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Group valued differential forms revisited

Anders Kock

For Jim Stasheff

Abstract We study the relationship between combinatorial group valued differential
forms, and classical differential forms with values in the corresponding Lie algebra. In
particular, we compare simplicial coboundary and exterior derivative for 1-forms. The
results represent strengthenings of results obtained by the author in 1982.

1 Introduction

The present paper is partly expository, since the main result – the relationship
between the theory of combinatorial group valued differential forms, and the corre-
sponding classical Lie algebra valued differential forms –, in some sense is contained
already in my [5] (notably in the form of Theorem 6 below, where the formula is
the same as the formula in Theorem 5.4 in [5]). However, a senior colleague of mine
pointed out that the correspondence between the two kinds of forms was not made
fully explicit there, and urged me to make it so; in the process of doing this, I was
forced to close some theoretical holes.

The complete correspondence between the two kinds of forms has two passages:

group valued combinatorial forms → vector space valued combinatorial forms →
vector space valued classical forms

The second passage was not really made explicit in [5] or [7], – in fact, in the
latter, we use the term “classical differential form” for combinatorial forms as soon
as the value group is a vector space. For instance, the “classical curvature” in loc.cit.
is still a combinatorial form.

The present paper aims at presenting the theory more completely. Therefore,
it also contains some repetitions of material already published. But the present
exposition has a wider and more uniform level of generality, where [5] deals with
two ad hoc cases, the most important being where the value group G is a finite
dimensional manifold, i.e. a Lie group.

Also, we utilize some tools that were not available at the time of [5], notably
the theory of affine combinations of mutual neighbour points in a manifold. The
log function, as introduced in [10], depends on this notion; and this log-function
is needed for establishing a coordinate free comparison between combinatorial and
classical differential forms, which is one new feature in the present work.
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Another new feature of foundational nature is the introduction of a (first-order)
neighbour relation in an arbitrary object G, – where [4] only has this relation for
finite dimensional manifolds.

We assume some basic familiarity with the technique of Synthetic Differential
Geometry (SDG), but summarize in the Appendix some particular concepts. The
basic object is a commutative ring R, the “number line”, and, viewed as an R-
module, it is assumed to satisfy the KL axiom scheme, as partly expounded in the
Appendix below.

In this context of SDG, we consider a class of groups which are suitable for being
value groups for differential 1-forms, and their coboundary. In [5], we considered
groups that were either manifolds (i.e. Lie groups), or groups which were groups of
diffeomorphisms of manifolds. The theory presented here comprises these two cases.
It is more general, and hence the proofs, hopefully, clearer.

The groups considered here are subgroups G of associative unitary algebras A
(i.e. G ⊆ A is a subgroup of the multiplicative monoid of A). The only further
requirement is that the underlying vector space (R-module) of A is a “Euclidean” R-
module, i.e. satisfies the vector form of the general KL axiom scheme (see Appendix).
(Also, in order to to be able to define a Lie algebra structure on the tangent space
Te(G), we need that G satisfies a certain “micro-linearity” condition; this is a very
mild condition. Similarly for the vector space structure of Te(G).) However, the
manifolds M on which the differential forms live, are assumed finite dimensional,
so that the theory of combinatorial differential forms on M (in the sense of [5], [4]
I.18) makes sense.

One may think of A as an enveloping algebra, not only of Te(G) (and not neces-
sarily the universal enveloping algebra), but also an enveloping algebra of G itself.
The algebra A is auxilary, and ultimately, one wants (and we do prove) results that
are independent of A.

In this axiomatic framework, we shall be discussing the relationship between the
Lie algebra g of G, on the one hand, and A, on the other. (Recall that this Lie
algebra g is by definition the tangent space Te(G); we shall below review its Lie
algebra structure, as it may be constructed in the context of SDG.) In Section 9,
we give the comparison with the classical theory of differential forms with values in
the Lie algebra of a Lie group. The comparison implies the classical Maurer-Cartan
formula.

(We shall use the phrase “vector space” as synonymous with “R-module”, and
the phrase “Euclidean vector space” as synonymous with “R-module satisfying the
general KL axiom”, cf. the Appendix below. “Linear” means “R-linear”, and simi-
larly for “multilinear”.)

2 The neighbour relation, and infinitesimal

simplices

In the context of SDG, any finite dimensional manifold M carries a reflexive symmet-
ric relation, the neighbour relation x ∼ y; and any (smooth) map between manifolds
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preserves this relation. For M = Rn, x ∼ y iff x − y ∈ D(n). Here, D(n) ⊆ Rn is
one of the the standard infinitesimal objects of SDG:

D(n) := {(d1, . . . , dn) ∈ Rn | di · dj = 0 ∀i, j = 1, . . . , n}

in particular d2
i = 0 for all i. It may be characterized in a coordinate free way by the

condition: d ∈ D(n) iff for every R-module W and for every bilinear Φ : Rn×Rn →
W , we have Φ(d, d) = 0.

We may extend the neighbour notion to arbitrary objects A, by declaring a1 ∼ a2

if there exists an open1 subset U of some Rn, a map f : U → A, and some x1 ∼ x2

in U with f(x1) = a1, f(x2) = a2. We say that this U , f , x1 and x2 witness that
a1 ∼ a2. If A is itself a finite dimensional manifold, this new relation agrees with the
original ∼ on A. Also clearly, any map g : A → B preserves the neighbour relation
∼ thus introduced.

In a finite dimensional manifold M , an infinitesimal k-simplex is (cf. [4]) by
definition a k + 1-tuple (x0, x1, . . . , xk) of mutual neighbours, xi ∼ xj for all i, j =
0, . . . , k. We would like also to have a notion of infinitesimal k-simplex in an arbitrary
object A; it should likewise be a k +1-tuple of mutual neighbour points (a0, . . . , ak),
but we need furthermore to assume the existence of a “uniform” witness f : U →
A for the required neigbourhood relations. So explicitly, to say that k + 1-tuple
(a0, . . . , ak) ∈ Ak+1 is an infinitesimal k-simplex in A is to say that there exists some
open U in some Rn, a map f : U → A, and an infinitesimal k-simplex (x0, . . . , xk)
in U with f(xi) = ai for i = 0, . . . , k.

Here, we shall mainly be interested in the notion of infinitesimal k-simplex for
k = 1 and k = 2. A 1-simplex is just a pair of neighbour points, as described above,
ultimately in terms of some D(n). To describe the infinitesimal 2-simplices (x, y, z)

in Rn, we shall from [4] I.16 recall another “infinitesimal” object D̃(2, n) ⊆ Rn×Rn

(in [7] denoted Λ2D(n)); it is the set of 2 × n matrices [xij] with entries from R,
such that both rows are in D(n) and furthermore x1jx2j′ + x1j′x2j = 0 for all j, j′ =

1, . . . , n. In Rn, the points 0, x, y form an infinitesimal 2-simplex iff (x, y) ∈ D̃(2, n).

In spite of this coordinate dependent description, the D̃ makes “invariant” sense: for
any n-dimensional vector spaces V (i.e. V ∼= Rn), one may define D̃(2, V ). (There

are also “higher” D̃(k, V ), suitable for describing infinitesimal k-simplices for k > 2,

see [4].) The remarkable and crucial property of D̃(2, V ) is that the general KL

axiom (see Appendix) for an R-module A implies that if a map f : D̃(2, V ) → A
has f(0, d) = f(d, 0) = 0 for all d ∈ D(n), then f extends uniquely to a bilinear and

alternating map V × V → A. (There are similar properties for D̃(k, V ).) – All this
may be found in [4] I.16 (for the case V = Rn, A = R), or in [13].

Let us note the following consequence; V still denotes a finite dimensional vector
space, and A a Euclidean vector space.

Proposition 1 If f : V × V → A is bilinear, and (x, y) ∈ D̃(2, V ), then f(x, y) =
−f(y, x).

1the notion of “open”, and the notion of “manifold”, are discussed in the Appendix.
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Proof. We have f(0, d) = f(d, 0) = 0 for all d ∈ V , by bilinearity of f . The

restriction of f to D̃(2, V ) ⊆ V×V extends, by the “remarkable property” mentioned
above to an alternating bilinear map F : V × V → A; and F (x, y) = f(x, y), and

similarly for (y, x), since (x, y) (and hence (y, x)) belongs to D̃(2, V ). Thus

f(x, y) = F (x, y) = −F (y, x) = −f(y, x).

We sometimes express the conclusion of this Proposition by saying: if (x, y) ∈
D̃(2, V ), then any bilinear map behaves on (x, y) as if it were alternating.

One consequence of Euclideanness of A is that if 0A ∼ a in A, then there is, for
some n, a linear map F : Rn → A and a d ∈ D(n) with F (d) = a. For, 0A ∼ a is by
definition witnessed by some f : U → A (U an open subset of some Rn) and some
u ∼ v in U with f(u) = 0A and f(v) = a. Without loss of generality, we may assume
that u = 0 ∈ Rn, and hence v ∈ D(n). Now the restriction of f to D(n) (which is
a subset of U , since 0 ∈ U and U is open) is a map D(n) → A taking 0 to 0A, and
thus by Euclideanness of A, it extends (uniquely) to a linear map F : Rn → A, and
this F , and d = v, proves the assertion.

In the same spirit, we have that if 0A, a, and b form an infinitesimal 2-simplex in
A, then there is, for some n, a linear map F : Rn → A, and a (d1, d2) ∈ D̃(2, n) ⊆
Rn ×Rn with F (d1) = a and F (d2) = b.

Note that if τ : D → A, then τ(d) ∼ τ(0) for any d ∈ D; for, τ extends by
KL (uniquely) to an affine map T : R → A, and T , together with d ∼ 0 witnesses
τ(d) ∼ τ(0). Also, if G is a finite dimensional manifold, and τ : D → G, one may
prove τ(d) ∼ τ(0). But for a general object G, and τ : D → G, there is no reason
why τ(d) ∼ τ(0) in G, unless τ may be extended to some open U ⊇ D. Also, if
G ⊂ A, and g1 and g2 are in G, then from g1 ∼ g2 in A does not follow that g1 ∼ g2

in G.

3 Associative algebras

We shall now consider an associative algebra (A, ·), whose underlying vector space
is Euclidean (but not necessarily finite dimensional). The multiplicative unit is
denoted e, the additive unit (zero vector) is denoted 0A or just 0.

Proposition 2 Let a ∼ 0A in A. Then a · a = 0A. More generally, for any u ∈ A,
a · u · a = 0A.

Proof. There exists, as we observed, some linear map F : Rn → A and some
y ∈ D(n) witnessing a ∼ 0A (so F (y) = a). Since the multiplication · on A is
bilinear, we therefore have a bilinear map

Rn ×Rn F × F
- A× A

·
- A, (1)

and a · a = F (y) · F (y). But since y ∈ D(n), the bilinear map (1) kills (y, y), hence
a · a = 0A. For the more general assertion in the Proposition, one replaces the
multiplication map A × A → A in (1) by the, likewise bilinear, map A × A → A
given by (b, c) 7→ b · u · c.
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Proposition 3 Let a ∼ 0A. Then e + a has a multiplicative two-sided inverse,
namely e− a.

Proof. This is an immediate consequence of Proposition 2; for

(e + a) · (e− a) = e + a− a− a · a = e,

since a · a = 0A by Proposition 2. Similary, (e− a) · (e + a) = e.

Much in the same spirit, we have

Proposition 4 Let 0A, a1 and a2 form an infinitesimal 2-simplex in A. Then a1 ·
a2 = −a2 · a1.

Proof. As in the proof of Proposition 2, we may assume that the simplex is wit-
nessed by a linear F : Rn → A and an infinitesimal 2-simplex of the form (0, x1, x2)

with (x1, x2) ∈ D̃(2, n) ⊆ Rn × Rn. Now apply Proposition 1 to the bilinear map
(x, y) 7→ F (x) · F (y).

4 Lie structure

We now consider the case where there is given a subgroup G of the multiplicative
monoid of A (as in the previous section, A is assumed to be an associative unitary
algebra whose underlying vector space is Euclidean.)

Example 1. Let A = gl(n, R), the algebra of n× n matrices with entries from
R; let G = GL(n, R) ⊆ gl(n,R) be the group of invertible matrices. This is a
particularly simple example, since here one can prove that the Lie algebra g of G is
gl(n, R) = A (with algebraic commutator xy − yx as Lie bracket).

Example 2. We take A = gl(n, R) like Example 1, but with G the group
SL(n,R) of matrices of determinant 1. Its Lie algebra consists of matrices of trace 0
(see e.g. [3] I.7); they do not form a subalgebra of gl(n, R), “algebra” meaning
“associative algebra”.

Both these examples have A finite dimensional (hence Euclidean), and with G a
manifold.

Example 3. (cf. [2] II.4.5; see also [4] I.12 and in particular [6]). Let G be
a group (a Lie group, say). Let A be the vector space “of distributions on G
with compact support”; it can in the present synthetic context be construed as the
vector space LinR(RG, R) of linear maps RG → R. It is Euclidean. Multiplication
is convolution of distributions (using the multiplication of G). Every g ∈ G gives
rise to a punctual distribution, namely the Dirac distribution δg at g. (To make sure
that this is an example, one needs that to prove that the map g 7→ δg is injective,
which is probably not generally possible, on the meager axiomtic basis we are using
here.)

Example 4. Let M be a manifold. We have the vector space RM of functions
on M . Let A be the vector space of R-linear maps RM → RM ; it becomes an
associative unitary algebra by taking composition of functions as multiplication.

5



The group G of invertible maps M → M (= the group of diffeomorphisms) is a
subgroup of the multiplicative monoid of this algebra: to f : M → M , associate the
linear map RM → RM “precompose by f”. (To make sure that this is an example,
one needs some injectivity, as in the previous example.)

(I don’t know whether the A = Universal Enveloping Algebra of the Lie algebra
Te(G) will work; is it a KL vector space ? and does it contain G ?)

Let G ⊆ A as above. We have three binary operations which are closely related,
in a sense we shall make explicit; namely

• 1) the algebraic commutator on A,

[a, b] := a · b− b · a,

• 2) the group commutator on G

{x, y} := x · y · x−1 · y−1,

• 3) and finally the Lie bracket [[−,−]] on Te(G) – whose synthetic construction we
shall recall below, and for which we need to assume that G has a certain “micro-
linearity” property, which we shall likewise recall.

Recall that a tangent vector to an object M at x ∈ M is a map τ : D → M with
τ(0) = x. The set of tangent vectors to m at x is denoted Tx(M).

Since A is assumed a Euclidean vector space, any tangent vector τ to A, at
a ∈ A, say, can be written in the form τ(d) = a + d · v, for some unique v ∈ A. This
element v is called the principal part of the tangent vector τ .

We consider now in particular Te(G), the set of tangent vectors to G at e –
traditionally Te(G) is denoted g. We may consider such a tangent vector as a
tangent vector τ to A at e; as such, it therefore has a principal part, which we shall
call L(τ). We thus get a map

L : Te(G) → A;

L(τ) is explicitly given by the equation

τ(d) = e + d · L(τ) ∀d ∈ D. (2)

An equivalent description is obtained in terms of the map l : G → A, defined as
follows:

l(g) = g − e for g ∈ G.

(One may think of l as a kind of logarithm function.) Then L may be characterized
by

d · L(τ) = l(τ(d)) ∀d ∈ D.

The map L : Te(G) → A is clearly injective.

From Proposition 3 we have that if a ∼ 0A, then e + a is invertible, (e + a)−1 =
e− a. If further e + a ∈ G, then so is e− a, since G by assumption is stable under
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multiplicative inversion in A. If we have that both a ∼ 0A and b ∼ 0A, with e + a
and e + b in G, we may therefore form their group theoretic commutator in G,

{e + a, e + b} = (e + a) · (e + b) · (e + a)−1 · (e + b)−1;

using (e + a)−1 = e − a and similarly for b, we rewrite this as a product of four
two-term factors:

{e + a, e + b} = (e + a) · (e + b) · (e− a) · (e− b).

Multiplying out by the distributive law, we get 16 terms, but most of them (11
in fact) contain either a factor ±a twice, or a factor ±b twice, and so vanish, by
Proposition 2 (second clause). Two of the remaining five terms are of the form ±a ·b
and cancel each other, and this leaves three terms, e+a · b− b ·a. So we have proved

Proposition 5 If a and b are neighbours of 0A, and e + a ∈ G, e + b ∈ G, then

{e + a, e + b} = e + [a, b] ∈ G,

where [a, b] denotes the usual “algebraic” commutator a · b− b · a.

Equivalently, if g, h ∈ G and are ∼ e in A (in particular, if they are ∼ e in G),
then

l({g, h}) = [l(g), l(h)].

We shall now recall the synthetic description of a Lie bracket [[−,−]] on g =
Te(G), following [17] (or see [4] I.9); we need to assume a suitable “microlinearity
condition” for G, namely: “if a map τ : D × D → G satisfies τ(d, 0) = τ(0, 0) =
τ(0, d) for all d ∈ D, then there exists a unique t : D → G with τ(d1, d2) = t(d1 ·d2)”.
The “surrounding” A automatically satisfies this, being Euclidean; see [15] 2.3 for
a proof of this for the case A = R. (The microlinearity condition is related to the
notion from [1] of an “object which universally reverses infinitesimal pushouts”.)

Given ξ and η in Te(G). For d1 and d2 in D, we have the group theoretic
commutator {ξ(d1), η(d2)} ∈ G. It takes value e whenever either d1 or d2 is 0.
By the microlinearity condition assumed for G, it follows that there is a unique
tangent vector t of G at e with the property that t(d1 · d2) = {ξ(d1), η(d2)} for
all (d1, d2) ∈ D × D. We denote this t by the symbol [[ξ, η]], so the characterizing
equation of [[ξ, η]] (the “Lie bracket”) is that

[[ξ, η]](d1 · d2) = {ξ(d1), η(d2)}.

Theorem 1 The map L : Te(G) → A takes the Lie bracket [[−,−]] on Te(G) to the
algebraic commutator [−,−] on A.

Proof. Let ξ and η belong to Te(G). To prove L([[ξ, η]]) = [L(ξ), L(η)], it suffices
to prove for all (d1, d2) ∈ D ×D that

d1 · d2 · L([[ξ, η]]) = d1 · d2 · [L(ξ), L(η)]

7



for all d1 and d2 in D (this is just a matter of cancelling the two universally quantified
dis, one at a time, see Appendix for this cancellation principle). We calculate

d1 · d2 · L([[ξ, η]]) = [[ξ, η]](d1 · d2)− e

= {ξ(d1), η(d2)} − e

(by the definition of [[−,−]] in terms of {−,−})

= [ξ(d1)− e, η(d2)− e]

(by Proposition 5)

= [d1 · L(ξ), d2 · L(η)]

which equals the right hand side of the desired equation, by the bilinearity of the
algebraic commutator [−,−]. This proves the Theorem.

There is also a structure of vector space on Te(G), again using a suitable micro-
linearity condition on G; it can also be described in terms of affine combinations
in G. The map L : Te(G) → A likewise preserves the vector space structure; for,
addition of tangent vectors is here tantamount to addition of their “principal parts”,
as formed in A. We omit details, which may be found in [4] I.7.

5 Combinatorial differential forms

Let us remind the reader how the notion of infinitesimal simplex gives rise to the
notion of combinatorial differential form2, [4] I.18, (and [1] in a somewhat different
context). If (G, ·) is a group with neutral element e, a combinatorial differential
G-valued k-form ω on a finite dimensional manifold M is a law which to each in-
finitesimal k-simplex (x0, . . . , xk) in M associates an element ω(x0, . . . , xk) ∈ G,
subject to the sole requirement that the value is e if two of the xis agree, xi = xj

for some i 6= j. 3

In the following, the word “form”, without further qualifications, means “com-
binatorial differential form”. We are mainly interested in the case of k-forms for
k = 0, 1, 2. If the value group is the additive group (V, +) of a Euclidean vector
space, we shall prove that such a differential form is alternating, i.e. that it changes
sign when xi is interchanged with xj. This is stronger than the usual ‘alternating’
property of classical differential k-forms, since the latter refers to the symmetric
group in k letters, whereas the alternating property for combinatorial k-forms refers
to the symmetric group in k + 1 letters. In particular, the alternating property for
combinatorial 1-forms ω, with values in (V, +), says that for x ∼ y in M

ω(x, y) = −ω(y, x) : (3)

Proposition 6 Let ω be a combinatorial differential k-form on a finite dimensional
manifold M with values in a Euclidean vector space A. Then ω is alternating.

2This viewpoint was advocated in the late 1970s by Bkouche and Joyal (unpublished).
3This requirement can under suitable conditions even be further weakened, see the Remark in

Section 8.
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Proof. For simplicity of notation, we do the case k = 2 only. Since the question is
“local” in M , which is assumed to be a manifold, we may as well assume that M is
an open subset of a finite dimensional vector space, say M ⊆ Rn. For each x ∈ M ,
consider the map Ω(x;−,−) : D̃(2, n) → A given by (d1, d2) 7→ ω(x, x + d1, x + d2).
Since ω(x, x, z) = 0, the map Ω(x; 0,−) is constant zero, and similarly for Ω(x;−, 0).
Since A is Euclidean, Ω(x;−−) therefore extends uniquely to a bilinear alternating
map, likewise denoted Ω(x;−,−) : Rn × Rn → A. Jointly, these maps Ω(x;−,−)
define a map Ω(−;−,−) : M × Rn × Rn → A, which is bilinear and alternating in
the arguments after the semicolon. So for any infinitesimal 2-simplex (x, y, z),

ω(x, y, z) = Ω(x; y − x, z − x).

This already proves the “alternating” property of ω(x, y, z) in so far as y and z are
concerned. To prove the remaining alternatingness conditions, it suffices therefore
to prove that the value changes sign when x and y are interchanged, ω(x, y, z) =
−ω(y, x, z). To prove this, we need a Taylor expansion of Ω(x; y, z) in the non-linear
variable in front of the semicolon (which is possible, since A is Euclidean/KL, see
Appendix). Thus

ω(y, x, z) = Ω(y; x− y, z − y) = Ω(x; x− y, z − y) + DΩ(x; x− y, z − y, y − x),

where DΩ(x; u, v, w) denotes the directional derivative of Ω(x; u, v) (as a function
of x) in the direction of w; DΩ(x; u, v, w) is trilinear in (u, v, w). In the above
expression, the DΩ term vanishes, because it contains x − y in a bilinear position,
and x ∼ y. So

ω(y, x, z) = Ω(x; x− y, z − y) = −Ω(x; y − x, z − y)

= −Ω(x; y − x, (z − x) + (x− y))

= −Ω(x; y − x, z − x)− Ω(x; y − x, x− y);

here, the last term vanishes due to the bilinear occurrence of x− y and x ∼ y, and
so we may continue

= −Ω(x; y − x, z − x) = −ω(x, y, z).

This proves the sign change that we claimed. One notes that in the proof as pre-
sented, z (and z − x, z − y) play a “dummy” role; in fact, by replacing z by a
k − 1-tuple z2, . . . , zk, one gets the proof for k-forms. In particular, omitting z
altogether gives the proof that 1-forms are alternating, i.e. proves the validity of
equation (3).

The following is essentially from [7], Section 5, but some of the assertions there
were not proved, so for completeness, we include proofs here. The construction to
follow is relative to some bilinear A×A

∗→ A (we are interested in the case where ∗
is either the associative multiplication : A×A

·→ A, or is the algebraic commutator,
a ∗ b = [a, b] = ab− ba).

Let ω be a combinatorial A-valued k-form on M , and let θ be a combinatorial
A-valued l-form on M . For any infinitesimal k + l-simplex
(x0, . . . , xk, xk+1, . . . , xk+l), we consider for each j = 0, . . . , k the expression

ω(x0, . . . , xk) ∗ θ(xj, xk+1, . . . , xk+l). (4)
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Lemma 7 These expressions have same value, independently of the j = 0, . . . , k
chosen. Furthermore, the expression vanishes if some xr (r ≥ k +1) equals some xj

(j ≤ k).

Proof. For the first assertion: the proof is likewise a Taylor expansion argument,
assuming, as we may, that M is an open subset of Rn. Like in the previous proof,
we have functions Ω and Θ,

Ω(− : −, . . . ,−) : M × (Rn)k → A,

Θ(−;−, . . . ,−) : M × (Rn)l → A,

both being multilinear and alternating in the arguments after the semicolon, and
with

ω(x0, x1, . . . , xk) = Ω(x0; x1 − x0, . . . , xk − x0),

and similarly for θ and Θ. Because of the symmetry properties of ω, it suffices to
prove that we get the same value for j = 0 and j = 1. Let us write x for x0 and y
for x1, and z for xk+1 (we don’t write the remaining arguments). Then

ω(x, y, . . .) ∗ θ(y, z, . . .) = Ω(x; y − x, . . .) ∗Θ(y; z − y, . . .)

= Ω(x; y − x, . . .) ∗
(
Θ(x; z − y, . . .) + DΘ(x; z − y, . . . , y − x)

)
,

by Taylor expansion at x of Θ in its non-linear variable, in the direction of y−x. Here,
DΘ has l +1 variables after the semicolon, the last (new) one being the direction in
which we Taylor expand. It is multilinear in these l + 1 variables. Multiplying out
(using that ∗ is bilinear), we see that the term containing the DΘ-factor vanishes,
due to occurrence of y − x twice (and using y ∼ x). So the equation continues

= Ω(x; y − x, . . .) ∗Θ(x; z − y, . . .)

= Ω(x; y − x, . . .) ∗
(
Θ(x; z − x, . . .) + Θ(x; x− y, . . .)

)
;

multiplying out (again using that ∗ is bilinear), one of the two terms contains±(y−x)
twice, and therefore vanishes, so we continue

= Ω(x; y − x, . . .) ∗Θ(x; z − x, . . .) = ω(x, y, . . .) ∗ θ(x, z, . . .)

proving the first assertion of the Lemma. The second assertion is a formal conse-
quence: if xr for r > k equals xj for j ≤ k, we use the “independence of j” already
proved so that the product equals ω(x0, . . . , xk) · θ(xj, xk+1, . . . , xr, . . .), but now the
θ factor is 0, due to the repeated occurrence of xj = xr.

With ω and θ k- and l-forms, as above, we can therefore manufacture a k + l
form ω ∪∗ θ by the recipe

(ω ∪∗ θ)(x0, . . . , xk+l) := ω(x0, . . . , xk) ∗ θ(xk, xk+1, . . . , xk+l). (5)

For, this expression vansihes if xj = xr for some j, r ≤ k, because then the ω factor
vanishes, and it vanishes if xj = xr for some r, j > k, because then the θ factor
vanishes; and it vanishes if xj = xr with j ≤ k and r > k, by the Lemma.
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Note that the formula (5) is identical to the formula that defines cup products of
simplicial cochains, and many of its properties are proved the same way. It is related
to the exterior product ∧ of classical differential forms, and was in fact denoted by
∧ in [7]. The relationship has been expounded in [9].

With G ⊆ A as before, we shall prove that (G, ·)-valued 1-forms ω are likewise
alternating, in the sense that

ω(x, y) = (ω(y, x))−1. (6)

For, let lω denote the (A, +)-valued 1-form given by

(lω)(x, y) = ω(x, y)− e = l(ω(x, y))

(recalling the map l : G → A, g 7→ g − e). Then (lω)(x, y) = −(lω)(y, x), by the
alternating property for (A, +)-valued forms. So

ω(x, y) = e + (lω(x, y)) = e− (lω(y, x))

= (e + (lω(y, x)))−1

(by Proposition 3, using ω(x, y) ∼ e in A, see the Remark below)

= ω(y, x)−1.

We define the coboundary d(ω) (or just dω) of a (G, ·)-valued 1-form ω on M
to be the law which to an infinitesimal 2-simplex (x, y, z) in M associates ω(x, y) ·
ω(y, z) · ω(z, x),

(dω)(x, y, z) := ω(x, y) · ω(y, z) · ω(z, x),

and it is easy to see (using (6)) that dω is in fact a combinatorial 2-form, i.e. that
it vanishes if two of its inputs are equal. In the case that the value group is (A, +),
the formula for dω reads (additive notation)

dω(x, y, z) = ω(x, y) + ω(y, z) + ω(z, x) = ω(x, y) + ω(y, z)− ω(x, z),

using (3). Note that this is the usual formula for coboundary of simplicial 1-cochains,
and as such immediately generalizes to k > 1. (For the case of non-commutative
(G, ·), a generalization to k > 1 is not immediately evident, but see [7] Section 11
for some use of it.)

Let us also for completeness make explicit the notion of combinatorial G-valued
0-form on a manifold M : it is just a function f : M → G. We have its coboundary
df , which is a combinatorial G-valued 1-form on M , given by

df(x, y) := f(x)−1 · f(y).

It is trivial to verify that d(d(f)) = e, the combinatorial 2-form with constant value
e ∈ G.

In the non-commutative case (which is our main interest here), the notion of
coboundary of 0- and 1-forms with values in G actually come in two versions, a

11



“left” and a “right” coboundary, dL and dR; we have chosen one of them, the one
we call the “left”, d = dL. For completeness, let us write the formulas for d = dL as
well as for dR:

dLf(x, y) = f(x)−1 · f(y); dLω(x, y, z) = ω(x, y) · ω(y, z) · ω(z, x),

dRf(x, y) = f(y) · f(x)−1; dRω(x, y, z) = ω(z, x) · ω(y, z) · ω(x, y),

for f a 0-form and ω a 1-form.

Remark. It does not immediately follow from the definitions that for a 1-form ω,
with values in (G, ·), say, we have ω(x, y) ∼ e; it will follow if ω – apriori defined
only on the set M(1) ⊆ M × M of pairs of neighbour points – extends to a map
Ω on some open subset U of M × M containing M(1); for, any map defined on
U preserves the neighbour relation, and since (x, x) ∼ (x, y) in U ⊆ M × M , it
follows that e = ω(x, x) = Ω(x, x) ∼ Ω(x, y). Such extensions always exist if G is
a finite dimensional manifold, or if it is a Euclidean vector space. So whenever it
does not already follow, I shall state as a separate requirement, that the values of a
combinatorial differential form takes values which are ∼ e.

The argument that ω(x, y) = ω(y, x)−1, however, depended only on lω(x, y) ∼
0A, which does hold in any case, because A is Euclidean.

A combinatorial G-valued 1-form ω gives rise to a combinatorial A-valued 1-form
lω, lω(x, y) := ω(x, y) − e. Similarly for G-valued combinatorial 2-forms θ on M :
(lθ)(x, y, z) := θ(x, y, z)− e. We shall below calculate d(ω) in terms of d(lω). Here,
both occurrences of “d” denote the combinatorial (simplicial) coboundary, but with
respect to, respectively, multiplication in G and addition in A. To remind the reader
of this, we write d· and d+, respectively, for these coboundaries. (In Section 8,
we shall also consider the exterior derivative d for classical differential forms, and
compare it with d+.)

To make the desired comparison between the (G, ·)-valued coboundary of ω, and
the (A, +)-valued coboundary of lω, consider an infinitesimal 2-simplex x, y, z in M .
Then

d·ω(x, y, z) = ω(x, y) · ω(y, z) · ω(z, x)

= (e + lω(x, y)) · (e + lω(y, z)) · (e + lω(z, x)).

This we may multiply out, using the distributive law in the algebra A; we get

e + lω(x, y) + lω(y, z) + lω(z, x)

+ lω(x, y) · lω(y, z) + lω(x, y) · lω(z, x) + lω(y, z) · lω(z, x))

+ lω(x, y) · lω(y, z) · lω(z, x).

(7)

Lemma 8 The three terms in the middle line are equal except for sign. The term
in the third line is 0.

Proof. We recognize the three terms in the middle line as values of the cup product
2-form lω ∪· lω, applied to permutation instances of x, y, z – for the middle term,
this may require an argument:

lω(x, y) · lω(z, x) = (−lω(y, x)) · (−lω(x, z)) = (lω ∪· lω)(y, x, z)
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by cancelling the two minus signs. Now (y, x, z) is an odd permutation, the two other
terms come from even permutation instances; the fact that lω ∪· lω is alternating
(Proposition 6) then gives the first assertion of the Lemma. For the second assertion,

we consider the A-valued 3-form lω∪· lω∪· lω (for associative A×A
·→ A, like here,

the corresponding ∪· is associative); we recognize the last line in (7) as this 3-form
applied to the 3-simplex (x, y, z, x), but since this simplex has a repeated entry, the
form vanishes on it. This proves the Lemma.

So in the expression (7) for d·ω, only the first line and one term from the second
line survive, so we have

(d·ω)(x, y, z) = e + lω(x, y) + lω(y, z) + lω(z, x) + lω(x, y) · lω(y, z)

= e + (d+lω)(x, y, z) + lω(x, y) · lω(y, z),

or

Theorem 2 Let ω be a 1-form on a manifold M , with values in G ⊆ A, and let
lω(x, y) = ω(x, y) − e, and similarly for 2-forms. Then for any infinitesimal 2-
simplex x, y, z in M ,

l(d·ω)(x, y, z) = d+lω(x, y, z) + lω(x, y) · lω(y, z). (8)

This Theorem is the desired comparison. Note again that the d· on the left hand
side utilizes the multiplication · of G, the d+ on the right hand side utilzes the +
of A.

– The second term on the right hand side can be written in several other ways;
for, the three terms in the middle line of (7) are equal (modulo sign), as we proved.
There is even a further doubling of the number of ways it can be written. For, we
claim that for any infinitesimal 2-simplex x, y, z

lω(x, y) ∗ lω(y, z) = −lω(y, z) ∗ lω(x, y). (9)

This follows from Proposition 4, using that ω(x, y), ω(z, y) and ω(y, y) (= 0) form
an infinitesimal 2-simplex in A.

The expressions for l(d·ω)(x, y, z) can be further rewritten, utilizing the cup

product of forms with respect to a suitable bilinear map A× A
∗→ A,

(lω ∪∗ lθ)(x, y, z) := lω(x, y) ∗ lθ(y, z).

We have in mind that ∗ is the algebraic commutator [−,−] on A. From (9) it follows
that

[lω(x, y), lω(y, z)] = lω(x, y) · lω(y, z)− lω(y, z) · lω(x, y) = 2lω(x, y) · lω(y, z),

whence the conclusion of the Theorem may also be written

ld·ω(x, y, z) = d+lω(x, y, z) + 1
2
(lω ∪[−,−] lω)(x, y, z);

so

Theorem 3 Let ω be a 1-form on a manifold M , with values in G ⊆ A, and let
lω(x, y) = ω(x, y) − e, and similarly for 2-forms. Then for any infinitesimal 2-
simplex x, y, z in M ,

ld·ω = d+lω + 1
2
lω ∪[−,−] lω. (10)
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6 Affine combinations

As will be expounded in [14] (see also [8] for a partial account), any map (not
necessarily linear) from a finite dimensional vector space Rn (or an open subset U
thereof) to a KL vector space A preserves affine combinations of mutual neighbour
points x0, . . . , xk. It follows that for a finite dimensional manifold M , affine combi-
nations of any k +1-tuple of mutual neighbour points make invariant sense, and are
preserved by any map between such manifolds.

Here, we shall only need the case where k = 1, and so we may as well give a
complete account (and a slight generalization) in this special case.

First we note that if a ∼ b in Rn, then any affine combination (1− t)a+ tb is ∼ a
and ∼ b (t ∈ R an arbitrary scalar). To prove the assertion about a, say, we have
to prove that ((1− t)a + tb)− a ∈ D(n) ⊆ Rn. Calculating this linear combination,
we get a− ta + tb− a = t(b− a); but b− a is in D(n) by the assumption a ∼ b, and
hence so is any scalar multiple of it.

Since U ⊆ Rn was assumed open, we therefore also get that (1− t)a + tb ∈ U .
Now consider an arbitrary map h : U → A. Consider the map D(n) → A given

by d 7→ h(a + d). By the KL axiom for A, it is of the form d 7→ h(a) + L(d)
for a unique linear L : Rn → A. In particular, the restriction of h to the subset
a + D(n) ⊆ U ⊆ Rn extends (uniquely) to an affine map H : Rn → A. Since b and
also (1− t)a + tb belong to the subset a + D(n) (being neighbours of a), the values
of h and H agree on these three points. But H preserves affine combinations. So
h : U → A preserves affine combinations of pairs of neighbour points.

Proposition 9 Let i : G → A be a monic map into a Euclidean vector space.
Assume x ∼ y ∈ G. Then the affine combination

(1− t) · i(x) + t · i(y)

is of the form i(z) for some z ∈ G (necessarily unique). This z satisfies z ∼ x and
z ∼ y; and it is independent of the embedding i, i.e. any other injective i′ : G → A′

into a Euclidean vector space A′ will produce the same z ∈ G. We write this z as
(1− t) · x + t · y.

Proof. By the assumption that x ∼ y ∈ G, there is some open U ⊆ Rn, some
a ∼ b ∈ U and some f : U → G with f(a) = x and f(b) = y. We saw above that
(1−t)a+tb (formed in Rn) is ∼ a and hence belongs to U . Let z := f((1−t)a+tb)).
Then

i(z) = i(f((1− t) · a + t · b)) = (1− t) · i(f(a)) + t · i(f(b))

since i ◦ f : U → A preserves affine combinations of mutual neighbour points (as we
saw above for an arbitrary h : U → A); so i(z) = (1 − t) · i(x) + t · i(y), proving
the existence of z. The fact that z ∼ x follows because f preserves the neighbour
relation, in particular the relation (1−t)·a+t·b ∼ a. Similarly for z ∼ y. Finally for
the independence assertion: the construction z := f((1− t) · a+ t · b) is independent
of i, and the description of z via i(z) = (1 − t) · i(x) + t · i(y) is independent of f ,
so z is independent of choice of both f and i.
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Using affine combinations, we now have a process which to a pair (x, y) of neigh-
bour points in a manifold M associates a tangent vector at x, denoted log(x, y); it
is given by

log(x, y)(d) := (1− d) · x + d · y.

7 From G-valued forms to g-valued forms

We shall consider combinatorial differential forms ω with values in G ⊆ A; as noted
in the Remark in Section 5, their values are ∼ e when seen in A, but not necessarily
when seen in G. This we have to assume. It is a very weak assumption that can
be seen to hold under various kinds of assumptions, e.g. assuming that G is a finite
dimensional manifold.

Let us denote the set of neighbours of e ∈ G by M1(e). For g ∈M1(e), we have
an element λ(g) ∈ Te(G) = g, namely λ(g) := log(e, g), so

λ(g)(d) = log(e, g)(d) = (1− d) · e + d · g;

this affine combination is in G, by Proposition 9, which also gives that λ(g) is
independent of the auxiliary embedding G ⊆ A. Clearly λ(e) is the zero vector at
e, i.e. the map d 7→ e ∀d ∈ D.

Recall the map L : g → A which associates to τ ∈ g = Te(G) the principal part
of d 7→ τ(d)− e; and recall the map l : G → A with l(g) = g − e. We have

L ◦ λ = l. (11)

For, let g ∼ e in G. Then L(λ(g)) is the principal part of the tangent vector of A
given by d 7→ (1 − d) · e + d · g = e + d · (g − e), and this principal part is clearly
g − e, i.e. l(g).

Since the values of G-valued k-forms θ are in M1(e), it follows that we may
compose such θ with λ to obtain a g-valued combinatorial k-form λθ.

Let lω and lθ be A-valued combinatorial 1-forms. Recall that one defines an
A-valued combinatorial 2-form lω ∪[−,−] lθ by putting

lω ∪[−,−] lθ := [lω(x, y), lθ(y, z)] (12)

where the square brackets denote algebraic commutator in A, [u, v] = uv − vu.
Similarly if λω and λθ are g-valued 1-forms, we have a g-valued 2-form λω∪[[−,−]] λθ,
like in (12) with [[−,−]] instead of [−,−], and λω, λθ instead of lω, lθ.

Now let ω be a G-valued 1-form. So we have λω, a g-valued 1-form, and we have
lω, an A-valued 1-form; and the former goes to the latter by L : g → A, because
of (11).

We can therefore get a Corollary of Theorem 3, namely

Theorem 4 Let ω be a G-valued 1-form. Then we have the following equality of
combinatorial g-valued 2-forms:

λd·ω = d+λω + 1
2
λω ∪[[−,−]] λω.
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Here G ⊂ A, as always, but note that the entries in the equation of the Theorem
no longer depend on A, but are intrinsic to G (and to g, which in turn is intrinsic
to G).

8 Comparison between classical and

combinatorial forms

In this section, we consider differential forms with values in a vector space A, as-
sumed to be Euclidean.

The forms we consider are defined on a finite dimensional manifold M . Therefore,
we have, for any pair of neighbour points x0, x1 in M a well defined tangent with
base point x0, log(x0, x1), as in the Section 6: log(x0, x1)(d) := (1 − d)x0 + dx1 for
d ∈ D.

Recall that a classical differential k-form ω on M (with values in a Eucldean
vector space A) is a law which to a k-tuple of tangents, say τ1, . . . , τk, with common
base point, associates an element ω(τ1, . . . , τk) ∈ A in a k-linear and alternating
way.

We shall recall a bijective correspondence between classical and combinatorial
k-forms (cf. [4] I.18 for this correspondence in coordinates, and [13] for the corre-
spondence in coordinate free terms); the combinatorial k-form ω corresponding to
the classical k-form ω is given by

ω(x0, x1, . . . , xk) := ω(log(x0, x1), . . . , log(x0, xk))

for (x0, . . . , xk) an infinitesimal k-simplex.
To see that this correspondence is bijective, it suffices to assume that M is in

fact an open subset of V = Rn, for some n. A classical A-valued k-form ω may then
be encoded into a function F : M × V k → A, which is k-linear and alternating in
the last k arguments:

F (x0; v1, . . . , vk) = ω(τ1, . . . , τk),

where τis are tangent vectors with base point x0 ∈ M ⊆ V and with principal part
vi ∈ V (so τi(d) = x0 + d · vi).

On the other hand, a combinatorial A-valued k-form ω gives rise function f :
M × D̃(k, V ) → A, via

ω(x0, x1, . . . , xk) = f(x0; x1 − x0, . . . , xk − x0) (13)

with f vanishing if one of the k arguments after the semicolon vanishes. But a func-
tion f(x0;−, . . . ,−) : D̃(k, V ) → A with this property extends uniquely to a k-linear
alternating function F (x0;−, . . . ,−) : V k → A. Collectively, these F (x0;−, . . . ,−)
define a function F (−;−, . . . ,−) : M × V k → A, k-linear and alternating in the
arguments after the semicolon. (This F is what in Section 5 was denoted Ω.)

Remark. Note that the assumptions on ω needed to produce such F was just the
“weak” one: that ω(x0, . . . , xk) = 0 if some xi with i > 0 equals x0. But from the fact
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that F is alternating in the last k arguments then follows the stronger conclusion: the
vanishing of ω(x0, x1, . . . , xk) if some xi = xj with i, j ≥ 1. The reason why we take
the stronger condition in our definition of the notion of combinatorial differential
form is just that it is simpler to state, and is more symmetrical.

We see that both ω and ω are encoded by the function F (−;−, . . . ,−) : M ×
V k → A, k-linear and alternating in the arguments after the semicolon.

This already establishes a bijective correspondence between classical and com-
binatorial k-forms, but does not prove that the correspondence described via such
F is “independent of choice of coordinates”. To see this independence, we just
have to argue that the correspondence that we have set up in terms of functions
F (−;−, . . . ,−) : M × V k → A agrees with the one that we have set up in terms
of the tangent vectors log(x0, xi). This is an easy consequence of the fact that the
principal part of the tangent vector log(x0, xi) is xi−x0 (see the argument for (11)).
So if ω is a classical k-form (encoded by the function F ), and ω the combinatorial
k-form corresponding to it by the “log”-correspondence,

ω(x0, x1, . . . , xk) = ω(log(x0, x1), . . . , log(x0, xk))

= F (x0; x1 − x0, . . . , xk − x0),

which is the combinatorial k-form encoded by F .

We next want to compare the coboundary d+(ω) of vector space valued combi-
natorial forms (which was defined by the standard “simplicial” formula) with the
exterior derivative d(ω) of classical differential forms. We now write d(ω) for d+(ω),
for simplicity. So let A be a Euclidean vector space. We have

Theorem 5 Let ω be an A-valued combinatorial k-form on a manifold M , and let
ω be the corresponding classical form. Then the combinatorial k + 1-form d(ω) has
1/(k + 1) d(ω) for its corresponding classical k + 1-form.

(In [9], the factor k +1 does not appear; this is because the correspondence between
combinatorial and classical forms is set up differently there, with a scalar factor
built in.)

Proof. For a proof for general k, see [13]; we shall only prove the case k = 1,
which is the relevant one here. It suffices to do it in the coordinatized situation,
i.e. with M an open subset of V = Rn, so both ω and ω are encoded by a function
F : M ×V → A, linear in the second argument. We first calculate dω(x, y, z) for an
infinitesimal 2-simplex (x, y, z) in M :

dω(x, y, z) = ω(x, y) + ω(y, z)− ω(x, z)

= F (x; y − x) + F (y; z − y)− F (x; z − x).

We now Taylor expand the middle term (as a function in the variable in front
of the semicolon) from x in the direction of y − x; this term then is F (x; z − y) +
DF (x; z−y, y−x), where DF (−;−, v) denotes directional derivative in the direction
of v ∈ V ; it depends in a linear way on v, which is why we put the variable v after
the semicolon. With this expansion, we get

dω(x, y, z) = F (x; y − x) + F (x; z − y)− F (x; z − x) + DF (x; z − y, y − x).
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Using linearity of F in the argument after the semicolon, one sees that the three
first terms cancel out; so only the DF term remains; we proceed to calculate this
term, (writing DF (u, v) for DF (x; u, v)). We have

DF (z − y, y − x) = DF ((z − x) + (x− y), y − x)

= DF (z − x, y − x) + DF (x− y, y − x).

The last term here vanishes because DF is bilinear, and y ∼ x. So we are left with
the expression for dω in terms of F :

dω(x, y, z) = DF (x; z − x, y − x, ). (14)

We can get an alternative expression, utilizing that y ∼ z and hence (y−x) ∼ (z−x)
(and both ∼ 0); for it then follows that the bilinear DF (x;−,−) behaves as if
it were alternating when applied to (y − x), (z − x), so DF (x; z − x, y − x) =
−DF (x; y − x, z − x). So

dω(x, y, z) = 1
2

(
DF (x; z − x, y − x)−DF (x; y − x, z − x)

)
. (15)

Now, the function DF (x; u, v) − DF (x; v, u) is clearly bilinear alternating in u, v,
and as such represents a classical 2-form on M ; and this 2-form is the (coordinate
expression for) the classical exterior derivative d of the 1-form ω given by F (see
e.g. [16] p. 15). This proves the Theorem (for the case k = 1).

For the case where the value vector space A for the (combinatorial, as well as
classical) forms is equipped with a bilinear ∗ : A×A → A, we would like to compare
the ∪∗-product of combinatorial forms (introduced above in Section 5) with the
classical wedge product (relative to ∗) of classical forms, which we denote ∧∗. Recall
that if ω and θ are, respectively a classical k-form and a classical l-form (on M , with
values in A), then we get a classical k + l-form ω ∧∗ θ given by

(ω ∧∗ θ)(τ1, . . . , τk+l) :=∑
σ∈S(k,l)

sign(σ) ω(τσ(1), . . . , τσ(k)) ∗ θ((τσ(k+1), . . . , τσ(k+l)),

where S(k, l) denotes the set consisting of the (k + l)!/ k! l! “(k, l)-shuffles” (per-
mutations of {1, . . . , k + l}, which keep the mutual order of 1, . . . , k and also keep
the mutual order of k + 1, . . . , k + l). If the τi are of the form log(x0, xi) for an
infinitesimal k + l simplex x0, x1, . . . , xk+l, then the sum may be rewritten, term by
term, using the combinatorial form ω corresponding to ω, as∑

σ∈S(k,l)

sign(σ) ω(x0, xσ(1), . . . , xσ(k)) ∗ θ(x0, xσ(k+1), . . . , xσ(k+l)).

We recognize the individual terms here as instances of ω ∪∗ θ; because ω ∪∗ θ is
alternating, all the terms in this sum are equal, so the sum equals

(k + l)!/ k! l! (ω ∪∗ θ)(x0, . . . , xk+l).
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We shall only need this for k = l = 1; there are two (1, 1)-shuffles, so if ω and θ are
combinatorial 1-forms, and ω, θ the corresponding classical forms, we therefore have
that

ω ∧∗ θ corresponds to 2(ω ∪∗ θ). (16)

Note that if ∗ is skew, u ∗ v = −v ∗ u, then we have the second equality sign in

(ω ∧∗ θ)(τ1, τ2) = ω(τ1) ∗ θ(τ2)− ω(τ2) ∗ θ(τ1) = ω(τ1) ∗ θ(τ2) + θ(τ1) ∗ ω(τ2),

and in particular, for ω = θ,

(ω ∧∗ ω)(τ1, τ2) = 2ω(τ1) ∗ ω(τ2).

9 Group valued coboundary vs. Lie algebra

valued exterior derivative

The ultimate comparison we want is between combinatorial G-valued 1- and 2-forms
θ, on the one hand, and the corresponding classical g-valued 1- and 2-forms λθ, on
the other. The correspondence itself is in two stages: first, the process λ, which
takes combinatorial G-valued forms to combinatorial g-valued forms, and secondly
the the process denoted by “overline”, which takes combinatorial forms to classical
forms (and which applies to vector space valued forms only, so cannot be applied
directly to G-valued forms).

More precisely, given a combinatorial G-valued 1-form ω, we want a comparison
between its coboundary d(ω), which is a combinatorial G-valued 2-form, and the
classical g-valued 2-form d(λω), d denoting the classical exterior derivative. It results
in a formula, which is identical to (5.2) from [5], but now proved in bigger generality
and in coordinate free terms.

The work has essentially been carried out above, by Theorem 4 and Theorem 5.
For the combinatorial coboundaries, we shall again use the notation d· and d+ to
remind ourselves whether we are talking about G-valued, or vector valued forms.

Theorem 6 Let ω be a combinatorial G-valued 1-form. Then we have the following
equality of classical g-valued 2-forms:

λ(d·ω) = 1
2

(
d λω + 1

2
λω ∧[[−,−]] λω

)
.

In simplified notation, let ∧ denote ∧[[−,−]], and let θ̃ denote the combined con-

struction θ 7→ λθ. Then the equation can also be written

d̃·(ω) = 1
2

(
dω̃ + 1

2
ω̃ ∧ ω̃

)
.

We shall partially use the simplified notation also in the proof to be given. Then ∪
denotes ∪[[−,−]].

Proof. By Theorem 4
λ(d·ω) = d+λω + 1

2
λω ∪ λω.
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Since the “overline”-process is clearly linear, we therefore have

λ(d·ω) = d+λω + 1
2

λω ∪ λω

= 1
2
d(λω) + 1

2
λω ∪ λω

(by Theorem 5)

= 1
2
d(λω) + 1

2
(1

2
λω ∧ λω)

(by (16))

= 1
2

(
d(λω) + 1

2
λω ∧ λω

)
.

This proves the Theorem.

Example. ([5], Coroll. 5.5.) Let G be a Lie group, in particular, it is a finite
dimensional manifold. Then there is a canonical G-valued 0-form on G, namely the
identity map i : G → G. Its coboundary ω is the G-valued 1-form on G given by
ω(x, y) = x−1 · y. The classical g-valued 1-form on G corresponding to this ω is the
the Maurer-Cartan form, denoted Ω, thus

Ω := λω = ω̃.

Now ω = d·(i) is trivially closed, in the sense that d·(ω) = e, (= the 2-form with
constant value e). The corresponding classical 2-form is therefore the zero 2-form.
The formula of Theorem 6 therefore has 0 on its left hand side, and so the right
hand side is 0 as well, and therefore

dΩ = −1
2
Ω ∧ Ω,

the classical Maurer-Cartan formula.

10 Curve integrals of 1-forms

Having the process which to a function f : M → G associates a (closed) G-valued
1-form d·f on M , one may raise the question: which closed 1-forms ω on M (or on
suitable subsets of M) have “primitives” or “integrals”, i.e. functions f : M → G
with d·f = ω ? Many existence problems and results in differential geometry can
be formulated in these terms, in particular for the case when M is 1-dimensional,
in which case one is dealing with curve integrals (=path integrals). However, the
generality for this question, as stated here, is not really the best one. The notion
of combinatorial group-valued 1-forms should, in so far as the integration problem
is concerned, better be formulated in terms of groupoid-valued 1-form. If Φ ⇒ M
is a groupoid whose object set M is a manifold, a Φ-valued 1-form ω on M is a law
which to any pair of neighbour points (x, y) in M associates an arrow ω(x, y) : x → y
in Φ; the sole requirement is that ω(x, x) is the identity arrow at x. A Φ-valued
1-form (on M) is tantamount to a connection ∇ in Φ. (We recover the more special
notion of G-valued 1-form on M by taking the groupoid to be the product of the
trivial (chaotic) groupoid M ×M ⇒ M with the group G (viewed as a one-object
groupoid.))

Questions of “primitives” of G-valued 1-forms generalize then to questions of
holonomy of connections in a groupoid. This is elaborated on in [11].
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11 Appendix

We remind the reader that Synthetic Differential Geometry is a reasoning that takes
place in some category, where “everything is smooth”, and where there is singled
out a commutative ring R, to be thought of as the “number line”. Typically, such a
category (model of SDG) is a topos. There are several texts introducing the subject,
e.g. [4] or [15].

11.1 The KL axiom, and Euclidean vector spaces

A main specific aspect is the use of an assumption of sufficiently many nilpotent
elements in the ring R, in particular elements d ∈ R with d2 = 0. The set D ⊆ R of
these elements is required to be sufficiently big in the precise sense that the so-called
“Kock-Lawvere” axiom (KL) is assumed to hold. This axiom may be formulated for
an arbitrary R-module (“vector space”) A, and says

for any map f : D → A, there is a unique a ∈ A (namely
f(0)) and a unique b ∈ A such that

f(d) = a + d · b ∀d ∈ D.

The main basic assumption in SDG is that the R-module A = R itself satisfies
this.

From the uniqueness of b in the axiom follows that if d · b1 = d · b2 for all d ∈ D,
then b1 = b2. We express sometimes this by saying that “universally quantified ds
may be cancelled”.

There is also a more comprehensive KL axiom, which is really an axiom scheme,
namely there is one instance of the Axiom for each “infinitesimal object”; see [4],
I.16, where it is called Axiom 1W , or [15] 2.1, where it is called “the general Kock
axiom”; we don’t need it in its full generality in the present note, but only the
instances of it which refer to the infinitesimal objects D̃(k, n) which we describe
below.

The comprehensive KL axiom may be formulated for an arbitrary R-modules
A. If a vector space (= R-module) satisfies the comprehensive KL axiom, we call if
(following [15]) a Euclidean vector space. The main assumption in SDG is that R
itself satisfies the axiom scheme, i.e. is a Euclidean vector space. Then many other
vector spaces are Euclidean as well.

Let us first be explicit about the KL axiom for D(n). For a vector space A, it
says

for any map f : D(n) → A there is a unique a ∈ A (namely
f(0)) and a unique linear B : Rn → A such that

f(d) = a + B(d) ∀d ∈ D(n).

Consider the set D̃(k, n) ⊆ Rk·n (= the set of k × n-matrices with entries from
R) consisting of matrices [xij] which satisfy the equations

xijxi′j′ + xij′xi′j = 0 ∀i, i′ = 1, . . . , k, ∀j, j′ = 1, . . . , n.
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For k = 2, it is the subset D̃(2, n) described in Section 2. For k = 1, D̃(1, n) may be
identified with the set D(n) ⊆ Rn likewise described in Section 2. For k = n = 1,
we get the set D ⊆ R.

(The sets D̃(k, n) were introduced in [4] I.16; a deeper study of some of their
algebraic properties may be found in [12].)

The comprehensive KL axiom, when applied to the object D̃(k, n), and to an
R-module A says:

for any map f : D̃(k, n) → A, there are unique elements
bS ∈ A, such that

f(X) =
∑

S

det(XS) · bS ∀X ∈ D̃(k, n)

here, S ranges over the set of (indices for) square submatrices (of any size) of the

matrix X ∈ D̃(k, n), and XS is the submatrix picked out by these indices. (The
determinant of the 0× 0 submatrix is taken to be 1).

Thus, for instance, if A satisfies the comprehensive KL axiom, any map F :
D̃(2, 2) → A is of the form

[xij] 7→ a0 +
∑
ij

xij · aij + det([xij]) · a,

for a unique six-tuple a0, a11, a12, a21, a22, a of elements of A. If the a0 and aij are 0,
F (X) thus equal a times the determinant of X, thus is bilinear and alternating.

The crux in proving validity of these axioms for R in the topos models consists in
providing a linear basis for the commutative ring containing the “generic” matrix of
the given kind. Thus, the axiom for D̃(2, 2) is proved by proving that the ordinary
commutative ring

Q[X11, X12, X21, X22]/I

(where I is the ideal generated by the polynomials XijXi′j′ + Xij′Xi′j) is finite
dimensional as a vector space over Q, with a basis consisting of the classes modulo
I of the six polynomials 1, X11, X12, X21, X22, X11X22 −X12X21, the last one being
the determinant of the indeterminates.

11.2 Open subsets, and manifolds

We say that a subset U ⊆ Rn is open if it has the property that x ∈ U and y ∼ x
imply y ∈ U . It is related to what we called “etale subset” in [4], but “open” brings
along with it the correct connotations from ordinary differential geometry, without
being technical.

We do not want to be precise about how a notion of (finite dimensional) manifold
could be formulated in the present context – it is again somewhat technical, and
perhaps not the right notion anyway, see [4] I.17. Certainly, Rn and open subsets U
thereof should be included among manifolds. Anyway, all our notions and reason-
ing are of “local” (even infinitesimal) nature, so is really just the coordinatefree
reasoning about such open Us.
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11.3 Taylor expansion

Let U ⊆ Rn be open, and let A be a Euclidean vector space. If f : U → A is
an arbitrary map, x ∈ U and u ∈ Rn, we consider the map g : D(n) → A given
by d 7→ f(x + d) − f(x). Since g(0) = 0, the KL axiom for A implies that g
extends uniquely to a linear map G : Rn → A, denoted Df(x;−), thus, for y ∼ x,
f(y)− f(x) = Df(x; y − x), or

f(y) = f(x) + Df(x; y − x). (17)

This is the Taylor expansion of f from x in the direction of y−x. Note that Df(−;−)
is linear in the variable after the semicolon.

More generally, if g : U × (Rn)k → A is k-linear in the last k variables, then
there is a function Dg : U × (Rn)k ×Rn → A such that, for any y ∼ x, we have

g(y; v1, . . . , vk) = g(x; v1, . . . , vk) + Dg(x; v1, . . . , vk, y − x)

with Dg linear in the k + 1 variables after the semicolon. If f is furthermore al-
ternating in the k variables after the semicolon, then Df is also alternating w.r.to
these k variables.

These assertions, one gets from the simple Taylor expansion (17), by reinterpret-
ing g as a function

f = ĝ : U → Multilin((Rn)k, A),

the codomain here being the vector space of k-linear maps (Rn)k → A, which
is Euclidean if A is. (For the “furthermore” assertion, replace the codomain by
Multilin-alt((Rn)k, A).)
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