9.11)

where
sλijk =

{
x ∈Wijk |λ

([
x, y]

)
= 0 for all y ∈Wijk

}
. (9.12)

Remark 9.4.2. Assume that r > 1 and λ(W≥r) = 0. Set s = [r/2]. So s is r/2 if r is
even and (r + 1)/2 if r is odd. It follows that W≥s ⊂ pλ. This follows by observing that
W≥s = sλs+1,0,2. Indeed, since Ws+1,0,2 = W≥s (recall the ordering), and λ([W≥s,W≥s]) ⊂
λ(W≥2s) ⊂ λ(W≥r) = 0 the claim follows.

Lemma 9.4.3. Let λ ∈ W ∗
012 such that pλ is non unipotent. Then pλ is a direct sum of

a torus and a p–nilpotent ideal in pλ. If λ|W011
6= 0 there exists a nonzero toral element

h ∈ pλ such that pλ = Kh⊕ pλ ∩W011 and λ([h,W011]) = 0.

Proof. Let λ ∈ W ∗
012 such that pλ non unipotent. It follows directly from Lemma 9.1.1

that pλ, as a Lie p–subalgebra of W012, can be written as a direct sum of a torus and a
p–nilpotent ideal pλ ∩W011 in pλ. If λ|W011

= 0 it is clear that pλ = W012 and so written
as a direct sum of a torus Ke012 ⊕Ke101 and a p–nilpotent ideal W011 in W012.

Suppose that λ|W011
6= 0. Since pλ is non unipotent we have sλ101 6⊂ W011 or sλ012 6⊂

W011. Moreover, sλ101 ⊂ W011 or sλ012 ⊂ sλ101. Indeed, let (ijk) be the maximal triple
[with respect to the ordering on page 13] such that λ(eijk) 6= 0. If k = 1 we have
[W011, eijk] ⊂ Kei−1,j+1,1 ⊕W≥i+j such that λ([W011, eijk]) = 0 [recall the ordering]. If
k = 2 then [W011, eijk] ⊂ Keij1 ⊕Kei−1,j+1,2 ⊕W≥i+j and so λ([W011, eijk]) = 0. Hence
λ([W011, eijk]) = 0.

Suppose that e101+z ∈ sλ101 for some z ∈W011. From the relations λ([e101+z, eijk]) = 0
and λ([z,Wijk]) = 0 we get i = 1 if k = 1 and i = 0 if k = 2. Next, consider ae012 + be101 +
z ∈ sλ012 for some z ∈ W011 and obtain from the relation λ([ae012 + be101 + z, eijk]) = 0
that aj + b(i − 1) = 0 if k = 1 and a(j − 1) + bi = 0 if k = 2. Since (i, j, k) � (0, 1, 1)
we conclude that a = 0. This implies that sλ012 ⊂ sλ101 if sλ101 6⊂ W011. Now apply Lemma
9.3.4.b to find nonzero element h ∈ sλ012 ∪ sλ101 such that sλ101 = Kh ⊕ sλ101 ∩ W011 or
sλ012 = Kh ⊕ sλ012 ∩W101. By Lemma 9.3.4.a and Lemma 9.1.1 we may assume that h
is toral. It follows that pλ = Kh ⊕ pλ ∩W011 for some nonzero toral element h ∈ pλ as
required. Finally, λ([h,W011]) = 0 since h ∈ sλ012 ∪ sλ101.
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Suppose that pλ is non unipotent and let 0 6= h ∈ pλ be a toral element. There exists
g ∈ Aut(W ) such that g(h) ∈ Ke012 ⊕ Ke101 (see [4, Thm.1]). The next lemma shows
that the GL2(K)–part of g is a lower triangular matrix; in particular, g(W012) = W012 and
g(W011) = W011. Each g ∈ Aut(W ) can be written as g = g1 ◦ g2, where g1 ∈ GL2(K)
and g2 ∈ Aut∗(W ). The GL2(K)–part of g will be defined as g1. This is well defined since
Aut(W ) is a semidirect product of GL2(K) and Aut∗(W ).

Lemma 9.4.4. Let 0 6= h ∈ W012 with h[p] = h. Then there exists g ∈ Aut(W ) such that
g(h) ∈ Ke012 ⊕Ke101 and g(W012) = W012 and g(W011) = W011.

Proof. Let h = ae012 + be101 + ce011 + v where v ∈W≥1. If there exists a lower triangular
matrix g with g(h) ∈ Ke012⊕Ke101+W≥1 we are done. Indeed, the proof of [4, Thm.1] says
that there exists g′ ∈ Aut∗(W ) such that (g′ ◦ g)(h) ∈ Ke012 ⊕Ke101. Now set g := g′ ◦ g.
Otherwise, let g be an automorphism on W such that g(h) ∈ Ke012⊕Ke101. There are two
possibilities for the GL2(K)–part g1 of g: Either g1 = D◦Φ1 or g1 = Φ′

1 ◦Θ◦D◦Φ1, where
D is a diagonal matrix and Φ1,Φ

′
1 are lower triangular matrices with 1 at the diagonal

and Θ is the matrix defined in Appendix A.4. We may assume that g1 = Φ′
1 ◦Θ ◦D ◦ Φ1

(since D and Φ1 preserves W012). Moreover, assume that the coefficient of e011 in D◦Φ1(h)
is nonzero [otherwise we are in the situation discussed in the beginning of the proof]. If
the coefficient of e011 in D ◦ Φ1(h) is nonzero then, by the relations in Appendix A.2, the
coefficient of e102 in Φ1(h) is nonzero – contradiction.

Lemma 9.4.5. Suppose that λ ∈ W ∗
012 and let g ∈ Aut(W ) with g(W012) = W012. Then

pλg = g−1
(
pλ
)
. In particular, pλ 6⊂W011 if and only if pλg 6⊂W011.

Proof. Since g preserves W012, the GL2(K) part of g must be a diagonal matrix composed
with some lower triangular matrix with 1 at the diagonal. For such a g we have sλ

g

ijk =

g−1
(
sλijk
)
, since g−1(Wijk) = Wijk (recall the ordering on the set of indices of basis elements

and the action of g on basis elements). In order to finish the proof, we just have to use
sλ

g

ijk = g−1
(
sλijk
)

for all (ijk) � (012) with (9.11): It follows that pλg = g−1
(
pλ
)
. The proof

is completed.

Lemma 9.4.6. Assume that λ ∈ W ∗
012. Then pλ 6⊂ W011 if and only if there exists

g ∈ Aut(W ) with g(W012) = W012 such that ae012 + be101 ∈ pλg for a, b ∈ Fp with a 6= 0 or
b 6= 0 and λg([ae012 + be101,W012]) = 0.

Proof. Apply Lemma 9.4.3 and find nonzero h ∈ pλ with h[p] = h and λ([h,W011]) = 0.
Let g−1 be an automorphism on W preserving W012 such that g−1(h) ∈ Ke012 ⊕ Ke101
(see Lemma 9.4.4). Since g(W011) = W011 also, we have λg

([
g−1(h),W011

])
= 0. The

fact that g−1(h) ∈ Ke012 ⊕Ke101 implies that λg
([
g−1(h),W012

])
= 0, which implies that

g−1(h) ∈ pλg . The other implication follows immediately from Lemma 9.4.5. Since g−1

is a restricted automorphism, we have ae012 + be101 = g−1(h) = g−1(h[p]) = g−1(h)[p] =
ape012 + bbe101, which implies that a, b ∈ Fp.

Remark 9.4.7. Return to the case where χ ∈ W ∗ is a p–character and let g ∈ Aut(W )
with g(W012) = W012. If λ ∈ W ∗

012 satisfies that λ(x)p − λ(x[p]) = χ(x)p for all x ∈ pλ it
follows from Lemma 9.4.5 that λg(x)p − λg(x[p]) = χg(x)p for all x ∈ pλg . It can also be
formulated as (Definition 9.3.1): If pλ is compatible with χ then pλg is compatible with χg.
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10 Compatible polarizations

Let χ ∈ W ∗ be a character of height r > 1. Note that we have defined the stabilizer of χ
in W≥r as st(χ,W≥r) = {x ∈W | χ([x, y]) = 0 ∀ y ∈W≥r}.

10.1 Existence

In the next two sections we will prove:

Theorem 10.1.1. There exists a linear form λ ∈ W ∗
012 such that the Vergne polarization

pλ of λ constructed via (9.10) is compatible with χ and such that

a) pλ = pχ if pχ is non unipotent.

b) pλ = pχ if pχ is unipotent and r ≤ p or st(χ,W≥r) = W≥0 or χ([e011,Wr−1]) 6= 0.

The existence of λ ∈ W ∗
012 such that the Vergne polarization pλ of λ is compatible

with χ (i.e., that λ(x)p − λ(x[p]) = χ(x)p for all x ∈ pλ) follows from the construction in
Lemma 9.3.9. The proof of Theorem 10.1.1 will be divided into two parts. In Section 10.2
we consider χ such that pχ is non unipotent and Section 10.3 deals with χ such that pχ is
unipotent. We will several times use the construction given in the proof of Lemma 9.3.9.

For λ ∈W ∗
012 and χ ∈W ∗, it will be convenient to define

λ|Wαβγ
:= λαβγ and χ|Wαβγ

:= χαβγ for any triple (αβγ) � (012).

For any (αβγ) � (012) we define pλαβγ
with respect to the chain

Wαβγ ⊃Wα′β′γ′ ⊃ · · · ⊂Wp−1,p−1,1 ⊃ 0.

where (α′β′γ′) is the successor for (αβγ) with respect to the ordering � on page 13.

Lemma 10.1.2. We can choose λ ∈W ∗
012 such that pλ is compatible with χ and

a) If r > p then λ|W≥2
= χ|W≥2

.

b) If r ≤ p then λ|W≥1
= χ|W≥1

.

Proof. a) Set λ′ := χ|W≥2
. Then we have λ′(x)p − λ′(x[p]) = χ(x)p for all x ∈ pλ′ since

x[p] = 0 for any x ∈ W≥2. Now, by Lemma 9.3.9, let λ ∈ W ∗
012 be an extension of λ′ such

that pλ is compatible with χ.
b) In this case we let λ′ := χ|W≥1

. Note λ′(x)p − λ′(x[p]) = χ(x)p for all x ∈ pλ′ since

x[p] ∈ W≥p for any x ∈ W≥1 and hence λ′(x[p]) = χ(x[p]) = 0 (r ≤ p). Now, by Lemma
9.3.9, let λ ∈W ∗

012 be an extension of λ′ such that pλ is compatible with χ.

10.2 The non unipotent case

Assume that the Vergne polarization pχ of χ is non unipotent. Then there exists a nonzero
toral element h such that pχ = Kh ⊕ pχ ∩W011 and χ([h,W011]) = 0 [see Lemma 9.4.3].
In order to show that pλ = pχ we may assume that h ∈ Ke012 ⊕ Ke101. Indeed, use
Lemma 9.4.4 to find g ∈ Aut(W ) with g(W012) = W012 such that g(h) ∈ Ke012 ⊕Ke101.
Therefore, by Lemma 9.4.5, we have g(h) ∈ p

χg−1 . If we can find λg
−1

∈ W ∗
012 such that

p
λg−1 is a polarization of λg

−1

compatible with χg
−1

such that p
λg−1 = p

χg−1 then, since
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p
λg−1 = g(pλ) and p

χg−1 = g(pχ), we have pλ = pχ and, by Remark 9.4.7, also that pλ is

compatible with χ [here λ is the linear form (λg
−1

)g]. So assume h = ae012 + be101.
The proof of Theorem 10.1.1.a will be a consequence of several lemmas. Define (i, j, k)

as the maximal index with respect to the ordering � on page 13 such that χ(eijk) 6= 0. The
assumption r > 1 implies that i+ j > 1. Define, for 0 ≤ α, β < p and γ = 1, 2, aαβγ ∈ K
via the formula [h, eαβγ ] = aαβγeαβγ . It is easy to check, by (3.1a),(3.1b),(3.1c),(3.1d),
that

aαβγ =





a− b (αβγ) = (011),

2b− a (αβγ) = (202),

b (αβγ) = (112),

a (αβγ) = (022),

b (αβγ) = (201),

a (αβγ) = (111),

2a− b (αβγ) = (021).

Lemma 10.2.1. Suppose that a021 = 0. Set λ := χ021 = χ|W021
. Then λ(x)p − λ(x[p]) =

χ(x)p for all x ∈ pλ.

Proof. We can assume that r > p [see Lemma 10.1.2.b]. This implies in particular that
p > 3 since r ≤ 2p − 3 also. Set λ′ := χ|W≥2

. Then λ′(x)p − λ′(x[p]) = χ(x)p for all

x ∈ pλ′ since x[p] = 0 for any x ∈ W≥2. Let λ ∈ W ∗
021 be an extension of λ|W≥2

such that

λ(x)p−λ(x[p]) = χ(x)p for all x ∈ pλ. See Lemma 9.3.9. The claim says that we can choose
λ such that λ(e021) = χ(e021). This will follow if we can prove that s

χ
021 ⊂ W≥2. Indeed,

for any extension λ we have s
χ
021 = sλ021 [since χ and λ are equal on W≥2 by assumption].

Therefore the construction in the proof of Lemma 9.3.9 shows that we can choose λ(e021)
arbitrarily.

If there exists y ∈Wr−2 such that χ([e021, y]) 6= 0, then we can choose λ(e021) arbitrar-
ily. Indeed, it follows that χ([W≥2, y]) ⊂ χ(W≥r) = 0 such that s

χ
021 ⊂W≥2.

Let (i, j, k) be the maximal index such that χ(eijk) 6= 0 [note that i + j = r]. If
k = 2 and i < p− 1 we have [e021, ei+1,r−i−2,2] = −2ei+1,r−i−1,1 + (i+ 1)ei,r−i,2 such that
χ([e021, ei+1,r−i−2,2]) 6= 0. So we can assume that k = 2 and i = p− 1 or k = 1 [otherwise
we can choose λ(e021) = χ(e021)]. If k = 1 and i < p − 1 we have χ([e021, ei+1,r−i−2,1]) =
(i+ 1)χ(ei,r−i,1) 6= 0.

Thus: In order to prove that we can choose λ with λ(e021) = χ(e021) we can assume
that i = p − 1. Next, use that 0 6= h = ae012 + be101 ∈ pχ for some a, b ∈ Fp. Since
Wr−1 ⊂ pχ, by Remark 9.4.2, and χ([pχ, pχ]) = 0 we have in particular χ([h,Wr−1]) = 0.
We then have

χ([h, ep−1,r+1−p,k]) = 0 =⇒

{
a(r + 1)− 2b = 0 if k = 1,

ar − b = 0 if k = 2.

Since a021 = 0 we also have 2a− b = 0. Putting all this together we get that
{
r = p+ 3 if k = 1,

r = p+ 2 if k = 2.

Suppose that s
χ
021 6⊂W≥2. Then there exists y ∈W021 such that s

χ
021 = Ky⊕s

χ
021∩W≥2

and λ(y) is defined via
λ(y)p − λ(y[p]) = χ(y)p. (10.1)
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Write y = e021 + z2 + z3 with z2 ∈ W2 and z3 ∈ W≥3. Now y[p] − (e021 + z2)
[p] − z

[p]
3 is a

linear combination of terms

[x1, [x2, . . . , [xp−1, xp] . . . ]] (∗)

where each xi is either e021 + z2 or z3. If z3 appears s times in (∗) then

[x1, [x2, . . . , [xp−1, xp] . . . ]] ∈W≥p+2s.

We may assume that x1 = z3 in order to prove that λ vanishes on terms in (∗). Indeed, if
x1 is e021 + z2 note that

λ([e021 + z2 + z3, [x2, . . . , [xp−1, xp] . . . ]]) = 0

since e021 + z2 + z3 ∈ s
χ
021. Therefore

λ([e021 + z2, [x2, . . . , [xp−1, xp] . . . ]]) = −λ([z3, [x2, . . . , [xp−1, xp] . . . ]]).

That is; we may assume that x1 = z3. This implies that s > 1 [since we can assume
xp 6= xp−1] such that all terms in (∗) belong to W≥p+4. Hence λ (which is equal to χ on

W≥2 and so has height r also) vanishes on all terms in (∗) since r ≤ p+ 3. Since z [p]
3 = 0

we therefore obtain
λ(y[p]) = λ

(
(e021 + z2)

[p]
)
.

Now (e021 + z2)
[p] − e

[p]
021 − z

[p]
2 is a linear combination of terms

[x1, [x2, . . . , [xp−1, xp] . . . ]] (∗∗)

where each xi is either e021 or z2. If z2 appears s > 0 (we can assume that xp 6= xp−1)
times in (∗∗) then

[x1, [x2, . . . , [xp−1, xp] . . . ]] ∈W≥p+s.

We want to prove that λ vanishes on all terms as in (∗∗). If so; then, since z [p]
2 =

e
[p]
021 = 0, we have λ(y[p]) = 0. Hence, by (10.1), we have λ(y)p = χ(y)p. This implies that
λ(y) = χ(y) and therefore λ(e021) = χ(e021) [recall our assumption λ|W≥2

= χ|W≥2
]. If

s > 2 we see that λ vanishes on all terms in (∗∗) since r ≤ p + 3. So we need to handle
the cases where s = 1 or s = 2.

First, write

z2 =

3∑

t=0

atet,3−t,1 +

3∑

t=0

btet,3−t,2 ∈W2

for some at, bt ∈ K.
Note that ad(e021)(z2) ∈

∑3
t=0Ket,4−t,1 +

∑2
t=0Ket,4−t,2 from (1.2a) and (1.2b). It

now follows that

(ad e021)2(z2) ∈
∑2

t=0Ket,5−t,1 +
∑1

t=0Ket,5−t,2

(ad e021)3(z2) ∈
∑1

t=0Ket,6−t,1 +Ke062

(ad e021)4(z2) ∈ Ke071,

(ad e021)5(z2) = 0.
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If s = 1 we can assume that xp = z2 such that (∗∗) is equal to adp−1e021(z2). For
p > 5 this implies that adp−1e021(z2) = 0. If p = 5 we have ad4e021(z2) ∈ Ke071 which is
zero also (we have defined erst = xr1x

s
2
∂
∂xt

for 0 ≤ r, s < p and t = 1, 2 and equal to zero
otherwise. If p = 5 then e071 = 0 since 7 > 5). So λ vanishes on all terms in (∗∗) if s = 1.

Suppose that s = 2. If k = 2 we have r = p + 2 and hence λ vanishes on all
terms in (∗∗). So assume that k = 1 and then r = p + 3. If x1 = e021 then y :=
[x2, [x3, . . . , [xp−1, xp] . . . ]] ∈ Wp+1 = Wr−2. In that case we can assume that (∗∗) is zero.
Otherwise we have χ([e021, y]) 6= 0 and in that case we can choose λ(e021) arbitrarily [re-
call the arguments in the beginning of the proof]. Therefore we only need to show that λ
vanishes on all terms in (∗∗) with x1 = z2. We can also assume that xp = z2. This implies
that

[x2, [x3, . . . , [xp−1, xp] . . . ]] = adp−2(e021)(z2).

If p > 5 then adp−2(e021)(z2) = 0. If p = 5 we have ad3(e021)(z2) = 0 since e061 =
e062 = e151 = 0 for p = 5. So λ vanishes on all terms in (∗∗) if s = 2. The proof is
completed.

Lemma 10.2.2. There exists linear form λ ∈W ∗
012 such that pλ is compatible with χ and:

a) If a202 6= 0 then λ|W≥1
= χ|W≥1

,

b) If a202 = 0 then λ112 = χ112.

Proof. We may assume that r > p and that λ|W≥2
= χ|W≥2

by Lemma 10.1.2. Since
Wr−1 ⊂ pχ and 0 6= h = ae012 + be101 ∈ pχ by assumption, we then have χ([h,Wr−1]) = 0.
It follows that (remember that (i, j, k) denotes the maximal index with respect to the
ordering � on page 13 such that χ(eijk) 6= 0):

χ([h, eijk]) = 0 =⇒

{
aj + b(i− 1) = 0 if k = 1,

a(j − 1) + bi if k = 2.

Since r = i + j > p we have i > 1 and j > 1 and therefore a 6= 0 and b 6= 0. We
conclude that aαβγ 6= 0 for all (112) � (αβγ) � (111) [use the relations on page 47 with
a 6= 0 6= b]. Therefore χ([h, eαβγ ]) = aαβγχ(eαβγ) = 0 implies that χ(eαβγ) = 0 for
(112) � (αβγ) � (111). If a202 6= 0 we get also χ(e202) = 0 and if a021 6= 0 we get
χ(e021) = 0.

Now let (202) � (αβγ) � (021) and (α′β′γ′) be the successor of (αβγ) with respect
to the ordering � on page 13. We will only consider (αβγ) = (202) in the case where
a202 6= 0 and we will only consider (αβγ) = (021) if a021 6= 0. If a021 = 0 it follows
from Lemma 10.2.1 that λ′ = χ021 satisfies that λ′(x)p − λ′(x[p]) = χ(x)p for all x ∈ pλ′ .
So for the successor (α′β′γ′) we may assume, by induction, that λα′β′γ′ = χα′β′γ′ and
λα′β′γ′(x)

p− λα′β′γ′(x
[p]) = χα′β′γ′(x)

p for all x ∈ pλα′β′γ′
. There are now two possibilities:

1) If s
λαβγ

αβγ ⊂ s
λα′β′γ′

α′β′γ′ we can choose λαβγ(eαβγ) arbitrarily. In that case set

λαβγ(eαβγ) = χ(eαβγ).

2) Suppose that there exists y := eαβγ − y
′ ∈Wαβγ with y′ ∈Wα′β′γ′ such that

s
λαβγ

αβγ = Ky ⊕ s
λαβγ

αβγ ∩Wα′β′γ′ .

49



The construction given in the proof of Lemma 9.3.9 shows that we shall define λαβγ(y)
from the relation

λαβγ(y)
p − λαβγ(y

[p]) = χ(y)p.

Since χ(eαβγ) = 0 and λαβγ(y′) = χ(y′) we get that

λαβγ(eαβγ)
p = λαβγ(y

[p]).

If λαβγ(y[p]) = 0 we have λαβγ(eαβγ) = 0 = χ(eαβγ) as required. So assume that
λαβγ(y

[p]) 6= 0 and hence λαβγ(eαβγ) 6= 0. Consider the Lie p–subalgebra of W012

given by
W ′ = Kh⊕Wαβγ .

Any extension of λαβγ to a character λ′ ∈W ′ satisfies that pλ′ is unipotent. Here pλ′

is constructed via the chain

W ′ ⊃Wαβγ ⊃Wα′β′γ′ ⊃ · · · ⊃Wp−1,p−1,1 ⊃ 0.

Otherwise there exists z ∈Wαβγ such that λ′([h+ z,W ′]) = 0. Since y = eαβγ − y
′ ∈

s
λαβγ

αβγ we get

0 = λ′([h, y]) + λ′([z, y])

= λ′([h, eαβγ ])− λ
′([h, y′]) + λ′([z, y])

= aαβγλ(eαβγ)− χ([h, y′]) + χ([z, y])

= aαβγλ(eαβγ).

Since λ(eαβγ) 6= 0 by assumption and aαβγ 6= 0 this is impossible [we only consider
(αβγ) = (202) if a202 6= 0]. That is; we have pλ′ ⊂ Wαβγ and can then choose λ′(h)
arbitrarily. Suppose that λ′(h)p − λ′(h[p]) = χ(h)p.

Next, consider x ∈ pλ′ ∩Wα′β′γ′ . I claim that [h, x] ∈ pλ′ ∩Wα′β′γ′ also. Indeed, since
λ′α′β′γ′ = χα′β′γ′ by assumption we have pλ′ ∩Wα′β′γ′ = pχ ∩Wα′β′γ′ . Now use that
h ∈ pχ to get [h, x] ∈ pχ ∩Wα′β′γ′ = pλ′ ∩Wα′β′γ′ . It follows that

P = Kh⊕ pλ′ ∩Wα′β′γ′

is a Lie subalgebra of W ′. In fact, it is restricted since h[p] = h and pλ′ ∩Wα′β′γ′ is
restricted. Since λ′α′β′γ′ = χα′β′γ′ and χ([h,W012]) = 0 we then get:

λ′([P, P ]) ⊂ λ′([pλ′ ∩Wα′β′γ′ , pλ′ ∩Wα′β′γ′ ]) + λ′([h, pλ′ ∩Wα′β′γ′ ]) = 0 + 0 = 0.

Moreover, dimKP = dimKpλ′ such that P is actually a polarization of λ′. We also
have λ′(x)p − λ′(x[p]) = χ(x)p for all x ∈ P [it is true for all basis elements!]. So
P is a non unipotent polarization of λ′ compatible with χ and pλ′ is a unipotent
polarization of λ′ compatible with χ. Now get a contradiction via Remark 9.3.8.

So if a202 6= 0 then λ′ := χ|W≥1
satisfies that λ′(x)p−λ′(x[p]) = χ(x)p for all x ∈ pλ′ . Now,

by Lemma 9.3.9, let λ ∈ W ∗
012 be an extension of λ′ such that pλ is compatible with χ. If

a202 = 0 then λ′ := χ112 satisfies that λ′(x)p− λ′(x[p]) = χ(x)p for all x ∈ pλ′ and then, by
Lemma 9.3.9, let λ ∈ W ∗

012 be an extension of λ′ such that pλ is compatible with χ. The
proof is completed.
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Proof of Theorem 10.1.1 for non unipotent pχ: It follows from Lemma 10.2.2 that
we can choose λ ∈ W ∗

012 such that pλ is compatible with χ and λ|W≥1
= χ|W≥1

if a202 6= 0

or 1 < r ≤ p and λ112 = χ112 if a202 = 0 and r > p. If sλ011 ⊂ sλ202, then we can choose
λ(e011) arbitrarily; in this case we choose λ(e011) = 0.

Note that we always have

sλ011 = s
χ
011 since [W011,W011] ⊂W112.

Therefore pχ ∩W011 = pλ ∩W011. If pλ is non unipotent, then Lemma 9.4.3 implies that
there exists a nonzero toral element h′ ∈ pλ such that pλ = Kh′ ⊕ pχ ∩W011. If pλ is
unipotent, then pλ = pχ ∩W011.

We have λ([h,W≥1]) = 0: If a202 6= 0, then λ([h,W≥1]) = χ([h,W≥1]) = 0. If a202 = 0,
then λ([h, e202]) = λ(0) = 0 and λ([h,W112]) = 0.

If now λ([h, e011]) = 0, then λ([h,W012]) = 0 since [h, e012] = 0 = [h, e101]. It then
follows that h ∈ sλ012 ⊂ pλ and so we have pλ = Kh⊕ pχ ∩W011 = pχ.

So assume that 0 6= λ([h, e011]) = a011λ(e011). It follows that λ(e011) 6= 0, hence
sλ011 6⊂ sλ202 by our choice.

Consider first the case that pλ is non unipotent. There exists y = e011 − y
′ ∈ sλ011 for

some y′ ∈W≥1. From Lemma 9.4.3 there exists a nonzero toral element h′ ∈ pλ such that
λ([h′,W011]) = 0. Write h′ = a′e012 + b′e101 + z′ for some z′ ∈ W011 and a′, b′ ∈ K. Note
that a′ 6= 0 or b′ 6= 0 since h′ is a toral element. Recall the definition of (i, j, k) as the
maximal index with respect to the ordering � defined on page 13 such that χ(eijk) 6= 0.
Then we have λ([z′, eijk]) = 0 = χ([z′, eijk]) [use the ordering and that z ′ ∈ W011; for
details see the proof of Lemma 9.4.3]. Therefore the relation λ([h′, eijk]) = 0 implies that

{
a′j + b′(i− 1) k = 1,

a′(j − 1) + b′i k = 2.

Since χ([h, eijk]) = 0 we also have

{
aj + b(i− 1) k = 1,

a(j − 1) + bi k = 2.

This shows that if we evaluate the matrix
(
a′ b′

a b

)

at (
j

i− 1

)
if k = 1 and

(
j − 1
i

)
if k = 2

we get zero. Since i+ j > 1 these vectors are nonzero and therefore the matrix is singular.
In other words, there exists c ∈ K∗ such that a′ = ca and b′ = cb. Hence h′ = ch + z′.
Since y = e011 − y

′ ∈ sλ011 we get

0 = λ([h′, y])

= cλ([h, e011]) + cλ([h,−y′]) + λ([z′, y])

= cλ([h, e011]) + cλ([h,−y′]) + 0.
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If a202 6= 0 we have λ|W≥1
= χ|W≥1

and hence λ([h,−y′]) = χ([h,−y′]) = 0. If a202 = 0
we have [h,−y′] ∈ W112 and again, since λ112 = χ112 in that case, we get λ([h,−y′]) =
χ([h,−y′]) = 0. It follows that λ([h, e011]) = 0 – contradiction.

Consider now the case that pλ is unipotent. Then the proof of Lemma 9.3.9, shows
that we can take an arbitrary extension of λ011 to W012. Define λ(h) via λ(h)p− λ(h[p]) =
χ(h)p. Set P := Kh ⊕ pχ ∩W≥1. Note that P ⊂ W012 is a Lie subalgebra of pχ since
[h, pχ ∩W≥1] ⊂ pχ ∩W≥1. In fact, it is restricted since h[p] = h and pχ ∩W≥1 is restricted.
Since pχ ∩W≥1 = pλ ∩W≥1 we also have

[P, P ] ⊂ [h,W≥1] + [pλ, pλ]

and hence λ([P, P ]) = 0 since λ([h,W≥1]) = 0 = λ([pλ, pλ]) (the statement λ([h,W≥1]) = 0
follows from a remark we made in the beginning of this proof). Finally, dimKP = dimKpλ
and therefore P is a polarization of λ.

We also have λ(x)p−λ(x[p]) = χ(x)p for all x ∈ P [true for all basis elements!]. So P is
a non unipotent polarization of λ compatible with χ and pλ is a unipotent polarization of
λ compatible with χ. Now get a contradiction by Remark 9.3.8. �

Corollary 10.2.3. If ξ ∈W ∗ of height r > 1 with pξ = Kh⊕ pξ ∩W011 for some nonzero
toral element h ∈ Ke012 ⊕Ke101 with ξ([h,W011]) = 0. Then ξ(y[p]) = 0 for all y ∈ s

ξ
αβγ

with (αβγ) � (112). Moreover,

1) If a202 6= 0 then ξ(y[p]) = 0 for all y ∈ s
ξ
202.

2) If a011 6= 0 then ξ(e011) = 0.

Proof. 1) Use Lemma 10.2.1, 10.2.2 to find λ ∈ W ∗
012 with λ|W112

= ξ|W112
and λ|W≥1

=

ξ|W≥1
if a202 6= 0 such that λ(x)p − λ(x[p]) = ξ(x)p for all x ∈ pλ. So for (αβγ) � (112)

and (αβγ) � (202) for a202 6= 0 consider y ∈ s
ξ
αβγ = sλαβγ . Then we get

λ(y)p − λ(y[p]) = ξ(y)p =⇒ ξ(y[p]) = λ(y[p]) = 0.

2) This is obvious since ξ([h, e011]) = a011ξ(e011) = 0 and a011 6= 0 by assumption.

10.3 The unipotent case

Let χ ∈ W ∗ of height r > 1 with unipotent pχ. We now prove that there exists a linear
form λ ∈W ∗

012 such that the Vergne polarization of λ is compatible with χ and unipotent
also.

Let λ ∈W ∗
012 such that pλ is compatible with χ. We will assume that λ(eαβγ) = χ(eαβγ)

whenever s
λαβγ

αβγ ⊂ s
λα′β′γ′

α′β′γ′ where (α′β′γ′) is the successor for (αβγ) with respect to the
ordering �. It is possible to construct λ in this way such that pλ is compatible with χ. See
the proof of Lemma 9.3.9.

Suppose that pλ is non unipotent. It follows, by Lemma 9.4.3, that there exists a
nonzero toral element h ∈ pλ such that pλ = Kh ⊕ pλ ∩ W011 and λ([h,W011]) = 0.
The aim is to prove that pχ is non unipotent [and so to get a contradiction]. In order
to prove that we may replace χ by any χg where g is an automorphism on W such that
g(W012) = W012. See Lemma 9.4.5.

Let, by Lemma 9.4.4, g−1 be an automorphism on W such that g−1(W012) = W012

and g−1(h) ∈ Ke012 ⊕ Ke101. Then apply Lemma 9.4.5 and Remark 9.4.7 to get pλg =
Kg−1(h) ⊕ pλg ∩W011 and λg(x)p − λg(x[p]) = χg(x)p for all x ∈ pλg . Therefore we may
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assume that h ∈ Ke012 ⊕ Ke101 and λ([h,W011]) = 0 since g(W011) = W011 by Lemma
9.4.4.

By Corollary 10.2.3 it follows that λ(y [p]) = 0 for all y ∈ sλαβγ with (αβγ) � (112) and
(αβγ) � (202) if a202 6= 0. I claim that this implies that λ112 = χ112 and λ|W≥1

= χ|W≥1
if

a202 6= 0. Indeed, let (αβγ) � (112) [or (αβγ) � (202) if a202 6= 0] with successor (α′β′γ′)
for (αβγ) with respect to the ordering �. We may assume λα′β′γ′ = χα′β′γ′ by induction.
Now, for any extension λαβγ of λα′β′γ′ we either have

s
λαβγ

αβγ ⊂ s
λα′β′γ′

α′β′γ′ or s
λαβγ

αβγ 6⊂ s
λα′β′γ′

α′β′γ′ .

In the first case we have λαβγ(eαβγ) = χ(eαβγ) by our choice. In the second case there

exists y ∈ s
λαβγ

αβγ with y /∈Wα′β′γ′ and the assumption on λ says that

λ(y)p − λ(y[p]) = χ(y)p.

But we have λ(y[p]) = 0 and hence λαβγ = χαβγ . So λ ∈W ∗
012 defined in the beginning

of this section satisfies that λ112 = χ112 and λW≥1
= χW≥1

if a202 6= 0. Therefore s
χ
011 = sλ011

since [W011,W011] ⊂W112.
We have χ([h,W≥1]) = 0: If a202 6= 0, then χ([h,W≥1]) = λ([h,W≥1]) = 0. If a202 = 0,

then χ([h, e202]) = χ(0) = 0 and χ([h,W112]) = 0.
If now χ([h, e011]) = 0, then χ([h,W012]) = 0 since [h, e012] = 0 = [h, e101]. It then

follows that h ∈ s
χ
012 ⊂ pχ – contradiction.

So assume that 0 6= χ([h, e011]) = a011χ(e011). In particular, χ(e011) 6= 0 6= a011. Since
λ([h, e011]) = 0 we then have λ(e011) = 0. So λ(e011) 6= χ(e011) and hence s

χ
011 6⊂ s

χ
202 by

our choice. Then there exists y = e011 − y
′ ∈ s

χ
011 = sλ011 with y′ ∈W≥1. It follows that

pλ = Kh⊕Ky ⊕ pλ ∩W≥1 and pχ = Ky ⊕ pχ ∩W≥1.

Set P := Kh ⊕ pχ ∩ W≥1. Note that P ⊂ W012 is a Lie subalgebra of pχ since
[h, pχ ∩W≥1] ⊂ pχ ∩W≥1. In fact, it is restricted since h[p] = h and pχ ∩W≥1 is restricted.
Note that

[P, P ] ⊂ [h,W≥1] + [pχ, pχ]

such that χ([P, P ]) = 0 since χ([h,W≥1]) = 0 = χ([pχ, pχ]) (the statement χ([h,W≥1]) = 0
follows from a remark we made in the beginning of this proof). Finally, dimKP = dimKpχ
and therefore P is a polarization of χ. Now we can find τ ∈W ∗

012 such that

τ(x)p = χ(x)p − χ(x[p]) ∀ x ∈ P ∪ pχ.

This formula defines one linear form on pχ and one on P . These coincide on pχ∩P . So
one can find a common extension to W012. Now, by Remark 9.3.8, we get a contradiction
if we consider the number of isomorphism classes of irreducible Uτ (W012)–modules: On
one hand we have χ(x)p − χ(x[p]) = τ(x)p ∀ x ∈ pχ such that the number of isomorphism
classes of irreducible Uτ (W012)–modules is 1. On the other hand we have χ(x)p−χ(x[p]) =
τ(x)p ∀ x ∈ P for a polarization P of χ, where any maximal torus has dimension 1. This
shows that the number of isomorphism classes of irreducible Uτ (W012)–modules is p. We
have a contradiction.

We have thus shown:

Lemma 10.3.1. If pχ is unipotent then there exists λ ∈ W ∗
012 such that pλ is compatible

with χ and such that pλ is unipotent.
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Lemma 10.3.2. If r ≤ p and pχ is unipotent then there exists λ ∈ W ∗
012 such that pλ is

compatible with χ and pλ = pχ.

Proof. If r ≤ p, then there exists by Lemma 10.1.2.b a linear form λ ∈ W ∗
012 such that pλ

is compatible with χ and λ|W≥1
= χ|W≥1

; in particular, s
χ
αβγ = sλαβγ for all (αβγ) � (011).

So we have pχ ∩W011 = pλ ∩W011 and by the part of the claim already proved we have
that pλ is unipotent also. Hence pλ = pλ ∩W011 = pχ ∩W011 = pχ.

Suppose in the rest of this section that r > p. Let λ ∈W ∗
012 such that pλ is compatible

with χ. We can assume that λ|W≥2
= χ|W≥2

, by Lemma 10.1.2.a. Therefore pλ|W≥1
=

pχ|W≥1
since sλαβγ = s

χ
αβγ for all (αβγ) � (202). Now write

pλ = sλ011 + s and pχ = s
χ
011 + s for s := pλ|W≥1

= pχ|W≥1
. (10.2)

Lemma 10.3.3. If χ([e011,Wr−1]) 6= 0 then pλ = s = pχ.

Proof. The assumption says that there exists y ∈ Wr−1 such that χ([e011, y]) 6= 0. This
implies that s

χ
011 ⊂ s

χ
202 ⊂ s. Indeed, consider u = ae011 + z ∈ s

χ
011 for some a ∈ K and

z ∈ W≥1. Then χ([u, y]) = aχ([e011, y]) + χ([z, y]) = 0. But [z, y] ∈ W≥r so we have
χ([z, y]) = 0 and therefore a = 0 since χ([e011, y]) 6= 0 by assumption. The assumption on
λ says in particular that λ|W≥r−1

= χ|W≥r−1
. This implies that λ([e011, y]) 6= 0 and hence

(apply the same arguments as before) we get sλ011 ⊂ s also; therefore pλ = s = pχ.

So assume that χ([e011,Wr−1]) = 0. We shall recall the basis for Wr−1 given in Section

4.2: There exist basis elements x(r)
0 , x

(r)
1 , . . . , x

(r)
2p−r−1 and y

(r)
1 , y

(r)
2 , . . . , y

(r)
2p−r−2 with the

following properties:

[
e011, x

(r)
i

]
= −(i+ 1)x

(r)
i+1 and

[
e011, y

(r)
i

]
= −iy

(r)
i+1.

Since χ([e011,Wr−1]) = 0 it follows from the relations above that χ(x
(r)
i ) = 0 for all i > 0

and χ(y
(r)
j ) = 0 for all j > 1. But χ(Wr−1) 6= 0, so we also have χ(x

(r)
0 ) 6= 0 or χ(y

(r)
1 ) 6= 0.

This implies that χ(ep−1,r+1−p,2) 6= 0 or χ(ep−2,r+2−p,2) + (r + 2)χ(ep−1,r+1−p,1) 6= 0. We
also have χ(eαβ1) = 0 for all α, β with 0 ≤ α, β < p and α+β = r and α < p−1. Moreover,
χ(eαβ2) = 0 for all α, β with 0 ≤ α, β < p and α + β = r and α < p − 2. See Section 4.2
and use the assumptions on χ just obtained.

Lemma 10.3.4. If st(χ,W≥r) = W≥0 and χ(x
(r)
1 ) = 0, then

χ(ep−2,r+2−p,2) = −χ(ep−1,r+1−p,1) 6= 0.

Proof. If χ(ep−2,r+2−p,2) = 0, then we have e001 ∈ st(χ,W≥r) – contradiction. So we have

χ(ep−2,r+2−p,2) 6= 0. Now, since χ(x
(r)
1 ) = 0 we find that

0 = χ([e011, ep−1,r+1−p,2]) = −(χ(ep−2,r+2−p,2) + χ(ep−1,r+1−p,1)).

The proof is completed.

Lemma 10.3.5. Suppose that st(χ,W≥r) = W≥0 and χ([e011,Wr−1]) = 0. Then:

a) We have inclusions s
χ
201 ⊂ s

χ
111 ⊂ s

χ
021 ⊂W≥2 and s

χ
202 ⊂ s

χ
112.

b) We can choose λ ∈W ∗
012 such that pλ is compatible with χ and such that λ201 = χ201

and λ(e202) = χ(e202).
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Proof. 1) Set y021 = ep−1,r−p,2 and y111 = ep−1,r−p,1 and y201 = ep−2,r−p+1,1. Then, for
(201) � (αβγ) � (021), we have χ([eαβγ , yαβγ ]) 6= 0 but χ([Wα′β′γ′ , yαβγ ]) = 0, where
(α′β′γ′) is the successor for (αβγ) with respect to �. The existence of yαβγ implies that
s
χ
αβγ ⊂Wα′β′γ′ ; hence s

χ
αβγ ⊂ s

χ
α′β′γ′ .

If r 6= 2p−4 we set y202 = ep−3,r+2−p,1 and find that [e202, y202] = (r+2)ep−1,r+1−p,1−
2ep−2,r+2−p,2; hence, by Lemma 10.3.4, we get χ([e202, y202]) = (r + 4)χ(ep−1,r+1−p,1) 6= 0.
But also χ([W112, y202]) = 0 from the assumptions on χ (see the remarks done just before
Lemma 10.3.4). Hence s

χ
202 ⊂ s

χ
112 for r 6= 2p− 4.

If r = 2p − 4, set y202 = ep−4,r+3−p,2 (since r = 2p − 4 > p we have in particular,
p > 3 and r + 3 − p = p − 1; so y202 6= 0). By Lemma 10.3.4, we get χ([e202, y202]) =
(r + 3 − p)χ(ep−2,r+2−p,2) 6= 0 but also χ([W112, y202]) = 0 from the assumptions on χ.
Therefore s

χ
202 ⊂ s

χ
112 for r = 2p− 4 also.

2) Apply the construction in the proof of Lemma 9.3.9 with Lemma 10.1.2.a and the
inclusions obtained in 1) and choose then λ such that λ(eαβγ) = χ(eαβγ) for (αβγ) � (201)
and (αβγ) = (202).

Lemma 10.3.6. Suppose that st(χ,W≥r) = W≥0 and χ([e011,Wr−1]) = 0. If s
χ
022 ⊂ s

χ
201

or there exists x ∈ s
χ
022 with s

χ
022 = Kx ⊕ s

χ
022 ∩W201 and χ(x[p]) = 0, then there exists

λ ∈W ∗
012 such that pλ is compatible with χ and such that pλ = pχ.

Proof. First, by the construction in the proof of Lemma 9.3.9 and Lemma 10.3.5, choose
λ201 ∈ W ∗

201 such that λ201 = χ201 and such that λ201(z)
p − λ201(z

[p]) = χ(z)p for all
z ∈ pλ201

. Let λ022 be an extension of λ201 such that λ022(z)
p − λ022(z

[p]) = χ(z)p for all
z ∈ pλ022

. If s
χ
022 ⊂ s

χ
201, then also sλ022

022 ⊂ sλ201

201 and then choose λ022(e022) = χ(e022).
Otherwise, there exists x such that s

χ
022 = Kx ⊕ s

χ
022 ∩W201 and χ(x[p]) = 0. It follows

that λ022(x)
p − λ022(x

[p]) = χ(x)p. Since λ022(x
[p]) = χ(x[p]) = 0 we have λ022(x) = χ(x);

hence λ022(e022) = χ(e022). So it is possible, by Lemma 10.3.5.a and the construction in
the proof of Lemma 9.3.9, to find an extension λ ∈ W ∗

012 of λ022 = χ022 such that pλ is
compatible with χ. Choose λ ∈W ∗

012 in that way.

Note that Lemma 10.3.5 implies that pχ ∩W≥1 = pχ ∩W112. Therefore

[sλ011, pχ] ⊂ [sλ011, s
χ
011] + [sλ011, pχ ∩W112] ⊂ Ker(χ)

since χ([sλ011, s
χ
011]) ⊂ χ([W011, s

χ
011]) = 0 and χ([sλ011, pχ ∩W112]) = λ([sλ011, pχ ∩W112]) ⊂

λ([sλ011,W011]) = 0 (here we use that [sλ011, pχ ∩W112] ⊂W022 and that λ022 = χ022 by our
choice). It follows that sλ011 + pχ is a totally isotropic subspace with respect to χ; hence,
by maximality of pχ, we have sλ011 ⊂ pχ. This implies that pλ ⊂ pχ. By symmetry, we can
also prove that pχ ⊂ pλ.

So assume from now that:

1) χ([e011,Wr−1]) = 0,

2) st(χ,W≥r) = W≥0,

3) s
χ
022 6⊂ s

χ
201,

4) s
χ
011 6⊂ s

χ
022 or sλ011 6⊂ sλ022.

Assumption 3) implies that there exists z ∈W201 such that x := e022 + z ∈ s
χ
022. Write

z = ae201 + be111 + ce021 + z′ for some z′ ∈W≥2.

55



Since χ([e022, ep−2,r+1−p,1]) = 0 = χ([z′, ep−2,r+1−p,1]) we get

χ([ae201 + be111 + ce021, ep−2,r+1−p,1]) = 0

and hence a = 0 from the assumptions on χ. Moreover, χ([e022 + z, ep−1,r−p,1]) = 0 implies
that r = 2b.

Let λ ∈ W ∗
012 with λ|W≥2

= χ|W≥2
such that pλ is compatible with χ. We can assume

that s
χ
011 6⊂ s

χ
022 or sλ011 6⊂ sλ022 by assumption 4) above.

Let λ ∈ W ∗
012 with λ|W≥2

= χ|W≥2
such that pλ is compatible with χ. If there exists

y = e011+y′ ∈ s
χ
011 with y′ ∈W≥1, then [y, e022+z] ∈ pχ. If there exists y = e011+y′ ∈ sλ011

with y′ ∈ W≥1, then [y, e022 + z] ∈ pλ since e022 + z ∈ s
χ
022 and s

χ
022 = sλ022. It is easy to

obtain
[e011 + y′, e022 + z] = (b− 1)e021 + w

for some w ∈W≥2. If e011 + y′ ∈ s
χ
011 then (b− 1)e021 +w ∈ pχ ∩W021. If e011 + y′ ∈ sλ011

then (b− 1)e021 +w ∈ pλ ∩W021 = pχ ∩W021. But pχ ∩W021 ⊂W≥2 by Lemma 10.3.5.a;
hence b = 1. Since r = 2b and p < r ≤ 2p− 3 we get r = p+ 2.

So we only need to handle r = p+ 2. Write

x = e022 + e111 + ce021 + z′ where c ∈ K and z′ ∈W≥2.

The next lemma proves that χ(x[p]) = 0 and hence pλ = pχ by Lemma 10.3.6.

Lemma 10.3.7. If r = p+ 2, then χ(x[p]) = 0.

Proof. First, note that (z ′)[p] = 0 since z′ ∈W≥2. Next, I claim that

(e022 + e111 + ce021)
[p] = 0.

Indeed, set z1 := e022 + e111 and z2 := e021. Then (e022 + e111 + ce021)
[p] − z

[p]
1 − z

[p]
2 is a

linear combination of terms

[x1, [x2, . . . , [xp−1, xp] . . . ]] (∗)

where each xi is either z1 or z2. Set xp−1 = z1 and xp = z2. Note that [z1, e0j1] =
(j − 1)e0,j+1,1 and [e021, e0j1] = 0 for all j. Hence (ad z1)k(z2) ∈ Ke0,k+2,1. If there exists
1 ≤ i < p− 1 such that xi = z2, then the term in (∗) is zero [let i < p− 1 be maximal and
get:

[x1, [x2, . . . , [xp−1, xp] . . . ]] = [x1, [x2, . . . , xi−1, [xi, (ad z2)
p−i−1(z1)] . . . ]].

Since (ad z2)p−i−1(z1) ∈ Ke0,p+1−i,1 and [xi, e0,p+1−i,1] = 0, we have that terms in (∗) with
xi = z2 for some 1 ≤ i < p− 1 are zero].

Suppose that x1 = x2 = · · · = xp−1 = z1. Then

[x1, [x2, . . . , [xp−1, xp] . . . ]] = (ad z2)
p−1(z1) ∈ Ke0,p+1,1 = 0

since e0,p+1,1 = 0. This implies that (e022 + r
2e111 + ce021)

[p] − z
[p]
1 − z

[p]
2 = 0. But z[p]

2 = 0

since e[p]021 = 0.

Next, consider z1 = e022 + e111. Then z[p]
1 − e

[p]
022− e

[p]
111 is a linear combination of terms

[x1, [x2, . . . , [xp−1, xp] . . . ]] (∗∗)

where each xi is either e022 or e111. We may assume that xp−1 = e022 and xp = e111. Note
that [e022, e1j1] = je1,j+1,1 and [e111, e1j1] = 0 for all j. Hence (ad e022)k(e111) ∈ Ke1,k+1,1.
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If there exists 1 ≤ i < p− 1 such that xi = e111, then the term in (∗∗) is zero [let i < p− 1
be maximal and get:

[x1, [x2, . . . , [xp−1, xp] . . . ]] = [x1, [x2, . . . , xi−1, [xi, (ad e022)
p−i−1(e111)] . . . ]].

Since (ad e022)
k(e111) ∈ Ke1,k+1,1 and [xi, e1,p−i,1] = 0, we have that terms in (∗∗) with

xi = e111 for some 1 ≤ i < p− 1 are zero].
Suppose that x1 = x2 = · · · = xp−1 = e022. Then

[x1, [x2, . . . , [xp−1, xp] . . . ]] = (ad e022)
p−1(e111) ∈ Ke1,p,1 = 0

since e1,p,1 = 0. It follows, since e[p]022 = 0 = e
[p]
111, that

(e022 + e111 + ce021)
[p] = 0

as claimed in the beginning.
Since x = e022 + e111 + ce021 + z′ and (z′)[p] = 0 also, we get that x[p] is a linear

combination of terms
[x1, [x2, . . . , [xp−1, xp] . . . ]] (∗ ∗ ∗)

where each xi is either e022 + e111 + ce021 or z′. If z′ occurs s times in (∗ ∗ ∗) then
[x1, [x2, . . . , [xp−1, xp] . . . ]] ∈W≥p+s. We can assume that x1 = z′ in order to prove that χ
vanishes on all terms in (∗ ∗ ∗). Indeed, if x1 = e022 + e111 + ce021 note that

χ([e022 + e111 + ce021 + z′, [x2, . . . , [xp−1, xp] . . . ]]) = 0

since e022 + e111 + ce021 + z′ ∈ s
χ
022. Therefore

χ([e022 + e111 + ce021, [x2, . . . , [xp−1, xp] . . . ]]) = −χ([z′, [x2, . . . , [xp−1, xp] . . . ]]).

That is; we may assume that x1 = z′. So we have s > 1 [since we can assume xp 6= xp−1]
and hence χ of height p+ 2 vanishes on all terms in (∗ ∗ ∗); therefore χ(x[p]) = 0 also.

Corollary 10.3.8. Suppose that pχ is unipotent and st(χ,W≥r) = W≥0. Then there exists
λ ∈W ∗

012 such that pλ is compatible with χ and pλ = pχ.

10.4 Applications

Let χ ∈W ∗. The stabilisers of χ in W and W≥0 and W012 are defined as (see Section 9.2):

cW (χ) = {y ∈W | χ([y, x]) = 0 for all x ∈W},

cW≥0
(χ|W≥0

) = {y ∈W≥0 | χ([y, x]) = 0 for all x ∈W≥0},

cW012
(χ|W012

) = {y ∈W012 | χ([y, x]) = 0 for all x ∈W012}.

Some general observations: If g is a Lie algebra over an arbitrary field and λ ∈ g∗,
then it is well known that cg(λ) is a Lie subalgebra of g (in fact a Lie p–subalgebra if g is
restricted) and its codimension in g is even.

Suppose that g is restricted. Then we define the rank of cg(λ) as the maximal dimension
of all tori in cg(λ). We will write rk cg(λ) for the rank of cg(λ). Clearly, we have rk
cg(λ) = rk cg(λ

g) for any g ∈ Aut(g) such that g(x[p]) = g(x)[p] for all x ∈ g (i.e., g is a
restricted automorphism on g).

Going back to W we get rk cW (χ) = rk cW (χg) for all g ∈ Aut(W ) (since automor-
phisms on W are restricted). It follows by (2.14) that g(W≥0) = W≥0; therefore we have
rk cW≥0

(χ|W≥0
) = rk cW≥0

(χg|W≥0
) for g ∈ Aut(W ).
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Lemma 10.4.1. Let χ ∈ W ∗ of height r > 1 such that χ([W012, x]) = 0 6= χ([e102, x]) for
some x ∈Wr−1. Then cW≥0

(χ|W≥0
) is a subspace of cW012

(χ|W012
) of codimension 1 and pχ

is a polarization of χ|W≥0
.

Proof. Let y = ae102 + be012 + ce101 + de011 + v ∈ cW≥0
(χ|W≥0

) for some v ∈W≥1 and get
a = 0 from 0 = χ([x, y]) = aχ([e102, x]); thus we have cW≥0

(χ|W≥0
) ⊂W012. Now conclude

by 1) in Section 9.2.

Lemma 10.4.2. Let χ ∈W ∗ of height r > 1. Then we have rk cW≥0
(χ|W≥0

) ∈ {0, 1}.

Proof. If h := cW≥0
(χ|W≥0

) has rank 2, then h contains a maximal torus of W (2). Using
Demushkin’s result [4, Thm. 1] in conjunction with h being contained in W≥0, we can
assume that T0 := Ke012 ⊕Ke101 ⊂ h. Since T0 is self–centralizing, it follows that W≥1 ⊂
Ker(χ), whence r ≤ 1 — contradiction.

Lemma 10.4.3. Let χ ∈W ∗ of height r > 1 such that χ does not have Type II.a as in 5.2
if r = 2p−3. We have rk cW≥0

(χ|W≥0
) = 1 if and only if all polarizations of χ|W≥0

are non
unipotent.

Proof. First, note that both claims in the lemma are Aut(W )–stable [let g ∈ Aut(W ):
Then rk cW≥0

(χ|W≥0
) = 1 if and only if rk cW≥0

(χg|W≥0
) = 1 and all polarizations of χ|W≥0

are non unipotent if and only if all polarizations of χg|W≥0
are non unipotent: For the

last statement note that the map P 7−→ g−1(P ) induces a bijection between the set of
polarizations of χ|W≥0

and the set of polarizations of χg|W≥0
].

Suppose that rk cW≥0
(χ|W≥0

) = 1 and let h ∈ cW≥0
(χ|W≥0

) be a nonzero toral element.
If P ⊂ W≥0 is any polarization of χ|W≥0

then χ|W≥0
([P + Kh,P + Kh]) = 0 since h ∈

cW≥0
(χ|W≥0

); hence h ∈ P by maximality. In particular, P is non unipotent.
Suppose that any polarization of χ|W≥0

is non unipotent. The remark in the beginning of
the proof together with Lemma 7.3.1 say that we can assume χ([x, e102]) 6= 0 = χ([x,W012])
for some x ∈ Wr−1. In particular, cW≥0

(χ|W≥0
) ⊂ W012 and by 1) in Section 9.2 then:

Any polarization p ⊂ W012 of χ|W012
is a polarization of χ|W≥0

also. In particular, the
Vergne polarization pχ is a polarization of χ|W≥0

and therefore non unipotent. Write

pχ = Kh⊕ pχ ∩W011 for some h with h[p] = h.
Let g be an automorphism on W with g(W012) = W012 such that 0 6= h ∈ pχg and

h[p] = h and χg([h,W012]) = 0 (see Lemma 9.4.6). Therefore, g(h) ∈ cW012
(χ|W012

).
I claim that we can find c ∈ K such that h′ = g(h) + cx ∈ cW≥0

(χ|W≥0
). Indeed,

define c ∈ K such that χ([h′, e102]) = 0 (here we use that χ([x, e102]) 6= 0). There-
fore χ([h′, e102]) = 0. But we also have χ([h′,W012]) = 0, since χ([x,W012]) = 0 and
χ([g(h),W012]) = χg([h,W012]) = 0; it follows that h′ ∈ cW≥0

(χ|W≥0
). Since g(h) is a toral

element, we get rk cW≥0
(χ|W≥0

) = 1 (see Lemma B.1.3).

Remark 10.4.4. The proof of Lemma 10.4.3 shows: If χ([e102, x]) 6= 0 = χ([W012, x]) for
some x ∈ Wr−1, then pχ is non unipotent if and only if rk cW≥0

(χ|W≥0
) = 1. Indeed, the

assumption on x says that pχ is a polarization of χ|W≥0
. Therefore, rk cW≥0

(χ|W≥0
) = 1

implies that pχ is non unipotent by Lemma 10.4.3. The other implication follows in a
similar way as the last part of the proof above.

Theorem 10.4.5. Let χ be a character of height r > 1 such that χ does not have Type II.a
as in 5.2 if r = 2p − 3. Then there are p isomorphism classes of irreducible Uχ(W≥0)–
modules if and only if rk cW≥0

(χ|W≥0
) = 1. If rk cW≥0

(χ|W≥0
) = 0 and st(χ,W≥r) = W≥0

or r ≤ p or χ([e011,Wr−1]) 6= 0, then there is 1 isomorphism class of irreducible Uχ(W≥0)–
modules.
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Proof. First, note that both conditions in the theorem are Aut(W )–stable: Indeed, the
number of isomorphism classes of irreducible Uχ(W≥0)–modules is equal to the number
isomorphism classes of irreducible Uχg(W≥0)–modules for any g ∈ Aut(W ), since we have
an isomorphism Uχ(W≥0) ' Uχg (W≥0) of K–algebras. We also have rk cW≥0

(χ|W≥0
) =

rk cW≥0
(χg|W≥0

) for any g ∈ Aut(W ).

Therefore we can assume, by Lemma 7.3.1, that χ([e102, x]) 6= 0 = χ([W012, x]) for some
x ∈ Wr−1 and by Theorem 7.3.2 then that induction induces a bijection between the iso-
morphism classes of irreducible Uχ(W012)–modules and isomorphism classes of irreducible
Uχ(W≥0)–modules.

To the proof: If rk cW≥0
(χ|W≥0

) = 1 then all polarizations of χ|W≥0
are non unipotent

by Lemma 10.4.3. It follows from Lemma 10.4.1 that pχ is a polarization of χ|W≥0
and

therefore non unipotent. Choose λ ∈ W ∗
012 such that λ(x)p − λ(x[p]) = χ(x)p for all

x ∈ pλ and such that pλ = pχ. See Theorem 10.1.1.a. Any maximal torus in pλ = pχ has
dimension 1 if pχ is non unipotent [see Lemma 9.4.3], and so there are, by Lemma 9.3.7
with L = W012, exactly p isomorphism classes of irreducible Uχ(W012)–modules and since
induction is a bijection (by assumption), we conclude that there are p isomorphism classes
of irreducible Uχ(W≥0)–modules.

Suppose that there are p isomorphism classes of irreducible Uχ(W≥0)–modules. Since
induction is a bijection (by assumption), there exist p isomorphism classes of irreducible
Uχ(W012)–modules or equivalently, by Lemma 9.3.7, pλ is non unipotent [for any λ ∈W ∗

012

such that λ(x)p − λ(x[p]) = χ(x)p for all x ∈ pλ]. Now apply Theorem 10.1.1 to get that
pχ is non unipotent also. Finally conclude via Remark 10.4.4 (recall our assumption on χ
in the beginning of the proof).

If rk cW≥0
(χ|W≥0

) = 0 then pχ is unipotent by Remark 10.4.4. Now apply Theorem
10.1.1.b (recall our assumption in this case) and Lemma 9.3.7 with our assumption that
induction induces a bijection between the isomorphism classes of irreducible Uχ(W012)–
modules and isomorphism classes of irreducible Uχ(W≥0)–modules: It follows that there is
1 isomorphism class of irreducible Uχ(W≥0)–modules.

Theorem 10.4.6. Let χ be a character of height 1 < r ≤ 2p − 3 such that χ does not
have Type II.a as in 5.2 if r = 2p − 3. If pχ is non unipotent or st(χ,W≥r) = W≥0

or r ≤ p or χ([e011,Wr−1]) 6= 0, then each irreducible Uχ(W≥0)–module has dimension

p
codimW≥0

cW≥0
(χ|W≥0

)
/

2
.

Proof. First, apply Lemma 7.3.1 and find g ∈ Aut(W ) such that χg([W012, x]) = 0 6=
χg([e102, x]) for some x ∈ Wr−1. But g(W≥0) = W≥0 so g induces an isomorphism
cW≥0

(χg
|W≥0

) ' cW≥0
(χ|W≥0

). Therefore, codimW≥0
cW≥0

(χg
|W≥0

) = codimW≥0
cW≥0

(χ|W≥0
)

and we can thus assume that χ([W012, x]) = 0 6= χ([e102, x]) for some x ∈ Wr−1 (irre-
ducible Uχ(W≥0)–modules and irreducible Uχg(W≥0)–modules have the same dimension
since Uχ(W≥0) ' Uχg (W≥0) as K–algebras).

Now apply Lemma 10.4.1 and get dimKcW≥0
(χ|W≥0

) = dimKcW012
(χ|W012

) − 1. More-
over, the existence of x says that induction induces a bijection between isomorphism classes
of irreducible Uχ(W012)–modules and isomorphism classes of irreducible Uχ(W≥0)–modules.
See Lemma 7.1.1.

Pick λ ∈ W ∗
012 such that pλ is compatible with χ (i.e., λ(x)p − λ(x[p]) = χ(x)p for

all x ∈ pλ) and such that pλ = pχ. This can be done by Theorem 10.1.1 (recall our
assumptions). Now the dimension of each irreducible W≥0–module with p–character χ
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(use that dimKcW≥0
(χ|W≥0

) = dimKcW012
(χ|W012

)− 1):

p · pcodimW012
pχ = p

codimW≥0
cW≥0

(χ|W≥0
)
/

2
.

The proof is completed.

Suppose that st(χ,W≥r) = W≥0. Then it is easy to see that cW (χ) ⊂ st(χ,W≥r) from
the definitions; hence cW (χ) ⊂W≥0. This implies that

cW (χ) ⊂ cW≥0
(χ|W≥0

). (10.3)

The next lemma says that cW (χ) is a subalgebra of cW≥0
(χ|W≥0

) of codimension 2 if (10.3)
holds. In the proof we only use (10.3) and not the assumption st(χ,W≥r) = W≥0.

Lemma 10.4.7. If cW (χ) ⊂ cW≥0
(χ|W≥0

), then we have dimKcW (χ) = dimKcW≥0
(χ|W≥0

)−
2. In particular; any polarization P ⊂W≥0 of χ|W≥0

is polarization of χ also.

Proof. In general, if V is a vector space and f : V × V −→ K is a bilinear, antisymmetric
form, then codimV cV (f) is even, where cV (f) = {v ∈ V | f(v, V ) = 0}. Suppose that
codimV cV (f) = 2mV ; then mV is the maximal dimension of an isotropic subspace in
V/cV (f) and therefore mV +dimKcV (f) is the maximal dimension of an isotropic subspace
in V . Apply these observations to V = W (resp. V = W≥0) and f = χ([ , ]) and use
that any isotropic subspace in W≥0 is also an isotropic subspace in W : We obtain that
dimKcW (χ) ≥ dimKcW≥0

(χ|W≥0
)− 2.

We also have dimKcW (χ) − dimKcW≥0
(χ|W≥0

) + 2 ∈ 2Z since cW ′(χ) ⊂ W ′ is a
subspace of even codimension for W ′ = W or W ′ = W≥0. Together with the inclu-
sion cW (χ) ⊂ cW≥0

(χ|W≥0
), this leave us with two possibilities: Either dimKcW (χ) =

dimKcW≥0
(χ|W≥0

)− 2 or dimKcW (χ) = dimKcW≥0
(χ|W≥0

). The assumption on the height
of χ says that W≥r ⊂ cW≥0

(χ|W≥0
). But we have W≥r 6⊂ cW (χ) since [W−1,Wr] = Wr−1

and χ(Wr−1) 6= 0; hence we cannot have dimKcW (χ) = dimKcW≥0
(χ|W≥0

). We get
dimKcW (χ) = dimKcW≥0

(χ|W≥0
)− 2 as required.

The final statement follows since P ⊂W is a Lie p–subalgebra with χ([P, P ]) = 0 and
the dimension formula given in (9.6) follows by the part of the claim already proved.

In the next lemma we will only use the inclusion in (10.3) and not the assumption
st(χ,W≥r) = W≥0.

Lemma 10.4.8. Let χ ∈ W ∗ of height r > 1 with cW (χ) ⊂ cW≥0
(χ|W≥0

). Then we have
rk cW (χ) = 0 or rk cW (χ) = 1.

Proof. Follows immmediately from Lemma 10.4.2 and cW (χ) ⊂ cW≥0
(χ|W≥0

).

Lemma 10.4.9. Let χ ∈W ∗ of height r > 1 with st(χ,W≥r) = W≥0 such that χ does not
have Type II.a as in 5.2 if r = 2p−3. We have rk cW (χ) = 1 if and only if all polarizations
of χ are non unipotent.

Proof. First, note that both claims in the lemma are Aut(W )–stable [let g ∈ Aut(W ):
Then rk cW (χ) = 1 if and only if rk cW (χg) = 1 and all polarizations of χ are non
unipotent if and only if all polarizations of χg are non unipotent: For the last statement
note that the map P 7−→ g−1(P ) induces a bijection between the set of polarizations of χ
and the set of polarizations of χg].
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Suppose that rk cW (χ) = 1 and let h ∈ cW (χ) be a nonzero toral element. If P is
any polarization of χ then χ([P + Kh,P + Kh]) = 0 since h ∈ cW (χ); hence h ∈ P by
maximality. In particular, P is non unipotent.

Suppose that any polarization of χ is non unipotent. The remark in the beginning of
the proof together with Lemma 7.3.1 say that we can assume χ([x, e102]) 6= 0 = χ([x,W012])
for some x ∈ Wr−1. In particular, cW≥0

(χ|W≥0
) ⊂ W012 and by Lemma 10.4.1 then: Any

polarization p ⊂ W012 of χ|W012
is a polarization of χ|W≥0

and so a polarization of χ by
Lemma 10.4.7; hence non unipotent. In particular, the Vergne polarization pχ is non
unipotent. Write pχ = Kh⊕ pχ ∩W011 for some h with h[p] = h.

Let g be an automorphism g on W with g(W012) = W012 such that 0 6= h ∈ pχg and
h[p] = h and χg([h,W012]) = 0 (see Lemma 9.4.6). It follows that g(h) ∈ cW012

(χ|W012
).

I claim that we can find f ∈ Wr and c ∈ K such that h′ = g(h) + f + cx ∈ cW (χ)
for x ∈ Wr−1 defined such that χ([x, e102]) 6= 0 = χ([x,W012]). Indeed, define c ∈ K such
that χ([h′, e102]) = 0 (here we use that χ([x, e102]) 6= 0). I claim that there exists f ∈ Wr

such that χ([f, e001]) = −χ([g(h) + cx, e001]) and χ([f, e002]) = −χ([g(h) + cx, e002]):
Indeed, use that st(χ,W≥r) = W≥0 and apply Remark 6.3.6 with a = W≥r and h = W≥0

to ϕ(z) = −χ([g(h) + cx, z]) for z ∈ W−1. Therefore χ([h′,W−1]) = 0. We have defined
c ∈ K such that χ([h′, e102]) = 0 and moreover χ([h′,W012]) = 0, since χ([x,W012]) =
0 = χ([f,W012]) and χ([g(h),W012 ]) = χg([h,W012]) = 0. It follows that h′ ∈ cW (χ) and
therefore rk cW (χ) = 1 since g(h) is toral (apply Lemma B.1.3 in Appendix B). The proof
is completed.

Lemma 10.4.10. Suppose that χ ∈W ∗ of height 1 < r ≤ 2p− 3 with st(χ,W≥r) = W≥0.
Then rk cW≥0

(χ|W≥0
) = 1 if and only if rk cW (χ) = 1.

Proof. The "if" part is easy by Lemma 10.4.2 and since we have cW (χ) ⊂ cW≥0
(χ|W≥0

)
by (10.3). Next, suppose that rk cW≥0

(χ|W≥0
) = 1 and let h ∈ cW≥0

(χ|W≥0
) be a nonzero

toral element. I claim that we can find f ∈ Wr such that h′ = h + f ∈ cW (χ). Indeed,
apply Remark 6.3.6 with a = W≥r and h = W≥0 to ϕ(z) = −χ([h, z]) for z ∈W−1: There
exists f ∈ Wr such that χ([h + f,W−1]) = 0. It follows that h′ = h + f ∈ cW (χ) since
h ∈ cW≥0

(χ|W≥0
) and χ([f,W≥0]) = 0. Therefore we have rk cW (χ) = 1 since h is toral

(see Lemma B.1.3) and rk cW (χ) ≤ 1 by Lemma 10.4.8.

If st(χ,W≥r) = W≥0 then, by Theorem 8.1.1, induction induces a bijection between
the isomorphism classes of irreducible Uχ(W≥0)–modules and the isomorphism classes of
irreducible Uχ(W)–modules. Now, apply Theorem 10.4.5 and Lemma 10.4.10 and find:

Theorem 10.4.11. Let χ be a character of height 1 < r ≤ 2p− 3 such that st(χ,W≥r) =
W≥0 and such that χ does not have Type II.a as in 5.2 if r = 2p − 3. Then there are
p isomorphism classes of irreducible Uχ(W )–modules if and only if rk cW (χ) = 1. If
rk cW (χ) = 0, then there is 1 isomorphism class of irreducible Uχ(W )–modules.

From Theorem 10.4.6 and Lemma 10.4.7 we get:

Theorem 10.4.12. Let χ be a character of height 1 < r ≤ 2p−3 such that χ does not have
Type II.a as in 5.2 if r = 2p−3. If st(χ,W≥r) = W≥0, then each irreducible Uχ(W )–module

has dimension pcodimW cW (χ)
/

2.
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11 Exceptional characters

In this section we will study characters where we cannot apply Theorem 8.1.1 in order to
study induction from W≥0 to W . First, let us introduce those characters.

11.1 Definition

In the following we consider χ ∈W ∗ of height r with p− 2 < r ≤ 2p− 3. We say that χ is
exceptional if the stabilizer of χ in W≥r intersects W−1 non trivial or equivalent:

st(χ,W≥r) 6= W≥0.

Note that st(χ,W≥r) = {w ∈ W | χ([w, x]) = 0 ∀x ∈ W≥r}. It is clear that there exist
characters with that property: Indeed, consider χ of height r and let 0 ≤ j ≤ p − 2 such
that r = p − 1 + j. Suppose that χ(eαβγ) = 0 for all γ = 1, 2 and all 0 ≤ α, β ≤ p − 1
with α + β = r and α < p − 1. Then e001 ∈ st(χ,W≥r) since we have [e001,W≥r] ⊂∑

0≤α,β≤p−1α<p−1

∑
γ=1,2Keαβγ ⊕W≥r and hence χ([e001,W≥r]) = 0.

So st(χ,W≥r) = Ke001 ⊕W≥0. In fact, we have:

Lemma 11.1.1. Let χ ∈ W ∗ of height r. Then st(χ,W≥r) = Ke001 ⊕W≥0 if and only if
χ(eαβγ) = 0 for all γ = 1, 2 and all 0 ≤ α, β ≤ p− 1 with α+ β = r and α < p− 1.

Proof. The "if" part follows from the remarks we made just before the lemma. Now we
assume that st(χ,W≥r) = Ke001⊕W≥0. Then consider γ = 1, 2 and 0 ≤ α, β ≤ p− 1 such
that α + β = r and α < p − 1. We find that eαβγ = (α + 1)−1[e001, eα+1,β,γ ] and so the
assumption st(χ,W≥r) = Ke001 ⊕W≥0 implies that χ(eαβγ) = 0.

11.2 Conjugation

Let χ ∈W ∗ be an exceptional character and let j ∈ N∪{0} with j ≤ p−2 and r = p−1+j.
In the following lemma we will often use the relations (A.4)–(A.11) in Appendix A.

Lemma 11.2.1. There exists g ∈ GL2(K) such that st(χg,W≥r) = Ke001 ⊕W≥0. More-
over, we can choose g such that χg(ep−1,j,1) = 1 and χg(ep−1,j,2) = 0 or χg(ep−1,j,2) = 1
and χg(ep−1,j,1) = 0 also.

Proof. Since st(χ,W≥r) 6= W≥0 there exists π ∈ W−1 such that st(χ,W≥r) = Kπ ⊕W≥0.
Let π = ae001 + be002 for some a, b ∈ K and let g−1

1 ∈ GL2(K) be defined via

g−1
1 =

(
0 1
1 0

)
if a = 0 and g−1

1 =

(
1 a−1b
0 1

)
if a 6= 0.

It follows that 0 6= g−1
1 (π) ∈ Ke001 and st(χg1 ,W≥r) = g−1

1 (st(χ,W≥r)) = Ke001⊕W≥0.
Therefore χg1(ep−1,j,1) 6= 0 or χg1(ep−1,j,2) 6= 0 by Lemma 11.1.1 and the fact that χg1 has
height r also by [10, 1.2 (1)].

If χg1(ep−1,j,1) 6= 0 let g2 be the lower triangular matrix given by

g2 =

(
δ1 0

χg1(ep−1,j,2)χ
g1(ep−1,j,1)

−1δ1 1

)

for some δ1 ∈ K with δp−2
1 = χg1(ep−1,j,1)

−1. Then we have χg1◦g2(ep−1,j,1) = 1 and
χg1◦g2(ep−1,j,2) = 0 and st(χg1◦g2 ,W≥r) = Ke001 ⊕W≥0 since g−1

2 (e001) = δ−1
1 e001. Now

set g = g1 ◦ g2.
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If χg1(ep−1,j,2) 6= 0 = χg1(ep−1,j,1) let δ2 ∈ K such that δj−1
2 = χg1(ep−1,j,2)

−1. Then
the diagonal matrix

g2 =

(
1 0
0 δ2

)

satisfies that χg1◦g2(ep−1,j,2) = 1 and χg1◦g2(ep−1,j,1) = 0. We still have st(χg1◦g2 ,W≥r) =
Ke001 ⊕W≥0 since g−1

2 (e001) = e001. The proof is now completed if we set g = g1 ◦ g2.

11.3 The case that χ([e001, W≥r]) = 0

Let χ ∈ W ∗ of height r with p − 2 < r ≤ 2p − 3 such that st(χ,W≥r) = Ke001 ⊕W≥0

and let j be given such that 0 ≤ j ≤ p − 2 and r = p − 1 + j. Let p := pλ be a
polarization of λ ∈ W ∗

012 such that λ(z)p − λ(z[p]) = χ(z)p for all z ∈ p [the existence
follows from Lemma 9.3.9]. If we use Proposition 9.3.5 and Lemma 9.3.7 we see that
induction induces a bijection between the isomorphism classes of irreducible Uχ(p)–modules
and the isomorphism classes of irreducible Uχ(W012)–modules. There exists x ∈ Wr−1

(= ep−2,j+1,k) such that χ([x, e102]) 6= 0 = χ([x,W012]): Clearly, χ([ep−2,j+1,k, e102]) 6= 0
by assumption and since

[ep−2,j+1,k,W012] ⊂
⊕

0≤α<p−1

⊕

α+β=r

Keαβγ ⊕W≥r

we also have χ([ep−2,j+1,k,W012]) = 0. Now apply Lemma 7.1.1 and get that induction
induces a bijection between the isomorphism classes of irreducible Uχ(W012)–modules and
the isomorphism classes irreducible Uχ(W≥0)–modules also. Hence induction is a bijection
between the isomorphism classes of irreducible Uχ(p)–modules and the isomorphism classes
irreducible Uχ(W≥0)–modules.

Let Kλ be the one dimensional Uχ(p)–module where each z ∈ p acts as multiplication
with λ(z). Set Sλ := Uχ(W≥0) ⊗Uχ(p) Kλ. Note that we have 1 ⊗p 1 ∈ SocpSλ with
K · 1⊗p 1 'p Kλ (here ⊗p is a short notation for ⊗Uχ(p)).

I claim that SocpSλ = K ·1⊗p1. Otherwise there exists a nonzero element w /∈ K ·1⊗p1
in SocpSλ such that Kw is an irreducible p–submodule of SocpSλ [see Lemma 9.3.2] and
one of the following cases will occur:

If Kw ' Kµ for some µ 6= λ [µ ∈ W ∗
012 such that µ(z)p − µ(z[p]) = χ(z)p for all z ∈ p]

we obtain from ’Frobenius reciprocity’ that Sµ ' Sλ which is a contradiction, since Kλ

and Kµ are non isomorphic and induction is a bijection between the isomorphism classes
of irreducible Uχ(p)–modules and the isomorphism classes irreducible Uχ(W≥0)–modules.

If Kw ' Kλ we apply ’Frobenius reciprocity’ again to get a Uχ(W≥0)–endomorphism
Sλ −→ Sλ given by 1⊗p1 7−→ w and so not proportional to the identity map – contradiction
since Sλ is irreducible. We have thus shown:

Lemma 11.3.1. Let χ ∈W ∗ of height r such that st(χ,W≥r) = Ke001⊕W≥0. Let λ ∈W ∗
012

such that the Vergne polarization p of λ satisfies λ(x)p−λ(x[p]) = χ(x)p for all x ∈ p. Then
induction is a bijection between the isomorphism classes of irreducible Uχ(p)–modules and
the isomorphism classes irreducible Uχ(W≥0)–modules. We have SocpSλ 'p Kλ.

11.4 Socle elements

Keep the assumptions from the previous section. Moreover, assume that χ(ep−1,j,1) = 0
or χ(ep−1,j,2) = 0 [any exceptional character is conjugate to a character of that particular
type, see Lemma 11.2.1]. Define k ∈ {1, 2} be defined via χ(ep−1,j,k) = 1.
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Since st(χ,W≥r) = Ke001⊕W≥0 it follows from Lemma 11.1.1 that χ(eαβγ) = 0 for all
0 ≤ α, β ≤ p− 1 with α+ β = r and α < p− 1 [and γ = 1, 2].

There exists y := ep−1,j+1,k ∈ Wr such that χ([y, e002]) 6= 0 = χ([y, e001]). Set x :=
[y, e001]. We will use that notation in the proof of the following lemma.

We can choose λ ∈W ∗
012 such that the Vergne polarization p of λ is compatible with χ

(i.e., λ(z)p−λ(z[p]) = χ(z)p for all z ∈ p) and such that λ|W≥2
= χ|W≥2

. See Lemma 10.1.2.

Since [x, e001]
[p] = 0, it follows from the construction in the proof of Lemma 9.3.9 that we

can choose λ([x, e001]) = χ([x, e001]). Let Mλ := Uχ(W ) ⊗Uχ(W≥0) Sλ be the W–module
induced from Sλ = Uχ(W≥0)⊗Uχ(p) Kλ.

Lemma 11.4.1. If Kw is an irreducible p–submodule of SocpMλ, then there exists a
nonzero v ∈ Socp1⊗ Sλ and 0 ≤ b ≤ p− 1 such that

w ∈ eb001 · v + eb−1
001 · 1⊗ Sλ +

∑

k<b−1

∑

k+m≤b−1

ek001e
m
002 · 1⊗ Sλ.

Proof. Write
w =

∑

k+m≤b

ek001e
m
002 · wkm

for some wkm ∈ 1 ⊗ Sλ and 0 ≤ k,m ≤ p − 1 and suppose that b is chosen such that
0 ≤ b ≤ 2p− 2 and such that wkm 6= 0 for some k,m with 0 ≤ k,m ≤ p− 1 and k+m = b.

Assume b > 0. For 0 ≤ k,m ≤ p − 1 with k + m = b we consider components in
ek001e

m
002 · 1 ⊗ Sλ from x · w = 0 and obtain x · wkm = 0 for all 0 ≤ k,m ≤ p − 1 with

k +m = b. This follows since

x · w ∈
∑

k+m=b

ek001e
m
002 · x · wkm +

∑

k+m<b

ek001e
m
002 · 1⊗ Sλ.

[If

x · w =
∑

st

es001e
s
002 ⊗ vst, vst ∈ Sλ

then we can use the PBW theorem and the assumption x ·w = 0 to get vst = 0 for all s, t.
In particular, vkm = 0 for all k,m with k +m = b. So the phrase "consider components
in ek001e

m
002 ⊗ Sλ from x · w = 0" means that all vkm = 0 when k +m = b.]

For i > 0, consider components in eb−i001e
i−1
002 · 1⊗ Sλ from y · w = 0 and get

0 = i[y, e002] · wb−i,i + (b+ 1− i)x · wb+1−i,i−1 + y · wb−i,i−1

and hence i[y, e002] · wb−i,i = 0 since x · wb+1−i,i−1 = 0 = y · wb−i,i−1 (note that y ∈ W≥r

annihilates 1 ⊗ Sλ by Lemma 6.3.1 with h = W≥0 and a = W≥r). But χ([y, e002]) 6= 0
and therefore, since [y, e002]

[p] = 0, it follows that [y, e002] acts bijectively on Mλ; hence
wb−i,i = 0. We conclude that wb−i,i = 0 for all i with 0 < i ≤ b.

So we can write
w = eb001 · wb,0 +

∑

k+m≤b−1

ek001e
m
002 · wkm. (11.1)

Let us show that wb,0 ∈ Socp1 ⊗ Sλ. For z ∈ p ∩ W011 we have [e001, z] ∈ W≥0 since
[e001, e011] = 0. This implies that

zeb001 = eb001z +
∑

k+m≤b−1

ek001e
m
002zkm for some zkm ∈W≥0.
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We also have
z ·

∑

k+m≤b−1

ek001e
m
002 ∈

∑

k+m≤b−1

ek001e
m
002 ·W≥0.

If we use the previous remarks with (11.1) and the assumption z · w = λ(z)w we get

λ(z)w = eb001 · z · wb,0 +
∑

k+m≤b−1

ek001e
m
002 · w

′
km

for some w′
km ∈ 1 ⊗ Sλ. This equality shows [if we consider components in eb001 · 1 ⊗ Sλ]

that z · wb,0 = λ(z)wb,0.
If p is non unipotent let 0 6= h ∈ p given by h = αe012 + βe101 + z for some z ∈ W011.

Choose τ ∈W ∗
012 such that Kw 'p Kτ . This implies that

τ(h)w = eb001 · (h− bβ)wb,0 +
∑

k+m≤b−1

ek001e
m
002 · w

′
km

for some w′
km ∈ 1⊗ Sλ and so h ·wb,0 = (τ(h) + bβ)wb,0; hence wb,0 lies in Socp(1⊗ Sλ) as

required.

Corollary 11.4.2. If p ⊂ Ke012 ⊕W011, then any irreducible p–submodule of SocpMλ is
isomorphic to Kλ.

Proof. Let Kw be an irreducible p–submodule of SocpMλ. It follows from Lemma 11.4.1
that there exists b with 0 ≤ b ≤ p− 1 such that

w = eb001 · v + eb−1
001 · vb−1,0 +

∑

k<b−1

∑

k+m≤b−1

ek001e
m
002 · vkm

where 0 6= v ∈ Socp1⊗ Sλ and vb−1,0, vkm ∈ 1 ⊗ Sλ. If p is unipotent then it follows that
any irreducible Uχ(p)–module is isomorphic to Kλ (apply Lemma 9.1.3 with T = 0). So we
are left with the case where p = Kh⊕p∩W011 for some nonzero h = e012 +z with z ∈W011

and h[p] = h [see Lemma 9.4.3]. There exists, by Lemma 9.1.3, a linear form µ ∈W ∗
012 with

µ|W011
= λ|W011

and µ(x)p − µ(x[p]) = χ(x)p for all x ∈ p such that Kw 'p Kµ. I claim
that µ(h) = λ(h) such that Kw 'p Kµ 'p Kλ. Since [e012, e001] = 0 and ze001 ≡ e001z
(mod W≥0) for z ∈W011 we get

hw = λ(h)eb001 · v +
∑

k<b

∑

k+m≤b−1

ek001e
m
002 · v

′
km

for some v′km ∈ 1⊗ Sλ. But hw = µ(h)w and hence

(λ(h) − µ(h))eb001 · v ∈
∑

k+m≤b−1

ek001e
m
002 · 1⊗ Sλ

which is a contradiction unless λ(h) = µ(h).

As a consequence of Lemma 11.4.1 we get an upper bound for the dimension of
EndW (Mλ).

Corollary 11.4.3. We have dimKEndW (Mλ) ≤ p.
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Proof. Since induction satisfies ’Frobenius reciprocity’ we have functorial isomorphisms

EndW (Mλ) ' HomW≥0
(Sλ,Mλ) ' Homp(Kλ,Mλ).

Define Vλ := {w ∈Mλ | Kw 'p Kλ}∪ {0}. We have an isomorphism Vλ ' Homp(Kλ,Mλ)
as vector spaces. Let Socp1⊗Sλ = Kv and define for b = 0, 1, . . . , p the following subspaces:

V b
λ := spK{e

b
001 · v +

∑

k+m≤b−1

ek002e
m
001 · vkm ∈ Vλ | vkm ∈ 1⊗ Sλ}.

I claim that Vλ =
∑p−1

b=0 V
b
λ . Indeed, we know from from Lemma 11.4.1 that any w ∈ Vλ

can be written as
w = eb001 · v +

∑

k+m≤b−1

ek002e
m
001 · vkm

for some 0 ≤ b < p and some vkm ∈ 1 ⊗ Sλ. We choose 0 < b1 < b2 < · · · < br < p such
that V

bj
λ 6= 0 for all j ∈ {1, 2, . . . , r} and V b

λ = 0 for nonzero b /∈ {b1, b2, . . . , br}. Take

nonzero elements wbj inside V
bj
λ for j = 1, 2, . . . , r. Then

Vλ =

r⊕

j=1

Kwbj ⊕Kv. (11.2)

To see that let w ∈ Vλ \ {0}. If w ∈ 1 ⊗ Sλ we have w ∈ Kv. Otherwise w ∈ V bk
λ for

some k = 1, 2, . . . , r and it follows from Lemma 11.3.1 that there exists a ∈ K such that
w−awbk ∈ Kv or w−awbk ∈ V

bj
λ for some 0 < j < k. In the last case we may use induction

on the set {1, 2, . . . , r} to see that w − awbk ∈ ⊕
k−1
j=1Kwbj ⊕Kv. Therefore (11.2) holds

and consequently dimKEndW (Mλ) = dimKVλ = r + 1 ≤ p. The proof is completed.

Remark 11.4.4. If p ⊂ Ke012⊕W011 and q ∈ Uχ(W≥0) such that (e001 + q) · v ∈ SocpMλ

for some v ∈ Socp1 ⊗ Sλ, then we have dimKEndW (Mλ) = p. Indeed, consider the
W–endomorphism ψ : Mλ −→ Mλ given by ψ(wλ,0) = (e001 + q) · wλ,0. I claim that
ψ0 := Id|Mλ

, ψ, ψ2, . . . , ψp−1 are linear independent. Otherwise there exists a dependence
relation

p−1∑

k=0

akψ
k = 0 (11.3)

where a0, a1, . . . , ap−1 ∈ K [in (11.3) the zero on the right hand side is the zero map on
Mλ]. For each i = 0, 1, . . . , p− 1 we can write

ψi(wλ,0) = ei001 · wλ,0 +
∑

k+m≤i−1

ek002e
m
001 · vkmi (11.4)

for some vkmi ∈ 1 ⊗ Sλ. Let i > 0 be maximal such that ai 6= 0 in (11.3). Now apply
(11.3) and (11.4) and get a relation aie

i
001 · wλ,0 +

∑
k+m≤i−1 e

k
001e

m
002 · v

′
kmi = 0 for some

v′kmi ∈ 1 ⊗ Sλ. Since ai 6= 0 this is in contradiction with the PBW–theorem for reduced
enveloping algebras. We conclude that ψ0 := Id|Mλ

, ψ, ψ2, . . . , ψp−1 are linear independent.
On the other hand; By Lemma 11.4.3 it follows that dimKEndWMλ ≤ p and therefore
ψ0 := Id|Mλ

, ψ, ψ2, . . . , ψp−1 form a basis for EndWMλ.
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11.5 Two types of characters

Let χ ∈ W ∗ of height r with p − 2 < r ≤ 2p − 3 and let j be defined via r = p − 1 + j.
It follows that 0 ≤ j < p − 1. We will assume that χ is an exceptional character; i.e., a
character with st(χ,W≥r) 6= W≥0.

Define the following subsets of W :

A :=
∑

1≤a+b≤r−1

∑

0<b≤j+1

Keab1 +

p−2∑

a=1

Keaj1 ⊕
∑

0≤a+b≤r−1

∑

0≤b≤j

Keab2, (11.5)

B :=
∑

2≤a+b≤r−1

∑

a>0

∑

0≤b≤j

∑

c=1,2

Keabc ⊕K(e012 + je101)⊕Ke102 ⊕Ke002. (11.6)

We shall consider two types of characters:

Type A : τ ∈W ∗ of height r with τ(ep−1,j,1) = 1 and τ(ep−1,j,2) = 0 = τ(A) and

st(τ,W≥r) = Ke001 ⊕W≥0.

Type B : τ ∈W ∗ of height r with τ(ep−1,j,2) = 1 and τ(ep−1,j,1) = 0 = τ(B) and

st(τ,W≥r) = Ke001 ⊕W≥0.

For any r with p− 2 < r ≤ 2p − 3 we define characters of Type A and Type B in the
way above.

Lemma 11.5.1. If τ ∈ W ∗ has Type A or Type B, then induction induces a bijection
between the isomorphism classes of irreducible Uτ (W012)–modules and the isomorphism
classes of irreducible Uτ (W≥0)–modules.

Proof. If τ has Type A, then apply Lemma 7.1.1 with x = ep−2,j+1,1 and if τ has Type B
then apply Lemma 7.1.1 with x = ep−2,j+1,2.

We say that two characters χ and χ′ are conjugate under Aut(W ) if there exists an
automorphism g ∈ Aut(W ) such that χg = χ′.

Proposition 11.5.2. If χ ∈ W ∗ of height r and st(χ,W≥r) 6= W≥0, then χ is conjugate
under Aut(W ) to a character of Type A or Type B. Moreover, no characters of Type A
and Type B are conjugate.

Proof. By Lemma 11.2.1 we can assume that either

1) χ(ep−1,j,1) = 1 and χ(ep−1,j,2) = 0 and st(χ,W≥r) = Ke001 ⊕W≥0 or

2) χ(ep−1,j,2) = 1 and χ(ep−1,j,1) = 0 and st(χ,W≥r) = Ke001 ⊕W≥0.

Note that we have a decomposition of Aut(W ): Aut(W ) = GL2(K)nAut∗(W ), where
Aut∗(W ) = {g ∈ Aut(W ) | g(D) −D ∈ W≥i+1 for all D ∈ Wi and all i}. See Section 2.3.
The idea is to find g ∈ Aut∗(W ) such that χg(A) = 0 for χ as in 1) and χg(B) = 0 for χ
as in 2). The construction of g will complete the proof.

If we for each character χ as in 1) and each n with −1 ≤ n ≤ r − 2 can find an
automorphism gn ∈ Aut∗(W ) with (gn − Id|W )(Wn) ⊂ W≥r−1 and (gn − Id|W )(Wm) ⊂
W≥r for m > n such that χgn(A ∩ Wn) = 0, then g can be constructed. Indeed; we
construct inductively gr−2, gr−3, . . . such that for each n the character χgr−2◦···◦gn satisfies
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that χgr−2◦···◦gn(A ∩Wn) = 0. Now g := gr−2 ◦ gr−3 ◦ · · · ◦ g−1 works: To see that, let
x ∈ A ∩Wn for some n with −1 ≤ n ≤ r − 2. Since gn−1 ◦ · · · ◦ g−1(x) ≡ x (mod W≥r), it
follows that

χg(x) = χgr−2◦···◦gn(x) = 0.

In a similar way, we can prove: If we for each character χ as in 2) and each n with
−1 ≤ n ≤ r− 2 can find an automorphism gn ∈ Aut∗(W ) with (gn − Id|W )(Wn) ⊂W≥r−1

and (gn − Id|W )(Wm) ⊂ W≥r for m > n such that χgn(B ∩ Wn) = 0, then g can be
constructed.

So we only need to find an automorphism gn with the properties described above.
Consider an automorphism on W induced by a K–algebra automorphism ϕ on A(2) =
K[X1, X2]

/
(Xp

1 , X
p
2 ) given by (xi is the image of Xi in A(2))

ϕ(x1) = x1 +
∑

k+l=r−n

∑
0≤k,l<p aklx

k
1x

l
2,

ϕ(x2) = x2 +
∑

k+l=r−n

∑
0≤k,l<p bklx

k
1x

l
2.

Set

xn :=
∑

k+l=r−n

∑

0≤k,l<p

aklekl1 +
∑

k+l=r−n

∑

0≤k,l<p

bklekl2 ∈Wr−1−n.

The automorphism gn satisfies (see (3.2))

gn(y) ≡ y + [xn, y] (mod Wr−n+s)

for each y ∈ Ws. In particular, we have gn ∈ Aut∗(W ) with (gn − Id|W )(Wn) ⊂ W≥r−1

and (gn − Id|W )(Wm) ⊂W≥r for m > n.

a) If χ is a character as in 1) above and if eab1 ∈ A ∩Wn and eab2 ∈ A ∩Wn, then it
follows from the formulas

χgn(eab1) = χ(eab1) + 2a · ap−a,j−b + b · bp−1−a,j+1−b,
χgn(eab2) = χ(eab2)− ap−1−a,j+1−b(j + 1− b)

that we can choose appropriate ap−1−a,j+1−b, bp−1−a,j+1−b ∈ K such that χgn(eab1) =
0 = χgn(eab2): For each a, b with a + b = n + 1 and b ≤ j and a ≤ p − 1 choose
ap−1−a,j+1−b ∈ K such that χgn(eab2) = 0 and for each a, b with a + b = n+ 1 and
0 < b ≤ j + 1 and a ≤ p − 1 choose bp−1−a,j+1−b ∈ K such that χgn(eab1) = 0. If
j = 0 (and hence r = p− 1) we can choose ap−(n+1),0,1 ∈ K (for 1 ≤ n+ 1 ≤ p− 2)
such that χgn(en+1,0,1) = 0. It follows that there exists an automorphism gn such
that χgn(A ∩Wn) = 0.

2) If χ is a character as in 2) above and if eab1 ∈ B ∩Wn and eab2 ∈ B ∩Wn, then it
follows from the formulas

χgn(eab1) = χ(eab1) + a · bp−a,j−b,
χgn(eab2) = χ(eab2) + a · ap−a,j−b − bp−1−a,j+1−b(j + 1− 2b)

that we can choose ap−a,j−b, bp−a,j−b ∈ K such that χgn(eab1) = 0 = χgn(eab2). For
n ≥ 1 and each a, b with a+ b = n+ 1 and a > 0 choose ap−a,j−b, bp−a,j−b ∈ K such
that χgn(eab1) = 0 = χgn(eab2). For a, b with a + b = 1 choose bp−1,j, bp−2,j+1 ∈ K
such that χgn(e102) = 0 and χgn(e012 + je101) = 0. For n = −1 choose bp−1,j+1 ∈ K
such that χgn(e002) = 0. It follows that χgn(B ∩Wn) = 0.

For the final remark apply Lemma 11.6.1 below. The proof is completed.
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11.6 A GL2(K)–submodule of Wr−1

For χ of height r, where r is given by r = p− 1 + j, we define

Vr−1 :=

p−1∑

a=j+1

K
(
(r + 1− a)ea,r−a,1 − aea−1,r+1−a,2

)
. (11.7)

Note that Vr−1 is a GL2(K)–submodule of Wr−1: To see this, define for each a with
j + 1 ≤ a ≤ p− 1 elements va = (r+ 1− a)ea,r−a,1 − aea−1,r+1−a,2 and apply the relations
in Appendix A to get:

(
0 1
1 0

)
· va = −vr+1−a,

(
t1 0
0 t2

)
· va = ta−1

1 tr−a2 va for t1, t2 ∈ K∗,

(
1 0
α 1

)
· va =

∑a
s=0

(
a
s

)
αs · va−s α ∈ K.

But any GL2(K)–matrix can be written as a diagonal matrix composed with a lower
triangular matrix with 1 at the diagonal or a composition of a diagonal matrix, lower
triangular matrices with 1 at the diagonal and the matrix

(
0 1
1 0

)
.

Use the Bruhat decomposition of GL2(K) in [23, 8]. From the relations above, we
conclude that Vr−1 is a GL2(K)–submodule of Wr−1.

Lemma 11.6.1. Suppose that st(χ,W≥r) 6= W≥0 and let Vr−1 be defined as in (11.7). Then
χ is conjugate under Aut(W ) to a character of type Type A if and only if χ(Vr−1) 6= 0.

Proof. We know that Vr−1 is a GL2(K)–submodule of Wr−1. Therefore g(Vr−1) ⊂ Vr−1 +
W≥r (use the decomposition of Aut(W )). It follows that χ(Vr−1) 6= 0 if and only if
χg(Vr−1) 6= 0 for all g ∈ Aut(W ). Therefore: If χ is conjugate to a character of Type A,
then we can use (11.7) and the definition of Type A characters to get χ(Vr−1) 6= 0. In a
similar way; if χ is conjugate to a character of Type B then χ(Vr−1) = 0.

11.7 Restricted subalgebras

In this section we will introduce two restricted Lie subalgebras of W . The subalgebras
defined below will be of great importance when we shall describe the set of irreducible
Uχ(W)–modules for p = 3. First, define

g :=
⊕

0≤i<p

⊕

0<j<p

Keij2 ⊕
⊕

0≤i<p

⊕

0≤j<p

Keij1. (11.8)

We can think of g as W except all ei02 for i = 0, 1, . . . , p− 1. Let us check that g is in fact
a restricted Lie subalgebra of W . Consider two basis elements eabc, eαβγ ∈ g. If we apply
the commutator relations (3.1a), (3.1b) and (3.1d) we get:

[eabc, eαβγ ] =





(α− a)ea+α−1,b+β,1 if c = γ = 1,

−bea+α,b+β−1,1 + αea+α−1,b+β,2 if c = 1 and γ = 2,

(β − b)ea+α,b+β−1,2 if c = γ = 2.
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If c = γ = 1 we clearly have [eab1, eαβ1] ∈ g. If c = 1 and γ = 2 then β > 0 and hence
b+ β > 0 also; it follows that [eab1, eαβ2] ∈ g. Finally, [eab2, eαβ2] ∈ g since b+ β − 1 > 0

when b > 0 and β > 0. Moreover, g is restricted since e[p]
abc ∈ g for all basis elements eabc of

g (note that e[p]abc = eabc or e[p]abc = 0 by the properties of the [p]–mapping).
In particular, g∩W≥0 is a restricted Lie subalgebra of W≥0: In fact it is a restricted Lie

subalgebra of W012 hence supersolvable. We have codimgg ∩W≥0 = 1 and codimW g = p.
We define

h := g ∩W≥0 =
⊕

0≤i<p

⊕

0<j<p

Keij2 ⊕
⊕

0<j<p

Ke0j1 ⊕
⊕

0<i<p

⊕

0≤j<p

Keij1. (11.9)

If we intersect the chain from (9.10) with h, then we get a chain

h ⊃ h ∩W101 ⊃ h ∩W011 ⊃ · · · ⊃ 0 (11.10)

that we can use to construct Vergne polarizations (after moving repetitions).
Define

a :=

p−1∑

k=0

(ad e001)
k(W≥r) (11.11)

where r is the height of the exceptional character χ introduced in the beginning of this
section. Note that a ⊂ W≥r+1−p ⊂ W≥0. Let j be the integer with 0 ≤ j < p− 1 defined
by r = p− 1 + j.

Lemma 11.7.1. Let a be defined as in (11.11). Then a is a p–ideal of g and for all s ≥ 0
we have that a ∩W≥s is a p–ideal of h.

Proof. Note that all elements eabc with b ≥ j + 1 and c = 1, 2 form a basis for a.
Consider euv1 ∈ g. If eab1 ∈ a, then [euv1, eab1] = (a − u)eu+a−1,v+b,1 ∈ a (clearly,

v + b ≥ j + 1 when b ≥ j + 1) and [euv1, eab2] = −veu+a,v+b−1,1 + aeu+a−1,v+b,2 [if v > 0
this element lies in a since v + b, v + b − 1 ≥ j + 1 if b ≥ j + 1. If v = 0 the first term is
zero and eu+a−1,b,2 ∈ a since b ≥ j + 1]. Hence [euv1, a] ⊂ a for euv1 ∈ g.

Next, let euv2 ∈ g with v > 0. From the relations [euv2, eab1] = beu+a,v+b−1,1 −
ueu+a−1,v+b,2 and [euv2, eab2] = (b − v)eu+a,v+b−1,2 it follows that [euv2, a] ⊂ a since
v + b − 1, v + b ≥ j + 1 for v > 0 and b ≥ j + 1. We have thus shown that a is an
ideal of g. All basis elements eabc of a satisfy e[p]abc = eabc or e[p]abc = 0; hence a is a p–ideal
of g. The final statement follows since h ⊂ g and [h,W≥s] ⊂W≥s for s ≥ 0.

Proposition 11.7.2. If χ(a) 6= 0 then induction induces a bijection between the iso-
morphism classes of irreducible Uχ(h)–modules and the isomorphism classes of irreducible
Uχ(g)–modules.

Proof. Let s > 0 be defined such that χ(a ∩Ws−1) 6= 0 but χ(a ∩W≥s) = 0. Let N be an
irreducible Uχ(h)–module. If f ∈ a ∩W≥s such that χ([e001, f ]) 6= 0 then

{x ∈ Uχ(g)⊗Uχ(h) N | f · x = 0} = 1⊗N. (11.12)

To see this, adopt the notation from Section 6.4 with G = g and H = h: Note that
f · y = 0 for all y ∈ 1 ⊗ N since a ∩ W≥s annihilates N by Lemma 6.3.1. Moreover,
(ad e001)

i(f) ∈ a ⊂ h for all i we also have (ad e001)
i(f) · 1 ⊗ N ⊂ 1 ⊗ N . We can

assume that f = eabc for appropriate a, b, c. It follows that [e001, f ] acts bijectively on
Uχ(g) ⊗Uχ(h) N since χ([e001, f ]) 6= 0 and [e001, f ][p] = 0 or [e001, f ][p] = [e001, f ] (see
Remark 6.4.2). Now apply Proposition 6.4.1 with n = 1 and e1 = e001 to get (11.12).
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This implies that Uχ(g)⊗Uχ(h) N is irreducible: Any irreducible W–submodule M has
a nonzero intersection with 1⊗N (take an eigenvector for f considered as linear map on
M and use that f [p] = 0 and χ(f) = 0). Therefore M ∩ (1⊗N) 6= 0. But M ∩ (1⊗N) is a
nonzero Uχ(h)–submodule of 1⊗N and therefore, by irreducibility, M ∩ (1⊗N) = 1⊗N .
In particular, we have M ⊃ 1⊗N and hence M is the entire induced module.

If N1, N2 are irreducible Uχ(h)–modules such that

ϕ : Uχ(g)⊗Uχ(h) N1 ' Uχ(g)⊗Uχ(h) N2

is an isomorphism, then ϕ induces a Uχ(h)–isomorphism ϕ : N1 ' N2. Indeed, there exists
a nonzero x1 ∈ N1 such that ϕ(1⊗x1) = 1⊗x2 ∈ 1⊗N2 (look at ϕ applied to any eigenvector
for f and use (11.12)). It follows that ϕ(1⊗N1) = ϕ(Uχ(h)·1⊗x1) = Uχ(h)·1⊗x2 = 1⊗N2;
hence N1 ' N2.

We will return to the two types of characters introduced in Section 11.5.

11.8 Type A characters

Keep the notation from the previous section. In this section we will take a closer look at
characters of Type A. So let χ ∈W ∗ be a character of Type A defined in Section 11.5. Let
cW (χ) be the stabilizer of χ in W defined in Section 10.4. We also define rk cW (χ) as the
dimension of any maximal torus in cW (χ).

Theorem 11.8.1. Let χ be a character of height r > p and Type A such that χ(a) 6= 0
with a as in (11.11). Then any irreducible Uχ(W )–module has dimension pcodimWcW(χ)/2

and the number of isomorphism classes of irreducible Uχ(W )–modules is given by:
{
p if rk cW (χ) = 1,

1 if rk cW (χ) = 0.

Proof. We proceed in several steps:

1) Let ρ be the integer with 1 < ρ ≤ p−1 such that χ(a∩W≥r+1−ρ) = 0 6= χ(a∩W≥r−ρ).
Such an integer exists since χ(a) 6= 0 and a ⊂W≥r+1−p.

2 For any ρ with 1 < ρ ≤ p− 1, set

hρ := h⊕

p−1⊕

a=ρ

Kea02.

It is easy to check that any hρ is a subalgebra of W (apply commutator relations).
Moreover, hρ is stable under the p–mapping (true for all basis elements) such that hρ
is a Lie p–subalgebra of W . It is supersolvable as a Lie p–subalgebra of W012.

The idea is to use Theorem 6.3.3 and get for ρ as in 1): Induction is a bijection
between the isomorphism classes of irreducible Uχ(hρ)–modules and the isomorphism
classes irreducible Uχ(W )–modules.

3) Let ρ be the integer from 1). Note that a ∩W≥r+1−ρ has a basis consisting of all
elements eabc with b ≥ j + 1 and a + b ≥ r + 2 − ρ and c = 1, 2. Moreover, since
r+1−ρ ≥ 3 for r > p and ρ ≤ p−1 we have a∩W≥r+1−ρ ⊂W≥3. By Lemma 11.7.1
we have that a ∩W≥r+1−ρ / h is a p–ideal. Moreover, [ea02, a ∩W≥r+1−ρ] ⊂ W≥r ⊂
a ∩W≥r+1−ρ for a ≥ ρ. We conclude that a ∩W≥r+1−ρ is a unipotent p–ideal in hρ
with χ(a ∩W≥r+1−ρ) = 0.
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4) Set l := [W, a∩W≥r+1−ρ]. Then l ⊂W≥2 and is generated by all eabc with b ≥ j and
a + b ≥ r + 1 − ρ and c = 1, 2. It follows that l has a basis l1, l2, . . . , ln such that
l
[p]
i = 0 for all i = 1, 2, . . . , n. Moreover [l, l] ⊂W≥4 is unipotent. Since l ⊂W≥r−ρ we
conclude that [l, l] ⊂ W2r−2ρ and it follows from commutator relations that a subset
of {eabc | b ≥ 2j− 1 and a+ b ≥ 2r− 2ρ+1} form a basis for [l, l]. But 2j− 1 ≥ j+1
(since j > 1 when r = p − 1 + j > p) and a + b ≥ 2r − 2ρ + 1 ≥ r + 2 − ρ so
[l, l] ⊂ a ∩W≥r+1−ρ; hence χ([l, l]) = 0.

5) We have already observed that l is contained in W≥2 and generated by elements eabc
with b ≥ j > 0. Therefore [W, l] is contained in W≥1 and generated by elements eabc
with b ≥ j − 1 > 0; hence l and [W, l] are contained in h ⊂ hρ.

6) We have st(χ, a ∩W≥r+1−ρ) = {x ∈ W | χ([x, y]) = 0 ∀y ∈ a ∩W≥r+1−ρ} = hρ. To
see this note that we clearly have hρ ⊂ st(χ, a∩W≥r+1−ρ) by 3). On the other hand,
consider an element

x = a0e002 + a1e102 + · · ·+ aρ−1eρ−1,0,2 + ce001

in st(χ, a ∩W≥r+1−ρ) for some a0, a1, . . . , aρ−1, c ∈ K.

We now define fi := (ad e001)
i(ep−1,j+1,1) ∈ a ∩W≥r+1−ρ for i = 0, 1, 2, . . . , ρ − 1.

By assumption on χ (Type A) we have

χ([e001, (ad e001)
i(ep−1,j+1,1)]) = 0

for all i = 0, 1, . . . , ρ − 1 since χ vanishes on all ea,j+1,1 with a ≥ 0. Moreover,
χ([ei02, fi]) 6= 0 for all i = 0, 1, . . . , ρ− 1. Thus we get:

χ([x, f0]) = 0 =⇒ a0 = 0
χ([x, f1]) = 0 =⇒ a1 = 0

...
χ([x, fρ−1]) = 0 =⇒ aρ−1 = 0.

Moreover, the assumption on χ implies that there exists f ∈ a ∩W≥r+1−ρ such that
χ([e001, f ]) 6= 0. Now use that χ([x, f ]) = 0 and a0 = a1 = · · · = aρ−1 = 0 to get
c = 0 also. Hence st(χ, a ∩W≥r+1−ρ) = hρ.

7) Set ei = ei02 for i = 0, 1, . . . , ρ − 1 and eρ = e001. Then e0, e1, . . . , eρ is a basis for
a complement to hρ in W . We will apply Theorem 6.3.3: Adopt the notation from
Section 6.3 and set g = W and h = hρ and a = a ∩W≥r+1−ρ. Then use step 6) and
Remark 6.3.9 to find f ′

0, f
′
1, . . . , f

′
ρ−1, f

′
ρ ∈ a ∩W≥r+1−ρ such that χ([ei, f

′
j ]) = δij .

We are now in position to apply Theorem 6.3.3: Induction is a bijection between
the isomorphism classes of irreducible Uχ(hρ)–modules and the isomorphism classes
irreducible Uχ(W )–modules.

Before we finish our proof we need two remarks:

Remark 11.8.2. Since induction is a bijection between the isomorphism classes of ir-
reducible Uχ(hρ)–modules and the isomorphism classes irreducible Uχ(W )–modules and
since hρ ⊂W≥0 it follows that induction is a bijection between the isomorphism classes of
irreducible Uχ(W≥0)–modules and the isomorphism classes irreducible Uχ(W )–modules

Remark 11.8.3. The proof of st(χ, a∩W≥r+1−ρ) = hρ has an important application: Use
Remark 6.3.6 and find f ∈ a ∩W≥r+1−ρ such that χ([e001, f ]) 6= 0 but χ([f, el02]) = 0 for
l ≤ ρ− 1. Since χ([f, hρ]) = 0 also we get: χ([f, e001]) 6= 0 = χ([f, e002]) = χ([f,W≥0]).
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Now we are in position to prove the dimension formula for irreducible Uχ(W )–modules
where χ is exceptional (under the additional assumption χ(a) 6= 0): We will use results
from Section 10.4. But many results in that section may not be true if r = 2p − 3 and if
χ has type II.a as in 5.2. For our χ this case does not occur so we do not have to worry
about that point!

Take λ ∈ W ∗
012 such that the Vergne polarization pλ of λ constructed via (9.10) is

compatible with χ and equal to pχ. The existence follows from Theorem 10.1.1. Thus it
follows from Theorem 10.4.6 that any irreducible Uχ(W≥0)–module has dimension

p
codimW≥0

cW≥0
(χ|W≥0

)/2
.

Finally, use that cW (χ) ⊂ st(χ, a ∩ W≥r+1−ρ) = hρ ⊂ W≥0 with Lemma 10.4.7 to get
dimKcW (χ) = dimKcW≥0

(χ|W≥0
)− 2. Since induction takes irreducible Uχ(W≥0)–modules

to irreducible Uχ(W ) we obtain the dimension formula: Any irreducible Uχ(W )–module
has dimension pcodimWcW(χ)/2.

By Theorem 10.4.5 the number of irreducible Uχ(W≥0)–modules is p if rk cW≥0
(χ|W≥0

) =
1 and 1 otherwise (i.e., if rk cW≥0

(χ|W≥0
) = 0 by Lemma 10.4.2).

If rk cW (χ) = 1 then rk cW≥0
(χ|W≥0

) = 1 (apply Lemma 10.4.2 together with the
inclusion cW (χ) ⊂ cW≥0

(χ|W≥0
). Since induction from W≥0 to W is a bijection the number

of irreducible Uχ(W )–modules is p as claimed.
If rk cW (χ) = 0 then I claim rk cW≥0

(χ|W≥0
) = 0 [Otherwise there exists a nonzero

toral element h ∈ cW≥0
(χ|W≥0

). By Remark 11.8.3 above we can easily find a, b ∈ K such

that h′ := h + af + bep−1,j+1,1 ∈ cW (χ). But (h′)[p] ∈ h +W011. Therefore rk cW (χ) 6= 0
which is a contradiction]. Now use that induction from W≥0 to W is a bijection to get that
the number of irreducible Uχ(W )–modules is 1.

The proof is completed.

Remark 11.8.4. For r = p − 1 or r = p we cannot use the proof above. Whether one
can extend the proof above to r = p − 1, p, I don’t know. But examples for p = 3 (see
Theorem 13.3.2.a and Theorem 13.11.6.a) show that the theorem might extend to r = p
and r = p− 1.

Theorem 11.8.5. If χ(a ∩W0,r+2−p,1) = 0, then induction induces a bijection between
the isomorphism classes of irreducible Uχ(g)–modules and the isomorphism classes of irre-
ducible Uχ(W )–modules with g as in (11.8).

Proof. Set el = ei02 for l = 0, 1, . . . , p− 1. Then e0, e1, . . . , ep−1 form a basis for a comple-
ment to g in W . Set

fl =

{
ep−1−l,j+1,1 + (l + 1)(j + 2)−1ep−2−l,j+2,2 if r < 2p− 3,

ep−1−l,p−1,1 if r = 2p− 3

for l = 0, 1, 2, . . . , p − 1 (note that r < 2p − 3 implies that j + 2 6= 0). It is easy to see
that χ([el, fl]) 6= 0. Moreover, we have [el, fl] ∈ Kep−1,j,1⊕Kep−2,j+1,2; hence [el, fl]

[p] = 0
since

e
[p]
p−1,j,1 = 0,

e
[p]
p−2,j+1,2 = 0,

[
ep−1,j,1, [ep−1,j,1, ep−2,j+1,2]

]
= 0,

[
ep−2,j+1,2, [ep−2,j+1,2, ep−1,j,1]

]
= 0.
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Now adopt the notation from Section 6.4: Let N be an irreducible Uχ(g)–module and
define for l = 0, 1, . . . , p− 1:

Nl =
⊕

0≤il,...,ip−1<p

eill · · · e
ip−1

p−1 ⊗N ⊂ Uχ(W )⊗Uχ(g) N.

Interpret Np as 1⊗N . Note that each Nl with l > 0 is a Wl02–module (see page 13 for
notation and recall that Wl02 is a Lie p–subalgebra for l > 0 by Lemma 3.1.1): Indeed, the
PBW theorem says that any element y ∈ Uχ(Wl02), where 0 < l ≤ p− 1, can be written as

y =
∑

0≤il,...,ip−1<p

eill · · · e
ip−1

p−1 · uil,...,ip−1
for uil,...,ip−1

∈ g. (∗)

If x ∈Wl02 then x · eill · · · e
ip−1

p−1 ∈ Uχ(Wl02) and we can use (∗) to get x ·Nl ⊂ Nl for l > 0.
I claim that fl · Nl+1 = 0. For r < 2p − 3 we have [ek, fl] = 0 for k > l and hence

fl ·Nl+1 = 0 if fl ·N = 0. If r = 2p−3 we have fle
il+1

l+1 = e
il+1

l+1 fl+(l+1)il+1e
il+1−1
l+1 ep−1,p−1,1

and since [fl, ek] = 0 = [ep−1,p−1,1, ek] for k with l + 1 < k ≤ p − 1 we have fl · Nl+1 = 0
if fl · N = 0 = ep−1,p−1,1 · N = 0. But N is an irreducible Uχ(g)–module and therefore
a homomorphic image of Uχ(g) ⊗Uχ(h) S, where S is an irreducible Uχ(h)–module. Now,
observe that fl ∈ a∩W0,r+2−p,1 and that (ad e001)(fl) = −(l+1)fl+1 for all l; thus we have
(ad e001)m(fl) ∈ a∩W0,r+2−p,1 for allm, l. Moreover, (ad e001)m(ep−1,p−1,1) ∈ a∩W0,r+2−p,1

for all m. So we only need to show that a ∩W0,r+2−p,1 annihilates S in order to show
that fl · Nl+1 = 0. But a ∩ W0,r+2−p,1 is a unipotent ideal in h since [h, a] ⊂ a and
[h,W0,r+2−p,1] ⊂ W0,r+2−p,1 and χ(a ∩W0,r+2−p,1) = 0; hence (a ∩W0,r+2−p,1) · S = 0 by
Lemma 6.3.1.

In order to apply Corollary 6.4.3 we only need that (ad el)k(fl) ·Nl+1 ⊂ Nl+1 for all k.
Since (ad el)k(fl) ∈Wl+1,0,2 for all k we are done since each Nl is a Wl02–module for l > 0.

Thus we have by Corollary 6.4.3:

{x ∈ Uχ(W )⊗Uχ(g) N | fl · x = 0 for l = 0, 1, . . . , p− 1} = 1⊗N.

Therefore,
{x ∈ Uχ(W )⊗Uχ(g) N | (a ∩W0,r+2−p,1) · x = 0} ⊂ 1⊗N.

This implies that Uχ(W )⊗Uχ(g)N is irreducible: Any irreducible W–submoduleM has a
nonzero intersection with 1⊗N . [Since a∩W0,r+2−p,1 is unipotent with χ(a∩W0,r+2−p1) = 0
the trivial a∩W0,r+2−p,1–module K is the only irreducible Uχ(a∩W0,r+2−p,1)–module (up
to isomorphism) by [14, 3.2] so an irreducible Uχ(a ∩W0,r+2−p,1)–submodule of M has a
nonzero intersection with 1⊗N .] But M ∩ (1⊗N) is a nonzero Uχ(g)–submodule of 1⊗N
and therefore, by irreducibility, M ∩ (1⊗N) = 1⊗N . In particular, we have M ⊃ 1⊗N
and hence M is the entire induced module.

If N1, N2 are irreducible Uχ(g)–modules such that

ϕ : Uχ(W )⊗Uχ(g) N1 ' Uχ(W )⊗Uχ(g) N2

is an isomorphism, then ϕ induces a Uχ(g)–isomorphism ϕ : N1 ' N2. Indeed, we have
ϕ(1 ⊗ N1) ∩ (1 ⊗ N2) 6= 0. (Look at the elements annihilated by a ∩W0,r+2−p,1.) Since
ϕ(1 ⊗N1) and 1 ⊗ N2 are irreducible Uχ(g)–modules, we get ϕ(1 ⊗ N1) = 1 ⊗ N2; hence
N1 ' N2.
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11.9 Type B characters

In this section we will take a closer look at characters of Type B. So let χ ∈ W ∗ be a
character of Type B defined in Section 11.5.

Theorem 11.9.1. Let χ be a character of height r > p and Type B such that χ(a) 6= 0 with
a as in (11.11). If rk cW (χ) = 1 then there exist up to isomorphism p irreducible Uχ(W )–
module of dimension pcodimWcW(χ)/2. If rk cW (χ) = 0 then there exists up to isomorphism
1 irreducible Uχ(W )–module and the dimension is pcodimWcW(χ)/2−1 or pcodimWcW(χ)/2 or
pcodimWcW(χ)/2+1.

Proof. We proceed in several steps:

1) Define integer ρ with 1 < ρ ≤ p− 1 such that χ(a ∩W≥r+1−ρ) = 0 6= χ(a ∩W≥r−ρ).
Such an integer exists since χ(a) 6= 0 and a ⊂W≥r+1−p.

2) For ρ with 1 < ρ ≤ p− 1, set

hρ := h⊕

p−1⊕

a=ρ

Kea02

as in the proof of Theorem 11.8.1. It is supersolvable as a Lie p–subalgebra of W012.

The idea is to use Theorem 6.3.3 and get for ρ as in 1): Induction is a bijection
between the isomorphism classes of irreducible Uχ(hρ)–modules and the isomorphism
classes irreducible Uχ(W )–modules.

3) Let ρ be the integer from 1). Set aρ := a ∩W≥r+1−ρ +
∑ρ−2

k=0(ad e001)
k(ep−1,j,1) ⊂

W≥r+1−ρ. Note that aρ has a basis consisting of all elements eab2 with b ≥ j + 1 and
a+ b ≥ r + 2− ρ and eab1 with b ≥ j for a+ b ≥ r + 2− ρ.

Consider a basis element ers1 ∈ hρ. Then [ers1, eab1] = (a−r)er+a−1,s+b,1 ∈ aρ for all
eab1 ∈ aρ (clearly, s+b ≥ j when b ≥ j). Next, consider [ers1, eab2] = −ser+a,s+b−1,1+
aer+a−1,s+b,2. If s > 0 this element lies clearly in aρ, since s+ b, s+ b− 1 ≥ j + 1 if
b ≥ j + 1. If s = 0 the first term is zero and er+a−1,b,2 ∈ aρ since b ≥ j + 1. Hence
[ers1, aρ] ⊂ aρ for ers1 ∈ hρ.

Consider ers2 with r + s ≥ ρ and observe that [ers2, aρ] ⊂ W≥r ⊂ aρ. Finally, let
ers2 ∈ hρ with s > 0. From the relations [ers2, eab1] = ber+a,s+b−1,1 − rer+a−1,s+b,2

and [ers2, eab2] = (b− s)er+a,s+b−1,2 it follows that [ers2, aρ] ⊂ aρ since s+ b− 1 ≥ j
for s > 0 and b ≥ j and s+ b, s+ b− 1 ≥ j + 1 for b ≥ j + 1. Since aρ ⊂W≥3 (r > p
and ρ ≤ p− 1), we conclude that aρ / hρ is a unipotent p–ideal with χ(aρ) = 0 (since
χ(a ∩W≥r+1−ρ) = 0 and since χ(eaj1) = 0 for all a > 0 – Type B).

4) Set l := [W, aρ]. Then l ⊂ W≥2 and is generated by all eab2 with b ≥ j and a + b ≥
r+1−ρ and c = 1, 2 and all eab1 with b ≥ j−1 and a+b ≥ r+1−ρ. It follows that l

has a basis l1, l2, . . . , ln such that l[p]i = 0 for all i = 1, 2, . . . , n. Moreover [l, l] ⊂W≥4

is unipotent. Since l ⊂ W≥r−ρ we conclude that [l, l] ⊂ W2r−2ρ and it follows from
commutator relations that a subset of

{eab1 | b ≥ 2j−2 and a+ b ≥ 2r−2ρ+1}∪{eab2 | b ≥ 2j−1 and a+ b ≥ 2r−2ρ+1}

form a basis for [l, l]. But 2j − 2 ≥ j and 2j − 1 ≥ j + 1 (since j > 1 when
r = p−1+ j > p) and a+ b ≥ 2r−2ρ+1 ≥ r+2−ρ so [l, l] ⊂ aρ; hence χ([l, l]) = 0.
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5) We have already observed that l is contained in W≥2 and generated by elements eab2
with b ≥ j > 0 and elements eab1 with b ≥ j − 1 > 0. Therefore [W, l] is contained in
W≥1 and generated by elements eab2 with b ≥ j − 1 > 0 and eab1 with b ≥ j − 2 ≥ 0;
hence l and [W, l] are contained in h ⊂ hρ.

6) We have st(χ, aρ) = {x ∈ W | χ([x, y]) = 0 ∀y ∈ aρ} = hρ. To see this note that we
clearly have hρ ⊂ st(χ, aρ) by 3). On the other hand, consider an element

x = a0e002 + a1e102 + · · ·+ aρ−1eρ−1,0,2 + ce001

in st(χ, aρ) for some a0, a1, . . . , aρ−1, c ∈ K.

Set f0 = ep−1,j+1,2 and fi := (ad e001)
i−1(ep−1,j,1) ∈ aρ for i = 1, 2, . . . , ρ − 1. By

assumption on χ (Type B) we have

χ([e001, (ad e001)
i−1(ep−1,j,1)]) = 0

for all i = 1, . . . , ρ − 1 since χ vanishes on all eaj1 with a ≥ 0. Moreover, we have
χ([ei02, fi]) 6= 0. Thus we get:

χ([x, f0]) = 0 =⇒ a0 = 0
χ([x, f1]) = 0 =⇒ a1 = 0

...
χ([x, fρ−1]) = 0 =⇒ aρ−1 = 0.

The assumption on χ implies that there exists f ∈ aρ such that χ([e001, f ]) 6= 0.
Now use that χ([x, f ]) = 0 and a0 = a1 = · · · = aρ−1 = 0 to get c = 0 also. Hence
st(χ, aρ) = hρ.

7) Set ei = ei02 for i = 0, 1, . . . , ρ − 1 and eρ = e001. Then e0, e1, . . . , eρ is a basis for
a complement to hρ in W . We will apply Theorem 6.3.3: Adopt the notation from
Section 6.3 and set g = W and h = hρ and a = aρ. Then use step 6) and Remark 6.3.9
to find f ′0, f

′
1, . . . , f

′
ρ−1, f

′
ρ ∈ aρ such that χ([ei, f

′
j]) = δij . We are now in position

to apply Theorem 6.3.3: Induction is a bijection between the isomorphism classes of
irreducible Uχ(hρ)–modules and the isomorphism classes irreducible Uχ(W )–modules.

Before we finish our proof we need two remarks:

Remark 11.9.2. Since induction is a bijection between the isomorphism classes of ir-
reducible Uχ(hρ)–modules and the isomorphism classes irreducible Uχ(W )–modules and
since hρ ⊂W≥0 it follows that induction is a bijection between the isomorphism classes of
irreducible Uχ(W≥0)–modules and the isomorphism classes irreducible Uχ(W )–modules

Remark 11.9.3. The proof of st(χ, aρ) = hρ has an important application: Use Remark
6.3.6 and find f ∈ aρ such that χ([e001, f ]) 6= 0 but χ([f, el02]) = 0 for l ≤ ρ − 1. Since
χ([f, hρ]) = 0 also we get: χ([f, e001]) 6= 0 = χ([f, e002]) = χ([f,W≥0]).

Now we are in position to prove the claims for the dimension of irreducible Uχ(W )–
modules where χ is exceptional (under the additional assumption χ(a) 6= 0): We will use
results from Section 10.4. But many results in that section may not be true if r = 2p− 3
and if χ has type II.a as in 5.2. For our χ this case does not occur so we do not have to
worry about that point!

Take λ ∈ W ∗
012 such that the Vergne polarization pλ of λ constructed via (9.10) is

compatible with χ and equal to pχ. This time we cannot be sure that pλ = pχ. [If pχ is
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non unipotent we can choose λ that way by Theorem 10.1.1.a but for unipotent pχ the
computations in Section 10.3 require st(χ,W≥r) = W≥0 or r ≤ p or χ([e001,Wr−1]) 6= 0,
but none of these conditions are satisfied for Type B characters of height > p; in the
unipotent case we can therefore only say that pλ is unipotent and that dimKpλ = dimKpχ
or dimKpλ = dimKpχ − 1 or dimKpλ = dimKpχ + 1.]

If rk cW (χ) = 1 then rk cW≥0
(χ|W≥0

) = 1 (apply Lemma 10.4.2 together with the
inclusion cW (χ) ⊂ cW≥0

(χ|W≥0
)). Therefore pχ is non unipotent [since cW≥0

(χ|W≥0
) is a

subspace of W012 (use Lemma 10.4.1 with x = ep−2,j+1,2) and therefore contained in pχ!]
Since induction from W≥0 to W is a bijection the number of irreducible Uχ(W )–modules
is p as claimed. The dimension is given by pcodimWcW(χ)/2 (in the non unipotent case we
can choose λ such that pλ = pχ; now conclude as in the proof of Theorem 11.8.1).

If rk cW (χ) = 0 then I claim rk cW≥0
(χ|W≥0

) = 0 (otherwise there exists a nonzero toral
element h ∈ cW≥0

(χ|W≥0
). By Remark 11.9.3 above we can easily find a, b ∈ K such that

h′ := h+ af + bep−1,j+1,1 ∈ cW (χ). But (h′)[p] ∈ h+W011. Therefore rk cW (χ) 6= 0 which
is a contradiction). Now use that induction from W≥0 to W is a bijection to get that the
number of irreducible Uχ(W )–modules is 1. But now we can either choose λ such that
dimKpλ = dimKpχ or dimKpλ = dimKpχ − 1 or dimKpλ = dimKpχ + 1. Now the claim
on the dimension follows.

The proof is completed.

Remark 11.9.4. For r = p − 1 or r = p we cannot use the proof above. Whether one
can extend the proof above to r = p − 1, p, I don’t know. But examples for p = 3 (see
Theorem 13.4.5.a and Theorem 13.12.6.a) show that the theorem might extend to r = p
and r = p− 1.

We now seek for an analogous result for Type B characters to the one proved for
Type A characters in Theorem 11.8.5. We will have to require χ(a) = 0 instead of just
χ(a ∩W0,r+2−p,1) = 0.

Before we prove that result we need a lemma.

Lemma 11.9.5. Let g be as in (11.8) and let a be as in (11.11). If M is a Uχ(W )–module
and M 6= 0, then

{x ∈M | a · x = 0} 6= 0

and there exists an irreducible Uχ(g)–submodule X ⊂M with a ·X = 0.

Proof. This is clear for r > p − 1 since a is unipotent in that case; thus we can take an
irreducible Uχ(a)–submodule of M which, by [14, 3.2], is isomorphic to the trivial module
K. So there exists a nonzero x ∈ M with a · x = 0. Consider the case that r = p − 1:
Set b = a ⊕Kep−1,0,1. Since [b, b] ⊂ b ∩W011 there exists a Uχ(b)–module Kl as being
equal to K as a vector space and where the module structure is given by: e · 1 = 0 for
e ∈ b ∩W011 and e012 · 1 = l (since e012 ∈ a with χ(e012) = 0 we have l ∈ Fp). Since
b ⊂ W012 is supersolvable any irreducible Uχ(b)–module is isomorphic to some Kl with
l ∈ Fp by Lemma 9.1.3. So there exists a nonzero x ∈ M with (b ∩W011) · x = 0 and
e012 · x = lx for some l ∈ Fp. If l > 0, set y := elp−1,0,2 · x ∈ M . Then y 6= 0 since
χ(ep−1,0,2) 6= 0. Moreover, we have e012 · y = elp−1,0,2(e012− l) ·x = 0 and (b∩W011) · y = 0
since [ep−1,0,2, b ∩W011] ⊂ b ∩W011. We conclude that that a · x = 0 if l = 0 and a · y = 0
if l > 0; hence {x ∈M | a · x = 0} 6= 0.

The final statement in the lemma is now clear: Take nonzero x ∈M such that a ·x = 0.
Then Uχ(g) · x is a Uχ(g)–submodule of M annihilated by a (since a is an ideal in g and
a · x = 0). Thus it contains an irreducible Uχ(g)–submodule X such that there exists an
irreducible Uχ(g)–submodule X ⊂M with a ·X = 0.
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Theorem 11.9.6. If χ(a) = 0, then induction induces a bijection between the isomor-
phism classes of irreducible Uχ(g)–modules annihilated by a and the isomorphism classes
of irreducible Uχ(W )–modules.

Proof. Set el = el02 for l = 0, 1, . . . , p− 1. Then e0, e1, . . . , ep−1 form a basis for a comple-
ment to g in W . Set

fl = ep−1−l,j+1,2 for l = 0, 1, 2, . . . , p− 1.

It follows that [el, fl] ∈ Kep−1,j,2; hence [el, fl]
[p] = 0. It is easy to see that χ([el, fl]) 6= 0

and that [ek, fl] = 0 for k with l < k ≤ p− 1.
Now adopt the notation from Section 6.4: Let N be an irreducible Uχ(g)–module with

a ·N = 0 and define for l = 0, 1, . . . , p− 1:

Nl =
⊕

0≤il,...,ip−1<p

eill · · · e
ip−1

p−1 ⊗N ⊂ Uχ(W )⊗Uχ(g) N.

Interpret Np as 1 ⊗N . Note that each Nl with l > 0 is a Wl02–module (see the proof
of Proposition 11.8.5). For k > l we have [ek, fl] = 0; hence fl ·Nl+1 = 0 since fl ∈ a with
fl ·N = 0 by assumption.

In order to apply Corollary 6.4.3 we only need to prove that (ad el)k(fl) ·Nl+1 ⊂ Nl+1

for all k. Since (ad el)k(fl) ∈Wl+1,0,2 for all k we can use that Nl+1 is a Wl+1,0,2–module;
hence (ad el)k(fl) ·Nl+1 ⊂ Nl+1 for all k. Thus we have by Corollary 6.4.3:

{x ∈ Uχ(W )⊗Uχ(g) N | a · x = 0} = 1⊗N.

This implies that Uχ(W )⊗Uχ(g)N is irreducible: Any irreducible W–submodule M has
a nonzero intersection with 1⊗N by Lemma 11.9.5. Therefore M ∩ (1⊗N) is a nonzero
Uχ(g)–submodule of 1⊗N and, by irreducibility, M ∩ (1⊗N) = 1⊗N . In particular, we
have M ⊃ 1⊗N and hence M is the entire induced module.

If N1, N2 are irreducible Uχ(g)–modules annihilated by a such that we have an isomor-
phism ϕ : Uχ(W ) ⊗Uχ(g) N1 ' Uχ(W ) ⊗Uχ(g) N2, then ϕ induces a Uχ(g)–isomorphism
ϕ : N1 ' N2 since ϕ(1 ⊗ N1) ∩ (1 ⊗ N2) 6= 0 (look at elements annihilated by a). But
ϕ(1⊗N1) and 1⊗N2 are irreducible Uχ(g)–modules so we get ϕ(1⊗N1) = 1⊗N2; hence
N1 ' N2.

We have thus shown: Induction induces an injection from the isomorphism classes of
irreducible Uχ(g)–modules annihilated by a into the isomorphism classes of irreducible
Uχ(W )–modules.

Now, let Y be an arbitrary irreducible Uχ(g)–module. I claim that we can find an
irreducible Uχ(g)–module X with a ·X = 0 and

Uχ(W )⊗Uχ(g) X −→ Uχ(W )⊗Uχ(g) Y.

First, apply Lemma 11.9.5 to find an irreducible Uχ(g)–submodule X ⊂ Uχ(W )⊗Uχ(g)Y
with a ·X = 0; thus we have inclusion maps:

X ↪→ Uχ(W )⊗Uχ(g) Y.

Now apply ’Frobenius reciprocity’ on the inclusion X ↪→ Uχ(W ) ⊗Uχ(g) Y and obtain a
(nonzero) Uχ(W )–homomorphism:

Uχ(W )⊗Uχ(g) X −→ Uχ(W )⊗Uχ(g) Y. (11.13)
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This implies that every Uχ(W )–module is induced from a Uχ(g)–module annihilated
by a: Indeed, any irreducible Uχ(W )–module V contains an irreducible Uχ(g)–module Y ;
hence, by ’Frobenius reciprocity’, V is a homomorphic image of Uχ(W ) ⊗Uχ(g) Y and by
(11.13) then also a homomorphic image of Uχ(W ) ⊗Uχ(g) X for some irreducible Uχ(g)–
module X with a · X = 0. By the part of the claim already proved we therefore have
V ' Uχ(W )⊗Uχ(g) X. The proof is completed.

Remark 11.9.7. If r > p − 1 then a ⊂ W≥1 and therefore a is a unipotent ideal in
g with χ(a) = 0; by Lemma 6.3.1 all irreducible Uχ(g)–modules are annihilated by a.
So Proposition 11.9.6 says for r > p − 1: If χ(a) = 0, then induction induces a bijection
between the isomorphism classes of irreducible Uχ(g)–modules and the isomorphism classes
of irreducible Uχ(W )–modules.

12 Rank 2

Let p > 2 and let χ be a character of height r such that rk cW (χ) = 2. Define

T0 := Ke012 ⊕Ke101,
T1 := K(e001 − ep−1,01)⊕Ke012,
T2 := K(e001 + e101)⊕K(e002 + e012).

It is easy to check that T0 and T2 are maximal tori. I claim that T1 is a maximal torus also:
Since [e012, e001−ep−1,0,1] = 0 we only need to prove that (e001−ep−1,0,1)

[p] = e001−ep−1,0,1.
This will be a consequence of the following: Let b ∈ K ∗ and let Db = e001 + bep−1,0,1 be
the derivation on B2 = K[X1, X2]

/
(Xp

1 , X
p
2 ) given by

Db =
∂

∂x1
+ bxp−1

1

∂

∂x1
(12.1)

where x1 is the image of X1 in B2. Any derivation on B2 is determined (uniquely) by its
values on x1 and x2. If we evaluateDb on x1 we get 1+bxp−1

1 . For s = 2, 3, . . . , p−1 we easily
find Ds

b(x1) = b
∏p−1
i=p−s+1 ix

p−s
1 . In particular, Dp−1

b (x1) = −bx1 since 1 ·2 · · · (p−1) ≡ −1
(mod p). Now we get

D
[p]
b (x1) = (e001 + bep−1,0,1)

p(x1) = −b(1 + bxp−1
1 ).

Finally, D[p]
b (x2) = 0 so we have (e001 + bep−1,0,1)

[p](x1) =
(
b(e001 + bep−1,0,1)

)
(x1) and

(e001 + bep−1,0,1)
[p](x2) = (e001 + bep−1,0,1)(x2). Therefore we have (e001 + bep−1,0,1)

[p] =
−b(e001 + bep−1,0,1) and so D−1 is a toral element. Moreover, KDb is a torus since cDb is
toral for some c ∈ K∗: In fact, we shall choose c ∈ K such that cp−1b = −1.

Note that none of T0, T1, T2 are conjugate under Aut(W ). In [4, Thm. 1], Demushkin
proves that any maximal torus in W is conjugate under Aut(W ) to exactly one of the
maximal tori T0, T1 or T2.

So we can find g ∈ Aut(W ) such that cW (χg) contains one of T0, T1 or T2. It is well
known that the representation theory of Uχ(W ) depends only on the Aut(W )–orbit of χ.
Thus: We will in the following assume that χ 6= 0 and that cW (χ) contains T0 or T1 or T2.

Note: There exists a nonzero character χ such that cW (χ) contains T0 or T1 or T2. In

fact, if T is any torus then T =
⊕n

i=1Khi for n ≤ 2 and h[p]
i = hi for all i. It follows that

ad(hi)
p = ad(h

[p]
i ) = ad(hi) for all i so each ad(hi) acts diagonalisably on W . But all hi

commute so adWT is simultaneously diagonalizable. Now T is a adWT–submodule of W
so, by [3, 3.12], there exists a adWT–submodule V of W such that W = T ⊕V . Now define
χ ∈W ∗ such that χ(V ) = 0 and χ(T ) 6= 0. Then χ 6= 0 and cW (χ) ⊃ T .
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12.1 Stabilizers of rank 2

Lemma 12.1.1. If cW (χ) ⊃ T0 then χ = 0 or χ(T0) 6= 0 = χ(W−1 ⊕Ke102 ⊕W011) = 0.

Proof. Note that

[e012, eijk] =

{
jeijk k = 1,

(j − 1)eijk k = 2.
and [e101, eijk] =

{
(i− 1)eijk k = 1,

ieijk k = 2.

It follows that χ(eijk) = 0 unless (ijk) = (012) or (ijk) = (101).

Lemma 12.1.1 says that χ has height −1 (or equivalent: χ = 0) or χ has height 1 if
cW (χ) ⊃ T0. The representation theory of χ can be obtained from our computations in
the "height at most one" case. See Appendix C. If χ = 0 we require p > 3 in order to use
[10].

Lemma 12.1.2. If χ 6= 0 and cW (χ) ⊃ T1 then χ(eij1) = 0 if j 6= 0 and χ(eij2) = 0 if
j 6= 1. We have χ(e001) = 2χ(ep−1,0,1) and χ(ei01) = 0 for 1 ≤ i ≤ p − 2 and we have
χ(e012) = χ(ep−1,1,2) and χ(ei12) = 0 for 1 ≤ i ≤ p− 2.

Proof. Since e012 ∈ cW (χ) we have χ(eij1) = 0 unless j = 0 and χ(eij2) = 0 unless j = 1.
This follows from

[e012, eijk] =

{
jeijk k = 1,

(j − 1)eijk k = 2.

The assumption e001 − ep−1,0,1 ∈ cW (χ) implies that:

iχ(ei−1,0,1)− (i+ 1)χ(ep−2+i,0,1) =0, (12.2)

iχ(ei−1,1,2)− iχ(ep−2+i,1,2) =0, (12.3)

for all i with 0 ≤ i ≤ p − 1 [we define ei−1,0,1 = 0 = ei−1,0,2 for i = 0 and we define
ep−2+i,0,1 = 0 = ep−2+i,1,2 for i ≥ 2]. The relations (12.2), (12.3) follow from our assump-
tion e001 − ep−1,0,1 ∈ cW (χ) and χ([e001 − ep−1,0,1, ei01]) = 0 = χ([e001 − ep−1,0,1, ei12]).

For all i ≥ 2 we have χ(ei−1,0,1) = 0 by (12.2). For i = 1 we get χ(e001) = 2χ(ep−1,0,1)
and χ(ep−2,0,1) = 0 is just (12.2) with i = 0.

For all i ≥ 2 we have χ(ei−1,1,2) = 0 by (12.3). For i = 1 we get χ(e012) = χ(ep−1,1,2)
and χ(ep−2,1,2) = 0 is just (12.3) with i = 0.

The lemma above says that any nonzero χ with cW (χ) ⊃ T1 has height p − 1 or p.
In Section 12.2 we give a complete description of the irreducible Uχ(W )–modules for χ of
height p− 1 and cW (χ) ⊃ T1.

Lemma 12.1.3. If χ 6= 0 and cW (χ) ⊃ T2 then χ(W2p−3) 6= 0; i.e., χ has maximal height.

Proof. Otherwise we can find x ∈ Wr, where r = ht χ, such that χ([e001, x]) 6= 0 or
χ([e002, x]) 6= 0 (use that [Wr,W−1] = Wr−1). Therefore

χ([e001 + e101, x]) 6= 0 or χ([e002 + e012, x]) 6= 0

since χ([e101, x]) = χ([e012, x]) = 0. We have a contradiction with cW (χ) ⊃ T2.

Lemma 12.1.3 says that χ has maximal height if cW (χ) ⊃ T2. The representation
theory of χ with maximal height is not very well understood. However, we will study χ
with maximal height and rank 2 a little closer in Section 12.3.
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12.2 Some characters of height p− 1

Let a ∈ K. We shall consider a character χa of height p− 1 such that χa(ep−1,0,1) 6= 0 and
χa(e001) = a. Moreover, χa(eij2) = 0 for all i, j with (ij2) 6= (012) and χa(eij1) = 0 for
all j > 0 and all i. Finally, χa(ei01) = 0 for i with 1 ≤ i ≤ p − 2. Note that each χa is a
character of Type A where Type A–characters are defined in Section 11.5.

If a = 2χa(ep−1,0,1) and χa(e012) = 0, then cW (χa) ⊃ T1 by Lemma 12.1.2 so the
computations below contain the case, where χa has height p− 1 and rk cW (χa) = 2.

Define g as in (11.8):

g =
⊕

0≤i<p

⊕

0<j<p

Keij2 ⊕
⊕

0≤i<p

⊕

0≤j<p

Keij1.

We can think of g as W except all ei02 for i = 0, 1, . . . , p − 1. Inside g we have a p–ideal
given by

a =

p−1∑

i=0

(ad e001)
i(W≥p−1) =

2∑

k=1

∑

j≥1

p−1∑

i=0

Keijk.

See (11.11) and Lemma 11.7.1.
It is easy to see that each χa vanishes on a; hence induction induces a bijection between

the isomorphism classes of irreducible Uχa(g)–modules and the isomorphism classes of
irreducible Uχa(W )–modules by Theorem 11.8.5.

So we concentrate on the irreducible Uχa(g)–modules from now. Let h = g ∩ W≥0

as in (11.9). Since h is supersolvable we can construct Vergne polarizations with respect
to the chain (11.10). Let pa denote the Vergne polarization of (χa)|h with respect to
the chain (11.10). Since χa has height p − 1, it follows that W≥ p+1

2

∩ h ⊂ pa since

χa([W≥s,W≥s]) ⊂ χa(W≥p) = 0. In order to compute pa recall the definition given in (9.7):

a) ei−t,t,2 ∈ s
χa

i−t,t,2 for 0 < i ≤ p+1
2 and 0 < t ≤ i : This follows immediately from

the definition of χa and the inclusion:

[ei−t,t,2,Wi−t,t,2 ∩ h] ⊂
2∑

c=1

∑

b>0

∑

a+b≥i

Keabc.

b) s
χa

i01 ⊂ s
χa

i−1,1,1 for 0 < i ≤ p−1
2 : Use that ep−i,0,1 ∈Wi01 ∩ h and that

χa([ei01, ep−i,0,1]) 6= 0 = χa([Wi−1,1,1 ∩ h, ep−i,0,1]).

c) ei−t,t,1 ∈ s
χa

i−t,t,1 for 0 < i ≤ p+1
2 and 0 < t ≤ i : It follows immediately from the

inclusion:

[ei−t,t,1,Wi−t,t,1 ∩ h] ⊂
2∑

c=0

∑

b>0

∑

a+b≥i

Keabc

and the definition of χa.
d) e p+1

2
,0,1 ∈ s

χa
p+1

2
,0,1

since χa([e p+1

2
,0,1,W p+1

2
,0,1 ∩ h]) = 0.

The observations in a)–d) and the definition of pa implies that

pa =

p−1

2⊕

n=1

n⊕

i=0

Kei,n+1−i,1 ⊕Ke p+1

2
,0,1 ⊕

p−1

2⊕

n=0

n⊕

i=0

Kei,n+1−i,2 ⊕W≥ p+1

2

. (12.4)
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It follows that pa has rank one (pa = Ke012 ⊕ pa ∩W011) and dimKg–dimKpa = p+1
2 .

Define ν ∈ K such that ν3− ν = χa(e012)
3. Let Kν the one dimensional pa–module, where

x ∈ pa ∩W011 acts as multiplication by χa(x) and e012 acts as multiplication by ν. Since
χa(x

[p]) = 0 for all x ∈ pa ∩W011 (true for all basis elements!), it follows that Kν is an
irreducible Uχa(pa)–module.

There exists λ ∈ h∗ such pa is the Vergne polarization of λ and compatible with χa
(choose λ such that λ|h∩W101

= (χa)|h∩W101
and λ(e012)

3−λ(e012) = χa(e012)
3). Therefore.

by Proposition 9.3.5 and Lemma 9.3.7, there exist up to isomorphism p irreducible Uχa(h)–
modules represented by Nν := Uχa(h) ⊗Uχa(pa) Kν , where ν ∈ K such that ν3 − ν =
χa(e012)

3. The set

{ei1101e
i2
201 · · · e

i p−1
2

p−1

2
,0,1
⊗ 1 | 0 ≤ ij ≤ p− 1 for j = 1, 2, . . . ,

p− 1

2
}

form a basis for Nν . Since [e012, ek01] = 0 for all k it follows that e012 acts as multiplication
by ν on Nν . We define the Uχa(g)–module induced from Nν by

Sν := Uχa(g)⊗Uχa(h) Nν . (12.5)

If {vj}j∈J form a basis for Nν then the set {ei001 ⊗Uχa(h) vj | i = 0, 1, . . . , p− 1, j ∈ J}
form a basis for Sν . Since [e012, e001] = 0 and since e012 acts as multiplication by ν on Nν

it follows that e012 acts as multiplication by ν on Sν also.

Lemma 12.2.1. If ν 6= 0 then Sν is irreducible and if ν, µ 6= 0 and Sν ' Sµ then ν = µ.

Proof. Let ν ∈ K with ν3 − ν = χa(e012)
3. Then

{v ∈ Sν | e112 · v = 0} = 1⊗Nν . (12.6)

Note that e112 · 1⊗Nν = 0 (use that e112 ∈ a∩W≥1 and that a∩W≥1 /h is unipotent with
χa(a ∩W≥1) = 0; hence a ∩W≥1 annihilates all irreducible Uχa(h)–modules by Lemma
6.3.1).

Suppose that there exists m > 0 and a nonzero element vm ∈ Nν such that

v ∈ em001 ⊗ vm +
m−1∑

k=0

ek001 ⊗Nν

is annihilated by e112. Since e112 · Nν = 0 we get: 0 ∈ em−1
001 ⊗ e012vm +

∑m−2
k=0 e

k
001 ⊗Nν .

Now apply the PBW theorem for reduced enveloping algebras and obtain e012 · vm = 0;
hence vm = 0 since ν 6= 0 by assumption and since e012 acts as multiplication by ν on Sν .
We have a contradiction. It follows that (12.6) holds.

Therefore each Sν is irreducible and if Sν ' Sµ then ν = µ: Indeed, let X be a
g–submodule of Sν . Take a nonzero x ∈ X such that e112 · x = 0 (for instance, take
x ∈ SocpaX). Then X ∩ (1⊗Nν) 6= 0. But then X ∩ (1⊗Nν) = 1⊗Nν since X ∩ (1⊗Nν)
is a Uχa(h)–submodule of 1⊗Nν and since 1⊗Nν is an irreducible Uχa(h)–module; hence
X ⊃ 1⊗Nν and therefore also X ⊃ Sν .

Since e012 acts on each Sν as multiplication by ν it follows that ν = µ if Sν ' Sµ.

Proposition 12.2.2. If χa(e012) 6= 0 then there exist up to isomorphism p irreducible

Uχa(W )–modules of dimension p
3p+1

2 .

82



Proof. If χa(e012) 6= 0 then all ν ∈ K with ν3 − ν = χa(e012)
3 are nonzero and so, by the

lemma above, induction induces in that case a bijection between the isomorphism classes of
irreducible Uχa(h)–modules and the isomorphism classes of irreducible Uχa(g)–modules [we
could obtain this from Lemma 11.7.2 also]. Moreover, induction induces a bijection between
the isomorphism classes of irreducible Uχa(g)–modules and the isomorphism classes of
irreducible Uχa(W )–modules by Theorem 11.8.5. There are up to isomorphism p irreducible

Uχa(h)–modules of dimension p
p−1

2 and dimKW− dimKh = p+1. The proof is completed.

Proposition 12.2.3. Assume that χa(e012) = 0. Then there exist up to isomorphism
{

2p− 1 irreducible Uχa(W )−modules if a 6= 0,

2p− 2 irreducible Uχa(W )−modules if a = 0.

There exist p− 1 representatives of dimension p
3p+1

2 and
{
p representatives of dimension p

3p−1

2 if a 6= 0,

p− 1 representatives of dimension p
3p−1

2 if a = 0.

Proof. If χa(e012) = 0 then S1, S2, . . . , Sp−1 are irreducible Uχa(g)–modules and non–
isomorphic by Lemma 12.2.1. Note that any irreducible Uχa(g)–module X contains an
irreducible Uχa(pa)–module which is a copy of some Kν . By ’Frobenius reciprocity’ X
is isomorphic to some Sν with ν 6= 0 or a homomorphic image of S0. If X is a homo-
morphic image of S0 then a · X = 0 since a · S0 = 0 [note that a ⊂ h with a · N0 = 0
since e012 · N0 = 0 and since a ∩W011 . h is a unipotent p–ideal with χa(a ∩W011) = 0
and therefore annihilates all irreducible Uχa(h)–modules by Lemma 6.3.1]. It follows that
representatives for irreducible Uχa(g)–modules are S1, S2, . . . , Sp−1 and representatives for
irreducible Uχa(g)–modules annihilated by a.

We take a closer look at irreducible Uχa(g)–modules annihilated by a. We can write

g = a⊕

p−1⊕

i=0

Kei01.

We now observe that
⊕p−1

i=0 Kei01 is isomorphic to the Witt–Jacobson algebra W (1) of
rank 1 defined in [7]. It has a K–basis ei where −1 ≤ i ≤ p − 2 and the Lie bracket and
the p–mapping are given by [ei, ej ] = (j − i)ei+j for all −1 ≤ i, j ≤ p− 2 where ei+j := 0

if i+ j 6∈ {−1, 0, . . . , p− 1} and e[p]i := δi0ei0 for any i with −1 ≤ i ≤ p− 2. Now the map
ei01 7−→ ei is an isomorphism

⊕p−1
i=0 Kei01 'W (1) of restricted Lie algebras.

It is well known that irreducible Uχa(g)–modules annihilated by a are in one to one cor-
respondence with irreducible Uχa(g/a) ' Uχa

(
W (1)

)
–modules. [Any irreducible Uχa

(
W (1)

)
–

module X extends to g if we define a · X = 0. On the other hand: Any irreducible
Uχa(g)–module is an irreducible Uχa

(
W (1)

)
–module. Therefore, we can think of irre-

ducible Uχa(g)–modules annihilated by a as irreducible Uχa

(
W (1)

)
–modules extended to

g with trivial a–action.]
Since χa(ep−1,0,1) 6= 0 we have r(χa) = p− 1 with the definition of r(χa) defined in [7,

p. 448]. So the irreducible Uχa

(
W (1)

)
–modules are described in [7, Theorem C].

If a 6= 0 then cW (1)(χa) = K(e001 + p−1
2 aχa(ep−1,0,1)

−1ep−1,0,1) is a torus and so we can
apply [7, Theorem C (i)] (in the beginning of this section we proved that KDb with Db as
in (12.1) is a torus). If a = 0 then cW (1)(χa) = Ke001 is unipotent and we can then apply
[7, Theorem C (ii)].
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Remark 12.2.4. Any character τ of height p − 1 with rk cW (τ) = 2 is conjugate under
Aut(W ) to some χa with χa(e012) = 0 for some a 6= 0: Since τ g has height p − 1 for any
automorphism g we can find an automorphism g such that cW (τg) ⊃ T1; hence τ g = χa
and χa(e012) = 0 for some a ∈ K by Lemma 12.1.2.

If a 6= 0 and χa(e012) = 0 then rk cW (χa) = 2: Take a diagonal matrix T with entries t1
and 1 (in that order) such that a = χa(e001) = 2tp−1

1 χa(ep−1,0,1). Then χTa (eijk) = 0 unless
(ijk) = (001) and (ijk) = (p − 1, 0, 1) and we have χTa (e001) = 2χTa (ep−1,0,1). Therefore,
T−1(cW (χ)) = cW (χTa ) ⊃ T1. So irreducible modules for characters χ with rk cW (χ) = 2
and height p− 1 are described in Proposition 12.2.3.

Finally, if a 6= 0 then χa and χ0 with χa(e012) = 0 = χ0(e012) are not conjugate
under Aut(W ) because of Proposition 12.2.3. In particular, rk cW (χ0) = 1 since already
e012 ∈ cW (χ0).

12.3 Some characters of maximal height

First, we introduce another basis for B2 = K[X1, X2]
/
(Xp

1 , X
p
2 ). Let xi be the image of

Xi in B2. Set yi := 1 + xi ∈ B2. Note that each yi is a unit in B2 since ypi = xpi + 1 = 1.
Thus we can define yα for any α = (α1, α2) ∈ Z2:

yα = yα1

1 yα2

2 . (12.7)

Let I(2) be the set of α ∈ Z2 with 0 ≤ α1 < p and 0 ≤ α2 < p. It is easy to see that
all yα with α ∈ I(2) are a basis for B2.

Define

e(i)α = yiy
α ∂

∂xi
for i = 1, 2 and α ∈ Z2. (12.8)

The yα with α ∈ I(2) form a basis for B2; so do the yiyα with α ∈ I(2) since yi is a

unit in B2. Therefore the e(i)α with i = 1, 2 and α ∈ I(2) defined above for a basis of W
(recall that W is a free B2–module with basis ∂

∂x1
, ∂
∂x2

).
The commutator of any two basis elements as in (12.8) is given by (apply the Lie

bracket in W introduced in Section 3):

[e(i)α , e
(j)
β ] = βie

(j)
α+β − αje

(i)
α+β. (12.9)

The p–mapping is given as follows:

(e(i)α )[p] =

{
e
(i)
0 if αi ≡ 0 (mod p),

0 else.
(12.10)

In order to obtain (12.10), note that (e
(i)
α )[p](xi) = (e

(i)
α )p(xi)

∂
∂xi

. Then use induction over
t to show that

(e(i)α )t(xi) =

t−1∏

j=1

(jαi + 1)ytα+εi , hence (e(i)α )p(xi) =

p−1∏

j=1

(jαi + 1)yi

where εi = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i–th position. In case αi ≡ 0 (mod p) the
product in the last statement is equal to 1; if αi 6≡ 0 (mod p), then there exists j with
0 < j < p such that jαi ≡ p− 1 (mod p− 1) and so the product is 0.

Set

hi = e
(i)
0 for i = 1, 2 and h =

2∑

i=1

Khi. (12.11)

We have h1 = e001 + e101 and h2 = e002 + e012; hence h = T2.
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Lemma 12.3.1. If cW (χ) ⊃ T2 and χ(h1) 6= 0 6= χ(h2) then cW (χ) = T2.

Proof. First, note that χ(e
(i)
α ) = 0 for all α 6= 0 and i = 1, 2 since h1, h2 ∈ cW (χ) with

[h1, e
(i)
α ] = α1e

(i)
α and [h2, e

(i)
α ] = α2e

(i)
α . In order to prove our claim suppose that

y =

2∑

i=1

∑

α6=0

aα,ie
(i)
α ∈ cW (χ) for some aα,i ∈ K.

Given α = (α1, α2) ∈ I(2) such that α 6= 0 and aα,i 6= 0 for some i = 1, 2. We
can assume that aα,1 6= 0 for some α 6= 0 (apply the interchanging automorphism on W
introduced in Appendix A). Set α′ = (p− α1, p− α2). Now use the relations

[e(1)α , e
(1)
α′ ] =− 2α1h1, (12.12)

[e(1)α , e
(2)
α′ ] =− α2h1 − α1h2, (12.13)

[e
(r)
β , e

(s)
α′ ] ∈

2∑

i=1

∑

γ 6=0

Ke(i)γ for r, s ∈ {1, 2} and for β ∈ I(2) with β 6= α. (12.14)

It follows from (12.12),(12.13) and (12.14) that we get a contradiction if aα,1 6= 0 for some
α 6= 0.

Remark 12.3.2. If χ(h1) = 0 or χ(h2) = 0 we do not have cW (χ) = T2. Suppose that
χ(h1) = 0 6= χ(h2): Then we can apply (12.12),(12.13) and (12.14) above to get:

cW (χ) = T2 ⊕

p−1∑

j=1

e
(1)
(0,j).

If χ(h2) 6= 0 = χ(h2) one gets a similar result.

In the following we will take a closer look at the situation where χ has maximal height
and dimKcW (χ) = 2 and cW (χ) ∩W≥0 = 0. The computations below (of course) include
the case where

cW (χ) = T2 = K(e001 + e101)⊕K(e002 + e012).

We shall prove that all irreducible Uχ(W )–modules have maximal dimension; i.e., any
irreducible Uχ(W )–module has dimension equal to pp

2−1. See [20, 6.4, Remark 1]. First,
we need a reduction:

Lemma 12.3.3. If χ ∈ W ∗ of maximal height, then there exists g ∈ Aut(W ) such that
χg(ep−1,p−1,2) = 1 and χg(ep−1,p−1,1) = 0 and χg(Wp−1 ⊕Wp ⊕ · · · ⊕W2p−4) = 0.

Proof. If we use a suitable automorphism in GL2(K) we can assume that χ(ep−1,p−1,2) = 1
and χ(ep−1,p−1,1) = 0 (the final part of the proof of Lemma 11.2.1 does not use the
assumption on the height in that section and can then be applied here). Let m be an
integer with p− 1 ≤ m ≤ 2p− 4 and define

xm =
∑

r+s=2p−2−m

arsers1 +
∑

r+s=2p−2−m

brsers2 ∈W2p−3−m.

From the formulas (i+ j = m+ 1)

χ([xm, eij1]) = ibp−i,p−1−j

χ([xm, eij2]) = iap−i,p−1−j + 2jbp−1−i,p−j
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it follows from Section 3.2 that we can find automorphism gm on W induced by xm defined
as above (for suitable ars, brs ∈ K) such that χgm(Wm) = 0. For each gm constructed in
this way note that χgm

|Wj
= χ|Wj

for j > m (this follows since [xm,Wj ] ⊂W≥2p−2 = 0).

We are now in position to construct g ∈ Aut(W ) with χg(Wp−1⊕Wp⊕· · ·⊕W2p−4) = 0
and χg(ep−1,p−1,2) = 1 and χg(ep−1,p−1,1) = 0. Set g = g2p−4 ◦ · · · ◦ gp ◦ gp−1 and suppose,
for p − 1 ≤ i ≤ 2p − 4, that gi is chosen such that χg2p−4◦···◦gi−1◦gi(Wi) = 0 (this can be
done by the calculations above). It follows that χg(Wp−1 ⊕Wp ⊕ · · · ⊕W2p−4) = 0.

In order to prove our claim (that all irreducible Uχ(W )–modules have maximal dimen-
sion if dimKcW (χ) = 2 and cW (χ) ∩W≥0 = 0) we can assume that χ(ep−1,p−1,2) = 1 and
χ(ep−1,p−1,1) = 0 and χ(Wp−1 ⊕Wp ⊕ · · · ⊕W2p−4) = 0. Let that be our assumption from
now.

I claim that cW≥0
(χ|W≥0

) = 0: First, use the assumption on cW (χ) and find y1, y2 ∈
W≥0 such that e001 + y1, e002 + y2 form a basis for cW (χ). If y ∈ cW≥0

(χ|W≥0
), then

χ([y, e001 + y1]) = 0 = χ([y, e002 + y2]) implies that χ([y, e001]) = 0 = χ([y, e002]) since
χ([y, y1]) = 0 = χ([y, y2]). It follows that y ∈ cW (χ) ∩W≥0 = 0.

Since cW≥0
(χ|W≥0

) = 0, we can apply 1) in Section 9.2 and get dimKcW012
(χ|W012

) = 1.

Therefore, any polarization of χ has dimension 2p2−3+1
2 = p2− 1 by (9.6). I claim that the

Vergne polarization of χ is given as

pχ = W≥p−1 ⊕

p−1⊕

β= p+1

2

2⊕

γ=1

Kh0βγ (12.15)

where h0β1 = e0β1 and h0β2 = e0β2 − 2βe1,β−1,1. First, note that W≥p−1 ⊂ pχ since
[W≥p−1,W≥p−1] ⊂W≥2p−2 = 0 and therefore W≥p−1 = s

χ
p−1,1,2 ⊂ pχ (see (9.11) and (9.12)

in Section 9.4). For β ≥ p+1
2 and β ≤ p− 1 we have e0β1 ∈ s

χ
0β1 since our assumption on

χ says that
[e0β1,W0β1] ⊂

∑

a+b≥p

Keab1 +
∑

a+b≥p

∑

a<p−1

Keab2 ⊂ Ker(χ).

For β ≥ p+1
2 and β ≤ p− 1 we also have h0β2 ∈ s

χ
0β2: First, observe that

[e0β2 − 2βe1,β−1,1, eij1] ⊂
∑

a+b≥p

Keab1
∑

a+b≥p

∑

a<p−1

Keab2 ⊂ Ker(χ) for i+ j ≥
p+ 1

2
.

If i+ j ≥ p+1
2 but i 6= p− 1 we have

[h0β2, eij2] ⊂
∑

a+b≥p

Keab1 +
∑

a+b≥p

∑

a<p−1

Keab2 ⊂ Ker(χ).

If i+ j ≥ p+1
2 and i = p− 1 but j 6= p− β we have

[h0β2, eij2] ⊂
∑

a+b≥p

Keab1 +
∑

a+b≥p

∑

b<p−1

Keab2 ⊂ Ker(χ).

Finally, [h0β2, ep−1,p−β,2] = 0 by construction of h0β2. It follows that h0β2 ∈ s
χ
0β2. We have

thus shown that the Vergne polarization of χ contains

P := W≥p−1 ⊕

p−1⊕

β= p+1

2

2⊕

γ=1

Kh0βγ .
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But we easily get

dimKP = 2
(
(p− 1) + (p− 2) + · · ·+ 2 + 1

)
= p2 − p+ 2

(
p− 1−

p− 1

2

)
= p2 − 1

which is the dimension of pχ; hence pχ = P and so (12.15) holds. In fact, pχ is a polarization
of χ compatible with χ [i.e., χ(x)p − χ(x[p]) = χ(x)p for all x ∈ pχ since

x ∈W≥p−1 =⇒ x[p] = 0,

x = h0β1 =⇒ x[p] = 0,

x = h0β2 =⇒ x[p] ∈ Ke1,(p−1)β,1 = 0].

Now we can define the induced module

Uχ(W012)⊗Uχ(pχ) Kχ (12.16)

where Kχ is the one dimensional pχ–module where each x ∈ pχ acts as multiplication with
χ(x) (since pχ is a polarization of χ compatible with χ it follows that Kχ is a Uχ(pχ)–
module).

Next, apply Proposition 9.3.5 and Lemma 9.3.7 with L = W012 and λ = χ and P = pχ
to get: There exists (up to isomorphism) one irreducible Uχ(W012)–module of dimen-
sion pp

2−2. Since induction induces a bijection between the isomorphism classes of irre-
ducible Uχ(W012)–modules and the isomorphism classes of irreducible Uχ(W≥0)–modules
(use Lemma 7.1.1 with x = ep−1,p−1,1) and since pp

2−1 is the maximal dimension for irre-
ducible Uχ(W )–modules we thus get:

Theorem 12.3.4. Suppose that χ ∈ W ∗ has maximal height and dimKcW (χ) = 2 and
cW (χ)∩W≥0 = 0. Then there exists (up to isomorphism) one irreducible Uχ(W≥0)–module
of dimension pp

2−1. For any irreducible Uχ(W≥0)–module S there exists a W–module
structure on S which extends the given W≥0–module structure. In particular, all irreducible
Uχ(W )–modules have dimension

pcodimWcW(χ)/2 = pp
2−1.

87



13 Characters of height 2 and 3

Let K be an algebraically closed field of characteristic p > 2 and let W denote the second
Witt–Jacobson algebra over K. We will consider χ ∈W ∗ of height 2 and 3.

13.1 The good case

We assume that χ ∈ W ∗ is a character of height r, where r = 2 or r = 3, such that
st(χ,W≥r) = W≥0 and such that χ does not have Type II.a as in 5.2 if r = 3 and p = 3. In
that case we can apply the main theorems in Section 10.4: The dimension of any irreducible
Uχ(W )–module is, by Theorem 10.4.12, equal to pcodimW cW (χ)/2, where cW (χ) denotes the
stabilizer of χ in W . Theorem 10.4.11 says that the number of isomorphism classes of
irreducible Uχ(W )–modules is p if rk cW (χ) = 1; otherwise (i.e., rk cW (χ) = 0 by Lemma
10.4.8) the number of isomorphism classes of irreducible Uχ(W )–modules is 1.

Below we will describe the possible dimension for irreducible Uχ(W )–modules and the
number of isomorphism classes (denoted by |Irr(W,χ)|) for characters as above. The rep-
resentation theory of Uχ(W ) depends only on the Aut(W )–orbit of χ, so we can assume
that there exists x ∈ Wr−1 with χ([x, e102]) 6= 0 = χ([x,W012]) by Lemma 7.3.1. Now use
Lemma 10.4.1 to get dimKcW012

(χ|W012
) = dimKcW≥0

(χ|W≥0
)+1. Since st(χ,W≥2) = W≥0

we also have cW (χ) ⊂ cW≥0
(χ|W≥0

) by (10.3) and the arguments before that; hence

dimKcW (χ) = dimKcW≥0
(χ|W≥0

)− 2

by Lemma 10.4.7. We conclude that dimKcW (χ) = dimKcW012
(χ|W012

)− 3 or, by (9.6),

codimW cW (χ)/2 = dimKW − dimKpχ (13.1)

where pχ denotes the Vergne polarization of χ. Now (13.1) allows us to find the possible
dimension for irreducible Uχ(W )–modules. Note that either pχ is unipotent or there exists
a nonzero toral element h ∈ pχ such that pχ = Kh⊕ pχ ∩W011 (see Lemma 9.4.3).

For characters of height 2 we have W≥1 ⊂ pχ by Remark 9.4.2. We get the following
possibilities:

Characters of height 2 with st(χ,W≥2) = W≥0 :

|Irr(W,χ)| Possible dimension
1 p5 or p6

p p4 or p5

For characters of height 3 we have W≥2 ⊂ pχ. In order to find pχ, we now have to
compute all s

χ
ijk for (ijk) with (012) � (ijk) � (021). We only consider representatives

from Section 5 and only characters of height 3 and of Type II.a as in 5.2 if p > 3. One can
obtain the following scheme:

Characters of height 3 with st(χ,W≥3) = W≥0 :

Type |Irr(W,χ)| Possible dimension

Type I
1 p8 or p9

p p7 or p8

Type II
1 p7 or p8

p p6 or p7

Type III
1 p8 or p9

p p6 or p7 or p8
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As we shall see in the next sections the situation is much more complicated if we
consider χ ∈ W ∗ of height r, where r = 2 or r = 3, such that st(χ,W≥r) 6= W≥0 (χ is
an exceptional character) or p = 3 and χ is a character of Type II.a as in 5.2 with height
r = 3.

13.2 Exceptional characters of height 2

Suppose that p = 3 and let χ ∈W ∗ be a character of height 2 with st(χ,W≥2) 6= W≥0 (for
p > 3 we have st(χ,W≥2) = W≥0 by Lemma 8.1.3 and its proof). We shall see that the
situation is much more complicated when p = 3 and st(χ,W≥2) 6= W≥0: Induction does
not always take irreducible Uχ(W≥0)–modules to irreducible Uχ(W )–modules and we shall
see that not all irreducible Uχ(W )–modules have the same dimension and the number of
irreducible Uχ(W )–modules is not always a power of p. This is a quite different pattern
than we saw in the previous section.

We will study two types of characters (see Section 11.5):

Type A : τ ∈W ∗ of height 2 with τ(e201) = 1 and τ(e202) = τ(e102) = τ(e002)
and τ(e101) = 0 = τ(e011) and st(τ,W≥2) = Ke001 ⊕W≥0.

Type B : τ ∈W ∗ of height 2 with τ(e202) = 1 and τ(e201) = τ(e012) = 0
and τ(e102) = τ(e002) = 0 and st(τ,W≥2) = Ke001 ⊕W≥0.

13.3 Type A characters of height 2

Consider χ ∈ W ∗ be a character of height 2 and Type A. Recall the characters defined
in Section 12.2: There we consider arbitrary p > 2 and for a ∈ K we define χa ∈ W ∗

via χa(eijk) = 0 unless (ijk) = (012) or (ijk) = (001) or (ijk) = (p − 1, 0, 1). We have
χa(e001) = a and χa(ep−1,0,1) 6= 0. The irreducible Uχa(W )–modules are described in
Proposition 12.2.2, 12.2.3.

In our situation, χ = χa for a = χ(e001). Before we write down we need information
on the stabilizer cW (χ) of χ.

Lemma 13.3.1. Let χ ∈W ∗ be a character of height 2 and Type A. Then we have

dimKcW (χ) =

{
8 if χ(e012) 6= 0,

10 if χ(e012) = 0.

Moreover,

rk cW (χ) =

{
1 if χ(e012) 6= 0 or χ(e012) = 0 = χ(e001),

2 if χ(e012) = 0 6= χ(e001),

where rk cW (χ) is the dimension of any maximal torus in cW (χ). Finally, cW (χ) ⊂ W≥0

if and only if χ(e012) 6= 0.

Proof. First, note that e221, e222, e121, e122, e212 ∈ cW (χ). Since χ(e011) = χ(e021) = 0
and χ(e111) = χ(e112) = 0 we also have e021 ∈ cW (χ). Finally, e012 ∈ cW (χ) since
χ(e002) = 0 = χ(e102) and since χ([e012,W012]) = 0.

Therefore we consider x ∈ cW (χ) written as

x =
∑

(ijk)

aijkeijk (13.2)
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where a012 = a021 = a121 = a122 = a212 = a221 = a222 = 0. Since cW (χ) ⊂ st(χ,W≥2) =
Ke001 ⊕W≥0 we also have a002 = 0.

The relations χ([x, e111]) = 0 and χ([x, e201]) = 0 say that a102 = a101 = 0 since
χ(e101) = 0 = χ(e011) and a202 = 0 because χ([x, e011]) = 0. Next, observe that a011 = 0 =
a111: First use that χ([x, e202]) = 0 = χ(e102) = 0 to get a011 = 0 and then χ([x, e102]) =
0 = χ(e002) to get a111 = 0.

In order to determine x we now only have to consider the following relations:

1) χ([x, e112]) = 0 =⇒ a001χ(e012) = 0,

2) χ([x, e101]) = 0 =⇒ a201 = a001χ(e001),

3) χ([x, e001]) = 0 =⇒ a112χ(e012) = 0,

4) χ([x, e002]) = 0 =⇒ a211 = a022χ(e012).

If χ(e012) 6= 0 it follows from 1)–3) that a001 = a201 = a112 = 0 and by 4) we have
e022 + χ(e012)e211 ∈ cW (χ). Moreover, x as in (13.2) is unique (up to multiplication with
elements from K). We conclude that dimKcW (χ) = 8. Finally, Ke012 is a maximal torus
in cW (χ).

Next, suppose that χ(e012) = 0. We find that e112, e022 and e001 + χ(e001)e201 belong
to cW (χ). Moreover, x as in (13.2) is a linear combination of these. We conclude that
dimKcW (χ) = 10 in that case.

Since χ = χa where a = χ(e001) and χa is a character as in Section 12.2 with p = 3 we
can apply Remark 12.2.4 in order to find rk cW (χ): If χ(e001) 6= 0 then rk cW (χ) = 2 and
if χ(e001) = 0 then rk cW (χ) = 1 as required.

We are now in position to describe the irreducible Uχ(W )–modules for Type A charac-
ters of height 2. We will formulate the results in terms of the ideal introduced in (11.11):

a =
2⊕

k=1

Ke01k ⊕
2⊕

k=1

Ke11k ⊕
2⊕

k=1

Ke02k ⊕W≥2. (13.3)

Note that χ(a) = 0 if and only if χ(e012) = 0.

Theorem 13.3.2. Let χ ∈ W ∗ be a character of height 2 and Type A and let a be as in
(13.3).

a) If χ(a) 6= 0 then there exist up to isomorphism 3 irreducible Uχ(W )–modules all of
dimension 35 = 3codimWcW(χ)/2. Moreover, cW (χ) ⊂W≥0 with rk cW (χ) = 1.

b) If χ(a) = 0 = χ(e001) then there exist up to isomorphism 4 irreducible Uχ(W )–
modules. Two representatives have dimension 35 = 3codimWcW(χ)/2+1 and two rep-
resentatives have dimension 34 = 3codimWcW(χ)/2. Moreover, cW (χ) 6⊂ W≥0 with
rk cW (χ) = 1.

c) If χ(a) = 0 6= χ(e001) then there exist up to isomorphism 5 irreducible Uχ(W )–
modules. Two representatives have dimension 35 = 3codimWcW(χ)/2+1 and three rep-
resentatives have dimension 34 = 3codimWcW(χ)/2. Moreover, cW (χ) 6⊂ W≥0 with
rk cW (χ) = 2.

Proof. Use that χ = χa as in Section 12.2 with a = χ(e001) and p = 3. Then apply
Proposition 12.2.2, 12.2.3 and Lemma 13.3.1.
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Remark 13.3.3. One can show that there are (up to isomorphism) 3 irreducible Uχ(W≥0)–
modules all of dimension 33. If χ(a) 6= 0 then induction induces a bijection between
the isomorphism classes of irreducible Uχ(W≥0)–modules and the isomorphism classes of
irreducible Uχ(W )–modules. But Theorem 13.3.2 says that induction from W≥0 to W does
not always take irreducible Uχ(W≥0)–modules to irreducible Uχ(W )–modules. In fact, if
χ(e012) = 0 then there are (up to isomorphism) 3 irreducible Uχ(W≥0)–modules S0, S1, S2

and one can prove that

EndW
(
Uχ(W )⊗Uχ(W≥0) S1

)
' K[X]

/(
X3 −X2 − χ(e001)

3
)
.

Moreover: S0, S2 are non isomorphic irreducible Uχ(W≥0)–modules and the induced W–
modules Uχ(W )⊗Uχ(W≥0) S0 and Uχ(W )⊗Uχ(W≥0) S2 are irreducible and non isomorphic.

13.4 Type B characters of height 2

Let χ ∈W ∗ of height 2 with and Type B. In particular, χ(e012) = 0 since j = r+1−p = 0
in this case and χ(e012 + je101) = 0. The Vergne polarization p of χ constructed via the
chain in (9.10) is given by

p =

{
W011 if χ(e011) 6= 0,

K(e012 − e101)⊕W011 if χ(e011) = 0.

We have χ([W011,W011]) = 0 since [W011,W011] ⊂ W112 and χ(W112) = 0; hence W011 ⊂
s
χ
011 ⊂ p. If χ(e011) = 0 we have χ([e012 − e101,W012]) = 0 and hence e012 − e101 ∈ s

χ
012. If

χ(e011) 6= 0 it is easy to check that s
χ
012 ⊂ s

χ
101 ⊂W011.

Remark 13.4.1. We have rk cW (χ) ≤ 1 since any τ ∈W ∗ of height 2 and rk cW (τ) = 2 is
conjugate under Aut(W ) to a character of Type A by the results in Section 12.1. Moreover,
Proposition 11.5.2 (or Lemma 11.6.1) says that no characters of Type A and Type B are
conjugate. So rk cW (χ) = 2 is impossible for χ of height 2 and Type B.

Lemma 13.4.2. Let h := e012 − e101. If χ ∈ W ∗ is a character of height 2 and Type B,
then we have

dimKcW (χ) =





8 if χ(e011) 6= 0,

10 if χ(e011) = 0 and χ(h) 6= 0 or χ(e001) 6= 0,

12 if χ(e011) = χ(h) = χ(e001) = 0.

Moreover,

rk cW (χ) =

{
0 if χ(e011) 6= 0 or χ(h) = 0 6= χ(e001),

1 otherwise.

Finally; cW (χ) 6⊂W≥0 if and only if χ(e011) = χ(h) = χ(e001) = 0.

Proof. Our assumption on χ (Type B) says that χ(h) = 0 if and only if χ(e101) = 0 since
χ(e012) = 0. First, note that we always have e221, e222, e121, e122, e211, e021, e022 ∈ cW (χ).
Therefore we only consider y ∈ cW (χ) written as

y =
∑

(ijk)

aijkeijk (13.4)

where aijk = 0 if j = 2 or (ijk) = (211). Since cW (χ) ⊂ st(χ,W≥2) = Ke001⊕W≥0 we can
also assume that a002 = 0 . I claim that cW (χ) ⊂W012 unless χ(e001) = χ(h) = χ(e011) = 0.
First, we prove that cW (χ) ⊂W≥0 (or a001 = 0) unless χ(e001) = χ(h) = χ(e011) = 0.
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If χ(e011) 6= 0, then a001 = 0 since χ([y, e111]) = 0. If χ(h) 6= 0, then we get a001 = 0
from χ([y, e112 + e201]) = 0. Finally; suppose that we have χ(h) = 0 = χ(e011) but
χ(e001) 6= 0. Then a001 = 0: Combine the relations χ([y, h]) = 0 and χ([y, e201]) = 0 and
get a001χ(e001) = 0; hence a001 = 0 by our assumption.

If cW (χ) ⊂ W≥0, then we clearly have an inclusion cW (χ) ⊂ cW≥0
(χ|W≥0

). Therefore
dimKcW (χ) = dimKcW≥0

(χ|W≥0
) − 2 by Lemma 10.4.7. Next, apply Lemma 10.4.1 with

x = e112 and find that dimcW≥0
(χ) = dimcW012

(χ)− 1. We conclude by (9.6) that:

dimKcW (χ) = dimKcW012
(χ)− 3 = 2dimKp− dimKW012 − 3 =

{
8 if χ(e011) 6= 0,

10 if χ(e011) = 0.

If χ(e011) 6= 0 then rk(cW (χ)) = 0: Indeed, we have cW (χ) ⊂W012 and therefore cW (χ)
is a subset of p [for any z ∈ cW (χ) we have χ([p +Kz, p +Kz]) = 0 and hence z ∈ p by
maximality]. But p is unipotent if χ(e011) 6= 0.

Next, suppose that χ(e011) = 0 but χ(h) 6= 0 or χ(e001) 6= 0. We still have y ∈ W012

where y ∈ cW (χ) as in (13.4), but we can find further conditions on y from χ([y,W ]) = 0
by looking at χ([y, eαβγ ]) = 0 for all (αβγ). We find that y ∈ cW (χ) ∩W012 if and only if
a202 = 0 and that a012, a101, a011, a201, a111, a112, e212 ∈ K satisfy the following relations:

1) a012 + a101 = 0,

2) a011χ(h) + a201 − a112 = 0,

3) −a101χ(e001) + a201χ(e101) = 0,

4) −a011χ(e001)− a111χ(e101)− a212 = 0.

It is easy to check from 1)–4) that e011 − χ(e101)e112 − χ(e001)e212 ∈ cW (χ). We also
have e111 − χ(e101)e212 ∈ cW (χ). Since dimKcW (χ) = 10 in this case (i.e., the case where
χ(e011) = 0 but χ(h) 6= 0 or χ(e001) 6= 0) we just have to find an element whose coefficients
satisfy 1)–4) and which is not a linear combination of

i) e221, e222, e121, e122, e211, e021, e022,

ii) e111 − χ(e101)e212,

iii) e011 − χ(e101)e112 − χ(e001)e212.

If χ(h) = 0 take e201 + e112 ∈ cW (χ) (it is easy to check that 1)–4) above are satisfied
for that element). In particular, cW (χ) is unipotent.

If χ(h) 6= 0 = χ(e001) take h ∈ cW (χ) (it is easy to check that 1)–4) above are satisfied
for that element). In particular, cW (χ) has rank one since rk cW (χ) = 2 is impossible by
Remark 13.4.1.

If χ(h) 6= 0 6= χ(e001) take y as in (13.4) with a112 = 1 = a201 and a012 = χ(h)χ(e001)
−1

and a101 = −a012. Let aαβγ = 0 otherwise. Now it is straightforward to check that y defined
that way satisfies 1)–4). By Lemma B.1.1 it follows that Ky is a torus and so cW (χ) has
rank one by Remark 13.4.1.

Finally, assume that χ(e001) = χ(h) = χ(e011) = 0. Then e111, e011 ∈ cW (χ). Consider
now y ∈ cW (χ) written as in (13.4). Since cW (χ) ⊂ st(χ,W≥2) = Ke001 ⊕W≥0 we have
a002 = 0. The remarks just made show that we can assume that a011 = a111 = 0. We will
find conditions on y from χ([y,W ]) = 0 by looking at χ([y, eαβγ ]) = 0 for all (αβγ). We
get a102 = a202 = a212 = 0 and a012 + a101 = 0 and a201 − a112 = 0. Thus it follows that
e201 + e112 ∈ cW (χ) and that h ∈ cW (χ), where h = e012 − e101. Moreover, e001 ∈ cW (χ).
It follows that dimKcW (χ) = 12 if χ(e011) = χ(h) = χ(e001) = 0. Since h ∈ cW (χ) we have
rk cW (χ) = 1 by Remark 13.4.1.
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First, we shall describe the irreducible Uχ(g)–modules in the situation where we have
χ(e011) 6= 0. Let Kχ be the one dimensional p–module where each x ∈ p acts as multipli-
cation by χ(x). Actually, Kχ is a Uχ(p)–module since χ(x[3]) = 0 for all x ∈ p. Moreover,
Kχ is the unique Uχ(p)–module since p is unipotent. Set S := Uχ(W≥0) ⊗Uχ(p) Kχ and
note that S is irreducible with a basis given by ek102e

l
012e

m
101 ⊗ 1 where 0 ≤ k, l,m < 3 (the

PBW theorem). Define zklm := ek102e
l
012e

m
101 ⊗ 1 for 0 ≤ k, l,m < 3.

Let M := Uχ(W )⊗Uχ(W≥0)S and let w0 = 1⊗z000 ∈ SocpM . Note that w0 ∈ Socp1⊗S;
thus it follows from Lemma 11.3.1 that Socp1⊗ S = Kw0.

Proposition 13.4.3. If χ(e011) 6= 0 then SocpM = Kw0. In particular, there exist 1
isomorphism class of irreducible Uχ(W )–modules of dimension 35 represented by M .

Proof. We shall prove that SocpM = Kw0; so suppose otherwise that SocpM 6= Kw0. Let
w ∈M such that Kw is an irreducible p–submodule of SocpM; by Lemma 11.4.1 we have

w ∈ eb001 ⊗ z000 + eb−1
001 ⊗ u+

∑

k<b−1

∑

k+m≤b−1

ek001e
m
002 ⊗ S

for some b > 0 and some u ∈ S. The assumption on w says that x · w − χ(x)w = 0 for all
x ∈W011. For x = e111, e202 we have:

χ(x)w ∈ χ(x)eb001⊗ z000 + eb−1
001 ⊗ (b[x, e001] · z000 +x ·u) +

∑

k<b−1

∑

k+m≤b−1

ek001e
m
002⊗S (∗)

and therefore (x = e111) in particular b[e111, e001] · z000 + e111 ·u = 0 by the PBW theorem.
It follows that e111 · u = bχ(e011)z000. Write u =

∑
klm aklmzklm. Note that e111 · z1lm =

0 = e111 ·z01m since χ(e112) = χ(e111) = χ(e201) = 0 (use the basis for S). Now the relation
e111 · u = bχ(e011)z000 implies that

∑

lm

a2lme202 · z0lm − bχ(e011)z000 = 0. (∗∗)

It follows that a2lm = 0 if l > 0 or m > 0 and a200 = bχ(e011) 6= 0; so we can write

u = az200 +
∑

lm

a0lmz0lm for some a0lm ∈ K and a ∈ K∗. (∗ ∗ ∗)

Finally, use (∗) with x = e202 and get e202 · u = u − bz100; next apply (∗ ∗ ∗) to get
e202 ·u ∈ az200+

∑
lmKz0lm; we have a contradiction and so we cannot have SocpM 6= Kw0.

Therefore M is the only irreducible Uχ(W )–module (up to isomorphism): For irre-
ducibility note that any nonzeroW–submodule ofM contains w0 and then Uχ(W )·w0 = M .
For uniqueness, let X be an irreducible Uχ(W )–module. It contains a copy of S [note that
S is the only irreducible Uχ(W≥0)–module (up to isomorphism)]. Now use ’Frobenius
reciprocity’ to produce a nonzero Uχ(W )–homomorphism M −→ X. Both modules are
irreducible; hence M ' X.

From now assume that χ(e011) = 0. Define L as

L := K(−e001)⊕K(2e101 + e012)⊕K(e201 + e112). (13.5)

We have [2e101 +e012,−e001] = −2(−e001) and [2e101 +e012, e201 +e112] = 2(e201 +e112)
and [e201 + e112,−e001] = 2e101 + e012. Moreover,

(2e101 + e012)
[3] = 2e101 + e012, (13.6)

e
[3]
001 = 0, (13.7)

(e201 + e112)
[3] = 0. (13.8)
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Note that (13.6) holds since [e012, e101] = 0 and e
[3]
012 = e012 and e

[3]
101 = e101 and

(13.7) follows from the properties of the [p]–mapping on W . Finally, (13.8) holds because

e
[3]
112 = 0 = e

[3]
201 and

[
e201, [e201, e112]

]
= 0 =

[
e112, [e112, e201]

]
(see (B.2) in Appendix B).

Therefore L ' sl2(K) as restricted Lie algebras.
Let a be as in (13.3). By Lemma 11.7.1 we know that a/g is a p–ideal and the definition

of L above implies that g = a⊕L. Therefore g
/
a ' L as restricted Lie algebras. It is well

known that irreducible Uχ(g)–modules annihilated by a are in one to one correspondence
with irreducible Uχ(g/a) ' Uχ(L)–modules. [Any irreducible Uχ(L)–module X extends to
g if we define a ·X = 0. On the other hand: Any irreducible Uχ(g)–module is an irreducible
Uχ(L)–module. Therefore, we can think of irreducible Uχ(g)–modules annihilated by a as
irreducible Uχ(L)–modules extended to g with trivial a–action.] Since L ' sl2(K) the
irreducible Uχ(L)–modules are classified. We now prove (the first claim being obvious):

Lemma 13.4.4. Suppose that χ(e011) = 0 or equivalently: χ(a) = 0 for a as in (13.3).
Then irreducible Uχ(g)–modules annihilated by a are in one to one correspondence with
irreducible Uχ(L)–modules. The number of isomorphism classes and dimension formulas
are given as follows:

a) If χ(e001) = 0 = χ(e101) then there exist up to isomorphism 3 irreducible Uχ(g)–
modules annihilated by a of dimension 1, 2, 3.

b) If χ(e001) 6= 0 = χ(e101) then there exist up to isomorphism 2 irreducible Uχ(g)–
modules annihilated by a all of dimension 3.

c) If χ(e101) 6= 0 then there exist up to isomorphism 3 irreducible Uχ(g)–modules anni-
hilated by a all of dimension 3.

Proof. In [27, 5, 5.2] the representation theory of sl2(K) is described. If we apply the
description in [27] on L we see that there are 3 isomorphism classes of irreducible Uχ(L)–
modules if χ(L) = 0 or χ(2e101 + e012)

2 − χ(e001)χ(e201 + e112) 6= 0 and 2 isomorphism
classes of irreducible Uχ(L)–modules if χ(2e101 + e012)

2 − χ(e001)χ(e201 + e112) = 0.
Since χ(e201 + e112) = 0 = χ(e012) we have three situations: If χ(e001) = 0 = χ(e101)

then there exist up to isomorphism 3 irreducible Uχ(L)–modules of dimension 1, 2, 3 (in
this case χ(L) = 0). If χ(e001) 6= 0 = χ(e101) then there exist up to isomorphism 2
irreducible Uχ(g)–modules all of dimension 3. Finally, if χ(e101) 6= 0 then there exist up to
isomorphism 3 irreducible Uχ(g)–modules all of dimension 3. The proof is completed.

Theorem 13.4.5. Let χ ∈ W ∗ be a character of height 2 and Type B and let a be as in
(13.3).

a) If χ(a) 6= 0, then there exist up to isomorphism 1 irreducible Uχ(W )–module of
dimension 35 = 3codimWcW(χ)/2. Moreover, cW (χ) ⊂W≥0 with rk cW (χ) = 0.

b) If χ(a) = χ(e101) = χ(e001) = 0 then there exist up to isomorphism 3 irreducible
Uχ(W )–modules of dimension 33 = 3codimWcW(χ)/2 and 2 · 33 = 2 · 3codimWcW(χ)/2 and
34 = 3codimWcW(χ)/2+1. Moreover, cW (χ) 6⊂W≥0 with rk cW (χ) = 1.

c) If χ(a) = χ(e101) = 0 6= χ(e001) then there exist up to isomorphism 2 irreducible
Uχ(W )–modules all of dimension 34 = 3codimWcW(χ)/2. Moreover, cW (χ) ⊂W≥0 with
rk cW (χ) = 0.

d) If χ(e101) 6= 0 then there exist up to isomorphism 3 irreducible Uχ(W )–modules all
of dimension 34 = 3codimWcW(χ)/2. Moreover, cW (χ) ⊂W≥0 with rk cW (χ) = 1.
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Proof. Use Lemma 13.4.2 and Proposition 13.4.3 for part a) and Theorem 11.9.6, Lemma
13.4.2 and Lemma 13.4.4 for b),c),d).

Remark 13.4.6. If χ(e101) 6= 0 or χ(a) 6= 0 then one can show that irreducible Uχ(W)–
modules are induced from irreducible Uχ(W≥0)–modules. This is not the situation if
χ(e101) = χ(a) = 0: There exist (up to isomorphism) 3 irreducible Uχ(W≥0)–modules
S0, S1, S2 all of dimension 32. Theorem 13.3.2 says that induction from W≥0 to W does
not always take irreducible Uχ(W≥0)–modules to irreducible Uχ(W )–modules. In fact, one
can prove that there exist nonzero Uχ(W )–homomorphisms

Uχ(W )⊗Uχ(W≥0) S1
ψ

�ϕ Uχ(W )⊗Uχ(W≥0) S2

such that ϕ ◦ ψ = χ(e001)
3 · Id1 and ψ ◦ ϕ = χ(e001)

3 · Id2 (Idk is the identity map on the
W–module induced by Sk for k = 1, 2). If χ(e001) = 0 then Ker(ψ) is a proper nonzero
W–submodule of Uχ(W ) ⊗Uχ(W≥0) S1 and Ker(ϕ) is a proper nonzero W–submodule of
Uχ(W )⊗Uχ(W≥0) S2. Moreover, Uχ(W )⊗Uχ(W≥0) S0 is irreducible.

13.5 Original χ

Consider an arbitrary character χ ∈W ∗ of height 2 with st(χ,W≥2) 6= W≥0. So there exists
a nonzero element π ∈W−1 such that π ∈ st(χ,W≥2). Suppose that π = ae001 + be002 for
some a, b ∈ K. We cannot have W−1 ⊂ st(χ,W≥2) since [W−1,W2] = W1 and χ(W1) 6= 0
by assumption. We conclude that

st(χ,W≥2) = Kπ ⊕W≥0.

We will classify the set of irreducible Uχ(W )–modules. For any automorphism g on
W , the algebras Uχ(W ) and Uχg (W ) are isomorphic. Thus: If we know the number of iso-
morphism classes of irreducible Uχg(W )–modules and the dimension of all representatives,
then we know the number of isomorphism classes of irreducible Uχ(W )–modules and the
dimension of all representatives.

It follows from Proposition 11.5.2 that χ ∈ W ∗ of height 2 with st(χ,W≥2) 6= W≥0 is
conjugate to a character of Type A or Type B (defined in Section 11.5). Moreover, Lemma
11.6.1 says exactly when χ is conjugate under Aut(W ) to a character of Type A. It turns
out that χ is conjugate to a character of Type A if and only if χ(V ) 6= 0, where

V = K(e201 + e112)⊕K(e111 + e022). (13.9)

In the next sections we will use the following properties whenever we consider two
conjugate characters: Suppose that χ ∼ χ′. Then we have dimKcW (χ) = dimKcW (χ′)
and rk cW (χ) = rk cW (χ′) and cW (χ) ⊂ W≥0 if and only if cW (χ′) ⊂ W≥0. If induction
induces a bijection between the isomorphism classes of irreducible Uχ′(W≥0)–modules and
the isomorphism classes of irreducible Uχ′(W )–modules, then induction induces a bijection
between the isomorphism classes of irreducible Uχ(W≥0)–modules and the isomorphism
classes of irreducible Uχ(W )–modules.

By Lemma 11.2.1 there exists g ∈ GL2(K) such that st(χg,W≥2) = Ke001 ⊕W≥0 and
either χg(e201) = 1, χg(e202) = 0 or χg(e202) = 1, χg(e201) = 0 and Proposition 11.5.2 says
that we can find automorphism g∗ such that χg◦g

∗
has Type A or Type B. For χ ∼ Type

A–character we will find equivalent conditions for χg◦g
∗
(e012) = 0 and χg◦g

∗
(e001) = 0.

For χ ∼ Type B–character we will find equivalent conditions for χg◦g
∗
(e011) = 0 and

χg◦g
∗
(h) = 0 (h = e012 − e101) and χg◦g

∗
(e001) = 0.
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First, we will determine the action of g∗ on appropriate basis elements. We will consider
the two types of characters separately.

Lemma 13.5.1. Let χ ∈ W ∗ of height 2 be an exceptional character and let g ∈ GL2(K)
such that st(χg,W≥2) = Ke001⊕W≥0 and χg(e201) = 1, χg(e202) = 0. Then there exists g∗

such that χg◦g
∗

has Type A and we have the following properties:

g∗(e012) ∈ e012 + [e012,W≥1] +W≥2,

g∗(e001) ∈ e001 − χ(e101)e101 + χ(e011)χ(e102)e201 − χ(e102)e011 − χ(e011)e102 + Ker(χ).

Proof. If we look at the proof of Proposition 11.5.2 it follows that g∗ = g−1 ◦ g0 where
g−1, g0 are automorphisms on W induced by K–algebra automorphisms ϕ−1, ϕ0 on A(2) =
K[X1, X2]

/
(Xp

1 , X
p
2 ) given by (xi is the image of Xi in A(2)):

ϕ−1(x1) = x1 + χ(e002)x
2
1x2,

ϕ−1(x2) = x2,

ϕ0(x1) = x1 + χ(e102)x1x2 + χ(e101)x
2
1,

ϕ0(x2) = x2 − χ(e011)x
2
1 + χ(e101)x

2
1.

For the explicit formulas one has to go through step 1) in the proof of Proposition 11.5.2.
The inverses satisfy:

ϕ−1
−1(x1) ∈ x1 − χ(e002)x

2
1x2 +Kx2

1x
2
2,

ϕ−1
−1(x2) ∈ x2 +Kx2

1x
2
2,

ϕ−1
0 (x1) ≡ x1 − χ(e102)x1x2 − χ(e101)x

2
1 +

∑
i+j≥3Kx

i
1x
j
2,

ϕ−1
0 (x2) ≡ x2 + χ(e011)x

2
1 − χ(e101)x

2
1 +

∑
i+j≥3Kx

i
1x
j
2.

The formula for g∗(e012) = (g−1 ◦ g0)(e012) follows from (3.2): We get

(g−1 ◦ g0)(e012) ∈ g−1(e012 + [e012,W1] +W≥2)

∈ e012 + [e012,W≥1] +W≥2

as required.
Finally, we shall use Proposition 2.2.3 to get a formula for (g−1 ◦ g0)(e001). First, we

obtain:

g0(e001) ∈ e001 − χ(e101)e101 + χ(e011)χ(e102)e201 − χ(e102)e011

−χ(e011)e102 +
∑

k=1,2

∑
i+j≥2

∑
i<2Keijk.

Now use the action of g−1 (see (3.2)) and get (note that all eijk with i + j ≥ 2 but i < 2
are contained in Ker(χ)):

g∗(e001) ∈ e001 − χ(e101)e101 + χ(e011)χ(e102)e201 − χ(e102)e011 − χ(e011)e102 + Ker(χ).

The proof is completed.
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Lemma 13.5.2. Let χ ∈ W ∗ of height 2 be an exceptional character and let g ∈ GL2(K)
such that st(χg,W≥2) = Ke001⊕W≥0 and χg(e202) = 1, χg(e201) = 0. Set h := e012− e101.
Then there exists g∗ such that χg◦g

∗
has Type B and we have the following properties:

g∗(e011) ∈ e011 + [e011,W≥1] +W≥2,
g∗(h) ∈ h+ [h,W≥1],

g∗(e001) ∈ e001 + χ(e012)e102 + χ(e102)χ(e012)e202 + Ker(χ).

Proof. If we look at the proof of Proposition 11.5.2 it follows that g∗ = g−1 ◦ g0 where
g−1, g0 are automorphisms on W induced by K–algebra automorphisms ϕ−1, ϕ0 on A(2) =
K[X1, X2]

/
(Xp

1 , X
p
2 ) given by (xi is the image of Xi in A(2)):

ϕ−1(x1) = x1 + χ(e002)x
2
1x2,

ϕ−1(x2) = x2,

ϕ0(x1) = x1,
ϕ0(x2) = x2 + χ(e102)x1x2 − χ(e012)x

2
1.

For the explicit formulas one has to go through step 2) in the proof of Proposition 11.5.2.
The inverses satisfy:

ϕ−1
−1(x1) ∈ x1 − χ(e002)x

2
1x2 +Kx2

1x
2
2,

ϕ−1
−1(x2) ∈ x2 +Kx2

1x
2
2,

ϕ−1
0 (x1) ≡ x1 +

∑
i+j≥3Kx

i
1x
j
2,

ϕ−1
0 (x2) ≡ x2 − χ(e102)x1x2 + χ(e012)x

2
1 +

∑
i+j≥3Kx

i
1x
j
2.

The formula for g∗(e011) = (g−1 ◦ g0)(e011) and g∗(h) = (g−1 ◦ g0)(h) follows from (3.2):
We get for all y ∈W0 (in particular; y = e011 and y = h)

(g−1 ◦ g0)(y) ∈ g−1(y + [y,W1] +W≥2)
∈ y + [y,W≥1] +W≥2

as required.
Finally, we shall use Proposition 2.2.3 to get a formula for (g−1 ◦ g0)(e001). First, we

obtain:

g0(e001) ∈ e001 + χ(e012)e102 + χ(e102)χ(e012)e202 +
∑

k=1,2

∑
i+j≥2

∑
i<2Keijk.

Now use the action of g−1 (see (3.2)) and get (note that all eijk with i + j ≥ 2 but i < 2
are contained in Ker(χ)):

g∗(e001) ∈ e001 + χ(e012)e102 + χ(e102)χ(e012)e202 + Ker(χ).

The proof is completed.

Now we are in position to find equivalent conditions for χg◦g
∗
(e012) = 0 and χg◦g

∗
(e001) =

0 if χ ∼ Type A–character and equivalent conditions for χg◦g
∗
(e011) = 0 and χg◦g

∗
(h) = 0

(h = e012− e101) and χg◦g
∗
(e001) = 0 if χ ∼ Type B–character. Here and in the rest of this

section, g ∈ GL2(K) is an automorphism such that st(χg,W≥2) = Ke001⊕W≥0 and either
χg(e201) = 1, χg(e202) = 0 [if χg◦g

∗
has Type A] or χg(e202) = 1, χg(e201) = 0 [if χg◦g

∗
has

Type B]. The explicit formula for g can be found in the proof of Lemma 11.2.1.
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Proposition 13.5.3. Let χ ∈ W ∗ of height 2 with st(χ,W≥2) = Kπ ⊕W≥0 (where π =
ae001 + be002) such that χ(V ) 6= 0 and let h := e012 − e101. Let g, g∗ be automorphisms on
W such that χg◦g

∗
has Type A. Then:

a) χg◦g
∗
(e012) = 0 if and only if

a1) χ(e022)χ(ae011 − be101)− χ(e021)χ(ae012 − be102) = 0 and

a2) χ(ae201 + be202)χ(ae012 − be102)− χ(e202)χ(a2e011 + abh− b2e102) = 0.

b) χg◦g
∗
(e001) = 0 if and only if

b1) χ(ae201 + be202)χ(ae001 + be002)− a
2
(
χ(h)2 + χ(e102)χ(e011)

)
= 0 and

b2) χ(ae021 + be022)χ(ae001 + be002)− b
2
(
χ(h)2 + χ(e102)χ(e011)

)
= 0.

Proof. a) First suppose that a = 0. Then χ(e201) = 0 = χ(e202) since e201 = [e002, e211] and
e202 = [e002, e212] and e002 ∈ st(χ,W≥2). Our statement in a) then says: χg◦g

∗
(e012) = 0

if and only if χ(e022)χ(e101)− χ(e021)χ(e102) = 0. Let g, g∗ be automorphisms on W such
that χg◦g

∗
has Type A. It follows that

g =

(
0 1
1 0

)(
χ(e022)

−1 0
χ(e021)χ(e022)

−2 1

)

and g∗ is the automorphism on W from Proposition 11.5.2. Note that χg([e012,W≥1]) = 0
since χg([e201, e012]) = 0. Therefore, χg◦g

∗
(e012) = χg(e012) by Lemma 13.5.1 and so

χg◦g
∗
(e012) = 0 if and only if χg(e012) = 0.

Since g(e012) = e101 − χ(e021)χ(e022)
−1e102 we see that χg(e012) = 0 if and only if

χ(e022)χ(e101)− χ(e021)χ(e102) = 0 as required.
Next, suppose that a 6= 0. Now g is given by

g =

(
1 −a−1b
0 1

)(
χ(e201 + a−1be202)

−1 0
χ(e202)χ(e201 + a−1be202)

−2 1

)
.

Since

g(e012) = e012 − a
−1be102 − χ(e202)χ(e201 + a−1be202)

−1(e011 + a−1bh− a−2b2e102)

we have χg(e012) = 0 iff χ(ae201+be202)χ(ae012−be102)−χ(e202)χ(a2e011+abh−b2e102) = 0
or equivalent:

χ(e201)χ(ae012 − be102)− χ(e202)χ(ae011 − be101) = 0. (∗)

If b = 0 we have χ(e022) = 0 = χ(e021) since e021 = [e001, e121] and e022 = [e001, e122]
and e001 ∈ st(χ,W≥2). Our statement in a) then says: χg◦g

∗
(e012) = 0 if and only if

χ(e201)χ(e012) − χ(e202)χ(e011) = 0 equivalent to (∗) for b = 0. If b 6= 0 then, since
ae001 + be002 ∈ st(χ,W≥2), we have

aχ(e022) = bχ(e112),
aχ(e112) = bχ(e202),
aχ(e021) = bχ(e111),
aχ(e111) = bχ(e201)

and so (∗) is equivalent to χ(e021)χ(ae012 − be102) − χ(e022)χ(ae011 − be101) = 0. But
if a 6= 0 6= b we have χ(e021)χ(ae012 − be102) − χ(e022)χ(ae011 − be101) = 0 if and only
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if χ(ae201 + be202)χ(ae012 − be102) − χ(e202)χ(a2e011 + abh − b2e102) = 0 because of the
relations listed just above. Therefore the conditions a1) and a2) in the proposition are
equivalent and equivalent to (∗). The proof of a) is completed.

b) Let g, g∗ be automorphisms on W such that χg◦g
∗

has Type A. By Lemma 13.5.1
we have

χg◦g
∗
(e001) = χg(e001)− χ

g(e101)
2 − χg(e011)χ

g(e102). (13.10)

First suppose that a = 0. Then χ(e201) = 0 = χ(e202) since e201 = [e002, e211] and
e202 = [e002, e212] and e002 ∈ st(χ,W≥2). Our statement in b) then says: χg◦g

∗
(e001) = 0

if and only if χ(e022)χ(e002) − χ(h)2 − χ(e102)χ(e011) = 0 (note that h = e012 − e101). It
follows that

g =

(
0 1
1 0

)(
χ(e022)

−1 0
χ(e021)χ(e022)

−2 1

)
.

If we apply (13.10) with the relations in Appendix A we get χg◦g
∗
(e001) = χ(e022)χ(e002)−

χ(h)2 − χ(e102)χ(e011) as required.
Next, suppose that a 6= 0. Then

g =

(
1 −a−1b
0 1

)(
χ(e201 + a−1be202)

−1 0
χ(e202)χ(e201 + a−1be202)

−2 1

)

and if we apply (13.10) with the formulas in Appendix A we find χg◦g
∗
(e001) = 0 if and

only if

χ(ae201 + be202)χ(ae001 + be002)− a
2
(
χ(h)2 + χ(e102)χ(e011)

)
= 0. (∗)

If b = 0 we have χ(e022) = 0 = χ(e021) since e021 = [e001, e121] and e022 = [e001, e122]
and e001 ∈ st(χ,W≥2). Our statement in b) then says: χg◦g

∗
(e001) = 0 if and only if

χ(e201)χ(e001)− χ(h)2 − χ(e102)χ(e011) = 0 equivalent to (∗) for b = 0.
If b 6= 0 then, since ae001 + be002 ∈ st(χ,W≥2), we have

aχ(e022) = bχ(e112),
aχ(e112) = bχ(e202),
aχ(e021) = bχ(e111),
aχ(e111) = bχ(e201)

and therefore we get χ(ae201 + be202)χ(ae001 + be002) − a2
(
χ(h)2 + χ(e102)χ(e011)

)
= 0

if and only if χ(ae021 + be022)χ(ae001 + be002) − b2
(
χ(h)2 + χ(e102)χ(e011)

)
= 0. That

is: Both conditions in the proposition are equivalent and equivalent to (∗). The proof is
completed.

Proposition 13.5.4. Let χ ∈ W ∗ of height 2 with st(χ,W≥2) = Kπ ⊕W≥0 (where π =
ae001 + be002) such that χ(V ) = 0. Let g, g∗ be automorphisms on W such that χg◦g

∗
has

Type B. Set h := e012 − e101. Then:

a) χg◦g
∗
(e011) = 0 if and only if χ(a2e011 + abh− b2e102) = 0.

b) If χg◦g
∗
(e011) = 0 then χg◦g

∗
(h) = 0 if and only if χ(ae011− bh) = 0 = χ(ah+ be102).

c) If χg◦g
∗
(e011) = χg◦g

∗
(h) = 0 then χg◦g

∗
(e001) = 0 if and only if

c1) χ(e021)χ(ae001 + be002)− χ(e011)χ(ae011 + be012) = 0 and

c2) χ(e202)χ(ae001 + be002)− χ(e102)χ(ae012 + be102) = 0.
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Proof. a) Let g, g∗ be an automorphisms on W such that χg◦g
∗

has Type B. It follows from
Lemma 11.2.1 and its proof that

g =

(
0 1
1 0

)(
1 0
0 χ(e021)

)
if a = 0 and g =

(
1 −a−1b
0 1

)(
1 0
0 χ(e202)

)
if a 6= 0.

Moreover, χg◦g
∗
(e011) = χg(e011), since g∗(e011) ≡ e011 (mod Ker(χg)) by Lemma 13.5.2.

If a = 0, then g(e011) = χ(e021)e102 such that χg(e011) = 0 if and only if χ(e102) = 0 if
and only if χ(a2e011 + abh− b2e102) = 0 (since a = 0).

If a 6= 0, then g(e011) = χ(e021)(e011 + a−1bh− a−2b2e102) from the GL2(K)–action in
Appendix A. We conclude that χg(e011) = 0 if and only if χ(a2e011 + abh − b2e102) = 0.
The proof of a) is completed.

b) Note that g∗(h) ∈ h+ [h,W≥1] +W≥2 by Lemma 13.5.2. Since [h, e202] = 0 we have
[h,W≥1] ⊂W112 ⊂ Ker(χ). Therefore χg◦g

∗
(h) = 0 if and only if χg(h) = 0.

First suppose that a = 0. Let g be as above (in the a = 0 case). Since χg(e011) = 0, by
assumption, we have χ(e102) = 0 by a); hence χ(ah + be102) = 0 for a = 0. We also have
χg(h) = −χ(h). Therefore χg(h) = 0 if and only if χ(ae011 − bh) = 0 for a = 0.

Next, suppose that a 6= 0. Let g be as above (in the a 6= 0 case). Now, use the
GL2(K)–action in Appendix A and obtain χg(h) = χ(h)+a−1bχ(e102). Since χg(e011) = 0
by assumption we have χ(a2e011 +abh− b2e102) = 0 by a). Now it is easy to get χg(h) = 0
if and only if χ(ae011 − bh) = 0 and χ(ah+ be102) = 0. This completes the proof of b).

c) First, apply Lemma 13.5.2 and get

χg◦g
∗
(e001) = χg(e001)− χ

g(e012)χ
g(e102). (∗)

Again we treat a = 0 and a 6= 0 separately. First suppose that a = 0. Let g be as above
(in the a = 0 case). Now use (∗) to get χg◦g

∗
(e001) = 0 if and only if χ(e002)χ(e021) −

χ(e011)χ(e101) = 0 (use the GL2(K) action in Appendix A). But χg◦g
∗
(h) = −χ(h) = 0

implies that χ(e012) = χ(e101); therefore χg◦g
∗
(e001) = 0 if and only if χ(e002)χ(e021) −

χ(e011)χ(e012) = 0. But χ(e102) = 0 (apply b)) and since e002 ∈ st(χ,W≥2) we also have
χ(e202) = 0 from the relation e202 = [e002, e212]. It follows that the condition in c2) is
always true and moreover, the condition in c1) is just χ(e002)χ(e021)− χ(e011)χ(e012) = 0
for a = 0.

Let a 6= 0 and let g be as above (in the a 6= 0 case). Now we have χg◦g
∗
(e001) = 0 if

and only if χ(e202)χ(ae001 + be002)− χ(e102)χ(ae012 + be102) = 0.
If b = 0 then χ(e021) = 0 since e001 ∈ st(χ,W≥2) and e021 = [e001, e121]. It follows that

the condition in c1) is always true and the condition c2) is equivalent to χg◦g
∗
(e001) = 0.

Finally, suppose that a 6= 0 6= b. Then c1) and c2) are equivalent and so equivalent
to χ(e202)χ(ae001 + be002) − χ(e102)χ(ae012 + be102) = 0 as required. In order to obtain
the equivalence of c1) and c2) use that ae001 + be002 ∈ st(χ,W≥2) and find the following
relations:

aχ(e022) = bχ(e112),
aχ(e112) = bχ(e202),
aχ(e021) = bχ(e111),
aχ(e111) = bχ(e201).

Moreover, χg(e201) = 0 since χg has Type B; hence aχ(e201) + bχ(e202) = 0. It follows
that χ(e202) = −a3b−3χ(e021). By assumption we have χg◦g

∗
(h) = 0 and hence, by a),

χ(ae011−bh) = 0 = χ(ah+be102); it follows that aχ(e011) = bχ(h) and −bχ(e102) = aχ(h).
With these relations in mind it is easy to check that c1) is equivalent with c2).
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13.6 Stabilizer of dimension 8

Theorem 13.6.1. Let χ ∈ W ∗ of height 2. If st(χ,W≥2) 6= W≥0 and if dimKcW (χ) = 8
then any irreducible Uχ(W )–module has dimension 35 = 3codimW cW (χ)/2 and induction
induces a bijection between the isomorphism classes of irreducible Uχ(W≥0)–modules and
the isomorphism classes of irreducible Uχ(W )–modules. The number of isomorphism classes
of irreducible Uχ(W )–modules is 1 if χ(V ) = 0 and 3 if χ(V ) 6= 0 with V as in (13.9).
Finally; cW (χ) ⊂W≥0 and rk cW (χ) = 0 if χ(V ) = 0 and rk cW (χ) = 1 if χ(V ) 6= 0.

Proof. If χ(V ) 6= 0, then χ is conjugate to a character of Type A by Lemma 11.6.1. Now
apply Lemma 13.3.1 and Theorem 13.3.2.a: It follows that there exist 3 isomorphism classes
of irreducible Uχ(W )–modules; each representative has dimension 35 = 3codimW cW (χ)/2

(note that dimKW = 18 for p = 3).
If χ(V ) = 0, then χ is conjugate to a character of Type B by Lemma 11.6.1. Now

apply Lemma 13.4.2 and Theorem 13.4.5: It follows that there exist 1 isomorphism class
of irreducible Uχ(W )–modules; any representative has dimension 35 = 3codimW cW (χ)/2.

Moreover, by Remark 13.3.3 (if χ(V ) 6= 0) and Remark 13.4.6 (if χ(V ) = 0) induction
induces a bijection between the isomorphism classes of irreducible Uχ(W≥0)–modules and
the isomorphism classes of irreducible Uχ(W )–modules.

The final statement follows from Lemma 13.3.1 and Lemma 13.4.2.

The next lemmas say exactly when we have dimKcW (χ) = 8 for χ ∈ W ∗ of height 2
with st(χ,W≥2) 6= W≥0. We will discuss χ(V ) = 0 and χ(V ) 6= 0 separately. Recall that
we have defined a, b ∈ K such that 0 6= π = ae001+be002 ∈ st(χ,W≥2). Set h := e012−e101.

Lemma 13.6.2. Let χ ∈ W ∗ of height 2 with st(χ,W≥2) 6= W≥0 such that χ(V ) = 0.
Then dimKcW (χ) = 8 if and only if χ(a2e011 + abh− b2e102) 6= 0.

Proof. Follows immediately from Lemma 13.4.2 and Proposition 13.5.4.a.

Lemma 13.6.3. Let χ ∈ W ∗ of height 2 such that st(χ,W≥2) 6= W≥0 and χ(V ) 6= 0.
Then dimKcW (χ) = 8 if and only if χ(e022)χ(ae011 − be101)− χ(e021)χ(ae012 − be102) 6= 0
or χ(ae201 + be202)χ(ae012 − be102)− χ(e202)χ(a2e011 + abh− b2e102) 6= 0.

Proof. Follows immediately from Lemma 13.3.1 and Proposition 13.5.3.a.

13.7 Stabilizer of dimension 10 and χ(V ) = 0

In this section we consider χ ∈W ∗ of height 2 with dimKcW (χ) = 10 such that χ(V ) = 0
and st(χ,W≥2) 6= W≥0. We define a, b ∈ K such that 0 6= π = ae001 + be002 ∈ st(χ,W≥2).
Set h := e012 − e101. Note that χ is conjugate to a character of Type B by Lemma 11.6.1.
Since dimKcW (χ) = 10 we have, by Lemma 13.4.2, either rk cW (χ) = 1 or rk cW (χ) = 0.

Lemma 13.7.1. Let χ ∈ W ∗ of height 2 such that χ(V ) = 0 and st(χ,W≥2) 6= W≥0 and
dimKcW (χ) = 10. Then rk cW (χ) = 1 if and only if χ(ae011− bh) 6= 0 or χ(ah+ be102) 6= 0
and rk cW (χ) = 0 if and only if χ(ae011 − bh) = 0 = χ(ah+ be102).

Proof. Note that χg◦g
∗

has Type B for some g, g∗ ∈ Aut(W ) by Lemma 11.6.1. The
assumption dimKcW (χg◦g

∗
) = dimKcW (χ) = 10 implies that χg◦g

∗
(e011) = 0. Moreover,

rk cW (χg◦g
∗
) = 0 if and only if χg◦g

∗
(h) = 0 and rk cW (χg◦g

∗
) = 1 if and only if χg◦g

∗
(h) 6= 0

by Lemma 13.4.2. Now conclude by Proposition 13.5.4.b.
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Lemma 13.7.2. Let χ ∈W ∗ of height 2 such that χ(V ) = 0 and st(χ,W≥2) 6= W≥0. Then
we have dimKcW (χ) = 10 if and only if χ(a2e011 + abh − b2e102) = 0 and either 1) or 2)
are satisfied:

1) χ(ae011 − bh) 6= 0 or χ(ah+ be102) 6= 0 or

2) one of the following conditions are satisfied:

χ(e021)χ(ae001 + be002)− χ(e011)χ(ae011 + be012) 6= 0 or
χ(e202)χ(ae001 + be002)− χ(e102)χ(ae012 + be102) 6= 0.

Proof. Follows immediately from Lemma 13.4.2 and Proposition 13.5.4.

Theorem 13.7.3. Let χ ∈W ∗ of height 2 such that χ(V ) = 0 and st(χ,W≥2) 6= W≥0 and
dimKcW (χ) = 10. Then cW (χ) ⊂ W≥0 and any irreducible Uχ(W )–module has dimension
34 = 3codimW cW (χ)/2. The number of isomorphism classes of irreducible Uχ(W )–modules is
3 if rk cW (χ) = 1 and 2 if rk cW (χ) = 0.

Proof. Suppose that χg◦g
∗

has Type B for automorphism g, g∗. Since dimKcW (χ) = 10 we
have in particular χg◦g

∗
(e011) = 0. Moreover, it follows from Lemma 13.4.2 that cW (χ) ⊂

W≥0. Our assumption dimKcW (χ) = 10 implies, again by Lemma 13.4.2, that rk cW (χ) =
rk cW (χg◦g

∗
) = 1 if and only if χg◦g

∗
(h) 6= 0. If rk cW (χ) = 1 we thus have χg◦g

∗
(e101) 6= 0

since χg◦g
∗
(e101) = χg◦g

∗
(h); now apply Theorem 13.4.5.c on χg◦g

∗
. If rk cW (χ) = 0 then

χg◦g
∗
(e101) = χg◦g

∗
(h) = 0 6= χg◦g

∗
(e001) 6= 0; now apply Theorem 13.4.5.b on χg◦g

∗
. The

proof is completed.

13.8 Stabilizer of dimension 10 and χ(V ) 6= 0

In this section we consider χ ∈ W ∗ of height 2 and dimKcW (χ) = 10 such that χ(V ) 6= 0
and st(χ,W≥2) 6= W≥0. We define a, b ∈ K such that 0 6= π = ae001 + be002 ∈ st(χ,W≥2).
Set h := e012 − e101. First, apply Lemma 13.3.1 and Lemma 13.6.3 and get:

Lemma 13.8.1. Let χ ∈W ∗ of height 2 such that st(χ,W≥2) 6= W≥0 and χ(V ) 6= 0. Then
dimKcW (χ) = 10 if and only if χ(e022)χ(ae011 − be101)− χ(e021)χ(ae012 − be102) = 0 and
χ(ae201 + be202)χ(ae012 − be102)− χ(e202)χ(a2e011 + abh− b2e102) = 0.

Lemma 13.8.2. Let χ ∈ W ∗ of height 2 such that st(χ,W≥2) 6= W≥0 and χ(V ) 6= 0.
Suppose that dimKcW (χ) = 10. Then rk cW (χ) = 1 or rk cW (χ) = 2. Moreover, we have
rkcW (χ) = 1 if and only if χ(ae201+be202)χ(ae001 +be002)−a

2
(
χ(h)2+χ(e102)χ(e011)

)
= 0

and χ(ae021 + be022)χ(ae001 + be002)− b
2
(
χ(h)2 + χ(e102)χ(e011)

)
= 0.

Proof. Since χ(V ) 6= 0 it follows that χ is conjugate to a character of Type A. Therefore
rk cW (χ) = 1 or rk cW (χ) = 2 by Lemma 13.3.1. Let g, g∗ be automorphisms such that
χg◦g

∗
has Type A. Since dimKcW (χ) = 10 it follows from Lemma 13.3.1 that rk cW (χ) = 1

if and only if χg◦g
∗
(e001) = 0. Now conclude by Proposition 13.5.3.b

Theorem 13.8.3. Let χ ∈ W ∗ of height 2 such that st(χ,W≥2) 6= W≥0 and χ(V ) 6= 0.
Suppose that dimKcW (χ) = 10. If rk cW (χ) = 2, then there exist 5 isomorphism classes
of irreducible Uχ(W )–modules; two representatives have dimension 35 = 3codimWcW(χ)/2+1

and three representatives have dimension 34 = 3codimWcW(χ)/2. If rk cW (χ) = 1, then there
exist 4 isomorphism classes of irreducible Uχ(W )–modules; two representatives have dimen-
sion 35 = 3codimWcW(χ)/2+1 and two representatives have dimension 34 = 3codimWcW(χ)/2.
Finally; cW (χ) 6⊂W≥0.
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Proof. Since χ(V ) 6= 0 it follows that χg◦g
∗

for some automorphisms g, g∗. We also have
dimKcW (χg◦g

∗
) = dimKcW (χ) = 10 and therefore χg◦g

∗
(e012) = 0 (see Lemma 13.3.1).

Now apply Theorem 13.3.2.b,c and note that χg◦g
∗
(e001) = 0 if and only if rk cW (χ) = 1 by

Lemma 13.3.1. Finally; cW (χ) 6⊂W≥0 by Lemma 13.3.1 again. The proof is completed.

13.9 Stabilizer of dimension 12

Theorem 13.9.1. Let χ ∈W ∗ of height 2. If st(χ,W≥2) 6= W≥0 and if dimKcW (χ) = 12,
then χ(V ) = 0 with V as in (13.9) and cW (χ) 6⊂ W≥0 with rk cW (χ) = 1. There exist
3 isomorphism classes of irreducible Uχ(W )–modules; one representative has dimension
33 = 3codimW cW (χ)/2, one representative has dimension 2 · 33 = 2 · 3codimW cW (χ)/2 and one
representative has dimension 34 = 3codimW cW (χ)/2+1.

Proof. It follows from Lemma 13.3.1 that χ isn’t conjugate to a character of Type A; hence
χ(V ) = 0 by Lemma 11.6.1. Next, apply Lemma 13.4.2 and Theorem 13.4.5.a and obtain
the required result (note that dimKW = 18 for p = 3 such that codimW cW (χ) = 6).

The next lemma says exactly when we have dimKcW (χ) = 12 for χ ∈ W ∗ of height
2 with st(χ,W≥2) 6= W≥0. We have defined a, b ∈ K such that 0 6= π = ae001 + be002 ∈
st(χ,W≥2). Set h := e012 − e101.

Lemma 13.9.2. Let χ ∈ W ∗ of height 2 such that st(χ,W≥2) 6= W≥0. Then we have
dimKcW (χ) = 12 if and only if χ(a2e011 + abh − b2e102) = 0 and χ(ae011 − bh) = 0 =
χ(ah+ be102) and

χ(e021)χ(ae001 + be002)− χ(e011)χ(ae011 + be012) = 0 and

χ(e202)χ(ae001 + be002)− χ(e102)χ(ae012 + be102) = 0.

Proof. Follows immediately from Proposition 13.5.4 and Lemma 13.4.2.

13.10 Exceptional characters of height 3

Let p = 3 and let χ ∈W ∗ be a character of height 3 such that st(χ,W≥3) 6= W≥0. We will
study two types of characters introduced in Section 11.5 (and I will use the terminology
from the height 2 situation):

Type A : τ ∈W ∗ of height 3 with τ(e211) = 1, τ(e212) = 0 and τ(e002) = 0 and
τ(e102) = τ(e012) = τ(e011) = 0 and τ(e202) = τ(e112) = τ(e111) = τ(e021) = 0
and st(τ,W≥3) = Ke001 ⊕W≥0.

Type B : τ ∈W ∗ of height 3 with τ(e212) = 1, τ(e211) = 0 and τ(e002) = 0 and
τ(e102) = τ(e012 + e101) = 0 and τ(e202) = τ(e112) = τ(e201) = τ(e111) = 0
and st(τ,W≥3) = Ke001 ⊕W≥0.

The definition of a in (11.11) now reads:

a =

2∑

k=1

Ke02k ⊕

2∑

k=1

Ke12k ⊕W≥3. (13.11)

Note that χ(a ∩W021) = 0 for χ ∈W ∗ of Type A. Thus we can apply Theorem 11.8.5
for χ of Type A.
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13.11 Type A characters of height 3

Consider χ ∈W ∗ of height 3 and Type A. We shall classify the irreducible Uχ(g)–modules
(for g as in (11.8) with p = 3) and then use Proposition 11.8.5 to get information on the
irreducible Uχ(W )–modules.

Proposition 13.11.1. If χ(e022) 6= 0 then there exists up to isomorphism 1 irreducible
Uχ(g)–module of dimension 35.

Proof. Note that h = g ∩W≥0 is supersolvable and the Vergne polarization p of χ con-
structed with respect to the chain (11.10) is given by

p = K(e112 + e201)⊕Ke022 ⊕Ke111 ⊕Ke021 ⊕W≥2.

Indeed: By Remark 9.4.2 we have W≥2 ⊂ p1 and e021 ∈ s
χ
021 and e111 ∈ s

χ
111 follows

immediately. Since χ([e201, e111]) 6= 0 = χ([e201,W021]) we have s
χ
201 ⊂ s

χ
111. Moreover,

e022 ∈ s
χ
022 and e112 + e201 ∈ s

χ
112 since χ([e022,W022]) = 0 and χ([e112 + e201,W112]) = 0.

Next, s
χ
011 ⊂ W≥1 since χ([e011, e212]) 6= 0 = χ([W≥1, e212]). We also have s

χ
101 ⊂ s

χ
011 by

observing that χ([e101, e211]) 6= 0 = χ([W011, e211]). Finally, s
χ
012 ⊂ s

χ
101; otherwise there

exists z ∈W101 such that e012 + z ∈ s
χ
012 and hence χ([e012 + z, e022]) = 0. But this implies

that χ([z, e022]) = −χ(e022) 6= 0 since χ(e022) 6= 0 – contradiction since [e101, e022] = 0 and
χ([W011, e022]) = 0.

Let λ ∈ h∗ with λ = χ|h: Then the Vergne polarization of λ is equal to p and compatible

with χ (i.e., λ(x)p − λ(x[p]) = χ(x)p for all x ∈ p1). Therefore, by Proposition 9.3.5 and
Lemma 9.3.7, there exists up to isomorphism 1 irreducible Uχ(h)–module of dimension 34.
Now apply Proposition 11.7.2 and the fact that χ(a) 6= 0 if and only if χ(e022) 6= 0.

The idea now is to describe the irreducible Uχ(g)–modules when χ(e022) = 0. We define
(as in the height 2 situation) L = K(−e001) ⊕ K(2e101 + e012) ⊕ K(e201 + e112). It is a
restricted Lie algebra isomorphic to sl2(K). Set b := Ke012 ⊕Ke011 ⊕Ke111 and define

s := L⊕ a⊕ b. (13.12)

It is easy to verify that s is a restricted Lie subalgebra of g and that a⊕ b is a p–ideal in
s (apply commutator relations). Moreover, χ(a ⊕ b) = 0 and s/(a ⊕ b) ' L ' sl2(K) as
restricted Lie algebras.

We shall prove that induction induces a bijection between the isomorphism classes of
irreducible Uχ(s)–modules annihilated by a⊕ b and the isomorphism classes of irreducible
Uχ(g)–modules. In order to prove this we need a lemma.

Lemma 13.11.2. Suppose that χ(a ⊕ b) = 0. If M is a Uχ(g)–module and M 6= 0, then
{x ∈M | (a⊕b) ·x = 0} 6= 0 and there exists an irreducible Uχ(s)–submodule X ⊂M with
(a⊕ b) ·X = 0.

Proof. Since [a ⊕ b, a ⊕ b] ⊂ (a ⊕ b) ∩W011 there exists a Uχ(a ⊕ b)–module Kl as being
equal to K as a vector space and where the module structure is given by: e · 1 = 0 for
e ∈ (a ⊕ b) ∩ W011 and e012 · 1 = l (since e012 ∈ a with χ(e012) = 0 we have l ∈ F3).
But a ⊕ b ⊂ W012 is supersolvable so we can apply Lemma 9.1.3: It follows that any
irreducible Uχ(a ⊕ b)–module is isomorphic to some Kl with l ∈ F3. So there exists a
nonzero x ∈ M with (a⊕ b) ∩W011 · x = 0 and e012 · x = lx for some l ∈ F3. If l = 1, set
y := e2211 · x ∈ M and if l = 2, let y := e1211 · x ∈ M . Then (a ⊕ b) ∩W011 · y = 0 since
[e211, (a ⊕ b) ∩W011] ⊂ (a⊕ b) ∩W011 and e012 · y = 0 by construction. We conclude that
{x ∈M | (a⊕ b) · x = 0} 6= 0.
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The final part of the lemma is now easy: Take a nonzero x ∈ M with (a ⊕ b) · x = 0
and take an irreducible Uχ(s)–submodule X of Uχ(s) · x. Since a⊕ b is an ideal of s with
(a⊕ b) · x = 0 we have (a⊕ b) ·Uχ(s) · x = 0 and therefore (a⊕ b) ·X = 0 as required.

Proposition 13.11.3. Suppose that χ(e022) = 0. Let s be defined as in (13.12). Then
induction induces a bijection between the isomorphism classes of irreducible Uχ(s)–modules
annihilated by a⊕ b and the isomorphism classes of irreducible Uχ(g)–modules.

Proof. The assumption χ(e022) = 0 implies that χ(a⊕ b) = 0. Set e1 = e112 and e2 = e212
and e3 = e211. Then e1, e2, e3 form a basis for a complement to s in g. Let X be an
irreducible Uχ(s)–module annihilated by a⊕ b. The idea is to prove that

{x ∈ Uχ(g)⊗Uχ(s) X | (a⊕ b) · x = 0} = 1⊗X. (13.13)

In order to prove (13.13) we will apply Proposition 6.4.1 with h = s and N = X. Adopt
the notation from Section 6.4: We define

X1 =
⊕
ei1e

j
2e
k
3 ⊗X,

X2 =
⊕
ej2e

k
3 ⊗X,

X3 =
⊕
ek3 ⊗X,

where all i, j, k run over {0, 1, 2}. Note that (s ⊕ Ke3) · X3 ⊂ X3 since e3 · X3 ⊂ X3

and [e3, s ⊕ Ke3] ⊂ Ke3 ⊕ s. We also have (s ∩ W≥0 ⊕ Ke2 ⊕ Ke3) · X2 ⊂ X2 since
e2 ·X2 ⊂ X2 ⊃ e3 ·X2 and [e2, s ∩W≥0 ⊕Ke2 ⊕Ke3] ⊂ s ∩W≥0 ⊕Ke2 ⊕Ke3. Finally,
observe that (a ⊕ b) ∩ W011 · X3 = 0 and (a ⊕ b) ∩ W≥1 · X2 = 0. We will use these
observations in the following.

Our aim is to prove that (13.13) holds; i.e., that any x ∈ Uχ(g) ⊗Uχ(s) X such that
(a ⊕ b) · x = 0 lies in X4 := 1 ⊗ X. So let x ∈ Uχ(g) ⊗Uχ(s) X denote an element with
(a⊕ b) · x = 0.

Set f1 = e111. Since f1 ∈ a it follows that f1 · x = 0. Moreover, χ([e112, f1]) 6=
0 but [e112, f1]

[3] = (e211 − e122)
[3] = 0. We also have (ad e112)

i(f1) · X2 ⊂ X2 since
(ad e112)i(f1) ∈ s⊕Ke2 ⊕Ke3 for all i. Finally, f1 ·X2 = 0 since f1 ∈ (a⊕ b) ∩W≥1.

Next, set f2 = e011. Then f2 ·x = 0 and χ([e212, f2]) 6= 0 = [e212, f2]
[3] = (e211 +e122)

[3].
Since (ad e212)

i(f2) ∈ Ke3 ⊕ s for all i we also have (ad e212)
i(f2) · X3 ⊂ X3. Finally,

f2 ·X3 = 0 since f2 ∈ (a ⊕ b) ∩W011.
Finally, set f3 = e012. Then [f3, e3] = e3. We are now in position to apply Corollary

6.4.3 (with e1, e2, e3 and f1, f2, f3 and G,H,N defined above): We find that

{x ∈ Uχ(g)⊗Uχ(s) X | (a⊕ b) · x = 0} ⊂ 1⊗X

and since (a⊕ b) ·X = 0 the other conclusion is clear. We conclude that (13.13) holds.
This implies that Uχ(g)⊗Uχ(s) X is irreducible: Any irreducible g–submodule M has a

nonzero intersection with 1⊗X [Apply Lemma 13.11.2]. Therefore M∩(1⊗X) is a nonzero
Uχ(s)–submodule of 1⊗X and, by irreducibility, M ∩ (1⊗X) = 1⊗X. In particular, we
have M ⊃ 1⊗X and hence M is the entire induced module.

If X1, X2 are irreducible Uχ(g)–modules such that (a⊕ b) ·X1 = 0 = (a⊕ b) ·X2 and

ϕ : Uχ(g)⊗Uχ(s) X1 ' Uχ(g)⊗Uχ(s) X2

is an isomorphism, then ϕ induces a Uχ(s)–isomorphism ϕ : X1 ' X2. Indeed, we have
ϕ(1 ⊗X1) ∩ (1 ⊗X2) 6= 0. (Look at the elements annihilated by a ⊕ b.) Since ϕ(1 ⊗X1)
and 1⊗X2 are irreducible Uχ(g)–modules, we get ϕ(1⊗X1) = 1⊗X2; hence X1 ' X2.
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We have thus shown: Induction induces an injection from the isomorphism classes of
irreducible Uχ(s)–modules annihilated by a⊕ b into the isomorphism classes of irreducible
Uχ(g)–modules.

Now, let Y be an arbitrary irreducible Uχ(s)–module. I claim that we can find an
irreducible Uχ(s)–module X with (a⊕ b) ·X = 0 and

Uχ(g)⊗Uχ(s) X −→ Uχ(g)⊗Uχ(s) Y.

First, apply Lemma 13.11.2 to find an irreducible Uχ(s)–submodule X ⊂ Uχ(g)⊗Uχ(s)Y
with (a ⊕ b) · X = 0; thus we have inclusion maps: X ↪→ Uχ(g) ⊗Uχ(s) Y. Now apply
’Frobenius reciprocity’ on the inclusion X ↪→ Uχ(g)⊗Uχ(s)Y to produce a (nonzero) Uχ(g)–
homomorphism:

Uχ(g)⊗Uχ(s) X −→ Uχ(g)⊗Uχ(s) Y. (13.14)

This implies that every Uχ(g)–module is induced from a Uχ(s)–module annihilated by
a ⊕ b: Indeed, any irreducible Uχ(g)–module V contains an irreducible Uχ(s)–module Y ;
hence, by ’Frobenius reciprocity’, V is a homomorphic image of Uχ(g) ⊗Uχ(s) Y and by
(13.14) then also a homomorphic image of Uχ(g) ⊗Uχ(s) X for some irreducible Uχ(s)–
module X with (a⊕ b) ·X = 0. By the part of the claim already proved we therefore have
V ' Uχ(g)⊗Uχ(s) X. The proof is completed.

It is well known that irreducible Uχ(s)–modules annihilated by a ⊕ b are in one to
one correspondence with irreducible Uχ(s

/
(a ⊕ b)) ' Uχ(L)–modules. [Any irreducible

Uχ(s)–module X extends to g if we define (a ⊕ b) · X = 0. On the other hand: Any
irreducible Uχ(g)–module is an irreducible Uχ(s)–module. So we can think of irreducible
Uχ(g)–modules annihilated by a⊕b as irreducible Uχ(s)–modules extended to g with trivial
a⊕ b–action.]

Thus we obtain from the proposition above:

Corollary 13.11.4. Suppose that χ(e022) = 0. The number of isomorphism classes and
dimension formulas for irreducible Uχ(g)–modules are given as follows:

a) If χ(e101) 6= 0 = χ(e201) then there exist up to isomorphism 3 irreducible Uχ(g)–
modules all of dimension 34.

b) If χ(e101) = χ(e201) = 0 6= χ(e001) then there exist up to isomorphism 2 irreducible
Uχ(g)–modules all of dimension 34.

c) If χ(e101) = χ(e201) = χ(e001) = 0 then there exist up to isomorphism 3 irreducible
Uχ(g)–modules of dimension 33, 2 · 33 and 34.

d) If χ(e201) 6= 0 = χ(2e101 + e012)
2 − χ(e001)χ(e201 + e112) then there exist up to

isomorphism 2 irreducible Uχ(g)–modules all of dimension 34.

e) If χ(e201) 6= 0 6= χ(2e101 + e012)
2 − χ(e001)χ(e201 + e112) then there exist up to

isomorphism 3 irreducible Uχ(g)–modules all of dimension 34.

Proof. In [27, 5, 5.2] the representation theory of sl2(K) is described. If we apply the
description in [27] on L we see that there are 3 isomorphism classes of irreducible Uχ(L)–
modules if χ(L) = 0 or χ(2e101 + e012)

2 − χ(e001)χ(e201 + e112) 6= 0 and 2 isomorphism
classes of irreducible Uχ(L)–modules if χ(2e101 + e012)

2 − χ(e001)χ(e201 + e112) = 0. If
χ(L) 6= 0 then each irreducible Uχ(L)–module has dimension 3 and if χ(L) = 0 then there
exist 3 irreducible Uχ(L)–modules of dimension 1, 2, 3. Now it is straightforward to verify
a)–e) by using Proposition 13.11.3.
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Lemma 13.11.5. Let χ ∈ W ∗ be a character of height 3 and Type A. Then we have
dimKcW (χ) = 2 and rk cW (χ) = 0 and cW (χ) ⊂ W≥0 if χ(e022) 6= 0. If χ(e022) = 0 we
have the following:

dimKcW (χ) =

{
6 if χ(e201) = χ(e101) = χ(e001) = 0,

4 else

and

rk cW (χ) =





0 if χ(e101) = 0 = χ(e201) and χ(e001) 6= 0,

0 if χ(e201) 6= 0 = χ(2e101 + e012)
2 − χ(e001)χ(e201 + e111),

1 else,

Finally, cW (χ) ⊂W≥0 unless χ(e201) 6= 0 or χ(e101) = χ(e201) = χ(e001) = 0.

Proof. First, note that cW (χ) ⊂ g [Let y ∈ cW (χ) and use the relations χ([y, e221]) =
χ([y, e121]) = χ([y, e021]) = 0]. This leaves two possibilities for dimKcW (χ): Either
dimKcW (χ) = dimKcg(χ) − 1 or dimKcW (χ) = dimKcg(χ) − 3 (use similar ideas as in
the proof of Lemma 10.4.7). If dimKcW (χ) = dimKcg(χ) − 1 then there exists x ∈ cg(χ)
such that cg(χ) = cW (χ) ⊕ Kx. But we easily check that e121, e021 ∈ cg(χ) and since
(Ke121 ⊕Ke021) ∩ cW (χ) = 0 it follows that dimKcW (χ) = dimKcg(χ) − 1 is impossible.
Let me summarize: cW (χ) ⊂ g of codimension 3.

If χ(e022) 6= 0 then we have cg(χ) ⊂ cg ∩W≥0 = h since we have χ([e001, e122]) 6= 0
but χ([g ∩W≥0, e122]) = 0. Now use that h ⊂ g of codimension 1 to get dimKcg(χ) =
dimKch(χ)− 1. But the dimension of dimKch(χ) can be determined by the Vergne polar-
ization of χ|h (computed in the proof of Proposition 13.11.1); if we use (9.6) in Section 9.2
we get:

dimKcW (χ) = dimKch(χ)− 4 = 2 · dimKp− dimKh− 4 = 2.

Since cW (χ) ⊂ h we have ch(χ) ⊂ p; hence cW (χ) ⊂W≥0 and rk cW (χ) = 0.
From now suppose that χ(e022) = 0. Let

y =
∑

ijk

aijkeijk ∈ cW (χ)

for some aijk ∈ K. Since cW (χ) ⊂ g we have a002 = a102 = a202 = 0. Moreover, it is easy
to check that a221 = a121 = a211 = a212 = a021 = a111 = a011 = 0 also [use χ([y, eabc]) = 0
for appropriate a, b, c]. The final relations give the following conditions on the coefficients
in the expression of y:

a201 − a112 = 0,
a012 + a101 = 0,

a101χ(e001)− a201χ(e101) = 0,
a001χ(e001)− a201χ(e201) = 0,
a101χ(e201)− a001χ(e101) = 0.

It follows that e222, e122, e022 ∈ cW (χ) and that e001, e101 − e012, e201 ∈ cW (χ) if
χ(e201) = χ(e101) = χ(e001) = 0 and χ(e201)e001+χ(e101)(e101−e012)+χ(e001)e201 ∈ cW (χ)
otherwise. Moreover, y is a linear combination of these elements.

The dimension formula for cW (χ) now follows and cW (χ) ⊂W≥0 unless χ(e201) 6= 0 or
χ(e201) = χ(e101) = χ(e001) = 0.
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If χ(e201) = 0 then

rk cW (χ) =

{
0 if χ(e101) = 0 6= χ(e011),

1 else.

Clearly, rk cW (χ) = 0 if χ(e101) = 0 6= χ(e011) since cW (χ) ⊂ W011 in that case. Suppose
that χ(e101) = 0 = χ(e011). Then e012 − e101 ∈ cW (χ) is a toral element. If rk cW (χ) = 2
then χ is conjugate under Aut(W ) to a character of Type B by the results in Section 12.1.
But this is a contradiction since no characters of Type A and Type B are conjugate. So rk
cW (χ) = 2 is impossible for χ of height 3 and Type A.

Finally, suppose that χ(e101) 6= 0. Then K(χ(e101)(e101−e012)+χ(e001)e201) is a torus
since any e101 − e012 + ce201 for c ∈ K is a toral element by Lemma B.1.1. In fact, it is a
maximal torus also.

If χ(e201) 6= 0 set α := χ(e201)e001 +χ(e101)(e101 − e012) +χ(e001)e201 and use (B.2) in
Appendix B to get:

α[3] =
(
χ(2e101 + e012)

2 − χ(e001)χ(e201 + e111)
)
α.

Therefore

rk cW (χ) =

{
0 if χ(2e101 + e012)

2 − χ(e001)χ(e201 + e111) = 0,

1 else.

If χ(2e101 + e012)
2 − χ(e001)χ(e201 + e111) 6= 0 then rk cW (χ) = 1 by Lemma B.1.2.

Suppose that χ(2e101 +e012)
2−χ(e001)χ(e201 +e111) = 0. If rk cW (χ) > 0 then there exists

a nonzero toral element h ∈ cW (χ). It is easy to see that we can write

h = α+ z

for some z ∈ Ke022 ⊕Ke122 ⊕Ke222. But h[3] ∈ W≥0 by (B.2) in Appendix B (use that
α[3] = 0); therefore h[3] = h is impossible.

The proof is completed.

The irreducible Uχ(W )–modules are now described by using Theorem 11.8.5, Propo-
sition 13.11.1, Corollary 13.11.4 and Lemma 13.11.5 (note that χ(a) 6= 0 if and only if
χ(e022) 6= 0):

Theorem 13.11.6. Let χ ∈W ∗ be a character of height 3 and Type A and let a be as in
(11.11) with r = 3.

a) If χ(a) 6= 0 then dimKcW (χ) = 2 and there exists up to isomorphism 1 irreducible
Uχ(W )–module of dimension 38 = 3codimW cW (χ)/2. We have rk cW (χ) = 0 and
cW (χ) ⊂W≥0.

Suppose that χ(a) = 0.

b) If χ(e101) 6= 0 = χ(e201) then dimKcW (χ) = 4 and there exist up to isomor-
phism 3 irreducible Uχ(W )–modules all of dimension 37 = 3codimW cW (χ)/2. We have
rk cW (χ) = 1 and cW (χ) ⊂W≥0.

c) If χ(e101) = χ(e201) = 0 6= χ(e001) then dimKcW (χ) = 4 and there exist up to
isomorphism 2 irreducible Uχ(W )–modules all of dimension 37 = 3codimW cW (χ)/2.
We have rk cW (χ) = 0 and cW (χ) ⊂W≥0.
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d) If χ(e101) = χ(e201) = χ(e001) = 0 then dimKcW (χ) = 6 and there exist up to isomor-
phism 3 irreducible Uχ(W )–modules of dimension 36 = 3codimW cW (χ)/2,
2 · 36 = 2 · 3codimW cW (χ)/2 and 37 = 3codimW cW (χ)/2+1. We have rk cW (χ) = 1
and cW (χ) 6⊂W≥0.

e) If χ(e201) 6= 0 = χ(2e101 + e012)
2 − χ(e001)χ(e201 + e112) then dimKcW (χ) = 4

and there exist up to isomorphism 2 irreducible Uχ(W )–modules all of dimension
37 = 3codimW cW (χ)/2. We have rk cW (χ) = 0 and cW (χ) 6⊂W≥0.

f) If χ(e201) 6= 0 6= χ(2e101 + e012)
2 − χ(e001)χ(e201 + e112) then dimKcW (χ) = 4

and there exist up to isomorphism 3 irreducible Uχ(W )–modules all of dimension
37 = 3codimW cW (χ)/2. We have rk cW (χ) = 1 and cW (χ) 6⊂W≥0.

Remark 13.11.7. One can show that induction induces a bijection between the isomor-
phism classes of irreducible Uχ(W≥0)–modules and the isomorphism classes of irreducible
Uχ(W )–modules if χ(a) 6= 0 or χ(a) = χ(e201) = 0 6= χ(e101).

But Theorem 13.11.6 says that induction from W≥0 to W does not always take irre-
ducible Uχ(W≥0)–modules to irreducible Uχ(W )–modules.

In fact, if χ(a) = χ(e101) = χ(e201) = 0 then one can prove that there exist 3 irreducible
Uχ(W≥0)–modules S0, S1, S2 and nonzero Uχ(W )–homomorphisms

Uχ(W )⊗Uχ(W≥0) S0
ψ

�ϕ Uχ(W )⊗Uχ(W≥0) S2

such that ϕ ◦ψ = χ(e001)
3 · Id0 and ψ ◦ϕ = χ(e001)

3 · Id2 (Idk denotes the identity map on
the W–module induced by Sk for k = 0, 2). If χ(e001) = 0 then Ker(ψ) is a proper nonzero
W–submodule of Uχ(W ) ⊗Uχ(W≥0) S0 and Ker(ϕ) is a proper nonzero W–submodule of
Uχ(W )⊗Uχ(W≥0) S2. Moreover, Uχ(W )⊗Uχ(W≥0) S1 is irreducible.

If χ(a) = 0 6= χ(e201) one can prove that there exists one irreducible Uχ(W≥0)–module
S with

EndW
(
Uχ(W )⊗Uχ(W≥0)S

)
' K[X]

/(
X3−X2−

(
χ(2e101+e012)

2−χ(e001)χ(e201+e112)
)3)

.

13.12 Type B characters of height 3

Consider χ ∈ W ∗ of height 3 and Type B. The Vergne polarization of χ constructed via
the chain (9.10) is given by

p =

{
Ke012 ⊕Ke011 ⊕W022 if χ(e011) = χ(e022) = χ(e021) = 0,

K(e011 − χ(e021)e202 − χ(e022)e201)⊕W022 otherwise.
(13.15)

In order to see this we have to consider all s
χ
ijk for (ijk) � (012). First, we observe that

eαβγ ∈ s
χ
αβγ for (αβγ) � (022); hence W022 ⊂ p. Moreover, s

χ
112 ⊂ s

χ
022 and s

χ
202 ⊂ s

χ
112

since χ([e112, e201]) 6= 0 = χ([W022, e201]) and χ([e202, e111]) 6= 0 = χ([W112, e111]).
Next, observe that y := e011 − χ(e021)e202 − χ(e022)e201 ∈ s

χ
011 (one has to check that

χ([y, e022]) = χ([y, e111]) = χ([y, e021]) = 0).
Finally, we have to consider s

χ
101 and s

χ
012. Since χ([e101, e212]) 6= 0 = χ([W011, e212])

we have s
χ
101 ⊂ s

χ
011. Finally, suppose that h ∈ s

χ
012 but h 6∈W101: Since χ([e012, e212]) = 0

it follows that h = e012 + z for some z ∈ W011. If χ(e021) 6= 0, then χ([e012 + z, e021]) 6= 0
implies that χ([z, e021]) 6= 0 – contradiction since χ([e021,W011]) = 0 for χ of Type B. If
χ(e022) 6= 0 but χ(e021) = 0, then χ([e012 + z, e022]) 6= 0 implies that χ([z, e022]) 6= 0 and
therefore

z ∈ K∗e202 +
∑

(αβγ)6=(202)

Keαβγ .
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But χ([e012 + z, e111]) = 0 = χ(e111) implies that χ([e111, z]) = 0 – contradiction for z
written as above.

Suppose that χ(e011) 6= 0 but χ(W1) = 0 (or equivalent: χ(e022) = χ(e021) = 0). Then
χ([e011,W011]) = 0 and so we get a contradiction from χ([e012 + z, e011]) = χ(e011). It
follows that s

χ
011 ⊂ s

χ
101 ⊂ s

χ
011 if χ(e011) 6= 0 or χ(e021) 6= 0 or χ(e022) 6= 0.

Finally, if χ(e011) = χ(W1) = 0 (or equivalent: χ(e011) = χ(e022) = χ(e021) = 0) then
e012 ∈ s

χ
012 since χ([e012, e212]) = 0. Therefore, the formula for p in (13.15) holds.

At this point it will be convenient to describe the centralizer of χ.

Lemma 13.12.1. If χ ∈W ∗ is a character of height 3 and Type B, then we have

dimKcW (χ) =

{
4 if χ(e011) 6= 0 or χ(e021) 6= 0 or χ(e022) 6= 0,

8 else.

Moreover,

rk cW (χ) =





0 if χ(e011) 6= 0 or χ(e021) 6= 0 or χ(e022) 6= 0,

1 if χ(e012) = 0 and χ(e011) = χ(e021) = χ(e022) = 0,

2 if χ(e012) 6= 0 and χ(e011) = χ(e021) = χ(e022) = 0.

Finally; cW (χ) 6⊂W≥0 if and only if χ(e011) = χ(e021) = χ(e022) = 0.

Proof. Let
y =

∑

(αβγ)

aαβγeαβγ ∈ cW (χ) (∗)

for aαβγ ∈ K. First, let us show that a002 = a102: Since cW (χ) ⊂ st(χ,W≥3) = Ke001 ⊕
W≥0 we have a002 = 0. Next, use the relations χ([y, e211]) = 0 6= χ([e102, e211]) and
χ([e001, e211]) = χ([W012, e211]) = 0 to get a102 = 0. It follows that y ≡ a001e001 (mod
W012).

If χ(e021) 6= 0 then χ([y, e121]) = 0 implies that a001 = 0 since χ([e001, e121]) 6= 0 and
since χ([W012, e121]) = 0.

If χ(e022) 6= 0 then χ([y, e122]) = 0 implies that a001 = 0 since χ([e001, e122]) 6= 0 and
since χ([W012, e122]) = 0.

Finally, suppose that χ(e021) = χ(e022) = 0 but χ(e011) 6= 0. It follows that a202 = 0
since 0 = χ([y, e022]) = 2a202χ(e212). Now use that χ([y, e111]) = 0 to get a001 = 0.

Therefore, cW (χ) ⊂ cW≥0
(χ|W≥0

) if χ(e011) 6= 0 or χ(e021) 6= 0 or χ(e022) 6= 0. Since
a102 = 0 for any y as in (∗) we also have cW≥0

(χ|W≥0
) ⊂ cW012

(χ|W012
). Now apply

Lemma 10.4.1 and Lemma 10.4.7 to get dimKcW (χ) = dimKcW012
(χ|W012

) − 3. But
dimKcW012

(χ|W012
) can be obtained by combining the dimension for p and (9.6). Thus

we get (see the formula for p in (13.15)):

dimKcW (χ) = 2 · dimKp− dimKW012 − 3 = 4.

Moreover, rk cW (χ) = 0 since cW (χ) ⊂ p and p is unipotent.
Assume from now that χ(e011) = χ(e021) = χ(e022) = 0 and let

y =
∑

(αβγ)

aαβγeαβγ ∈ cW (χ)

for aαβγ ∈ K. It follows from the calculations above that a002 = a102 = a202 = 0 (in order
to get a202 = 0 we use that χ([y, e022]) = 0 and χ(e022) = χ(e021) = 0). It is easy to
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verify (use the assumptions on χ) that e012, e021, e121, e221 ∈ cW (χ). Therefore we can also
assume that a012 = a021 = a121 = a221 = 0 in the expression for y. Moreover, we also have
a101 = 0 since 0 = χ([y, e212]) = 2a101χ(e212) (here we use that χ(e112) = 0). The final
relations (i.e., χ([y, eabc]) = 0 for appropriate a, b, c) give the following conditions on the
coefficients in the expression of y:

a022 − a111 = 0,
a001χ(e012) + a201 = 0,
a001χ(e012)− a112 = 0,
a001χ(e001) + a212 = 0,

a211 + a122 − a011χ(e012) = 0,
(a022 + a111)χ(e012)− a011χ(e001) + a222 = 0,

(a112 + a201)χ(e012) = 0.

If χ(e012) = 0 then

y ∈ K(e211 − e122)⊕K(e022 + e111)⊕K(e001 − χ(e001)e212)⊕K(e011 + χ(e001)e222)

and by the list of relations above we have

e211 − e122 ∈ cW (χ),
e022 + e111 ∈ cW (χ),

e001 − χ(e001)e212 ∈ cW (χ),
e011 + χ(e001)e222 ∈ cW (χ).

It follows that dimKcW (χ) = 8. We also have rk cW (χ) ≥ 1 since e012 ∈ cW (χ) is a toral
element. If we have rk cW (χ) = 2 then it is easy to that there exists a toral element
h ∈ cW (χ) given by h = e001 + z for some z ∈ Ke011 ⊕ Ke022 ⊕W111. This implies, by
(B.2) in Appendix B, that h[3] ∈W≥0 and therefore h[3] 6= h – contradiction.

If χ(e012) 6= 0 then

y ∈ K(e211 − e122)⊕K(e022 + e111 + χ(e012)e222)⊕K(e011 + χ(e001)e222 + χ(e012)e211)

⊕K(e001 − χ(e001)e212 + χ(e012)(e112 − e201))

and by the list of relations above we also have

e211 − e122 ∈ cW (χ),
e022 + e111 + χ(e012)e222 ∈ cW (χ),

e001 − χ(e001)e212 + χ(e012)(e112 − e201) ∈ cW (χ),
e011 + χ(e001)e222 + χ(e012)e211 ∈ cW (χ).

It follows that dimKcW (χ) = 8. In this case we have rk cW (χ) = 2: To see this, set

h := e001 − χ(e001)e212 + χ(e012)(e112 − e201).

If we apply (B.2) in in Appendix B we get h[3] = h + χ(e001)e012. It follows that we can
choose γ ∈ K such that h+γe012 is toral [since [h, e012] = 0 we shall choose γ ∈ K such that
h[3] +γ3e012 = h+γe012 or equivalent: We shall choose γ ∈ K such that γ = γ3 +χ(e001)].
We conclude that Ke012 ⊕K(h+ γe012) is a (maximal) torus.

Let us describe the irreducible Uχ(W )–modules. First, suppose that χ(e011) 6= 0 or
χ(e021) 6= 0 or χ(e022) 6= 0.
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Let Kχ be the one dimensional p–module where each x ∈ p acts as multiplication by
χ(x). Actually, Kχ is a Uχ(p)–module since χ(x[3]) = 0 for all x ∈ p [in order to get
χ(y[3]) = 0 for y = e011 − χ(e021)e202 − χ(e022)e201 one has to use (B.2) in Appendix B].
Moreover, Kχ is the unique Uχ(p)–module since p2 is unipotent.

Set S := Uχ(W≥0) ⊗Uχ(p) Kχ and note that S is irreducible with a basis given by
zstklm := es102e

t
202e

k
012e

l
101e

m
112 ⊗ 1 for 0 ≤ s, t, k, l,m < 3 (the PBW theorem).

Let M := Uχ(W ) ⊗Uχ(W≥0) S and let w0 = 1 ⊗ z00000 ∈ SocpM . Note that w0 ∈
Socp1⊗ S; thus it follows from Lemma 11.3.1 that Socp1⊗ S = Kw0.

We shall obtain results similar to those in Theorem 10.4.11 and Theorem 10.4.12 [in
Theorem 10.4.11 and 10.4.12 we consider χ of height r with st(χ,W≥r) = W≥0: Except
for one type of characters of height 2p− 3 the dimension of all irreducible Uχ(W )–modules
is pcodimW cW (χ)/2 and the number of isomorphism classes is p if rk cW (χ) = 1 and 1 if rk
cW (χ) = 0]. This is illustrated by the following result.

Proposition 13.12.2. If χ(e011) 6= 0 or χ(e022) 6= 0 or χ(e021) 6= 0 then there exist one
irreducible Uχ(W )–module of dimension 37 = 3codimW cW (χ)/2.

Proof. Keep the notation from above. The idea is to prove that SocpM = Kw0; so suppose
otherwise that SocpM 6= Kw0. Then there exists w ∈ M such that Kw is an irreducible
p–submodule of SocpM and by Lemma 11.4.1 we have

w ∈ eb001 ⊗ z00000 + eb−1
001 ⊗ u+

∑

k<b−1

∑

k+m≤b−1

ek001e
m
002 ⊗ S (13.16)

for some b > 0 and some u ∈ S. The assumption on w says that x · w − χ(x)w = 0 for all
x ∈W011. For x ∈ {e111, e022, e211, e122, e121} we have:

χ(x)w ∈ χ(x)eb001⊗z00000+eb−1
001 ⊗(b[x, e001]·z00000+x·u)+

∑

k<b−1

∑

k+m≤b−1

ek001e
m
002⊗S. (∗)

In particular, b[x, e001] · z00000 + x · u = 0 by the PBW theorem. Use that relation with
x = e211 and x = e022 and get (note that [e001, e022] = 0 and that [e001, e211] · z00000 = 0)

e211 · u = 0,
e022 · u = 0.

This implies that u ∈
∑

klmKz00klm since

{u ∈ S | e211 · u = 0 = e022 · u} ⊂
∑

klm

Kz00klm. (13.17)

In order to prove (13.17) use Proposition 6.4.1 with g = W≥0 and H = p and N = Kχ.
The cobasis is given by e1 = e102, e2 = e202, e3 = e012, e4 = e101, e5 = e112. There exists
f1 = e211 such that [e1, f1] acts bijectively on S (since χ([e1, f1]) 6= 0 = [e1, f1]

[3]) and
f1 ·

∑
tklmKz0tklm = 0 (note that N2 in Proposition 6.4.1 with N = Kχ corresponds to∑

tklmKz0tklm). Finally, (ad e1)(f1) · N2 ⊂ N2 and thus we can use Proposition 6.4.1: It
follows that u ∈

∑
tklmKz0tklm if e211 · u = 0.

Next, we can use that e022 ·u = 0. Set f2 = e022 and note that [e2, f2] acts bijectively on
S (since χ([e2, f2]) 6= 0 = [e2, f2]

[3]) and f2·
∑

tklmKz00klm = 0 (note that N3 in Proposition
6.4.1 with N = Kχ corresponds to

∑
klmKz00klm). Finally, (ad e2)(f2) ·N3 ⊂ N3 and thus

we can use Proposition 6.4.1 again: It follows that u ∈
∑

klmKz00klm if e211·u = 0 = e022 ·u.
Therefore, (13.17) holds.
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So for any w ∈ M but w 6∈ Kw0 such that Kw is a p2–submodule of M we have
u ∈

∑
klmKz00klm for w written as in (13.16).

The assumption in the theorem implies that we can find x ∈ p2 such that [x, e001] ·
z00000 6= 0 [take x = e121 if χ(e021) 6= 0 and x = e122 if χ(e022) 6= 0 and x = e111 if
χ(e011) 6= 0]. It follows from (∗) that x · u 6= 0 for x = e121 or x = e122 or x = e111. But
now we have a contradiction since u ∈

∑
klmKz00klm by (13.17) and since x · z00klm = 0

for all k, l,m if x = e121 or x = e122 or x = e111.
We conclude that SocpM = Kw0. This implies that M is irreducible and in fact the

only irreducible Uχ(W )–module up to isomorphism: Indeed, any nonzero W–submodule X
of M contains w0 (X has p–socle inside SocpM = Kw0); therefore X is the entire module.
Any irreducible module M ′ contains a copy of Kχ and so a copy of S (use ’Frobenius
reciprocity’). Thus we have a nonzero W–homomorphism M −→ M ′. Since both M and
M ′ are irreducible we have M 'M ′.

Note that dimKM = 37. Now the dimension formula (i.e., 37 = 3codimW cW (χ)/2) follows
from Lemma 13.12.1 The proof is completed.

Finally we shall consider the case where χ(e011) = 0 = χ(W1). It follows from (13.11)
that χ(a) = 0. Set b := Ke011 ⊕Ke111 ⊕Ke211. It is easy to check that a⊕ b is a p–ideal
in g with χ(a ⊕ b) = 0; hence a ⊕ b annihilates all irreducible Uχ(g)–modules. Moreover,
let L be the restricted Lie algebra isomorphic to sl2(K) defined in (13.5) and define

H := L⊕Ke012 ⊕Ke112 ⊕Ke212. (13.18)

It is a Lie p–subalgebra of g with g = (a ⊕ b) ⊕ H; hence g/(a ⊕ b) ' H. Note that
a⊕ b annihilates all irreducible Uχ(g)–modules and that g/(a ⊕ b) ' H. Thus irreducible
Uχ(g)–modules are in one to one correspondence with irreducible Uχ(H)–modules. [We
can think of irreducible Uχ(g)–modules as irreducible Uχ(H)–modules where a ⊕ b acts
trivially.] Moreover, induction induces a bijection between the isomorphism classes of
irreducible Uχ(g)–modules and the isomorphism classes of irreducible Uχ(W )–modules by
Theorem 11.9.6 and Remark 11.9.7. Thus it will be enough for us to describe the irreducible
Uχ(H)–modules in detail. This is the subject for the next propositions.

First, we define

H0 := H ∩W≥0 = Ke012 ⊕Ke101 ⊕Ke112 ⊕Ke201 ⊕Ke212. (13.19)

Note that H0, as a Lie p–subalgebra of W012, is supersolvable. If we intersect the chain
from (9.10) with H0, then we get a chain

H0 ⊃ H0 ∩W101 ⊃ H0 ∩W011 ⊃ · · · ⊃ 0 (13.20)

that we can use to construct Vergne polarizations (after moving repetitions). It is easy to
see that the Vergne polarization p0 of χ|H0

with respect to (13.20) is given by

p0 = Ke012 ⊕Ke201 ⊕Ke212.

For any ν ∈ K with ν3−ν = χ(e012)
3 we can define an (irreducible) Uχ(p0)–module Kν

where each x ∈ p0∩W011 acts as mutiplication by χ(x) and e012 acts as multiplication by ν.
Moreover, any Uχ(p0)–module is isomorphic to one of these Kν . It follows from Proposition
9.3.10 that any irreducible Uχ(H0)–module is isomorphic to some Uχ(H0)⊗Uχ(p0)Kν (where

ν ∈ K with ν3 − ν = χ(e012)
3). Set Nν := Uχ(H0)⊗Uχ(p0) Kν . Then all zij := ei101e

j
112 ⊗ 1

with 0 ≤ i, j < 3 form a basis for Nν . Set

Mν := Uχ(H)⊗Uχ(H0) Nν

and define wν,0 := 1⊗ z00 ∈ Socp0
Mν .
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Proposition 13.12.3. For ν ∈ K with ν3 − ν = χ(e012)
3 we have

(e001 − e112 − e101e112) · wν,0 ∈ Socp0
Mν .

Proof. First, note that e012 · (e001 − e112 − e101e112) · wν,0 = ν(e001 − e101e112) · wν,0 since
[e001, e012] = [e101, e012] = [e112, e012] = 0 and e012 · wν,0 = νwν,0. Next, [e201, e001] · wν,0 =
e101 · wν,0 and e201 · (e112 + e101e112) · wν,0 = e101 · wν,0. Therefore we have

e201 · (e001 − e112 − e101e112) · wν,0 = 0

as required. Finally, we get e212 · (e112 + e101e112) · wν,0 = e101 · wν,0 = [e212, e001] · wν,0
implying that e212 · (e001 − e112 − e101e112) · wν,0 = (e001 − e112 − e101e112) · wν,0.

Set qν = e001 − e112 − e101e112 and wν = qν · wν,0. Then Kwν is a p0–submodule of
Mν by Proposition 13.12.3 and so Homp0

(Kν ,Mν) 6= 0 (take ψ : Kν −→ Mν defined by
ψ(1) = wν). Now apply ’Frobenius reciprocity’ once to produce a Uχ(H0)–homomorphism
ψ0 : Nν −→Mν given by ψ(z00) = wν and secondly use ’Frobenius resiprocity’ to produce
Uχ(H)–homomorphism ψ : Mν −→ Mν given by ψ(wν,0) = wν . It is easy to see that
IdMν , ψ and ψ2 are linear independent Uχ(H)–homomorphisms [one can use quite similar
arguments as in Remark 11.4.4; the setup in Remark 11.4.4 is a little different from here
but the type of arguments are exactly the same]. It follows that dimKEndH(Mν) = 3 [we
have to argue as before: One can use similar arguments as in Corollary 11.4.3; the setup
is a little different from here but the type of arguments are exactly the same].

Proposition 13.12.4. We have an isomorphism as K–algebras

K[X]/
(
X3 − νX − χ(e001)

3
)
' EndH(Mν) ; X + (X3 − νX − χ(e001)

3) 7−→ ψ

where ψ is the H–endomorphism given by ψ(wν,0) = (e001 − e112 − e101e112) · wν,0.

Proof. Define K–algebra homomorphism K[X] −→ EndH(Mν) sending X to ψ (ψ as in
the proposition). If we can prove that ψ3 − νψ − χ(e001)

3Id|Mν
= 0 (where 0 is the zero

endomorphism on Mν), then we are done (compare dimension). Clearly, it is enough to
prove that ψ3(wν,0)− νψ(wν,0)− χ(e001)

3 · wν,0 = 0 or equivalent:

(e001− e112− e101e112)
3 ·wν,0−ν(e001− e112− e101e112) ·wν,0−χ(e001)

3 ·wν,0 = 0. (13.21)

First, observe that

(e001 − e112 − e101e112)
3 = χ(e001)

3 −
[
e001, [e001, e112 + e101e112]

]

+
[
[e001, e112 + e101e112], e112 + e101e112

]

−(e112 + e101e112)
3.

Now use [27, 1, Prop. 1.3 (2)] to get:

[e001, e112 + e101e112] = e012 + e001e112 + e101e012,
[e001, e012 + e001e112 + e101e012] = −e001e012,

[e012, e112 + e101e112] = 0,
[e001e112 + e101e012, e112 + e101e112] = −(e112 + e101e112)e012.

It follows that

(e001 − e112 − e101e112)
3 = χ(e001)

3 + (e001 − e112 − e101e112)e012 − (e112 + e101e112)
3. (∗)

But (e112 + e101e112)
3 = (e112(1 + e101))

3 = 0 since e3112 = e
[3]
112 + χ(e112)

3 = 0 and
since (e101 + a)e112 = e112(e101 + a + 1) for any a ∈ K. Now use (∗) and the fact that
e012 · wν,0 = νwν,0 to get (13.21).
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Proposition 13.12.5. Suppose that χ(e011) = χ(e022) = χ(e021) = 0.

a) If χ(e012) 6= 0 then there exist up to isomorphism 32 irreducible Uχ(H)–modules all
of dimension 32.

b) If χ(e012) = 0 then there exist up to isomorphism 2 ·3+1 irreducible Uχ(H)–modules
all of dimension 32.

Proof. We shall consider irreducible H–submodules of Mν .
If ν 6= 0, then X3−νX−χ(e001)

3 has three (different) roots a0, a1, a2 ∈ K and therefore
Mν decomposes into its isotypic components Mν,i := Ker(ψ−ai ·Id|Mν

) for i = 0, 1, 2 (apply
Proposition 13.12.4). There results an embedding

2⊕

i=0

EndH(Mν,i) −→ EndH(Mν) ; (f0, f1, f2) 7−→ f0 ⊕ f1 ⊕ f2

ofK–algebras, which, for dimension reasons, is also onto. Consequently, dimK EndH(Mν,i) =
1 as well as HomH(Mν,i,Mν,j) = (0) for i 6= j, implying that the Mν,i are pairwise non-
isomorphic (recall that dimK EndH(Mν) = 3). Each Mν,i contains a simple Uχ(H0)-module
and thus has dimension ≥ p2. In view of 3p2 = p3 = dimKMν , each Mν,i is an irreducible
H0–module; thus we obtain the irreducibility of each H–module Mν,i. Finally, note that
Mν is semisimple for ν 6= 0.

For ν = 0, we have EndH(M0) ' K[T ]/(T 3). Let t := T + (T 3) and consider the
filtration

(0) ( t2M0 ( tM0 ( M0

of H-modules. The foregoing dimension arguments imply that this is a composition series.
Moreover, multiplication by t induces isomorphisms between the composition factors. It is
easy to verify that M0 is indecomposable.

We are now in position to finish the proof:
If χ(e012) 6= 0 then ν 6= 0 for all ν ∈ K with ν3 − ν = χ(e012)

3. Let ν0, ν1, ν2 ∈ K
∗ be

the roots in X3 −X − χ(e012)
3. Then {Mνi,j | 0 ≤ i, j ≤ 2} is a set of representative of

non–isomorphic irreducible Uχ(H)–modules.
If χ(e012) = 0 then {Mi,j , t

2M0 | i = 1, 2, 0 ≤ j ≤ 2} is a set of representative of
non–isomorphic irreducible Uχ(H)–modules. [If φ : Mi,j ' t2M0 take nonzero x0 ∈ t

2M0

such that Kx0 is p0–submodules of t2M0 and xi ∈Mi,j such that Kxi is p0–submodules of
Mi,j; in particular, Kxi ' Ki and Kx0 ' K0. Then φ(xi) ∈ t

2M0 and Kφ(xi) ⊂ M0 is a
p0–submodule; hence isomorphic to K0. We conclude that Ki 'p0

K0–contradiction.]

Theorem 13.12.6. Let χ ∈W ∗ be a character of height 3 and Type B.

a) If χ(e011) 6= 0 or χ(e022) 6= 0 or χ(e021) 6= 0 then there exists up to isomorphism
1 irreducible Uχ(W )–module of dimension 37 = 3codimWcW(χ)/2. Moreover, cW (χ) ⊂
W≥0 and rk cW (χ) = 0.

Suppose that χ(e011) = χ(e021) = χ(e022) = 0.

b) If χ(e012) 6= 0 then there are up to isomorphism 32 irreducible Uχ(W )–modules all of
dimension 35 = 3codimWcW(χ)/2. Moreover, cW (χ) 6⊂W≥0 and rk cW (χ) = 2.

c) If χ(e012) = 0 then there are up to isomorphism 2 · 3 + 1 irreducible Uχ(W )–modules
of dimension 35 = 3codimWcW(χ)/2. Moreover, cW (χ) 6⊂W≥0 and rk cW (χ) = 1.

Proof. Apply Proposition 13.12.2 and Lemma 13.12.1 for part a). For b),c) apply Lemma
13.12.1 and and Proposition 13.12.5.
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13.13 Type II.a characters of height 3

In this section we consider χ ∈W ∗ of height 3 such that χ has Type II.a as in Section 5.2.
Since χ has Type II.a we have

χ(e122) = −χ(e211) 6= 0

and χ(e212) = 0 = χ(e121). The representation theory of Uχ(W ) depends only on the
Aut(W )–orbit of χ, so we may replace χ with any χg, for an automorphism g, in order to
describe the irreducible Uχ(W )–modules. Thus the next result becomes useful.

Lemma 13.13.1. There exists an automorphism g ∈ Aut(W ) with g(W012) = W012 such
that χg(W1) = 0 = χg(e012 + e101).

Proof. Set x = a1e202 +a2e112 +a3e022 +b1e201 +b2e111 +b3e021 and denote by g1 the auto-
morphism onW induced by x (see Section 3.2). It follows that g1(y) ≡ y+[x, y] (mod W≥3)
for all y ∈W1. The formulas

χ
(
[x, e202]

)
= −4b3χ(e211),

χ
(
[x, e112]

)
= (a3 − 2b2)χ(e211),

χ
(
[x, e022]

)
= −a2χ(e211),

χ
(
[x, e201]

)
= b2χ(e211),

χ
(
[x, e201]

)
= (2a2 − b1)χ(e211),

χ
(
[x, e021]

)
= 4a1χ(e211),

say that we can find appropriate a1, a2, a3, b1, b2, b3 ∈ K such that χg1(W1) = 0 (note that
χ(e211) 6= 0).

Finally, denote by g2 the automorphism on W induced by y = αe211 (see Section 3.2).
It follows that g2(z) ≡ z (mod W≥3) for all z ∈ W≥1; hence χg1◦g2(W1) = 0 if we choose
g1 as above. Moreover, we can choose α ∈ K such that χg1◦g2(e012 + e101) = 0 since

χg1◦g2([y, e012 + e101]) = −2αχ(e211).

We have χg1◦g2(e012 + e101) = χg1(e012 + e101)− 2αχg1(e211) = 0 for some α ∈ K and also
χg1◦g2(W1) = 0. The proof is completed.

The discussion before Lemma 13.13.1 says that we can assume that χ is a character of
height 3 with χ(W1) = 0 = χ(e012 + e101). First, we will prove a result on the stabilizer
of χ|W≥0

in W≥0. In fact, we only need the assumption χ(W1) = 0 in order to prove this
result.

Lemma 13.13.2. Let χ ∈ W ∗ be a character of height 3 and of Type II.a as in 5.2.
Suppose that χ(W1) = 0. Set h := e012 − e101. Then

dimKcW≥0
(χ|W≥0

) =

{
8 if χ(e102) = χ(h) = χ(e011) = 0,

6 else.

Moreover,

rk cW≥0
(χ|W≥0

) =





1 if χ(e102) = χ(h) = χ(e011) = 0,

1 if χ(h)2 + χ(e102)χ(e011) 6= 0,

0 else.

Finally; cW≥0
(χ|W≥0

) 6⊂W012 if and only if χ(e011) 6= 0 or χ(e102) = χ(h) = χ(e011) = 0.
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Proof. It is easy to verify that

e222 ∈ cW≥0
(χ|W≥0

),

e221 ∈ cW≥0
(χ|W≥0

),

e121 ∈ cW≥0
(χ|W≥0

),

e211 + e122 ∈ cW≥0
(χ|W≥0

),

e212 ∈ cW≥0
(χ|W≥0

).

Let
y =

∑

αβγ

aαβγeαβγ ∈ cW≥0
(χ|W≥0

) (∗)

with a222 = a221 = a121 = a212 = 0 and a211+a122 = 0. It follows from χ([y, e012+e101]) = 0
that a211 = a122 = 0 since χ([e012 + e101,W0 + W1]) = 0. Moreover, from the relations
χ([y, eαβγ ]) = 0, where (αβγ) denote all triples with α + β = 2 and γ = 1, 2, we obtain
aαβγ = 0 for all (αβγ) with α + β = 2 and γ = 1, 2. Thus we can assume that y written
as in (∗) belongs to W0. Since χ([y, e211]) = 0 we have a012 + a101 = 0.

If χ(e102) = χ(h) = χ(e011) = 0 then e102 ∈ cW≥0
(χ|W≥0

) and h ∈ cW≥0
(χ|W≥0

)
and e011 ∈ cW≥0

(χ|W≥0
) and y is a linear combination of these elements. In particular,

dimKcW≥0
(χ|W≥0

) = 8. In this case we have rk cW≥0
(χ|W≥0

) = 1: Clearly, Kh is a torus
inside cW≥0

(χ|W≥0
); if rk cW≥0

(χ|W≥0
) > 1, then it is easy to see that there exists a nonzero

toral element h′ ∈ cW≥0
(χ|W≥0

) given by

h′ = e102 + z for some z ∈W011

such that Kh⊕Kh′ is a (maximal) torus. But [h, h′] ≡ e102 (mod W012) is a contradiction.
Finally, cW≥0

(χ|W≥0
) 6⊂W012.

Suppose that χ(e102) 6= 0 or χ(h) 6= 0 or χ(e011) 6= 0. Since y written as in (∗) with
aαβγ = 0 for α + β ≥ 2 and a012 + a101 = 0 satisfies that χ([y,W≥1]) = 0, we have
y ∈ cW≥0

(χ|W≥0
) if and only if χ([y,W0]) = 0. We can assume that y ∈W0 is given by

y = ae102 + bh+ ce011

for some a, b, c ∈ K. We now get the following relations:

bχ(e102) + cχ(h) = 0,
aχ(e102)− cχ(e011) = 0,
aχ(h) + bχ(e011) = 0.

It is easy to see that a, b, c are determined uniquely by the relations above: We get a =
χ(e011) and b = −χ(h) and c = χ(e102). In particular, dimKcW≥0

(χ|W≥0
) = 6. Moreover,

cW≥0
(χ|W≥0

) 6⊂W012 if and only if χ(e011) 6= 0.
In order to determine the rank of cW≥0

(χ|W≥0
) we can first use (B.2) in appendix B

with commutator relations and get

y[3] = (χ(h)2 + χ(e102)χ(e011))y.

If χ(h)2+χ(e102)χ(e011) 6= 0 thenKy is a torus by Lemma B.1.2; hence rk cW≥0
(χ|W≥0

) =
1 in that case.

If χ(h)2 + χ(e102)χ(e011) = 0 then rk cW≥0
(χ|W≥0

) = 0: Otherwise there exists a
nonzero toral element h′ ∈ cW≥0

(χ|W≥0
). It is easy to see that h′ ∈ K∗y +W≥2 and hence

(h′)[3] ∈ K∗y[3] +W≥2 = W≥2 since y[3] = 0. Therefore (h′)[3] = h′ is impossible.

117



Theorem 13.13.3. Suppose that p > 3 and let χ ∈ W ∗ be a character of height 3 and
of Type II.a as in 5.2. Then rk cW (χ) = 1 or rk cW (χ) = 0 and all irreducible Uχ(W )–
modules have dimension pcodimWcW(χ)/2. If rk cW (χ) = 1, then there exist up to isomor-
phism p irreducible Uχ(W )–modules and if rk cW (χ) = 0, then there exists up to isomor-
phism 1 irreducible Uχ(W )–module.

Proof. The fact that rk cW (χ) = 1 or rk cW (χ) = 0 follows from Lemma 10.4.8 in Section
10.4 (here we use that r = 3 < 2p − 3 when p > 3 and that st(χ,W≥3) = W≥0 since
χ([e001, e222]) 6= 0 = χ([e002, e222]) and since χ([e002, e221]) 6= 0 = χ([e001, e221])).

For the final statements use Theorem 10.4.11, 10.4.12 in Section 10.4.

Remark 13.13.4. Since dimKcW (χ) = dimKcW≥0
(χ|W≥0

) − 2 and dimKW = 2p2 we
can use Lemma 13.13.2 and find the possible dimension of all irreducible Uχ(W )–modules
combined with the number of irreducible in the following scheme (|Irr(W,χ)| denotes the
number of irreducible):

Type II.a and height 3 and p > 3

|Irr(W,χ)| Possible dimension
1 pp

2−2

p pp
2−3 or pp

2−2

In the rest of this section we assume that p = 3. This is the critical situation when we
consider χ of height 3 and of Type II.a as in 5.2 (remember the exceptions from Section
10.4). By Lemma 13.13.1 we may consider χ ∈ W ∗ of height 3 and of Type II.a as in 5.2
such that χ(W1) = 0 = χ(e012 + e101). In the following, set (as in Lemma 13.13.2)

h := e012 − e101.

Now observe that Ke102⊕K(e012− e101)⊕Ke011 is a restricted Lie subalgebra of W≥0

isomorphic to sl2(K). The isomorphism is given by

e102 7−→

(
0 0
1 0

)
, e012 − e101 7−→

(
1 0
0 −1

)
, e011 7−→

(
0 1
0 0

)
.

Thus we set
sl2(K) := Ke102 ⊕Kh⊕Ke011. (13.22)

Next, define elements in W1:

xn := e3−n,n−1,1 + e2−n,n,2 for 0 ≤ n < 3. (13.23)

It is easy to verify the following relations:

[e102, xn] = (n− 1)xn−1 (= 0 if n ≤ 1),
[e012, xn] = (n− 1)xn,
[e101, xn] = (2− n)xn,
[e011, xn] = −(n+ 1)xn+1 (= 0 if n ≥ 2),

[x0, x1] = 0,
[x0, x2] = 0,
[x1, x2] = 0.
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From the relations above it follows that s defined by

s := sl2(K)⊕K(e012 + e101)⊕

2⊕

i=0

Kxi ⊕K(e211 + e122)⊕Ke121 ⊕Ke212 ⊕W≥3 (13.24)

is a restricted Lie subalgebra of W≥0. Moreover, a defined by

a := K(e012 + e101)⊕

2⊕

i=0

Kxi ⊕K(e211 + e122)⊕Ke121 ⊕Ke212 ⊕W≥3 (13.25)

is an ideal in s with χ(a) = 0 (in order to show the ideal property we use in particular that
[e102, e012 + e101] = 0 = [e011, e012 + e101]).

It is well known that irreducible Uχ(s)–modules annihilated by a are in one to one corre-
spondence with irreducible Uχ(s/a) ' Uχ(sl2(K))–modules. [Any irreducible Uχ(sl2(K))–
module X extends to s if we define a · X = 0. On the other hand: Any irreducible
Uχ(s)–module is an irreducible Uχ(sl2(K))–module. So we can think of irreducible Uχ(s)–
modules annihilated by a as irreducible Uχ(sl2(K))–modules extended to s with trivial
a–action.]

Now the next results are essential in the description of the irreducible Uχ(W≥0)–
modules.

Lemma 13.13.5. If M is a Uχ(W≥0)–module and M 6= 0, then

{x ∈M | a · x = 0} 6= 0

and there exists an irreducible Uχ(s)–submodule X ⊂M with a ·X = 0.

Proof. Since [a, a] ⊂ a ∩ W011 there exists Uχ(a)–module Kl as being equal to K as a
vector space and where the module structure is given by: e · 1 = 0 for e ∈ a ∩W011 and
(e012 + e101) · 1 = l (since e012 + e101 ∈ a with χ(e012 + e101) = 0 we have l ∈ F3). But
a ⊂ W012 is supersolvable so we can apply Lemma 9.1.3: Any irreducible Uχ(a)–module
is isomorphic to some Kl with l ∈ F3. It follows that there exists a nonzero x ∈ M with
a ∩W011 · x = 0 and (e012 + e101) · x = lx for some l ∈ F3. Let y := el211 · x ∈ M . Then
a ∩W011 · y = 0 since [e211, a ∩W011] ⊂ a ∩W011 and (e012 + e101) · y = 0 by construction.
We conclude that {x ∈M | a · x = 0} 6= 0.

The final part of the lemma is now easy: Take a nonzero x ∈M with a ·x = 0 and take
an irreducible Uχ(s)–submodule X of Uχ(s) · x. Since a is an ideal of s with a · x = 0 we
have a · Uχ(s) · x = 0 and therefore a ·X = 0 as required.

Proposition 13.13.6. Let s be defined as in (13.24). Then induction induces a bijection
between the isomorphism classes of irreducible Uχ(s)–modules annihilated by a and the
isomorphism classes of irreducible Uχ(W≥0)–modules.

Proof. Set e1 = e201 and e2 = e111 and e3 = e021 and e4 = e211. Then e1, e2, e3, e4 form
a basis for a complement to s in W≥0. Let X be an irreducible Uχ(s)–module annihilated
by a. The idea is to prove that

{x ∈ Uχ(W≥0)⊗Uχ(s) X | a · x = 0} = 1⊗X. (13.26)

In order to prove (13.26) we will apply Proposition 6.4.1. Adopt the notation from
Section 6.4 with g = W≥0 and h = s and N = X: We define

X1 =
⊕
ei1e

j
2e
k
3e
l
4 ⊗X,

X2 =
⊕
ej2e

k
3e
l
4 ⊗X,

X3 =
⊕
ek3e

l
4 ⊗X,

X4 =
⊕
el4 ⊗X,
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where all i, j, k, l run over {0, 1, 2}. Note that (s⊕Ke4) ·X4 ⊂ X4 with (a∩W011) ·X4 = 0.
The first claim follows from e4 ·X4 ⊂ X4 and [e4, s⊕Ke4] ⊂ Ke4⊕ s and the second claim
follows from (a ∩W011) ·X = 0 and [e4, a ∩W011] ⊂ a ∩W011. We also have

(s ∩W012 ⊕Kei ⊕ · · · ⊕Ke4) ·Xi ⊂ Xi

for all i = 1, 2, 3, 4. This follows from the fact that

[ej , s ∩W012] ⊂ s ∩W012 ⊕Kej ⊕ · · · ⊕Ke4 for any j = 1, 2, 3, 4,

[ej , ek] ⊂ s ∩W012 ⊕
⊕

l>jKel for any k, l.

Finally, observe that
(Kx1 ⊕Kx2 ⊕ a ∩W≥2) ·X3 = 0,

(Kx2 ⊕ a ∩W≥2) ·X2 = 0,

a ∩W≥2 ·X1 = 0.

We will use these observations in the following. Our aim is to prove that (13.26)
holds; i.e., that any x ∈ Uχ(W≥0) ⊗Uχ(s) X with a · x = 0 lies in X5 := 1 ⊗ X. So let
x ∈ Uχ(W≥0)⊗Uχ(s) X denote an element such that a · x = 0.

Set f1 = x2 as in (13.23). Since f1 ∈ a it follows that f1·x = 0. Moreover, χ([e1, f1]) 6= 0
but [e1, f1]

[3] = (−e211)
[3] = 0. We also have (ad e1)

i(f1) · X2 ⊂ X2 since (ad e1)
i(f1) ∈

(s ∩W012)⊕Ke4 for all i. Finally, f1 ·X2 = 0.

Next, set f2 = x1. Then f2 · x = 0 and χ([e2, f2]) 6= 0 = [e2, f2]
[3] = e

[3]
122. Since

(ad e2)
i(f2) ∈ (s ∩W012) ⊕ Ke4 for all i we also have (ad e2)

i(f2) · X3 ⊂ X3. Finally,
f2 ·X3 = 0.

Set f3 = x0. Then f3 · x = 0 and χ([e3, f3]) 6= 0 = [e3, f3]
[3] = (e211 − e122)

[3]. Since
(ad e3)

i(f3) ∈ (s ∩W012) ⊕ Ke4 for all i we also have (ad e3)
i(f3) · X4 ⊂ X4. Finally,

f3 ·X4 = 0.
Finally, set e4 = e012 + e101 and note that [e4, f4] = e4. We are now in position to

apply Corollary 6.4.3 (with e1, e2, e3, e4 and f1, f2, f3, f4 and G,H,N defined above): We
find that

{x ∈ Uχ(g)⊗Uχ(s) X | a · x = 0} ⊂ 1⊗X

and since a ·X = 0 the other conclusion is clear. We conclude that (13.26) holds.
This implies that Uχ(W≥0) ⊗Uχ(s) X is irreducible: Any irreducible W≥0–submodule

M has a nonzero intersection with 1⊗X [Apply Lemma 13.13.5]. Therefore M ∩ (1⊗X)
is a nonzero Uχ(s)–submodule of 1 ⊗X and, by irreducibility, M ∩ (1 ⊗X) = 1 ⊗X. In
particular, we have M ⊃ 1⊗X and hence M is the entire induced module.

If X1, X2 are irreducible Uχ(W≥0)–modules such that a ·X1 = 0 = a ·X2 and

ϕ : Uχ(W≥0)⊗Uχ(s) X1 ' Uχ(W≥0)⊗Uχ(s) X2

is an isomorphism, then ϕ induces a Uχ(s)–isomorphism ϕ : X1 ' X2. Indeed, we have
ϕ(1 ⊗X1) ∩ (1 ⊗X2) 6= 0. (Look at the elements annihilated by a.) Since ϕ(1 ⊗X1) and
1⊗X2 are irreducible Uχ(W≥0)–modules, we get ϕ(1 ⊗X1) = 1⊗X2; hence X1 ' X2.

We have thus shown: Induction induces an injection from the isomorphism classes
of irreducible Uχ(s)–modules annihilated by a into the isomorphism classes of irreducible
Uχ(W≥0)–modules.
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Now, let Y be an arbitrary irreducible Uχ(s)–module. I claim that we can find an
irreducible Uχ(s)–module X with a ·X = 0 and

Uχ(W≥0)⊗Uχ(s) X −→ Uχ(W≥0)⊗Uχ(s) Y.

First, apply Lemma 13.13.5 to find an irreducible Uχ(s)–submodule X ⊂ Uχ(W≥0)⊗Uχ(s)Y
with a·X = 0; thus we have inclusion maps: X ↪→ Uχ(W≥0)⊗Uχ(s)Y. Now apply ’Frobenius
reciprocity’ on the inclusion X ↪→ Uχ(W≥0) ⊗Uχ(s) Y to produce a (nonzero) Uχ(W≥0)–
homomorphism:

Uχ(W≥0)⊗Uχ(s) X −→ Uχ(W≥0)⊗Uχ(s) Y. (13.27)

This implies that every Uχ(W≥0)–module is induced from a Uχ(s)–module annihilated
by a: Indeed, any irreducible Uχ(W≥0)–module V contains an irreducible Uχ(s)–module
Y ; hence, by ’Frobenius reciprocity’, V is a homomorphic image of Uχ(W≥0)⊗Uχ(s) Y and
by (13.27) then also a homomorphic image of Uχ(g)⊗Uχ(s) X for some irreducible Uχ(s)–
module X with a · X = 0. By the part of the claim already proved we therefore have
V ' Uχ(W≥0)⊗Uχ(s) X. The proof is completed.

Theorem 13.13.7. Let χ ∈ W ∗ be a character of height 3 and of Type II.a as in 5.2.
Suppose that χ(W1) = 0 = χ(e012 + e101).

a) If χ(h)2 + χ(e102)χ(e011) 6= 0 then rk cW≥0
(χ|W≥0

) = 1 and dimKcW≥0
(χ|W≥0

) = 6

and there exist up to isomorphism 3 irreducible Uχ(W≥0)–modules of dimension 35 =

3
codimW≥0

cW≥0
(χ|W≥0

)/2
. Moreover, cW≥0

(χ|W≥0
) 6⊂W012 if and only if χ(e011) 6= 0.

Suppose that χ(h)2 + χ(e102)χ(e011) = 0.

b) If χ(h) 6= 0 or χ(e102) 6= 0 or χ(e011) 6= 0 then rk cW≥0
(χ|W≥0

) = 0 and we have
dimKcW≥0

(χ|W≥0
) = 6 and there exist up to isomorphism 2 irreducible Uχ(W≥0)–

modules of dimension 35 = 3
codimW≥0

cW≥0
(χ|W≥0

)/2
. Moreover, cW≥0

(χ|W≥0
) 6⊂ W012

if and only if χ(e011) 6= 0.

c) If χ(h) = χ(e102) = χ(e011) = 0 then rk cW≥0
(χ|W≥0

) = 1 and dimKcW≥0
(χ|W≥0

) =
8 and there exist up to isomorphism 3 irreducible Uχ(W≥0)–modules of dimension

34 = 3
codimW≥0

cW≥0
(χ|W≥0

)/2
and 2 · 34 = 2 · 3

codimW≥0
cW≥0

(χ|W≥0
)/2

and finally 35 =

3
codimW≥0

cW≥0
(χ|W≥0

)/2+1
. Moreover, cW≥0

(χ|W≥0
) 6⊂W012.

Proof. It follows from Proposition 13.13.6 that induction induces a bijection between the
isomorphism classes of irreducible Uχ(s)–modules annihilated by a and the isomorphism
classes of irreducible Uχ(W≥0)–modules. But irreducible Uχ(s)–modules annihilated by a

are just irreducible Uχ(s/a) ' Uχ(sl2(K))–modules extended to s with trivial a–action.
If we apply the description in [27, 5, 5.2] on sl2(K) defined in (13.22), we see that

there are 3 isomorphism classes of irreducible Uχ(sl2(K))–modules if χ(sl2(K)) = 0 or
χ(h)2 + χ(e102)χ(e011) 6= 0 and 2 isomorphism classes of irreducible Uχ(sl2(K))–modules
if χ(h)2 + χ(e102)χ(e011) = 0. If χ(sl2(K)) 6= 0 then each irreducible Uχ(sl2(K))–module
has dimension 3 and if χ(sl2(K)) = 0 then there exist 3 irreducible Uχ(sl2(K))–modules
of dimension 1, 2, 3. Now it is straightforward to verify a)–c) by using Proposition 13.13.6
and Lemma 13.13.2.

Note that st(χ,W≥3) = W≥0 since χ([e001, e222]) 6= 0 = χ([e002, e222]) and since
χ([e002, e221]) 6= 0 = χ([e001, e221]). It follows that induction induces a bijection between
the isomorphism classes of irreducible Uχ(W≥0)–modules and the isomorphism classes of
irreducible Uχ(W )–modules. See Theorem 8.1.1. Moreover, cW (χ) ⊂ cW≥0

(χ|W≥0
) since

cW (χ) ⊂ st(χ,W≥3). Now apply Lemma 10.4.7 and Theorem 13.13.7 and get:
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Theorem 13.13.8. Let χ ∈ W ∗ be a character of height 3 and of Type II.a as in 5.2.
Suppose that χ(W1) = 0 = χ(e012 + e101).

a) If χ(h)2 +χ(e102)χ(e011) 6= 0 then dimKcW (χ) = 4 and there exist up to isomorphism
3 irreducible Uχ(W )–modules of dimension 37 = 3codimW cW (χ)/2.

Suppose that χ(h)2 + χ(e102)χ(e011) = 0.

b) If χ(h) 6= 0 or χ(e102) 6= 0 or χ(e011) 6= 0 then dimKcW (χ) = 4 and there exist up to
isomorphism 2 irreducible Uχ(W )–modules of dimension 37 = 3codimW cW (χ)/2.

c) If χ(h) = χ(e102) = χ(e011) = 0 then dimKcW (χ) = 6 and there exist up to
isomorphism 3 irreducible Uχ(W )–modules of dimension 36 = 3codimW cW (χ)/2 and
2 · 36 = 2 · 3codimW cW (χ)/2 and 37 = 3codimW cW (χ)/2+1. Moreover, cW (χ) 6⊂W012.

Remark 13.13.9. Note that Theorem 13.13.8 says in particular that Theorem 10.4.11,
10.4.12 in Section 7 cannot be improved to include characters of height 2p − 3 and of
Type II.a as in 5.2 [characters of height 2p − 3 and of Type II.a as in Section 5.2 are
excluded in most of the results in Section 10.4].

We also see that Theorem 7.3.2 does not hold for all characters of height 2p − 3 and
of Type II.a as in 5.2: So there does not exists an automorphism g such that induction
is a bijection between the isomorphism classes of irreducible Uχg (W012)–modules and the
isomorphism classes of irreducible Uχg(W≥0)–modules. First, let us investigate what we can
say about the irreducible Uχ(W≥0)–modules if there exists an automorphism g with these
properties. Since W012 is supersolvable it follows from Proposition 9.3.5 that the number
of irreducible Uχg(W012)–modules is pl for some integer l (in fact we have 0 ≤ l ≤ 2). By
Lemma 9.3.7 the number of irreducible Uχg(W012)–modules is pm for some integer m ≥ 0.
Now use the assumption on g and the fact that Uχg(W≥0) ' Uχ(W≥0) to get:

1) There exists an integer l with 0 ≤ l ≤ 2 such that the number of irreducible Uχ(W≥0)–
modules is pl.

2) There exists an integer m ≥ 1 such that the dimension of any irreducible Uχ(W≥0)–
modules is pm.

We have seen that both 1) and 2) break down if we consider χ of Type II.a as in 5.2 of
height r = 2p− 3 (at least for p = 3).
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14 Maximal height

In this section we consider χ ∈ W ∗ of maximal height (i.e., χ ∈ W ∗ with χ(W2p−3) 6= 0).
The representation theory of χ with maximal height is not very well understood. So far,
I have only seen examples in [29, §12], [16, p.45–46] and [20, 6.4], where one constructs
χ such that irreducible Uχ(W≥0)–modules have dimension pp

2−1 and then concludes that
any irreducible Uχ(W≥0)–module extends to W by Mil’ner’s result [19, §7, Remark after
Prop. 19]. In Section 14.4 we shall see an example (when p = 3) where some irreducible
Uχ(W )–modules have dimension < 332−1. From now we will assume that p = 3.

14.1 Representatives

First, we need to find certain representatives for the Aut(W )–orbit of χ.

Lemma 14.1.1. If χ has maximal height, then χ is conjugate under Aut(W ) to a character
χ′ with χ′(e222) = 1 and χ′(e221) = 0 such that one of the following situations occur:

(M1) χ′(W2) = χ′(e202) = χ′(e112) = χ′(e022) = 0 and χ′(e201) = χ′(e111) = 0 6= χ′(e021)
and χ′(e102) = χ′(e012) = 0.

(M2) χ′(W2) = χ′(e201) = χ′(e111) = χ′(e021) = 0 and χ′(e202) = χ′(e112) = 0 6= χ′(e022)
and χ′(e102) = χ′(e012) = 0.

(M3) χ′(W2) = χ′(W1) = 0 and χ′(e102) = χ′(e012) = 0.

Proof. We can assume that χ(e222) = 1 and χ(e221) = 0 = χ(W2) by Lemma 12.3.3. If
χ(e021) 6= 0, then we can apply a lower triangular matrix

ϕ1 =

(
1 0

χ(e022)−χ(e111)
2χ(e021) 1

)

and (A.6),(A.7) to get χϕ1(e022) = χϕ1(e111). We still have χϕ1(e222) = 1 and χϕ1(e221) =
0 = χϕ1(W2). So we can assume that χ(e222) = 1 and χ(e221) = 0 = χ(W2) and that
χ(e111) = χ(e022) if χ(e021) 6= 0.

Now, let
x = a1e212 + a2e122 + b1e211 + b2e121

and denote by g the automorphism on W induced by x (see Section 3.2). It follows that
g(y) = y + [x, y] for all y ∈W2 since W≥4 = 0. But χg

(
[x,W≥2]

)
= 0 = χg

(
[x, e021]

)
and

χg
(
[x, e201]

)
= −a2,

χg
(
[x, e111]

)
= a1,

χg
(
[x, e202]

)
= −b2,

χg
(
[x, e112]

)
= b1 − a2,

χg
(
[x, e022]

)
= a1,

so there exist appropriate a1, a2, b1, b2 ∈ K such that χg(e222) = 1 and χg(e221) =
χg(W2) = 0 and χg(e201) = χg(e111) = χg(e202) = χg(e112) = 0. Moreover, χg(e022) =
χg(e111) = 0 if χ(e021) 6= 0. Finally, we apply a suitable automorphism g ′ on W induced
by some x = ae222 + be221 (Section 3.2) such that χg◦g

′
(e102) = χg◦g

′
(e012) = 0; this can

be done since
χg◦g

′(
[x, e102]

)
= b,

χg◦g
′(

[x, e012]
)

= −a.

It follows that χg◦g
′
(e222) = 1 and χg◦g

′
(e221) = 0 and that χg◦g

′
either satisfies (M1),

(M2) or (M3).
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14.2 Three types of characters

We consider three types of characters:

(M1) χ : χ(e222) = 1 and χ(e221) = 0 and χ(W2) = χ(e202) = χ(e112) = χ(e022) = 0 and
χ(e201) = χ(e111) = 0 6= χ(e021) and χ(e102) = χ(e012) = 0.

(M2) χ : χ(e222) = 1 and χ(e221) = 0 and χ(W2) = χ(e201) = χ(e111) = χ(e021) = 0 and
χ(e202) = χ(e112) = 0 6= χ(e022) and χ(e102) = χ(e012) = 0.

(M3) χ : χ(e222) = 1 and χ(e221) = 0 and χ(W2) = χ(W1) = 0 and χ(e102) = χ(e012) = 0.

The result in the previous section says that any character of maximal height is conjugate
under Aut(W ) to a character of Type M1, Type M2 or Type M3.

So let χ be a character of Type M1, Type M2 or Type M3. We will find dimKcW (χ)
and rk cW (χ) for χ ∈W ∗ of maximal height. Let

y =
∑

(αβγ)

aαβγeαβγ ∈ cW (χ). (14.1)

The possible values for aαβγ can be found from χ([y, eabc]) = 0, where (abc) runs over all
valid triples (i.e., (002) � (abc) � (221)). We find:

1) a102 = a112 = a121 = 0.

2) a012 = a101.

3) a202 + a001χ(e021) = 0.

4) a201 + a001χ(e022) = 0.

5) a022 + a111 = 0.

6) a002χ(e011) = a012χ(e021).

7) a012χ(e022)− a011χ(e021) + a212 = 0.

8) a001χ(e011) + a002χ(e101) + a011χ(e021) + a212 = 0.

9) a211 − a122 + a011χ(e022) = 0.

10) a122 + a001χ(e101) = 0.

11) a002χ(e001)− a111χ(e021) = 0.

12) a001χ(e001) + a011χ(e011) + a021χ(e021) + a222 = 0.

13) a002χ(e002)− a011χ(e011) + a021χ(e021)− a022χ(e022)− a222 = 0.

14) a001χ(e002)− a011χ(e101) + a021χ(e022) + a221 = 0.

15) a101χ(e001)− a201χ(e101) + a111χ(e011) + a122χ(e022) = 0.

16) a012χ(e002) + a011χ(e001) + a111χ(e101)− a021χ(e011) = 0.

First, we will use the relations above to get results on cW (χ) ∩W≥0 for χ of Type M1,
Type M2 or Type M3.
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Lemma 14.2.1. If χ has Type M1, then cW (χ) ∩W≥0 = 0.

Proof. Let y be as in (14.1) with a002 = 0 = a001. Then a201 = 0 = a202 by 3),4) and 2)
and 6) imply that a012 = 0 = a101. Next, use 5) and 7)–11) to get a011 = a022 = a111 =
a211 = a122 = a212 = 0. Finally, 12)–14) imply that a021 = a222 = a221 = 0. It follows that
y = 0 if a002 = 0 = a001.

Lemma 14.2.2. If χ has Type M2, then

dimKcW (χ) ∩W≥0 =

{
2 if χ(e001) = 0 = χ(e011),

1 otherwise,

and rk cW (χ) ∩W≥0 = 0.

Proof. Let y be given as in (14.1) with a002 = 0 = a001. Then a202 = 0 = a201 by 3),4) and
a212 = a122 = a012 = a101 = 0 by 2), 7), 8), 10). In particular, cW (χ) ∩W≥0 ⊂ W011 and
so rk cW (χ) ∩W≥0 = 0. If we add 12) and 13) we get a022 = 0 since χ(e022) 6= 0; hence
a111 = 0 by 5). The only conditions on the coefficients are now:

a011χ(e011) + a222 = 0,
a011χ(e101)− a021χ(e022)− a221 = 0,

a011χ(e001)− a021χ(e011) = 0,
a211 + a011χ(e022) = 0.

The claim on the dimension follows.

Lemma 14.2.3. If χ has Type M3, then

dimKcW (χ) ∩W≥0 =





2 if χ(e011) 6= 0 or χ(e011) = 0 6= χ(e001),

3 if χ(e011) = χ(e001) = 0 6= χ(e101),

3 if χ(e011) = χ(e001) = χ(e101) = 0 but χ(e002) 6= 0,

4 if χ(e011) = χ(e001) = χ(e101) = χ(e002) = 0,

and

rk cW (χ) ∩W≥0 =





1 if χ(e011) 6= 0,

0 if χ(e011) = 0 6= χ(e001),

1 if χ(e011) = χ(e001) = 0 6= χ(e101),

0 if χ(e011) = χ(e001) = χ(e101) = 0 but χ(e002) 6= 0,

1 if χ(e011) = χ(e001) = χ(e101) = χ(e002) = 0,

Proof. Let y be given as in (14.1) with a002 = 0 = a001. Then we use 3),4) and 8)–10) to
get a202 = a201 = a212 = a122 = a211 = 0. Then a012 = a101 and:

a022 + a111 = 0,
a011χ(e011) + a222 = 0,
a011χ(e101)− a221 = 0,

a101χ(e002) + a011χ(e001)− a021χ(e011) + a111χ(e101) = 0,
a101χ(e001) + a111χ(e011) = 0.

If we compute the rank of the matrix determined by the system of equations the claim on
the dimension of cW (χ) ∩W≥0 follows immediately. It is easy to see that a012 = a101 = 0
if χ(e011) = 0 6= χ(e001) or χ(e011) = χ(e001) = χ(e101) = 0 but χ(e002) 6= 0. If χ(e011) =
0 6= χ(e001) or χ(e011) = χ(e001) = χ(e101) = χ(e002) = 0, then there exists nonzero toral
element h ∈ cW (χ)∩W≥0; hence rk cW (χ)∩W≥0 = 1 since already rk cW (χ)∩W≥0 ≤ 1.
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In order to compute cW (χ) note that we have

dimKcW (χ) ≤ dimKcW (χ) ∩W≥0 + 2 (14.2)

since W≥0 ⊂ W is a subalgebra of codimension 2. It is well known that cW (χ) is a Lie
p–subalgebra of W and its codimension in W is even. We also have cW (χ) 6= 0: Indeed,
there exists ξ ∈ W ∗ such that cW (ξ) is a two dimensional torus and, by [20, 4.4], it then
follows that dimKcW (ζ) ≥ 2 for all ζ ∈W ∗.

We will consider characters of Type M1 and prove that all irreducible Uχ(W )–modules
have maximal dimension (irreducible W≥0–modules with p–character χ extend to W ).
Finally, we consider irreducible Uχ(W )–modules for χ of Type M3. We cannot give a
complete classification, but as a result of our computations we will see that: There exists
χ of Type M3 such that irreducible Uχ(W )–modules have non–maximal dimension (i.e.,
dimension < 332−1 = 38).

14.3 Type M1 characters

First, let us compute cW (χ).

Lemma 14.3.1. If χ has Type M1, then cW (χ) is 2–dimensional and cW (χ) ∩W≥0 = 0.

Proof. Since cW (χ) has even dimension > 0, we can apply (14.2) and find that cW (χ) is
2–dimensional. The statement follows from Lemma 14.2.1.

We can now apply Theorem 12.3.4:

Theorem 14.3.2. If χ ∈ W ∗ has Type M1, then there exists (up to isomorphism) one
irreducible Uχ(W≥0)–module of dimension 38. For any irreducible Uχ(W≥0)–module S
there exists a W–module structure on S which extends the given W≥0–module structure. In
particular, all irreducible Uχ(W )–modules have dimension

3codimWcW(χ)/2 = 38.

Remark 14.3.3. I can’t say anything about the number of irreducible Uχ(W )–modules.
Of course, the number is less than or equal to p2 and equal to p2 if and only if Uχ(W ) is
semisimple.

14.4 Type M3 characters

There are a number of cases to consider. First, let us see what we can say in general: If
y ∈ cW (χ) as in (14.1), then a102 = a121 = a112 = 0 and a201 = 0 = a202 by the relations 1),
3) and 4) in Section 14.2 (since χ has Type M3 we have χ(e022) = 0 = χ(e021)). Moreover,
a212 = 0 and a211 = a122 by 7) and 9).

a) If χ(e011) 6= 0, then a001 = 0 = a002 by 6) and 8). Therefore, cW (χ) = cW (χ)∩W≥0.
It follows that dimKcW (χ) = 2 and rk cW (χ) = 1 by Lemma 14.2.3.

b) If χ(e011) = 0 but χ(e001) 6= 0, then a001 = 0 = a002 by 11)–13). Therefore,
cW (χ) = cW (χ)∩W≥0. It follows that dimKcW (χ) = 2 and rk cW (χ) = 0 by Lemma
14.2.3.
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c) If χ(e011) = χ(e001) = 0 6= χ(e101), then dimKcW (χ) ≤ 5 by Lemma 14.2.3 and
(14.2). This implies that dimKcW (χ) = 4 and it is easy to see that

cW (χ) = K(e001 − χ(e101)e211 − χ(e101)e122 − χ(e002)e221)⊕ (cW (χ) ∩W≥0).

It follows that rk cW (χ) = 1.

d) If χ(e001) = χ(e101) = χ(e011) = 0 but χ(e002) 6= 0, then dimKcW (χ) ≤ 5 by Lemma
14.2.3 and (14.2). This implies that dimKcW (χ) = 4 and it is easy to see that
e001 − χ(e002)e221, e011, e111 − e022, e021 form a basis for cW (χ). It follows that rk
cW (χ) = 0.

e) If χ(e001) = χ(e101) = χ(e011) = χ(e002) = 0, then dimKcW (χ) = 6: It is easy to see
that e001, e002, e012 +e101, e011, e111−e022, e021 form a basis for cW (χ). It follows that
rk cW (χ) = 1.

We can now write down our observations:

Lemma 14.4.1. If χ has Type M3, then

dimKcW (χ) =





2 if χ(e011) 6= 0 or χ(e011) = 0 6= χ(e001),

4 if χ(e011) = χ(e001) = 0 6= χ(e101),

4 if χ(e011) = χ(e001) = χ(e101) = 0 but χ(e002) 6= 0,

6 if χ(e011) = χ(e001) = χ(e101) = χ(e002) = 0,

and

rk cW (χ) =





1 if χ(e011) 6= 0,

0 if χ(e011) = 0 6= χ(e001),

1 if χ(e011) = χ(e001) = 0 6= χ(e101),

0 if χ(e011) = χ(e001) = χ(e101) = 0 but χ(e002) 6= 0,

1 if χ(e011) = χ(e001) = χ(e101) = χ(e002) = 0,

Theorem 14.4.2. If χ has Type M3 and χ(e011) 6= 0, then there exist 3 irreducible
Uχ(W )–modules all of dimension

3codimW cW (χ)/2 = 38.

Proof. Let g be defined as in Section 11.8 (i.e., all eijk where (ijk) 6= (002), (102), (202)
form a basis for g). Let h = g ∩W≥0.

First, we prove that induction induces a bijection between the isomorphism classes of
irreducible Uχ(h)–modules and the isomorphism classes of irreducible Uχ(g)–modules. We
shall apply Theorem 6.2.8 in Section 6.2 with

a = Ke111 ⊕Ke021 ⊕Ke022 ⊕Ke121 ⊕Ke122 ⊕Ke211 ⊕Ke221 ⊕Ke222.

All irreducible Uχ(g)–modules have eigenvalue function χ since a is unipotent with χ(a) = 0
(see Definition 6.2.6). It is easy to verify that a is an ideal in g with χ([a, a]) = 0. We also
have st(χ, a) = h: Indeed, consider y ∈ st(χ, a) given by y = e001 +x for some x ∈ h. Since
χ([y, e022]) = 0 = χ([e001, e022]) we have χ([e022, x]) = 0. Therefore,

x ∈ h ∩W0 + h ∩W1 +Ke211 +Ke121 +Ke122 +W3.
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This implies that χ([x, e111]) = 0, which is a contradiction since χ([e001, e111]) 6= 0. We
can now apply Theorem 6.2.8.

Since h is supersolvable we can determine the irreducible Uχ(h)–modules from the
Vergne polarization of χ with respect to the chain (11.10) in Section 11.7: One can show
that

pχ|h = K(e012 + e101)⊕Ke011 ⊕K(e022 − e111)⊕Ke021 ⊕W≥2

and from the construction in the proof of Lemma 9.3.9, there exists λ ∈ h∗ such that
the Vergne polarization pλ of λ is compatible with χ and equal to pχ|h. Thus we obtain
from Lemma 9.3.6, 9.3.7: There exist (up to isomorphism) 3 irreducible Uχ(h)–modules
all of dimension 34. So, by the first part of the proof, there exist (up to isomorphism) 3
irreducible Uχ(g)–modules all of dimension 35.

Next, we will use Theorem 6.3.3 in Section 6.3 and study the induction functor from g

to W . Set b := Ke021⊕Ke121⊕Ke221. It is easy to verify that b is a unipotent p–ideal in
g with χ(b) = 0. Moreover, we have st(χ, b) = g since χ([e021, e002]) 6= 0 = χ([e021, e102]) =
χ([e021, e202]) and χ([e221, e102]) 6= 0 = χ([e221, e202]) and χ([e121, e202]) 6= 0.

Note that
[W, b] = b⊕Ke011 ⊕Ke022 ⊕Ke122 ⊕Ke222

has a basis l1, l2, . . . , lk with l
[p]
i = 0 for all i and that

[
[W, b], [W, b]

]
⊂ h is a unipotent

p–ideal contained in Ker(χ). Finally, we have
[
W, [W, b]

]
⊂ g and hence we can apply Theo-

rem 6.3.3 in Section 6.3 with the results already obtained: There exist (up to isomorphism)
3 irreducible Uχ(W )–modules all of dimension 38 = 3codimW cW (χ)/2.

Now suppose that χ(e011) = 0. We shall use the restricted Lie algebra g defined in
Section 11.7. The idea is to find a restricted Lie subalgebra s of g and a unipotent ideal
a / s with χ(a) = 0 such that the following conditions are satisfied:

1) Induction induces a bijection between the isomorphism classes of irreducible Uχ(s)–
modules and the isomorphism classes of irreducible Uχ(g)–modules.

2) s/a ' gl2(K) as restricted Lie algebras.

Note that Ke012 ⊕Ke001 ⊕K(e012 − e101)⊕K(e201 + e112) is a restricted Lie algebra
isomorphic to gl2(K) (The isomorphism sends Ke001 ⊕K(e012 − e101)⊕K(e201 + e112) to
sl2(K) and e012 to the identity matrix). Therefore, set

gl2(K) := Ke012 ⊕Ke001 ⊕K(e012 − e101)⊕K(e201 + e112),

a := Ke011 ⊕Ke111 ⊕Ke021 ⊕Ke022 ⊕Ke122 ⊕Ke121 ⊕Ke221.

It is clear that we now shall define

s := gl2(K)⊕ a.

It is easy to verify that s is a restricted Lie subalgebra of g and that a is a unipotent ideal
a / s with χ(a) = 0. In particular, a acts trivially on any irreducible Uχ(s)–module (apply
Lemma 6.3.1). Moreover, s/a ' gl2(K).

Lemma 14.4.3. Let χ be a character of Type M3 with χ(e011) = 0. If M is a Uχ(g)–
module and M 6= 0, then

{x ∈M | a · x = 0} 6= 0

and there exists an irreducible Uχ(s)–submodule X ⊂M with a ·X = 0.
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Proof. Since [a, a] ⊂ a ∩W011 there exists a Uχ(a)–module Kl as being equal to K as a
vector space and where the module structure is given by: e · 1 = 0 for e ∈ a ∩W011 and
e012 ·1 = l (since e012 ∈ a with χ(e012) = 0 we have l ∈ Fp). Since a ⊂W012 is supersolvable
any irreducible Uχ(a)–module is isomorphic to some Kl with l ∈ Fp by Lemma 9.1.3. So
there exists a nonzero x ∈ M with (a ∩W011) · x = 0 and e012 · x = lx for some l ∈ Fp.
If l > 0, set y := e3−l222 · x ∈ M . Then y 6= 0 since χ(e222) 6= 0. Moreover, we have
e012 · y = e3−l222 (e012 +(3− l)) ·x = 0 and (a∩W011) · y = 0 since [e222, a∩W011] ⊂ a∩W011.
We conclude that that a ·x = 0 if l = 0 and a ·y = 0 if l > 0; hence {x ∈M | a ·x = 0} 6= 0.

The final statement in the lemma is now clear: Take nonzero x ∈M such that a ·x = 0.
Then Uχ(g) · x is a Uχ(g)–submodule of M annihilated by a (since a is an ideal in g and
a · x = 0). Thus it contains an irreducible Uχ(g)–submodule X such that there exists an
irreducible Uχ(g)–submodule X ⊂M with a ·X = 0.

Proposition 14.4.4. Let χ be a character of Type M3 with χ(e011) = 0. Induction induces
a bijection between the isomorphism classes of irreducible Uχ(s)–modules annihilated by a

and the isomorphism classes of irreducible Uχ(g)–modules.

Proof. We shall apply Corollary 6.4.3 in Section 6.4: Let e1, e2, e3 be a basis for a comple-
ment to s in g. We can choose

e1 = e112,
e2 = e212,
e3 = e222.

Let N be an irreducible Uχ(s)–module annihilated by a. Adopt the notation from Section
6.4:

N1 =
⊕

ijklKe
i
1e
j
2e
k
3 ⊗N,

N2 =
⊕

jklKe
j
2e
k
3 ⊗N,

N3 =
⊕

klKe
k
3 ⊗N.

The idea is to prove that

{x ∈ Uχ(g)⊗Uχ(s) N | a · x = 0} = 1⊗N. (14.3)

First, let f1 = e211. Observe that χ([f1, e1]) 6= 0; hence [f1, e1] acts bijectively on
Uχ(g) ⊗Uχ(s) N . It is easy to verify that (ad e1)

i(f1) · N2 ⊂ N2 for all i. Moreover,
f1 ·N2 = 0 since e211 ∈ a and therefore e211 ·N = 0.

Next, let f2 = e111. Observe that χ([f2, e2]) 6= 0; hence [f2, e2] acts bijectively on
Uχ(g) ⊗Uχ(s) N . It is easy to verify that (ad e2)

j(f2) · N3 ⊂ N3 for all j. Moreover,
f2 ·N3 = 0 since e111 ∈ a and therefore e111 ·N = 0.

Finally, set f3 = e012. Observe that [f3, e3] = e3 and that f3 ·N4 ∈ a ·N = 0.
We are now in a position, where we can use Corollary 6.4.3 in Section 6.4 with the

observations just made to show that (14.3) holds.
This implies that Uχ(g)⊗Uχ(s) N is irreducible: Any irreducible g–submodule M has a

nonzero intersection with 1⊗N [Apply Lemma 14.4.3]. Therefore M ∩(1⊗N) is a nonzero
Uχ(s)–submodule of 1⊗N and, by irreducibility, M ∩ (1⊗N) = 1⊗N . In particular, we
have M ⊃ 1⊗N and hence M is the entire induced module.

If X1, X2 are irreducible Uχ(g)–modules such that a ·X1 = 0 = a ·X2 and

ϕ : Uχ(g)⊗Uχ(s) X1 ' Uχ(g)⊗Uχ(s) X2

is an isomorphism, then ϕ induces a Uχ(s)–isomorphism ϕ : X1 ' X2. Indeed, we have
ϕ(1 ⊗X1) ∩ (1 ⊗X2) 6= 0. (Look at the elements annihilated by a.) Since ϕ(1 ⊗X1) and
1⊗X2 are irreducible Uχ(s)–modules, we get ϕ(1⊗X1) = 1⊗X2; hence X1 ' X2.
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We have thus shown: Induction induces an injection from the isomorphism classes
of irreducible Uχ(s)–modules annihilated by a into the isomorphism classes of irreducible
Uχ(g)–modules.

Now, let Y be an arbitrary irreducible Uχ(g)–module. I claim that we can find an
irreducible Uχ(s)–module X with a ·X = 0 and

Uχ(g)⊗Uχ(s) X −→ Uχ(g)⊗Uχ(s) Y.

First, apply Lemma 14.4.3 to find an irreducible Uχ(s)–submodule X ⊂ Uχ(g)⊗Uχ(s) Y
with a ·X = 0; thus we have inclusion maps:

X ↪→ Uχ(g)⊗Uχ(s) Y.

Now apply ’Frobenius reciprocity’ on the inclusion X ↪→ Uχ(g) ⊗Uχ(s) Y and obtain a
(nonzero) Uχ(g)–homomorphism:

Uχ(g)⊗Uχ(s) X −→ Uχ(g)⊗Uχ(s) Y. (14.4)

This implies that every Uχ(g)–module is induced from a Uχ(s)–module annihilated by
a: Indeed, any irreducible Uχ(g)–module V contains an irreducible Uχ(s)–module Y ; hence,
by ’Frobenius reciprocity’, V is a homomorphic image of Uχ(g)⊗Uχ(s) Y and by (14.4) then
also a homomorphic image of Uχ(g) ⊗Uχ(s) X for some irreducible Uχ(s)–module X with
a ·X = 0. By the part of the claim already proved we therefore have V ' Uχ(g)⊗Uχ(s) X.
The proof is completed.

Corollary 14.4.5. Let χ be a character of Type M3 with χ(e011) = 0. The dimension
of irreducible Uχ(g)–modules and the number of irreducible Uχ(g)–modules (up to isomor-
phism) are given as:

1) Each irreducible Uχ(g)–module has dimension 35 if χ(e001) 6= 0 or χ(e101) 6= 0. The
number of irreducibles is 32 if χ(e101) 6= 0 and 2 · 3 if χ(e101) = 0.

2) If χ(e001) = 0 = χ(e101), then the number of irreducibles is 32 and there exist irreducible
Uχ(g)–modules of dimension 34, 2 · 34, 35.

Proof. The result follows immediately from Proposition 14.4.4 and from the representation
theory of gl2(K). By Proposition 14.4.4 induction induces a bijection between the isomor-
phism classes of irreducible Uχ(s)–modules annihilated by a and the isomorphism classes
of irreducible Uχ(g)–modules. But s/a ' gl2(K) as restricted Lie algebras, so we can just
think of irreducible Uχ(s)–modules annihilated by a as irreducible Uχ(gl2(K))–modules.
But gl2(K) = sl2(K) ⊕ Z(gl2(K)), where Z(gl2(K)) denotes the centre of gl2(K)), and
sl2(K) and Z(gl2(K)) commute. This implies that any irreducible Uχ(gl2(K))–module is
isomorphic to S1 ⊗K S2, where S1 is an irreducible Uχ(sl2(K))–module and S2 is an irre-
ducible Uχ(Z(gl2(K)))–module (see [3, Thm. 10.38]). Since Z(gl2(K)) is abelian, there
exist (up to isomorphism) three irreducible Uχ(Z(gl2(K)))–modules of dimension 1 and
the representation theory of sl2(K) is described in [27, 5, 5.2]. Now 1) and 2) are easy to
obtain (we use that χ(e201 + e112) = 0 for χ of Type M3).

Remark 14.4.6. If χ has Type M3 and χ(e001) = χ(e101) = 0, then it follows from
Corollary 14.4.5 that there exist irreducible Uχ(W )–modules of non–maximal dimension
(i.e., of dimension strictly less than 38). Indeed, there exists an irreducible Uχ(W )–module
M such that M contains an irreducible Uχ(g)–module X of dimension 34 or 2 · 34 and by
’Frobenius reciprocity’ there exists a (surjective) Uχ(W )–homomorphism:

Uχ(W )⊗Uχ(g) X � M.

In particular, dimKM ≤ 33 · dimKX < 38.
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But I do not know whether Uχ(W ) ⊗Uχ(g) X is irreducible (when X is an irreducible
Uχ(g)–module). If, for instance, induction induces a bijection between the isomorphism
classes of irreducible Uχ(g)–modules and the isomorphism classes of irreducible Uχ(W )–
modules, then we could apply the results in Corollary 14.4.5 and get a description of the
irreducible Uχ(W )–modules (when χ(e011) = 0). But all methods in Section 6 breaks down
in order to show that result.

131



A GL2(K)–action on basis elements

Any element ϕ ∈AutK−algB2 induces an automorphism σϕ of the Lie algebra W such that

σϕ(D) := ϕ ◦D ◦ ϕ−1 ∀D ∈W = DerK(B2). (A.1)

It is easy to see that σ−1
ϕ = σϕ−1 . So the map ϕ 7−→ σϕ is a homomorphism between the two

automorphism groups. In fact, by Theorem 2.2.1 and Remark 2.2.2, it is an isomorphism
of groups for p > 3.

For D = f1
∂
∂x1

+ f2
∂
∂x2
∈ W and ϕ ∈ AutK−alg B2 we have, with the action given in

(A.1), that

σϕ(D) =

2∑

l=1

2∑

i=1

fl(ϕ(x1), ϕ(x2))
∂ϕ−1(xi)

∂xl

(
ϕ(x1), ϕ(x2)

) ∂

∂xi
. (A.2)

See Proposition 2.2.3. Note that we have an inclusion AutK−alg B2 ⊃ GL2(K) in the
following way:

ϕ =

(
a b
c d

)
:
x1 7−→ ax1 + cx2

x2 7−→ bx1 + dx2
(A.3)

where ad − bc 6= 0. For any ϕ ∈ GL2(K), the automorphism σϕ is determined by (A.2)
and (A.3). For ϕ ∈ GL2(K) we will define σϕ(w) := ϕ(w) for w ∈W .

A.1 Diagonal matrices

Let t1, t2 ∈ K∗ and define automorphism on B2 given by

T =

(
t1 0
0 t2

)
:
x1 7−→ t1x1,
x2 7−→ t2x2.

Now apply (A.2) and find:

T (eij1) = σT (eij1) = T · eij1 = ti−1
1 tj2eij1, (A.4)

T (eij2) = σT (eij2) = T · eij2 = ti1t
j−1
2 eij2. (A.5)

A.2 Lower triangular matrices

Let α ∈ K and consider the automorphism on B2 by

ϕ1 =

(
1 0
α 1

)
:
x1 7−→ x1 + α · x2,
x2 7−→ x2.

Now apply (A.2) and obtain:

ϕ1(eij1) =σϕ1
(eij1) =

i∑

s=0

(
i

s

)
ei−s,j+s,1 · α

s, (A.6)

ϕ1(eij2) =σϕ1
(eij2) =

i∑

s=0

(
i

s

)(
ei−s,j+s,2 − α · ei−s,j+s,1

)
· αs. (A.7)
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A.3 Upper triangular matrices

Let α ∈ K and consider the automorphism on B2 by

ϕ2 =

(
1 α
0 1

)
:
x1 7−→ x1,
x2 7−→ x1 + α · x2.

Now apply (A.2) and obtain:

ϕ2(eij1) =σϕ2
(eij1) =

j∑

s=0

(
j

s

)(
ei+s,j−s,1 − α · ei+s,j−s,2

)
· αs, (A.8)

ϕ2(eij2) =σϕ2
(eij2) =

j∑

s=0

(
j

s

)
ei+s,j−s,2 · α

s. (A.9)

A.4 Interchanging

Finally consider the interchanging given by

Θ =

(
0 1
1 0

)
:
x1 7−→ x2,
x2 7−→ x1.

Next, apply (A.2) and get:

Θ(eij1) =σΘ(eij1) = eji2 (A.10)

Θ(eij2) =σΘ(eij2) = eji1. (A.11)

B Jacobson’s formula for p = 3

Let K be an algebraically closed field of characteristic p = 3 and let W be the second
Witt–Jacobson algebra over K. For D1, D2 ∈W we have

(D1 +D2)
[3] = D

[3]
1 +D

[3]
2 +

2∑

i=1

si(D1, D2)

where the si(D1, D2)
′s are elements in W such that

(
ad(D1 ⊗ t+D2 ⊗ 1)

)2
(D1 ⊗ 1) =

2∑

i=1

isi(D1, D2)⊗ t
i−1 (B.1)

in W ⊗K K[t]. The vector space W ⊗K K[t] obtains the structure of a Lie algebra via the
commutator

[d⊗K f(t), d′ ⊗K g(t)] = [d, d′]⊗K f(t)g(t) for d, d′ ∈W and f, g ∈ K[t].

Now, apply (B.1) and get:

s1(D1, D2) =
[
D2, [D2, D1]

]
and s2(D1, D2) =

[
D1, [D1, D2]

]
.

It follows that

(D1 +D2)
[3] = D

[3]
1 +D

[3]
2 +

[
D2, [D2, D1]

]
+
[
D1, [D1, D2]

]
. (B.2)
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B.1 Toral elements

Lemma B.1.1. For all c, c′ ∈ K the element e012 − e101 + ce201 + c′e112 is a toral element
in W .

Proof. Set D1 = e012 − e101 and D2 = ce201 + c′e112). Then D
[3]
1 = D1 and D

[3]
2 = 0.

Moreover,
[
D2, [D2, D1]

]
= 0 and

[
D1, [D1, D2]

]
= D2. Now apply (B.2).

Lemma B.1.2. If D ∈ W and 0 6= D[3] ∈ KD, then there exists c ∈ K∗ such that cD is
a toral element.

Proof. Suppose that D[3] = sD for some s ∈ K∗. Then c is determined by (cD)[3] = cD
or equivalent c3s = c. Since s 6= 0 we shall choose c 6= 0 as a root in X3 − s−1X = 0.

Lemma B.1.3. If D ∈W with D[3] ≡ cD (mod W011) for some c ∈ K∗, then there exists
N > 0 and c′ ∈ K∗ such that c′D[3N ] is toral.

Proof. Since W011 is unipotent there exists N > 0 such that
(
D[3] − cD

)[3N ]
= 0. Note

that D[3j ], D[3j+1] commute for all j ≥ 0 since [D[3j+1], D[3j ]] = (adD[3j ])3(D[3j ]) = 0. The
choice of N now implies that that

D[3N+1] = cND[3N ].

Therefore
(
D[3N ]

)[3]
∈ KD[3N ]. Now apply Lemma B.1.2.

C Characters of height at most 1

Let K be an algebraically closed field of characteristic p > 0. I will consider the case where
χ(W≥1) = 0; i.e., the height of χ is at most 1. [In [10] the height ht χ of a character is
defined as

ht χ = min
{
j ≥ −1 | χ(W≥j) = 0

}
.]

Since W≥1 / W≥0, any W0–module becomes a W≥0–module via the canonical map
W≥0 −→ W≥0/W≥1 ' W0. Since ht χ ≤ 1 we have χ(W≥1) = 0, so any irreducible
Uχ(W0)–module is an irreducible Uχ(W≥0)–module via the canonical map (apply Lemma
6.3.1 in Section 6.3 with g = W≥0 and h = W≥1). On the other hand: Any irreducible
Uχ(W≥0)–module is an irreducible Uχ(W0)–module, since W≥1 annihilates all irreducible
Uχ(W≥0)–modules and since W≥0/W≥1 ' W0. We can think of irreducible Uχ(W≥0)–
modules as irreducible Uχ(W0)–modules, where W≥1 acts trivially.

Let S be an irreducible Uχ(W0)–module. If we extend S to W≥0 in the way above, then
S is an irreducible Uχ(W≥0)–module and we can define the induced module

Uχ(W )⊗Uχ(W≥0) S.

We have a triangular decomposition W0 = Ke102 ⊕ (Ke101 ⊕ Ke012) ⊕ Ke011. Set
t = Ke101⊕Ke012 and n = Ke011⊕W≥1. Let b = t⊕n and let M be a b–module. If λ ∈ t∗

we define Mλ = {m ∈M | e101 ·m = λ(e101)m and e012 ·m = λ(e012)m}. An element of
Mλ is called a weight vector of weight λ. A nonzero element m ∈Mλ is a maximal vector
(of weight λ) provided that n · m = 0. If M has p–character χ and 0 6= m ∈ Mλ, then
we have λ(e101)

pm− λ(e101)m = χ(e101)
pm and λ(e012)

pm− λ(e012)m = χ(e012)
pm. This

implies that λ ∈ Λχ =
{
λ ∈ t∗ | λ(h)p − λ(h[p]) = χ(h)p for all h ∈ t

}
.
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C.1 Irreducible W≥0–modules

Suppose that p > 2. Observe that W0 can be written as A1⊕Z(W0), where A1 is the three
dimensional Lie algebra with basis e102, e011, e101−e012 and Z(W0) = K(e101 +e012) is the
center in W0. It is easy to verify that A1 is a restricted Lie subalgebra of W0 isomorphic
to sl2(K): The isomorphism is given by

e102 7−→

(
0 0
1 0

)
, e012 − e101 7−→

(
1 0
0 −1

)
, e011 7−→

(
0 1
0 0

)
.

Since W0 = A1 ⊕ Z(W0) and [A1, Z(W0)] = 0, it follows from [3, Thm.10.38] that
each irreducible Uχ(W0)–module S is isomorphic to S1 ⊗K S2, where S1 is an irreducible
Uχ(A1)–module and S2 is an irreducible Uχ(Z(W0))–module. The number of irreducible
Uχ(W0)–modules is now just the number of irreducible Uχ(A1)–modules times the num-
ber of irreducible Uχ(Z(W0))–modules. The irreducible Uχ(A1)–modules and irreducible
Uχ(Z(W0))–modules are well described so we can use the observations just made to describe
the irreducible Uχ(W0)–modules. Recall that we can think of irreducible Uχ(W≥0)–modules
as irreducible Uχ(W0)–modules, where W≥1 acts trivially.

Denote by W ′
0 the subalgebra A1 ⊕W≥1.

Proposition C.1.1. Suppose that χ(W ′
0) 6= 0 but χ(e011) = 0. Then each irreducible

Uχ(W≥0)–module has dimension p and the number of irreducible Uχ(W≥0)–modules are:

{
p2 if χ(e012 − e101) 6= 0,

p · p+1
2 if χ(e012 − e101) = 0.

Proof. Since χ(W ′
0) 6= 0 we have χ(A1) 6= 0; therefore irreducible Uχ(A1)–modules are

of dimension p by [14, Prop.5.3]. Moreover, all irreducible Uχ(Z(W0))–modules have di-
mension 1 since Z(W0) is abelian. So any irreducible Uχ(W0)–module has dimension p
and the number of irreducible Uχ(W0)–modules is p2 if χ(e101 − e012) 6= 0 and p · p+1

2 if
χ(e101 − e012) = 0: The number of irreducible Uχ(A1)–modules is p if χ(e101 − e012) 6= 0
and p+1

2 if χ(e101− e012) = 0 by [27, 5, 5.2] (here we use that χ(e011) = 0) and the number
of irreducible Uχ(Z(W0))–modules is p. The proof is completed.

Lemma C.1.2. If χ(W ′
0) 6= 0, then there exists an automorphism Φ ∈ Aut(W ) such that

χΦ(e011) = 0.

Proof. If χ(e011) 6= 0 we can apply an automorphism Ψ ∈ GL2(K) given by

(
1 0
α 1

)
.

We can now find an appropriate α ∈ K such that

χΨ(e102) = −χ(e011) · α
2 − (χ(e101)− χ(e012)) · α+ χ(e102) 6= 0.

If we apply an automorphism Γ ∈ GL2(K) given by

(
1 α′

0 1

)
we get for an appropriate

α′ ∈ K, that

χΨ◦Γ(e011) = −χΨ(e102) · (α
′)2 + (χΨ(e101)− χ

Ψ(e012)) · α
′ + χΨ(e011) = 0.

The formulas for Ψ(e011) and Γ(e102) follows from Appendix A. Set Φ = Ψ ◦ Γ.
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Suppose now that χ(W ′
0) = 0. As in the proof of Proposition C.1.1, irreducible

Uχ(W≥0)–modules are determined by irreducible Uχ(A1)–modules and irreducible Uχ(Z(W0))–
modules. Since Z(W0) is abelian, each irreducible Uχ(Z(W0))–module is given by some
Kµ, where e101 + e012 acts as multiplication by µ ∈ K and µp − µ = χ(e101 + e012)

p.
The irreducible modules for A1 ' sl2(K) are described in [14, 5.2] and [11, 7.2]: For any
irreducible Uχ(A1)–module S1 there exist 0 ≤ n < p such that S1 has dimension n + 1.
Given a basis v0, . . . , vn for S1 the A1-action is given by

e102 · vi =

{
(n− i+ 1)vi−1 i > 0,

0 i = 0

e011 · vi =

{
(i+ 1)vi+1 i < n,

0 i = n

(
e101 − e012

)
· vi = (n− 2i)vi.

In this way any irreducible Uχ(W≥0)–module is uniquely determined by a pair (µ, n)
where 0 ≤ n < p and µ ∈ K with µp − µ = χ(e101 + e012)

p. In particular, there are p2

irreducible Uχ(W≥0)–modules.

Proposition C.1.3. If χ(W ′
0) = 0, then there are p2 irreducible Uχ(W≥0)–modules. For

any integer n with 0 ≤ n < p there exist p irreducible Uχ(W≥0)–modules of dimension n+1.
Any irreducible Uχ(W≥0)–module is isomorphic to a W≥0–submodule in Uχ(W≥0)⊗Uχ(W012)Kv
of dimension n + 1, where Kv is a one-dimensional Uχ(W012)–module with the action of
e101, e012 given by multiplication with 1

2(µ + n + 2), 1
2 (µ − n − 2) for some µ ∈ K with

µp − µ = χ(e101 + e012)
p and some 0 ≤ n < p.

Proof. From the descriptions above, any irreducible Uχ(W≥0)–module S has a basis v0, . . . , vn,
where the W0-action is given by

e102 · vi =

{
(n− i+ 1)vi−1 i > 0,

0 i = 0.

e011 · vi =

{
(i+ 1)vi+1 i < n,

0 i = n.

e101 · vi = 1
2(µ+ n− 2i)vi,

e012 · vi = 1
2(µ− n+ 2i)vi

and where W≥1 acts trivially. The formulas for e101 · vi and e012 · vi is a consequence of(
e101−e012

)
·vi = (n−2i)vi and

(
e101+e012

)
·vi = µvi. One can show that S is isomorphic to

a submodule in Uχ(W≥0)⊗Uχ(W012)Kv where the action on the one–dimensional Uχ(W012)–
module Kv is given by

e101 · v =
1

2
(µ+ n+ 2) e012 · v =

1

2
(µ− n− 2) erst · v = 0 for all (rst) � (101).

More explicitly, the isomorphism of Uχ(W≥0)–modules is given by

φ : S
∼
−→

∑p−1
j=p−1−nKe

j
102 ⊗ v ⊆ Uχ(W≥0)⊗Uχ(W012) Kv

v0 7−→ ep−1
102 ⊗ v.

The proof is completed.
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C.2 Irreducible W–modules

Suppose that p > 2. If ht χ = 1 it turns out that induction induces a bijection between the
isomorphism classes of irreducible Uχ(W≥0)–modules and isomorphism classes of irreducible
Uχ(W )–modules. For ht χ ≤ 0 we assume that p > 3 in order to use results proved in [10].

Following [10], we introduce the exceptional weights: The exceptional weights ω0, ω1, ω2

are elements in t∗ defined via

ω0(e101) = −1 ω0(e012) = −1,
ω1(e101) = 0 ω1(e012) = −1,
ω2(e101) = 0 ω2(e012) = 0.

Proposition C.2.1. Suppose that p > 2. If χ ∈ W ∗ with ht χ = 1, then induction
induces a bijection between the isomorphism classes of irreducible Uχ(W≥0)–modules and
isomorphism classes of irreducible Uχ(W )–modules.

Proof. If χ(W ′
0) 6= 0, we may assume that χ(e102) 6= 0. Indeed, apply an automorphism Ψ

induced by a lower triangular matrix in GL2(K) given by

(
1 0
α 1

)
. Then we can find an

appropriate α ∈ K such that χΨ(e102) = −χ(e011)·α
2−(χ(e101)−χ(e012))·α+χ(e102) 6= 0.

In order to prove that induction induces a bijection between the isomorphism classes
of irreducible Uχ(W≥0)–modules and isomorphism classes of irreducible Uχ(W )–modules,
we may replace χ with any χΨ.

If χ(e102) 6= 0 and p > 3, then the result is proved in [10, 2.4]: R. Holmes prove, for an
irreducible Uχ(W≥0)–module S, that any maximal vector v ∈ Uχ(W )⊗Uχ(W≥0) S of weight
λ has the form 1⊗s for some maximal vector s ∈ S. Thus, Uχ(W )⊗Uχ(W≥0)S is irreducible
and if Uχ(W )⊗Uχ(W≥0) S1 ' Uχ(W )⊗Uχ(W≥0) S2 for irreducible Uχ(W≥0)–modules S1, S2,
then S1 ' S2.

For p = 3 let S be an irreducible Uχ(W≥0)–module and let v ∈ Uχ(W )⊗Uχ(W≥0) S be
a maximal vector of weight λ given by

v =
∑

0≤k,m<3

ek002e
m
001 ⊗ xkm. (C.1)

We shall prove that xkm = 0 unless k = m = 0. Note that e202 · v = 0 and e202 · xkm = 0
for all k,m. Now use that [e202, e002] = 0 and [27, 1, 1.3(4)] to get:

0 = e202 · v = −2
∑

0≤k,m<3

mek002e
m−1
001 ⊗ e102 · xkm + 2

∑

0≤k,m<3

(
m

2

)
ek+1
002 e

m−2
001 ⊗ xkm. (C.2)

This implies that e102 ·x22 = e102 ·x12 = e102 ·x02 = e102 ·x01 = 0; hence x22 = x12 = x02 =
x01 = 0 since χ(e102) 6= 0. Since x12 = 0 we have e102 · x21 = 0 also and then x21 = 0.
Since x02 = 0 we also obtain e102 · x11 = 0 and then x11 = 0. Next, use that e021 · v = 0
and e021 · xkm = 0 for all k,m to get:

0 = e021 · v = −2
∑

0≤k,m<3

kek−1
002 e

m
001 ⊗ e011 · xkm + 2

∑

0≤k,m<3

(
k

2

)
ek−2
002 e

m+1
001 ⊗ xkm. (C.3)

This implies that x20 = 0 since x11 = 0. In order to prove that x10 = 0, we use that
e112 · v = 0 and that e112 · xkm = 0 for all k,m to get: 0 = −e002 ⊗ e102 · x10. Therefore
e102 · x10 = 0 and then x10 = 0. We conclude that xkm = 0 unless k = m = 0 and, since v
is a maximal vector so is x00 ∈ S.
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If χ(W ′
0) = 0 we have χ(e101 + e012) 6= 0 and χ(e101) = χ(e012) 6= 0. If v is a maximal

vector in Uχ(W ) ⊗Uχ(W≥0) S (where S is an irreducible Uχ(W≥0)–module) of weight λ,
then there exist λ1, λ2 ∈ K such that e101 · v = λ1v and e012 · v = λ2v. It follows that
λp1 − λ1 = χ(e101)

p = χ(e012)
p = λp2 − λ2. Hence λ1, λ2 /∈ Fp. Therefore, λ ∈ t∗ given

by λ(e101) = λ1 and λ(e012) = λ2 is not an exceptional weight (as introduced just before
the proposition). In particular, S has no maximal vectors of weights w0, w1 or w2 and it
follows from [10, 2.4] when p > 3 that v = 1⊗ s for some maximal vector s ∈ S. For p = 3
consider v as in (C.1). The equations

∑

0≤k,m<3

ek002e
m
001 ⊗ λ1xkm = λ1v = e101 · v =

∑

0≤k,m<3

ek002e
m
001 ⊗ (e101 · xkm −mxkm)

∑

0≤k,m<3

ek002e
m
001 ⊗ λ2xkm = λ2v = e012 · v =

∑

0≤k,m<3

ek002e
m
001 ⊗ (e012 · xkm − kxkm)

imply that e101 ·xkm = (λ1 +m)xkm and e012 ·xkm = (λ2 +k)xkm. Now, since W011 · v = 0
and W≥1 · S = 0 we get (apply [27, 1, 1.3(4)]):

0 =e022 · v =
∑

0≤k,m<3

2
((k

2

)
− k(λ2 + k)

)
ek−1
002 e

m
001 ⊗ xkm, (C.4)

0 =e201 · v =
∑

0≤k,m<3

2
((m

2

)
−m(λ1 +m)

)
ek002e

m−1
001 ⊗ xkm. (C.5)

Thus, if xkm 6= 0 then 0 ≤ k,m < 3 and

a) If m 6= 0 then λ1 +m = m−1
2 .

b) If k 6= 0 then λ2 + k = k−1
2 .

We conclude that xkm = 0 unless k = m = 0: Indeed, if xkm 6= 0 we get from either a)
or b) that either λ1 ∈ Fp or λ2 ∈ Fp — contradiction. Hence v = 1⊗ s for some s ∈ S.

It follows that induction induces a bijection between the isomorphism classes of irre-
ducible Uχ(W≥0)–modules and isomorphism classes of irreducible Uχ(W )–modules.

Theorem C.2.2. Suppose that p > 2 and let χ ∈W ∗ be a character of height 1. Then there
are p2 irreducible Uχ(W )–modules and the dimension of any irreducible is p if χ(W ′

0) 6= 0.
If χ(W ′

0) = 0, then, for any integer n with 0 ≤ n < p, there exist p irreducible Uχ(W )–
modules of dimension n+ 1.

Proof. Use Lemma C.1.2 and assume that χ(e011) = 0 if χ(W ′
0) 6= 0. Then combine

Proposition C.1.1 and Proposition C.2.1. If χ(W ′
0) = 0 we combine Proposition C.1.3 and

Proposition C.2.1. The proof is completed.

Suppose that that p > 3 and that χ ∈ W ∗ is a character of height 0. Let S be an
irreducible Uχ(W≥0)–module. The proof of Proposition C.1.3 says that there exists n with
0 ≤ n < p and µ ∈ K with µp − µ = 0 such that S has a basis v0, v1, . . . , vn, where the
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W0-action is given by

e102 · vi =

{
(n− i+ 1)vi−1 i > 0,

0 i = 0.

e011 · vi =

{
(i+ 1)vi+1 i < n,

0 i = n.

e101 · vi = 1
2(µ+ n− 2i)vi,

e012 · vi = 1
2(µ− n+ 2i)vi.

There are p2 irreducible Uχ(W≥0)–modules represented by all S(µ, n) for n with 0 ≤
n < p and µ ∈ K such that µp − µ = 0; each S(µ, n) is an irreducible Uχ(W≥0)–module
with a basis v0, v1, . . . , vn where the W0–action is given as above and W≥1 acts trivially.
Note that S(µ, n) has maximal vector vn of weight τ ∈ t∗ given by τ(e101) = 1

2(µ−n) and
τ(e012) = 1

2 (µ + n). We can now describe the exceptional weights ω0, ω1, ω2 in terms of
µ, n in the following way:

ω0 ←→ µ = −2 and n = 0,
ω1 ←→ µ = −1 and n = 1,
ω2 ←→ µ = 0 and n = 0.

Proposition C.2.3. Suppose that p > 3 and let χ ∈ W ∗ with ht χ = 0. Then induction
induces a bijection between the isomorphism classes of irreducible Uχ(W≥0)–modules with
(µ, n) 6= (−1, 1) and the isomorphism classes of irreducible Uχ(W )–modules. In particular,
there are p2 − 1 irreducible Uχ(W )–modules.

Proof. This follows from [10, 4.3 (1), (2)] and description of the exceptional weights in
terms of µ, n just above.

Remark C.2.4. Consider the case where (µ, n) = (−1, 1). Then the induced Uχ(W )–
module Uχ(W )⊗Uχ(W≥0) S(−1, 1) contains a unique W–submodule M(−1, 1) of dimension
p2 (see [10, 3.10 (3), 3.12]) determined by the kernel of theW–homomorphism δχ1 introduced
in [10, 3.8]. Since n = 1 we have dimKS(−1, 1) = 2. From [10, 4.3 (1)], it follows
that the quotient

(
Uχ(W )⊗Uχ(W≥0) S(−1, 1)

)/
M(−1, 1) is an irreducible Uχ(W )–module

isomorphic to Uχ(W )⊗Uχ(W≥0) S(0, 0).

Proposition C.2.5. Suppose that p > 3 and that ht χ = −1 or equivalent χ(W ) = 0. Then
there are p2 isomorphism classes of irreducible W–modules with p–character χ represented
by:

1) Uχ(W )⊗Uχ(W≥0) S(µ, n) if (µ, n) 6= (−2, 0), (−1, 1), (0, 0),

2) L(µ, n) :=
(
Uχ(W ) ⊗Uχ(W≥0) S(µ, n)

)/
M(µ, n) if (µ, n) ∈ {(−2, 0), (−1, 1), (0, 0)}

where M(µ, n) is the unique maximal W–submodule of Uχ(W )⊗Uχ(W≥0) S(µ, n).

If (µ, n) = (−2, 0) the W–submodule M(−2, 0) is one-dimensional and is equal to
Kep−1

002 e
p−1
001 ⊗w where S(−2, 0) = Kw. If (µ, n) = (−1, 1) we have dimKM(−1, 1) =

p2 + 1 and dimKS(−1, 1) = 2 when (µ, n) = (−1, 1). Finally, if (µ, n) = (0, 0) then
L(0, 0) is the one–dimensional trivial module equal to S(0, 0) as a W≥0–module. For
the dimensions we have:

dimKL(µ, n) =

{
p2 − 1 (µ, n) = (−2, 0), (−1, 1),

1 (µ, n) = (0, 0).
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Proof. The statement on the number of isomorphism classes of irreducible Uχ(W )–modules
follows from [10, 4.2 (1)] and the proof of 1), 2) is a consequence of [10, 4.1 and 4.2 (1), (2)].
If (µ, n) equals (−2, 0), (−1, 1) or (0, 0) the W–module Uχ(W ) ⊗Uχ(W≥0) S(µ, n) contains
(see [10, 4.1]) a unique maximal W–submodule M(µ, n) determined by the kernel of the
W–homomorphism δχ1 introduced in [10, 3.8].

If (µ, n) = (−2, 0) we have dimKS(−2, 0) = 1 and L(−2, 0) has dimension p2 − 1 (see
[10, 4.2 (3)]). Here M(−2, 0) is the unique maximal submodule of dimension 1 equal to
Kep−1

002 e
p−1
001 ⊗ w where S(−2, 0) = Kw. Indeed, this is the only choice since every W–

submodule must contain ep−1
002 e

p−1
001 ⊗ w after a suitable multiply by e002, e001.

Suppose that (µ, n) = (−1, 1). Then dimKS(−1, 1) = 2 and L(−1, 1) has dimension
p2 − 1, which also shows that dimKM(−1, 1) = p2 + 1 (see [10, 4.2 (3)]).

Finally, if (µ, n) = (0, 0) we use [10, 4.2 (3)] to conclude that L(0, 0) is the one–
dimensional trivial module equal to S(0, 0) as a W≥0–module.

D Comments

Here, I will comment on the problems which are left open in this thesis. I have gathered
questions which I have not been able to answer due to lack of time as well as my mathe-
matical limitations.

Question1 : How can we classify the set of irreducible Uχ(W )–modules in the case where
st(χ,W≥r) 6= W≥0 (r denotes the height of χ and we assume that r > 1 but r ≤ 2p− 3).

The assumption st(χ,W≥r) 6= W≥0 implies that p−2 < r ≤ 2p−3. We have only been
able to answer Question 1 in the situation where p = 3 and χ ∈W ∗ of height 2, 3 or χ has
height p− 1 and rk cW (χ) = 2. For simplicity, we only consider χ of Type A or Type B as
defined in Section 11.5.

Strictly speaking, the idea is the following: Let g be the Lie p–subalgebra ofW such that
all eijk with (ijk) 6∈ {(002), (102), . . . , (p − 1, 0, 2)} form a basis for g. Then h = g ∩W≥0

is a supersolvable Lie p–subalgebra of g. We define an ideal a in g via

a =

p−1∑

j=0

adj(e001)(W≥r).

TypeA− characters : For Type A–characters we have, so far, seen the following results:

A1) If χ(a) 6= 0, then each irreducible Uχ(W )–module has dimension pcodimW cW (χ)/2 and
the number of irreducibles is prk cW (χ). This result has been proved for general p if
r > p and we find the same results when r = p− 1, p and p = 3. Can one extend the
given proof to hold for r = p− 1, p and arbitrary p ?

A2) If χ(a) = 0, then induction induces a bijection between the isomorphism classes
of irreducible Uχ(g)–modules and the isomorphism classes of irreducible Uχ(W )–
modules; hence the classification of the irreducible Uχ(W )–modules are reduced to
the classification of irreducible Uχ(g)–modules.

a1) If r = 2 and p = 3 or r = p − 1 for arbitrary p but rk cW (χ) = 2, then irre-
ducible Uχ(g)–modules are a (disjoint) union of p−1 irreducible Uχ(g)–modules
all induced from irreducible Uχ(h)–modules and the set of irreducible Uχ(g)–
modules annihilated by a. Since h is supersolvable, we can classify the p − 1
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irreducible Uχ(g)–modules induced from irreducible Uχ(h)–modules and the ir-
reducible Uχ(g)–modules annihilated by a correspond to irreducible Uχ(W (1))–
modules, where W (1) is the smallest Witt–Jacobson Lie algebra. We do not
observe the same pattern as in the A1)–case.

a2) For r = 3 = p we find a Lie p–subalgebra s ⊂ g with the property that induc-
tion induces a bijection between the isomorphism classes of irreducible Uχ(s)–
modules and the isomorphism classes of irreducible Uχ(g)–modules and such
that s/a ' sl2(K). It follows that the classification of irreducible Uχ(W )–
modules are reduced to the well–known classification of sl2(K) (or W (1) since
W (1) ' sl2(K) as restricted Lie algebras when p = 3). We do not observe the
same pattern as in the A1)–case.

The reason for the difference when r = p − 1 and r = p is, that a is unipotent for
r > p− 1 and hence χ(a) = 0 automatically implies that a annihilates all irreducible
Uχ(g)–modules. This is not the case when r = p − 1 and we have to add extra
irreducibles. I suggest that one, for arbitrary p, should prove similar statements as
those in the a1)–case for r = p − 1 and similar statements as those in the a2)–case
for r > p− 1. I don’t know whether it is possible to find s such that s/a ' W (1) or
s/a ' sl2(K), but the representation theory of s/a should at least be well–described.

TypeB− characters : For Type B–characters we have, so far, seen the following results:

B1) If χ(a) 6= 0, then each irreducible Uχ(W )–module has dimension pcodimW cW (χ)/2 and
the number of irreducibles is prk cW (χ). This result has almost been proved for general
p if r > p and we find the same results when r = p− 1, p and p = 3. Can one extend
the given proof to hold for r = p− 1, p and arbitrary p ?

B2) If χ(a) = 0, then induction induces a bijection between the isomorphism classes
of irreducible Uχ(g)–modules annihilated by a and the isomorphism classes of irre-
ducible Uχ(W )–modules; hence the classification of the irreducible Uχ(W )–modules
are reduced to the classification of irreducible Uχ(g/a)–modules.

b1) If r = 2 and p = 3 we have g/a ' sl2(K) and so irreducible Uχ(g/a)–modules
are just irreducible Uχ(sl2(K))–modules. We do not observe the same pattern
as in the B1)–case.

b2) For r = 3 = p the situation is very complicated and requires computations,
which are impossible to carry out for arbitrary p.

At the moment, I have no suggestions of what to do in the b1) and b2)–case (for
arbitrary p). Maybe, one should try to find a Lie p–subalgebra s inside g such that
induction induces a bijection between the isomorphism classes of irreducible Uχ(s)–
modules and the isomorphism classes of irreducible Uχ(g)–modules annihilated by a.
Moreover, one should know the representation theory of s/a.

Question 2 : How can we classify the set of irreducible Uχ(W )–modules in the case
where χ has height r = 2p− 3 and Type II.a.

It is enough to consider irreducible Uχ(W≥0)–modules since induction induces a bijec-
tion between the isomorphism classes of irreducible Uχ(W≥0)–modules and the isomorphism
classes of irreducible Uχ(W )–modules. The computations for p = 3 say that we can find a
Lie p–subalgebra s of W≥0 and a p–ideal a / s such that irreducible Uχ(W≥0)–modules are
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induced from irreducible Uχ(s/a)–modules. Now we are done since irreducible Uχ(s/a)–
modules are well described (s/a ' sl2(K)). But for p = 3, already, the computations are
difficult.

Is it possible, for arbitrary p, to find s and a with the properties as above? Maybe one
cannot prove s/a ' sl2(K) but as long the representation theory of s/a is well known the
reduction is useful.

Question 3 : How can we classify the set of irreducible Uχ(W )–modules in the case
where χ has maximal height.

The representation theory of Uχ(W ) when χ has maximal height is not very well un-
derstood. In the examples I have seen so far, one constructs χ such that W≥0–modules
with p–character χ has maximal dimension pp

2−1. Therefore, they all extend to W . It is
however not clear how to compute the number of irreducibles in those cases.

I have considered the case where p = 3 but a complete understanding in this simple
case is still far away (for me). The computations for p = 3 show that there exists χ of
maximal height and an irreducible Uχ(W )–module of non–maximal dimension (without a
classification of these); this is in fact the most interesting observation.
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