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ABSTRACT. Let L and N be two smooth manifolds of the same dimension.
Let j : L → T ∗N be an exact Lagrange embedding. We denote the free loop
space of X by ΛX . In [Vit97], Claude Viterbo constructed a transfer map
(Λj)! : H∗(ΛL) → H∗(ΛN). We prove that this transfer map can be realized
as a map of Thom spectra (Λj)! : (ΛN)−TN → (ΛL)−TL+η, where η is a virtual
bundle defined by the embedding. In [CJ02], John D.S. Jones and Ralph L.
Cohen proved that the celebrated Chas-Sullivan product for a manifold N can
be realized as a product on the Thom spectrum (ΛN)−TN , turning it into a
ring spectrum. We prove a generalized, “twisted” version of this, proving that
the target of (Λj)! is a Chas-Sullivan type ring spectrum. This leads to the
natural conjecture that the Viterbo transfer is a ring spectrum homomorphism.
We will describe partial results on this conjecture.
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1 Introduction and Statement of Results

Let L and N be closed n-dimensional smooth manifolds, and let π : T ∗N → N
be the projection. Let j : L → T ∗N be an exact Lagrange embedding. That
is, j∗λ = 0, where λ is the canonical one form satisfying dλ = ω the canonical
symplectic form. A trivial example of this is the zero section of N . This leads
to a lot of other trivial examples, because any time-dependent Hamiltonian
Ht : T ∗N → R leads to a Hamiltonian flow ϕt, and ϕt(L) is an exact Lagrange
embedding for all t. We denote the free loop space of a space X by ΛX . In
[Vit97], Viterbo constructed a transfer map (Λj)! on cohomology, such that

H∗(ΛL)
(Λj)!

//

i∗

��

H∗(ΛN)

i∗

��

H∗(L)

Ev∗
0

OO

(π◦j)!
// H∗(M)

Ev∗
0

OO

commutes. Here (π◦j)! is the standard transfer map on cohomology, Ev0 is the
evaluation at base point, and i is the inclusion of constant curves. In this paper
we call this map the Viterbo transfer. Viterbo uses this transfer as obstruction
to the existence of exact Lagrange embeddings. This is of course related to the
classification of exact Lagrange embeddings. It is still not known whether or
not any non-trivial examples exist.

Because j : L → T ∗N is Lagrange we get a Maslov class in H1(L). This
defines a map ΛL → Z called the Maslov index, and it turns out that the
Viterbo transfer is graded on each component by this Maslov index. We prove
the following theorem in this paper.

Theorem 1 The Viterbo transfer can be realized as a map of spectra

(Λj)! : (ΛN)−TN → (ΛL)−TL+η,

where η is a bundle defined by the embedding j : L→ T ∗N , with local dimension
the Maslov index.

In the original construction by Viterbo, the Thom isomorphism is used on what
turns out to be η in this paper. However, η is not necessarily oriented, but if
we assume that (π ◦ j) : L→ N is relative spin it will be.

In [CJ02], the authors construct the Chas-Sullivan product as a map of
spectra, making (ΛN)−TN into a ring spectrum. We construct a generalized
version of this. Let L(n) be the Grassmannian of Lagrangian subspaces in
R2n. It is well-known that L(n) is homeomorphic to U(n)/O(n), and taking
the direct limit L = limn→∞ L(n), we get the sixth space Ω6O in the eight
Bott periodic spaces (see e.g. [Mil63]). Because this is a loop space there is a
projection πΩ : ΛL → ΩL. We prove the following in this paper.

Theorem 2 Let M be a closed smooth manifold. For any homotopy class
[f ] ∈ [M,L] ∼= [M,U/O] there is a Chas-Sullivan type ring spectrum structure
on

(ΛM)−T ′M+η,
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where η is the virtual bundle induced by the map

ΛM → ΛL → ΩL ≃ Z ×BO.

We note that the virtual bundle in theorem 1 is in fact produced by such
an f : L → L. We therefore conjecture that the Viterbo transfer is a ring
spectrum homomorphism, and in the last section we outline some progress
towards proving this.

Only the last section is devoted to Theorem 2, and in short the construction
is the same as the construction of the Chas-Sullivan product, but because the
map to Z×BO is a loop map we can extend this product to the Thom spaces
given by adding the bundles classified by the map. The majority of the paper
consists of the construction of the map in Theorem 1, and since this is a quite
extensive construction, we outline the general ideas.
Outline of proof of Theorem 1: We define the space T ∗ΛrN as the cotan-
gent space of piecewise geodesics. On these we define functions Ar : T ∗ΛrN →
R depending on a parameter µ > 0 and other parameters. These functions have
all their critical values in an interval (a, b), and are essentially approximations
of the action integral on finite dimensional manifolds.

In the actual construction, we use the theory of homotopy indices described
in section 2, but for the purpose of this overview we assume that Ar is a Morse
function. Because the manifold on which it is defined is not closed, we also
assume that the unstable manifold of any critical point intersected with the set
A−1

r ([a, b]) is compact. This means that if we define B = A−1
r ({a}), and take

the critical point with the lowest critical value, then the unstable manifold of
this critical point intersected with B is a sphere of dimension the Morse index
m minus one. If we identify B with a 0-cell, this defines the gluing of an m-cell
to this 0-cell. Taking the critical point with the second lowest critical value,
we can use the unstable manifold of this to glue a new cell onto the first two.

So by working our way up through the critical values, we construct a CW
complex Z associated to Ar, and in section 4 we prove that Z is homotopy
equivalent to the Thom space

Th(TΛµ
rN),

where Λµ
rN is the manifold of piecewise geodesics, with r pieces each having

length less than µ/r.
Because j : L → T ∗N is a Lagrange embedding, by use of the Darboux-

Weinstein theorem, we can extend j to a symplectic embedding of a small
neighborhood of the zero section in T ∗L. Using this neighborhood and the fact
that j is exact, we can adjust the definition of Ar, such that all the critical
points with critical values above c, for some c with a < c < b, are curves inside
the neighborhood of L. In fact, if we quotient by the subcomplex Y defined by
cells in Z coming from critical points with critical values less than c, we get

Z/Y ≃ Th(TΛµL

r L⊕ η). (1)

This is the main result of sections 5 through 7. It involves a lot of technical
details, but the most important aspect of this calculation is that the function
Ar depends on the cotangent space structure in T ∗N , and one can define a
similar function A′

r on the the cotangent space of L, where the associated
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CW-complex is

Th(TΛµL

r L).

The two functions Ar and A′
r are different because they depend on the foliation

given by vertical directions in the cotangent bundle, and close to L there are two
different choices of vertical direction, one coming from T ∗L and one from T ∗N .
The definition of Ag,SL

r in section 5 is a generalization of Ar, where SL is a
generalization of having a choice of vertical directions. Now, one can homotope
SL, and relate functions defined by different vertical directions. However, the
two choices are not homotopic, because if so, the associated CW complexes of
Ar and A′

r would be the same. So instead we stabilize by trivial factors, and
homotope the “difference” between the two choices onto the trivial factor. On
the trivial factor we can calculate the homotopy type of the associated CW
complex, and see that the difference is indeed given by the Thom suspension
in equation (1).

The quotient Z → Z/Y then defines a map

Th(TΛµ
rN) → Th(TΛµL

r L⊕ η),

and by adding an appropriate Thom bundle on both sides it turns out that
this is a map of Thom spectra

(Λµ
rN)−TN → (ΛµL

r L)−TL⊕η.

The rest of the construction is checking that this commutes with inclusions
into spaces defined by a larger µ, µL and r, so that we get a map

(ΛN)−TN → (ΛL)−TL⊕η.

2 The Homotopy Index

Most parts of this section are well-known, and done in more generality in
[Con78]. However, we will not need it in such generality, we have altered the
theory slightly to suit the purpose of this paper, and it is a vital part of the
construction.

Let M be a smooth manifold without boundary, and let f : M → R be a
smooth function. A pseudo-gradient X for f is a smooth vector field on M
such that the directional derivative X(f) is positive at non-critical points and
X = 0 at critical points. Since the convex combination of pseudo-gradients
are pseudo-gradients, and since the choice in a single fiber is contractible, the
choice of a pseudo-gradient is a contractible choice. We will denote the flow of
−X by ψt.

Let a and b be regular values of f which are isolated from the critical values
of f . We wish to define the homotopy index Ib

a(f,X). In [Con78] this is called
the Morse index, but we adopt the name homotopy index to avoid confusion.

Definition 2.1 An index pair (A,B) is a pair of subspaces of M satisfying the
following properties
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I1: B ⊂ A ⊂ f−1([a, b]).

I2: A and B are compact.

I3: int(A) contains all critical points of f with critical values in (a, b).

I4: There is a function c : A → R ∪ {∞} such that for all x ∈ A we have
{t ≥ 0 | ψt(x) ∈ A} = [0, c(x)] and {t | ψt(x) ∈ B} = {c(x)} ∩ R.

When such index pairs exist we define the Homotopy index

Ib
a(f,X) = [A

/

B],

where [−] denotes homotopy equivalence class. If X = ∇f we write Ib
a(f).

This is slightly different from [Con78], but we use this definition for sim-
plicity. Note that it can be shown that the function c in I4 is continuous. B is
called the exit set.

The following lemma shows that the homotopy index does not depend on
the choice of index pair (A,B).

Lemma 2.2 Ib
a(f,X) is well-defined.

Proof: If (A,B) and (A′, B′) is any pair of index pairs, we construct the
intersection pair as follows

B′′ = (B ∪B′) ∩ (A ∩A′)

A′′ = (A ∩A′).

This is an index pair with c′′(x) = min(c(x), c′(x)), thus reducing to the case
where A and B are subsets of A′.

Given any index pair (A,B), we can by using the flow ψt create new index
pairs

A2 = ψt(A)

B2 = ψt(B)

provided we stay within f−1([a, b]). Being careful, one can choose t as a func-
tion of points in A and still get diffeomorphic pairs. If B is not a subset of
B′, the function c′|B is not the zero function, and we can use the flow and the

function c′ to get the index pairs into a position where B ⊂ B′, thus reducing
to A ⊂ A′ and B ⊂ B′.

Because (A∪B′)
/

B′ ≃ A
/

B, we can replace (A,B) with (A∪B′, B′) which
is a new index pair. This further reduces to the case (A,B) ⊂ (A′, B).

For any index pair (A,B) we can define a “flow” Pt : A→ A by

Pt(x) = ϕmin(t,c(x))(x).

This map flows the set {x | c(x) ≤ t} into B. In particular it fixes B. This
gives us a new pair (Pt(A), B) with an equivalent quotient. In fact, the induced
map

Pt : A
/

B → A
/

B
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is homotopic to the identity. In our case, the flow Pt for the small pair is the
restriction of P ′

t for the large pair.
Since A′ −A is compact and X|A′−A is non-zero, it has a lower bound, and

we can thus find t0 > 0 such that P ′
t0(A

′) ⊂ A. This defines a homotopy
right inverse to the inclusion from A

/

B to A′/B. Doing the same for the pairs
(P ′

t0(A
′), B) ⊂ (A,B) gives a homotopy right inverse to this map. �

We will need the concept of a good index pair (A,B). The definition uses
a Riemannian metric on M , but does not depend on it.

Definition 2.3 An index pair (A,B) is called good if B ⊂ f−1(a) and if there
is an ε > 0 such that when supp∈A‖Xp−X ′

p‖ < ε then the flow defined by −X ′

exits A only through B.

This, together with an assumption on the critical points, will ensure that
perturbing the data involved in defining the homotopy index does not change
the homotopy index.

Lemma 2.4 Let fs, s ∈ I be a homotopy of smooth functions, and Xs, s ∈ I a
homotopy of vector fields such that Xs is a pseudo-gradient for fs. Let a, b be
regular values isolated from the critical points for all fs.

Assume that for all s0 ∈ I we have a good index pair (As0
, Bs0

) defining
Ib
a(fs0

, Xs0
) and an ε > 0 such that int(As0

) contains all critical points of fs

with critical value in (a, b) for s ∈ [s0 − ε, s0 + ε]. Then

Ib
a(f0, X0) = Ib

a(f1, X1).

Proof: Given s0, we wish to prove that the good index pair (A,B) = (As0
, Bs0

)
is an index pair for Ib

a(fs, Xs) when s is sufficiently close to s0. However, this
is not possible because we cannot be certain that I1 is satisfied. Because a and
b are isolated critical points, we can replace a and b by a− δ and b+ δ for some
small δ without changing the indices. Now I1 is not a problem.

I2 is obvious and I3 is part of the assumptions in the lemma. Since the
good pair assumption makes sure that we only exit A through B, we only need
to prove that for any point x in B we have {t ≥ 0 | ψs

t (x) ∈ A} = {0} and I4
will follow. This is equivalent to proving that the flow does not return to A
when exiting.

Since −Xs0
(fs0

) restricted to B is negative, the same is true for −Xs(fs0
)

for s close to s0, and thus we can find δ > 0 such that fs0
(ψs

t (p)) is strictly
decreasing for t ∈ [0, δ] and p ∈ Bs0

. Because fs0
(B) = {a} and fs0

(A) ⊂ [a, b]
we get for p ∈ B and t ∈ (0, δ] that ψs

t (p) is not in A and there is an ε > 0
such that fs0

(ψs
δ(p)) < a − ε. This implies (for s possibly closer to s0) that

fs(ψ
s
δ(p)) < a − ε/2. We can similarly assume that fs(As0

) > a − ε/3, so
the flow for −Xs has exited Bs0

and will not return to As0
because it is a

pseudo-gradient for fs. �

As the following lemma shows, there is a way of producing good index pairs
by using what we will call cut-off functions.
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Lemma 2.5 Assume that M has a Riemannian metric and that there exists
non-negative functions g1, g2, . . . , gn : M → R and constants s1 < t1, s2 <
t2, . . . , sn < tn such that

A = f−1([a, b]) ∩ {x ∈M | gj(x) ≤ sj +
tj − sj

b− a
(b− f(x))}

B = f−1(a) ∩A

are compact and the interior of A contains all the critical points of f|(a,b). If

−Xx(gj) <
tj − sj

b− a
Xx(f) (2)

for all x ∈ ∂A that satisfy

gj(x) = sj +
tj − sj

b− a
(b − f(x)),

then (A,B) is a good index pair.

We will use this lemma repeatedly. In some cases when X = ∇f we will
prove ‖∇gj‖ <

tj−sj

b−a ‖∇f‖, which implies (2). Often (2) will be proven on
much larger sets than needed.

Proof: At any point x ∈ ∂A we must have f(x) − b ≤ 0 and

gj(x) − sj −
tj − sj

b − a
(b− f(x)) ≤ 0

satisfied. The assumptions in the lemma and the fact that X is a pseudo-
gradient ensure that for any vector v close to Xx we have: If any of these
inequalities is an equality then the directional derivatives of the left hand side
in direction −v is negative. So −v points into A, except if the equality f(x) = a
is satisfied in which case −v must point out of the set. The boundary is compact
so there is an ε > 0 such that this holds for ‖v −Xx‖ < ε �

Some very important aspects of homotopy indices are the natural inclusion
and quotient maps

i : Ib
a(f,X) → Ic

a(f,X)

q : Ic
a(f,X) → Ic

b (f, x)

where a < b < c. These maps are constructed as follows. If (A,B) is a good
index pair, for Ic

a(f,X) then (A∩f−1([a, b]), B) is a good index pair for Ib
a(f,X),

and the inclusion is the obvious one. Similarly, (A ∩ f−1([b, c]), A ∩ f−1({b}))
is a good index pair for Ic

b (f,X), and the quotient is the map collapsing the
set A ∩ f−1([a, b])/B.

One can create similar constructions for any index pair, not necessarily
good, but we will not need that.

3 The Action Integral in Cotangent Bundles

All parts of this section are well-known, but the methods are vital to the
construction, and we need to introduce the notation anyway.
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Let M be a smooth n-dimensional manifold. We denote points in the cotan-
gent bundle T ∗M by (q, p), where q is in M and p is a cotangent vector. Given
any coordinate chart h : U ⊂M → U ′ ⊂ Rn we define the induced trivialization
of the cotangent bundle T ∗U by the pullback of cotangent vectors

h(q, p) = (h(q), p ◦Dh(q)(h
−1)) ∈ T ∗U ′ ∼= U ′ × R

n.

We denote points in T ∗U ′ ⊂ Rn × Rn by (x, y), and the standard symplectic
form on R

2n is ω0 =
∑n

i=1 dyi ∧ dxi. One can check that the 1-form λ defined
below does not depend on the chart h. So

λ = pdq = h
∗
(

n
∑

i=1

yidxi)

ω = dλ = h
∗
ω0

defines a canonically exact canonical symplectic structure on T ∗M .
Given any Hamiltonian H : T ∗M → R, we can define the associated Hamil-

tonian vector field XH by the formula dH = ω(XH ,−). This is well-defined
because ω is non-degenerate. The flow of XH will be denoted ϕt and is called
the Hamiltonian flow.

Given any metric on M we can induce a metric on T ∗M in the follow-
ing way: At each point (q, p) we split the tangent space T(q,p)(T

∗M) in two
components, the vertical, which is canonically defined without the metric as
the fiber directions, and the horizontal defined by the connection given by the
metric on M . This identifies T(q,p)T

∗N with TqM × T ∗
q M , on which we use

the metric from M to define the inner product on each factor - making this
splitting orthogonal. We can also define an almost complex structure J in this
splitting by using the isomorphism φq : TqM → T ∗

q M induced by the metric on
M

J(δq, δp) = (−φ−1(δp), φ(δq)).

This is be compatible with the symplectic structure and the induced metric.
The formula for XH can be rewritten using this metric and almost complex
structure as

XH = −J∇H. (3)

For any smooth manifold X , let ΛX be the space of piecewise smooth curves.
The action AH : ΛT ∗M → R is defined by

AH(γ) =

∫

γ

λ−H(γ(t))dt.

It is known that the critical points of this integral are precisely the 1-periodic
orbits of the Hamiltonian flow (a calculation in the following section proves
this).

For a moment we look at the special case in which H only depends on the
length of the cotangent vector - that is

H(q, p) = h(‖p‖)
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where h : [0,∞] → R is smooth and all derivatives vanish at 0.
In this case we calculate the gradient of H in the orthogonal splitting:

∇H = (0, h′(‖p‖)p)

We get 0 in the first factor because parallel transport does not change the norm
of p. Using equation (3) we see that

XH = −J(0, h′(‖p‖)p) = (h′(‖p‖)φ−1(p), 0) = (h′(‖p‖)p, 0).

As hinted, from now on we will suppress φ from the notation.
Because this vector field is 0 in the last factor, it will parallel transport p

and hence this becomes a reparametrization of the geodesic flow. This describes
the 1-periodic orbits as closed geodesics with lengths corresponding to h′(‖p‖).
In particular we get the formulas:

ϕt(q, p) = exp(q,p)(th
′(‖p‖)(p, 0))

ϕt(q, p)q =expq(th
′(‖p‖)p).

The action of these orbits is calculated to be ‖p‖h′(‖p‖) − h(‖p‖). This corre-
sponds to taking minus the intersection of the y-axis with the tangent of h at
the point (x, h(x)) as in figure 1. This geometric way of calculating the action

h
−(xh′(x) − h(x))

x

Figure 1: Geometric calculation of critical values.

is very useful for this type of Hamiltonian, and will be used repeatedly.

4 Finite Approximations of the Action Integral in

Cotangent Bundles for a Hamiltonian Linear at Infinity

This section is inspired by work in [Cha84] and [Vit97], which use the broken
geodesic approach to do what Floer homology later did more generally. We
will define finite dimensional approximations of the action integral in cotangent
bundles, and compute their homotopy indices. This is the approach used by
Viterbo to construct his transfer in [Vit97]. He uses the theory of generating
functions, but we will more explicitly construct the functions and obtain more
control over the homotopy indices.

We assume that N is a closed manifold with a Riemannian metric and an
injective radius 3ε0. On T ∗N we have the induced metric. We also assume
that H : T ∗N → R is a smooth Hamiltonian with the following property: There
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exist R,µ, c ∈ R, µ not a geodesic length, such that H(q, p) = µ‖p‖ + c when
‖p‖ > R. The Hamiltonian flow of H is denoted ϕt.

We assume that C1
H ≥ µ is an upper bound for ‖∇H‖ on all of T ∗N , and

C2
H is an upper bound for the norm of the covariant Hessian ‖∇2H‖ on the set

T ∗
RN = {(q, p) ∈ T ∗N | ‖p‖ ≤ R}. We define the space of piecewise geodesics

as

ΛrN = {(qj)j∈Zr
∈ N r | dist(qj , qj+1) < ε0},

where dist(−,−) is the distance in N . This implies

T ∗ΛrN = {(qj , pj)j∈Zr
∈ (T ∗N)r | dist(qj , qj+1) < ε0}.

We will denote a point in this space by −→z = (−→q ,−→p ), and a single coordinate by
zj = (qj , pj) ∈ T ∗N . These two spaces are given the product of the Riemannian
metrics.

We will define functions resembling AH on T ∗ΛrN having the same critical
points (the 1-periodic orbits) with the same critical values, and we will prove
that for r large enough these functions admit good index pairs.

Definition 4.1 For C1
H/r < 2ε0 we define

Ar(
−→z ) =

∑

j∈Zr

(

∫

γj

λ−Hdt) +
∑

j∈Zr

p−j εqj
,

where γj : [0, 1/r] → T ∗N is the curve γj(t) = ϕt(qj , pj),

(q−j , p
−
j ) = ϕ1/r(qj−1, pj−1) and εqj

= exp−1

q−

j

(qj) ∈ Tq−

j
N,

with exp: TN → N the exponential map.

The term p−j εqj
is the pairing of cotangent vectors with tangent vectors. This

function is well-defined because C1
H/r < 2ε0 implies that the distance between

q−j and qj is less than 3ε0. In fact, from now on we will assume that C1
H/r <

ε0/3. Notice that if ‖pj‖ > R, then p−j+1 is the parallel transport of pj by

a geodesic in the direction of pj , and thus ‖p−j+1‖ = ‖pj‖ (see the previous
section for details).

When evaluating the function Ar on an r-pieced dissection of a 1-periodic
orbit, we see that the last term vanishes because the γj ’s fit together to a closed
curve. So Ar equals the action integral on such a curve.

Before the next lemma we need a few more definitions and a few abbrevia-
tions. Consider the commutative diagram of isomorphisms

TqN
Pq,q′

//

φ

��

Tq′N

φ

��

T ∗
q N

P∗

q,q′
// T ∗

q′N.

The isomorphism φ is the one induced by the metric, which we suppressed
from the notation in the previous section. We will do so again. Pq,q′ and P ∗

q,q′
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are defined by parallel transport along the unique geodesic connecting q and q′

when dist(q, q′) < 3ε0. We use Pqj ,q−

j
to define

εpj
= Pqj ,q−

j
(pj) − p−j ∈ T ∗

q−
j

N ≃ Tq−

j
N

both εqj
and εpj

are vectors in the (co)tangent space at q−j . We can parallel

transport any vector in the (co)tangent space at q−j to the (co)tangent space at
qj and qj−1. The resulting vectors will by further abuse of notation be denoted
the same. So e.g. for εpj

this means

εpj
= pj − p−j = pj − Pq−

j
,qj

(p−j ) ∈ Tqj
N

and

εpj
= pj − p−j = Pq−

j
,qj−1

(

pj − Pqj ,q−

j
(p−j )

)

∈ T ∗
qj+1

N.

We also define P = maxj(‖pj‖).

Lemma 4.2 There exists a constant K ′ > 0 which is independent of r, C1
H

and C2
H such that for K = K ′(C2

H + C1
H) we have

‖∇qj
Ar + εpj

‖ ≤K max(R,P )(‖εqj
‖ + ‖εqj+1

‖)

‖∇pj
Ar − εqj+1

‖ ≤K
r
‖εqj+1

‖,

where ∇qj
Ar⊕∇pj

Ar = ∇zj
Ar is the gradient with respect to the jth component

in T ∗ΛrN . Furthermore, for r > K the only critical points of Ar are the r-
pieced dissections of the 1-periodic flow curves for the Hamiltonian flow.

Note that the r-pieced dissections of the 1-periodic orbits correspond to the
points where εqj

= εpj
= 0 for all j.

Proof: We start out by considering one of the integration terms. In the
following δγj is a variation of the curve γj (a tangent field along γj).

∇(

∫

γj

λ−Hdt)(δγj)

=

∫ 1/r

0

γjp(∇tδγjq) + (δγjp)γ
′
jq −∇γj(t)H(δγj(t))dt

=[γjp(t)δγjq(t)]
1/r
0 +

∫ 1/r

0

−γ′jp(δγjq) + (δγjp)γ′jq −∇γj(t)H(δγj(t))dt

= − pjδqj + p−j+1δq
−
j+1 −

∫ 1/r

0

(Jγ′j(t) + ∇γj(t)H)(δγj(t))dt (4)

= − pjδqj + p−j+1δq
−
j+1

The integral vanishes because γj is a flow curve, and thus γ′j(t) = −J∇γj(t)H .
This is a standard calculation, and it is also a proof that the 1-periodic orbits
of the flow XH are the critical points of the action integral.
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Our function depends on (qj , pj), j ∈ Zr, but it is convenient to continue for
a while calculating the gradient as if the function depended on both (qj , pj)j∈Zr

and (q−j , p
−
j )j∈Zr

as independent variables. Formally we define

T ∗Λ′
rN = {(qj , pj , q

−
j , p

−
j ) ∈ T ∗N2r | dist(qj , q

−
j ) < 2ε0, dist(q−j , qj+1) < 2ε0}.

We have an embedding

ι : T ∗ΛrN → T ∗Λ′
rN

defined by setting (q−j , p
−
j ) = ϕ1/r(qj−1, pj−1) for all j.

We wish to extend the function Ar to a function A′
r defined on T ∗Λ′

rN , and
calculate the gradient of A′

r on the image of ι. So, for each point (q, p, q−, p−) in
T ∗N2 with dist(q, q−) ≤ 2ε0, we choose a curve connecting (q, p) with (q−, p−),
such that if ϕ1/r(q, p) = (q−, p−) then we chose the flow curve ϕt(q, p) used
in the definition of Ar. By integrating over the chosen curve, we extend the
definition of the integration term of Ar to T ∗Λ′

rN . The calculation above shows
that the gradient of this term on the image of ι does not depend on the choice
of curves, and we have in fact already calculated it.

The second term we extend simply by using the same expression

∑

j

p−j exp−1

q−

j

(qj).

So we need to calculate the gradient of the function

f(q, q−, p−) = p− exp−1
q− (q) = p−εq, q ∈ N, (q−, p−) ∈ T ∗N.

One of the components is obvious:

∇p−f = εq,

however, when moving q and q− we get some interference from the curvature
of N . Assume that ‖p−‖ = 1. If εq = 0 we see that

∇q−f = −p−

∇qf = p−.

So by compactness we can find k > 0 such that

‖∇q−f + p−‖ ≤ k‖εq‖
‖∇qf − p−‖ ≤ k‖εq‖.

Here we have used the abuse of notation discussed just before the lemma to
define p− as a tangent vector at q. Using that f(q, q−, sp−) = sf(q, q−, p−) we
get a bound in the general case:

‖∇q−f + p−‖ ≤k‖p−‖‖εq‖
‖∇qf − p−‖ ≤k‖p−‖‖εq‖.

Adding the two terms of the gradients we obtain

∇qj ,pj ,q−

j
,p−

j
A′

r = (−εpj
+ bo(k‖p−j ‖‖εqj

‖), 0, bo(k‖p−j ‖‖εqj
‖), εqj

), (5)
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where the notation bo(c) means some term bounded by c, i.e. a = b+ bo(c) is
equivalent to ‖a− b‖ ≤ c.

If H = 0 we have (q−j , p
−
j ) = (qj−1, pj−1), and the gradient is just the sum

of the two components:

∇qj ,pj
Ar =

(

−εpj
+ bo(k(‖p−j ‖‖εqj

‖ + ‖p−j+1‖‖εqj+1
‖)), εqj+1

)

.

However, if H is non-zero we need to understand the differential of the function
ϕ1/r , and use that for v ∈ Tqj ,pj

(T ∗N)

v(Ar) = (Dqj ,pj
(Id×ϕ1/r)(v))(A

′
r). (6)

Assume (q−, p−) = ϕ1/r(q, p). We would like to compare Dq,pϕ1/r to the
parallel transport of (co)tangent vectors from q to q− used in defining εqj+1

at
Tqj

N . That is, by using the splittings

Tq,pT
∗N = TqN ⊕ T ∗

q N, Tq−,p−T ∗N = Tq−N ⊕ T ∗
q−N

and the parallel transports we define

Tq,p = Pq,q− ⊕ P ∗
q,q− : Tq,pT

∗N → Tq−,p−T ∗N.

First consider the compact set T ∗
RN . On this set we have ‖Dq,pϕ1/r − Tq,p‖ <

k2/r for some k2. The question is how k2 depends on C1
H and C2

H . Take a
normal neighborhood of (q, p) (this identifies the tangent spaces locally). In
this, Tq,p is C1

Hk3/r close to the identity because the length of the flow curve is
less than C1

H/r, and therefore k3 only depends on the metric on the compact
set ‖p‖ ≤ R. On the other hand, we have Dq,pϕ1/r is also close to the identity,
but how close depends on the first order derivatives of XH = −J∇H , which is
the vector field defining the flow ϕt. This is bounded in the normal chart by
c1C

1
H + c2C

2
H , for some c2 depending on the metric and some c1 depending on

how parallel the complex structure is. We conclude that k2 can be chosen as
some constant times (C1

H + C2
H).

On the rest of the cotangent bundle we will get a bound using the action
of R+ given by t(q, p) = (q, tp) and the fact that

Tq,p = Tq,tp and ϕ1/r(q, tp) = tϕ1/r(q, p).

The latter only applies when ‖p‖ ≥ R and ‖tp‖ ≥ R, because this is where H
has the special form µ‖p‖+ c. Let at(q, p) = (q, tp). Then the differential of at

in (q, p) splitting is

Dq,pat =

[

Id 0
0 t Id

]

.

So by decomposing

ϕ1/r(q, p) = (‖p‖/R)ϕ1/r(q, (R/‖p‖)p) = a‖p‖/R ◦ ϕ1/r ◦ aR/‖p‖

whenever ‖p‖ > R, and using the bound we already have on the compact set
p ≤ R, we get the bound

Dq,pϕ1/r − Tq,p =

[

bo(k2

r ) bo( k2R
r max(R,‖p‖) )

bo(k2 max(R,‖p‖)
rR ) bo(k2

r )

]

(7)
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for all (q, p) ∈ T ∗N . Using equations (5), (6) and (7) together with

‖p−j+1‖
max(R, ‖pj‖)

≤ 1,

we get the estimates

∇qj
Ar =

(

−εpj
+ bo

(

Kmax(R,P )(‖εqj
‖ + ‖εqj+1

‖)
)

)

∇pj
Ar =

(

εqj+1
+ bo(

K

r
‖εqj+1

‖)
)

with K some real number proportional to k2. This proves the first part of the
lemma.

The last part of the lemma is simple: Assume K
r < 1, then ∇pj

Ar is zero
if and only if εqj+1

is zero, and having that for all j we can conclude the
same for ∇qj

Ar and εpj
. So the critical points are exactly the ones where

‖εqj
‖ = ‖εpj

‖ = 0 for all j. �

The function Ar with its gradient does not necessarily have index pairs,
but we define a pseudo-gradient X with which it does. On the set where
maxj‖εqj

‖ < ε0/4 we use the gradient of Ar, and on the set maxj‖εqj
‖ > ε0/3

we keep the non-zero p-component of the gradient of Ar, but use 0 as the
q-component. In between we use some convex combination of them. So

X · ∇Ar ≥ ‖X‖2 ≥
∑

j

‖∇pj
Ar‖2, (8)

and as we only made X different from the gradient on a set where this is
non-zero, it is indeed as pseudo-gradient.

Lemma 4.3 Let a and b be regular values of Ar, and let K be as in the previous
lemma. If r > K then (Ar , X) has a good index pair, which will contain all the
critical points of any Ar coming from a small C1-perturbation of H fixing H
on the set where ‖p‖ > R. Furthermore, if we do a compactly supported change
of X to another pseudo-gradient, it will not change the homotopy index.

Proof: We will need a global lower bound for ‖X‖ on the set where P >
2R. First we prove this on the set where X 6= ∇Ar. Here we have some
‖εqj

‖ > ε0/4, and from the previous lemma we have ‖X‖ > (1 −K/r)‖εqj
‖ >

(1 −K/r)ε0/4.
So now we look at the case where X = ∇Ar . We will get a lower bound if

we show that there exist k1, k2 ∈ R+ such that if Gp =
∑

j‖∇pj
Ar‖ < k1, then

Gq =
∑

j‖∇qj
Ar‖ > k2. Define

Lq =
∑

j

‖εqj
‖ and Lp =

∑

j

‖εpj
‖.

The statement can, because of the approximation of ∇pj
Ar in the previous

lemma, be reduced to: There exist k1, k2 such that Lq < k1 implies Gq > k2.
This is the statement we will prove.
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Define P = minj‖pj‖. There are no 1-periodic flow curves on the compact
set R ≤ ‖p‖ ≤ 2R, so there must exist 0 < c < 1 such that Lq + Lp > c
for curves with all zj ’s contained in this set. Claim: k1 = min(c/2, 1

4K ,
c

8KR )
works. We will divide the proof of this claim into two cases.

First case: P < P/2. We know that for some j we have ‖pj‖ = P ≥ 2R and
for some j′ we have ‖pj′‖ < P/2. The “curve” −→z has to move this distance in
p-direction and back again. So because |‖pj‖−‖pj−1‖| = |‖pj‖−‖p−j ‖| < ‖εpj

‖
when ‖pj‖ ≥ R, we get that Lp > P . With the bound Lq < 1/(4K) we see
that this implies

Gq >
∑

j

‖−εpj
+ bo

(

KP (‖εqj
‖ + ‖εqj+1

‖)
)

‖

>
∑

j

‖εpj
‖ −KP (‖εqj

‖ + ‖εqj+1
‖) > (P − P

2
) > R,

which is a positive constant.
The second case: P ≥ P/2. In this case we can, because the flow is equivari-

ant with respect to the R+ action on the set ‖p‖ ≥ R, multiply our “piecewise
flow curve” with 2R/P to obtain a piecewise flow curve on the compact set
R ≤ ‖p‖ ≤ 2R. This does not change any of the εqj

’s, but it scales the εpj
’s so

we can conclude that the original curve satisfies

2R

P
Lp + Lq > c.

Because Lq < c/2 this implies that Lp >
cP
4R , which implies by using the bound

Lq <
c

8KR that

Gq >
∑

j

‖εpj
‖ −KP (‖εqj

‖ + ‖εqj+1
‖) > cP

4R
− cP

8R
>
c

4
.

This is again a positive constant.
So we have proved that there exists C > 0 such that

‖X‖ > C

on the non-compact set where P > 2R.
Because of equation (8) we obtain

∣

∣X · ∇‖pj‖
∣

∣ ≤ ‖X‖ ≤ C−1‖X‖2 ≤ C−1X · ∇Ar.

So we can use ‖pj‖ as a cut-off function with sj > 2R and tj − sj > C−1(b−a)
(see lemma 2.5).

Define fj(
−→z ) = dist(qj , qj+1). If fj < 2ε0/3 we will, because of the as-

sumption C1
H/r < ε0/3, get ‖εqj

‖ > ε0/3. The way we defined X is such that
at a point like this we have X · ∇fj = 0. So we can use fj as a cut-off function
with any ε0 > tj > sj > 2ε0/3. We now have enough cut-off functions to
ensure that when using lemma 2.5 we get a compact index pair inside our open
manifold.

The fact that our pair contains the critical points of Ar when perturbed
in C1 follows from: As long as C1

H/r is less that ε0/3 we can only get critical
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points when fj < ε0/3, and we get no critical points with pj > R because of
the way we defined H on ‖p‖ > R.

The last statement follows because any compact subset can be contained
in an index pair constructed in this way, and changing the pseudo-gradient on
the interior of an index pair will not change the homotopy index. �

Because all critical points of Ar lie in the compact set P < R, the set of
critical values must be compact. So the total index I(Ar, X) is well-defined.
The lemma above tells us that changing the Hamiltonian within the proper
bounds and conditions does not change the total index. So we define a specific
Hamiltonian and calculate the total index. To do this we first need part of the
small lemma (we will use the rest later):

Lemma 4.4 The set of lengths of geodesics in N is closed and with measure
zero.

Proof: For any c there is a compact manifold inside the space of curves con-
taining all geodesics with energy less than c. On this manifold the energy is
smooth, and has the geodesics as critical points, so by Sards theorem the en-
ergy spectrum below c of geodesics is closed and with measure zero. But since
c is arbitrary this is true for the entire spectrum. For geodesics the length is
easily related to the energy. So we conclude that the length spectrum is closed
and with measure zero. �

Define H0(q, p) = h(‖p‖) where h(t) = µ
2 t

2 when t < µ−ε
µ for some ε > 0

such that [µ− ε, µ] does not contain any geodesic lengths.
We still need h(t) = µt+ c outside a compact set, but we also want h to be

convex so that all the 1-periodic orbits will lie in the set where h is quadratic.
In fact we want h′′ to be a bump function constantly equal to µ on the set
‖p‖ < µ−ε

µ and zero on the set ‖p‖ > µ+ε
µ such that it integrates to µ. Notice

that µ+ε
µ < 2, so for this Hamiltonian we can choose R = 2.

Lemma 4.5 There exists a constant C > 0 such that for any Hamiltonian H0

described above we have that r > Cµ implies existence of index pairs and

I(Ar, X) = Th(TΛµ
rN),

where Λµ
rN is the manifold of piecewise geodesic curves in N , each piece having

length less than µ/r.

We define Λ
a

rN to be piecewise geodesics, each piece having length less than
or equal to a/r.

Proof: We start by defining an embedding

i : Λ
(µ−ε)

r N → T ∗ΛrN

(the ε and µ coming from the definition of H0 above) by

(i(−→q ))j =
(

qj , µ
−1r exp−1

qj
(qj+1)

)

.
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This is a section in the bundle T ∗ΛrN → ΛrN restricted to Λ
(µ−ε)

r N . Because
‖µ−1r exp−1

qj
(qj+1)‖ < µ−ε

µ , the point (i(−→q ))j will lie in the set where h is
quadratic. This means that the flow curve γj is easy to understand, and in
fact we have chosen pj in such a way that q−j+1 = qj+1. This implies that on
the image of i all εqj

are 0. In fact, this is the unique point in the fiber over
qj that flows to the fiber over qj+1. The image of this embedding contains all
the critical points of Ar, because it contains all the curves with ‖pj‖ ≤ µ − ε
and εqj

= 0.
We will use the fiber directions (−→p directions) as a normal bundle. In fact

because εqj
= 0 for all j, lemma 4.2 tells us that ∇pj

Ar = 0, and because this
is the only point in the fiber that flows to a point over qj+1, this is the only
critical point when restricting Ar to the fiber.

Claim: Let −→q ∈ Λ
µ−ε

r N be fixed. The function Ar(
−→q ,−→p ) goes to −∞ if

‖−→p ‖ goes to ∞.
This makes the point of the embedding the global maximum in the fiber.
Proof of claim: The condition ‖−→p ‖ → ∞ is equivalent to ‖pj‖ → ∞ for

some j. So we look at the terms in the definition of our finite approximation
that involves pj :

f(pj) =

∫

γj

(λ−Hdt) + p−j+1εqj+
.

Assume that ‖pj‖ > 2. The integration part was already calculated in the
previous section and is (‖pj‖h′(‖pj‖)−h(‖pj‖))/r, which is constant on the set
‖pj‖ > 2. Because dist(qj , qj+1) ≤ (µ−ε)/r and dist(qj , q

−
j+1) = µ/r, we are in

the situation depicted in figure 2. Take the metric we have on N and multiply

p−j+1

qj

q−j+1

qj+1

ǫqj+1

projection of γj

Figure 2: Position of points when the norm of pj is larger than 2.

it with r/µ, and take a normal chart around qj in this new metric. Then the
circle in the picture is mapped to the unit circle. If the metric on the unit disc
is “flat enough” then the paring p−j εqj+1

will be negative, so by making µ/r
smaller than some constant depending on the metric, we know that the second
term is negative when pj > 2. However, multiplying pj with a constant larger
than 1 scales this term by the same constant. So, Ar goes to −∞ if ‖pj‖ goes
to ∞.
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On the image of the embedding the last term vanishes, and

Ar(i(
−→q )) =

∑

j

∫

γj

(pdq −Hdt) =
1

2µ

∑

j

r‖exp−1
qj

(qj+1)‖2.

This is µ−1 times the energy functional

e(γ) =
1

2

∫ 1

0

‖γ′(t)‖dt

evaluated on the piecewise geodesic −→q . This is positive and we conclude that
if we look at the set defined by Ar ≥ −1 intersected with one of the fibers, we
get a bounded set diffeomorphic to a closed disc. This is true over every point

in the compact set Λ
(µ−ε)

r , so the set

A = {(−→q ,−→p ) | −→q ∈ Λ
(µ−ε)

r N,Ar(
−→q ,−→p ) ≥ −1}

is compact and has points in each fiber.
We now change the pseudo-gradient X to another X ′. We do this on a

neighborhood of A - say the interior of the compact set

A′ = {(−→q ,−→p ) | −→q ∈ Λ(µ−ε/2)
r N,Ar(

−→q ,−→p ) < −2}.
Lemma 4.3 tells us that this does not change the homotopy index. We will
only specify X ′ on A, because the choice of a pseudo-gradient is contractible,
and so it is easy to extend and interpolate. As we noted before, the −→p part of
the gradient of Ar is non-zero except on the embedding, so we will use this as
X ′ except in a small neighborhood of the embedding. On this set we will use
the gradient of the energy functional, which we proved coincided with Ar on
the embedding. Since minus the gradient of the energy functional on piecewise
geodesics defines a flow that flows in a direction in which the longest geodesic
piece gets shorter or stays the same length, we know that the gradient of the

energy will preserve Λ
(ε−µ)

r N . This implies that the pseudo-gradient X ′ will
point into or be parallel to the boundary of A close to the embedding. So the
points at which the flow of −X ′ exits A is precisely the points where Ar = −1.
In each fiber this is the boundary of the disc defined by Ar ≥ −1. So if we
define

B = {(−→q ,−→p ) | −→q ∈ Λ
(µ−ε)

r N,Ar(
−→q ,−→p ) = −1},

then (A,B) is an index pair for I(Ar, X
′), and they are the appropriate disc

and sphere bundles needed to prove the lemma. �

This proof can be slightly modified to prove that the homotopy index of
this specific Hamiltonian with respect to an interval (a, b) (simply by using the
same argument for the embedding restricted to an appropriate subspace) is

Ib
a(Ar, X) = Th(TΛmin(

√
2µa,µ)

r N)
/

Th(Λmin(
√

2µb,µ)
r N).

Here the x 7→ √
2µx is the conversion from µ−1 times energy to length. This

is needed because the critical value corresponding to a geodesic was calculated
in the proof to be µ−1 times the energy.

It seems that increasing r by 1 gives a Thom suspension of the total homo-
topy index. The next lemma proves this for any a, b and H .
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Lemma 4.6 Assume that r > K (from lemma 4.3). The index Ib
a(Ar+1, Xr+1)

is the relative Thom suspension of Ib
a(Ar, Xr) by the bundle

Ev∗
z0
TN.

Note that the relative Thom suspension of A/B with a bundle ζ over A is
defined to be Dζ/(Sζ ∪Dζ|B).

Proof: Previously we indexed the points in Λr+1T
∗N by j ∈ Zr, but for the

purpose of this lemma, we index them by 0, 1, . . . , r in Z, and the points in
ΛrT

∗N by 0, 1, . . . , r − 1. So we think of zr as the extra point, and define the
projection

π : T ∗Λr+1N → T ∗ΛrN

by forgetting zr.
Recall the definition of Ar+1: We defined γj as the flow curve ϕt(zj), t ∈

[0, 1/(r + 1)], but we could just as well have defined γj = ϕt(zj), t ∈ [0, tj]
where

∑

j tj = 1 (and of course z−j = ϕtj
(zj)). This would mean that instead

of bounding Dϕ1/(r+1) we would have to bound Dϕmaxj tj
in lemma 4.2, but

this is no problem if we assume something like tj < 2/r for all j. Similarly,
all other lemmas are also true in this slightly more general case. Because
∑

j tj = 1, the critical points will still be the 1-periodic orbits, but they are
dissected differently. The critical values of these points also stay the same.
This modified construction is needed because we wish to define an alternate
Ar+1 by tj = 1/r for j 6= r and tr = 0. Effectively this means that z−0 = zr.
We can always change the Ar+1 back to the standard one by homotoping the
tj ’s, and we get the same homotopy index because we have good index pairs
during the homotopy for any interval (a, b).

Fixing all points z0, . . . , zr−1 and qr, but taking two different values of pr,
say pr1 and pr2, we get

Ar+1(pr1) −Ar+1(pr2) = (pr1 − pr2)εq0
= (pr1 − pr2) exp−1

qr
(q0), (9)

which implies that for all parameters except pr fixed and qr = q0, the function
Ar+1 is constant, and the gradient ∇qr

Ar+1 as a function of pr has a unique
zero. We use this to define an embedding ir : T ∗ΛrN → T ∗Λr+1N by putting
the new point qr = q0 and pr equal to this unique critical point. Checking the
terms in Ar+1 and Ar we see that we have a commutative diagram

T ∗ΛrN
ir

//

Ar

##GG
GG

GG
GG

G
T ∗Λr+1N

Ar+1

zzuu
uu

uu
uu

uu

R

We defined ir such that on the image we have ∇qr
Ar+1 = 0, but from lemma 4.2

we see that also ∇pr
Ar+1 = 0. Also, the embedding ir maps critical points

bijectively to critical points.
We would like to understand the Hessian with respect to variations of zr

on the embedding. This would give an understanding of how Ar behaves on a
small normal bundle of the embedding. Equation (9) tells us that by changing
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pr changes the gradient ∇qr
Ar+1 by −pr, and the expression in lemma 4.2 tells

us that by changing qr we approximately change ∇pj
by −qr, so in a normal

chart and (q, p) splitting we approximately have the Hessian
[

0 −I
−I 0

]

,

which is similar to
[

I 0
0 −I

]

.

So the negative eigenspace and positive eigenspace of this as a bundle over the
embedding are both isomorphic to Ev∗

q0
TN . This is a very good indication

that the lemma is correct, but formally we need to define an index pair and a
pseudo-gradient showing this. These can be constructed in much the same way
as we constructed the index pair and pseudo-gradient in the previous proof.
This case, however, is a bit more technical, because in the other case we had
only negative directions in the normal bundle, but the essential ideas are the
same. �

We summarize the most important facts of this section in the following
proposition.

Proposition 4.7 There exist constants K ′ > 0 and r0 > 0 such that: If H is
any Hamiltonian with the properties and bounds described in the beginning of
this section and r > max(K ′(C1

H + C2
H), r0µ) then

I(Ar, X) = Th(TΛµ
rN).

Proof: We will prove that the K ′ from lemma 4.2 also works as K ′ in this
case. Let H0 be as in lemma 4.5, and choose r0 > C from that lemma such that
we can use the result. Also, choose r0 large enough for us to use lemma 4.3
on H0. For this we need that r0 > K ′(C1

H0
+C2

H0
), but the bounds on H0 can

be chosen to be C1
H0

= µ and C2
H = C′µ, where C′ is a constant depending

only on the metric. So this choice is also linear in µ as the lemma requires.
We define Ht = (1 − t)H0 + tH , and then by the assumption on r we can use
lemma 4.3 on Ht for any t (we can use convex combinations of the bounds on
H and H0 as bounds on Ht). Thus if we chose a and b large enough to contain
all the critical points of At

r for all t ∈ I, then by lemma 2.4 we see that the
total index is defined for all t and is constant as a function of t. �

5 Generalized Approximations for Hamiltonians

Defined Near the Zero Section

In this section we introduce a more general family of finite dimensional ap-
proximations to the action integral. For now we still assume that T ∗N has
an induced Riemannian metric. The Hamiltonians we will focus on are of the
specific type

H : T ∗
ε1
N → R,
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where T ∗
ε1
N = {(q, p) ∈ T ∗N | ‖p‖ < ε1} and H(q, p) = h(‖p‖). We use

two parameters µ > 0 and δ > 0 to define h. We want h(0) = h′(0) =
0, and we want h′′ to be a positive function with upper bound 2µδ−1 and
support in [0, δ], such that h′ is constantly equal to µ on [δ, ε1]. Note that
any tangent to h intersects the y-axis above −µδ and below 0. This means
that the action integral for this Hamiltonian has critical values in [0, δµ] (see
section 3). Because of this we will assume that a = −µδ and b = 2µδ when
calculating homotopy indices. We will prove that for any µ > 0 not a geodesic
length, we can find δ0 > 0 small enough such that when δ0 > δ > 0, we
get cut-off functions (for appropriate r’s). This will imply that the homotopy
index is constant during continuous variations of the not yet defined parameters
needed to define these more general finite dimensional approximations. Of
course the homotopy index will also be constant when perturbing H within the
specifications above.

The first parameter we need in the definition of the approximations is a
symplectic compatible and complete Riemannian metric g on T ∗N . Note that
we want the metric defined on the entire cotangent bundle. This is to make it
possible to use compactness arguments on T ∗

ε1
N , e.g. we get an injective radius

on T ∗
ε1
N , although the geodesics may exit the set. The metrics we will look

at later are, however, not all defined on more than a neighborhood of T ∗
ε1
N ,

but it is easy to extend them. This metric may be different from the induced
metric we have on T ∗N , which we will no longer use unless specified.

For us to get good index pairs, we will in this section and the next restrict
our attention to a specific subspace of the previously defined loop space T ∗ΛrN .
We define

Λr,βT
∗
ε1
N = Λg

r,βT
∗
ε1
N = {−→z ∈ (T ∗

ε1
N)r | eg(

−→z ) < β},

where eg(
−→z ) = r

∑

j distg(zj, zj+1)
2 is the energy of the closed piecewise geo-

desic curve connecting the zj ’s in cyclic order.
We need another parameter, but this requires some definitions: For any

symplectic bundle ξ → M denote by L(ξ) → M the fiber bundle with fiber
L(ξ)m the Grassmannian of Lagrangian subspaces of ξm. If ξ has a metric and
the manifold has a Riemannian metric, we can induce a Riemannian metric on
L(ξ): Each fiber is a Grassmannian of Lagrangian subspaces of a vector space
with a metric, which means it has an induced metric. We define the orthogonal
complement to the fiber by parallel transport of the Lagrangian subspaces, and
use the metric on M to define the inner product on this complement.

The second parameter we need is a section SL in the bundle

ΛL(T (T ∗
ε1
N)) → ΛT ∗

ε1
N. (10)

This section should have the property that there exists a constant CL such that
for any curve γ ∈ ΛT ∗

ε1
N with energy less than β we have

e(SL(γ)) < CL

sup
t
‖(DγSL(δγ))(t)‖ < CL sup

t
‖δγ(t)‖, (11)

where e is the energy functional e(γ) =
∫ 1

0 ‖γ′(t)‖2dt on the total space in the
induced metric on L(T (T ∗

ε1
N)), and δγ is a variation of γ. Note that this
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definition depends on β, and later when we choose β we will make sure that
the choice is independent of CL.

In the bundle

L(T (T ∗
ε1
N)) → T ∗

ε1
N,

we have a canonical section s given by the vertical directions (the p-directions).
We get a section in the bundle in equation (10) by looping s. We denote this
canonical section SL0, and it has the bounds from equation (11) because it is
the loop of a smooth map.

Given a Lagrangian subspace L ⊂ Tz(T
∗N) we define the wedge map

vL : Tz(T
∗N) → T ∗N

by decomposing u ∈ Tz(T
∗N) as u = uL + uL⊥ (L⊥ = JL) and then exponen-

tiating uL to a point in T ∗N say z′. Now parallel transport uL⊥ to z′ using
the exponential curve and exponentiate that to get z′′ (see figure 3). We define

z

z′

z′′ = vL(u)

uL

u

u⊥L

Figure 3: The wedge map.

vL(u) = z′′. This is a diffeomorphism at u = 0, so by compactness of T ∗
ε1
N

there is an ε > 0 such that: For any z, z′′ ∈ T ∗
ε1
N with dist(z, z′′) < ε and

L a Lagrangian in Tz(T
∗N) there is a unique u ∈ Tz(T

∗N) close to 0 with
vL(u) = z′′. In this case, we define the L-curve γx(z, z′′, L) by the curve start-
ing at z′′, going to z′ by the exponential curve, and then continuing to z by the
other exponential curve. We do not care about parametrization. Notice that
this curve may not be fully contained in T ∗

ε1
N .

We will use these L-curves to define our approximations. Figure 4 illustrates
many of the aspects of the definition.

Definition 5.1 For any −→z ∈ Λr,βT
∗
ε1
N let SL(−→z ) be the section evaluated at

the piecewise geodesic connecting the zj’s in cyclic order. For large r we define

γj(t) = ϕt(zj), t ∈ [0, 1/r]

z−j = γj−1(1/r)

γx

j = γx(zj , z
−
j , SL(−→z )(j/r))

and

Ag,SL

r (−→z ) =

r
∑

j=1

(

∫

γj

(λ−Hdt) +

∫

γx

j

λ
)

.
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1
rXH,zj−1 1

rXH,zj

γx

j−1

zj−1 z−j
γj−1

γx

j

zj γj z−j+1

zj+1

Figure 4: Curves involved in definition of Ag,sL
r .

If SL = SL0 and the metric is induced from a metric on N , we compare
this to definition 4.1: In this case the curve γx

j will be the curve first going in

direction exp−1

q−

j

(qj), parallel transporting p−j , and when reaching the fiber over

qj it is a line in the fiber down to pj. Integrating this over λ, one gets the term
p−j εqj

. So this is indeed a generalization albeit only on a subset. From now on

we will simply denote Ag,SL
r by Ar.

We use the gradient of Ar and not a pseudo-gradient. We will need cut-off
functions, and so we define an energy type functional

E(−→z ) =
∑

j

dist(zj , z
−
j )2.

This is zero if and only if −→z is a 1-periodic orbit.

Lemma 5.2 There exist constants K > 0 (only dependent on the metric) and
δ0 > 0 such that: If 0 < δ < δ0 and r > Kδ−1 then

‖∇E‖2 ≤ 5E ≤ 15‖∇Ar‖2 ≤ 45E,

equalities only if E = 0

This lemma has a very interesting implication: The critical points of Ar

are the 1-periodic orbits regardless of the metric and SL. We will, however,
later see that in the case of a non-degenerate critical point, the Morse index
will depend on SL.

Proof: We start by proving the second and the third inequality. To do this
we need a bound on E, so we calculate

E(−→z ) <
∑

j

(µ
r + dist(zj , zj+1))

2 <
∑

j

(

2µ2

r2 + 2 dist(zj , zj+1)
2
)

<
2µ2 + 2β

r
.

Like in the proof of lemma 4.2, we need the gradient of Ar with respect to
zj . First we prove a special case: Assume that all the Lagrangian subspaces
SL(−→z )(j′/r) ⊂ Tzj′

T ∗
ε1
N for any j′ 6= j is constant to the first order in zj .

We can now look at the problem locally, since the gradient of Ar with
respect to zj only depends on H and the positions of zj−1 and zj+1. Because
T ∗

ε1
N is compact, we can choose ball shaped Darboux charts h for all points

z such that h(z) = 0, and assume that they have a radius bounded from
below by some small positive number. This is not a continuous family of
charts, but just a choice for all points with this common bound. We can pick
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r large enough such that the points zj−1, z
−
j , zj , z−j+1 and zj+1 lie inside

the chart centered at zj . By composing the chart at zj with a symplectic
linear map we may assume that the differential Dzj

h is an isometry. We can,
by further composing with an element of U(n), assume that the Lagrangian
Lj = (Dzj

h)(SL(−→q )(j/r)) ⊂ T0R
2n is equal to the imaginary part iRn of

R2n ≃ Cn.
To further simplify the case, we assume for the moment that the chart is in

fact also a Gaussian coordinate chart, and that the Lagrangian SL(−→z )(j/r) ∈
Tzj

(T ∗
ε1
N) is the parallel transport to the first order in zj . So in fact, to the

first order in zj the Lagrangian (Dzj
h)SL(−→q )(j/r)) ⊂ T0R2n is constant.

Fixing all zj′ ’s except zj we replace the function Ar by

f(zj) =

∫

γj−1

(λ0 −Hdt) +

∫

γx

j

λ0 +

∫

γj

(λ0 −Hdt) +

∫

γx

j+1

λ0,

where we think of the points and curves as lying in R2n and λ0 =
∑

j yjdxj is

the standard 1-form in R2n, with dλ0 = ω0 the standard symplectic form. The
function f is just Ar as a function of zj plus a constant.

As in the proof of lemma 4.2, we now assume that f depends on the in-
dependent coordinates zj = (xj , yj) and z−j+1 = (x−j+1, y

−
j+1), and equation

(4) used on the cotangent bundle T ∗Rn ∼= R2n calculates the gradient of the
integral along γj to be

∇xj ,yj,x−

j+1
,y−

j+1
(

∫

γj

λ0 −Hdt) = (0, 0, y−j+1, 0). (12)

We will only need the fact that the first two factors are zero, because we will deal
with the gradient with respect to z−j later. Because we are in R2n and the metric
at 0 agrees with the standard metric, we can, by making r larger, assume that
the tangents of the four geodesics in the two relevant L-curves γx

j and γx

j+1 are
close to being parallel to either Rn or iRn. This uses the first of the two bounds
on the section SL because we want Lj+1 = SL(−→z )((j + 1)/r) ⊂ Tzj+1

R2n to
be close to Lj. This is possible because as r grows, the points zj and zj+1,
at which Lj and Lj+1 are Lagrangians, move closer to each other, and we
know that the energy of the curve defined by the section is bounded by CL.
So increasing r will force Lj and Lj+1 closer. We can also, by increasing r,
assume that each of the four geodesic pieces are close to being linear in R2n,
meaning: The tangent vectors in R2n along each of the geodesic curves do not
vary much along the curve compared to its length.

If the metric were flat, then εxj
and εyj

would both be linear and parallel
to Rn and iRn respectively, and we would get

∇xj ,yj

∫

γx

j

λ0 = ∇zj
ω0(εxj

, εyj
) = (εyj

, 0).

Since the geodesics εyj
and εxj

are close to being linear and close to being
parallel to the real or the imaginary part, and since the chart is Gaussian at
zj , we get that

∇zj

∫

γx

j

λ0 = A(εyj
, 0),
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where A is close to the identity.
To calculate the other part of the gradient we linear translate the coordinate

such that z−j+1 = 0. This changes the gradient of the individual integration

parts, but not the overall gradient of f at the point z−j+1. Even though this
new chart is not necessarily Gaussian, for now we assume it is and by similar
arguments we get that

∇z−

j+1

∫

γx

j+1

λ0 = B(εyj+1
, 0),

where B is close to the identity. In these coordinates, the gradient of the
integral is

∇zj ,z−
j+1

(

∫

γj

λ0 −Hdt) = (−yj+1, 0, 0, 0). (13)

Thus the actual gradient of f as a function of zj is

∇zj
f = A(εyj

, 0) − Φr(B(0, εxj+1
))

where Φr is the differential Dzj
ϕ1/r. By increasing r this will be close to the

identity in our coordinates. This is where we choose K, because if we change
H , we also need to make r larger for Φr to be close to the identity, and it is not
difficult to prove that r > Kδ−1 is good enough for some K depending only on
the metric g. All other bounds on r has not depended on H , and can now be
taken care of by decreasing δ0.

We conclude in this special case that ‖∇zj
Ar‖2 ≈ (ε2yj

+ ε2xj+1
). In fact we

see that E/2 ≤ ‖∇Ar‖ ≤ 2E, equality only when E = 0.
If the Lagrangian at any of the points did move as a function of zj, we

would get an additional summand in the gradient of Ar. This summand, how-
ever, is negligible: The second bound on the section SL implies that when
differentiating at zj in a unit direction, the corresponding variation in any of
the Lagrangians is bounded in norm by CL. Changing the Lagrangian by an
“angle” no bigger than CL at a point zj′ changes the overall integral over γx

j′

of λ0 by a maximum of CL(ε2xj′
+ ε2yj′

). So the overall norm of this summand

in the gradient is bounded by 2CLE. If E is small then this is small compared
to the length of the already computed summand where ‖Ar‖ ≥

√

E/2.
In much the same way we need to see what happens if the two charts are not

Gaussian. This means that the metric changes to the first order as a function
of zj (in R2n). But once again, a variation of the metric δg can change the
integral over γx

j by no more than

Cg(ε
2
yj

+ ε2xj
+ ε2yj+1

+ ε2xj+1
) ≤ 2CgE,

where Cg comes from a compactness argument involving g. This terms is also
negligible.

We use this to realize that if E is small enough compared to the constants
Cg and CL, we get that E/3 ≤ ‖∇Ar‖2 ≤ 3E, equality only when E = 0.

The first inequality in the lemma follows from the fact that we can easily
calculate the gradient of E with respect to the coordinates zj and z−j , again
thought of as independent variables, and get

∇zj ,z−

j
E = (− expzj

(z−j ), expz−

j
(zj)),
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which implies that

∇zj
E = − expzj

(z−j ) + Φr(expz−

j+1
(zj+1)).

Since Φr is close to the identity we get ‖∇E‖2 ≤ 5E, equality only when E = 0.
�

We also need cut-off functions that keep us away from the boundary defined
by ‖pj‖ = ε1. The next lemma provides just that.

Lemma 5.3 Let K be as in the previous lemma. Given any k > 0 we can find
δ0 > 0 such that: If 0 < δ < δ0 and r > Kδ−1, then ‖pj‖ ≥ ε1/2 for any j
implies

∇Ar · ∇‖pj‖ < rk‖∇Ar‖2,

where the function ‖pj‖ is defined using the original Riemannian metric on N .

Proof: ‖(∇‖pj‖)‖ = ‖(∇zj
‖pj‖)‖ has an upper bound c1 > 0 on the set

‖pj‖ ≥ ε1/2. If we have a lower bound of the type

‖∇Ar‖ >
c2√
r

(14)

on the same set, then we can divide the proof into two cases:
First case: If ‖∇zj

Ar‖ > c1

rk then

∇Ar · ∇‖pj‖ ≤ ‖∇zj
Ar‖‖(∇‖pj‖)‖ ≤ c1‖∇zj

Ar‖ < rk‖∇zj
Ar‖2 ≤ rk‖∇Ar‖2.

Second case: If ‖∇zj
Ar‖ ≤ c2

rk then

∇Ar · ∇‖pj‖ ≤ ‖∇zj
Ar‖‖(∇‖pj‖)‖ ≤ c1‖∇zj

Ar‖ ≤ c21
rk

< kc2 < rk‖∇Ar‖2.

The second-to-last inequality is true for r large enough, and this can be ac-
complished by decreasing δ0.

So we need a bound like (14). If we pick δ0 smaller than the above lemma
needs then 3‖∇Ar‖2 ≥ E. So a lower bound on E of the type c/r will do the
trick. This follows if we prove that

∑

j dist(z−j , zj) <
√
c. However, because

we are on a compact set we can do this in any metric. So we choose to do this
in the original, induced metric.

There are two parts of this argument, similar to the two parts of the proof
in lemma 4.3, stating that ‖pj‖ could be used as a cut-off function.

First case: Assume that ‖pj′‖ < ε1/4 for some j′. By picking δ0 < ε1/4 we
get that the Hamiltonian flow preserves ‖p‖ if ‖p‖ > ε1/4. Since the curve has
to go from ‖pj‖ > ε1/2 to ‖pj′‖ < ε1/4 and back, we can conclude that the
sum of the lengths of the geodesics connecting the zj ’s with the z−j ’s is more
than ε1/2.

Second case: Assume that ‖pj′‖ ≥ ε1/4 for all j′. Now the situation is
this: We have a vector field X = XH on a compact Riemannian manifold
M = {(q, p) ∈ T ∗L | ε1/4 ≤ ‖p‖ ≤ ε1}, the flow ψt of X has no 1-periodic
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orbits, and we want a lower bound for the the sum of the lengths of r geodesics
needed to close an r-piecewise flow curve. Consider the functional

Q(γ) =

∫ 1

0

‖γ′(t) −Xγ(t)‖dt

on piecewise smooth curves. We can approximate the sum of the lengths of
the geodesics using this integral in the following way: If −→z is a piecewise flow
curve, define γk as the piecewise smooth curve, which on [j/r, (j + 1 − 1/k)]
is the flow curve re-parametrized and on [(j + 1 − 1/k)/r, (j + 1)/r] is the
geodesic. For k going to infinity the parametrization of the flow curve goes to
the standard parametrization and thus the integral goes to zero on this part,
and on the geodesics the integral goes to the length of the geodesic. So all we
need is a lower bound on Q.

This is obtained by relating it to a more well-known functional. Let β(t) =
ψ−t(γ(t)). Then

Q(γ) > C

∫ 1

0

‖Dγ(t)ψ−t(γ
′(t) −Xγ(t))‖dt = C

∫ 1

0

‖β′(t)‖dt > c′

where C < ‖Dzψt‖ for all z ∈M . The last inequality comes from the fact that
for γ to be closed we need β(1) = ψ−1(β(0)), which means that β is a curve
starting at some point x and ending at the point x 6= ϕ1(x). However, x is in
a compact set, so the distance from x to ϕ1(x) must be bounded from below
by a positive constant. �

Lemma 5.4 For K > 0 large enough (only dependent on the metric) there
exists δ0 > 0 small enough and β > 0 large enough (β only depends on K
and µ) such that: If 0 < δ < δ0 and r ∈ [Kδ−1, 2Kδ−1], then we have a good
index pair for the total index of Ar : Λr,βT

∗
ε1
N → R. Furthermore, for all small

C1-perturbations of H within the provided properties, the good index pair will
contain all of Ar’s critical points.

Proof: If we choose K larger and δ0 smaller than needed in lemma 5.2, we see
that ∇Ar · ∇E < 15∇Ar · ∇Ar, and that E = 0 for critical points. So we can
use E as a cut-off function with 0 < s and t− s > 45µδ = 15 · (b − a).

We wish to use ‖pj‖ as a cut-off function with sj = ε1/2 and tj = 3ε1/4.
Looking at lemma 2.5 again, we see that we need

∇Aj · ∇‖pj‖ < tj−sj

b−a ‖∇Ar‖2 = ε1

12µδ‖∇Ar‖2.

The assumptions in the lemma tells us that ε1

12µδ >
ε1r

24µK , so putting k = ε1

24µK
and using the previous lemma, we get what we want, provided that δ0 is small
enough.

When using the formula in lemma 2.5 to try and create good index pairs
using E and the functions ‖pj‖ as cut-off functions (with the prescribed s’s and
t’s), it is not clear that one gets a compact subset of Λr,βMε1

. This is because
we need to prove that the functions we chose separate the pair we create from
the “boundary”. The functions ‖pj‖ take care of one type of boundary, but we
need to see that E takes care of the other type. That is, the one coming from
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e(−→z ) < β/r. This is proven by calculating e on the boundary of the index pair
coming from using E as a cut-off function

e(−→z ) < r
∑

j

(µ
r + dist(z−j , zj))

2 < 2µ2

r + 2E(−→z ) ≤ 2µ2

r + 2t.

We were able to choose t as close to 45µδ as possible, say 46µδ. This is smaller
than 92Kµ/r, so if β is larger than (92K + µ)2µ then E will keep us away
from the boundary, and our index pair is compact. The last statement in the
lemma follows from the fact that E is continuously dependent on H ∈ C1 and
for critical points we know E = 0 and ‖pj‖ < δ. �

6 Stabilization of Approximations Defined Near the

Zero Section

The setting is as in the previous section, except that now we look at N×Dk for
some k. We define H : T ∗

ε1
N×(D2k, ω0) → R by H(z1, z2) = HN (z1)+HD(z2),

where HN is as in the previous section (dependent on a δ), ω0 is the standard
symplectic form on D2n and

HD(z2) = ‖z2‖2.

The Hamiltonian flow for HD is circular around 0 with revolution time 2π, but
we only flow for a time period of 1, so the only orbit is 0, and this orbit has
action 0. So the 1-periodic orbits for H are the same as in the previous section
on the first factor and constantly equal to 0 on the second factor, and they
have the same action.

There are no difficulties in defining finite approximations just as in the
previous section. Note that this requires a section

SL : Λ(T ∗
ε1
N ×D2k) → ΛL(T (T ∗

ε1
N) × (R2k, ω0))

with the same type of bounds as before on curves with energy less than β, and
it requires a compatible metric g on the space T ∗(N ×Dk). However, in this
case we assume that this metric is the product of a compatible metric with
the standard metric on R

2k. The corresponding finite version of the loop space
Λr,β(T ∗

ε2
N ×D2k) will consist of curves denoted by −→z = (−→z1 ,−→z2).

The lemmas (with proofs) from the previous section still hold, except we
need more cut-off functions to keep the index pairs away from the boundary
of D2k. However, the techniques used in lemma 5.3 can be copied directly to
prove that we get a similar result for the function ‖(z2)j‖. So we conclude that
the lemma at the end of the previous section still holds in this slightly more
general case.

Definition 6.1 A section SL is said to be of product type if it factors through

Λ(T ∗
ε1
N) and Λ(L(T (T ∗

ε1
N)) × L(k)),

where L(k) is the Grassmannian of Lagrangian subspaces of R2k.
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Factoring through the first of the two spaces is equivalent to the section not
depending on the second (contractible) factor ΛD2k. Factoring through the
second space is equivalent to all Lagrangians defined by the section split as
direct sums of two Lagrangians, one in each factor. On the level of fibers this
corresponds to the section being in the subspace similar to (ΛL(n))×(ΛL(k)) ⊂
ΛL(n+ k).

For the rest of this section, SL will be of product type. In this case Ar

splits into two factors

Ar(
−→z1 ,−→z2) = AN

r (−→z1) +AD
r (−→z1 ,−→z2)

where AN
r is the function defined in the previous section by restricting our

section to the first factor, and AD
r (−→z1 ,−) is the finite approximation on D2k

defined by the constant section, which is the restriction of SL(−→z1) to the second
factor.

This gives us

∇−→z1
Ar = ∇AN

r + ∇−→z1
AD

r

∇−→z2
Ar = ∇−→z2

AD
r

(15)

It would be nicer if we did not have the second term in the first line, but looking
back at the proof of lemma 5.2, one can check that this is one of the parts of
the gradient that were negligible (this will be proven later). We will show that
changing the gradient to the pseudo-gradient

X = X1 ⊕X2 = ∇Al
r ⊕∇−→z2

Ak
r ,

will not change the validity of the lemmas in the previous section. This is
made more precise and more general in the following technical lemma, which
is a small generalization of lemma 5.4.

Lemma 6.2 For K > 0 large enough (only dependent on the metric) there
exist δ0 > 0 small enough and β > 0 large enough (β only dependent on K and
µ) such that: If 0 ≤ t ≤ 1, 0 < s ≤ 1, 0 < δ < δ0 and r ∈ [Kδ−1, 2Kδ−1], then
the vector field

X = (s∇AN
r + t∇−→z1

AD
r ) ⊕∇−→z2

AD
r

is a pseudo-gradient for Ar : Λr,βT
∗
ε1
N → R and (Ar , X) has good index pairs.

Proof: First we notice that the energy splits

E(−→z ) = E1(
−→z ) + E2(

−→z ),

where E1(
−→z ) = E(−→z1 , 0) and E2(

−→z ) = E(0,−→z2). So the gradient of E is

∇E = ∇E1 ⊕∇E2.

Because of the bounds in equation (11), taking a variation of −→z1 in a unit
direction will not change the angles of the Lagrangians on the second factor by
more than CL. This changes Ar by no more than CLE2, so the norm of the
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gradient ∇−→z1
AD

r is less than CLE2. Using this, equation (15) and lemma 5.2
on both E1, A

N
r and E2, A

D
r we get

X · ∇E ≤
(

s‖∇−→z1
AN

r ‖ + t‖∇−→z1
AD

r ‖
)

‖∇E1‖ + ‖∇−→z2
AD

r ‖‖∇E2‖
≤

(

s
√

3E1 + tCLE2

)

√

5E1 +
√

3E2

√

5E2

≤ 4(sE1 + tCLE2

√

E1 + E2)

and

X · ∇Ar ≥ (s∇−→z1
AN

r + t∇−→z1
AD

r ) · (∇−→z1
AN

r + ∇−→z1
AD

r ) + ‖∇−→z2
AD

r ‖2

≥ sE1/3 − (t+ s)
√

E1/3CLE2 − t(CLE2)
2 + E2/3.

(16)

By making δ0 smaller we make r larger and this makes E = E1 + E2 smaller.
So for small δ0 we can assume

X · ∇E ≤ 5(sE1 + E2) ≤ 20X · ∇Ar.

This proves that X is a pseudo-gradient, because at non-critical points we have
E1 + E2 > 0. We also see that we can still use E as a cut-off function in the
same way we did in the proof of lemma 5.4.

Similarly, the functions ‖pj‖ only depend on −→z1 and so by using lemma 5.3
on AN

r we get on the set ‖pj‖ > ε1/2 that

X · ∇‖pj‖ < s∇−→z1
AN

r · ∇‖pj‖ + tCLE2‖∇pj‖
< srk‖∇−→z1

AN
r ‖2 + 2tCLE2c

< rk(X · ∇Ar).

To get the last inequality we may have to further increase r.
The result for the cut-off functions ‖z2,j‖ is easier: We bound X · ∇‖z2

j ‖
by rkE2 using the same argument as in the proof of lemma 5.3. Now we have
enough cut-off functions to get compact sets, just as we did in the proof of
lemma 5.4. �

Because ∇uz2
HD = u∇z2

HD, we see that flow curves for the Hamiltonian
flow ofHD is preserved under scaling: If γ is a flow curve then uγ is a flow curve.
This means that the curve over which we integrate λ0 scales proportionally with
−→z2 , so the integral scales quadratically. Also, Hk is quadratic so we get

AD
r (−→z1 , u−→z2) = u2AD

r (−→z1 ,−→z2). (17)

This is a smooth function, so it must be equal to its Hessian at 0. So AD
r (−→z1 ,−)

is in fact a quadratic form in −→z2 . If the critical point 0 were degenerate then
it would not be an isolated critical point. So it is in fact non-degenerate. We
define ζ over Λr,βT

∗
ε1
N by taking for each point −→z1 the bundle of negative

eigenspaces for the Hessian of AD
r (−→z1 ,−) at the point 0 in D2kr (recall that we

gave D2k the standard metric and the finite loop space the product metric).

Lemma 6.3 Assume that β, δ and r satisfy the conditions in the previous
lemma. Then the total homotopy index of Ar is the relative Thom suspension
of ζ (ζ defined above) of the homotopy index of AN

r .
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Note that the relative Thom suspension of A/B of a bundle ζ over A is
defined to be Dζ/(Sζ ∪Dζ|B).

Proof: First choose an index pair (A,B) for AN
r , but with a = −µδ/2 and

b = 3µδ/4. We will extend this to an index pair for Ar. Let E±−→z1
be the

negative/positive eigenbundle of AD
r (−→z1 ,−). It is easy to construct index pairs

very close to zero for a non-degenerate quadratic form on D2kr , so we do this
fiber-wise

A−→z1
= DεE

−−→z1
×DεE

+−→z1

B−→z1
= SεE

−−→z1
×DεE

+−→z1
.

Since e(A) ∈ [0, β) and A is compact we have e(A) ∈ [0, β − c], so we can find
an ε > 0 such that A−→z1

is contained in Λr,β(T ∗
ε1
N ×D2k) for all −→z1 ∈ A. Also,

because the index pair was made with a more narrow choice of a and b, we can
assume that Ar on A−→z1

is in the interval [−µδ, 2µδ]. Define

A′ =
⋃

−→z1∈A

A−→z1

B′ = (
⋃

−→z1∈B

A−→z1
) ∪ (

⋃

−→z1∈A

B−→z1
)

for such an ε. Claim: We can find 0 < s ≤ 1 and put t = 0 in the previous
lemma such that (Ar, X) has this as an index pair. I1 and I2 from the definition
of index pair have been taken care of. I3 is as noted before because critical
points of Ar are of the form (−→z1 , 0), where −→z1 is a critical point for AN

r . To get
I4 we choose s, because s controls the speed of the flow on the base compared
to the flow in the fiber. For s very small, any point in B−→z1

will flow entirely
out of Λr,β(T ∗N ×D2k) before the quadratic form Ar(

−→z1 ,−) has a chance to
change much. �

For us to use this lemma we would like to be able to compute the isomor-
phism class of the negative eigenbundle, and the next lemma helps us do just
that.

Lemma 6.4 Let BD
r (−→z1 ,−) be the quadratic form defined like AD

r (−→z1 ,−), but
with HD = 0. Let ζB be a choice of negative bundle over Λr,βT

∗N for BD
r then

ζ ∼= ζB ⊕ R
2k.

Note that BD
r is degenerate in each fiber, because in the fiber over −→z1 ,

the quadratic form BD
r (−→z1 ,−) is a finite approximation, which has the 2k di-

mensional subspace of the constant curves as degenerate points (the 1-periodic
orbits). We did not use this Hamiltonian in the definition of our finite approx-
imation because we wanted index pairs, but the negative eigenbundle is easier
to calculate for the quadratic form BD

r .

Proof: We define a continuous family As of quadratic forms by finite dimen-
sional approximation of the Hamiltonians Hs = HN +Hs

D, where Hs
D = s‖z2‖2.

Then BD
r = A0 and AD

r = A1. The same argument as before shows us that
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these are quadratic forms. Since the Hamiltonian flow for these only has the
trivial 1-periodic orbit for 0 < s < 2π, the negative eigenbundles are isomor-
phic, but we need to see what happens at s = 0. The critical points of A0

are precisely the constant curves, so the Hessian is degenerate, and the kernel
as a bundle over Λr,βT

∗N is the trivial bundle of dimension 2k. We prove
the lemma by proving that for a small perturbation of s = 0 in positive direc-
tion, this kernel becomes part of the negative eigenspace. This is a point-wise
calculation, so assume −→z1 is fixed.

Denote by E−, E0 and E+ the negative, zero and positive eigenspace of a
representing matrix for A0. It is enough to prove that the first order change
in s at s = 0 of As

r is negative definite on the kernel E0. Indeed, if so we can
restrict A0

r to the sphere of E0⊕E− and what we see is a non-positive function
on a closed manifold, which is then perturbed to the first order to be negative
on the set where it is zero. This will imply that the function is in fact going
to be negative on the entire sphere for very small s, and thus As

r is negative
definite on E0 ⊕ E− for small s > 0.

So to prove this negativity on E0, we look at As
r on E0 for s close to zero.

The kernel E0 is the set of constant curves, so we assume that zj = zj+1 for
all j ∈ Zr. We need to take a look at the precise definition of

As
r =

∑

j

(

∫

γj

λ0 −Hsdt+

∫

γx

j

λ0)

For s = 0 all of this is zero (on E0) because γj and γx

j are constant, and Hs is
zero. We want to prove that the dominating term when perturbing to positive
s is −Hs, which is negative.

Because any time independent Hamiltonian is constant on its flow curves,
we can rewrite this as

As
r =

∫

P

j
(γj+γx

j
)

λ0 +
1

r

∑

j

Hs(zj) =

=

∫

P

j(γj+γx

j
)

λ0 −Hs(z0).

The curves γj are the 1/r time flow curves of Hs, so they have lengths of order
‖∇Hs‖/r which is of order s‖z0‖/r, and since zj = zj+1, and γx

j connects
the endpoint of γj with zj+1, the same is true for γx

j . This means that the
integral, which is the symplectic area enclosed by the closed curve obtained
by concatenating γj and γx

j , is of order (s‖z0‖/r)2. We have r of these terms

summed, but this is still of order (s‖z0‖)2/r. The term Hs(z0) is equal to
s‖z0‖2, so this is the dominating term in s and the lemma follows. �

7 The Maslov Bundle and Index of Related Finite

Actions

Let j : L → T ∗N be a Lagrangian embedding. We will define the Maslov
bundle relative to this embedding. It is a generalization of the Maslov index
related to curves of Lagrangian subspaces in R2n (see e.g. [MS98]). In fact the
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bundle is a canonical virtual vector bundle over ΛL, such that the dimension
of this bundle on each component is precisely the Maslov index.

The projection T ∗N → N will be denoted π. For any point q ∈ L the
tangent space TqL is mapped by j∗ to a Lagrangian subspace of Tj(q)(T

∗N),
and by abuse of notation we define

j∗ : L→ L(T (T ∗N)).

See the previous section for definition of L(T (T ∗N)). A stabilization of this
map with a vector bundle ζ → N will be denoted by j∗ ⊕ ζ and is defined by

(j∗ ⊕ ζ)(q) = j∗(TqL) ⊕ (π∗ζ) ⊂ Tj(q)(T
∗N) ⊕ (π∗ζ) ⊕ (π∗ζ)∗,

which is also Lagrangian (in the obvious symplectic structure).
If ζ is the normal bundle of N for some embedding iN : N → Rn, we get a

canonical symplectic trivialization

ηi : T (T ∗N) ⊕ (π∗ζ) ⊕ (π∗ζ)∗ → T ∗N × (R2n, ω0).

This is defined by using the Riemannian metric induced from iN to split the
tangent space of T ∗N at z into Tπ(z)N ⊕T ∗

π(z)N , then mapping Vz = Tπ(z)N ⊕
ζπ(z) isomorphically to Rn by the obvious map, and mapping V ∗

z = T ∗
π(z)N ⊕

ζ∗π(z), by the inverse of the dual to this map, to iRn. If we compose this map

with j∗ ⊕ ζ we get a map from L to L(n) (the Grassmannian of Lagrangian
subspaces in R2n), and since all embeddings are isotopic for n sufficiently large,
we have a map unique up to homotopy

J∗ : L→ L(n).

If we stabilize this map to get a map to L(2n), then we can homotope it to
be a map into L(n) × L(n) ⊂ L(2n) which is constant on the first factor.
This means that if we further stabilize this map by the tangent space of T ∗N
and choose to trivialize this copy of T ∗N with its normal bundle, we have
a different interpretation of the map J∗: For any point l ∈ L we have two
different Lagrangian subspaces of Tl(T

∗N), the tangent space of L and the
horizontal part of T (T ∗N). So we have two different sections in the bundle
L(T (T ∗N))|L. If we stabilize both sections with Rn ⊂ R2n to make them
bundles of Lagrangian subspaces in a higher dimensional symplectic bundle
over L, we can - if n is large enough - homotope their “difference” through
Lagrangian subspaces to the R2n component. It is this difference that J∗
measures.

Because limn→∞ L(n) = L ≃ U/O ≃ Ω6O (see e.g. [MS98] for the first ho-
motopy equivalence and [Mil63] for the last) is an H-space we have a homotopy
equivalence

Ev0 ×πΩ : ΛL → L× ΩL, (18)

where Ev0 is evaluation at the base point, and πΩ is homotopic to point-wise
multiplication with the homotopy inverse of Ev0.

Definition 7.1 The Maslov bundle η is the virtual bundle defined by the map

ΛL
ΛJ∗

// ΛL(n) // ΛL πΩ
// ΩL ≃

// Z ×BO.
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The latter equivalence comes from Bott periodicity (see e.g. [Mil63]). The Z

corresponds to the dimension of the virtual bundle or π1(L), the latter being
one of the many definitions of the Maslov index (see [MS98]).

We want to use this to calculate the type of homotopy indices defined in
the previous section. To do this we need to put the loop of J∗ on a standard
form.

For any V+ ⊂ Rn, V− ⊂ Rn and V0 ⊂ Rn pairwise orthogonal and V+ ⊕
V− ⊕ V0 = Rn ⊂ R2n, we define the curve γ(V+,V−,V0) ∈ ΩL(n) by

γ(V+,V−,V0)(t) = eiπtV+ ⊕ e−iπtV− ⊕ V0 ∈ L(n),

for t ∈ [0, 1]. The space of such curves will be denoted ΩsL(n) (s for standard
form). Over this space we have the three canonical bundles V+, V− and V0.

Lemma 7.2 Any map f : K → ΛL, where K is of compact homotopy type,
can be homotoped to factor through

L(n1) × ΩsL(n2) ⊂ ΛL(n1 + n2) → ΛL

for large enough n1 and n2. Furthermore, the virtual bundle defined by the map
f over K by composing it with πΩ is the pullback of V+ − V−.

Proof: The map factors through L(n1)×ΩL(n) because the map in equation
(18) is a homotopy equivalence and because K is of compact homotopy type.
So we can consider a map f ′ to ΩL(n) and show that it factors through ΩsL(n)
for large n. We may have to stabilize by a number of Ωin’s, where

in : L(n) → L(n+ 1)

is the standard stabilization which gives the limit L.
This part of the proof is standard Morse theory as in the proof of Bott

periodicity (see e.g. [Mil63]): Multiplication with e−iπt/2 on the curves in L(n)
gives a homeomorphism of ΩL(n) = Ω(L(n),Rn,Rn) to Ω(L(n),Rn, iRn). We
now think of f ′ as mapping into this space. In [Mil63] part IV paragraph 24
the space of minimal geodesics for this space is computed to be (with some
interpretation into the current context)

Ωm(n) = Ωm(L(n),Rn, iRn) = {γ | γ(t) = eiπt/2W ⊕ e−iπt/2W⊥,W ⊂ R
n}.

The embedding of this space into Ω(L(n),Rn, iRn) has high connectivity on
the components where dim(W ) and dim(W⊥) are both high.

To get high connectivity we stabilize f ′ by

γ(t) = eiπt/2
R ⊕ e−iπt/2

R ⊂ R
4.

That is, we compose with the map

⊕γ : ΩL(n,Rn, iRn) → ΩL(n+ 2,Rn+2, iRn+2)

given by direct sum with γ. If we do this k times, we can homotope the map
(⊕γ)◦k ◦ f ′ to factoring through Ωm(n+ 2k).
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Going back with the homeomorphism to ΩL(n) we see that the stabilization
we did corresponds to having stabilized with

eiπt/2γ(t) = eiπt
R ⊕ R

k times. We have argued that we can homotope the map after such a stabi-
lization to the following subspace

eiπt/2Ωm = {γ | γ(t) = eiπtW ⊕W⊥},

so by further stabilizing with

γ2(t) = (e−iπt
R)⊕k,

one has in total stabilized f with something homotopic to a standard stabi-
lization, because it is easy to get the two “twistings” to cancel out. We have
now homotoped the map f , stabilized in the standard way, to a map into
Ωs(L(n+ 3k)). The last statement follows from the fact that these highly con-
nected inclusions of Grassmannians into ΩL ≃ Z × BO used in the proof, are
the standard way of identifying the stable bundle with the difference of two
actual bundles. �

What we in fact proved was that the map is homotopic to a map factoring
through ΩsL(n2), where V− is the trivial bundle of dimension k. This is equiv-
alent to the fact that any stable bundle over a compact space can be written
as the difference between a bundle and a trivial bundle.

If we want to use this together with lemmas 6.3 and 6.4, we need to calculate
negative bundles for the quadratic form BD

r whenever SL is of product type
and on standard form on the factor ΛD2k.

Lemma 7.3 Assume that r is odd and large enough. For any point γ in
X = L(n1) × ΩsL(n2) ⊂ ΛL(n1 + n2) we have an associated quadratic form
Bγ

r : C(n1+n2)r → R defined by the Hessian of the finite approximation for
HD = 0. The negative eigenbundle over X of this quadratic form is isomor-
phic to

R
(n1+n2)(r−2)+n1 ⊕ V+ ⊕ V ⊥

− ,

where V ⊥
− = V+ ⊕ V0.

We use the notation V ⊥
− to emphasize that it is a complement bundle to V−,

making the bundle in the lemma isomorphic to V+ − V− plus a trivial bundle
of dimension (n1 + n2).

Note that even though these quadratic forms have kernels, there is indeed
a negative eigenbundle, because the kernel is the same for all the forms.

Proof: Given any γ we will describe a choice of subspace on which Bγ
r is

negative, and argue that it has maximal dimension. It will be obvious that this
choice is continuous as a function of X .

Because γ(t) = L ⊕ γ1(t) with L ⊂ Cn1 and γ1(t) ⊂ Cn2 we see that Bγ
r

splits as a sum of BL
r : Cn1r → R and Bγ1

r : Cn2r → R.
For now we restrict our attention to BL

r . Note that for any quadratic form
xTAx, the set of critical points is precisely the kernel of A. We wish to define
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real vector spaces E−, E0 and E+ on which BL
r is negative, zero (to the second

order) and positive respectively. Because E− ⊕E0 ⊕E+ will be all of Cn1r we
conclude that dim(E−) is maximal.

Let ρ = ei2π/r be the standard r’th root of unity. Use this to define the
real vector spaces Em by

Em = {(bρmj)j∈Zr
| b ∈ C

n1} ⊂ C
n1r,

for any m ∈ Zr. The action of U(n1) preserves Em.
Let M− be the subset of Zr containing the classes [1], [2], . . . , [(r − 1)/2],

and M+ = −M−. These are disjoint and Zr = M− ∪M+ ∪ {0}. Use this to
define

E− =
⊕

m∈M−

Em

E+ =
⊕

m∈M+

Em.

We have already defined E0 as the constant curves, which we know to be critical
points of BL

r , because for r large enough the only critical points of BL
r are the

1-periodic orbits.
Since H = 0 we get no flow and the first term in the definition of the finite

dimensional approximation vanishes (see the definition of the finite approxi-
mations in section 5). So BL

r is in fact just a calculation of the symplectic
area for the concatenation of the L-curves connecting zj to zj+1 defined by L.
The action of U(n1) just rotates the curves and preserves the symplectic area
and the spaces Em, so we can assume that L = iRn1 . This means that BL

r

splits as a sum A1 +A2 · · ·+An1
, where Ak only depends on the k’th complex

coordinate of the zj ’s. We now look at one Ak at a time. In fact we assume
for the time being that n1 = 1, so that we do not have to redefine Em. This
means that symplectic volume is now the normal area in C (with sign).

We will need the following facts about the spaces Em, which because of the
assumption n1 = 1 are subspaces of Cr. For (zj)j∈Zr

∈ Em, (wj)j∈Zr
∈ Em; we

have

(zj+1)j∈Zr
∈ Em

(zj)j∈Zr
∈ E−m

Re(zj)j∈Zr
∈ Em ⊕ E−m

Im(zj)j∈Zr
∈ Em ⊕ E−m

(zj · wj)j∈Zr
∈ Em+m′ .

and if m 6= 0
∑

j

zj = 0.

Notice that the second to last fact makes sense only because we have n1 = 1.
Any vector −→z = (zj)j∈Zr

∈ E− can be written as

zj =
∑

m∈M−

αmρ
mj
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with αm ∈ C. Since L = iR, the L-curves are parallel to the real axis on the
first geodesic piece and parallel to the imaginary axis on the second. So we
have

BL
r (−→z ) =

∑

j

yj(xj+1 − xj),

where zj = xj + iyj. Rewriting this we get:

4BL
r (−→z ) = 2

∑

j

((yj+1 + yj)(xj+1 − xj) − (yj+1 − yj)(xj+1 − xj))

=
∑

j

(2(yj+1 + yj)(xj+1 − xj) − Im((zj+1 − zj)
2)) (19)

=
∑

j

2(yj+1 + yj)(xj+1 − xj).

The last equality holds because of the facts stated for the spaces Em and
because we restricted −→z to E−, so that no term involving E0 occurs in the
expression.

This splitting of the sum into two terms has a geometric interpretation:
Take the area enclosed by the curve defined by just connecting the points zj

by straight lines, but then subtract the area defined by the triangles that are
defined by the L-curves and this straight line. So what we just argued was that
the areas of the triangles cancel each other out (on E−). Using our expression
for −→z we also see that all terms involving products of terms with different
values of m cancel out. This actually means that BL

r restricted to E− splits
orthogonally on the subspaces Em, m ∈ M−. All we need now is to calculate
BL

r on each of the Em’s, but here the geometrical interpretation tells us that
the area is simply

2BL
r ((αmρ

mj)j∈Zr
) = −

∑

j

‖αm‖2 sin(2πm/r) = −r‖αm‖2 sin(2πm/r),

which is negative because m ∈M−.
The same arguments show that BL

r is positive on E+, but be warned: The
spaces Em is not an orthogonal splitting of BL

r . This is because E− and E+

are not orthogonal, since canceling the terms really used the assumptions on
M− and M+.

If n1 is not 1 it is easy to see that the Em’s are just direct sums of the Ei
m’s

and thus see that a E− is a maximal negative subspace for BL
r .

We now turn our attention to A = Bγ1
r . It is easy to see that because of

the form of γ1, we can again split A into a sum of

A+ : (C ⊗ V+)r → R

A0 : (C ⊗ V0)
r → R

A− : (C ⊗ V−)r → R,

where (C ⊗ V+) ⊕ (C ⊗ V0) ⊕ (C ⊗ V−) = Cn2 since V+ ⊕ V0 ⊕ V− = Rn2 .
In the case of A0 we see that this is very similar to the previous case of BL

r .
In fact, using an isometry V0

∼= Rk, we see that A0 is actually the same as BL
r .
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So a choice of maximal negative subspace for A0 is

E0
− =

⊕

m∈M−

E0
m

E0
m = {(bρmj)j∈Zr

| b ∈ C ⊗ V0}.

Similarly, we take an isometry V+ ≃ R
n. We now split this as a sum and

assume again that n = 1, and find a maximal negative subspace.
Recall the geometric interpretation of splitting BL

r into two terms in equa-
tion (19). We see that the difference between having L constantly equal to iR
and having the Lagrangian curve t 7→ eiπt, is only that the triangles, whose
areas we have to subtract, are different. The area of the triangle defined by
zj+1 and zj and some Lagrangian L is given by

4 area = Im(u2(zj+1 − zj)
2),

where u−1 is a unit vector in C with real span L. This means that the expression
for A+ is

4A+(−→z ) =
∑

j

(2(yj+1 + yj)(xj+1 − xj) − Im(ρ−j(zj+1 − zj)
2)),

and this time the last sum does not sum to zero, and there is no symmetry
between the previously defined positive and negative spaces. This is because
multiplication by ρ−j takes us from Em to Em−1.

We first prove that the spaces Em are in fact orthogonal with respect to
the bilinear form defined by the first part of the sum - that is, define:

Q(−→z ) =
∑

j

(yj+1 + yj)(xj+1 − xj)

q(−→z1 ,−→z2) = Q(−→z1 + −→z2) −Q(−→z1) −Q(−→z2).

By once again using the properties of the spaces Em, we immediately see that
Em is orthogonal to Em′ if m 6= ±m′, so all we need to consider is −→z1 = αmρ

mj

and −→z2 = α−mρ
−mj and prove that q(−→z1 ,−→z2) = 0. By expanding the expression

for Q(−→z1 +−→z2) and comparing with Q(−→z2) +Q(−→z1), we are left with two terms
that are symmetric in changing the sign of m. Call these T1 and T2. We reduce
one of these terms by

T1 =
1

4i

∑

j

(

αmρ
mj(ρm + 1) − αmρ

−mj(ρ−m + 1)
)

·
(

α−mρ
−mj(ρ−m − 1) + α−mρ

mj(ρm − 1)
)

,

and by using the properties we get

T1 =
r

4i

(

αmα−m(ρm + 1)(ρ−m − 1) − αmα−m(ρ−m + 1)(ρm − 1)
)

=
r

2
Im

(

αmα−m(ρm + 1)(ρ−m − 1)
)

=
r

2
Im

(

αmα−m(ρ−m − ρm)
)

.

Since T2 was the same but with −m and m interchanged we see that

T1 + T2 = 0.
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Now we look at what happens on the previously positive subspace - that is,
assume that −→z ∈ E+. The first part of the sum is the same as before. Looking
at the last part we see that when summing we only get a contribution from the
E0 part of ρ−j(zj+1 − zj)

2. This means that we only get a contribution from
the E1 = E−(r−1) part of (zj+1 − zj)

2. Since (zj+1 − zj) is in E+, we only
get a contribution from the E−(r−1)/2 part of it. Define m1 = [(r + 1)/2] =
[−(r − 1)/2] ∈ Zr. From all this we get

2A+(−→z ) =
(

−
∑

m∈M+

r‖αm‖2 sin(2πm/r)
)

− r Im
(

(αm1
(ρm1 − 1))2

)

for −→z ∈ E+. For r large enough we will have ρm1 approximately −1, so we get

2A+(−→z ) ≈
(

−
∑

m∈M+

r‖αm‖2 sin(2πm/r)
)

− 4r Im
(

(αm1
)2

)

.

Denote by Q ⊂ E+ the one-dimensional subspace where Im(α2
m1

) = ‖αm1
‖2

and αm = 0,m 6= m1. Also denote byQ′ ⊂ E+ the (r−2)-dimensional subspace
given by Im(α2

m1
) = −‖αm1

‖2. We now have Q ⊕ Q′ = E+, and because the
positive term coming from the sum is much smaller numerically than the “new”
term on Q, we see that A+ is negative on Q and positive on Q′.

The kernel of A+ is the set of constant curves because it is still a finite
approximation for HD = 0.

Now assume that −→z is in the space E−⊕Q. Because the Em’s were orthog-
onal with respect to the first part of the expression we get the same first term.
We also notice that the second part of the sum is again non-vanishing only
when dealing with products from E−(r−1)/2, so in fact we get a very similar
expression:

2A+(−→z ) ≈
(

−
∑

m∈M−∪{m1}
r‖αm‖2 sin(2πm/r)

)

− 4r Im
(

(αm1
)2

)

.

Again, because of the assumption that ‖αm1
‖2 = Im(α2

m1
), we see that this is

negative. There is one positive term in the sum, but this as before is smaller
numerically than the “new” negative term.

This leads us to define:

E+
− =

(

⊕

m∈M−

E+
m

)

⊕Q+

E+
m = {(bρmj)j∈Zr

| b ∈ C ⊗ V+}
Q+ = {(bρm1j)j∈Zr

| b ∈ C ⊗ V+, ‖b‖2 = Im(b2)}.

From the above arguments it is clear that E+
− is a maximal negative subspace

for A+. Note that Q+ is canonically isomorphic to V+.
We also define:

E−
− =

(

⊕

m∈M−−{m1}
E−

m

)

⊕Q−

E−
m = {(bρmj)j∈Zr

| b ∈ C ⊗ V−}
Q− = {(bρ(m1−1)j)j∈Zr

| b ∈ C ⊗ V−, ‖b‖2 = − Im(b2)}.
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A similar calculation shows us that E−
− is a maximal negative subspace for

A−. Note that as before Q− is isomorphic to V−, but in this case it is more
important that E−

− ⊕ V− is canonically isomorphic to

⊕

m∈M−

E−
m,

which leads us to introduce the notation E−
− ∼= (⊕m∈M−

E−
m) ⊖ V−.

Putting all this together we see that

W = E− ⊕ E+
− ⊕ E0

− ⊕ E−
− ∼= (

⊕

m∈M−

Wm) ⊕ V+ ⊖ V−

Wm = {bρmj | b ∈ C
n1+n2}

is a choice of maximal negative subspace. �

8 Construction of the Viterbo Transfer as a Map of

Spectra

Let L and N be closed smooth n-manifolds and let j : L → T ∗N be an exact
Lagrange embedding, i.e. the canonical one form λN on T ∗N is pulled back to
zero by j. In this section we construct the Viterbo transfer (see [Vit97]) as a
map of spectra

(Λj)! : ΛN−T ′N → ΛL−T ′L+η,

where η is the Maslov bundle defined in section 7, and ΛN−T ′N is notation
for the Thom-spectrum defined by a complement bundle to T ′N = Ev∗

0 TN .
The construction is similar to that of Viterbo, but the lemmas in the previous
sections make it much easier to control and understand the actual Thom spaces,
and thus get the map as a spectrum map.

Start by giving bothN and L Riemannian metrics. The Darboux-Weinstein
Theorem tells us (see e.g. [MS98]) that for a small ε1 > 0, we can symplectically
extend j to a map j : T ∗

2ε1
L→ T ∗N . To distinguish between coordinates in T ∗L

and T ∗N , we denote them by (qN , pN) and (qL, pL). It is very important for the
construction that exactness of the embedding implies that pNdqN − pLdqL =
λN − λL defined on T ∗

2ε1
L is exact. It is closed but not exact for a non-exact

Lagrange embedding. This implies that the two action integrals
∫

γ
λN −Hdt

and
∫

γ
λL−Hdt are equal on closed curves in T ∗

2ε1
L. This means that if we have

a Hamiltonian on T ∗N , which restricted to our neighborhood of L depends only
on ‖pL‖, then we can use the method at the very end of section 3 to calculate
the action integral on closed curves. In the following definition it is important
to keep this method in mind.

First we define H near L. Here we define the Hamiltonian in terms of the
coordinates (qL, pL). In fact we want it to be like the ones we looked at in
section 5. So we want it to be a function of ‖pL‖, convex and linear with
slope µL outside some small δ-neighborhood of the zero section. As before,
we assume that µL is not the length of any geodesic in L. This is only the
definition of H on T ∗

ε1
L. On the rest of T ∗

2ε1
L we want it to be concave and
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“level off” to be a constant c near the boundary (see figure 5). We want this
leveling off to happen so fast that any 1-periodic orbit in T ∗

2ε1
L − T ∗

ε1
L has

action below −δµL. By using lemma 4.4, this can be done if δ is small enough,
as seen in figure 5, where µ′

L < µL is the maximum of geodesic lengths less

2ǫ1ǫ1
‖pL‖

slope µL

slope µ′
L

−2δµL

δµL ‖pN‖

slope µN

δµL

R

c

Figure 5: Definition of H .

than µL. It is clear that the larger µL is, the larger c becomes.
Outside T ∗

2ε1
L, we define H to be the constant c on T ∗

RN−T ∗
2ε1
L for a fixed

R > 0, such that the embedding of T ∗
2ε1
L is inside T ∗

RN . Outside T ∗
RN , we

define it to be a function of ‖pN‖, convex and linear outside some R′ > R with
slope µN . Again we want the action of the 1-periodic orbits coming from this
part to be less than −δµL. So the larger c is, the larger we can choose µN (see
figure 5).

We want to pick all the parameters such that we can use the lemmas in
all of the preceding sections, but first we concentrate on section 4, and assume
that T ∗N has the induced metric. Notice that C1

H = max(kµL, µN ) works as
a bound on the gradient of H . The k is there because we used the induced
metric from L to define H near L. For small δ we can assume that δ−1 times
some constant is an upper bound C2

H on the covariant Hessian of H . For small
δ we can further assume that C2

H > C1
H . So using proposition 4.7, we conclude

that there exist a K > 0 and δ0 > 0 such that: If 0 < δ < δ0 and r > Kδ−1

then

I(Ar, X) = Th(TΛµN

r N),

where X is defined in the section.
Because of the way we defined H , we see that the natural quotient map,

defined in the end of section 2, gives a map from the total index to the index
Iδ = I2δµL

−δµL
(Ar, X). Recall that the action of H restricted to T ∗

ε1
L has all of its

critical values in this interval, and all other critical values are below −δµL.
Lemma 5.4 tells us that by possibly making K larger and δ0 smaller, we

can find β such that we get a good index pair for the index Iδ on the subset
Λr,βT

∗
ε1
L, provided r ∈ [Kδ−1, 2Kδ−1] and 0 < δ < δ0. For this to make sense,

we recall that X in section 4 was defined to be the gradient of Ar when the
maxj‖εqj

‖ were small, so we may assume that X is the gradient of Ar on the
subset Λr,βT

∗
ε1
L, which was the assumption in section 5. Furthermore, a good

pair defined inside a subset is also a good pair on the entire set, provided that
it contains all the critical points, and we already accounted for that.
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We have two metrics on T ∗
ε1
L: One from T ∗N , which we will denote gN , and

one from T ∗L, which we will denote gL. We also have two canonical sections in
the bundle in equation (10) (with N replaced by L), which come from taking
the vertical directions with respect to T ∗N and T ∗L. We denote these SN

L and
SL
L respectively. This data produces two finite approximations

A1
r = A

gN ,SN
L

r : ΛgN

r,βT
∗
ε1
L→ R

A2
r = A

gL,SL
L

r : ΛgL

r,βT
∗
ε1
L→ R.

We assume that K and β are large enough for all of our lemmas to work for
both approximations. We will use most of the lemmas in the previous sections
to relate them.

Proposition 8.1 Assume that r is odd and large enough. The total index of
A1

r, which we denoted Iδ, is stably equivalent to

Th((TΛµL

r L) ⊕ η),

where η is the Maslov bundle defined in section 7.

Proof: First we argue that the homotopy index does not depend on the metric:
Use the convex change to get a smooth family gt of metrics relating one with
the other. Make sure that K > 0 and β > 0 are large enough for lemma 5.4
to work for all metrics gt. Then fix δ0 such that the lemma works for this K,
β and all metrics gt. We now have good pairs for all t, but it is a problem
that the spaces Λgt

r,βT
∗
ε1
L depend on t. However, this can be resolved locally:

Given any t ∈ [0, 1] we want to argue that the homotopy index is constant in
a small neighborhood of t even though the manifold changes. This is because
the boundary of the manifold is given by a continuous function on a bigger
manifold, so by going to a slightly smaller manifold still containing our good
index pair, we can use lemma 2.4.

Let sN and sL be the sections in the bundle

L(T (T ∗
ε1
L)) → T ∗

ε1
L

given by the vertical foliations from of T ∗N and T ∗L respectively. Then SN
L =

ΛsN and SL
L = ΛsL.

Redefine A1
r as the finite approximation defined by SN

L but using the metric
induced from L. As we just argued, this does not change the index.

We stabilize the section SN
L to the section of product type (see definition 6.1)

SN
L,k = SN

L ⊕ iRk

and get a new finite dimensional approximation from section 6. Lemma 6.3 tells
us that since we chose this section to be independent of the point in Λr,βT

∗
ε1
L

on the second factor, this new approximation has as its total index the m-fold
suspension of Iδ for some m.

If we chose k large enough we can as in the beginning of section 7 homotope
the difference of sN and sL into L(k) - that is, we can homotope sN through
sections in LT (T ∗

ε1
L×D2k) → T ∗

ε1
L×D2k to

sL ⊕ J∗,
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where sL and J∗ do not depend on the point in D2k. So when looping this we
get a section of product type.

Because we can assume that this homotopy is smooth, by looping it we
get a homotopy of sections in the bundle (10) with the bounds in equation
(11). However, we need lemma 7.3 to identify the negative eigenbundle of the
quadratic form given the finite approximations defined by stabilizing sL with
J∗. For this we need to homotope ΛJ∗ to the subset of curves in lemma 7.3,
and this can be done by lemma 7.2 if k was chosen large enough. The catch is
that we need this homotopy to fulfill the bounds in equation (11). If we do not
have this bound, we cannot argue that the homotopy index is constant during
the homotopy, because we do not know if good index pairs exist. The map, we
are homotoping ΛJ∗ to, is not the loop of a differentiable map. So we must
argue in some other way that this can be done within the bounds. Indeed, there
exists a deformation retraction ft, t ∈ [0, 1] of the set of curves with energy less
than β onto a finite dimensional compact manifold satisfying a bound like the
second one in (11)1. The homotopy ft ◦ ΛJ∗ fulfills the bounds, because ΛJ∗
does and ft fulfills the last of them, and maps the set with energy less than β
to itself. The image of f1 is a compact manifold, so homotoping ΛJ∗ only on
this subspace into the set we need it to lie in, will ensure the needed bounds
for the composition.

This homotopy is a compact family of sections, so there is a δ0 > 0 small
enough to make lemma 5.4 and lemma 6.2 work for all of them simultaneously.
So we use lemma 6.3 to conclude that the index Iδ is the relative Thom sus-
pension of the total index of A2

r by the negative eigenbundle of the quadratic
form added. We then use lemma 6.4, lemma 7.3 and lemma 7.2 to conclude
that this bundle is a trivial bundle of dimension m plus the Maslov bundle. �

Corollary 8.2 The index quotient map to Iδ induces a map of spectra

(ΛµNN)−T ′N → (ΛµLL)−T ′L⊕η,

where ΛµX is the loop space of curves with lengths less than µ in the Rieman-
nian metric on X.

Proof: First we note that the space

Th(TΛµN
r N)

can by parallel transport along the curve be identified with

(Λµn
r N)Ev∗

z0
TN⊕r

.

Here we switch notation for Thom bundles, because the name of the base space
is not included in the bundle name. This identification makes sense in light of
lemma 4.6.

Let ψ → A be any bundle over A where (A,B) is an index pair defining the
total index of Ar : T ∗ΛrN → R. Then any quotient map f : A/B → A/B′ has

1just pick an s such that β/
√

s is smaller than the injective radius and contract onto

piecewise geodesics
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a relative Thom suspension using ψ defined by

Dψ/(Dψ|B ∪ Sψ) → Dψ/(Dψ|B′ ∪ Sψ).

If A/B is already a Thom space of some bundle ψ′ → Y , then the left hand side
is the Thom space of ψ′⊕ψ|Y → Y . Similarly for the right hand side. So using
lemma 4.6 but adding on top of the index quotient a copy of a complement to
the bundle Ev∗

q0
TN , we do a standard suspension of the indices instead of the

Thom suspension by the bundle. So the new quotient map obtained is just the
suspension of the old one. This, however, looks a bit confusing considering the
previous lemma: When increasing r by 2 we Thom suspended the index Iδ by
the bundle 2 Ev∗

q0
TL, but we just added two times a complement to Ev∗

q0
TN ,

so why should this be a suspension? This can be explained by the fact that
since T ∗

ε1
L is embedded into T ∗N , they have isomorphic tangent bundles and

two copies of TL is thus isomorphic to two copies of the pullback of TN .
Since the previous lemma worked only for r odd we see that removing two

copies of Ev∗
q0
TN and two copies of Ev∗

q0
TL on each side of the map

Th(TΛµN

r N) → Th(TΛµL

r L⊕ η)

cannot fully convert all the tangent spaces to suspensions on both sides si-
multaneously, so we choose the convention of removing an extra on each side,
making both sides into spaces representing the wanted spectra. �

As noted earlier, the larger µL is, the larger we can choose µN , which is a
good indication that these maps glue together into something non-trivial.

Theorem 1 The Viterbo transfer can be realized as a map of spectra

(Λj)! : (ΛN)−TN → (ΛL)−TL+η

Proof: The map is the same as the Viterbo transfer because the construction
is the same. The difference is that in our construction we actually calculate the
homotopy type of Iδ (not the same name as in [Vit97]) and add appropriate
bundles to both sides.

We need to argue that the maps from the previous corollary are compatible
with inclusions when increasing either µL or µN . Since we already proved that
the quotients induce the maps, we only need to prove that they are compatible
with inclusions.

First we establish two facts about the inclusion maps for Hamiltonians with
two different slopes µ1 < µ2 not geodesics lengths. For the Hamiltonian H1 in
figure 6 we can use lemma 4.7, lemma 4.5 and the note right after the proof
of lemma 4.5 to conclude that the inclusion of homotopy indices Ia

−1(Ar , X)
into the total index induces the Thom suspension of the inclusions defined by
including curves with length less than µ1 into the set of curves with length less
than µ2.

For the approximation associated to the Hamiltonian H2 in figure 7 we
have a natural quotient map from the total index to I2µδ

−µδ(Ar, X). We show
that this is homotopic to the inclusion as above. In the case of H ′

2 we can,
by making the part with slope µ1 long enough, assume that the new bend has
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−a ‖pN‖
slope µ1

slope µ2

H1

Figure 6: The Hamiltonian H1.

−a

Associated critical values in [a,−µ2δ]

H2

−2µ2δ

µ2δ
‖pN‖

slope µ2

slope µ1
H ′

2

‖pN‖

−a

−2µ2δ

µ2δ
slope µ2

slope µ2

slope µ1

Figure 7: Hamiltonians H2 and H ′
2.

its associated critical points above 2µ2δ. The inclusion of I2µ2δ
a (Ar, X) into

the total index is the same as the previous inclusion. Now by shortening the
linear part with slope µ1, and then letting the bends cancel out, we remove
the critical points with critical value less than −µ2δ. If we think of this in
terms of Morse theory and CW-complexes, we see that the new cells glued on
in the inclusion effectively kill of the subcomplex I−µ2δ

a (Ar, X), so collapsing
this subcomplex is homotopic to the inclusion. This argument can be made
precise by doing a small perturbation of Ar to make it Morse. So the two maps
are indeed homotopic.

Now look at the problem of increasing µL. This can be done by a homotopy
that simply multiplies the part of H close to L by at ∈ R increasing in t where
a0 = 1 and a1 is the ratio between the new and the old µL. Outside T ∗

2ε1
L

we simply translate H upwards so we do not change the slope µN . During
this process we move the critical points, and when atµL is a geodesic length
we create new critical points. We create two critical points per geodesic with
this length: One down by the bottom bend very close to the zero section of
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L, and one up in the concave part of H . At their creation they have the same
critical value, which is larger than all the other critical values. We assume
that our bounds for the index pair are chosen such that this is within Iδ. One
of these new critical values stays above zero, but the other (from the concave
part) moves below zero and through −µLδ, effectively collapsing this part of
the homotopy index, but as we saw, this collapse induces the inclusion.

The case of changing µN is much easier, because by looking at the Hamil-
tonian on figure 8, taking the quotient from the total index to Iδ is the compo-

‖pN‖δµL

R

c

Figure 8: Lowering µN .

sition of two quotients where one is the inclusion and the other is the quotient
for the larger µN . �

9 Twisted Chas-Sullivan Products

Let Ev0 : ΛM →M be the map defined by evaluation at the base point. Define
T ′M = Ev∗

0 TM . For any virtual bundle η → X we denote the Thom spectra
of η by Xη. In the case where η is an actual bundle we use the same notation
for the Thom space.

In [CJ02], the authors prove that the Chas-Sullivan product on an n-
manifold M can be realized as the product on a ring spectrum

(ΛM)−T ′M ∧ (ΛM)−T ′M → (ΛM)−T ′M .

We will create a slightly more general construction of this, and thereby prove
that both source and target of the Viterbo Transfer is a ring spectrum.

Theorem 2 Let M be a closed smooth manifold. For any homotopy class
[f ] ∈ [M,L] ∼= [M,U/O] there is a Chas-Sullivan type ring spectrum structure
on

(ΛM)−T ′M+η,

where η is the virtual bundle induced by the map

ΛM → ΛL → ΩL ≃ Z ×BO.
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Note that the case in which f is null homotopic produces the standard
Chas-Sullivan product.

Proof: Define

ΛX ×X ΛX = {(γ1, γ2) ∈ ΛX × ΛX | γ1(0) = γ2(0)}.

This has a concatenation map ρX to ΛX , defined by

ρX(γ1, γ2)(t) =

{

γ1(2t) t ∈ [0, 1/2]
γ1(2t− 1) t ∈ [1/2, 1].

For bundles η1 and η2 over ΛX , we define η1 ×X η2 to be the restriction of
η1 × η2 to ΛX ×X ΛX .

We will need a lot of structure on M , and a very natural way of getting all
the structure we need is to choose an embedding i : M → Rl. This induces a
Riemannian metric on M . Let ε ≤ 0 be small enough to make any ball with
radius ε geodesic convex. So for any points m1,m2 ∈M with dist(m1,m2) ≤ ε,
we define tm1 +(1− t)m2 by using the unique geodesic connecting m1 and m2.
Define

ΛM ×ε
M ΛM = {(γ1, γ2) ∈ ΛM × ΛM | dist(γ1(0), γ2(0)) ≤ ε}

and

ΛM ×ε
M M = {(γ,m) ∈ ΛM ×M | dist(γ(0),m) ≤ ε} ≃ ΛM.

We have the obvious projection P0 : ΛM ×ε
M M → ΛM . However, we define

Pt(γ,m) by taking the point m′ = (1− t)γ(0)+ tm and conjugating γ with the
unique geodesic curve, parametrized by arc length, connecting m′ and γ(0),
and then reparametrizing in the obvious way. So P1(γ,m) is a closed curve in
M starting at m.

Regardless of base we will denote the trivial bundle, with the standard
metric, of dimension k by [k]. Let ν → M be the orthogonal complement
bundle to TM in Rl and let φ : ν ⊕ TM → [l] be the induced isometry of
bundles. We define ν′ = Ev∗

0 ν. On the space ΛM ×M ΛM the two base points
are the same, so ν′ and T ′M define bundles here as well.

In [CJ02], the authors appeal to Hilbert space versions of the loop spaces to
get a Pontrjagin-Thom collapse map. We will do a more explicit construction
using a little trick. Simply define a map

ΛM ×ε
M ΛM → T ′M,

where T ′M is the bundle over ΛM ×M ΛM , by

(γ1, γ2) 7→
(

p
(

γ1, γ2

)

, exp−1
γ1(0)

(γ2(0))
)

,

where p(γ1, γ2) = (P1(γ1, γ2(0)), γ2). We see that the boundary of ΛM×ε
M ΛM

is mapped to vectors in T ′M with length ε, so if we multiply the last factor by
ε−1, this is mapped to the sphere bundle. Thus we can extend the map to all
of ΛM × ΛM , provided that we map to the Thom space of T ′M and map the
complement of ΛM ×ε

M ΛM to the base point. Because this is not surjective,
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it is not a Pontrjagin-Thom collapse map, but it is homotopic to one. We will
use this construction with two copies of ν′ added on both sides to get a map

τ : (ΛM × ΛM)ν′×ν′ → (ΛM ×M ΛM)[l]⊕ν′

.

Explicitly we define τ by

τ(γ1, γ2, v1, v2) =
(

p(γ1, γ2), φ
(

ε−1 exp−1
γ1(0)

(γ2(0)) ⊕ v1
)

, v2

)

.

On the left hand side we use the Thom space defined by the bundle Dν′×Dν′,
and on the right hand side we use D([l] ⊕ ν′), where all discs have radius one.
The fact that p is not defined on the entire space is not a problem, because we
map this part to the base point.

Since the diagram

[l] ⊕ ν′
ρM

//

��

[l] ⊕ ν′

��

ΛM ×M ΛM
ρM

// ΛM

is pullback we can compose τ with

ρ
[l]⊕ν′

M : (ΛM ×M ΛM)[l]⊕ν′ → (ΛM)[l]⊕ν′

to get a map

(ΛM)ν′ ∧ (ΛM)ν′ ∼= (ΛM × ΛM)ν′×ν′ → (ΛM)[l]⊕ν′ ∼= Σl(ΛM)ν′

.

This is the Chas-Sullivan product on the (2l)-fold suspension of (ΛM)−T ′M .
Now we need some technical tools for the case in which f is not null homo-

topic. Define

X =
⊔

k∈N∪{0}
Grk(2k),

where Grk(2k) is the Grassmannian of k-dimensional subspaces in R2k. This
is a strictly associative monoid with product

Grk1
(2k1) × Grk2

(2k2) → Gr(k1+k2)(2(k1 + k2))

given by direct sum. In [May77], it is proved that the loop structures on Z×BO
coming from the two homotopy equivalences

ΩBX ≃ Z ×BO ≃ ΩL

are equivalent. This implies the homotopy equivalence

BX ≃ L,

so we might as well assume that f maps to BX . We use the H-space structure
of BX to define the projection

πΩ : ΛBX → ΩBX.
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It is possible to construct πΩ such that the diagram

ΛBX ×BX ΛBX
ρBX

//

πΩ×πΩ

��

ΛBX

πΩ

��

ΩBX × ΩBX
ρ

// ΩBX

commutes, and such that πΩ of any constant curve is the constant curve in
ΩBX . We define ΛΩf = πΩ ◦ Λf : ΛM → ΩBX .

Recall the definition of BX as

BX =
(

⊔

p∈N∪{0}
∆p ×Xp

)

/∼.

The space X embeds into ΩBX by the adjoint of the map ΣX → ∆1 ×X/∼ ⊂
BX . This maps Grk(2k) into the component identified with {k} × BO ⊂
Z×BO. The embedding has high connectivity on the components for large k,
because up to homotopy it is the standard embedding Grk(2k) → BO. We now
embed X×X into ΩBX by the composition X×X → ΩBX×ΩBX → ΩBX .
We define the curve e ∈ ΩBX by the inclusion of the point (R ⊂ R2) in
Gr1(2) ⊂ ΩBX . Concatenations with e on either side of a curve defines a
map ΩBX → ΩBX that up to homotopy is the map that adds one to the
Z component of Z × BO. For any map h into ΩBX we will denote the map
H composed with k1 pre-concatenations of e and k2 post-concatenations by
k1 + h+ k2.

The space of curves in M with lengths less than µ is denoted ΛµM . This
has compact homotopy type and so k1+(ΛΩf)|ΛµM can be homotoped to factor
throughX for large k1. Let Gµ

t be such a homotopy with Gµ
0 = k1+(ΛΩf)|ΛµM .

By pulling back the canonical bundle over X with Gµ
0 we define a bundle over

ΛµM , which stably represents the virtual bundle η. We will denote this by
([k1] + η). We use this to define the spectrum (ΛM)−T ′M+η by letting

(ΛµM)ν′⊕([k1]+η)

be the (l + k1)th space. By increasing k1 we get a suspension, after which we
can increase µ and extend the homotopy Gµ

t and the limit of this defines the
spectrum. Different choices of the homotopy Gµ

t gives different identifications
of this part of the spectrum with a Thom space. In fact, if Gµ

1 had factored
through X × X instead of X we would have an identification of the bundle
with a direct sum of bundles. Let Fµ

t be a homotopy of Fµ
0 = (ΛΩf)ΛµM + k2,

such that Fµ
1 factors through X , and use this to define the bundle (η + [k2]).

Since the diagram

ΛM ×M ΛM
ρM

//

(k1+ΛΩf)×M (ΛΩf+k2)

��

ΛM

k1+ΛΩf+k2

��

ΩBX × ΩBX
ρ

// ΩBX

commutes and ρM is a cofibration, we get that

Hµ
t : ρM ◦ (Gµ

t ×M Fµ
t ) ◦ ρ−1

M



53

is a homotopy on the image of ρM from H0 = k1 +ΛΩf + k2 to a map Hµ
1 that

factors through X ×X . This defines a representative of the bundle η over the
image of ρM which we will denote ([k1] + η + [k2]). We constructed Hµ

t such
that the diagram

ΛM ×M ΛM
ρM

//

Gµ
t ×MF µ

t

��

ΛM

Hµ
t

��

X ×X // X ×X

commutes. This gives an identification of ([k1]+η)×M (η+[k2]) as the pullback

ρ∗M ([k1] + η + [k2]). Adding this bundle to the map ρ
[l]⊕ν′

M we get the map

(ΛµM ×M ΛµM)[l]⊕ν⊕(([k1]+η)×M (η+[k2])) → (Λ2µM)[l]⊕ν⊕([k1]+η+[k2]). (20)

If we choose other homotopies Gµ
t and Fµ

t we get another identification of the
Thom space on the right hand side, but this cancels out due to the fact that
we also get another identification on the left hand side.

In the definition of τ we used the map p to map ΛM×ε
M ΛM to ΛM ×ΛM .

This map was canonically homotopic to the identity using Pt, so inserting this
homotopy before (Gµ

1 × fµ
1 )|ΛM×ε

M
ΛM , we get an identification of the bundles

([k1]+η)× (η+[k2])|Λµ−2εM×ε
M

ΛµM and the pullback p∗| ([k1]+η)×M (η+[k2]).
With this added on top of τ we get the map

τ ([k1]+η)×(η+[k2]) : (Λµ−2εM × ΛµM)(ν⊕([k1]+η))×(ν⊕(η+[k2])) →
→ (ΛµM ×M ΛµM)[l]⊕ν⊕(([k1]+η)×M (η+[k2])).

Composing this with the map in equation (20) we define the map

τ2l+2k : Σl+k(ΛµM)−T ′M+η ∧ Σl+k(ΛµM)−T ′M+η → Σ2l+2k(ΛµM)−T ′M+η,

which is the definition of the product on a subset of the spectrum. If we make
k larger we get a suspension of the same map, which we can extend to a larger
subset, so this indeed defines a map of spectra. There are some subtleties
involving reordering of suspensions, but this is a well studied aspect related to
the construction of the spectra and its smash product with itself.

The unit of this ring spectrum is given by the map from the sphere spectrum
induced by the Pontrjagin collapse map Sl → Mν → (ΛM)ν′+η. The latter
inclusion is the standard inclusion using the fact that the bundle η restricted
to constant curves is trivial of dimension zero. Indeed, this is because the map
πΩ projects constant curves to the constant curve. It is easy to check that
inserting this on either side of the product produces a map homotopic to the
identity. �

The following lemma is well-known, but the construction we present is in-
teresting in light of our construction of the product. It also provides insight
into the conjecture following it.

Lemma 9.1 The Chas-Sullivan product is A∞.
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Proof: We start by describing a homotopy from τ ◦ (τ ∧ Id) to τ ◦ (Id∧τ).
On the level of base spaces we look at the map p : ΛM ×ε

M ΛM → ΛM ×M

ΛM → ΛM . The compositions p ◦ (p× Id) and p ◦ (Id×p) are not well-defined,
because we only defined p on a subset of ΛM × ΛM . However, on the set
ΛM×ε3 = {γ1, γ2, γ3 ∈ ΛM | dist(γi(0), γj(0)) < ε/2}, both compositions are
well-defined. The first picture in Figure 9 shows three curves in ΛM×ε3, and

γ1(0)
γ1

γ2(0)

γ2

γ3(0)

γ3 p(p(γ1, γ2), γ3) p(γ1, p(γ2, γ3))

Figure 9: Connecting curves in different order.

the two others illustrate the difference between the two different compositions.
After a reparametrization, the two curves differ only on the inserted geodesic
pieces, and it is easy to define a homotopy between them using a parameter
s ∈ [0, 1] that specifies at which point on the geodesic, which is horizontal in
the figure, the other geodesic starts. Recall that the curve runs through both
geodesics in each direction. Figure 10 illustrates how to define the curve for
s = 1/2.

Figure 10: Geodesic overlap.

Adding the bundles ν′ on the factors, we see that the two maps we wish to
compare are

τ(γ1, τ(γ2, γ3, v1, v2), v3) =

(p(γ1, p(γ2, γ3)), ε
−1 exp−1

γ1(0)(γ3(0)) ⊕ v1, ε
−1 exp−1

γ2(0)
(γ3(0)) ⊕ v2, v3)

τ(τ(γ1, γ2, v1, v2), γ3, v3) =

(p(p(γ1, γ2), γ3)), ε
−1 exp−1

γ1(0)
(γ2(0)) ⊕ v1, ε

−1 exp−1
γ2(0)(γ3(0)) ⊕ v2, v3),

where the outer τ is the identity on the trivial components produced by the
inner τ . Indeed, this corresponds to identifying the outer τ with a suspension
of the original τ . We only looked at the compositions of p on a subset, but
this is easily remedied by inserting a homotopy that shrinks the part of the
space which is not sent to the base point. We do this by using a homotopy
that increases the ε−1 factor on the inverse exponentials to 4ε−1. This has
the result that everything outside (ΛM)×ε3 is sent to the base point by either
map. Now it is easy to use the homotopy we constructed for the p’s, and at
the same time homotope the factor 4ε−1 exp−1

γ1(0)
(x), by letting x be the point
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on the one geodesic at which the other geodesic starts. This does not change
the fact that the complement of (ΛM)×ε3 is sent to the base point.

We conclude that the Chas-Sullivan product is homotopy associative. But
what about higher associativity homotopies? We generalize the above con-
struction to i curves γ1, . . . , γi. For the purpose of doing this we define spaces
Ki, for i ≥ 2, homeomorphic to and with the same boundary maps as the
spaces Stasheff defines in [Sta63]. Define

Ki = {(si−2, si−3, . . . , s1) ∈ R
i−2 | si−2 ∈ [0, 1], sj ∈ [0, 1 + sj+1], j < i− 2}.

This space has a useful geometric interpretation. Place i distinct clockwise
ordered points p1, . . . , pi on the unit circle. Now draw the line segment from
pi to pi−1 parametrized by the interval [0, 1]. Then draw a new line segment
parametrized by the interval [si−2, 1 + si−2], starting at the point on the first
segment corresponding to si−2 and ending at pi−2 (see figure 11). We wish to

p1

p2

p3

p4

p5

p6

p7

p8
0

1

s6

1 + s6

Figure 11: Line segments for i = 8 and parametrizations of the first two seg-
ments.

continue by drawing a line segment starting on either of the two existing line
segments and ending at pi−3, but it should only intersect the other segments
at its starting point. We see that because of the way we parametrized the
second line segment, the parameter si−3 uniquely defines a starting point for
such a curve. Furthermore, by parametrizing this third segment by the interval
[si−3, 1+si−3], we see that the next parameter si−4 uniquely defines a new line
segment starting at a point on the first three segments and ending at pi−4, not
intersecting the other segments except at its starting point. Continuing this
down to and including p1 we identify Ki with a space of diagrams. Figure 11
illustrates a point in K8. This geometrical interpretation is valid no matter
how we space the points around the circle.

The points in the space Ki are generalizations of choices of parentheses on a
product of i terms, and the points where the line segments both start and end at
the points pj correspond to actual choices of parentheses. For instance, the dia-
gram where all the segments start at pi corresponds to (γ1(γ2(· · · (γi−1γi)) · · · ),
and the one where they join neighboring points all the way around the circle cor-
responds to ((· · · (γ1γ2)γ3) · · · γi). The boundary of Ki divides up into natural
subsets, each related to fixing one set of parentheses. In the geometrical inter-
pretation the boundary component given by γ1 · · · γj−1(γj · · · γj+r)γj+r+1 · · ·γi

is defined as follows: The subset of Ki where the sub-diagram defined by points
pj through pj+r and the segments ending at the points pj through pj+r−1 is in
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fact a viable diagram representing a point in Kr, and the complement of this
sub-diagram together with the point pj+r is also a viable diagram representing
a point in Ki−r+1. It is easy to check that the union of all these components is
the entire boundary of Ki, because the boundary consists of the points where
there is a segment either going from pj+1 to pj or from pi to pj, and all such
can be divided. Conversely, if such a subdivision is possible then one of the
segments must be in such a position. Also if there are two possible subdivisions,
then we can in fact divide it into three diagrams d1, d2 and d3 where d1 and d2

have a point in common and as do d2 and d3. This means that these boundary
components only intersect at their own boundary, and so we have a system of
inclusions satisfying the same relations as the spaces defined by Stasheff.

To prove An we need to define maps

Mi : Ki × ((ΛM)−T ′M )∧i → (ΛM)−T ′M

for i ≤ n, which are compatible with these identifications of the boundary of
Ki as a union of products of the form Kr ×Ki−r+1. That is,

Mi−r+1(k, x1, . . . , xj ,Mr(k
′, xj+1, . . . , xj+r), xj+r+1, . . . , xi) =

Mi(g(k, k
′), x1, . . . , xi),

where g : Mr ×Mi−r+1 →Mi is the inclusion of this particular face.
First homotope the factor ε−1 in the definition of τ to be n2ε−1. This will

imply that the maps constructed below send all but the interior of

(ΛM)×
n
ε i = {(γ1, · · · , γi) ∈ (ΛM)×i | dist(γj(0), γk(0)) < ε/n}

to the base point, for any i ≤ n. So we restrict our attention to these spaces.
The geometrical interpretation of the spacesKi makes it easy to define the maps
on the level of base spaces, simply by using the same idea as before. That is,
given a point in Ki and i curves γ1, . . . γi, we identify the first segment between
pi−1 and pi with the geodesic connecting γi−1(0) and γi(0). Then we identify
the second segment with the geodesic starting at the point corresponding to
si−2 on the first geodesic and ending at γi−2(0). We continue this pattern and
identify each segment with a geodesic. This defines a map from the union of the
segments to M . Now imagine a small line segment emanating from the circle at
each point pj as in figure 12. We then define a curve in M by defining a curve

Figure 12: Emanating line segments.

following the line segments in the diagram and mapping it to M . Starting at
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the point pi corresponding to γi(0) we follow the segments, and when hitting
a fork of segments we always take a left turn. We start by assuming that we
just came in using the emanating segment at pi. When exiting the figure at an
emanating line segment at a point pj we do not have a map to M , but instead
we run once around the curve γj , and then we reenter using the same emanating
line segment. Eventually we return to the point pi and exit via the emanating
segment and run once around γi. We end up having followed each segment
exactly once in each direction at all generic points. From this description it is
clear that we run through the curves γ1, . . . γi in order, but with a number of
various geodesic pieces put in at their starting points to connect them. The
choice of parametrization is a contractible choice, and we have already defined
it on K2, so it is not difficult to inductively choose parametrizations of the
curve we just described on all the spaces Ki up to Kn. We have thus defined
maps mi : Ki × (ΛM)×

n
ε i → ΛM . As before, for each curve γj we can take the

starting point of the geodesic associated with the segment ending at pj , and
use that to define the map on the level of Thom spaces, such that we get the
inverse exponential of the correct points at the points actually corresponding
to a choice of parentheses. �

Conjecture 3 The twisted Chas-Sullivan product is A∞.

To prove this we need to insert the bundles, used in defining the product,
over the construction in the lemma above, but for now the details of this
construction seems obscure.

The construction of these twisted products and theorem 1 also motivates
the following conjecture.

Conjecture 4 The Viterbo transfer is a ring spectrum homomorphism using
twisted Chas-Sullivan products.

We have yet to discover a complete proof of this statement. There is,
however, a construction of the Chas-Sullivan product using the methods from
section 4 that will commute with the collapse map used in defining the Viterbo
transfer. We will use the rest of this section to outline the construction.

In section 4 we defined the function Ar and the pseudo-gradient X for any
Hamiltonian, and in section 8 we defined the Hamiltonian H depending on
µL > 0, µN > 0 and c > 0 for which we took the total index I2δµ

−k (Ar , X),
for some large k, and collapsed to an index Iδ. This was the construction of
the Viterbo transfer. Any good index pair (A,B) for the first of these indices
would have B ⊂ A−1

r (−k), and we know from section 4 that such exist. We
also define the similar map A2r+1. However, unlike in section 4, we define
A2r+1 to approximate flow curves parametrized by the interval [0, 2] instead of
[0, 1]. This we do by using the same construction as in the proof of lemma 4.6,
defining tj = 1/n if j 6= n and tn = 0. This way we have

∑

j tj = 2 instead of
1, and the critical points of A2r+1 will then be 2-periodic orbits. The goal is
now to construct a good index pair (A2, B2) for this function and construct a
map f : A×A→ A2 which will induces a map of quotients

A/B ∧A/B → A2/B2.
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Lemma 4.7 tells us that the right hand side is homotopic to Th(TΛµN
r N) ∧

Th(TΛµN
r N) and the left hand side is homotopic to Th(TΛµ

2r+1N). In the con-
struction of the Viterbo map, we formally inverted the bundles on the quotients
by adding inverse bundles. Doing this for the above map we get a map

Σl(ΛN)−T ′N ∧ Σl(ΛN)−T ′N → Σ2l(ΛN)−T ′N ,

which turns out to be the Chas-Sullivan product on curves of length less than
µL.

The construction of f on points where the two base points are near each
other is as follows: Take two curves −→z1 ,−→z2 in T ∗ΛrM . Then the first n factors
of f(−→z1 ,−→z2) are the factors of −→z1 , and similarly the last n factors are the factors
of −→z2 . The remaining middle factor (qn, pn) is defined by letting qn = q0 and
letting pn be the parallel transport of p2n from q2n to qn = q0. One can check
that this approximately produces the identity

Ar(
−→z1) +Ar(

−→z2) = A2r+1(f(−→z1 ,−→z2)).

This is why we need the extra point. In the proof of lemma 4.3 we saw that we
can create good index pairs containing any compact subset of T ∗ΛrN , and by
choosing the value k very large he get that (A2r+1 ◦f)|A×B∪B×A < −k+2δµ is
below the lowest critical value for A2r+1, so this induces a map of the quotients.

The only problem with this map so far is that we did not really define it if the
points qn and q2n are to far apart. These points are the base points of −→z1 and −→z2 ,
so this is similar to the problem defining the Chas-Sullivan product. However,
in section 4 when we defined the pseudo-gradient for A2r+1, we defined it such
that if these points get too far apart, the flow of X will flow to B2, and thus by
using the flow of −X we can get the space, where dist(qn, q2n) is large, mapped
to B2 which is our base point on the left hand side. In fact, we can do this
by only flowing the point pn and thereby mapping these points into the disc
bundle of the copy of Ev∗

0 TN that comes from adding the extra point (qn, pn),
proving that this is indeed a realization of the Chas-Sullivan product.

So this is an A∞ product on the spectrum, and by being careful when
taking the quotient to Iδ, one can retain this fact and get an A∞ product on
the left hand side of the Viterbo transfer. However, we still need to relate this
construction on the index Iδ to the construction of the twisted Chas-Sullivan
product. This would also prove that in such a case the twisted product is in
fact A∞.
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