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Abstract

The Gröbner fan of a polynomial ideal I ⊆ k[x1, . . . , xn] is a poly-
hedral complex in Rn whose maximal cones are in bijection with the
reduced Gröbner bases of I. In tropical algebraic geometry the tropical
variety of an ideal is defined. It is the image of an algebraic variety
over the Puiseux series field under the negative valuation map. Another
description of it is as a certain subcomplex of the Gröbner fan. In this
dissertation we study the structure of both polyhedral fans and suggest
algorithms for computing them.
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Chapter 1

Introduction

Finding the solutions to a system of polynomial equations is a classical mathe-
matical problem. For linear equations the problem is solved by Gaussian elim-
ination which turns the coefficient matrix of the linear system into a matrix
of reduced row-echelon form. The reduced row-echelon form is unique once
the ordering of the variables (columns) has been fixed. In the case of general
polynomial equations the analogue of Gaussian elimination is Buchberger’s al-
gorithm which computes a reduced Gröbner basis; see [12] – or the textbooks
[14] and [40] for an introduction.

Example 1.0.1 Consider the polynomial system

y = x2 ∧ (x − 5)2 + y2 = 52

describing the intersection of a parabola and a circle in the plane R2. The
reduced lexicographic Gröbner basis of I = 〈y − x2, (x − 5)2 + y2 − 52〉 =
〈y−x2, x2−10x+y2〉 with x ≺ y is the equivalent system {x4+x2−10x, y−x2}.
Solving the equation 0 = x4 + x2 − 10x = x(x − 2)(x + 1 + 2i)(x + 1 − 2i)
and using backward substitution we get the complete list of real solutions:
(x, y) ∈ {(0, 0), (2, 4)}.

Another important application of Gröbner bases is for the ideal membership
problem which is the problem of deciding if a given polynomial is in a polynomial
ideal or not. The answer is yes if and only if the remainder of a division of the
polynomial modulo a Gröbner basis of the ideal is zero. Most problems in
computer algebra are reduced to Gröbner basis computations. For example the
intersection of two polynomial ideals and the dimension and degree of a variety
can also be computed with Gröbner bases. For many of these problems the
ordering of the terms play an important role.

As for linear systems the reduced Gröbner basis is unique once the ordering
of the monomials has been fixed. Such an ordering is called a term order. If
n is the number of variables in the system, then in the linear case we have n!
choices of orderings of the variables while in the general polynomial case there
are uncountably many choices of term orders as soon as n ≥ 2. It is a surprising
fact that the set of reduced Gröbner bases is finite. Which term orderings give
which reduced Gröbner bases is the study of the first part of this thesis. This
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: The Gröbner fan of the ideal IA in Example 1.0.2 for s = 5. The
Gröbner fan is a three-dimensional object in this example. To get a two-
dimensional picture we have drawn the intersection of the Gröbner fan with
the standard two-simplex conv(e1, e2, e3) ⊆ R3.

information is encoded by the Gröbner fan of the polynomial ideal generated by
the system. The Gröbner fan was defined by Mora and Robbiano in the 1988
paper [44].

The Gröbner fan is a polyhedral complex in Rn. A polyhedral complex is a
collection of polyhedra in Rn with nice intersection properties. If all polyhedra
are cones then the complex is called a fan. The full-dimensional polyhedral
cones in a Gröbner fan of an ideal I are in bijection with the reduced Gröbner
bases of I.

In the following example we will see a family of ideals in Q[x1, x2, x3]
parametrized by an integer s. Each ideal is generated by three polynomials.
The example shows how the reduced Gröbner basis with respect to a certain
term order changes when we change the generators. Also the number of reduced
Gröbner bases changes when s is increased. This can be seen in the Gröbner
fan picture in Figure 1.1 where the number of cones increases.

Example 1.0.2 Let s ∈ N\{0} and A = [1 + 2s, 3 + 2s, 5 + 2s] ∈ N1×3. Define
the toric ideal IA := 〈xu − xv : A(u − v) = 0 and u, v ∈ N3〉 ⊆ Q[x1, x2, x3],
where xw = xw1

1 + · · · + xw3
3 . The ideal is generated by {x2

2 − x1x3, x
s+2
1 x2 −

xs+1
3 , xs+3

1 −x2x
s
3} which is a reverse lexicographic Gröbner basis. The reduced

lexicographic Gröbner basis with x1 ≻ x2 ≻ x3 is the 5 + s element set

{x1x3 − x2
2, x

2s+5
2 − x2s+3

3 , x1x
2s+3
2 − x2s+2

3 , . . . , xs+2
1 x2 − xs+1

3 , xs+3
1 − x2x

s
3}.

Varying the term order we get 2s + 9 different reduced Gröbner bases. These
are indexed by the maximal cones in the Gröbner fan of IA; see Figure 1.1.

The family was found by computer experiments. To actually show that
the listed set is a reduced Gröbner basis requires some work but is doable
by performing Buchberger’s algorithm by hand. To prove that the number of
reduced Gröbner bases is correct requires a lot more work.
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With the many applications of Gröbner bases there is an enormous interest
in making efficient algorithms for their computation. The example above sug-
gests that the complexity of a Gröbner basis depends on the term order. Many
experiments support this observation. A general rule is that degree reverse
lexicographic Gröbner bases are much easier to compute than lexicographic
Gröbner bases. For many problems, unfortunately, we are interested in a lexi-
cographic Gröbner basis or in other difficult bases. One approach for computing
a lexicographic Gröbner basis more efficiently is to start by computing an re-
verse lexicographic basis and then change it into the desired lexicographic basis
by some algorithm. This last step is called Gröbner basis conversion. For
zero-dimensional ideals the step can be performed with the FGLM algorithm
[18]. In that case the conversion problem basically reduces to linear algebra.
For general ideals the Gröbner walk [13] applies. The idea is to walk along a
straight line in the Gröbner fan towards the desired term order and change the
Gröbner basis when passing from one full-dimensional cone to the next. The
step of moving from one full-dimensional cone to the next is relatively easy.
See [38] for results on the complexity of this local step.

It is important to realize that there is no Gröbner basis algorithm that will
perform well on all examples. Sometimes the Gröbner walk performs well and
sometimes the complexity i.e. the number of cones in the Gröbner fan makes
it impractical while other algorithms succeed. It is our hope that a better
understanding of the Gröbner fan will lead to a better understanding of the
complexity of Gröbner bases. This could be either a deep understanding or
simply an understanding of how the Gröbner cones group together and make
Gröbner walks impractical. In that respect Figure 3.3 in Section 3.1 says more
than a thousand words.

The goal of the first half of the thesis is to properly define Gröbner fans and
prove properties that will be useful for computing them. In order to develop
algorithms for computing Gröbner fans a good understanding of their structure
is required. For this reason a proof that the Gröbner fan is actually a polyhedral
complex was carefully worked out, see Section 3.1.1. This proof was missing in
the original paper [44] and in [53] the inhomogeneous case was not covered.

One of the important properties of Gröbner fans is that if the ideal is ho-
mogeneous then there exists a polytope called the state polytope whose normal
fan equals the Gröbner fan. If for example the ideal is a principal ideal then the
Gröbner fan will be the normal fan of the Newton polytope of the generator.
The idea of the state polytope appeared in [5]. In the book [53] which has be-
come a standard reference for Gröbner fans and state polytopes a construction
is given.

Many of the algorithmic problems concerning Gröbner fans were already
solved by the introduction of the Gröbner walk in [13]. Also the original papers
[5] and [44] contained some algorithms. In [53] two fundamentally different al-
gorithms for computing the Gröbner fan of an ideal are described. The first one
[53, Algorithm 3.2] works for homogeneous ideals and builds up an inequality
description of the state polytope. This algorithm was implemented by Alyson
Reeves; see [53, page 29]. Since the algorithm works with a vertex-facet de-
scription of the state polytope it is difficult to implement in practise and we
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choose to study the second proposed algorithm. The second algorithm enumer-
ates the maximal cones in the fan by applying the local Gröbner basis change
procedure from the Gröbner walk. For homogeneous toric ideals the algorithm
was already studied in [32]. The toric case is very nice since all polynomials
ever appearing are monomials and binomials. It turns out that all essential
properties translates to the general homogeneous case. In fact, mathematically
the general situation is not more difficult, but for implementations the toric
case is easier.

Since the local basis change procedure [13] is already known, implementing
the algorithm is a matter of of applying a global enumeration method. In
[32] the reverse search strategy was applied — a strategy originally applied
for enumerating vertices of a polytope; see [2]. Thus the application of this
method to Gröbner fans relies on the existence of the state polytope and a
certain orientation of its edges. Having implemented the reverse search and
having a seemingly working algorithm for non-homogeneous ideals, it was the
author’s and one coauthor’s (Rekha Thomas) belief for a long time that a state
polytope would always exist, but a construction was missing. It was not until
our software Gfan [33] found the example in Theorem 5.0.1 that we realized
that the situation was more subtle: a state polytope does not always exist, but
the reverse search always works.

Computing the Gröbner fan of an ideal and taking the union of all Gröbner
bases we get a universal Gröbner bases — a set that is a Gröbner basis with re-
spect to any term order. Sometimes people are interested in finding a Gröbner
basis with a special property. For example if an ideal has a square-free ini-
tial ideal then it automatically follows that the ideal is a radical ideal ([54,
Proposition 5.3]). In these cases Gröbner fan algorithms are relevant.

Two questions arise in the Gröbner walk. How do we get an interior point of
the target Gröbner cone and how can we be sure that we only leave a Gröbner
cone through a facet? In [58] these problems were solved by using a degree
bound on the Gröbner bases to construct a vector that is guaranteed to be in
the lexicographic Gröbner cone. Since the degree bound is big arbitrary length
arithmetic must be handled in practical implementations. The generic Gröbner
walk which we present solves both problems in a simple way by symbolically
perturbing the target weight vector. This perturbation also turns out to be
useful for the reverse search traversal of the Gröbner fan.

The Gröbner fan is a complicated object which may seem random with
little structure except from the property of indexing Gröbner bases. In our
introduction so far our attention has been on the full-dimensional cones in the
Gröbner fan since they correspond to Gröbner bases. Any cone in the Gröbner
fan has an algebraic object associated to it, namely an initial ideal of I. For
a full-dimensional cone the initial ideal is the monomial ideal generated by the
initial terms of the Gröbner basis. In general the initial ideal is not a monomial
ideal. The cones whose initial ideals are monomial-free turn out to form a very
interesting piecewise linear object called a tropical variety.

The second half of this dissertation is concerned with the tropical variety of
a polynomial ideal I. Originally tropical varieties were studied by Bergman as
logarithmic limit sets of algebraic varieties; see [7]. We will use two different
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Figure 1.2: A line in (C{{t}}∗)2, its tropicalization in R2 and the Gröbner fan
of the ideal defining the line. See Example 1.0.3. The Gröbner fan has two full-
dimensional cones corresponding to the two differently marked Gröbner bases
{x + y − 1} and {y + x− 1}. Since, for instance, (3, 3) is in the tropical variety,
there is a zero of I of the form (c1t

−3 + . . . , c2t
−3 + . . . ) ∈ (C{{t}}∗)2 where

c1, c2 ∈ C∗ and the dots are some higher order terms.

definitions of the tropical variety of an ideal I. One definition will be used
for proofs and algorithms while the other is used for intuition and motivation.
Having already investigated Gröbner fans, it is natural for us to define the
tropical variety as a certain subcomplex of the Gröbner fan of I. It is the
subcomlex of all cones whose initial ideals are monomial-free. This definition
was introduced in [51]. Another definition comes from considering a variety
V in the algebraic torus of the Puiseux series field (C{{t}}∗)n defined by I
and taking its image under the negative coordinatewise valuation map. We
explain this in the following. The function val : C{{t}}∗ → Q takes a Puiseux
series to the exponent of the first term in the series. The function extends to
val : (C{{t}}∗)n → Qn. Let V ⊆ (C{{t}}∗) be a variety defined by a polynomial
ideal I. The tropicalization of V which equals the tropical variety of I is defined
as −val(V ) ⊆ Rn where the closure is taken in the usual topology. We should
think of the tropical variety as a tropical shadow of V .

Example 1.0.3 Let I = 〈x + y − 1〉 ⊆ C[x, y] be an ideal. The ideal defines a
line in (C{{t}}∗)2; see Figure 1.2. We are faced with the usual difficulties with
drawings in algebraic geometry, namely that the complex plane is drawn as an
axis. In fact, it is not just the complex plane that is draw as an axis but the
whole Puiseux series field. A lot of information is missing in the picture to the
left. Applying the the −val function we get the tropical variety in the second
drawing. It is not clear at all that this is how the tropical variety looks. Finally
we show the Gröbner of I and observe that the tropical variety is a subcomplex.

In general the tropicalization of an algebraic variety is a piecewise linear object.
Here we list three important theorems concerning tropical varieties.

• Theorem 6.1.17 which states that the above definitions are equivalent.

• Bieri Groves Theorem 6.4.3 which states that the tropical variety of a
d-dimensional prime ideal is a pure d-dimensional polyhedral complex.
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• Theorem 7.3.2 which states that the tropical variety of a prime ideal is
connected in codimension one.

The first theorem has been proved several places; see Section 6.1. The second
theorem appeared in [8]. The third theorem appeared in [10] and is crucial for
one of our algorithms for computing tropical varieties.

An introduction to tropical geometry is given in Chapter 6 where also a list
of applications is given. Tropical geometry is a relatively new field with a lot of
activity. Only few attempts have been made for computing tropical varieties.
These have mainly been concerned with special cases such as linear ideals or
generators with generic coefficients; see [56]. Of course Speyer’s and Sturmfels’
observation in [51] that tropical varieties can be defined as a subcomplex of the
Gröbner fan immediately gives algorithms for computing them. Our work in [10]
is the first detailed study of such algorithms while a study of the complexity of
the problem of computing tropical varieties was carried out in [57].

The study of tropical varieties can be seen as a way of turning an alge-
braic problem into combinatorial one. This of course is a well-know strategy
in mathematics, we may study toric varieties by looking at their defining poly-
topes and polynomial ideals by looking at monomial initial ideals. Properties of
the combinatorial object carry over to the original problem. The best example
of this for tropical varieties is that the dimension is the same for a variety in
the algebraic torus and its tropicalization.

Being less philosophical, we should consider the tropical variety as what
it really is. The tropical variety of an ideal I shows how to find the zeros of
I in the Puiseux series field, namely it consists of all possible first exponents
of a solution to I. Thus the first step for solving a polynomial system over
the Puiseux series field is to compute a tropical variety. With this in mind we
should reconsider the first two drawings in Figure 1.2. Which drawing tells us
most about the Puiseux series solutions of the ideal? An algorithm which takes
as input a point in a tropical variety of I and lifts it to a Puiseux series solution
is presented in [42]. It uses the software Gfan described in Section 9.1. In this
setting we may think of the thesis as a thesis about solving polynomial systems.

While Puiseux series solutions may seem of little practical importance, trop-
ical varieties do have applications in solving of polynomial systems. The state
of the art method for solving polynomial systems for zero-dimensional ideals
numerically is the homotopy method. The idea here is to trace solution paths
between solutions of an easy start system to solutions of the original system.
In the polyhedral homotopy method the start systems are found by comput-
ing a tropical variety; see [31]. The variety is a tropical prevariety and its
computation appears as a substep of our algorithms.

This thesis is mainly concerned with the combinatorial and computational
aspects of the Gröbner fan and its subfan. On one hand the algorithms are
developed as tools for studying the structure of the Gröbner fan and allows
us to produce examples illustrating certain features. One such example is the
non-regular Gröbner fan in Theorem 5.0.1. On the other hand in the process
of developing algorithms we discover new results such as Theorem 3.2.6. Thus
there is a lot of interaction between the process of developing algorithms and the
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process of discovering theorems. The word “algorithmic” in the title might as
well have been “combinatorial” or “algebraic”. We chose the word “algorithmic”
to emphasize our goal.

Two topics which are highly relevant for algorithms for Gröbner fans and
tropical varieties are not covered in detail in this dissertation which has its
main focus on mathematics. The first topic is computational complexity. While
Gaussian reduction for a square matrix can be done using O(n3) field opera-
tions, the complexity of Buchberger’s algorithm is doubly exponential in the
worst case. See [6, page 511-514] for an overview of Gröbner basis complexity.
Example 1.0.2 above shows that the size of a reduced Gröbner basis for a toric
ideal can be single exponential in the size of the generators. The high complexity
of Gröbner basis computations is not unexpected. In computational commu-
tative algebra NP-hard problems appear all the time. For example Gröbner
bases of toric ideals can be used for solving integer programs; see [53]. An
other example of an NP-hard problem appears in Section 4.5 about symmetry
where one needs to check if two polynomials belong to the same orbit under
the action of a symmetry group. The graph-isomorphism problem, to decide if
two graphs are isomorphic, is a special instance of that problem. Even finding
the dimension of a monomial ideal is difficult complexity-wise; see Section 2.4.
As already mentioned complexity questions for tropical varieties were studied
in [57].

The second topic which is not covered in detail is computational geometry.
Many of the algorithms presented in this thesis rely on methods for doing poly-
hedral computations. For the first half of the thesis these computations amount
to finding redundant inequalities of full dimensional cones and computing inte-
rior points of polyhedra. Dantzig’s simplex algorithm will solve these problems.
In the second half, lower-dimensional cones are considered and techniques for
finding extreme rays, dimension and writing cones in a unique form become
relevant. The problem of finding extreme rays is solved by the double descrip-
tion method in [45]. The half open cones in Section 7.2 can be implemented
by considering closed cones in a space of dimension one higher. In [60] a useful
extension of the reverse search appeared which allows the search to compute all
cones in a fan, not just the maximal ones, without producing duplicates. This
method was used to compute the f-vectors of the Gröbner fans in Section 9.2.
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1.1 Summary

This dissertation summarizes work done in the following papers

• Fukuda, J., Thomas: “Computing Gröbner fans” [21]

• Fukuda, J., Lauritzen, Thomas: “The generic Gröbner walk” [19]

• J.: “A non-regular Gröbner fan” [37]

• Bogart, J., Speyer, Sturmfels, Thomas: “Computing tropical varieties”
[10]

and contains a few results from

• J., Markwig, Markwig: “An algorithm for lifting points in a tropical va-
riety” [42].

In Chapter 2 we recall definitions and results concerning convex geometry,
Gröbner bases, primary decomposition, Krull dimension, the Laurent poly-
nomial ring and saturation. Section 2.1 and Section 2.2 were partly taken
from [21].

Chapter 3 is basically taken from [21] with some changes and some additions.
In this chapter we present our uniform definition of Gröbner fans which works
for both homogeneous and non-homogeneous ideals. We also present a proof
that the Gröbner fan is actually a polyhedral complex. In the process of proving
this result many useful propositions are developed. Most of these are slight
generalizations of theorems already known. This is the content of the first half
of Chapter 3 which is thus mainly about the local structure of the Gröbner fan.
The second half is concerned with the global structure. We define what it means
for a fan to have the reverse search property and explain why this property is
important for computations. We finish the chapter by proving that Gröbner
fans have the reverse search property. The definition of the reverse property
and the result that Gröbner fans have this property is new and appeared [21].

Chapter 4 is partly taken from [21] and is partly new. The algorithms
for Gröbner fans are presented. Since the local change procedure was already
known, the main contribution in this chapter is the introduction of the generic
Gröbner walk. We presented the generic Gröbner walk in [19]. The presentation
in Section 4.3 is simplified in the sense that only the target point is perturbed.
This suffices for solving the two mentioned problems with Gröbner walks, see
Section 4.3, and to efficiently define the search edge for reverse search, see
Section 4.4.

In Chapter 5 we present an example that shows that the (restricted) Gröbner
fan of a non-homogeneous ideal is not always the normal fan of a polyhedron.
This settles an open problem and emphasizes the importance of the reverse
search property in the previous chapter. The example also shows that care
must be taken when homogenizing an ideal. The example first appeared in [37]
and most of the chapter was taken from there. We discuss the homogenization
process for the example and show how to compute initial ideals outside the
Gröbner region.
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Chapter 6 is an introduction to tropical varieties. After a general introduc-
tion to tropical geometry we define tropical varieties in terms of t-initial ideals.
The notion of t-initial ideals appeared in the writing process of [42]. At this
point we were heavily influenced by Bernd Sturmfels and it is not clear who
came up with the name and the definition. The idea of using initial ideals in
the definition of tropical varieties goes back to [51] and [54]. The rest of the
chapter is mainly concerned with the polyhedral structure of these varieties, the
reduction to the constant coefficient case and how tropical varieties decompose
into varieties defined by prime ideals. We also show that it suffices to consider
tropical varieties of homogeneous ideals. Essentially, most of these results were
already known but some were maybe not clearly stated. We provide proofs for
the theorems we need. This chapter can be seen as a collection of observations
in the papers [10] and [42] and other before them ([51], [54]...). One useful re-
sult that is new is Lemma 6.3.5 which states that the computation of a tropical
variety of an ideal defined with coefficients in an algebraic field extensions of
Q can be reduced to a computation of a tropical variety defined by an ideal in
Q[x1, . . . , xn+1].

Chapter 7 is about tropical algorithms. The algorithms presented here ap-
peared in [10]. Many new results which appeared in [10] are presented in this
chapter. We prove that every ideal has a tropical basis. This had already
been claimed in [51] without a proof. Our proof is constructive. We discuss
algorithms for checking if an ideal contains a monomial and for computing in-
tersections of tropical hypersurfaces. In the case of tropical curves we present a
new algorithm for computing a tropical basis. We present algorithms for com-
puting connected components of tropical varieties which are also new. Speyer’s
Theorem 7.3.2 which was proved in [10] states that the tropical variety of a
prime ideal is connected. We do not prove Theorem 7.3.2 in this thesis.

In Chapter 8 we give an almost self contained proof of Bieri Groves Theo-
rem 6.4.3 which states that the tropical variety of a prime ideal is pure. While
the theorem was originally stated in terms of valuations we prove it for the
initial ideal definition of tropical varieties. The theorem has also been proved
in this setting in [54].

The algorithms presented in this dissertation have all been implemented in
the software Gfan [33]. In Chapter 9 we give an example of how this software is
used and list some Gröbner fans and tropical varieties that have been computed
with the software.
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Chapter 2

Preliminaries

In this chapter we recall some basic definitions and results. Five topics are cov-
ered: convex geometry, Gröbner bases, primary decomposition, Krull dimension
and saturation. Only the sections about convex geometry and Gröbner bases
are needed for the first half of this thesis. The reader is advised to skip Sec-
tion 2.3, 2.4 and 2.5 for now.

2.1 Convex geometry

A standard reference for polyhedral and convex geometry is Ziegler’s book [61].
Here we will just give some definitions and state a few theorems. Although
many of the stated and implicitly stated theorems are intuitively clear they
are not all easy to prove. An example is Definition 2.1.5 which states that
the Minkowski sum of two polyhedra is a polyhedron. This follows from the
Minkowski-Weyl theorem for polyhedra; see [61].

We recall the definition of a fan in Rn. A polyhedron in Rn is a set of the
form {x ∈ Rn : Ax ≤ b} where A is a matrix and b is a vector. Bounded
polyhedra are called polytopes. If b = 0 the set is a polyhedral cone. The
dimension dim(P ) of a polyhedron P is the dimension of the smallest affine
subspace containing it. A face of a polyhedron P is either the empty set or a
non-empty subset of P which is the set of maximizers of a linear form over P .
We use the following notation for the face maximizing a form ω ∈ Rn:

faceω(P ) := {p ∈ P : 〈ω, p〉 = maxq∈P 〈ω, q〉}.

A face of P is called a facet if its dimension is one smaller than the dimension
of P .

Definition 2.1.1 A collection C of polyhedra in Rn is a polyhedral complex if:

1. all non-empty faces of a polyhedron P ∈ C are in C, and

2. the intersection of any two polyhedra A,B ∈ C is a face of A and a face
of B.

15
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Figure 2.1: The four collections of cones in Example 2.1.2.

The support supp(C) of C is the union of all the members of C. A polyhedral
complex is a fan if it only consists of cones. If the support of a fan is Rn, the
fan is said to be complete. A fan is pure if all its maximal cones have the same
dimension.

An example of a polyhedral complex is the set of non-empty faces of a polyhe-
dron. If the smallest dimension of a non-empty polyhedron in a complex C is
m and the largest dimension is M then the f-vector of C is the (M − m + 1)-
dimensional vector whose ith entry is the number of polyhedra in C of dimen-
sion m + i − 1. The f-vector of the complex consisting of the faces of the cube
[0, 1] × [0, 1] × [0, 1] ⊆ R3 is (8, 12, 6, 1).

Example 2.1.2 In Figure 2.1 four collections of cones in the plane are drawn:

• The first collection consists of 1 zero-dimensional cone, 5 rays and 3 two-
dimensional cones. This is a fan which is not pure and not complete.

• The second collection consists of 1 zero-dimensional cone, 5 rays and 4
two-dimensional cones. This is a pure fan which is not complete.

• The third collection consists of 1 line and 2 regions. This is a pure com-
plete fan.

• The fourth collection consists of 1 zero-dimensional cone, three rays, one
line and three regions of which one is a half space. This is not a polyhedral
fan since the intersection of the half space with one of the other regions
is not a face of the half space.

Notice that for a finite non-empty fan the intersection of all cones is a subspace.
This subspace is the smallest non-empty face of every cone in the fan.

A simple way to construct a fan is by taking the normal fan of a polyhedron.

Definition 2.1.3 Let P ⊆ Rn be a polyhedron. For a face F of P we define
its normal cone

NP (F ) := {ω ∈ Rn : faceω(P ) = F}
with the closure being taken in the usual topology. The normal fan of P is
the fan consisting of the normal cones NP (F ) as F runs through all non-empty
faces of P .
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The following equation is satisfied for a non-empty face F :

dim(NP (F )) + dim(F ) = n.

It is clear that the normal fan of a polytope is complete. In Figure 2.1 the
third fan is the normal fan of a horizontal linesegment. The other two are not
normal fans. Not all complete fans arise as the normal fan of a polyhedron [22,
page 25].

Definition 2.1.4 The common refinement of two fans F1 and F2 in Rn is
defined as

F1 ∧ F2 = {C1 ∩ C2}(C1,C2)∈F1×F2
.

The common refinement of two fans is a fan.

Definition 2.1.5 The Minkowski sum of two polyhedra P,Q ⊆ Rn is the poly-
hedron P + Q := {p + q : (p, q) ∈ P × Q}.

Proposition 2.1.6 Let P,Q ⊆ Rn be two polyhedra. The normal fan of P +Q
is the common refinement of the normal fan of P and the normal fan of Q.

We write int(V ) for the interior of a subset V of a topological space.

Definition 2.1.7 The relative interior of a polyhedron P ⊆ Rn is the interior
of P ∩L ⊆ L where L is the smallest affine subspace of Rn containing P . Here L
has its topology induced from Rn. We denote the relative interior by rel int(P ).

2.2 Gröbner bases

We assume that the reader knows the basics of Gröbner basis theory like the di-
vision algorithm for multivariate polynomials, S-polynomials and Buchberger’s
algorithm. If not, the books [14] and [40] are recommended. Besides making
our notation clear we make a few important points about marked Gröbner bases
and homogeneous ideals in this section.

Let R = k[x1, . . . , xn] be the polynomial ring in n variables over a field k
and let I ⊆ R be an ideal. For α ∈ Nn we use the notation xα := xα1

1 . . . xαn
n

for a monomial in R. By a term order on R we mean a total ordering � on all
monomials in R such that:

1. For all α ∈ Nn\{0} : 1 ≺ xα and

2. for α, β, γ ∈ Nn : xα ≺ xβ ⇒ xαxγ ≺ xβxγ .

A total ordering is an antisymmetric, transitive and total relation. By “≺” we
mean xα ≺ xβ ⇔ xα � xβ ∧xα 6= xβ. We prefer the symbol ≺ over the symbol
� when denoting term orders. By a term we mean a monomial together with its
coefficient. Term orders are used for ordering terms, ignoring the coefficients.
For a vector ω ∈ Rn

≥0 and a term order ≺ we define the new term order ≺ω as
follows:

xα ≺ω xβ ⇐⇒ 〈ω,α〉 < 〈ω, β〉 ∨ (〈ω,α〉 = 〈ω, β〉 ∧ xα ≺ xβ).
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Let ≺ be a term order. For a non-zero polynomial f ∈ R we define its initial
term, in≺(f), to be the unique maximal term of f with respect to ≺. In the
same way for ω ∈ Rn we define the initial form, inω(f), to be the sum of all
terms of f ∈ R whose exponents maximize 〈ω, ·〉. Notice that for a non-zero
polynomial f we have in≺ω(f) = in≺(inω(f)). The Newton polytope, New(f),
of a polynomial f is the convex hull of its exponent vectors.

Remark 2.2.1 Let f ∈ k[x1, . . . , xn] be a polynomial and P ⊆ Rn its Newton
polytope. Notice that inu(f) = inv(f) ⇔ faceu(P ) = facev(P ) and that inu(f)
is a monomial if and only if faceu(P ) has dimension 0 or, equivalently, the
normal cone NP (faceu(P )) is full-dimensional.

The ω-degree of a term cxα is 〈ω,α〉 and the ω-degree of a non-zero polynomial
f is the maximal ω-degree of the terms of inω(f). The initial ideals of an ideal
I with respect to ≺ and ω are defined as

in≺(I) = 〈in≺(f) : f ∈ I\{0}〉 and inω(I) = 〈inω(f) : f ∈ I〉.

Note that in≺(I) is a monomial ideal while inω(I) might not be. A monomial
in R\in≺(I) (with coefficient 1) is called a standard monomial of in≺(I).

Although initial ideals are defined with respect to not necessarily positive
vectors, Gröbner bases are only defined with respect to true term orders:

Definition 2.2.2 Let I ⊆ R be an ideal and ≺ a term order on R. A generating
set G = {g1, . . . , gm} for I is called a Gröbner basis for I with respect to ≺ if

in≺(I) = 〈in≺(g1), . . . , in≺(gm)〉.

The Gröbner basis G is minimal if {in≺(g1), . . . , in≺(gm)} generates in≺(I) min-
imally. A minimal Gröbner basis is reduced if the initial term of every g ∈ G has
coefficient 1 and all other monomials in g are standard monomials of in≺(I).

We use the term marked Gröbner basis for a Gröbner basis where the ini-
tial terms have been distinguished from the non-initial ones (they have been
marked). For example, {x2 + xy + y2} and {x2 + xy + y2} are marked Gröbner
bases for the ideal 〈x2 + xy + y2〉 while {x2 + xy + y2} is not since xy is not the
initial term of x2 + xy + y2 with respect to any term order.

Given a marking of one term of each polynomial in a set G ⊆ R, the division
algorithm produces the remainder of a polynomial f ∈ R modulo G. Here the
elements of G can be considered as exchange rules and the algorithm terminates
when no more rules apply. The remainder depends on the order in which these
rules or reduction steps are applied. If G is a marked Gröbner basis then the
remainder is unique and we call it the normal form of f modulo G. The normal
form does not depend on a term order but only on the markings of the Gröbner
basis.

For a term order ≺ and an ideal I, Buchberger’s algorithm guarantees the
existence of a unique marked reduced Gröbner basis. We denote it by G≺(I).
Buchberger’s algorithm is a completion procedure that keeps adding remain-
ders of S-polynomials to a generating set of I until Buchberger’s S-criterion is
satisfied:
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Theorem 2.2.3 Let I ⊆ R be an ideal and ≺ a term order. A polynomial set
G ⊆ R marked according to ≺ is a Gröbner basis of I with respect to ≺ if for
all g1, g2 ∈ G some remainder of the division algorithm run on S(g1, g2) modulo
G is zero.

Here S(g1, g2) is the S-polynomial c2x
(v1∨v2)−v1g1 − c1x

(v1∨v2)−v2g2, assuming
that cix

vi is the marked term of gi with ci ∈ k and vi ∈ Nn for i = 1, 2 and
with v1 ∨ v2 being the coordinate-wise maximum of v1 and v2.

Remark 2.2.4 For two term orders ≺ and ≺′, if in≺(I) = in≺′(I) then G≺(I) =
G≺′(I). To see this, consider a polynomial g ∈ G≺(I). Since G≺(I) is reduced
only the marked term of g is in in≺(I). Hence in≺′(g) which is in in≺′(I) =
in≺(I) must be the same marked term. This shows that the S-polynomials of
elements in G≺(I) are the same no matter which of the two term orders we
consider. Furthermore, the division algorithm only depends on the markings
in G≺(I). Thus all S-polynomials have remainder zero. This proves that G≺(I)
is a Gröbner basis with respect to ≺′. It is also reduced and by uniqueness of
reduced Gröbner bases we get G≺(I) = G≺′(I).

Conversely, given a marked Gröbner basis G≺(I), the initial ideal in≺(I) can
easily be read off.

Let ω ∈ Rn. A polynomial f ∈ R is ω-homogeneous if inω(f) = f . An ideal
I ⊆ R is ω-homogeneous if it is generated by ω-homogeneous elements. Hilbert’s
basis theorem states that I has a finite generating set. Each generator in the
set can be expressed in terms of finitely many ω-homogeneous generators. This
proves that I has a finite generating set consisting of ω-homogeneous elements.
Using the ω-homogeneous generating set, a polynomial f ∈ I can be uniquely
written as a finite sum f =

∑

i fi where the fi’s are ω-homogeneous, have
different ω-degrees and belong to I. It is now easy to deduce the following
lemmas.

Lemma 2.2.5 Let I ⊆ R be an ideal and ω ∈ Rn. Then I is ω-homogeneous
if and only if inω(I) = I.

Lemma 2.2.6 Let I ⊆ R be an ω-homogeneous ideal with ω ∈ Rn and v ∈ Rn.
Then inv+sω(I) = inv(I) for any s ∈ R.

We say that an ideal is homogeneous if it is ω-homogeneous for some positive
vector ω ∈ Rn

>0.
Notice that if Buchberger’s algorithm gets ω-homogeneous generators as in-

put, then the output is also ω-homogeneous. In particular, all reduced Gröbner
bases for an ω-homogeneous ideal consists of ω-homogeneous elements. As a
consequence equations defining the subspace of vectors for which I is homo-
geneous can be read off from any reduced Gröbner basis. We conclude that
G≺(I) = G≺ω(I) for any term order if I is ω-homogeneous with ω ∈ Rn

≥0.

Remark 2.2.7 In fact, we may be less strict with our orderings if we are given
homogeneous generators for an ideal. Let ≺ be an ordering which is a term
order except that it does not satisfy 1 ≺ xα for α ∈ Nn \ {0}. Then ≺ has the
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property that it will give the same reduced Gröbner basis as ≺ω when run on an
ω-homogeneous generating set. One example of this is the reverse lexicographic
“term order” which only makes sense for homogeneous generating sets (with
respect to a positive grading ω). For xn ≺ xn−1 ≺ · · · ≺ x1 it is defined as
follows

xu ≺ xv ⇔ ∃j : uj > vj ∧ ∀i > j : ui = vi.

Definition 2.2.8 Let A ∈ GLn(R) be an invertible matrix. If the first non-
zero entry in each column is positive then the matrix defines a matrix term
order ≺A in the following way. We define xa ≺A xb whenever the first non-zero
entry A(a − b) is negative, where a, b ∈ Nn.

Lemma 2.2.9 Let A ∈ Rn×n be a matrix defining a term order and let a, b ∈
Nn. We define Aε = ε0A1 + ε1A2 + · · · + εn−1An where Ai is the ith row of A.
For all ε > 0 sufficiently small we have xa ≺A xb if and only if Aε · a < Aε · b.

Proof. Assume a 6= b. Let M ∈ R>0 be a number larger than the numerical
value of any entry in A(a − b). Let L be the first non-zero entry of A(a − b).

For every positive ε < |L|
nM

the sign of Aε(a − b) equals the sign of L. 2

An important result concerning term orders is the following theorem which
states that any term order has a matrix representation.

Theorem 2.2.10 ([49]) Let ≺ be a term order on k[x1, . . . , xn]. There exists
a matrix T ∈ Rn×n with rows τ1, . . . , τn such that for u, v ∈ Nn

xu ≺ xv ⇔ ∃j : 〈τj , u〉 < 〈τj , v〉 ∧ ∀i < j : 〈τi, u〉 = 〈τi, v〉.

2.3 Primary decomposition

By an algebraic variety we mean the zero-set of an ideal I ⊆ k[x1, . . . , xn] where
k is a field. We denote it by V (I) ⊆ kn. If we want to consider the zero-set
over a larger field k′ or a zero-set in the algebraic torus (k∗)n = (k \ {0})n we
write Vk′(I) or Vk∗(I) respectively. In the algebraic torus the variety Vk∗(I) can
also be defined by an ideal in the Laurent polynomial ring k[x±1

1 , . . . , x±1
n ]. A

variety is irreducible if it cannot be written as a union of two other varieties
in a non-trivial way. A variety can be written as a finite union of irreducible
varieties. The corresponding algebraic notion is that of primary decomposition
of ideals. Primary decompositions will be important in the second half of the
thesis where we see that tropical varieties can be decomposed according to
primary decompositions of their defining ideals. Primary decomposition will
also be import for proofs in Chapter 8.

Let R be a commutative ring and I ⊆ R an ideal. The associated primes
of I are the prime ideals of the form (I : f) := {g ∈ R : gf ∈ I} where f ∈ R.
The set of associated primes of I is denoted by Ass(I). The ideals in Ass(I)
which are minimal with respect to inclusion are called the minimal associated
primes of I. The set of minimal associated primes is denoted by minAss(I).
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Associated primes that are not minimal are called embedded . It turns out that
the minimal associated primes are exactly the minimal prime ideals among all
prime ideals containing I; see [1, Proposition 4.6].

An ideal Q ( R is primary if for ab ∈ Q either a ∈ Q or there exists m ∈ N

such that bm ∈ Q. The radical P =
√

Q := {a ∈ R : am ∈ Q for some m ∈ N}
of a primary ideal is a prime ideal. We say that Q is P -primary if Q is primary
with

√
Q = P . The intersection Q1 ∩ Q2 of two P -primary ideals is again P -

primary; see [1, Lemma 4.3]. For an ideal I ⊆ R a primary decomposition is
an expression of I as a finite intersection of primary ideals:

I =
⋂

i

Qi.

A primary decomposition is minimal if the radicals
√

Qi are all distinct and no
Qi can be left out in the intersection. By intersecting primary ideals with the
same radical and removing primary ideals that are not needed we can make any
primary decomposition minimal.

The radicals of the Qi’s in a minimal primary decomposition are exactly the
associated primes of I; see [1, Theorem 4.5]. For a minimal primary decompo-
sition and P ∈ minAss(I) the primary component Qi with

√
Qi = P is unique;

see [1, Corollary 4.11].
In a Noetherian ring every ideal has a primary decomposition ([1, Theo-

rem 7.13]). In particular, any ideal in the polynomial ring or Laurent polyno-
mial ring over a field has a primary decomposition.

Algorithms for computing primary decompositions in polynomial rings exist
(see [26]) and rely on methods for factoring polynomials. In the case where
I ⊆ C[x1, . . . , xn] is generated by polynomials in Q[x1, . . . , xn] the field Q may
need to be extended. An implementation that does extensions as needed can
be found in the algebra system Singular [28] under the name “absolute primary
decomposition”.

2.4 Krull dimension

The best reference for the notion of dimension of an ideal is the book [29] since
it starts with the rather algebraic definition of the Krull dimension of a ring
and ends up by showing how to compute the dimension of a polynomial ideal.

Definition 2.4.1 The Krull dimension of a ring R is the supremum of the
lengths of chains of prime ideals in R.

P0 ( P1 ( P2 ( . . . Pd ( R

Here the length is the number of prime ideals excluding P0 (and R which we
do not consider to be a prime ideal).

All rings that we shall consider have finite Krull dimension.
By the dimension of an ideal I ⊂ R we mean the Krull dimension of the

quotient ring R/I and we denote it by dim(I). There is an inclusion preserving
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bijection between the prime ideals in R containing I and the prime ideals in
R/I by taking P ′ to P = P ′ + I. For this reason an equivalent definition of the
dimension of an ideal would be the length d of the longest chain of inclusions

I ⊆ P ′
0 ( P ′

1 ( . . . P ′
d ( R

of prime ideals P ′
i containing I. Here we do not include P ′

0 in the length of the
chain. If I = R we say that the dimension of I is −1.

In a longest chain, P ′
0 is always a minimal associated prime of I. It follows

that dim(I) is the maximum of the dimensions of the minimal primes minAss(I).
Given generators of a monomial ideal in k[x1, . . . , xn] it is a simple, although

time consuming, process to compute the dimension.

Lemma 2.4.2 Let k be a field and I ⊂ k[x1, . . . , xn] an ideal generated by a
set of monomials M . The dimension dim(I) is the number of elements in the
largest subset σ ⊆ {x1, . . . , xn} such that M ∩ k[x]x∈σ = ∅. Here k[x]x∈σ is the
polynomial ring in the variables of σ.

Example 2.4.3 Let I = 〈x2, xy〉 ⊆ k[x, y, z] where k is a field. A longest chain
of inclusions of prime ideals in k[x, y, z]/I is

〈x + I〉 ( 〈x + I, y + I〉 ( 〈x + I, y + I, z + I〉 ( k[x, y, z]/I.

Hence dim(I) = dim(k[x, y, z]/I) = 2. Notice that the chain cannot be ex-
tended on the left by 〈0 + I〉 since this is not a prime ideal in k[x, y, z]/I. The
corresponding chain of inclusions in k[x, y, z] of prime ideals containing I is

I ⊆ 〈x〉 ( 〈x, y〉 ( 〈x, y, z〉 ( k[x, y, z].

The ideal 〈x〉 is a minimal associated prime of I. The intersection {x2, xy} ∩
k[y, z] = ∅ while {x2, xy} ∩ k[x, y, z] 6= ∅.

Theorem 2.4.4 [29, Corollary 5.3.9 and Corollary 7.5.6] Let I ⊆ k[x1, . . . , xn]
be an ideal and ≺ a term order. Then

dim(I) = dim(in≺(I)).

Remark 2.4.5 For ideals homogeneous with respect to the grading (1, 1, . . . , 1)
the above theorem is proved using Hilbert functions; see [29, Chapter 5]. The
book [29] also has a proof for the case of non-homogeneous ideals. That proof
relies on the notion of flatness; see [29, Chapter 7 and Remark 5.3.18]. In light
of this thesis another approach for the non-homogeneous case is the following.
It is relatively easy to prove the theorem for degree term orders using homog-
enization; see [29, Corollary 5.3.14]. Initial ideals with respect to term orders
correspond to maximal cones in the Gröbner fan which we shall define. We
can go between any two cones in the Gröbner fan by a series of “flips”. For
every flip the new and old initial ideal is also the initial ideal of a “facet-initial
ideal”. This ideal is homogeneous with respect to some positive grading. If we
can show that the dimension is preserved under a flip we would have another
proof for the theorem. Preservation of dimension under a flip can be shown
using Definition 5.4 and Lemma 5.5 in the arxiv.org version of [11].



2.5. LAURENT POLYNOMIALS AND SATURATION 23

Using Theorem 2.4.4, Lemma 2.4.2 and Buchberger’s algorithm we can com-
pute the dimension of any ideal I ⊆ k[x1, . . . , xn].

Definition 2.4.6 Let A ∈ Zd×n be a matrix and k a field. The toric ideal of
A is

IA := 〈xu − xv : Au = Av for u, v ∈ Nn〉 ⊆ k[x1, . . . , xn].

Lemma 2.4.7 [53, Lemma 4.2] The toric ideal IA has dimension rank(A).

2.5 Laurent polynomials and saturation

Gröbner bases work for polynomial rings while tropical varieties are naturally
defined for ideals in the Laurent polynomial ring. Let k be a field. Given an
ideal I ⊆ k[x1, . . . , xn] we may consider the ideal it generates in the Laurent
polynomial ring k[x±1

1 , . . . , x±1
n ]. In this section we prove that the dimension

of the two ideals is the same under certain conditions and we show how to
computationally go from the Laurent polynomial ring to the polynomial ring.

Definition 2.5.1 Let I ⊆ k[x1, . . . , xn] be an ideal and f ∈ k[x1, . . . , xn] a
polynomial. The saturation of I with f is the ideal defined by

(I : f∞) := {g ∈ k[x1, . . . , xn] : gfm ∈ I for some m ∈ N}.

The above definition can be made more general by considering other rings than
polynomial rings and saturating with ideals instead of polynomials. However,
we will only need the definition for polynomial rings with f being a monomial.
If (I : x1 · · · x∞

n ) = I we say that the ideal I is saturated .
In [53, Chapter 12] the identity (I : x1 · · · x∞

n ) = ((· · · (I : x∞
1 ) · · · ) : x∞

n )
and a method for computing saturations with respect to a single variable using
reverse lexicographic Gröbner bases was given. The single variable saturation
goes as follows.

Algorithm 2.5.2 [53, Algorithm 12.1]
Input: A set of generators for a homogeneous ideal I ⊆ k[x1, . . . , xn].
Output: A Gröbner basis for the ideal (I : x∞

n ).
{

Return {sat(f, xn) : f ∈ G≺(I)};
}
Here sat(f, xn) denotes the polynomial x−mf where m is the highest power
such that xm divides f and ≺ is the (degree) reverse lexicographic term order
with x1 > · · · > xn.

Let σ ⊆ {x1, . . . , xn} and I ⊆ C[x1, . . . , xn]. Let us consider the geometric
meaning of having I = (I : x∞

σ ) where xσ is the product of the variables in σ.
Either 1 ∈ I or xm

σ 6∈ I for all m. In the first case V (I) = ∅. In the second case
xσ 6∈

√
I = I(V (I)) by Hilbert’s Nullstellensatz. That xσ does not vanish on

V (I) means that there is a point p ∈ V (I) such that the coordinates of p indexed
by σ are non-zero. If xσ = x1 · · · xn then this means that V (I) ∩ (C∗)n 6= ∅. It



24 CHAPTER 2. PRELIMINARIES

is easy to see that V (I : f∞) ⊆ V (I) and that if p ∈ V (I) and f(p) 6= 0 then
p ∈ V (I : f∞). In fact, we remove all components contained in the coordinate
hyperplanes when saturating I with respect to x1 · · · xn. This follows from
Lemma 2.5.8 below which states that any associated prime of (I : x1 · · · x∞

n ) is
saturated and thus must have a zero in the algebraic torus (C∗)n.

Lemma 2.5.3 Let I ⊆ k[x1, . . . , xn] be a saturated ideal. Then

(〈I〉k[x±1
1 ,...,x±1

n ]) ∩ k[x1, . . . , xn] = I.

Proof. The inclusion “⊇” is clear. For the other inclusion suppose f is in the left
hand side. The f has the form

∑

i migi where gi ∈ I and mi are Laurent mono-
mials. Multiplying the sum by a sufficiently large power (x1 · · · xn)m the sum
will involve only monomials in k[x1, . . . , xn]. This shows that (x1 · · · xn)mf ∈ I.
However, since I is saturated we also get f ∈ I. 2

Lemma 2.5.4 Let I ⊆ k[x±1
1 , . . . , x±1

n ] be an ideal then

〈(I ∩ k[x1, . . . , xn])〉k[x±1
1 ,...,x±1

n ] = I.

Proof. The inclusion “⊆” is clear. For the other inclusion suppose f ∈ I then
for a sufficiently high power m ∈ N we have (x1 · · · xn)mf ∈ I ∩ k[x1, . . . , xn].
This proves that f ∈ 〈(I ∩ k[x1, . . . , xn])〉

k[x±1
1 ,...,x±1

n ]. 2

Remark 2.5.5 The above lemmas show that there is a bijection between sat-
urated ideals in k[x1, . . . , xn] and ideals in the Laurent polynomial ring.

Lemma 2.5.6 Let P ⊆ k[x1, . . . , xn] be a saturated prime ideal. Then the ideal
〈P 〉k[x±1

1 ,...,x±1
n ] is prime.

Proof. Suppose a, b ∈ k[x±1
1 , . . . , x±1

n ] with ab ∈ 〈P 〉k[x±1
1 ,...,x±1

n ]. Then the poly-

nomials (x1 · · · xn)ma and (x1 · · · xn)mb belong to k[x1, . . . , xn] for sufficiently
large m ∈ N. By Lemma 2.5.3 their product (x1 · · · xn)2mab is in P . Since P is
prime either (x1 · · · xn)ma or (x1 · · · xn)mb is in P . This proves that a or b is in
〈P 〉k[x±1

1 ,...,x±1
n ] 2

Lemma 2.5.7 Let P ′ ⊆ k[x±1
1 , . . . , x±1

n ] be a prime ideal. Then the intersection
P ′ ∩ k[x1, . . . , xn] is prime.

Proof. Clearly, if a, b ∈ k[x1, . . . , xn] satisfy ab ∈ P ′ then either a or b is in P ′

and thus in (P ′ ∩ k[x1, . . . , xn]). 2

Lemma 2.5.8 Let I ⊆ k[x1, . . . , xn] be a saturated ideal. Then any P ∈ Ass(I)
satisfies (P : x1 · · · x∞

n ) = P .

Proof. Suppose this was not the case then we would be able to find g ∈ (P :
x1 · · · x∞

n )\P . The polynomial g must satisfy g(x1 · · · xn)m ∈ P for some power
m. The ideal P is a prime ideal which shows that x1 · · · xn ∈ P . However, P has
the form (I : f) for some f ∈ k[x1, . . . , xn] which shows that (x1 · · · xn)f ∈ I.
Using that (I : x1 · · · x∞

n ) = I we see that f ∈ I. This proves that P = (I :
f) = 〈1〉 contradicting that P is a prime ideal. 2
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The following proposition shows the ideals that correspond to each other in
the sense of Remark 2.5.5 have the same dimension.

Proposition 2.5.9 Let J ⊆ k[x±1
1 , . . . , x±1

n ] be an ideal of dimension d. Then
the dimension of I := J ∩ k[x1, . . . , xn] is d.

Proof. Recall that the codimension codim(P ) of a prime ideal P is the maximal
number of strict inclusions in a chain of prime ideal contained in P . We start
by proving the theorem in the case where J is prime. The codimension of J is
n − d. We have a chain of inclusions of prime ideals P ′

i :

P ′
0 ( · · · ( J = P ′

n−d ( · · · ( P ′
n ( k[x±1

1 , . . . , x±1
n ].

Applying the correspondence of ideals in the two rings together with the inclu-
sion preservation we get an inclusion of prime ideals Pi

P0 ( · · · ( I = Pn−d ( · · · ( Pn ( k[x1, . . . , xn]

proving that codim(I) ≥ n − d and dim(I) ≥ d. Since codim(I) + dim(I) ≤
dim(k[x1, . . . , xn]) = n we get dim(I) = d.

If J is not prime then Lemma 2.5.8 shows that the minimal primes of I are
saturated and thus in bijection with the minimal primes of J The dimension
of an ideal is the maximal dimension of one of its minimal associated primes.
Preservation of dimension for prime ideals now proves the claim. 2

The proposition and Algorithm 2.5.2 together give a method for computing
the dimension of an ideal in the Laurent polynomial ring.
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Chapter 3

The Gröbner fan of a

polynomial ideal

In this chapter we define the Gröbner fan of a polynomial ideal and show that
it is a fan in the sense of a polyhedral complex. We explain the reverse search
technique for traversing graphs and show that the Gröbner fan has what we
shall call the reverse search property.

In this chapter, Chapter 4 and Chapter 5 we let R = k[x1, . . . , xn] be the
polynomial ring in n variables over a field k and let I ⊆ R be an ideal.

3.1 Definitions

The Gröbner fan and the restricted Gröbner fan of I are n-dimensional poly-
hedral fans defined in [44]. We will present our definition below.

Given an ideal I ⊆ R, a natural equivalence relation on Rn is induced by
taking initial ideals:

u ∼ v ⇐⇒ inu(I) = inv(I). (3.1)

We introduce the following notation for the closures of the equivalence classes:

C≺(I) = {u ∈ Rn : inu(I) = in≺(I)} and

Cv(I) = {u ∈ Rn : inu(I) = inv(I)}.

The closed set C0(I) is also known as the homogeneity space of I. We define
homog(I) := dim(C0(I)).

Remark 3.1.1 It follows from Lemma 2.2.6 that any cone Cv(I) is invariant
under translation by any vector ω ∈ C0(I).

Remark 3.1.2 It is well known that for a fixed ideal I there are only finitely
many sets C≺(I) and they cover Rn

≥0, see [44] and [53, Theorem 1.2]. Secondly,
every initial ideal in≺(I) is of the form inω(I) for some ω ∈ Rn

>0, see [53,
Proposition 1.11]. This will follow from Lemma 2.2.9, Theorem 2.2.10 and
Lemma 3.1.9 below. Consequently, every C≺(I) is of the form Cω(I).

27
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A third observation is that the equivalence classes are not convex in general
since we allow the vectors to be anywhere in Rn:

Example 3.1.3 Let I = 〈x − 1, y − 1〉. The ideal I has five initial ideals:
〈x− 1, y − 1〉, 〈x, y〉, 〈x, y − 1〉, 〈x− 1, y〉 and 〈1〉. In particular, for u = (−1, 3)
and v = (3,−1) we have inu(I) = inv(I) = 〈1〉 but in 1

2
(u+v)(I) = 〈x, y〉.

The following proposition which we shall prove in the next section is very impor-
tant since it describes equivalence classes in terms of equations and inequalities.

Proposition 3.1.4 Let ≺ be a term order and v ∈ C≺(I). For u ∈ Rn

inu(I) = inv(I) ⇐⇒ ∀g ∈ G≺(I), inu(g) = inv(g).

The proposition is a little more general than Proposition 2.3 in [53] as it allows
the vectors u and v to have negative components. For fixed ≺ and v as in
Proposition 3.1.4, we get that Cv(I), the closure of the equivalence class of v, is
a polyhedral cone since each g ∈ G≺(I) introduces the equation inu(g) = inv(g)
which is equivalent to having u satisfy a set of linear equations and strict linear
inequalities, see Example 3.1.5. The closure is obtained by making the strict
inequalities non-strict. Under the assumptions of Proposition 3.1.4 we may
write this in the following way:

u ∈ Cv(I) ⇐⇒ ∀g ∈ G≺(I), inv(inu(g)) = inv(g). (3.2)

As we saw in Example 3.1.3, not all equivalence classes are convex. However,
for an arbitrary v, Cv(I) is a convex polyhedral cone if it contains a strictly
positive vector. To see this, notice that there must exist a vector p ∈ Rn

>0 with
inp(I) = inv(I) and, by Lemma 3.1.14 below, p ∈ C≺p(I) for any ≺. Hence the
equivalence class of v is of the form required in Proposition 3.1.4.

Example 3.1.5 Let I = 〈x + y + z, x3z + x + y2〉 ⊆ Q[x, y, z] and let ≺ be the
lexicographic term order with x ≺ y ≺ z. Then G≺(I) = {y2 +x−x3y−x4, z +
y + x}. If v = (1, 4, 5) then inv(I) = in≺(I) = 〈y2, z〉 and Cv(I) = C≺(I). By
Proposition 3.1.4, inu(I) = inv(I) if and only if the following two equations are
satisfied:

inu(z + y + x) = z (⇔ uz > max{ux, uy}), and

inu(y2 + x − x3y − x4) = y2 (⇔ 2uy > max{ux, 3ux + uy, 4ux}).
Introducing non-strict inequalities we obtain a description of C≺(I). This cone
is simplicial and has the cones C(0,0,1)(I), C(1,3,3)(I) and C(−2,−1,−1)(I) as ex-
treme rays and C(1,3,4)(I), C(−2,−1,0)(I) and C(−1,2,2)(I) as facets; see Figure 3.1.
Since (−2,−1, 0) is in C≺(I) a description of vectors u in C(−2,−1,0)(I) is given
by:

in(−2,−1,0)(inu(z + y + x)) = z (⇔ uz ≥ max{ux, uy}), and

in(−2,−1,0)(inu(y2+x−x3y−x4)) = y2+x (⇔ 2uy = ux ≥ max{3ux+uy, 4ux}).
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(0,0,1)

(1,0,0)

(1,1,−1)

(0,1,0)

(0,−1,0)
(−2,−1,−1)

(1/3,1/3,1/3)
(1/7,3/7,3/7)

Figure 3.1: The Gröbner fan of the ideal in Example 3.1.5 has 7 three-
dimensional, 14 two-dimensional and 8 one-dimensional cones. The intersec-
tions of the two-dimensional cones with the hyperplane x+y +z = 1 are drawn
as lines. The dotted part of the figure shows the combinatorial structure outside
the hyperplane. The gray triangle indicates the positive orthant.

Definition 3.1.6 The Gröbner fan of an ideal I ⊆ R is the set of the closures
of all equivalence classes intersecting the positive orthant together with their
proper faces. The cones in a Gröbner fan are called Gröbner cones.

This is a variation of the definitions appearing in the literature. The advantage
of this variant is that it gives well-defined and nice fans in the homogeneous
and non-homogeneous case simultaneously. By nice we mean that all cones
in this fan are closures of equivalence classes. It is not clear a priori that the
Gröbner fan is a polyhedral complex. A proof is given in the next section (The-
orem 3.1.19). The support of the Gröbner fan of I is called the Gröbner region
of I. We define the restricted Gröbner fan of an ideal to be the common refine-
ment (Definition 2.1.4) of the Gröbner fan and the faces of the non-negative
orthant. The support of the restricted Gröbner fan is Rn

≥0.

Example 3.1.7 The Gröbner fan of the principal ideal 〈x4 + x4y − x3y +
x2y2 + y〉 consists of one 0-dimensional cone, three 1-dimensional cones and
two 2-dimensional cones, see Figure 3.1. The same is true for the restricted
Gröbner fan. Notice, however, that in the restricted Gröbner fan one of the
1-dimensional cones and one of the 2-dimensional cones are not closures of
equivalence classes of the equivalence relation (3.1).

Example 3.1.8 [53, Example 3.9] Consider the ideal I = 〈a5−1+c2+b3, b2−1+
c+a2, c3−1+b5+a6〉 ⊆ Q[a, b, c]. The Gröbner fan of I has 360 full-dimensional
cones and the Gröbner region is R3

≥0. This means that the restricted Gröbner
fan equals the Gröbner fan. The intersection of the fan with the standard
simplex in R3 is shown in Figure 3.3.
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Figure 3.2: The Gröbner fan of the ideal in Example 3.1.7 is shown on the left.
The restricted Gröbner fan is on the right. In the middle the Newton polytope
of the generator is drawn with the shape of its normal fan indicated.

Figure 3.3: The Gröbner fan of the ideal in Example 3.1.8 intersected with the
standard 2-simplex. The a-axis is on the right, the b-axis on the left and the
c-axis at the top.
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3.1.1 Proof: The Gröbner fan is a fan

In this section we prove that the Gröbner fan is a fan i.e., that it is a polyhedral
complex consisting of cones. Recall, in general the Gröbner fan is not complete
and its support is larger than Rn

≥0. In [44] there is no proof that the Gröbner
fan is a fan in the sense of a polyhedral complex. A proof that the Gröbner fan
is a polyhedral complex under the assumption that the ideal is homogeneous
is given in [53, Chapter 2]. We present a complete proof for the general case.
Many of the results we need in the proof are generalizations of known results
needed in the proof in [53]. However, we do not rely on these references for the
sake of being self-contained.

We fix the ideal I ⊆ R in the following theorems. The most important step
is the proof of Proposition 3.1.4 which tells us that the closure of an equivalence
class is a polyhedral cone. Then we prove that the relative interior of any face
in the Gröbner fan is an equivalence class (Proposition 3.1.16) and, finally, that
the intersection of two cones in the fan is a face of both (Proposition 3.1.18).

To prove Proposition 3.1.4 we start by proving a similar statement for the
equivalence classes arising from initial ideals with respect to term orders.

Lemma 3.1.9 Let ≺ be a term order. For v ∈ Rn,

inv(I) = in≺(I) ⇐⇒ ∀g ∈ G≺(I), inv(g) = in≺(g).

Proof. ⇒: Let g ∈ G≺(I). Since G≺(I) is reduced, only one term from g, in≺(g),
can be in in≺(I) = inv(I). The initial ideal inv(I) is a monomial ideal, implying
that all terms of an element in the ideal must be in the ideal too. Hence, the
initial form inv(g) ∈ inv(I) has to be equal to in≺(g).

⇐: We must show that inv(I) = in≺(I) where in≺(I) = 〈in≺(g)〉g∈G≺(I). The
“⊇” inclusion is clear since in≺(g) = inv(g) ∈ inv(I) for all g ∈ G≺(I).

To prove the “⊆” inclusion, since inv(I) = 〈inv(f), f ∈ I〉, it suffices to
show that inv(f) ∈ in≺(I) for all f ∈ I. Pick f ∈ I and reduce it to zero using
the division algorithm (e.g. [14, Chapter 2]) with G≺(I) and ≺. We may write

f = m1gi1 + · · · + mrgir (3.3)

where mj is a monomial and gij is an element from G≺(I). The division algo-
rithm guarantees that in≺(f) ≥ mjin≺(gij ) with respect to ≺ since monomials
are substituted with monomials less than the original ones with respect to ≺ in
the division process. Exactly the same thing is true for v-degrees since v and
≺ agree on G≺(I). Thereby, any monomial on the right hand side in (3.3) has
v-degree less than or equal to the v-degree of the left hand side. Consequently,

inv(f) =
∑

j∈J

mjinv(gij )

with j running through a subset such that mj inv(gij ) has the same v-degree as
inv(f). Since inv(g) ∈ in≺(I), the initial form inv(f) ∈ in≺(I). 2
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By Lemma 3.1.9 the equivalence class of in≺(I) is open. Since in≺(I) is of
the form inv(I) for some v (see Remark 3.1.2), the equivalence class of in≺(I)
is also non-empty and hence full-dimensional. Thus we have proved that the
equivalence class of a term order is a full dimensional open polyhedral cone.

Corollary 3.1.10 Let ≺ be a term order and v ∈ Rn. Then

v ∈ C≺(I) ⇔ ∀g ∈ G≺(I) : in≺(inv(g)) = in≺(g).

Proof. Lemma 3.1.9 tells us that v lies in the interior of C≺(I) if and only if
inv(g) = in≺(g) for all g ∈ G≺(I). Relaxing the resulting strict inequalities to
non-strict inequalities we get a description of C≺(I). This relaxation is exactly
the one given by in≺(inv(g)) = in≺(g) for all g in G≺(I). 2

Lemma 3.1.11 A polynomial f ∈ inv(I) can be written in the form f =
∑

i inv(ci) where ci ∈ I and all summands in the sum have different v-degrees.

Proof. The initial ideal inv(I) is generated by v-homogeneous polynomials, im-
plying that all v-homogeneous components of f are in inv(I). Let h be a maxi-
mal v-homogeneous component of f . We need to show that h is the initial form
of an element in I with respect to v. We may write h as inv(a1) + · · ·+ inv(as)
for some polynomials a1, . . . , as in I. Since h is v-homogeneous we can rewrite
h as the sum

∑

j∈J inv(aj) of forms having the same v-degree as h. We pull out
the initial form and get h = inv(

∑

j∈J aj). 2

Lemma 3.1.12 Let ≺ be a term order. If v ∈ C≺(I) then in≺(inv(I)) =
in≺(I).

Proof. Let g ∈ G≺(I). Since v ∈ C≺(I), by Corollary 3.1.10, we have the equal-
ity in≺(g) = in≺(inv(g)) and hence in≺(I) = 〈in≺(g)〉g∈G≺(I) ⊆ in≺(inv(I)).

We now prove that in≺(inv(I)) ⊆ in≺(I). Notice that in≺(inv(I)) is gener-
ated by initial terms of elements f ∈ inv(I)\{0} with respect to ≺. Suppose
f ∈ inv(I)\{0}. It suffices to show that in≺(f) ∈ in≺(I). Using Lemma 3.1.11
we may write f =

∑s
i=1 inv(ci) where c1, . . . , cs ∈ I and inv(c1), . . . , inv(cs)

are v-homogeneous each with distinct degree, so that no cancellations occur.
Consequently in≺(f) equals in≺(inv(cj)) for some j. We wish to prove that
in≺(inv(cj)) ∈ in≺(I). We use the division algorithm with G≺(I) and ≺ to
rewrite cj

cj = m1gi1 + · · · + mrgir

where m1, . . . ,mr are monomials and gi1 , . . . , gir belong to G≺(I). Let M be
the v-degree of cj . In the division algorithm we sequentially reduce cj to zero.
In each step, the v-degree of cj will decrease or stay the same since we subtract
the product of a monomial and an element from G≺(I) where the v-degree of the
product already appeared in cj by Corollary 3.1.10. Equivalently, the product
of the monomial and the element from G≺(I) are “added” to the right hand
side of the equation. We are done when cj = 0 and or equivalently, the original
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cj is written as the above sum with every term having v-degree less or equal to
M . Consequently, we have

inv(cj) =
∑

j′∈J ′

inv(mj′gij′
)

for a suitable J ′. The division algorithm guarantees that the exponent vec-
tors of in≺(m1gi1), . . . , in≺(mrgir ) are distinct. Since v ∈ C≺(I), they equal
in≺(inv(m1gi1)), . . . , in≺(inv(mrgir)). The maximal one of these with respect
to ≺ cannot cancel in the sum. Hence in≺(inv(cj)) = in≺(mj′gij′

) for some j′

which implies that in≺(inv(cj)) ∈ in≺(I) as needed. 2

An easy corollary is a method for computing Gröbner bases for initial ideals.

Corollary 3.1.13 Let ≺ be a term order. If v ∈ C≺(I) then

G≺(inv(I)) = {inv(g)}g∈G≺(I).

Proof. By Corollary 3.1.10, 〈in≺(inv(g))〉g∈G≺(I) = 〈in≺(g)〉g∈G≺(I) = in≺(I).
By Lemma 3.1.12, in≺(I) equals in≺(inv(I)). Thus we have the equality of
ideals in≺(inv(I)) = 〈in≺(inv(g))〉g∈G≺(I). This proves that {inv(g)}g∈G≺(I) is a
Gröbner basis of inv(I) with respect to ≺. It is reduced since G≺(I) is minimal
and reduced. 2

We are now able to give a proof for Proposition 3.1.4 which claimed that given
v ∈ C≺(I) and u ∈ Rn, inu(I) = inv(I) ⇐⇒ ∀g ∈ G≺(I), inu(g) = inv(g).

Proof of Proposition 3.1.4. ⇐: Since inu(g) = inv(g) for all g ∈ G≺(I), we
get that in≺(inu(g)) = in≺(inv(g)) for all g ∈ G≺(I). Since v ∈ C≺(I), by
Corollary 3.1.10, in≺(g) = in≺(inv(g)) for all g ∈ G≺(I) and hence in≺(g) =
in≺(inu(g)) for all g ∈ G≺(I) and u ∈ C≺(I) by Corollary 3.1.10. The Gröbner
basis G≺(inu(I)) is then {inu(g)}g∈G≺(I) by Corollary 3.1.13. We get the same
Gröbner basis for inv(I). Hence, inu(I) = inv(I).

⇒: Let g ∈ G≺(I). We need to show that inu(g) = inv(g). Since the basis is
reduced, only one term of g, namely in≺(g), is in in≺(I). We start by proving
that the term in≺(g) is a term in inv(g) and a term in inu(g). For inv(g)
we apply Corollary 3.1.10 which says in≺(g) = in≺(inv(g)). For inu(g) we
apply Lemma 3.1.12 and get in≺(inu(g)) ∈ in≺(inu(I)) = in≺(inv(I)) = in≺(I).
Only one term of g is in in≺(I), so in≺(inu(g)) = in≺(g). If the difference
inu(g)− inv(g), belonging to inu(I) = inv(I), is non-zero we immediately reach
a contradiction since the difference contains no terms from in≺(I) = in≺(inv(I)).
2

We have now proved that every equivalence class of a vector v in a C≺(I) is
a relatively open convex polyhedral cone. By Definition 3.1.6 and the argument
following Proposition 3.1.4 in the previous section all sets in the Gröbner fan
are in fact cones. We now argue that the relative interior of every cone in the
Gröbner fan is an equivalence class.
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Lemma 3.1.14 Let ≺ be a term order. If v ∈ Rn
≥0 then v ∈ C≺v(I).

Proof. This follows from Corollary 3.1.10 since in≺v(inv(g)) = in≺v(g) for all
g ∈ G≺v(I). 2

Corollary 3.1.15 If ≺ is a term order and v ∈ Rn
≥0 then

in≺v(I) = in≺(inv(I)).

Proof. By Lemma 3.1.14 v ∈ C≺v(I). By Lemma 3.1.12 in≺v(I) = in≺v (inv(I)).
The Gröbner basis G≺v(inv(I)) is v-homogeneous and thereby also a Gröbner
basis with respect to ≺ with the same initial terms which generate the initial
ideal in≺v(inv(I)) = in≺(inv(I)). 2

In the sense of Remark 2.2.7 the requirement v ∈ Rn
≥0 is not needed in Corol-

lary 3.1.15 and Lemma 3.1.14 if I is homogeneous. Recall also Remark 3.1.1.

Proposition 3.1.16 The relative interior of a cone in the Gröbner fan is an
equivalence class (with respect to u ∼ u′ ⇔ inu(I) = inu′(I)).

Proof. By definition every cone in the fan is the face of the closure of an equiv-
alence class for a positive vector v ∈ Rn

>0. Let ≺′ be an arbitrary term order
and define ≺ as ≺′

v. According to Lemma 3.1.14 the vector v belongs to C≺(I).
Notice that by (3.2), Cv(I) ⊆ C≺(I) since for all u ∈ Cv(I) and g ∈ G≺(I),
the condition in≺(inu(g)) = in≺(inv(inu(g))) = in≺(inv(g)) = in≺(g) of Corol-
lary 3.1.10 is satisfied. By (3.2) the closed set Cv(I) is cut out by some equa-
tions and non-strict inequalities. The relative interior of any face of Cv(I) can
be formed from this inequality system by changing a subset of the inequalities
to strict inequalities and the remaining ones to equations. So let u be a vector
in the relative interior of some face of Cv(I). The vector u is in Cv(I) ⊆ C≺(I).
We may use Proposition 3.1.4 to conclude that a vector u′ ∈ Rn is equivalent
to u if and only if it satisfies the inequality system mentioned above — that is,
if and only if it is in the relative interior of the face. 2

It remains to be shown that the intersection of two cones in the Gröbner
fan is a face of both cones (Proposition 3.1.18). We need a few observations.

Corollary 3.1.17 Let C be a cone in the Gröbner fan. If v ∈ C then for
u ∈ Rn,

inu(I) = inv(I) ⇒ u ∈ C.

Proof. The vector v is in the relative interior of some face of C. This face is
also in the Gröbner fan. By Proposition 3.1.16 u is in the relative interior of
the same face and, consequently, also in C. 2

By Remark 3.1.2 there are only finitely many initial ideals given by term
orders and, consequently, only finitely many reduced Gröbner bases of I. It
follows that there can only be finitely many equivalence classes of the type
described in Proposition 3.1.4 and Proposition 3.1.16.
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Proposition 3.1.18 Let C1 and C2 be two cones in the Gröbner fan of I.
Then the intersection C1 ∩ C2 is a face of C1.

Proof. The intersection C1 ∩ C2 is a cone. By Corollary 3.1.17, C1 and C2 are
unions of equivalence classes. Further, if v ∈ C1 ∩ C2, then again by Corol-
lary 3.1.17, the entire equivalence class of v is both in C1 and in C2 and hence
in C1 ∩ C2. Hence C1 ∩ C2 is a union of equivalence classes.

Let u be a vector in such an equivalence class E contained in C1∩C2. Then
u is in the relative interior of one of the faces of C1 which is a cone in the
Gröbner fan. By Proposition 3.1.16 the set of vectors in the relative interior of
this face is exactly E. Hence every such equivalence class is the relative interior
of a face of C1 and its closure is the face.

Look at the R-span of each equivalence class contained in C1 ∩ C2. These
spans must be different for every face of C1. We claim that there can be only
one maximal dimensional cone/span. If there were two cones then their convex
hull would be in C1 ∩ C2 and have dimension at least one higher and thus
cannot be covered by the finitely many lower dimensional equivalence classes
— a contradiction.

Let E be the maximal dimensional equivalence class contained in C1 ∩ C2.
We will argue that E = C1∩C2. The inclusion E ⊆ C1∩C2 is already clear since
C1 ∩ C2 is closed. To prove the other inclusion suppose ω ∈ C1 ∩ C2\E. Then
conv(E,ω)\E is contained in C1 ∩C2 and has dimension at least the dimension
of E. This is a contradiction since conv(E,ω)\E cannot be covered by finitely
many lower dimensional equivalence classes. This completes the proof. 2

Theorem 3.1.19 The Gröbner fan is a polyhedral complex of cones and hence
a fan.

Proof. We already argued using Proposition 3.1.4 and Lemma 3.1.14 that the
Gröbner fan consists of polyhedral cones. The first condition for being a poly-
hedral complex is satisfied by definition. The second condition is Proposi-
tion 3.1.18. 2

We finish this section by a proof of the following very important proposition
which follows from Corollary 3.1.10 and Corollary 3.1.13.

Proposition 3.1.20 [53, Proposition 1.13] Let I ⊆ k[x1, . . . , xn] be an ideal
and u, v ∈ Rn. Furthermore, suppose that I is homogeneous or u ∈ Rn

>0. Then
for ε > 0 sufficiently small

inu+εv(I) = inv(inu(I)).

Proof. Fix a term order ≺. The key observation is that for ε > 0 sufficiently
small we have u + εv ∈ C(≺v)u

(I). This follows from Corollary 3.1.10 and an
argument similar to the proof of Lemma 2.2.9. The proposition now follows
from Corollary 3.1.13:

inu+εv(I) = 〈inu+εv(g) : g ∈ G(≺v)u
(I)〉 = 〈inv(inu(g)) : g ∈ G(≺v)u

(I)〉
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Figure 3.4: A graph. The same graph with a cycle-free orientation and a unique
sink. The same graph cut down to a tree by removing edges until no vertex has
more than one outgoing edge.

= 〈inv(g) : g ∈ G≺v(inu(I))〉 = inv(inu(I)).

The second equality holds for ε > 0 sufficiently small since G(≺v)u
(I) is finite.

2

Remark 3.1.21 It follows that dim(Cu(I)) = homog(inu(I)) under the same
assumptions. To see this, observe that the set of v’s keeping the right hand
side of the equation in Proposition 3.1.20 equal to inu(I) is C0(inu(I)). On the
other hand, the vectors keeping the left hand side equal to inv(I) generate the
span of Cω(I).

3.2 Reverse search property

By the graph of a pure full-dimensional fan we mean the set of maximal cones
with two cones being connected if they share a common facet. In this section
we will prove that the reverse search technique [3] can be used for traversing the
graph of a Gröbner fan. This follows from the main theorem, Theorem 3.2.6,
which says that the graph of a Gröbner fan can be oriented easily without cycles
and with a unique sink. In Definition 3.2.4 we define what we mean by this.

We start by explaining how a graph with this special kind of orientation
can be traversed by reverse search. The idea is to define a spanning tree of the
graph which can be easily traversed. The following is a simple but very useful
proposition which we shall not prove.

Proposition 3.2.1 Let G = (V,E) be an oriented graph without cycles and
with a unique sink s. If for every vertex v ∈ V \{s} some outgoing search edge
ev = (v, ·) is chosen then the set of chosen search edges is a spanning tree for
G.

The spanning tree in Proposition 3.2.1 is referred to as the search tree. The
proposition implies that the graph is connected. An example is given in Fig-
ure 3.2

Notice that we can find the sink by starting at any vertex and walking
along a unique path of search edges until we get stuck, in which case we are at
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the sink. Consequently, the sink is the root of the oriented spanning tree. A
corollary to the proposition is the reverse search algorithm for traversing G:

Algorithm 3.2.2 Let G = (V,E) be the oriented graph of Proposition 3.2.1
and suppose the choice of a search edge ev for each vertex v 6= s has been made.
Calling the following recursive procedure with v = s will output all vertices in
G.
Output subtree(v)
Input: A vertex v in the graph G.
Output: The set of vertices in the subtree with root v.
{

Output v;
Compute the edges of form (·, v) ∈ E;
For every oriented edge (u, v) ∈ E

If (eu = (u, v)) Output subtree(u);
}

This algorithm does not have to store a set of “active” vertices as is usually
needed in depth- and breadth-first traversals. It is even possible to formulate
the algorithm completely without recursion avoiding the need for a recursion
stack. In that sense the algorithm is memory-less. A real world analogue of this
memory-less method is the strategy for walking through a labyrinth by keeping
your right hand on the wall.

We give an example of how the edge graph of a polytope or, equivalently,
the graph of its normal fan can be oriented.

Example 3.2.3 Let P ⊂ Rn be a polytope whose vertices have positive integer
coordinates and let ≺ be a term order on R. The following is an orientation of
the edge graph of P without cycles and with a unique sink: An edge (p, q) is
oriented from p to q if and only if xp ≺ xq.

This defines an orientation of the graph of the normal fan of a polytope
for any term order. We would like to mimic this orientation for any pure full-
dimensional fan in Rn. For simplicity we shall restrict ourselves to fans whose
(n− 1)-dimensional cones allow rational normals. In view of Propositions 3.1.4
and 3.1.16 this is no restriction for Gröbner fans. Have a look at Figure 3.2
while reading the following definition.

Definition 3.2.4 A pure full-dimensional fan in Rn is said to have the reverse
search property if for any term order ≺ the following is an acyclic orientation
of its graph with a unique sink: If (C1, C2) is an edge then C1 and C2 are
n-dimensional cones with a common facet F . Let p, q ∈ Nn such that q − p 6= 0
is a normal for F with all points in C1\F having negative inner product with
q−p and all points in C2\F having positive inner product with q−p. We orient
the edge in direction from C1 to C2 if and only if xp ≺ xq.

Note that the orientation of an edge in Definition 3.2.4 does not depend on
the particular choice of p and q. Note also that for normal fans of polytopes
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qp
q−p

C2
F F
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1C

Figure 3.5: A schematic drawing of the situation in Definition 3.2.4. Keep
Example 3.2.3 in mind. The direction of the edge between C1 and C2 depends
on the relative orientation of ≺ (considered as a generic vector) and p − q.

Figure 3.6: A fan not having the reverse search property, see Example 3.2.5.

this orientation agrees with the orientation of the edge graphs of the polytopes
in Example 3.2.3. Not every fan has the reverse search property:

Example 3.2.5 Figure 3.2 shows a fan with support R3
≥0 intersected with the

standard simplex. The intersection is the non-dotted part of the figure. For
every shared 2-dimensional facet the orientation of its edge with respect to a
term order of form ≺(1,1,1) is indicated by an arrow. The graph has a cycle. The
reason is that the vector (1, 1, 1) is in the interior of the cone over the dotted
triangle and therefore induces the shown orientation with any tie-breaking.

Example 3.2.3 on the other hand shows that any normal fan of a polytope
has the reverse search property. If I is a homogeneous ideal the Gröbner fan of
I is known to be the normal fan of the state polytope of I, see [53] for a proof.
As a consequence the Gröbner fan will have the reverse search property. The
reverse search orientation of a fan with respect to any term order can be carried
out on any fan covering Rn

≥0 and being the normal fan of a polyhedron. Since
the restricted Gröbner fan of any 0-dimensional or principal ideal satisfies these
conditions (see Chapter 5) it is clear that these fans have the reverse search
property.

We have shown in [37] (see Chapter 5) that this line of reasoning cannot be
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applied to Gröbner fans in general. In particular, in Theorem 5.0.1 an ideal is
presented whose restricted Gröbner fan is not the normal fan of a polyhedron.
For this reason we need a non-trivial argument to prove the following theorem:

Theorem 3.2.6 The Gröbner fan of any ideal I ⊆ R has the reverse search
property.

The proof is given in Section 3.2.1. In Chapter 4 we argue that all parts of
Algorithm 3.2.2 (finding adjacent edges, finding adjacent vertices and finding
search edges) can be implemented efficiently for Gröbner fans.

3.2.1 Proof: The Gröbner fan has the reverse search property

In this section we prove Theorem 3.2.6. We start by recalling how the polyno-
mial ring can be graded by semigroups. This leads to a more general notion of
homogeneous ideals.

Definition 3.2.7 By a grading on R = k[x1, . . . , xn] we mean a pair (A,A)
consisting of an abelian semigroup A and a semigroup homomorphism:

A : Nn → A

such that A−1(a) is finite for all a ∈ A. The A-degree of a term cxb is A(b). A
polynomial is A-homogeneous if all its terms have the same A-degree. An ideal
is A-homogeneous if it is generated by a set of A-homogeneous polynomials.

For a grading (A,A) on R we get the direct sum of k-vector spaces

R =
⊕

a∈A

Ra

where Ra denotes the k-subspace of R consisting of A-homogeneous polynomials
of degree a. Any reduced Gröbner basis of an A-homogeneous ideal I consists
of A-homogeneous polynomials. In particular, by generalizing the argument of
Lemma 3.1.11 we get the direct sum

I =
⊕

a∈A

Ia

where Ia denotes the k-subspace of I consisting of A-homogeneous polynomials
of degree a. The A-homogeneous part Ia is a k-subspace of Ra. We define the
A-graded Hilbert function:

HI,A : A → N (3.4)

a 7→ dimk(Ra/Ia) (3.5)

Remark 3.2.8 For a monomial ideal I the standard monomials of degree a
form a basis for Ra/Ia. Hence HI,A(a) counts the number of standard mono-
mials of degree a.
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In general, as the following well-known proposition shows, the Hilbert function
can be found by looking at a monomial initial ideal:

Proposition 3.2.9 Let I be an A-homogeneous ideal and ≺ a term order then

HI,A = Hin≺(I),A.

Proof. The linear map taking a polynomial to its unique normal form by the
division algorithm on G≺(I) induces an isomorphism of k-vector spaces

Ra/Ia → Ra/in≺(I)a.

2

Consider a shared facet of the cones C1 and C2 in the Gröbner fan with a
relative interior point v. The “edge ideal” inv(I) is homogeneous with respect
to any vector in the relative interior of the facet and consequently also homoge-
neous with respect to any vector in the span of the facet. Since C1 and C2 both
contain positive vectors, so does spanR(Cv(I)). Recall that Cv(I) is the closure
of the equivalence class of v. Pick a basis u1, . . . , un−1 ∈ Nn for spanR(Cv(I))
with u1 being a positive vector. The vectors induce a grading Av : Nn → Nn−1

on R by
Av(b) = (〈u1, b〉, . . . , 〈un−1, b〉)

for b ∈ Nn. The initial ideal inv(I) is Av-homogeneous.

Lemma 3.2.10 Let ≺ be a term order, I an ideal, (C1, C2) a directed edge with
respect to the orientation in Definition 3.2.4 and M1 and M2 the initial ideals
of C1 and C2 respectively. Let v be a relative interior point in the shared facet.
Then in≺(inv(I)) = M2.

Proof. Choose a positive interior point ω2 of C2. We claim that the following
identities hold:

M2 = inω2(I) = in≺ω2
(inω2(I)) = in≺ω2

(I) = in≺ω2
(inv(I)) = in≺(inv(I)).

The first one holds by the choice of ω2. The second one is clear since inω2(I)
is a monomial ideal. The third one holds by Lemma 3.1.12 and Lemma 3.1.14.
By Lemma 3.1.12 the fourth equality holds since v ∈ C≺ω2

(I) = Cω2(I). To
prove the last equality we look at the reduced Gröbner basis G≺(inv(I)). If we
can show that in≺ω2

(g) = in≺(g) for all elements g ∈ G≺(inv(I)) then we know
that G≺(inv(I)) is also a Gröbner basis with respect to ≺ω2 and the generators
for the initial ideal in≺ω2

(inv(I)) are exactly the same as those for in≺(inv(I)).
This would complete the proof.

The reduced Gröbner basis G≺(inv(I)) is Av-homogeneous. For an element
g this implies that the difference between two of its exponent vectors must be
perpendicular to the shared facet. By Definition 3.2.4 there exists a normal
q − p of the facet with xp ≺ xq and 〈ω2, q − p〉 > 0. Since ≺ and ≺ω2 agree on
one normal vector they must agree on all exponent differences of elements in
G≺(inv(I)). 2
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Notice that by Proposition 3.2.9 any initial ideal in≺(inv(I)) of inv(I) has
the same Av-graded Hilbert function as inv(I).

By a flip we mean a move from one vertex in the graph to a neighbor.
For a degree a ∈ Nn−1 we call A−1

v (a) the fiber over a. The Av-graded Hilbert
function of an initial ideal in≺(inv(I)) counts the number of standard monomials
inside each fiber. A flip preserves the Hilbert function. We may think of this as
monomials in the monomial initial ideal moving around in the fiber. We wish
to keep track of how the monomials move when we walk in the oriented graph.
We define exactly what we mean by “moving around”:

Definition 3.2.11 Let ≺,M1,M2, u1, . . . , un−1 and v be as above with
in≺(inv(I)) = M2. Let N1 and N2 be the monomials in M1 and M2 respec-
tively. We define the bijection φ≺M1M2 : N1 → N2 in the following way: For
a monomial xb ∈ N1 look at the monomials B1 ⊆ N1 and B2 ⊆ N2 with the
same A-degree as xb. Since taking initial ideals preserves the A-graded Hilbert
function, |B1| = |B2|. Sort B1 and B2 with respect to ≺. The bijection φ≺M1M2

is now defined by taking the first element of B1 to the first element of B2, the
second element of B1 to the second element of B2 and so on.

The following lemma is from [41, Lemma 4.1]:

Lemma 3.2.12 Let ≤1 and ≤2 be two term orders. If f1
1 , . . . , f1

s is a vector
space basis for Ia such that in≤1(f

1
1 ), . . . , in≤1(f

1
s ) is a basis for in≤1(I)a, then

there exists a basis f2
1 , . . . , f2

s for Ia such that in≤2(f
2
1 ), . . . , in≤2(f

2
s ) is a basis

for in≤2(I)a and
in≤2(f

2
1 ) ≤1 in≤1(f

1
1 )

...

in≤2(f
2
s ) ≤1 in≤1(f

1
s ).

Proof. Without loss of generality we may assume that in≤1(f
1
1 ) ≤1 · · · ≤1

in≤1(f
1
s ). For i = 1, . . . , s we let f2

i be the remainder of the division of f1
i

with {f2
1 , . . . , f2

i−1} with respect to ≤2. Linear independence guarantees that
f2

i 6= 0. The monomials appearing in f2
i must have appeared in f1

1 , . . . , f1
i .

Thus using the chosen ordering of the polynomials f1
1 , . . . , f1

s we see that all
monomials in f2

i must be less than or equal to in≤1(f
1
i ) with respect to ≤1. In

particular, in≤2(f
2
i ) ≤1 in≤1(f

1
i ). Since the monomials of in≤2(f

2
i ), . . . , in≤2(f

2
i )

are different they generate the s-dimensional space in≤2(I)a. 2

Corollary 3.2.13 Let the setting be as in Definition 3.2.11. If xb ∈ M1 then
φ≺M1M2(x

b) 6≺ xb.

Proof. Let a be the A-degree of xb. We apply Lemma 3.2.12 with I in the
lemma being inv(I). Let ≤1 be ≺ and ≤2 be the refinement of the pre-
order induced by u1 with the reversed order of ≺. By the orientation of the
graph M1 = in≤2(inv(I)) and M2 = in≤1(inv(I)). By multiplying elements of
G≺(inv(I)) by monomials we can construct a k-basis f1

1 , . . . , f1
s of inv(I)a with

in≤1(f
1
1 ), . . . , in≤1(f

1
s ) being a basis of (M2)a. By the lemma there is a basis
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in≤2(f
2
1 ), . . . , in≤2(f

2
s ) of (M1)a. Sort the list of inequalities in the lemma with

in≤2(f
2
i ) decreasing w.r.t. ≺ (≤1). The right hand side can now be sorted with

respect to the same order without violating the inequalities. To see this use the
bubble sort algorithm — when two adjacent inequalities are swapped . . .

in≤2(f
2
i ) ≤1 in≤1(f

1
i ) in≤2(f

2
i ) ≤1 in≤1(f

1
i+1)

∨1 ∧1 7→ ∨1 ∨1

in≤2(f
2
i+1) ≤1 in≤1(f

1
i+1) in≤2(f

2
i+1) ≤1 in≤1(f

1
i )

. . . the relations on the right hand side of the arrow hold by transitivity of ≤1.
After sorting, xb appears somewhere on the left and φ≺M1M2(x

b) on the
right in the same inequality. This completes the proof. 2

Proof of Theorem 3.2.6. Suppose C1, C2, . . . , Cm was a path in the oriented
graph with C1 = Cm. Let M1, . . . ,Mm denote the initial ideals and N1, . . . ,Nm

their monomials. We will prove that the bijection φ := φ≺Mm−1Mm◦· · ·◦φ≺M1M2

is the identity on M1. Suppose it is not the identity and let xb be the smallest
element in M1 with respect to ≺ that is not fixed by φ. By Corollary 3.2.13,
xb is the image of a smaller element in M1 with respect to ≺. But this element
is fixed by the minimality of xb — a contradiction. The composition being
the identity implies by Corollary 3.2.13 that φ≺MiMi+1 is the identity for all i.
Hence Mi = Mi+1, contradicting that M1,M2, . . . ,Mm is a path.

We claim that C≺(I) is the unique sink. If v is in the relative interior of a
facet of C≺(I) then by Lemma 3.1.12 in≺(inv(I)) = in≺(I). By Lemma 3.2.10
this means that all edges connected to C≺(I) are ingoing. Hence C≺(I) is a
sink.

To prove uniqueness let C≺′(I) be some sink in the oriented graph. By
Theorem 2.2.10, ≺ has a matrix representation (τ0, . . . , τn−1) ∈ Rn×n such
that τε := τ0 + ετ1 + · · · + εn−1τn−1 ∈ int C≺(I) for ε > 0 sufficiently small.
Furthermore, for any f ∈ R, inτε(f) = in≺(f) for ε > 0 sufficiently small. If
C≺′(I) is a sink then according to Definition 3.2.4 there exists a complete list of
inner normals q1−p1, . . . , qr −pr of C≺′(I)∩Rn

≥0 such that in≺(xqi −xpi) = xqi .
Since τε and ≺ pick out the same initial forms on a finite set of polynomials
for ε > 0 sufficiently small we see that 〈τε, qi〉 > 〈τε, pi〉 or, equivalently, τε ∈
int C≺′(I) for ε > 0 sufficiently small. We conclude that C≺′(I) = C≺(I). 2



Chapter 4

Algorithms for Gröbner fans

We can find a single Gröbner cone by applying Buchberger’s algorithm and
Corollary 3.1.10 for some term order. Since the graph of the Gröbner fan of I is
connected we may choose any graph traversal algorithm for computing the full
dimensional Gröbner cones. To do the local computations we need to be able
to find the edges (connecting facets) of a full dimensional cone and we need to
be able to find the neighbor along an edge. We will see how to do this in the
following sections.

Throughout the graph enumeration process we will represent the Gröbner
cones by their marked reduced Gröbner bases, rather than by their defining
inequalities, their term orders etc.. This choice is justified by the following well
known theorem.

Theorem 4.0.14 Let I ⊆ R = k[x1, . . . , xn] be an ideal. The marked reduced
Gröbner bases of I, the monomial initial ideals of I (w.r.t. positive vectors)
and the full-dimensional Gröbner cones are in bijection.

Proof. We already argued in Remark 2.2.4 that the marked reduced Gröbner
bases are in bijection with the set of initial ideals in≺(I) where ≺ is a term
order. In Remark 3.1.2 we saw that any in≺(I) is of the form inω(I) for some
ω ∈ Rn

>0. On the other hand if inω(I) is monomial with ω ∈ Rn
>0 then inω(I) =

in≺(inω(I)) = in≺ω(I) by Corollary 3.1.15. This proves the bijection between
monomial initial ideals with respect to positive vectors and marked reduced
Gröbner bases.

A full-dimensional Gröbner cone contains a positive vector ω in its inte-
rior. By Proposition 3.1.16 the interior of the Gröbner cone is the equivalence
class of ω. The ideal inω(I) is homogeneous with respect to any vector by
Proposition 3.1.20. This shows that inω(I) is a monomial ideal. On the other
hand if for some ω ∈ Rn

>0, the initial ideal inω(I) is monomial then by Propo-
sition 3.1.20, ω is an interior point of its equivalence class proving that the
closure is a full-dimensional Gröbner cone. 2

An important issue when implementing the algorithms is to identify shared
facets. We say that a facet is flippable if its relative interior contains a positive
vector. The flippable facets in a Gröbner fan are always shared.

43
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One application of Gröbner fans is in Gröbner basis conversion. We ex-
plain the well-known Gröbner walk algorithm and improve the algorithm by
introducing the generic Gröbner walk ([19]) which works by making a symbolic
perturbation of its target vector. In the reverse search algorithm the symbolic
perturbation gives an easy way to make a choice of a search edge that will al-
ways correspond to a flippable facet. At the end of the chapter we will explain
how to take advantage of symmetry in a Gröbner fan traversal.

4.1 Finding facets

Suppose that we know a marked reduced Gröbner basis G≺(I) with respect to
some unknown term order ≺. Proposition 3.1.4 (or Corollary 3.1.10) tells us
how to read off the defining inequality system for C≺(I).

Since C≺(I) is full-dimensional the system contains no equations but only
inequalities. Some of these inequalities are equivalent in the sense that they are
multiples of each other. Taking just one inequality from each equivalence class
the problem is now to find irredundant facet normals of a cone — or equivalently
to find the extreme rays of the dual cone. Checking if a ray is extreme can be
done by linear programming.

Not all of the remaining inequalities are guaranteed to define flippable facets.
One way to ensure that we only get flippable facets is by adding the constraints
ei · x ≥ 0 for i = 1, . . . , n and ignoring the facets defined by these.

A more efficient method (on some examples) is to find all facets and then
remove the non-flippable irredundant facet normals by explicit checks. In our
implementation this is done by checking if the inequality system with the in-
equality in question inverted still has a positive solution.

As mentioned in [32] there is an algebraic test that helps us eliminate redun-
dant inequalities of C≺(I). Let α ∈ Rn be a coefficient vector of an inequality.
If α indeed is irredundant and defines a facet with a relative interior point v
then Corollary 3.1.13 tells us how to compute G≺(inv(I)). This marked reduced
Gröbner basis can be computed from G≺(I) as {inv(g)}g∈G≺(I) if we just know α
and not necessarily v; see the next section. A necessary condition for α to be ir-
redundant is that the computed set {inv(g)}g∈G≺(I) indeed is a marked Gröbner
basis i.e. all S-polynomials reduce to zero. This check even works for v outside
the positive orthant. A quicker necessary condition that we can check is that
every non-zero S-polynomial should have at least one of its terms in in≺(I). For
huge sets of inequalities the test works extremely well — 500 inequalities might
reduce to 50 of which maybe 10 are irredundant. Our experience is that having
this test as a preprocessing step can be much faster than solving the full linear
programs with exact arithmetic.

4.2 Local change

Let G≺(I) be a known marked Gröbner basis and let F be a flippable facet of
C≺(I). We let flip(G≺(I), F ) denote the unique reduced Gröbner basis different
from G≺(I) whose Gröbner cone also has F as a facet. We will describe an
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algorithm for computing flip(G≺(I), F ) given G≺(I) and an inner normal vector
α for F . For a marked Gröbner basis G and a polynomial g we let gG denote
the normal form of g modulo G and note that this form does not depend on the
term order but only on the markings of G.

Algorithm 4.2.1
Input: A marked reduced Gröbner basis G≺(I) and a v-homogeneous polyno-
mial m ∈ inv(I) where v is some vector in C≺(I).
Output: A polynomial f ∈ I such that inv(f) = m.
{

f := m − mG≺(I);
}

Proof. The polynomial m reduces to 0 modulo G≺(inv(I)) by the division algo-
rithm. The Gröbner basis G≺(I) is the same as G≺(inv(I)) by Corollary 3.1.13
except that each element may have additional terms of lower v-degree. Running
the division algorithm on m modulo G≺(I) we may make the same choices as
for G≺(inv(I)), reducing m to 0 plus additional terms of lower v-degree. Since
the remainder is unique, it does not matter how we run the algorithm – we
will always end up with a unique remainder mG≺(I) of lower v-degree than the
v-degree of m. We conclude that inv(m − mG≺(I)) = m. 2

Algorithm 4.2.2 Lift
Input: Marked reduced Gröbner bases G≺(I) and G≺′

v
(inv(I)) where v ∈ C≺(I)

is an unspecified vector and ≺ and ≺′ are unspecified term orders. Here I must
be homogeneous or v ∈ Rn

≥0.
Output: The marked reduced Gröbner basis G = G≺′

v
(I).

{
G := {g − gG≺(I) : g ∈ G≺′

v
(inv(I))};

Mark the term in≺′
v
(g) in each element g − gG≺(I) in G;

Turn the minimal basis G into a reduced basis;
}

Proof. The elements g−gG≺(I) are constructed according to the algorithm above
and thereby satisfy inv(g − gG≺(I)) = inv(g). Taking ≺′ initial terms on both
sides we get in≺′

v
(g − gG≺(I)) = in≺′(inv(g − gG≺(I))) = in≺′(g) = in≺′

v
(g).

This shows that the ≺′
v initial terms of G generate in≺′

v
(I) = in≺′(inv(I)) =

in≺′
v
(inv(I)) minimally. Hence G is a minimal Gröbner basis for I and making

it reduced we get G≺′
v
(I). 2
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Algorithm 4.2.3 Flip
Input: A marked reduced Gröbner basis G≺(I) with ≺ being an unknown term
order and an inner normal vector α of a flippable facet F of C≺(I).
Output: G = flip(G≺(I), F ).
{

Let v be a positive vector in the relative interior of F ;
Compute G≺(inv(I)) = {inv(g) : g ∈ G≺(I)};
Compute the marked basis G≺−α

(inv(I)) from G≺(inv(I))
using Buchberger’s algorithm;

Compute G := G(≺−α)v
(I) from G≺(I) and G≺−α

(inv(I))
using Algorithm 4.2.2;

}

Proof. We may apply Algorithm 4.2.2 since v ∈ C≺(I). It remains to be shown
that we have computed a Gröbner basis for the right cone. The vector v − εα
is in the cone we want for ε > 0 sufficiently small since v is a relative interior
point in F . Hence, it suffices to show that G(≺−α)v

(I) = G≺v−εα
(I) for ε > 0

sufficiently small. On a finite collection of terms the term orders (≺−α)v and
≺v−εα agree for ε > 0 sufficiently small. In particular they agree on their
Gröbner bases which proves that both Gröbner bases G(≺−α)v

(I) and G≺v−εα
(I)

are Gröbner bases with respect to both term orders. By uniqueness of reduced
Gröbner bases we get G(≺−α)v

(I) = G≺v−εα
(I). 2

Algorithm 4.2.3 is a special case of the local change procedure for a single step
in the Gröbner walk [13]. See [19, Proposition 3.2] for a new treatment. Here
we will add a few comments on our special case — the case where F is a facet
and not a lower dimensional face:

For any vector ω in the relative interior of F , inω(I) = inv(I) and therefore
inω(inv(I)) = inω(inω(I)) = inω(I) = inv(I) which shows that inv(I) is homo-
geneous with respect to the ω-grading. Since F is (n−1)-dimensional, inv(I) is
homogeneous with respect to all vectors inside spanR(α)⊥. All Gröbner bases
of inv(I) are homogeneous in the same way. Consequently, each of them must
consist of polynomials of the form

∑t
s=0 csx

(a+sb) where a ∈ Nn and b ∈ Zn is
parallel to α. In other words their Newton polytopes are parallel line segments.
The same is true for all polynomials appearing in any run of Buchberger’s al-
gorithm starting from one of these sets. A consequence is that in order to run
Buchberger’s algorithm we only need to decide if we are in the situation where
xγ ≺ xγ+α for every γ ∈ Nn or in the situation where xγ+α ≺ xγ for every
γ ∈ Nn. Thus specifying α or −α as a term order suffices — no tie-breaker is
needed. The initial ideal inv(I) can have at most two reduced Gröbner bases.
Both term orders are legal since inv(I) is homogeneous with respect to the
strictly positive vector v.

The Gröbner basis G≺(inv(I)) can be read off from the marked Gröbner basis
G≺(I) by taking initial forms of the polynomials with respect to v, see Corollary
3.1.13. Taking the initial form inv(g) of a polynomial g ∈ G≺(I) without com-
puting v is done as follows. By Corollary 3.1.10, in≺(inv(g)) = in≺(g) and thus
we already know one term of inv(g) since in≺(g) is the marked term of g in G≺(I).
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Since every ω in the relative interior of F will have G≺(inω(I)) = G≺(inv(I))
the remaining terms of inv(g) are exactly the terms in g with the same ω-degree
as in≺(g) for all ω in the relative interior of F and consequently for all ω in
spanR(α)⊥. In other words a term of g is in inv(g) if and only if its exponent
vector minus the exponent of in≺(g) is parallel to α. The term order ≺ does
not have to be known for this step, nor does it have to be known in the com-
putation of G≺−α

(inv(I)) or in any other subsequent step. The vector v also
remains unknown in the entire process.

4.3 The generic Gröbner walk

Computational experience shows that Gröbner basis computations with respect
to lexicographic term orders are difficult compared to for example degree reverse
lexicographic term orders. Suppose that we know a reduced Gröbner basis
G≺′(I) and want to compute G≺(I) for some other term order ≺. Then we
could apply Algorithm 4.2.3 a number of times until we reach the Gröbner cone
C≺′(I) in the Gröbner fan of I. This method is known as the Gröbner walk in
the literature and was first presented in [13]. In this section we shall discuss
the improvements to this algorithm that were presented in [19]. In Section 4.4
we see why this is relevant for Gröbner fan traversals by reverse search.

One strategy for choosing the facets to flip through in the Gröbner walk is
the following. If σ is a positive vector in the interior of C≺′(I) and τ is a positive
vector in the interior of C≺(I) then we may consider the line segment l between
σ and τ . If we are lucky this segment passes through (n − 1)-dimensional
Gröbner cones F1, . . . , Fs connecting C≺′(I) and C≺(I) by a sequence of full-
dimensional cones C≺′(I) = C0, . . . , Cs = C≺(I) such that Ci−1 ∩ Ci = Fi for
i = 1, . . . , s. On the other hand, if we are unlucky l might intersect two facets
of C≺′(I) and leave C≺′(I) through a lower dimensional face. In that case the
sequence of facets to flip through is not properly defined. Another problem is
that usually the vector τ is not known to us a priori.

The first problem is not a serious problem since Algorithm 4.2.3 easily gen-
eralizes to the case where F is lower dimensional. However, the homogeneity
space of inv(I), where v is relative interior in F , will no longer be of codimension
1 and the Buchberger step of Algorithm 4.2.3 will be more complicated since the
generators of inv(I) will no longer have 0 or 1-dimensional Newton polytopes.
In fact, the worst thing that could happen is that the segment passes through
the homogeneity space of I, in which case inv(I) = I and the flip algorithm
amounts to running Buchberger’s algorithm on I.

In [58] the two problems were solved as follows. Knowing generators of
the ideal I we can apply a general bound on the degree of a reduced Gröbner
basis of I. Since the Gröbner cones of I have facets normals coming from
differences between exponent vectors this gives a bound on the length of the
integer normal vectors of the facets. If the term order ≺′ is represented by a
matrix with rows τ1, . . . , τn ∈ Nn then for a sufficiently large number M > 0
the vector TM :=

∑

i M
n−iτi belongs to C≺(I); see Lemma 4.3.1 for a special

case. Similarly, we may choose a sufficiently large number M ′ depending on
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the degree bound which guarantees that the line segment l does not intersect
Gröbner cones of dimension less than n − 1. The draw back of this method is
that the integer vectors TM ′ are huge. In the case of 10 variables and generators
for I of degree 10 and ≺ being the lexicographic Gröbner basis, the entries of
TM ′ have up to 10.000 digits.

Our approach to the problems is to introduce a small ε > 0 and perturb
the target vector τ depending on this ε. It turns out that the choices we need
to make when finding the facets to flip do not depend on ε as long as ε is
sufficiently small.

Lemma 4.3.1 Let I ⊆ R be an ideal and ≺ the lexicographic term order with
x1 ≻ x2 ≻ · · · ≻ xn. Define τε = (ε0, ε1, . . . , εn−1). There exists δ > 0 such
that inτε(I) = in≺(I) for all ε ∈ (0, δ).

Proof. This follows from Lemma 3.1.9 since ≺ and τε agree on a finite set of
polynomials for small ε > 0. 2

Assume for simplicity that σ ∈ Nn. For sufficiently small ε > 0 the line
segment

ω(t) := (1 − t)σ + tτε with t ∈ [0, 1]

intersects a facet of C≺′(I) unless C≺′(I) = C≺(I).

Let {α1, . . . , αm} be the set of potential inner facet normals of C≺′(I) read
off from G≺′(I). We are only interested in the vectors αi where 〈σ, αi〉 > 0 and
〈τε, αi〉 < 0. Let ti denote the t-value for the intersection of the line segment
and the hyperplane defined by αi. Then

ti :=
〈σ, αi〉

〈σ, αi〉 − 〈τε, αi〉
.

We wish to find i such that ti is smallest (for small ε).

ti < tj ⇐⇒ (4.1)

〈σ, αi〉
〈σ, αi〉 − 〈τε, αi〉

<
〈σ, αj〉

〈σ, αj〉 − 〈τε, αj〉
⇐⇒ (4.2)

〈σ, αi〉 − 〈τε, αi〉
〈σ, αi〉

>
〈σ, αj〉 − 〈τε, αj〉

〈σ, αj〉
⇐⇒ (4.3)

〈τε, αi〉
〈σ, αi〉

<
〈τε, αj〉
〈σ, αj〉

⇐⇒ (4.4)

〈τε, 〈σ, αj〉αi〉 < 〈τε, 〈σ, αi〉αj〉 ⇐⇒ (4.5)

x〈σ,αj〉αi ≺ x〈σ,αi〉αj (4.6)

We see that for ε sufficiently small “ti < tj” does not depend on ε. Furthermore,
there cannot be any ties, unless αi and αj represent the same hyperplane. This
gives an easy method for computing the unique first facet of C≺′(I) that the
perturbed line intersects. We simply choose the facet defined by ai where ti is
smallest among {t1, . . . , tm} (for small ε > 0).
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Moving a long to the next cone C1 on the path from C≺′(I) to C≺(I) the
same argument applies.

Recall Theorem 2.2.10 which states that any term order can be represented
by a real matrix and Lemma 2.2.9 which together with Lemma 3.1.9 gives a
natural generalization of Lemma 4.3.1 with τε :=

∑n
i=1 εi−1Ai for a suitable

matrix A. It turns out that the argument above for independence of ε works
for any such term order. This is worked out in [19]. In practise, of course, we
are mainly concerned with term orders representable by integer matrices.

In [19] the perturbation strategy is taken even further and both the starting
point and the target point are perturbed avoiding the need for computing a rel-
ative interior point in the starting cones. For our purposes, however, perturbing
the end point suffices.

The idea of using perturbations is well-known in computational geometry.
In fact perturbation techniques can be used as anti-cycling rules in the simplex
algorithm for linear programming.

4.4 Computing the search edge

Let ≺ be the lexicographic term order and use this term order for orienting the
graph of the Gröbner fan. In Algorithm 3.2.2 the search edge eC≺′ (I) has to
be computed given G≺′(I) where ≺′ is some unspecified term order. According
to Proposition 3.2.1 the definition of search edges can be arbitrary. However,
efficiently computing a search edge requires a good definition. Our search edges
will always come from flippable facets.

One strategy for locally computing the search edge eC≺′ (I) is to compute a
unique representation of each flippable facet of the Gröbner cone C≺′(I) and
then choose the smallest of these facets to be eC≺′ (I) in some lexicographic
order. This method requires all facets to be computed every time we check if
“eu = (u, v)” in Algorithm 3.2.2.

A better strategy is to apply a single step of the generic Gröbner walk
starting in C≺′(I) and heading towards C≺(I). A point in the cone C≺′(I) can
be computed deterministically by linear programming. The generic Gröbner
walk now deterministically defines the search edge. This strategy explains the
name “reverse search”.

Let us consider how Algorithm 3.2.2 determines the edges of the search tree.
To find the outgoing edge of a vertex, a single step in the generic Gröbner walk is
performed. To find all ingoing edges to a vertex v it first computes all flippable
facets of v. Then for each facet it computes the neighboring Gröbner cone u
using Algorithm 4.2.3 and asks if (u, v) is the search edge of u by applying a
step of the walk. If so, the edge is an ingoing edge of v, otherwise it is not.

4.5 Exploiting symmetry

In this section we explain how to take advantage of symmetry to speed up
computations. The symmetric group Sn acts on polynomials and ideals of R
by permuting variables and on Rn by permuting coordinate entries. Let I ⊆ R
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be an ideal. We call a subgroup Γ ≤ Sn a symmetry group for I if π(I) = I for
all π ∈ Γ. If we know a symmetry group for I we can enumerate the reduced
Gröbner bases of I up to symmetry. Let Γ be such a symmetry group for I.

In our description all Gröbner bases will be marked and reduced. Thereby
each one will uniquely represent its initial ideal and Gröbner cone. For a
Gröbner basis G of I we use the notation ΓG = {π(G)}π∈Γ for its orbit.

The idea is to exploit the identity flip(π(G), π(F )) = π(flip(G, F )) for all
π ∈ Γ. In other words Γ is a group of automorphisms of the graph of the
Gröbner fan of I. The quotient graph is defined to be the graph whose vertices
are the orbits of Gröbner bases with two orbits ΓG and ΓG′ being connected if
there exists a facet F of the Gröbner cone of G such that flip(G, F ) ∈ ΓG′ . The
flip graph may have loops.

The symmetry-exploiting algorithm enumerates the quotient graph by a
breadth-first traversal. Orbits are represented by Gröbner basis representatives.
One question that arises is how to check if two Gröbner bases G and G′ represent
the same orbit. A solution is to run through all elements π ∈ Γ and check
if π(G) equals G′, or even better to make a similar check for the monomial
initial ideals. Although this does not seem efficient, it is still much faster in
practice than redoing symmetric Gröbner basis and polyhedral computation as
we would have done in the usual reverse search or breadth-first enumeration
without symmetry. An example of a 100 fold speed up is given in Section 9.2.
It is not clear how to combine symmetry-exploiting with reverse search.



Chapter 5

A non-regular Gröbner fan

In light of Section 3.2, and Example 3.2.3 in particular, an important funda-
mental question to ask is the following: Is the Gröbner fan always the normal
fan of a polytope? The answer to this question is no since the Gröbner fan is not
always complete. Thus we rephrase the question for restricted Gröbner fans: Is
the restricted Gröbner fan of an ideal always the normal fan of a polyhedron?

We say that a fan is regular if it is the normal fan of a polyhedron. We
note that the Gröbner fan being regular is stronger than the restricted Gröbner
fan being so. This is because the normal fan of the Minkowski sum of two
polyhedra is the common refinement of their normal fans. The claim follows
since Rn

≥0 with its proper faces is the normal fan of Rn
≤0.

The above question is known to have a positive answer in the following three
special cases:

• If the ideal is homogeneous the answer is yes since the Gröbner fan is the
normal fan of the state polytope of I introduced by Bayer and Morrison
in [5]. A construction of the state polytope is given in in [53, Chapter 2].
We take the Minkowski sum of the state polytope with Rn

≤0 to get a
polyhedron having the restricted Gröbner fan as its normal fan.

• In the case of a principal ideal I = 〈f〉 the Newton polytope New(f) will
almost have the Gröbner fan as its normal fan since two vectors u, v ∈ Rn

pick out the same initial ideal of I if and only if they are maximized on
the same face of New(f). The only thing that keeps New(f) from having
the Gröbner fan of I as its normal fan is that we have not included all
equivalence classes in the Gröbner fan. However, the normal fan of the
Minkowski sum of New(f) and Rn

≤0 is the restricted Gröbner fan.

• A third case where we have a similar result is for zero-dimensional ideals.
The construction of a polytope is similar but simpler than the construc-
tion in the homogeneous case as there is only a finite number of standard
monomials for each initial ideal. We claim, without proof, that the fol-
lowing construction works: For every term order ≺ construct the vector
v≺ equal to the negative of the sum of all exponent vectors of all stan-
dard monomials of in≺(I). Take the convex hull of all v≺ as we vary the

51
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term order. The Minkowski sum of this polytope with Rn
≥0 is a polyhe-

dron whose normal fan is the restricted Gröbner fan. Under a certain
genericity condition this construction appeared in [46].

In contrast to the above, we have the following theorem which is the main result
of [37].

Theorem 5.0.1 The restricted Gröbner fan of the two-dimensional ideal

I = 〈acd + a2c − ab, ad2 − c, ad4 + ac〉 ⊂ Q[a, b, c, d]

is not the normal fan of a polyhedron.

This theorem shows that we cannot be sure, a priori, that Gröbner fans
have the reverse search property by referring to an underlying polytope; see
Example 3.2.3. For this reason Theorem 3.2.6 requires the non-trivial proof
given in Section 3.2.1.

In the following subsections we will prove Theorem 5.0.1, explain how the
example was found and investigate what happens when we homogenize the
ideal.

5.1 The proof

This section contains a proof of Theorem 5.0.1. We start by deducing a nec-
essary condition for a fan to be the normal fan of a polyhedron. We then
show that the restricted Gröbner fan of the ideal in the theorem violates this
condition. Finally we argue that the Gröbner fan has been computed correctly.

5.1.1 A necessary condition

Let F be a fan in Rn. Suppose F is the normal fan of a polyhedron P ⊂ Rn.
The non-empty faces of P are in bijection with the cones in F by taking normal
cones of the faces. Adjacency is preserved in the sense that two vertices of an
edge of P map to cones in F having the normal cone of the edge as a common
facet. Furthermore, the edge is perpendicular to the shared facet. If a set of
normals of the shared facets in F are specified, then for every bounded edge
the difference between its endpoints can be expressed as some scalar times the
specified normal of its normal cone. The scalars are considered to be unknowns.
Since the adjacency information of the vertices of P is present in F , the bounded
edge graph of P can be deduced from F . A necessary condition for F to be
the normal fan of P is that every combinatorial cycle in the edge graph is
a geometric cycle in space. This condition gives rise to a feasible system of
inequalities on the scalars dependent on F alone.

To be more specific about the inequality system, consider the adjacency
graph of the n-dimensional cones in F , or equivalently the edge graph of the
supposed polyhedron P . Let V = {1, . . . ,m} denote the vertices and a subset
E ⊂ {(i, j) ∈ V × V : i < j} denote the edges in the graph. For each shared
facet, choose a normal vector d(i,j) ∈ Rn such that the ith cone is on the
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negative side of the hyperplane with normal vector d(i,j) and the jth cone is
on the positive side. The graph (V,E) is considered to be undirected when we
define its cycles. A vector f ∈ RE is called a flow in (V,E) if

∀j ∈ V :
∑

(i,j)∈E

f(i,j) =
∑

(j,k)∈E

f(j,k).

In other words the flow entering j is the same as the flow leaving j. The set of
flows is a subspace of RE. We introduce a vector s ∈ RE

>0 of unknown scalars
such that the true vector from vertex i to vertex j is s(i,j)d(i,j). Each cycle

in the graph can be represented by a flow f ∈ RE being 0 on the edges not
appearing in the cycle and ±1 elsewhere depending on the relative orientation
of the cycle and the edge. For such an f the condition that the cycle forms a
loop in space can be expressed as:

∑

(i,j)∈E

f(i,j)s(i,j)d(i,j) = 0. (5.1)

Note that (5.1) is a system of n equations – one for each coordinate of d(i,j).
If F is the normal fan of a polyhedron P , there exist positive scalars s(i,j)

satisfying (5.1) for every flow f since the cycle flows span the vector space of
flows. By linearity this is equivalent to having the scalars satisfy (5.1) for a
basis of the vector space of flows rather than the entire space. In matrix form
we may express the necessary condition as the system

As = 0 and s(i,j) > 0 for all (i, j) ∈ E (5.2)

having a solution s where A is a suitable nl × |E| matrix with l being the
dimension of the vector space of flows.

5.1.2 The certificate

Proof of Theorem 5.0.1: The restricted Gröbner fan of the ideal

I = 〈acd + a2c − ab, ad2 − c, ad4 + ac〉 ⊂ Q[a, b, c, d]

has 81 full dimensional cones each corresponding to a monomial initial ideal.
Their adjacency graph (V,E) has 163 edges, with each edge direction normal
to the shared facet. The list of full-dimensional cones, reduced Gröbner bases
and monomial initial ideals can be found on the webpage [35]. We present a
certificate that the fan is not the normal fan of a polyhedron. Only the subgraph
in Figure 5.1 is needed to describe it. Two vectors are written for each edge in
the subgraph. The vector to the right is the edge direction d(i,j) and the vectors
to the left describe four flows in the subgraph.

Let V ′ be the set of vertices appearing in the subgraph and E′ the edges.
Let f1, f2, f3 and f4 denote the flows above. Suppose the restricted Gröbner
fan was the normal fan of a polyhedron P . Equality system (5.1) implies

∀(r, t) ∈ {1, 2, 3, 4} × {1, 2, 3, 4} :
∑

(i,j)∈E′

f r
(i,j)s(i,j)d(i,j)t

= 0. (5.3)
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Figure 5.1: The certificate subgraph used in the proof of Theorem 5.0.1.
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5 (10, 2, 5, 3)
6 (14, 4, 11, 5)

15 (7, 6, 5, 3)
16 (7, 11, 8, 4)
17 (5, 2, 3, 3)

18 (4, 3, 5, 4)
19 (5, 1, 2, 2)
26 (7, 1, 2, 3)
27 (17, 1, 4, 9)
29 (10, 1, 2, 6)

30 (15, 1, 3, 11)
33 (3, 1, 2, 3)
44 (7, 5, 4, 4)
57 (7, 1, 2, 7)
58 (7, 1, 3, 8)

5 6 (3,1,2,1)
5 19 (8,4,5,3)
6 18 (2,1,2,1)

15 16 (6,8,6,3)
15 19 (5,3,3,2)
15 26 (9,2,3,3)
16 17 (8,15,11,5)

16 44 (5,7,5,3)
17 19 (4,1,2,2)
17 33 (6,1,3,4)
18 33 (4,1,3,4)
19 26 (10,1,3,4)
26 27 (18,2,5,9)
27 29 (13,1,3,7)

29 30 (8,1,2,5)
29 44 (9,3,3,5)
30 44 (6,5,4,4)
30 57 (13,1,3,11)
33 58 (6,1,3,7)
57 58 (10,1,3,11)

Figure 5.2: Representative weight vectors for cones in the certificate.

In particular, the sum of the equations in (5.3) for (r, t) = (1, 1), (2, 2), (3, 3),
(4, 4) is zero. Therefore,

0 =
4

∑

r=1

∑

(i,j)∈E′

s(i,j)d(i,j)r
f r
(i,j) =

∑

(i,j)∈E′

s(i,j)

4
∑

r=1

d(i,j)r
f r
(i,j).

The local contribution at each edge except the edge (29,30) is zero because
d(i,j) · (f1

(i,j), f
2
(i,j), f

3
(i,j), f

4
(i,j))

T = 0 (check this in the picture). Consequently,

0 = s(29,30)d(29,30) · f(29,30) = 18s(29,30)

implying s(29,30) = 0. Hence the vertices 29 and 30 have the same coordinates
which contradicts that P is a polyhedron with the required edge graph. 2

Remark 5.1.1 Another way to argue is by observing that we have applied the
trivial direction of Farkas’ lemma to (5.3). With A′ being the 16 × 20 matrix
representing the equalities in (5.3) a variant of Farkas’ lemma says:

∃ y : yT A′ ≥ 0 and yT A′ 6= 0 ⇐⇒ 6 ∃ s > 0 : A′s = 0.

In our case y = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)T where the four nonzero
components correspond to the equations (1, 1), (2, 2), (3, 3) and (4, 4).

5.1.3 Correctness of the subgraph

For completeness, a positive interior point in each of the 15 maximal cones of
the restricted Gröbner fan leading to the inconsistency is given in the top part
of Figure 5.2. Further, a positive vector in the relative interior of every shared
facet is given in the bottom part.

To verify the correctness of the certificate the following procedure is sug-
gested: It is straightforward to check that the flows are flows and that the dot
products of flows and listed directions are 0 except for the edge (29,30). The
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question is how to check the correctness of the edge subgraph and the listed
directions. For each of the listed edges (i, j) with i < j compute the correspond-
ing reduced Gröbner bases Gi and Gj and use Theorem 3.1.9 to compute their
cones Ci and Cj . Check that the listed facet vector for the edge (i, j) is in the
closure of both cones Ci and Cj and that the listed direction vector non-strictly
separates Ci and Cj with Cj being on the non-negative side. Checking that
the listed facet vector is in the relative interior of a facet of Cr completes the
verification. The non-straightforward part of this test was implemented as a
230 line script in Singular [28]. The script itself is available on the internet;
see [35].

5.2 Further remarks

5.2.1 Homogenizing the ideal

In [44] a complete fan in Rn called the extended Gröbner fan is defined for
any (not necessarily homogeneous) ideal I ⊆ R. We remind the reader that
the homogenization of I is defined as Ih := 〈fh〉 ⊆ k[x0, . . . , xn], where fh :=

x
deg(f)
0 f(x1

x0
, . . . , xn

x0
) with deg(f) being the maximal degree of a term in f . Here

“degree” refers to total degree, but we could also consider homogenizations with
respect to ω-degree for any vector ω ∈ Nn. The extended Gröbner fan of I is
defined as the Gröbner fan of Ih intersected with Rn, where Rn is embedded
into Rn+1 as {0} × Rn. Every cone in the Gröbner fan is a union of cones in
the extended Gröbner fan; see Proposition 5.2.3. It is clear that the extended
Gröbner fan is regular since the Gröbner fan of the homogenized ideal is regular
— the normal fan of the projection of the state polytope of Ih to {0}×Rn is the
extended Gröbner fan of I. Therefore our example shows that the restricted
Gröbner fan of an ideal and its extended Gröbner fan need not agree in Rn

>0.
In our example the procedure works as follows. We homogenize the ideal I

using the variable “e” to get

hI = 〈cd2 + ace,−c2e + c2d + abd, c2e + c3 − bce − bcd − abd + abc,−ce2 + ad2,

−c2e + acd − abe, c2e − bce + ac2 − abd, c2e + a2c, bce + a2b〉.
The Gröbner fan of the new ideal is a complete fan in R5. Intersecting this fan
with R4 × {0} we get the extended Gröbner fan, a regular fan that refines the
Gröbner fan of I in the positive orthant. The extended Gröbner fan has 479
full-dimensional cones. The 81 full-dimensional Gröbner cones of I are covered
by 353 such cones. Only 156 (restricted) cones are needed to cover the 81 cones
in the restricted Gröbner fan of I. Considering only the non-negative orthant,
62 restricted Gröbner cones are preserved, 11 cones are subdivided into two
while the remaining 8 cones are subdivided into 3, 3, 5, 5, 6, 8, 10 and 32 cones,
respectively, when we pass to the extended fan. Exactly how the cones are
subdivided is shown on the webpage [35]. The subgraph listed in Figure 5.1 is
valid for the extended fan except that the cone at vertex 57 is divided into two.

In general, to see that the extended Gröbner fan is in fact a refinement of
the Gröbner fan (where defined) we use Proposition 5.2.3 below. Recall [14,
Theorem 4, page 397]:
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Proposition 5.2.1 Let I ⊆ k[x1, . . . , xn] be an ideal, ω = (1, . . . , 1) ∈ Nn a
vector and ≺ a term order. Then {gh : g ∈ G≺ω(I)} generates Ih.

Remark 5.2.2 In fact the generating set of Ih is a Gröbner basis. Moreover,
the proposition generalizes to an algorithm for computing Ih with respect to
any grading ω ∈ Zn

>0 on k[x1, . . . , xn].

Proposition 5.2.3 below allows us to compute initial ideals with respect to
arbitrary weight vectors even if the ideal I is not homogeneous. In a sense this
generalizes Corollary 3.1.13.

Proposition 5.2.3 Let I ⊆ k[x1, . . . , xn] be an ideal, ω ∈ Rn a vector and ≺ a
term order on k[x1, . . . , xn]. Let ≺′ be the term order on k[x0, . . . , xn] defined
by xu ≺′ xv ⇔

degtotal(x
u) < degtotal(x

v) ∨ (degtotal(x
u) = degtotal(x

v) ∧ xu
|x0=1 ≺ xv

|x0=1).

The set G := {inω(g|x0=1) : g ∈ G≺′
(0,ω)

(Ih)} is a Gröbner basis for inω(I) with

respect to ≺.

Proof. It is straight forward to prove the containment G ⊆ inω(I). It remains
to be proved that in≺(inω(I)) ⊆ 〈in≺(g) : g ∈ G〉. The left hand side is gene-
rated by elements of the form m = in≺(

∑

i inω(fi)) where fi ∈ I. We will show
that any such m is on the right hand side. Without loss of generality we may
assume that the fi’s have the same ω-degree as m. Hence m = in≺(inω

∑

i fi).
Let f =

∑

i fi ∈ I. Then fh ∈ Ih and the initial term in≺′
(0,ω)

fh must be
divisible by the initial term in≺′

(0,ω)
(g) of some Gröbner basis element g ∈

G≺′
(0,ω)

(Ih). Consequently, (in≺′
(0,ω)

(g))|x0=1 divides (in≺′
(0,ω)

fh)|x0=1. Observe

that (in≺′
(0,ω)

(g))|x0=1 = in≺ω(g|x0=1) = in≺(inω(g|x0=1)) since g is homoge-

neous. Similarly, (in≺′
(0,ω)

(fh))|x0=1 = in≺ω(fh
|x0=1) = in≺(inω(f)). This proves

that in≺(inω(g|x0=1)) divides m = in≺(inω(f)) as desired. 2

If two generic vectors (0, ω) and (0, ω′) pick out the same monomial initial ideal
of Ih and thereby also the same marked Gröbner basis of Ih, then they will
give the same set G in the Proposition and inω(I) and inω′(I) must be equal.
This proves that the extended Gröbner fan is a refinement of the Gröbner fan
(where defined).

5.2.2 A program for finding the example

A C++ program was written for finding non-regular Gröbner fans. The input
for the program is a set of generators for an ideal I and the output is either a
coordinatization of a polyhedron with the restricted Gröbner fan as its normal
fan or a certificate for its non-existence. The program works in two steps.

• In step 1 it calls the software package Gfan [33] being developed by the
author; see Section 9.1. Using exhaustive search and the algorithms in
Chapter 4, Gfan computes the full-dimensional cones and the codimension
1 cones of the Gröbner fan of I.
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• From the Gröbner fan computed above the inequality system (5.2) is de-
duced. Linear programming methods are used for checking its feasibility.
The result is either positive scalars leading to a coordinatization of the
vertices of the polyhedron or a certificate for its non-existence.

The software libraries [27] and [20] were used for doing the arithmetic and
solving linear programming problems, respectively.

Knowing that we should avoid homogeneous, zero-dimensional and principal
ideals, it was not hard to find the example when the C++ program had been
written. A practical issue is that we are restricted to ideals with not too complex
Gröbner fans as the entire edge graph must be handled by the LP-code. In
looking for a 3-variable example this seems to be an unfortunate restriction as
nothing interesting happens in the small manageable examples we have tried.
Thus it remains an open problem if a smaller example exists or if the ideal can
be replaced by a prime ideal.



Chapter 6

Tropical varieties

Before we learn to add and multiply numbers we learn to compare them i.e. take
their maximum. Maximum and plus are the two basic operations in tropical
mathematics. Since we are usually not thinking about the max-plus operations
in abstract terms we may be surprised to realize that they satisfy the distributive
law. The fact that many combinatorial optimization problems can be phrased
in tropical language is reason enough for a closer study of the mathematical
structure. It is the purpose of the second half of this thesis to study the relation
between tropical mathematics, algebraic varieties and Gröbner fans.

Tropical mathematics, being a fundamental topic, has been reinvented many
times. It was given the adjective “tropical” to honor the Brazilian mathemati-
cian Imre Simon. Recently tropical mathematics has become a very active
field of research. We start by giving a very general introduction to tropical
mathematics. In Section 6.1 which is about tropical varieties we will leave the
max-plus way of thinking and state definitions and theorems in terms of initial
ideals and Gröbner cones.

In the tropical semi-ring (R ∪ {−∞},⊕,⊙) the tropical sum a ⊕ b of two
numbers is their maximum and the tropical product a⊙b is the usual sum a+b.
For example (−4) ⊕ (−7) ⊙ 4 = −3. We notice that ⊕ and ⊙ are associative
and commutative compositions. Furthermore, the distributive law holds:

a ⊙ (b ⊕ c) = a + max(b, c) = max(a + b, a + c) = a ⊙ b ⊕ a ⊙ c

The additive neutral element is −∞. Since −∞ is the only element having an
additive inverse the word “semi-ring” is suitable.

A tropical polynomial of degree n in one variable is of the following form

F = c0 ⊕ c1 ⊙ x ⊕ c2 ⊙ x ⊙ x ⊕ · · · ⊕ cn ⊙ x ⊙ · · · ⊙ x

where cn 6= −∞. If some coefficient ci equals the additive neutral element
−∞ we may consider its term as being non-present. A tropical polynomial F
defines the tropical polynomial function F (x). As the following example shows
this function is piecewise linear.

Example 6.0.4 Let F = (−1)⊙x⊙x⊕ 1⊙x⊕ 2. Figure 6.1 shows the graph
of F (x) = max(2x − 1, x + 1, 2). Notice that F factors as F = (−1) ⊙ (0 ⊙ x ⊕
1) ⊙ (0 ⊙ x ⊕ 2).

59
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We wish to define the “zero set” of a tropical polynomial. A tropical polynomial
function F (x) only attains the additive neutral value −∞ if either

• x = −∞ and the constant coefficient in F is −∞, or

• F contains no terms.

For this reason, defining the zero set of F to be the set of points where F (x) =
−∞ would be uninteresting. Instead we choose the following definition:

Definition 6.0.5 Let F be a tropical polynomial. A point x ∈ R is a zero of
F if the value F (x) is attained by at least two terms of F when evaluating F
tropically in x. The zero set T(F ) is the set of all zeros of F .

In other words T(F ) is the set of points where F (x) is not differentiable. In
Example 6.0.4, T(F ) = {1, 2}. The definition is reasonable since T(F1 ⊙ F2) =
T(F1) ∪ T(F2). Notice that from each tropical linear term in the factorization
of F in Example 6.0.4 we can read off one zero. The generalization to several
variables is straight forward. Formally the tropical polynomial (semi-)ring in n
variables is the group (semi-)ring (R ∪ {−∞},⊕,⊙)[Nn] over the monoid Nn.

Example 6.0.6 Let F = 0⊕ (−2)⊙x⊕ (−1)⊙y⊕ (−4)⊙x⊙y⊕(−6)⊙x⊙x⊕
(−4)⊙y⊙y. Evaluating the polynomial gives a piece-wise linear function. The
zero set T(F ) is a tropical curve which divides R2 into six regions, one for each
term. In each region the maximum is attained by just one term. See Figure
6.2. Depending on the coefficients one or more of these regions may be missing.

We mention a few properties of zero-sets in the plane. A polynomial of degree
1 with three terms defines a tropical line which is the union of three half-lines
meeting in a point. The coordinates of the point depends on the coefficients
of the defining polynomial. The half-lines go off in direction south, west and
north-east. An interesting property of the plane is that any two generic points
are contained in a unique line and any two generic lines intersect in a single
point. This also holds for tropical lines, see Figure 6.3.

1

1

Figure 6.1: The graph of F (x) = max(2, x + 1, 2x − 1) in Example 6.0.4
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The tropical semi-ring can be generalized to polytopes in Rn. The tropical
sum P ⊕ Q of two polytopes will be the convex hull of their union and the
tropical product P ⊙ Q will be their usual Minkowski sum P + Q. Observe
that the tropical product of the Newton polytopes of two polynomials is the
Newton polytope of the product of the polynomials. Many known problems
and algorithms can be stated in tropical language.

• Evaluating a tropical polynomial with all coefficients 0 is the same as
maximizing a linear form over its Newton polytope.

• The maximal matching in a bipartite graph with 2×n vertices equals the
tropical permanent of the n × n matrix of edge weights.

• The negated n × n matrix of shortest distances in a directed graph with
n vertices can be computed tropically as An where A is the n× n matrix
of negated edge lengths.

In tropical mathematics definitions are made in such a way that the classical
results have tropical analogs. The endless list of constructions and theorems
in tropical mathematics includes the tropical projective plane [48], a tropical
Bezout theorem [48], a notion of tropical convexity [15], a group law for tropical
elliptic curves [59] etc.. Some of these examples seem to suggest that tropical
geometry is a pure abstract piece of mathematics with no applications. This is
not the case. Tropical mathematics is closely related to Bernstein’s Theorem
which bounds the number of solutions in the algebraic torus of a polynomial
system of n polynomial equations in n variables based on the geometry of
the Newton polytopes of the polynomials. Related to this is the polyhedral
numerical homotopy for finding the solutions. In [30] progress was made on
Smale’s sixth problem by showing that the number of relative equilibria of four
bodies satisfying Newton’s laws of gravity is finite. A key step here was a
computation of the mixed faces of a Minkowski sum and an investigation of
the corresponding initial ideals. Other applications of tropical mathematics are
in algebraic statistics where polytope propagation has been used as a method
for parametric inference for hidden Markov models in computational biology;
see [47]. Applications of tropical ideas to mathematics itself have so far mainly
been in complex and real enumerative geometry; see [24, Section 3].

1

1

2

1

0

xy
yy

y

1
x

xx
2

Figure 6.2: The zero set of the quadratic curve in Example 6.0.6 which is equal
to the tropical variety in Example 6.3.4.
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Figure 6.3: The intersection point of two tropical lines. The tropical line con-
taining two specified points.

Our primary interest is in tropical varieties, which we will define soon, and in
structure that will lead to algorithms for their computation. Although attempts
are made to put tropical mathematics in an abstract setting we shall be very
concrete and study tropicalizations of algebraic varieties with an embedding.
This will work best for our computational purposes. One way to make things
more abstract is by for example considering tropical curves as abstract balanced
graphs without an embedding, see [24]. More ambitious attempts can be found
in Mikhalkin’s book [43] which is work in progress. Here a definition of for
example a tropical schemes can be found.

Remark 6.0.7 We have chosen to use maximum as the tropical addition. An
equally good choice would have been minimum. The choice of maximum is
compatible with the choice of maximizing the degree when taking initial forms
and considering outer normal cones rather than inner. However, in Section 6.1
our choice forces us to introduce a minus sign when taking the valuation of a
variety.

6.1 Tropical varieties

Tropical varieties are images of varieties in (C{{t}}∗)n under the valuation map.
We will explain this in the following.

Definition 6.1.1 The Puiseux series field C{{t}} is the set of (possibly finite)
formal series of the form

p = c1t
v1 + c2t

v2 + . . . ,

where ci ∈ C∗ and vi ∈ Q are increasing with a common denominator N ∈
N\{0}. The field comes with a valuation:

val : C{{t}} → Q ∪ {∞}

taking a series to the exponent of the first term. For the series above val(p) = v1.
We define val(0) = ∞.

An important property of C{{t}} is that it is algebraically closed. The proof
of this is constructive, namely, it follows from the Newton-Puiseux algorithm
which produces all solutions, up to any desired degree, of a polynomial equation
f = 0 with f ∈ C{{t}}[x] \ {0}. The Newton-Puiseux algorithm works by
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1
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Figure 6.4: The Newton polygons of f and f ′ in Example 6.1.2. A normal
vector of the lower edge in the left picture is (−1, 1

2), where the first coordinate
is the t-component and the second coordinate is the x component.

considering the Newton polygon of f (the convex hull of exponent vectors of
f) which may be unbounded in R2. Letting the t-axis be vertical, the negative
slopes of the lower-edges of the Newton polygon of f give the various possibilities
for the first exponent v1 in a Puiseux series solution. The coefficient is found by
finding roots of a certain initial form in C[x]. This gives the possible first terms
of a solution. Repeating the process we get the succeeding terms. The process
is best illustrated by an example. We will not explain the details but just give
the flavor of the algorithm. It is the close connection to Newton polygons that
ties Puiseux series solutions and initial ideals together.

Example 6.1.2 To find the two roots of f = (1 + t) + t2x + tx2 we draw its
Newton polygon; see Figure 6.4 (left). We are searching for a solution of the
form x = c1t

v1 +x′ where x′ consists of higher order terms. We define b = c1t
v1 .

Substituting x = b+x′ into f we get f = (1+ t)+ t2(b+x′)+ t(b2 +2bx′ +x′2).
Using that the degree of b is lower than the degree of x′ we see that the lowest
degree terms in f (before canceling out terms) are among 1, t2b and tb2. These
terms appear as points in our picture. If x is a root the lowest degree terms must
cancel. This can only happen if the exponent v1 is −1

2 . The value v1 = −1
2 can

be read off from our picture by observing that (−1,−v1) is a normal to the lower

edge in our picture. The choice of v1 leads to the constraint 0 = 1+ t(c1(t
− 1

2 ))2

or, equivalently, 0 = 1 + c2
1 on the coefficient c1. We have the choice of letting

c1 be +i or −i. Let us choose c1 = i. Now x must have the form x = it−
1
2 + x′.

Substituting this into f we get a polynomial f ′ = (t+ it
3
2 )+(2it

1
2 + t2)x′ + tx′2.

We may now compute the next term of x, the first term of x′, by solving f ′ = 0.
The Newton polygon of f ′ (Figure 6.4 (right)) shows that there is only one
choice v2 = 1

2 for the next exponent. (The choice −1
2 is not valid since −1

2 6> v1.)

Continuing this way we get the Puiseux series x = it−
1
2 + 1

2 it
1
2 − 1

2 t + . . . .

Remark 6.1.3 The difficult part of the proof of the Newton-Puiseux algorithm
is to show that the exponents in the produced series have a common denomi-
nator. It is important that C has characteristic 0. The Puiseux series field over
an algebraically closed field is not algebraically closed in general.

If a polynomial in C{{t}}[x1, . . . , xn] happens to be in C[x1, . . . , xn] we say that
the polynomial has constant coefficients.
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Let V ⊆ C{{t}}n be a variety defined by an ideal I ⊆ C{{t}}[x1, . . . , xn].
We let val denote the coordinatewise valuation val : C{{t}}n → (Q ∪ {∞})n.
We may consider the usual topological closure of −val(V )∩Qn in Rn. This set
is the tropical variety of I or the tropicalization of V . This is the natural way
to define tropical varieties from a Puiseux series view-point. However, for the
purpose of this thesis it is much more natural to define the tropical varieties in
terms of initial ideals and Gröbner fans. A definition in terms of initial ideals
was first presented in [51] and [54].Our definition requires a few steps and goes
as follows.

Definition 6.1.4 For ω ∈ Rn the t-ω-degree of a term ctaxv with c ∈ C∗,
a ∈ Q and v ∈ Zn is defined as −val(cta)+ω ·v = −a+ω ·v. The t-initial form
t-inω(f) ∈ C[x1, . . . , xn] of a polynomial f ∈ C{{t}}[x1, . . . , xn] is the sum of
all terms in f of maximal t-ω-weight but with 1 substituted for t.

Remark 6.1.5 Notice that since t has t-ω-degree −1, the maximal t-ω-weight
is attained by a term if the polynomial is non-zero. Furthermore, only a finite
number of terms attain the maximum. Therefore, it makes sense to substitute
t = 1 and consider the finite sum of terms as a polynomial in C[x1, . . . , xn].

Example 6.1.6 Consider f = (1 + t) + t2x + tx2 ∈ C{{t}}[x1, . . . , xn] from
Example 6.1.2. Let ω = (1

2 ) ∈ R1. Then t-inω(f) = 1 + x2. This happens to
be the polynomial defining the coefficient c1 ∈ C in the example. For any other
choice of ω the t-initial form is a monomial.

Definition 6.1.7 Let I ⊆ C{{t}}[x1, . . . , xn] and ω ∈ Rn. The t-initial ideal
of I with respect to ω is defined as:

t-inω(I) := 〈t-inω(f) : f ∈ I〉 ⊆ C[x1, . . . , xn].

Remark 6.1.8 Sometimes we will take t-initial ideals of ideals that are not in
ideals in C{{t}}[x1, . . . , xn] without further definition. In these cases it should
be clear from the context what is meant.

Definition 6.1.9 Let I ⊆ C{{t}}[x1, . . . , xn] be an ideal. The tropical variety
of I is the set

T (I) := {ω ∈ Rn : t-inω(I) is monomial-free}.
Here monomial-free means that the ideal does not contain a monomial.

Lemma 6.1.10 Let I ⊆ C{{t}}[x1, . . . , xn] be an ideal and ω ∈ Rn. Then
ω ∈ T (I) if and only if for all f ∈ I, t-inω(f) is not a monomial.

Proof. The “only if” direction is clear. For the other implication, suppose that
ω 6∈ T (I). Then there exists a monomial in t-inω(I). After a few rewritings
we may assume that the monomial has the form

∑

i t-inω(fi) where fi ∈ I.
Multiplying the fi’s by suitable t-powers, they all get the same maximal t-
ω-degree. Taking the sum of the new polynomials the monomials with this
maximal t-ω-degree will cancel to give a single monomial. This proves that I
has a polynomial f with t-inω(f) being a monomial. 2
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Lemma 6.1.11 For a principal ideal 〈f〉 ⊆ C{{t}}[x1, . . . , xn] we have

T (〈f〉) = {ω ∈ Rn : t-inω(f) is not a monomial}.

Proof. The inclusion “⊆” is clear. For the other inclusion, suppose that t-inω(f)
is not a monomial. According to Lemma 6.1.10 we need to check that t-inω(h)
is not a monomial for all h ∈ 〈f〉. Such an h is of the form gf with g ∈
C{{t}}[x1, . . . , xn]. Observe that t-inω(gf) = t-inω(g)t-inω(f). This cannot be
a monomial since t-inω(f) has more than one term. 2

Example 6.1.12 In Example 6.1.2 the tropical variety of 〈f〉 is {1
2} while

T (〈f ′〉) = {−1
2 , 1

2}.

The first part of this thesis has been about usual initial ideals where the valua-
tion is not taken into account when taking initial forms. The following lemma
justifies Definition 6.1.14 as an equivalent definition for ideals generated by
constant-coefficient polynomials. The proof will be given later in this section.

Lemma 6.1.13 Let I ⊆ C[x1, . . . , xn] be an ideal and J = 〈I〉C{{t}}[x1,...,xn] ⊆
C{{t}}[x1, . . . , xn] be the ideal it generates. Then inω(I) = t-inω(J) for all
ω ∈ Rn.

Definition 6.1.14 Let I ⊆ Q[x1, . . . , xn] (or I ⊆ C[x1, . . . , xn]). The tropical
variety of I is the set

T (I) := {ω ∈ Rn : inω(I) is monomial-free}.

We could have stated the above definition for any field k. However, if k =
C{{t}} the definition would not be consistent with our previous definition. For
this reason we stick to Q and C.

In Section 6.3 we will explain why it for most purposes suffices only to
consider tropical varieties defined by Definition 6.1.14. Basically, the other
tropical varieties (Definition 6.1.9) are gotten by intersecting with a hyperplane.

The first computational question for tropical varieties we will address is how
to compute t-initial ideals. We restrict ourselves to ideals generated by elements
of C[t, x1, . . . , xn] since it is here Gröbner bases work best. Lemma 6.1.13 will
follow as an easy corollary.

Proposition 6.1.15 [42, Proposition 7.3] Let I ⊆ C[t, x1, . . . , xn] be an ideal,
J = 〈I〉C{{t}}[x1,...,xn] and ω ∈ Rn. Then t-inω(I) = t-inω(J).

Proof. We need to prove the inclusion t-inω(I) ⊇ t-inω(J). The other inclusion
is clear since I ⊆ J . The right hand side is generated by elements of the form
f = t-inω(g) where g ∈ J . Consider such f and g. The polynomial g must be
of the form g =

∑

i ci · gi where gi ∈ I and ci ∈ C{{t}}. Let d be the (−1, ω)-
degree of inω(g). The degrees of terms in gi are bounded. Terms α · tβ in ci

of large enough t-degree will make the (−1, ω)-degree of α · tβ · gi drop below
d since the degree of t is negative. Consequently, these terms can simply be
ignored since they cannot affect the initial form of g =

∑

i ci · gi. Without loss
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of generality we may assume that these terms have already been removed from
g. Renaming and possibly repeating some gi’s we may write g as a finite sum
g =

∑

i c
′
i ·gi where c′i = αi · tβi and gi ∈ I with αi ∈ C and β ∈ Q. We will split

the sum into subsums grouping together the c′i’s that have the same t-exponent
modulo Z. For suitable index sets Aj we let g =

∑

j Gj where Gj =
∑

i∈Aj
c′i ·gi.

Notice that all t-exponents in a Gj are congruent modulo Z while t-exponents
from different Gj ’s are not. In particular there is no cancellation in the sum
g =

∑

j Gj . As a consequence inω(g) =
∑

j∈S inω(Gj) for a suitable subset S.
We also have t-inω(g) =

∑

j∈S t-inω(Gj). We wish to show that each t-inω(Gj)
is in t-in(I). We can write tγj · Gj =

∑

i∈Aj
tγj · c′i · gi for suitable γj ∈ Q such

that tγj · c′ ∈ C[t] for all i ∈ Aj . Observe that

t-inω(Gj) = t-inω(tγj · Gj) = t-inω(
∑

i∈Aj

tγj · c′i · gi) ∈ t-inω(I).

Applying t-inω(g) =
∑

j∈S t-inω(Gj) we see that f = t-inω(g) ∈ t-inω(I). 2

Remark 6.1.16 For f ∈ C[t, x1, . . . , xn] we have t-inω(f) = (in(−1,ω)(f))|t=1.
Consequently, for I ⊆ C[t, x1, . . . , xn] we have t-inω(I) = (in(−1,ω)(I))|t=1. In
order to compute t-inω(I) we may simply compute the initial ideal in(−1,ω)(I)
using Corollary 3.1.13 or Proposition 5.2.3 and substitute.

Proof of Lemma 6.1.13. Consider I ′ = 〈I〉C[t,x1,...,xn] ⊆ C[t, x1, . . . , xn]. Propo-
sition 6.1.15 shows that t-inω(J) = t-inω(I ′) and according to Remark 6.1.16
t-inω(I ′) = in(−1,ω)(I

′)|t=1. Since the reduced Gröbner bases of I and I ′ are the
same, not involving t, we get in(−1,ω)(I

′)|t=1 = inω(I). 2

We finish this section by stating the theorem referred to in the beginning.
We consider this the most important theorem in tropical geometry since it
shows that the initial ideal definition and the alternative valuation definition of
tropical varieties are equivalent.

Theorem 6.1.17 Let I ⊆ C{{t}}[x1, . . . , xn] be an ideal. Then

Qn ∩ T (I) = −val(V (I) ∩ (C{{t}}∗)n).

We provide a proof for the trivial “⊇” inclusion and for the special case where
the ideal is zero-dimensional; see [42, Theorem 3.1]. The second half of the
proof uses techniques from Section 6.4 below.

Proof. Let p ∈ V (I) ∩ (C{{t}}∗)n. According to Lemma 6.1.10 it suffices to
show that for all f ∈ I we have −val(p) ∈ T (〈f〉). Let ω = −val(p). When
we insert p into f we get 0. This means that all terms in f cancel out. In
particular the terms of lowest t-degree in the sum f(p) before cancellation must
cancel. These arise from the lowest t-ω-degree terms of f which happen to be
the terms in t-inω(f) before substituting t = 1. Consequently t-inω(f) cannot
be a monomial. This proves that ω = −val(p) ∈ T (I).

Suppose I is a zero-dimensional ideal and consider a minimal primary de-
composition I =

⋂

i Qi. According to Proposition 6.4.1 and Proposition 6.4.2
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T (I) = T (
⋂

i Qi) =
⋃

i T (Qi) =
⋃

i T (
√

Qi). However, the prime ideal
√

Qi of
dimension 0 is maximal and must have form 〈x1 − p1, . . . , xn − pn〉 for some
pj ∈ C{{t}} since C{{t}} is algebraically closed. If ω ∈ T (I) then ω ∈ T (

√
Qi)

for some i. This ω must pick out both terms in every binomial xj − pj. Hence
ω = −val(p). 2

As mentioned, the initial ideal definition of tropical varieties is due to Speyer
and Sturmfels and they present a proof of Theorem 6.1.17 in [51] which seems
to have a gap however. Other proofs can be found in [39, Theorem 5.2.2] and
[16, Theorem 4.2]. In [42] a constructive proof is presented which will take a
point in the tropical variety and lift it to a point in (C{{t}}∗)n with the right
valuation.

In view of the original Puiseux valuation definition of tropical varieties it
seems more natural to define tropical varieties for ideals in the Laurent poly-
nomial ring C{{t}}[x±1

1 , . . . , x±1
n ]. However as we will apply Gröbner basis

techniques in the following, to us it makes more sense to consider ideals in the
polynomial ring rather than the Laurent polynomial ring. For example, in the
Laurent polynomial ring the division algorithm does not have to terminate since
any two monomials are divisible by each other.

6.2 Examples and the basic structure

In this section we will take a closer look at the structure of tropical varieties.
We will restrict ourselves to varieties of ideals in C[x1, . . . , xn] defined using
usual initial ideals; see Definition 6.1.14. Such tropical varieties are invariant
under scaling by a positive scalar s ∈ R>0. In fact, if the defining ideal is
homogeneous (with respect to some positive grading) the Gröbner fan has full
support and the tropical variety can be covered by a finite set of Gröbner cones.
Sometimes it is useful to give the tropical variety a polyhedral structure. In
the homogeneous case we also define T (I) to be the set of Gröbner cones Cω(I)
for which inω(I) does not contain a monomial. This is a closed condition in the
sense that if inω(J) is monomial-free then so is J . Hence, T (I) is a polyhedral
fan. It should lead to no confusion that we use T (I) to denote the fan as well
as the support of the fan.

The tropical variety defined by a principal ideal f ∈ 〈f〉 is called a tropical
hypersurface. Since inω(gf) = inω(g)inω(f) for f, g ∈ C[x1, . . . , xn] we have
inω(〈f〉) = 〈inω(f)〉. This shows that T (〈f〉) consist of all normal cones of the
Newton polytope of f of dimension less than n. For short we denote the tropical
hypersurface by T (f).

Example 6.2.1 Let I = 〈x + y + z〉 ⊆ C[x, y, z]. The Newton polytope of
x + y + z has 3 vertices, 3 edges and one 2-dimensional face. The normal cones
of the edges and the 2-dimensional face are three halfplanes and a line. These
are the cones in T (I).

Example 6.2.2 By a monomial difference we mean a binomial of the form
xu−xv with u, v ∈ Nn. The tropical variety of a homogeneous ideal I generated
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Figure 6.5: The tropical variety of the ideal in Example 6.2.3 drawn projectively.

by monomial differences is the homogeneity space of I. To see this observe
that any reduced Gröbner basis of I must consist of only binomials. Any
initial ideal inv(I) can be compute from a reduced Gröbner basis by applying
Corollary 3.1.13. However, for any v that does not pick out both terms in all
binomials the initial ideal will contain a monomial. Thus any monomial-free
initial ideal of I is I itself. In particular, the tropical variety of a toric ideal is
just a subspace.

Example 6.2.3 This example has become the standard example of a tropical
variety. The 10 2x2 minors of a 2x5 matrix

(

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

)

are
a = x11x22 − x12x21

b = . . .
. . .

They satisfy the Grassmann-Plücker relations:

0 = bf − ah − ce = bg − ai − de = cg − aj − df = ci − bj − dh = fi − ej − gh.

The ideal generated by these relations is called the Grassmann-Plücker ideal
I ⊆ Q[a, . . . , j]. The ideal is prime and has dimension 7 and the tropical va-
riety of I is pure of dimension 7. The homogeneity space of I has dimension
5 and all cones in the tropical variety contain this subspace. Besides the ho-
mogeneity space the tropical variety consists of 10 6-dimensional cones and 15
7-dimensional cones. The f-vector of the complex is (1, 10, 15). Modulo the
homogeneity space the tropical variety is 2-dimensional. Projectively we may
draw its combinatorics as the Petersen graph; see Figure 6.5. The homogeneity
space is the center of the projection. The Gröbner fan of which the tropical
variety is a subfan has f-vector (1, 20, 120, 300, 330, 132).

Example 6.2.4 Let I ⊆ Q[a, b, . . . , o] be the ideal generated by the 3x3 minors
of the matrix
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



a b c d e
f g h i j
k l m n o



 .

The f-vectors of the tropical variety and the Gröbner fan are (1, 45, 315, 930,
1260, 630) and (1, 45, 585, 3390, 10710, 19890, 21750, 12960, 3240), respectively.
For example there is 1 cone of dimension 7 in both fans, namely the homogeneity
space C0(I). The Krull dimension of Q[a, b, . . . , o]/I is d = 12. The tropical
variety is pure. It only has cones up to dimension 12 while the Gröbner fan
contains cones all the way up to dimension 15.

If the ideal I ⊆ C[x1, . . . , xn] is not homogeneous we may homogenize it
according to the definition in Section 5.2.1. As we saw in that section the
Gröbner fan structure may change when we homogenize. However as a subset
of Rn the tropical variety is preserved under homogenization if we restrict the
homogenized tropical variety to {0} × Rn:

Lemma 6.2.5 Let I = 〈f1, . . . , fm〉 ⊆ k[x1, . . . , xn] be an ideal. For ω ∈ Rn

the initial ideal inω(I) contains a monomial if and only if in(0)×ω(〈fh
1 , . . . , fh

m〉)
contains a monomial.

Proof. Suppose xu ∈ inω(I). The there exists an f ∈ I such that inω(f) = xu.
For a suitable choice of aj ∈ Nn and indices ij we have f =

∑

j xaj fij . Consider

f ′ =
∑

j xa′
j fh

ij
where a′j ∈ Nn+1 is aj ∈ Nn with an additional coordinate

adjusted so that the same cancellations happen as before. Taking the (0, ω)-
initial form of f ′ the terms keep their old ω degrees as new (0, ω)-degrees. For
this reason in(0,ω)(f

′) has just one term and in(0,ω)(〈fh
1 , . . . , fn

m〉) contains a
monomial.

For the other inclusion, suppose that xu ∈ in(0,ω)(〈fh
1 , . . . , fh

n 〉) for u ∈
Nn+1. Then xu = in(0,ω)(f) for some f ∈ 〈fh

1 , . . . , fh
n 〉. Notice that f|x0=1 ∈

〈f1, . . . , fn〉k[x1,...,xn] = I. Since inω(f|x0=1) = xu
|x0=1 we have xu

|x0=1 ∈ inω(I).
2

The lemma says that we need not compute the true homogenization of I but
may homogenize any generating set. Usually such a homogenization could
lead to too many components but as tropical varieties ignore the coordinate
hyperplanes of C{{t}}n this is not a problem.

Notice that the above proof will go through even if we homogenize with
respect to another grading of k[x1, . . . , xn]. However, the polyhedral structure
of the tropical variety depends on the choice of grading:

Example 6.2.6 Consider I = 〈ab3c+c2+bc+b2+abc3+ab2c2, a2bc+c+b+a+
abc2 + ab2c〉 ⊆ k[a, b, c]. The f-vector of T (Ih) is (1, 8, 6) if we homogenize with
respect to the grading (1, 1, 1) but (1, 10, 8) if we choose the grading (2, 1, 1).

Applying a GLn(Z) linear transformation to a tropical variety we again get
a tropical variety. This is easiest seen if we consider tropical varieties defined
by ideals in R = C[x±1

1 , . . . , x±1
n ]. For a matrix A ∈ GLn(Z) we define the
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C-algebra isomorphism ϕA : R → R by sending xv to xAv. We refer to this
substitution as a multiplicative change of variables. Below initial ideals are
considered as ideals in the Laurent polynomial ring.

Proposition 6.2.7 Let A be as above. For an ideal I ⊆ C[x±1
1 , . . . , x±1

n ] and a
vector ω ∈ Rn we have

inAT ω(I) = ϕ−1
A (inω(ϕA(I))).

Proof. To prove the proposition observe that for f ∈ I we have inAT ω(f) =
ϕ−1

A (inω(ϕA(f))), since (AT ω)T v = ωT (Av), and use that ϕ is an isomorphism
of Laurent polynomial rings. 2

Corollary 6.2.8 Let A be as above. For an ideal I ⊆ C[x±1
1 , . . . , x±1

n ]

T (I) = AT (T (ϕA(I)))

where the right hand side is a linear transformation of T (ϕA(I)).

If a tropical variety is defined by a homogeneous ideal I ⊆ C[x1, . . . , xn] it
is also the tropical variety of an ideal J ⊆ R and thus applying the linear
transformation to the variety we get a new variety – also defined by some ideal
in C[x1, . . . , xn]. However, it is not clear how the polyhedral structure induced
by the Gröbner fan changes during this procedure.

6.3 Reduction to Q[x1, . . . , xn]

Since we are seeking algorithms that can be implemented on computers it is not
possible to consider ideals generated by arbitrary elements of C{{t}}[x1, . . . , xn].
The reason is that the coefficient field is uncountable. The uncountability comes
partly from C and partly from the infinite series in t. The field C(t) of rational
functions in t is a subfield of C{{t}} with a compatible valuation and the field
of algebraic numbers Q ⊆ C is countable. Restricting ourselves to polynomials
generated by elements in Q(t)[x1, . . . , xn] we no longer have the problem with
uncountability. It will follow from Lemma 6.3.1 and Lemma 6.3.5 that it is no
further restriction to have our algorithms work for ideals in I ⊆ Q[x1, . . . , xn]
only.

We start by considering an ideal I ⊆ C{{t}}[x1, . . . , xn] generated by ele-
ments of C(t)[x1, . . . , xn]. We may clear denominators of each generator by
multiplying it with a suitable polynomial in C[t] which is a unit in C(t).
Hence the ideal is generated by polynomials in C[t, x1, . . . , xn]. Let J = I ∩
C[t, x1, . . . , xn]. According to Proposition 6.1.15 and Remark 6.1.16, t-inω(I) =
t-inω(J) = in(−1,ω)(J)|t=1. The ideal in(−1,ω)(J) is homogeneous in the (−1, ω)-
grading, implying that in(−1,ω)(J) is monomial-free if and only if in(−1,ω)(J)|t=1

is monomial-free; see Lemma 6.3.2 below. Thus, to find the ω’s for which
t-inω(I) is monomial-free we need to find all ω’s for which in(−1,ω)(J) is mono-
mial-free. We summarize this in the following Lemma.
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Lemma 6.3.1 Let I ⊆ C{{t}}[x1, . . . , xn] be an ideal generated by elements of
C[t, x1, . . . , xn]. Then

{−1} × T (I) = T (I ∩ C[t, x1, . . . , xn]) ∩ ({−1} × Rn).

Lemma 6.3.2 Let I ⊆ k[x1, . . . , xn] be an ideal in the polynomial ring over a
field k. Suppose I is homogeneous with respect to a grading (−1, ω) ∈ Rn. Then
I is monomial-free if and only if I|x1=1 is monomial-free.

Proof. (Assuming the axiom of choice.) Without loss of generality we may
assume that ω ∈ Qn−1 since the homogeneity space of I is defined by rational
equations. Choose N ∈ N>0 such that Nω ∈ Zn. Clearly, if I contains a
monomial then so does I|x1=1. For the other direction first assume that k
is algebraically closed. If I does not contain a monomial then according to
Hilbert’s Nullstellensatz x1 · · · xn 6∈

√
I = I(V (I)). That x1 · · · xn does not

vanish on V (I) means that there must exist a ∈ (k∗)n∩V (I). For s ∈ k∗ consider
the points αs = (a1s

−N , a2s
Nω1, . . . , ansNωn−1) which are in V (I) ∩ (k∗)n since

I is (−N,Nω)-homogeneous. Choose s such that sN = a1. Now αs ∈ V (I) ∩
({1} × (k∗)n) and therefore ((αs)2, . . . , (αs)n) is in V (I|x1=1) ∩ (k∗)n−1. This
proves that I|x1=1 is monomial-free. If k is not algebraically closed we consider

the ideal I generates in k[x1, . . . , xn] where k is the algebraic closure. Deciding
if the ideals contain a monomial can be done with Gröbner basis techniques;
see Algorithm 7.1.6. Hence the answer does not depend of the field and we may
apply the lemma for the ideals in the polynomial ring over the algebraically
closed field k. 2

Remark 6.3.3 Notice that by substituting t by t
1
N the same argument shows

that the situation where I is generated by polynomials in C(t
1
N )[x1, . . . , xn] can

also be reduced to the C[t, x1, . . . , xn] case.

Example 6.3.4 Let f = 1+ t2x+ ty + t4xy + t6x2 + t4y2. The tropical variety
T (〈f〉C[t,x,y]) ⊆ R3 is a union of 12 two-dimensional polyhedral cones. Nine of
these intersect the t = −1 plane. The intersection is shown in Figure 6.2. It
is equal to {−1} × T (〈f〉C{{t}}[x,y]) which coincides with the tropical curve in
Example 6.0.6.

A well-known strategy for doing computations in C is to consider an alge-
braic field extension Q(α) of Q where α is an algebraic number. Here Q(α)
denotes the smallest field containing Q and α. The field Q(α) is isomorphic to
Q[a]/M where M is the ideal generated by the minimal polynomial m ∈ Q[a] of
α. The minimal polynomial is the monic polynomial in Q[a] of smallest degree
having α as a root. The polynomial m is irreducible and M is a prime ideal,
but also a maximal ideal.

We will see that tropical varieties behave nicely with respect to this kind of
field extension. This is useful for practical reasons since the implementations
need not know of any other fields than Q. Let ϕ be the homomorphism Q[a] →
Q[a]/M taking an element to its coset. This homomorphism extends to ϕ :
Q[a, x1, . . . , xn] → (Q[a]/M)[x1, . . . , xn]. We compare the tropical varieties of
I ⊆ (Q[a]/M)[x1, . . . , xn] and of ϕ−1(I).
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Lemma 6.3.5 [42, Lemma 3.12] Let k be a field and M = 〈m〉 ⊆ k[a] a
maximal ideal where m is not a monomial. Let I ⊆ (k[a]/M)[x1, . . . , xn] be an
ideal. For ω ∈ Rn we have

inω(I) contains a monomial ⇐⇒ in(0,ω)(ϕ
−1(I)) contains a monomial

where ϕ : k[a, x1, . . . , xn] → (k[a]/M)[x1, . . . , xn] is the homomorphism taking
elements to their cosets.

Proof. ⇐: Suppose in(0,ω)ϕ
−1(I) contains a monomial. This means that there

exists an f ∈ ϕ−1(I) with in(0,ω)(f) being a monomial. The polynomial ϕ(f)
is in I. When applying ϕ the monomial in(0,ω)(f) maps to a monomial whose
coefficient in k[a]/M has a representative h ∈ k[a] with just one term. The
representative h cannot be 0 modulo M since M does not contain a monomial.
As the Newton polytope of ϕ(f) is clearly contained in the projection of the
Newton polytope of f to n dimensions, inω(ϕ(f)) is a monomial.
⇒: Suppose inω(I) contains a monomial. This means that there exists an
f ∈ I with inω(f) being a monomial. Let g be in ϕ−1(I) such that g maps to
f under the surjection ϕ and with the further condition that the support of g
projected to n dimensions equals the support of f . The initial form in(0,ω)(g) is a
polynomial with all exponent vectors having the same x1, . . . , xn parts as inω(f)
does. We must show that in(0,ω)(ϕ

−1(I)) contains a monomial. This is the same
thing as showing that (in(0,ω)(ϕ

−1(I)) : x1 · · · x∞
n ) contains a monomial. Let g′

be in(0,ω)(g) with the common x-part removed from the monomials, that is g′ ∈
k[a]. Notice, ϕ(g′) 6= 0. We now have g′ 6∈ M and hence 〈g′〉 + M = k[a] since
M is maximal. Now, M is a subset of, and g′ is contained in (in(0,ω)(ϕ

−1(I)) :
x1 · · · x∞

n ), implying that (in(0,ω)(ϕ
−1(I)) : x1 · · · x∞

n ) ⊇ k[a]. This shows that
in(0,ω)(ϕ

−1(I)) contains a monomial. 2

Remark 6.3.6 The preimage ϕ−1(I) contains m which has at least two terms,
none of them containing the variables x1, . . . xn. The tropical variety T (M) is
just the coordinate hyperplane and therefore T (ϕ−1(I)) ⊆ {0} × Rn and the
above lemma completely describes T (ϕ−1(I)).

6.4 Decomposing tropical varieties

An algebraic variety can be decomposed by making a primary decomposition of
its defining ideal. The same holds for tropical varieties. The union of two vari-
eties V (I) and V (J) in C{{t}}n is a again a variety. Similarly, the union of the
“shadows” under the negative valuation map, T (I)∪T (J), is a tropical variety.
It is possible to give a simple proof of this that does not use Theorem 6.1.17
and is independent of properties of the field.

Proposition 6.4.1 Let I, J ⊆ C{{t}}[x1, . . . , xn] be ideals. For ω ∈ Rn the
initial ideal t-inω(I∩J) contains a monomial if and only if t-inω(I) and t-inω(J)
contain monomials. In particular, T (I) ∪ T (J) = T (I ∩ J).
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Proof. Suppose t-inω(I) and t-inω(J) both contains monomials. Lemma 6.1.10
shows that there exists f ∈ I and g ∈ J such that t-inω(f) and t-inω(g) are
monomials. The initial form of the product t-inω(fg) = t-inω(f)t-inω(g) is a
monomial in t-inω(I ∩ J) since fg ∈ I ∩ J . The other inclusion is clear since
I ∩ J ⊆ I implies t-inω(I ∩ J) ⊆ t-inω(I) and I ∩ J ⊆ J implies t-inω(I ∩ J) ⊆
t-inω(J). 2

Similarly taking the radical of an ideal does not affect the tropical variety it
defines:

Proposition 6.4.2 Let I ⊆ C{{t}}[x1, . . . , xn] be an ideal. For ω ∈ Rn the
initial ideal t-inω(I) contains a monomial if and only if t-inω(

√
I) contains a

monomial. In particular, T (I) = T (
√

I).

Proof. The inclusion I ⊆
√

I implies T (I) ⊇ T (
√

I). On the other hand, if
ω 6∈ T (

√
I) then by Lemma 6.1.10 there must exist f ∈

√
I such that t-inω(f) is

a monomial. For some m ∈ N, fm ∈ I. Hence t-inω(f)m = t-inω(fm) ∈ t-inω(I)
and ω 6∈ T (I). 2

Proposition 6.4.1 and Proposition 6.4.2 imply that, as a set, the tropical vari-
ety of an ideal I is the union of the tropical varieties defined by the minimal
associated primes of I.

The second most important theorem of tropical geometry is the Bieri-Groves
theorem, originally stated in [8] as a theorem about valuations. Rephrasing it
in our initial ideal language it goes as follows; see also [54, Theorem 9.6].

Theorem 6.4.3 Let I ⊆ C[x1, . . . , xn] be a homogeneous (with respect to some
positive grading) monomial-free prime polynomial ideal of dimension d. The
polyhedral fan T (I) is a pure d-dimensional complex.

In Chapter 8 we give a proof of the theorem.

It is our goal to develop an algorithm for computing the tropical variety of a
homogeneous prime ideal as a polyhedral complex which is more efficient than
computing the entire Gröbner fan. Combining Lemma 6.2.5, Proposition 6.4.1
and Proposition 6.4.2 and a method for computing primary decompositions of
ideals in C[x1, . . . , xn] this gives an algorithm for computing tropical varieties
of arbitrary ideals in C[x1, . . . , xn] as sets.

6.4.1 Saturated initial ideals and decomposition

It is not possible to define a polyhedral structure on T (I) by considering initial
ideals in C[x±1

1 , . . . , x±1
n ] instead of in C[x1, . . . , xn] — or equivalently consid-

ering x1 · · · xn saturated initial ideals. However considering saturated initial
ideals (inω(I) : x1 · · · x∞

n ) sometimes gives interesting information about the
components of the algebraic variety as the following example shows.

Example 6.4.4 To construct a tropical variety which does not have an obvious
polyhedral structure, we consider the hyperplane T (abc+1) and the line T (〈a+
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Figure 6.6: A three-dimensional drawing of the tropical variety T (I∩J) modulo
the homogeneity space; see Example 6.4.4. The support is the union of a plane
and a line.

b + c, ab + bc + ca〉). As we prefer ideals to be homogeneous we introduce the
homogenizing variable d and the ideals to consider are I = 〈abc + d3〉 and
J = 〈a + b + c, ab + bc + ca〉. The following is a generating set for I ∩ J :

{ab3cd + c2d4 + bcd4 + b2d4 + abc3d + ab2c2d,

a2bcd + cd4 + bd4 + ad4 + abc2d + ab2cd,

a2b2c + bcd3 + acd3 + abd3 + ab2c2 + a2bc2}
The f-vector of the Gröbner fan of I ∩ J is (1, 8, 18, 12). The homogeneity

space has dimension 1. Six of the rays (two-dimensional) are contained in the
hyperplane while the two remaining ones are sticking out to form the line.
The hyperplane is divided into 6 three-dimensional cones and the remaining 12
three-dimensional cones connects the two groups of rays.

As a complex T (I∩J) consists of the rays and the 6 three-dimensional cones
in the hyperplane; see Figure 6.6. Given the support of T (I ∩J) = T (I)∪T (J)
it is not clear at all that this is a natural choice of a polyhedral structure.
One could hope that the non-monomial initial ideals in the Laurent polynomial
ring define a structure. Unfortunately this is not the case. There are only 3
saturated initial ideals for I ∩ J different from 〈1〉.

• For the two rays (ω = ±(1, 1, 1, 0)) we have (inω(I ∩ J) : x1 · · · x∞
n ) = J .

• For any point in the hyperplane not in C0(I ∩ J) we get I.

• For ω = 0 we get the saturation of the original ideal I ∩ J .

In particular, the equivalence classes induced by taking saturated initial ideals
are not necessarily convex.

The example seems to suggest that we might be able to do primary decom-
position by computing tropical varieties. Unfortunately it is easy to come up
with examples showing that this does not always work.

Example 6.4.5 Consider the ideal 〈a+bx+cy+dxy〉 ⊆ C[x, y] where a, b, c, d ∈
C. The tropical variety as a set is the union of the coordinate axes which is
the union of two tropical varieties. However the polynomial only factors when
ad = bc.
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The example shows that the tropical variety can be reducible even if the alge-
braic variety is not. On the other hand it is possible that several components
of the algebraic variety have the same tropical “shadow”:

Example 6.4.6 Let 〈(x − 1)(x − 2)〉 ⊆ C[x]. The tropical variety is just the
origin which is irreducible. However, the algebraic variety is not irreducible.
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Chapter 7

Tropical algorithms

In this chapter we describe the tropical algorithms presented in [10].

7.1 Tropical bases

Proposition 6.4.1 says that the union of two tropical varieties is again a tropical
variety. For algebraic varieties the same is true for intersections. However, the
intersection of two tropical varieties is not necessarily a tropical variety.

Example 7.1.1 Let f1 = x2 + xy + 1, f2 = x+ 1 ∈ C[x, y]. The topical variety
T (f1) is the union of three halflines and T (f2) is a line. The intersection
T (f1)∩T (f2) is the half line {0}× (−∞, 0]. Suppose this is the tropical variety
of some ideal. Due to the invariance under positive scaling this cannot be
decomposed further and thus must be defined by a prime ideal and according
to Theorem 6.4.3 this prime ideal must have dimension 1. A prime ideal of
dimension 1 in C[x, y] is a principal ideal. However, {0} × (−∞, 0] is not a
tropical hypersurface. This is a contradiction.

A finite intersection of tropical hypersurfaces is called a tropical prevariety . An
algebraic variety is the intersection of the hypersurfaces defined by the elements
of any finite generating set for a defining ideal of the variety. This is not the
case for tropical varieties. A finite subset {f1, . . . , ft} ⊆ I is called a tropical
basis of I if 〈f1, . . . , ft〉 = I and

⋂

i T (fi) = T (I).
Let inω(I) be some initial ideal of I. If Cω(I) 6⊆ T (I) then inω(I) contains a

monomial xm and there must exist a polynomial f ∈ I such that xm = inω(f).
Such an f is called a witness for Cω(I) if the following holds:

rel int(Cω(I)) ∩ T (f) = ∅.

The witness shows that Cω(I) is not in the tropical variety.

Proposition 7.1.2 Let I ⊆ C[x1, . . . , xn] be a homogeneous ideal and ω ∈ Rn.
If inω(I) contains a monomial then Cω(I) has a witness.

Proof. Let xm ∈ inω(I) and ≺ be a term order. According to Algorithm 4.2.1
and Lemma 3.1.14 the polynomial f := xm − (xm)G≺ω (I) satisfies f ∈ I and

77
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inω(f) = xm. To prove that f is a witness we simply observe that any ω′ in
rel int(Cω(I)) would have given us the same f since inω(I) = inω′(I) implies
in≺ω(I) = in≺(inω(I)) = in≺(inω′(I)) = in≺ω′ (I) and G≺ω(I) = G≺ω′ (I). 2

Remark 7.1.3 Notice that the process described in the above proof will pro-
duce a homogeneous witness.

Corollary 7.1.4 [10, Theorem 11] Every polynomial ideal I ⊆ C[x1, . . . , xn]
has a finite tropical basis.

Proof. We start by considering the case where I is homogeneous. For any
inω(I) containing a monomial we take a homogeneous witness. The finite set
of these witnesses together with a finite homogeneous generating set of I forms
a tropical basis. If I is not homogeneous we may consider its homogenization
Ih ⊆ C[x0, . . . , xn] which has a homogeneous tropical basis B. Substituting
x0 = 1 in the basis no terms will cancel and the new tropical hypersurfaces will
cut out T (I) since

{0} × T (I) =Lemma 6.2.5 T (Ih) ∩ ({0} × Rn) = (
⋂

f∈B

T (f)) ∩ ({0} × Rn) =

⋂

f∈B

(T (f)∩({0}×Rn)) =Lemma 6.2.5

⋂

f∈B

({0}×T (f |x0=1)) = {0}×
⋂

f∈B

T (f |x0=1).

Hence we have a tropical basis. 2

In other words a tropical variety is a tropical prevariety. We argue that the
proof of Corollary 7.1.4 is constructive. Checking if a homogeneous ideal con-
tains a monomial can be done with the following lemma and repeatedly use of
Algorithm 2.5.2 for computing saturations as explained in Section 2.5. Let k
be a field.

Lemma 7.1.5 The ideal I ⊆ k[x1, . . . , xn] contains a monomial if and only if
(I : x1 · · · x∞

n ) = 〈1〉.

This leads to the following algorithm for finding a monomial in an ideal:

Algorithm 7.1.6 [10, Algorithm 3] Monomial in Ideal
Input: A set of generators for an ideal I ⊆ k[x1, . . . , xn].
Output: A monomial m ∈ I if one exists, no otherwise.
{

If ((I : x1 · · · x∞
n ) 6= 〈1〉) return no;

m := x1 · · · xn;
While (m 6∈ I) m := m · x1 · · · xn;
Return m;

}

Even if I is not homogeneous the test (I : x1 · · · x∞
n ) 6= 〈1〉 can still be

performed with Algorithm 2.5.2 by homogenizing any generating set of I. This
follows from Lemma 6.2.5 with ω = 0.
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If the monomial produced by Algorithm 7.1.6 has small exponents we can
hope for the lifted witness of Proposition 7.1.2 not to have too high degree
or too many terms. One option for finding a small monomial is to use [50,
Algorithm 4.2.2]which computes the ideal generated by all multi-homogeneous
polynomials in an ideal. The multigrading is given by a matrix A ∈ Zd×n. The
ith variable gets the ith column as its degree. If we choose A to be the identity
matrix this algorithm will produce the ideal generated by all monomials in the
ideal. Picking a small minimal generator is a good choice of m. In practise we
shall be less careful with the choice. The following recursive algorithm computes
the x1 < x2 < . . . lexicographically smallest monomial in an ideal I.

Algorithm 7.1.7 Lexicographically smallest monomial in ideal
Input: An index i and a (homogeneous) ideal I ⊆ k[x1, . . . , xn] containing a
monomial in the variables xi, . . . , xn.
Output: The x1 < x2 < . . . lexicographically smallest monomial in I ∩
k[xi, . . . , xn].
{

If (i > n)
Return 1;

else
Compute J := (I : x∞

i );
Apply the algorithm recursively to find the x1 < x2 < . . .

lexicographically smallest monomial m ∈ J ∩ k[xi+1, . . . , xn];
Keep multiplying m by xi until m ∈ I;
Return m;

}
Proof. If i > n then by the assumption on the input 1 ∈ I and this is the
smallest monomial in I. Let us consider the case i ≤ n. The ideal J =
(I : x∞

i ) contains a monomial in k[xi+1, . . . , xn] since I contains a monomial
in k[xi, . . . , xn] by assumption. Recursively we compute the lexicographically
smallest such monomial. For a monomial to be the lexicographically smallest
monomial in I ∩ k[xi, . . . , xn] it must be as small as possible on the variables
xi+1, . . . , xn as these are the most important ones in our lexicographic ordering.
For this reason the constructed m is the smallest monomial in I ∩ k[xi, . . . , xn].
2

Computing every cone of the Gröbner fan of a homogeneous ideal and check-
ing if the initial ideals contain a monomial we have an algorithm for computing
the tropical variety and Proposition 7.1.2 gives a tropical basis. In Section 7.2.1
we present a much better algorithm for computing both of these in the case of
a tropical curve and in Section 7.4 we give a better algorithm for computing
tropical varieties defined by prime ideals.

7.2 Computing tropical prevarieties

In this section we will discuss the problem of going from a tropical basis to a
polyhedral complex covering its tropical variety, or, more generally, given a list
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of polynomials f1, . . . , fm with constant coefficients computing the common re-
finement

∧

i T (f). This computation only depends on the Newton polytopes of
the polynomials. For this reason we introduce the notation T (P ) for the subfan
of the normal fan of a polytope P ⊆ Rn consisting of all cones of dimension less
than n. Let Pi be the Newton polytope of fi for i = 1, . . . ,m.

Definition 7.2.1 Let P1, . . . , Pm be polytopes in Rn and Q their Minkowski
sum. Notice that every face faceω(Q) of Q can be written uniquely as a sum of
faces of P1, . . . , Pm:

faceω(Q) = faceω(P1) + · · · + faceω(Pn)

where ω ∈ Rn. The face faceω(Q) is mixed if dim(faceω(Pi)) > 0 for all i.

Lemma 7.2.2 Let P1, . . . , Pm and Q be as above. The set of normal cones of
the mixed faces of Q equals

∧

i T (Pi).

Lemma 7.2.2 shows that we are interested in computing the mixed faces of a
Minkowski sum. Typically the number of mixed faces is much lower than the
total number of faces in the sum.

Example 7.2.3 Consider the Newton polytopes of the 20 3 × 3 minors of the
matrix in Example 6.2.4. Each of these 4-dimensional polytopes have f-vector
(6, 15, 18, 9, 1). Their Minkowski sum is 8-dimensional and has f-vector

(3240, 12960, 21750, 19890, 10710, 3390, 585, 45, 1).

Of the 19890 three-dimensional faces only 630 are mixed. All other mixed faces
are of higher dimension. The set of mixed faces is not a polyhedral complex.
The set of normal cones of the mixed faces on the other hand is, as we have seen
in Lemma 7.2.2, a polyhedral complex. Its f-vector is (1, 45, 315, 930, 1260, 630).
Comparing the f-vectors to those in Example 6.2.4 it seems most likely that the
normal fan of the Minkowski sum equals the Gröbner fan and that the set of
normal cones of the mixed faces is the tropical variety – implying that the 20
minors is a tropical basis. Usually these pairs of fans do not coincide.

The number of mixed faces can be exponential n. See [57] for a proof of
NP-hardness of an associated decision problem. The mixed faces do not seem
to be connected in any way that is useful for an efficient enumeration.

The case where n = m + 1 and the nth coordinate of the vertices of
P1, . . . , Pm is generic is of special interest in the polyhedral homotopy method
for solving zero-dimensional polynomial systems numerically; see [31] and [54].
In this case the problem is well-studied and goes by the name “mixed cell
computation” (of a subdivision) or the more misleading name “mixed volume
computation”; see [23]. Only the lower mixed faces are of interest in this case.

In the homotopy case the generic last coordinate and the number of poly-
topes guarantee that all mixed lower faces are of dimension n−1. In our general
case we can have mixed faces of different dimensions.
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Example 7.2.4 Let P1 = [0, 1]3 ⊂ R3 be the 3-dimensional cube and P2 =
conv((0, 1), (0,−1), (1, 0), (−1, 0)) × [0, 1] be the rotated cube. The f-vectors
of T (P1) and T (P2) are (1, 6, 12). The refinement T (P1) ∧ T (P2) has f-vector
(1, 10, 8). Hence P1 + P2 has 1 mixed face of dimension 3, 10 of dimension 2
and 8 of dimension 1.

Each edge Eij in one of our polytopes Pi gives rise to a set of linear equations
and inequalities Lij describing the normal cone of Eij . In the generic homotopy
case finding a normal of a mixed lower facet amounts to finding a choice ci of
edges Eci

, one from each polytope, such that the system
⋃

i Lici
has a feasible

solution with the nth coordinate negative. Thus finding all mixed faces amounts
to a combinatorial search and feasibility checking of many linear programming
problems. How to cleverly organized the combinatorial search taking advantage
of the inner workings of the simplex algorithm is described in [23].

If the polytopes are not in generic position the above method might compute
a set of edges whose Minkowski sum is not a mixed face, namely, the edges may
be part of larger faces of the Pi’s whose Minkowski sum is a mixed face.

Example 7.2.5 Consider the Minkowski sum of the square P1 = ([0, 1] ×
[0, 1])×{0} and the diagonal edge P2 = conv((0, 0, 0), (1, 1, 0)). For all 4 possible
pairs of edges from the two polytopes the combined linear systems are feasible
with the solution (0, 0,−1). However, the Minkowski sum of any edge of the
square and the diagonal edge is not a face of P1 +P2. One way to interpret this
is to say that the mixed face face(0,0,−1)T (P1 + P2) is computed four times.

The above example shows that we need to be more careful with the combi-
natorics. In [10] we suggested the following straight forward algorithm for
computing common refinements. We say that a subset of cones S ⊆ F is a
representation of a fan F if

⋃

C∈S C is the support of F .

Algorithm 7.2.6 Common Refinement
Input: Representations S1 and S2 of two fans F1 and F2.
Output: A representation S of F1 ∧ F2.
{

S := ∅;
For every pair (C1, C2) ∈ S1 × S2

S := S ∪ {C1 ∩ C2};
}
An implementation of the above algorithm requires a method for detecting
duplicates of cones. This can be achieved by writing the cones in a unique
form.

Algorithm 7.2.6 also has the disadvantage that the same cone may be com-
puted several times. In fact no matter which cones we choose to intersect we
will always get some cone. In particular, the cone {0} can be computed many
times. We solve this problem by introducing strict inequalities as explained
below.

We may write the support of each T (Pi) as a disjoint union of half open
cones. Here a half open cone is a finite intersection of subspaces, closed half
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Figure 7.1: The three disjoint unions in Example 7.2.7. Four half open cones of
which one includes the origin. Three half open cones of which one includes the
origin. All possible intersections of two cones, one from each of the two unions.

spaces and open half spaces. We apply the same strategy as in Algorithm 7.2.6
above to the disjoint unions of half cones. The advantage is that intersections
of half open cones can be empty – in which case the intersection can safely
be ignored. Furthermore, the output is a disjoint union of half cones covering
⋂

i T (Pi).

To get the support of T (Pi) written as a disjoint union of half open cones
we may take the set of half open cones to be the relative interiors of the cones
in T (Pi). In practise it is an advantage to use as few cones as possible. It is
not difficult to see that it is possible to choose just one half open cone for each
maximal cone in T (Pi) and that this is optimal.

Example 7.2.7 Consider the polynomials f1 = xy + x + y + 1 and f2 = x +
y + x2y. The supports of T (f1) and T (f2) can be written as disjoint unions as
shown in Figure 7.2.7. We get the support of T (f1)∧T (f2) written as a disjoint
union by forming all intersections of pairs of half open cones from the two fans.

Typically the refinement algorithm is applied several times to compute refine-
ments of more than just two fans, or an algorithm is written that will handle
more refinement in a single step. Depending on the purpose of the computa-
tion we may be interested in extracting the polyhedral structure of

∧

i T (Pi) by
computing all faces of the half open cones in the intersection.

It would be an interesting research project to see how experience from the
generic homotopy case can by applied to our non-generic setting. It seems that
at least all implementations for the homotopy method rely on the genericity.

7.2.1 Tropical curves

We will define tropical curves in the case of constant coefficients. The tropical
curve in Example 6.0.6 and Figure 6.2 was defined for non-constant coefficients
and is not an example of the curves we will study in this section.

Definition 7.2.8 An ideal I ⊆ C[x1, . . . , xn] is said to define a tropical curve
if dim(I) = homog(I) + 1 and I has a monomial-free initial ideal inω(I) with
homog(inω(I)) = dim(I).
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Lemma 7.2.9 Let I be an ideal defining a tropical curve. As a polyhedral
complex the tropical variety T (I) consists of the homogeneity space C0(I) of
dimension homog(I) and a finite number of (homog(I)+1)-dimensional cones.

Proof. The ideal I has a minimal primary decomposition I =
⋂

i Qi and the
support of T (I) is

⋂

i supp(T (
√

Qi)). By Theorem 6.4.3 each T (
√

Qi) is pure of
dimension dim(

√
Qi) which is at most dim(I) since

√
Qi is a prime containing

I. In fact this dimension is attained for at least one associated prime
√

Qi.
This proves that T (I) is a complex of dimension dim(I). The complex T (I)
contains the cone C0(I). This proves the claim. 2

In other words, modulo C0(I) the tropical variety is just a union of half-
lines meeting in a point. This is the important fact that makes the following
algorithm work.

Algorithm 7.2.10 [10, Algorithm 5] Tropical Basis of Curve
Input: A set of homogeneous generators G for an ideal I defining a tropical
curve.
Output: A homogeneous tropical basis G′ of I.
{

Compute a finite set of cones S covering supp(
∧

g∈G T (〈g〉))
such that every C ∈ S has C0(I) as a face;

For every C ∈ S
{

Let w be a generic relative interior point in C;
If (inw(I) contains a monomial) then

add a homogeneous witness for Cw(I) to G and restart the algorithm;
}
G′ := G;

}
We will assume that the input is homogeneous with respect to any grading in
the homogeneity space C0(I). A consequence is that we can choose all cones in
the algorithm to be invariant under translation by vectors in C0(I).

Proof. The algorithm terminates because I has only finitely many Gröbner
cones and the number of Gröbner cones with relative interior intersecting the
tropical prevariety supp(

∧

g∈G T (〈g〉)) decreases strictly in every iteration. If
a vector w passes the monomial test (which verifies w ∈ T (I)) then C has
dimension 0 or 1 modulo the homogeneity space since we are looking at a curve
and w is generic in C. Any other relative interior point w′ of C would also have
passed the monomial test since modulo C0(I) the point w′ is a scaled version
of w. This property fails if T (I) is not a tropical curve since the dimension
of C might be higher than 1 modulo the homogeneity space. Hence, when we
terminate only points in the tropical variety are covered by S and G′ is a tropical
basis. 2

Remark 7.2.11 It is not clear how the generic vector w in Algorithm 7.2.10
can be computed. Here we will explain how to compute its initial ideal inw(I)
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using the perturbation techniques from Section 4.3. We must clarify what we
mean by generic. The following condition will suffice for our purpose: w is
generic in C if w is not in any (dim(C) − 1)-dimensional Gröbner cone of I.
First we compute a positive vector v1 (not necessarily generic) in the relative
interior of C which exists since I is homogeneous. Let V = {v1, . . . , vs} be
a basis for the space spanned by C. For sufficiently small ε > 0 the vector
wε = v1 +εv2 + · · ·+εs−1vs stays in one Gröbner cone of I of dimension at least
s. To see this, extend V to a basis V ′ for Rn and write the rows in a matrix A
which now defines a term order ≺A by Definition 2.2.8. By an argument similar
to the proof of Lemma 2.2.9 we have that for small ε > 0 the vector wε satisfies
the finitely many conditions of Corollary 3.1.10 to be in C≺A

(I). Hence by
Corollary 3.1.13 we can compute inwε(I) by taking wε initial forms of G≺A

(I).
To do this we need to decide for each vector in a finite set of exponent vector
differences if the vector is perpendicular to wε. For sufficiently small ε > 0
this only happens if the vector is perpendicular to all vectors in V . This shows
that inwε(I) does not depend on ε for ε > 0 sufficiently small. The Gröbner
cone Cwε(I) has dimension at least s as wanted since inwε(I) is homogeneous
with respect to any vector in V . Any vector w in the relative interior of Cwε(I)
is generic and has initial ideal inw(I) = inwε(I) which we have shown how to
compute.

A representation of the tropical curve is gotten by applying Algorithm 7.2.6 to
the tropical hypersurfaces defined by the output of Algorithm 7.2.10.

7.3 Connectedness of tropical varieties of prime ide-

als

Definition 7.3.1 Let F be a polyhedral complex. A ridge path between two
polyhedra S, T ∈ F of the same dimension is a sequence of polyhedra in F

S = P0, . . . , Pm = T

of some length m + 1 such that for all i = 1, . . . ,m the intersection Pi−1 ∩Pi is
a facet of Pi−1 and of Pi.

A ridge path consists of polyhedra of the same dimension and we use the word
ridge since Pi−1 ∩ Pi is ridge in F .

In [10] we presented the following theorem which we shall refer to as Speyer’s
Theorem in this thesis. It is an extension to the Bieri-Groves Theorem 6.4.3.

Theorem 7.3.2 Let I ⊆ C[x1, . . . , xn] be a homogeneous monomial-free prime
ideal. Then any two maximal cones in T (I) are connected by a ridge path in
T (I).

When any two maximal cones are connected by ridge paths we also say that
the complex is connected in codimension one. Since T (I) is only defined when
I is homogeneous, the Theorem has only been stated for homogeneous ide-
als. However, being connected in codimension one is really a property of the
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support of T (I), so by Lemma 6.2.5 we know that the theorem also holds for
inhomogeneous ideals.

A proof of Theorem 7.3.2 is presented in [10]. It goes by induction on the
dimension of the ideal. The base case relies on a result in [17]. The induction
step uses a multiplicative change of variables, the transverse intersection lemma
also described in [10] and the Kleinman-Bertini theorem. See [10] for details.

Remark 7.3.3 Similar to the proof that the Puiseux series field is algebraically
closed it is important here that the field C has characteristic 0. This is needed
when applying the Kleinman-Bertini theorem.

7.4 Traversing tropical varieties

By Theorem 7.3.2 we know that the maximal cones in the tropical variety
of a d-dimensional homogeneous prime ideal I ⊆ C[x1, . . . , xn] are connected
by ridge paths. To traverse the variety we just need to traverse its maximal
(d-dimensional) cones since the variety is pure. The key step is to go from
one maximal cone to the next. Let Cw(I) be a Gröbner cone of dimension d
contained in T (I) and let u be a vector in the relative interior of one of its
facets Cu(I). The structure of T (I) around this facet is revealed by the initial
ideal inu(I). According to Proposition 3.1.20

inu+εv(I) = inv(inu(I))

for ε > 0 sufficiently small. Observe that inu(I) has a (d − 1)-dimensional
homogeneity space by Remark 3.1.21. The Krull dimension, however, stays
fixed when we move to an initial ideal. Therefore inu(I) defines a tropical curve
and we may apply Algorithm 7.2.10 to get a vector v in the relative interior of
each d-dimensional cone in T (inu(I)). Using the above formula inu+εv(I) can
be computed. In the following we will explain how to compute the Gröbner
cone Cu+εv(I).

Let ≺ be a term order and keep it fixed for the rest of this section. We will
represent any Gröbner cone Cw(I) as a pair of marked reduced Gröbner bases
(G≺w(inw(I)),G≺w (I)). Notice that this representation does not depend on w
but only on Cw(I) since in≺w(I) = in≺(inw(I)) by Corollary 3.1.15. Notice also
that Cw(I) is a face of C≺w(I). As in Example 3.1.5 the defining inequality
system of the polyhedral cone Cw(I) can be deduced from the pair of bases.
Applying the lifting step of the Gröbner walk (Algorithm 4.2.2) we can com-
pute a pair of Gröbner bases representing Cu+εv(I). The following algorithm
computes all neighboring cones in T (I) of a specified cone. The local step is
illustrated in Figure 7.2.
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Algorithm 7.4.1 [10, Algorithm 7] Neighbors
Input: A pair (G≺w(inw(I)),G≺w (I)) representing a d-dimensional Gröbner
cone Cw(I) ∈ T (I). Here I must be a homogeneous ideal of dimension d.
Output: A collection N of all pairs of the form (G≺w′ (inw′(I)),G≺w′ (I)) repre-
senting Gröbner cones Cw′(I) ∈ T (I) \ {Cw(I)} which have a facet in common
with Cw(I).
{

N := ∅;
Compute the set F of facets of Cw(I);
For each F ∈ F
{

Compute the initial ideal J := inu(I) where u ∈ rel int(F );
Use Algorithm 7.2.10 and Algorithm 7.2.6 to produce a relative

interior point v in each maximal cone of T (J);
For each such v
{

Compute (G≺v (inv(J)),G≺v (J)) = (G(≺v)u
(inv(J)),G(≺v)u

(J));
Apply Algorithm 4.2.2 to G≺w(I) and G(≺v)u

(J) to get G(≺v)u
(I);

N := N ∪ {(G(≺v)u
(inv(J)),G(≺v )u

(I))};
}

}
}

Proof. Proposition 3.1.4 gives a description of Cw(I) in terms of linear inequal-
ities and equations. Computing the facets of Cw(I) is a problem in computa-
tional polyhedral geometry. Interior points can be computed by solving linear
programming problems.

The identity (G≺v(inv(J)),G≺v (J)) = (G(≺v)u
(inv(J)), G(≺v)u

(J)) follows
since J is u-homogeneous. We may apply Algorithm 4.2.2 since u ∈ F ⊂
Cw(I) ⊆ C≺w(I). We need to argue that {(G(≺v)u

(inv(J)),G(≺v)u
(I))} repre-

sents the Gröbner cone Cw′(I) where w′ = u + εv for ε > 0 sufficiently small.
By Proposition 3.1.20 inw′(I) = inv(inu(I)) for ε > 0 sufficiently small. So
indeed G(≺v)u

(inv(J)) = G≺v(inv(J)) = G≺(inv(J)) = G≺(inw′(I)). It remains
to argue that G(≺v)u

(I) = G≺u+εv
(I). For ε > 0 sufficiently small the two term

orders (≺v)u and ≺u+εv agree on a finite set of monomials. In particular they
give the same reduced Gröbner basis for I. 2

Applying the above method we get an exhaustive traversal algorithm for
tropical varieties of prime ideals. If the ideal is not prime, the algorithm will
compute all cones connected to the starting cone by ridge paths. Thus the
algorithm computes a codimension-one-connected component of dimension d.
The algorithm can be implemented in such a way that it does its enumeration
up to symmetry with the same methods as for the symmetric Gröbner fan
traversal explained in Section 4.5. It seems unlikely that it would be possible
to find a good reverse search rule for tropical varieties.

To begin a traversal of a tropical variety we must first find a starting cone.
The situation in Example 6.2.4 is typical. In the lower dimensions the Gröbner
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Figure 7.2: The situation in Algorithm 7.4.1. The tropical variety of I is shown
to the left and the tropical variety of inu(I) is shown to the right.

fan and the tropical variety almost agree while many cones are missing in the
tropical variety in higher dimensions. In [10] we suggested the following method
for computing a starting cone.

Algorithm 7.4.2 [10, Algorithm 9] Starting Cone
Input: Generators for a homogeneous ideal I whose tropical variety is pure of
dimension d.
Output: A pair (G≺w′ (inw′(I)),G≺w′ (I)) representing a d-dimensional Gröbner
cone in T (I).
{

If homog(I) = d then
Return (G≺(I),G≺(I));

If not
{

Guess a point w ∈ supp(T (I)) \ C0(I);
Compute G≺w(I);
(GInit,GFull):=Starting Cone(inw(I));
Apply Algorithm 4.2.2 to G≺w(I) and GFull

to get a marked reduced Gröbner basis G′ for I;
Return (GInit,G′);

}
}
Here the part of guessing a point w ∈ supp(T (I)) \ C0(I) is unspecified.

Proof. If homog(I) = d then the homogeneity space C0(I) is the only pos-
sible choice of cone. It is represented by (G≺(I),G≺(I)). If homog(I) <
d then by the hypothesis supp(T (I)) \ C0(I) 6= ∅. Let w ∈ supp(T (I)) \
C0(I). The recursive call finds a d-dimensional cone in the pure d-dimensional
complex T (inw(I)). Let u be a relative interior point in that cone. Then
(GInit,GFull) = (G≺u(inu(inw(I))),G≺u(inw(I))). By Proposition 3.1.20 the ini-
tial ideal inu(inw(I)) is an initial ideal of I with respect to w+εu for ε > 0 suffi-
ciently small. We already have the first basis in the pair representing Cw+εu(I),
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namely, it is G≺w+εu
(inu(inw(I))) = G≺u(inu(inw(I))) = GInit. Since w ∈ C≺w(I)

we may apply Algorithm 4.2.2 to G≺w(I) and G≺u(inw(I)) to get G(≺u)w
(I) = G′.

We argue that G′ = G(≺u)w
(I) equals G≺w+εu

(I) for ε > 0 sufficiently small. It
suffices to show that ≺w+εu picks out the marked terms of G(≺u)w

(I). However,
for a fixed pair of monomials to compare the term orders agree for ε > 0 suffi-
ciently small. Since there are only finitely many terms in a Gröbner basis the
conclusion follows. 2

One strategy for guessing a vector w ∈ supp(T (I))\C0(I) in Algorithm 7.4.2
is to compute all rays of some full-dimensional Gröbner and check if any of
those are in the tropical variety. If not, we may try another Gröbner cone, or
try a vector in the tropical prevariety defined by the given set of generators
for I if the generating set is not too complex. This strategy works reasonable
well in practise. In the worst case, however, using such strategies may be as
complicated as computing the entire Gröbner fan.



Chapter 8

A proof of the Bieri Groves

theorem

In this chapter we give a proof of Bieri Groves theorem based on [42, Corol-
lary 6.13] (Theorem 8.2.1 below) and Lemma 8.1.3 from elimination theory.
Theorem 8.2.1 can be proved using Krull’s principal ideal theorem. We shall
restrict ourselves to the case of constant coefficients and prove Bieri Groves
theorem as it is formulated in Theorem 6.4.3 in terms of Gröbner cones. Notice
that our proof only relies on the trivial inclusion in Theorem 6.1.17. The proof
presented here has some similarities with a proof given in [54, Chapter 9]. Our
proof is almost selfcontained with more details.

8.1 An equivalent theorem

We start by proving that the following theorem is equivalent to Theorem 6.4.3:

Theorem 8.1.1 Let I ⊆ C[x1, . . . , xn] be a monomial-free prime ideal with
C0(I) ∩ Rn

>0 6= ∅ and ω ∈ Rn. If inω(I) is monomial-free then dim(inω(I) :
x1 · · · x∞

n ) = dim(I).

For a prime ideal I in the Laurent polynomial ring C[x±1
1 , . . . , x±1

n ], the theorem
says that an initial ideal of I is either 〈1〉 or has dimension dim(I).

For the proof we need Lemma 8.1.2 and Proposition 8.1.6 below.

Lemma 8.1.2 Let I ⊆ C[x1, . . . , xn] be a monomial-free ideal of dimension d
with an h-dimensional homogeneity space. Then d ≥ h.

Proof. Let A ∈ Zh×n be a matrix whose rows form a basis for the homogene-
ity space of I. By Hilbert’s Nullstellensatz there exists a point p ∈ V (I) ∩
(C∗)n since I is monomial-free. Let a1, . . . , an be the columns of A. For
t = (t1, . . . , th) ∈ (C∗)h the point φ(t) := (ta1p1, . . . , t

anpn) belongs to V (I)
since I is homogeneous with respect to the gradings given by the rows of A.
The toric ideal IA = 〈yu − yv : u, v ∈ Zn and Au = Av〉 ⊆ C[y1, . . . , yn] is
the ideal of the image of µ(t) := (ta1 , . . . , tan) where t = (t1, . . . , th) ∈ (C∗)h.
The toric ideal IA has dimension rank(A) = h and is the image of the ideal

89
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of φ((C∗)h) under the C-algebra isomorphism Φ : C[x1, . . . , xn] → C[y1, . . . , yn]
taking xi to p−1

i yi. Hence, I ⊆ Φ−1(IA) and I has dimension at least h. 2

Lemma 8.1.3 ([4, Theorem 1.22]) Let I ⊆ k[x1, . . . , xn] where k is alge-
braically closed. The projection {x1 : x ∈ V (I)} of V (I) to the first axis is
either k, the empty set, a finite set, or the complement of a finite set. The
same holds for the projection of V (I) ∩ (k∗)n to the first axis.

The lemma is a special case of [4, Theorem 1.22] which states that the
projection of a constructable set in kn is constructable. The constructable sets
in kn are those obtained by doing a finite number of boolean operations on
algebraic sets in kn. A constructable set in k1 is either a finite set or the
complement of a finite set.

Recall that an algebraically closed field k is always infinite and that for a
field extension k ( k′ the field k′ is a k-vector space and thus k′ \ k is infinite
as well.

Corollary 8.1.4 Let I ⊆ k[x±1
1 , . . . , x±1

n ] be an ideal with dimension larger
than 0 and k an algebraically closed field. Let k′ be a strictly larger algebraically
closed field containing k. Then there exists p ∈ Vk′∗(I) \ Vk∗(I).

Proof. The variety Vk∗(I) is infinite. Hence the projection of Vk∗(I) to some
axis must be infinite. The projection of Vk′∗(I) contains the projection of Vk∗(I)
and is thus infinite. By Lemma 8.1.3 the projection of Vk′∗(I) is k′ minus a finite
set of points. Since k′ \ k is infinite this proves that Vk∗(I) 6= Vk′∗(I). 2

Lemma 8.1.5 If I ⊆ C[x1, . . . , xn] and p ∈ VC{{t}}(I) with val(p) ∈ R>0×Rn−1

(and thereby T (I) ∩ (R<0 × Rn−1) 6= ∅) then T (I) ∩ (R>0 × Rn−1) 6= ∅.

Proof. Since in−val(p)(I) is monomial-free, I ∩ C[x1] cannot contain a non-zero
polynomial. Hence I ∩ C[x1] = 〈0〉. This shows that the Zariski closure of the
projection of VC{{t}}∗(I) to the x1-axis is the whole axis. In particular the image
of the projection is not finite. By Lemma 8.1.3 it is the axis minus a finite set of
points. Since there are infinitely many points with negative valuation in C{{t}}
some of them are in the projection. Hence there exists q ∈ VC{{t}}∗(I) with
val(q1) < 0. Consequently, according to the weak direction of Theorem 6.1.17
−val(q) ∈ T (I). 2

The homogeneity space C0(I) of an ideal in the Laurent polynomial ring
and its dimension homog(I) are defined in the natural way.

Proposition 8.1.6 Let I ⊆ C[x±1
1 , . . . , x±1

n ] be a d-dimensional ideal with d >
homog(I) then there exist an ω ∈ Rn \ C0(I) with inω(I) being monomial-free.

Proof. We start by proving the case where homog(I) = 0. That is, we show
that there exists ω ∈ Rn \ {0} such that inω(I) is monomial-free. Let J = I ∩
C[x1, . . . , xn]. According to Corollary 8.1.4 there exits p ∈ VC{{t}}∗(I) \ VC∗(I).
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Suppose inω(I) contains a monomial for all ω 6= 0. Then we must have val(p) =
0. Consequently, p has the form

(p1, . . . , pn) = (c1t
0 + h.o.t., . . . , cnt0 + h.o.t.)

with ci ∈ C∗ and where the higher order terms (h.o.t.) are different from 0 for
at least one coordinate. With out loss of generality we may assume that this
is the first one and call these higher order terms q1 := p1 − c1t

0. We make
the substitution x1 = c1t

0 + y1 which gives us an ideal J ′ ⊆ C[y1, x2, . . . , xn].
The substitution is an isomorphism between the two polynomial rings tak-
ing J to J ′. Notice that J ′ has the zero (q1, p2, . . . , pn). This shows that
in−val(q1,p2,...,pn)(J

′) = in−e1(J
′) is monomial-free. Lemma 8.1.5 shows that

there exists an ω ∈ T (J ′) with ω1 > 0. This means that for all f ∈ J ′ the ini-
tial form inω(f) is not a monomial. Since ω1 > 0, taking f back to the original
polynomial ring the initial form is preserved (with x1 instead of y1, of course).
Hence, ω ∈ T (J) \ {0} = T (I) \ {0}.

Reduction from the general case where homog(I) > 0 is done by applying
a multiplicative change of variables represented by a matrix A ∈ GLn(Z) as
in Corollary 6.2.8. With the right choice of A, the transformed ideal ϕA(I)
can be generated by polynomials only involving x1, . . . , xn−homog(I). Hence
C0(ϕA(I)) = span(en−homog(I)+1, . . . , en). Deciding if there exists ω ∈ Rn \
C0(I) with inω(I) monomial-free is now the same as deciding if there exists
ω′ ∈ Rn−homog(I) \ C0(K) with inω′(K) monomial-free where K := ϕA(I) ∩
C[x1, . . . , xn−homog(I)]. The first part of the proof applies to K which has
dim(K) = dim(I) − homog(I) > homog(K) = 0. 2

Proof of the equivalence of Theorem 6.4.3 and Theorem 8.1.1. In order to pro-
ve that Theorem 6.4.3 implies Theorem 8.1.1 notice that Theorem 6.4.3 and
Proposition 3.1.20 imply that inω(I) has a d-dimensional tropical variety and
thereby a monomial-free initial ideal J with a d-dimensional homogeneity space.
We now have:

dim(I) = dim(inω(I)) ≥ dim(inω(I) : x1 · · · x∞
n ) ≥ dim(J : x1 · · · x∞

n )

≥ homog(J : x1 · · · x∞
n ) ≥ homog(J) = dim(I)

where the first two inequalities follow from the fact that the dimension cannot
increase when saturating. The third inequality follows from Lemma 8.1.2, the
fourth from the fact that an ideal can only become more homogeneous when
saturating and the last one from the choice of J . This proves that dim(inω(I) :
x1, . . . , x

∞
n ) = dim(I).

To prove that Theorem 8.1.1 implies Theorem 6.4.3 it suffices, by Propo-
sition 3.1.20, to prove that for ω ∈ T (I) the initial ideal inω(I) has a tropical
variety containing a d-dimensional cone, or, equivalently, that inω(I) has a
monomial-free initial ideal with a d-dimensional homogeneity space.

According to Theorem 8.1.1 we have dim(inω(I) : x1 · · · x∞
n ) = dim(I). If

homog(inω(I : x1 · · · x∞
n )) < d then we may apply Proposition 8.1.6 to find

a monomial-free initial ideal of inω(I) with a larger dimensional homogeneity
space. By Proposition 3.1.20 this initial ideal is also an initial ideal of I. Let us
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call it inω′(I). If homog(inω′(I)) < d we may repeat the process until we find
an initial ideal with a homogeneity space of the right dimension. 2

8.2 A proof of the equivalent theorem

Having proved the equivalence of the two theorems it remains to prove Theo-
rem 8.1.1. For this we need the following variant of [42, Corollary 6.13].

Theorem 8.2.1 Let I ⊆ C[x1, . . . , xn] be a prime ideal, ω ∈ Rn with inω(I)
monomial-free and P ∈ minAss(inω(I)) then we have dim(P ) = dim(I).

We will present a proof of the theorem at the end of this section. Here is a
corollary.

Corollary 8.2.2 Let I ⊆ C[x1, . . . , xn] be a prime ideal of dimension d and
ω ∈ Rn. If inω(I) is monomial-free then inω(I) has an associated prime of
dimension d which does not contain a monomial.

Proof. Consider a minimal primary decomposition of inω(I) = ∩iQi. Suppose
the corollary was wrong then all associated primes of dimension d would contain
a monomial. Theorem 8.2.1 implies that all minimal associated primes contain
a monomial. For this reason also all associated primes contain a monomial.
Since the associated primes are the radicals of the Qi’s, every Qi contains a
monomial and so does their intersection inω(I). This is a contradiction. 2

Proof of Theorem 8.1.1. We know that dim(inω(I)) = dim(I). The only prob-
lem might be if the dimension of inω(I) drops when we saturate with respect
to x1 · · · xn. When we saturate we are removing components in the coordinate
hyperplanes of Cn. Corollary 8.2.2 tells us that there is a d-dimensional compo-
nent whose ideal does not contain a monomial and thus the component is not
contained in a coordinate hyperplane and cannot disappear when we saturate.
For this reason the saturation (inω(I) : x1 · · · x∞

n ) has dimension d. 2

For completeness we provide a proof of Theorem 8.2.1.

Proof of Theorem 8.2.1. With our knowledge of the Gröbner fan we may as-
sume, without loss of generality, that ω ∈ Qn. Let N ∈ N be an integer
such that Nω ∈ Zn. The ideal I ′ = 〈I〉

C[t±
1
N ,x1,...,xn]

⊆ C[t±
1
N , x1, . . . , xn] is a

monomial-free prime ideal with dim(I ′) = dim(I) + 1. Consider the C-algebra
isomorphism

Φω : C[t±
1
N , x1, . . . , xn] → C[t±

1
N , x1, . . . , xn]

xi 7→ t−ωixi and t 7→ t.

The image Φω(I ′) is a monomial-free prime ideal. Observe that t-in0(Φω(I ′)) =

t-inω(I ′) = inω(I). Let J := Φω(I ′) ∩ C[t
1
N , x1, . . . , xn]. Then dim(J) =

dim(I) + 1. Observe that

t-in0(J) = (J + 〈t 1
N 〉) ∩ C[x1, . . . , xn].
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Let P ∈ minAss(inω(I)) = minAss((J + 〈t 1
N 〉) ∩ C[x1, . . . , xn]). The minimal

associated primes of J + 〈t 1
N 〉 and of (J + 〈t 1

N 〉)∩C[x1, . . . , xn] are in bijection
where ideals correspond to ideals of the same dimension. Let P ′ ∈ minAss(J +

〈t 1
N 〉) be the ideal corresponding to P . We will apply Krull’s principal ideal

theorem [1, Corollary 11.17] to C[t
1
N , x1, . . . , xn]/J . Notice that t

1
N is not zero

and not a zero-divisor in C[t
1
N , x1, . . . , xn]/J since J is monomial-free and prime.

Furthermore, t
1
N is not a unit in C[t

1
N , x1, . . . , xn]/J since in that case there

would exist f ∈ C[t
1
N , x1, . . . , xn] such that t

1
N f − 1 ∈ J — contradicting

that t-in0(J) = inω(I) is monomial-free. Hence Krull’s principal ideal theorem
implies that dim(P ) = dim(P ′) = dim(J) − 1 = dim(I). 2
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Chapter 9

Software and examples

In this chapter we describe the software Gfan for computing Gröbner fans and
tropical varieties and we present examples computed with the software.

9.1 Gfan

The software package Gfan ([33]) was developed by the author and contains
implementations of all algorithms described in this thesis. A presentation of
Gfan is given in [36]. Gfan is a C++ program ([52]) which uses the libraries
cddlib ([20]) and GMP ([27]) for polyhedral computations and exact arithmetic,
respectively.

We give an example of how the program can be used to compute the trop-
ical variety of the Grassmann-Plücker ideal I ⊆ Q[a, . . . , j] in Example 6.2.3.
The ideal generated by I in C[a, . . . , j] is prime and by the Bieri Groves Theo-
rem 6.4.3 its tropical variety is a pure complex and thereby T (I) is also pure.
Gfan is a collection of command line tools. The command

gfan tropicalstartingcone is an implementation of Algorithm 7.4.2. If we
run it on the input

{

bf-ah-ce,

bg-ai-de,

cg-aj-df,

ci-bj-dh,

fi-ej-gh

}

which is a generating set for I we get the pair of Gröbner bases

{

f*i-e*j,

d*h-c*i,

d*f+a*j,

d*e+a*i,

c*e+a*h}
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{

f*i-g*h-e*j,

d*h-c*i+b*j,

d*f-c*g+a*j,

d*e-b*g+a*i,

c*e-b*f+a*h}

representing a maximal cone in T (I). Speyer’s Theorem 7.3.2 states that T (I) is
connected in codimension one. We wish to traverse T (I) by repeatedly applying
Algorithm 7.4.1. This can be done with the command gfan tropicaltraverse.
The input is the pair above and the output is a list of pairs representing all
the maximal cones in T (I). It is also possible to get a representation of the
combinatorics of T (I). In Gfan version 0.3, which has not been released at the
time of writing, the representation looks like this:
_application PolyhedralFan

_version 2.2

_type PolyhedralFan

AMBIENT_DIM

10

DIM

7

LINEALITY_DIM

5

RAYS

-1 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0

-1 -1 0 0 -1 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0

1 1 1 0 1 1 0 0 0 0

1 0 0 0 1 1 0 0 0 0

-1 0 -1 0 0 -1 0 0 0 0

0 0 0 0 0 -1 0 0 0 0

N_RAYS

10

LINEALITY_SPACE

0 0 0 0 1 1 1 1 1 1

0 0 0 1 0 0 1 0 1 1

0 0 1 0 0 1 0 1 0 1

0 1 0 0 0 -1 -1 0 0 -1

1 0 0 0 0 0 0 -1 -1 -1

ORTH_LINEALITY_SPACE

0 0 0 0 0 1 -1 -1 1 0

0 0 0 0 1 0 -1 -1 0 1

0 0 1 -1 0 0 0 -1 1 0

0 1 0 -1 0 0 0 -1 0 1

1 0 0 -1 0 0 -1 -1 1 1

PURE

1

F_VECTOR

10 15

MAXIMAL_CONES

{0 4}

{4 5}

{1 4}

{2 5}

{3 5}

{0 6}

{1 7}

{2 6}

{6 7}

{3 7}

{0 8}

{1 9}

{2 9}

{8 9}

{3 8}

MULTIPLICITIES

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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The above output is in a Polymake compatible format ([25]). This format is
also used by the tropical software TrIm ([56]). The file describes a polyhedral
fan. The lowest dimensional cone is called the lineality space which equals the
homogeneity space in case of a tropical variety. Its dimension, a generating
set and a generating set for its orthogonal complement are listed. The ten
6-dimensional rays are listed with a relative interior point for each. The rays
are indexed by numbers 0, . . . , 9. Each maximal cones is generated by a subset
of these rays. The complete list of the 15 maximal cones is given. Listed is
also the dimension of the ambient space, the dimension of the complex and the
(truncated) f-vector.

Associated to each maximal cone is its multiplicity which we have not defined
in this thesis. The multiplicity is a number in N>0 which depends on the
saturated initial ideal of the cone. See [55, Definition 3.1] for a definition. Let
ω be a relative interior point in a d − 1 dimensional cone of T (I). As we have
seen the initial ideal inω(I) defines a tropical curve. The multiplicities of T (I)
satisfy the balancing condition meaning that the rays of T (inω(I)) sum up to
zero if weighted by their multiplicities. Here each ray is thought of as a certain
suitable vector in the d-dimensional cone of T (inω(I)). See [55, Definition 3.3]
for a precise definition of the balancing condition.

Most examples in this thesis were computed by Gfan. In particular Gfan
drew Figure 1.1 and Figure 3.3. In the next section we present some more
examples.

9.2 Computational results and examples

We list some families of ideals that the Gfan software has been applied to.
Gröbner fans of these ideals have been computed for the parameters listed in
Table 9.1. Results for the tropical varieties can be found in Table 9.2. These
computations first appeared in [21] and [10] respectively. The coefficient field
is always Q. The columns of the tables are to be interpreted as follows. In each
row, the first column contains the name of the ideal (to be explained below).
The second column lists n, the number of variables in the ideal. The third
column lists h, the dimension of the homogeneity space. The quantity “deg” is
the lowest total degree of any reduced Gröbner basis of the ideal and “DEG” is
the highest. The dimension of the ideal and tropical variety is denoted d. The
f-vector of the complexes are also listed.

Example 9.2.1 Let Dett,m,n denote the ideal in the polynomial ring in mn
variables generated by the t × t minors of the matrix:











x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn











.
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Example n h deg DEG f -vector

Det3,3,4 12 6 3 3 (1,12,66,204,342,288,96)
Det3,3,5 15 7 3 3 (1,45,585,3390,10710,19890,21750,12960,3240)
Det3,4,4 16 7 3 5 (1,?,?,?,?,?,?,?,?,163032)
Detsym3,4 10 4 3 8 (1,518,5412,20505,36024,29808,9395)
Grass2,5 10 5 2 3 (1,20,120,300,330,132)
Cyclic5 5 0 8 15 (1,?,?,?,?,55320)

Table 9.1: Statistics for the Gröbner fans computed using Gfan.

Example n h d f -vector

Det3,3,5 15 7 12 (1,45,315,930,1260,630)
Det3,4,4 16 7 12 (1,50,360,1128,1680,936)
Detsym3,4 10 4 7 (1,20,75,75)

Detsym3,5 15 5 9 (1,75,495,1155,855)

Grass2,5 10 5 7 (1,10,15)
ComSymMat3 12 2 9 (1,66,705,3246,7932,10888,8184,2745)

Table 9.2: Statistics for the Tropical varieties computed using Gfan.

Example 9.2.2 Let Grassd,n denote the ideal in the polynomial ring in
(

n
d

)

variables generated by the relations on the d × d minors of a d × n matrix.

Example 9.2.3 Let Detsymt,n denote the ideal in the polynomial ring in n(n+1)
2

variables generated by the t× t minors of a symmetric matrix of variables. For
example, Detsym3,4 is generated by the 3 × 3 minors of the following matrix:









a b c d
b e f g
c f h i
d g i j









.

Example 9.2.4 Let Cyclic5 denote the ideal 〈a + b + c + d + e, ab + bc + cd +
de+ae, abc+bcd+cde+dea+eab, abcd+abce+abde+acde+bcde, abcde−1〉 ⊆
k[a, b, c, d, e]. In general, Cyclicn stands for the generalization of this polynomial
system to n variables [9]. These polynomial systems have become benchmarks
for computer algebra packages and their lexicographic Gröbner bases are noto-
riously hard to compute.

Example 9.2.5 Let A and B be symmetric n × n matrices of variables. The
ideal generated by the relations AB − BA = 0 is denoted ComSymMatn. It is
an ideal in the polynomial ring with (n + 1)n variables.

Extracting the f-vector from the full-dimensional Gröbner cones produced in
the enumeration process was the most time-consuming part of the computation
of Gröbner fan examples these. In example Det3,4,4 this extraction was not pos-
sible to complete within reasonable time with the current software package. For
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this particular example the 163032 full-dimensional Gröbner cones were com-
puted up to the action of a symmetry group of order 576. The full-dimensional
cones come in 289 orbits. The computation of the full dimensional cones up to
symmetry took 7 minutes on a 2.4 GHz Intel Pentium processor. Using reverse
search without symmetry the same computation would take approximately 14
hours. The maximal cones of the tropical variety were traversed in two minutes
exploiting symmetry.

The f-vector extraction routine in Gfan only works for complete fans. This
is why the f-vector for the Cyclic5 example is not shown.
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