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Summary

In the last few decades management of cattle herds has become a much more
automated process because of the increasing availability of robotic devices
such as milking machines. These machines partly take over the work that the
farmer earlier had to do himself. In addition, the robot in many cases provide
built-in machinery for measuring a number of biological entities online.
For example, in this thesis one of the main focuses is on measurements of
progesterone concentration in cow milk, which can be obtained from milking
machines. Often data of this type holds information that can be very useful
for a farmer in the management of the cows. Therefore, with the increasing
use of these technologies, there is also an increasing demand for developing
statistical methods to extract as much information as possible from the
data. Statistical tools for analysing time series has been developed through
the last 50 years. State space models is a large class of models that can
be applied to time series and much of the work behind this thesis is based
on state space models. A thorough overview on state space space can be
found in e.g. West and Harrison (1989), Durbin and Koopman (2001) and
Brockwell and Davis (2002).

Two large datasets containing online records from milking machines have
been analysed as a part of the study behind this thesis. The first data set
contain daily milk yields and is analysed using a parametric model to quan-
tify the effects of breed and parity on the milk yield. Also the acceleration
in the yield in the beginning of lactation is studied in order to provide an
indicator of physiological stress. The second data set contain progesterone
concentrations in cow milk. The concentration of progesterone in the milk
is closely connected to the reproductive status of a cow because the cow
produces progesterone with a varying intensity through its reproductive cy-
cle. Therefore, progesterone measurements can be useful to detect when a
cow is in oestrus and thus receptive of insemination. A state space model is
developed for the purpose of analysing the progesterone data. Though de-
veloped with the aim of analysing a specific dataset, this state space model
can be used to model any time series that has a cyclic behavior where the
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Summary

mean of the observations in each cycle is continuous and piecewise linear.
For some of the cows in the dataset the time points of successful insemina-
tions is known. Using these, the ability of the model to predict when cows
go into oestrus can be evaluated.

Asymptotic results for parameter estimates from state space models
have been studied for some years. Under a set of regularity conditions the
maximum likelihood estimate has been found to be asymptotic normal. An
alternative method to estimate parameters is to use estimating equations.
In connection with the progesterone data we use estimating equations to
estimate parameters. The asymptotic behavior of these estimates is studied
and for a class of estimating equations asymptotic normality is verified.

The thesis consist of a review and three independently written papers.
One of the papers has already been published and the two other papers
have been submitted. The co-authors of the papers are my supervisors Jens
L. Jensen from the Department of Mathematical Sciences, University of
Aarhus and Søren Højsgaard and Nicolas Friggens from the Faculty of Agri-
cultural Sciences, University of Aarhus.
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Chapter 1

Introduction

Technology that collects online data consisting of different physical and
biological entities has developed quickly in the last decades. Therefore in
many cases vast amounts of data can now be collected very cheaply. Because
these online data often contain valuable information there is a growing
interest in the development of statistical tools to extract the information
from data. State space models is a class of models that can be applied
to time series and here we focus on this class of models. We use state
space models to analyse certain datasets and study as well more theoretical
aspects of this class of models.

This review is organised as follows. In Chapter 2 state space models
and corresponding concept of filtering are presented together with some
methods for parameter estimation. Especially the technique of estimation
using estimating equation is important in this thesis as it is both used
for estimation and the asymptotic behavior of this kind of estimates are
investigated.

In Chapter 3, the analysis of a dataset consisting of daily milk yields
is presented. The aim was to quantify effects of breed and parity on lacta-
tion curves and data was analysed using a parametric model suggested in
Emmans and Fisher (1986).

In Chapter 4, a state space model developed to handle time series with a
cyclic behavior is presented. Further it is assumed that the mean of the ob-
servations in each cycle is continuous and piecewise linear. For such a model
a corresponding filter has been developed and estimation of parameters will
be discussed.

Finally in Chapter 5, we present the results of a study where the asymp-
totic normality of a class of estimates, obtained using estimating equations,
is established.
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Chapter 2

State Space Models

State space models is a flexible class of models for analysing data that
is collected as online records. This class of models generalises the classi-
cal autoregressive moving average (ARMA) models introduced by Box and
Jenkins (1970) for analysing time series. Often when a model for a time
series can be given both a state space and e.g. an ARMA representation for
computational reasons the ARMA representation is preferred because there
exist better developed software for analysis of this smaller class of models.
However, there can also be good reasons for choosing the state space ap-
proach. For example, depending on the formulation of a state space model
the parameters can often be given a better interpretation in biological or
physical terms as opposed to an ARMA model where the parameters may be
hard to interpret. In engineering the system equation of a state space model
will often correspond to differential equation in which case it is natural to
use the state space approach. Comprehensive treatments of the state space
approach to time series analysis can be found in e.g. West and Harrison
(1989), Durbin and Koopman (2001) and Brockwell and Davis (2002).

A state space model consists of two processes. An unobserved latent pro-
cess and an observation process. Often the observer is interested in assessing
the latent process. The latent process is assumed to be a Markov process
allowing for serial correlation among the observed variables. To model the
data it is assumed that the observations are independent in the conditional
distribution given the latent process.

Here the most fundamental concepts concerning state space models are
introduced through the example of the well known Gaussian state space
model. This model is presented in a Bayesian setting using the terminology
of West and Harrison (1989). Firstly, a formal definition of the Gaussian
model is given. Then the Kalman filter and smoother for assessing the latent
process is presented. Finally, a short presentation of a few techniques for
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Chapter 2. State Space Models

estimation of unknown parameters is given.

2.1 Definition

This section provides the definition of a Gaussian state space model. State
space models can be applied to multivariate responses {Yt}. Let d denote
the dimension of the process. The process {Yt}nt=1 is called the observation
process. We consider here only processes with a discrete time parameter t,
so that the index t is an enumeration of the observations. We also introduce
the p-dimensional latent process {θt}nt=1. The following three descriptions
now define the Gaussian state space model

Yt = F>t θt + vt, vt ∼ Nd(0, Vt) (2.1)

θt = Gtθt−1 + wt, wt ∼ Np(0,Wt) (2.2)

θ0|D0 ∼ Np(m0, C0), (2.3)

for t = 1, . . . , n, where F> denotes the transpose of the matrix F . The
equation (2.1) is traditionally called the observation equation and (2.2) is
called the system equation. In this definition the following notation has been
introduced.

F>t : The d× p design matrix at time t.

Gt : The p× p evolution transfer matrix at time t.

vt : The d-dimensional observational error vector at time t with variance
matrix Vt.

wt : The p-dimensional evolution error vector at time t with variance ma-
trix Wt.

D0 : The information available on the state vector at time zero. The infor-
mation is stated as a prior distribution with mean m0 and variance
C0.

The observational errors {vt}nt=1 are assumed to be mutually indepen-
dent as are the evolution errors {wt}nt=1. Additionally, these two processes
are assumed to be independent.

The matrices F>t , Gt, Vt and Wt, t = 1, . . . , n are usually assumed to
be known. However, it is possible to let the matrices depend on a parame-
ter ψ, which can be estimated using the maximum likelihood method, see
Section 2.3
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2.2. Assessment of the state vector

2.2 Assessment of the state vector

When an experimenter is using a state space model the primary interest
usually is to assess the state vector at different time points. As more data
becomes available the information about the states increases. To formalise
this we introduce the information set Dt which is the information avail-
able about the state process at time t. The experimenter may have some
knowledge about the process prior to collecting data. This information is
denoted D0 and effectively consists of the mean and variance of the prior
distribution (2.3) for the initial state θ0. We assume that the only additional
information to D0 that is gained after time t = 0 is the observed values of
the observation process. That is, given D0 the information set is recursively
defined as Dt = Dt−1 ∪ {yt}.

2.2.1 Kalman Filtering

During the process of collecting data, at time t ≤ n, we are often interested
in assessing the current state θt. That is, data yt = {yi}ti=1, has been col-
lected and we want to determine the conditional distribution θt|Dt. As new
data yt+1 arrives one aims at a simple updating to find θt+1|Dt+1.

The famous Kalman filter solves this problem through a set of updating
equations, that was first derived by Thiele (1880) (see Lauritzen (2002)).
However, the significance of this work was not understood until Kalman
(1960) was published. Therefore, the filter is named after Kalman.

The start of the filter is simply the assumption (2.3). Writing θt−1|Dt−1 ∼
Np(mt−1, Ct−1) we find from the system equation (2.2) that θt|Dt−1 ∼
Np(at, Rt) with

at = Gtmt−1

Rt = GtCt−1G
>
t +Wt.

Next, using the observation equation (2.1) to obtain yt|Dt−1 ∼ Nd(ft, Qt)
where

ft = F>t at
Qt = F>t RtFt + Vt.

Using standard normal distribution theory we find that θt|Dt ∼ Np(mt, Ct)
with

mt = at + At(yt − ft)
Ct = Rt − AtQtA

>
t ,

where At = RtFtQ
−1
t .
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Chapter 2. State Space Models

2.2.2 Kalman Smoothing

Having observed all data {yt}nt=1 up until time n the experimenter may
also be interested in assessing the states at previous time points. This
objective is called smoothing. For Gaussian state space models the con-
ditional distributions θt|Dn can be obtained using the Kalman smoother.
The Kalman smoother also consists of a set of recursive equations. Con-
trary to the Kalman filter these recursions are carried out backwards in
time. The smoother takes the values mt, Ct, and Rt of the Kalman filter
as input and begins with θn|Dn = Np(m̃n, C̃n). The Kalman filter imme-
diately yields m̃n = mn and C̃n = Cn. The remaining smoothed states
θt|Dn = Np(m̃t, C̃t), t = 1, . . . , n− 1 are given by the recursions:

m̃t = mt +Bt(m̃t+1 −Gt+1mt)

C̃t = Ct +Bt(C̃t+1 −Rt+1)B
>
t

where Bt = CtG
>
t+1R

−1
t+1. A sketch of a proof that these recursions yield the

desired result goes as follows: From the construction of the process we have
that (θt|θt+1, Dn) equals (θt|θt+1, Dt). The latter can be calculated from
θt|Dt, the system equation and θt+1|Dt.

2.3 Estimation of parameters

Until now we have assumed that the matrices Ft, Gt, Vt and Wt defining the
state space model are known. It is possible to let these matrices depend on
an unknown parameter ψ. In Sections 2.3.1, 2.3.2 and 2.3.3 three methods
for estimating the unknown parameter are described.

2.3.1 Likelihood estimation

Here we consider maximum likelihood estimation of the parameter. Assum-
ing that the initial prior is known we can determine the joint distribution
of the observation process as a function of ψ. Thus we get the log likelihood
function

l(ψ|y) = log p(y|ψ)

=
n∑
t=1

log p(yt|y1, . . . , yt−1, ψ)

= −nd
2

log(2π)− 1

2

n∑
t=1

(log |Qt|+ (yt − ft)>Q−1
t (yt − ft)),
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2.3. Estimation of parameters

where ft and Qt are obtained by running the Kalman filter with a fixed
value of ψ. The likelihood function can be maximised numerically yielding
the maximum likelihood estimate ψ̂.

2.3.2 EM algorithm

The EM algorithm (Dempster et al. 1977) is an algorithm designed to find
maximum likelihood estimates in situations in which there are missing data.
This scenery is seen in connection with state space models if we think of
the unobserved state variables to be missing data. Here we illustrate how
this algorithm work with an example where the variances Vt and Wt are
unknown but assumed to be constant over time. Therefore we let Vt = V
and Wt = W for all t. Also let Y = {Yt}nt=1 and θ = {θt}nt=1. Then the
likelihood density p(Y, θ|V,W ) is Gaussian. To start the algorithm initial
estimates V 0 and W 0 are chosen. Then in each iteration of the algorithm
we go through the following two steps

• E-step (Expectation)
Calculate the conditional expectation

E
[
log p(Y, θ| V,W )|Y, V (m),W (m)

]
(2.4)

as a function of V and W .

• M-step (Maximisation) Maximise 2.4 wrt. V and W to obtain new
estimates V (m+1) and W (m+1).

The main feature of this algorithm is that the likelihood increases at
each iteration. That is

L(V (m+1),W (m+1)|Y ) ≥ L(V (m),W (m)|Y ),

so that under mild assumptions the algorithm will converge to a local max-
imum of the likelihood. Essentially, each iteration of the updates the pa-
rameter estimates by solving

∂

∂(V,W )
E (log(L(V,W |Y, θ))) = 0

In the example with constant variances the E-step can be simplified
using the the conditional independence of the observations given the state.
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Chapter 2. State Space Models

Since we think of m0 and C0 as known we find that

log p(Y, θ|V,W ) = constant

=
n∑
t=1

log p(Yt|θ, V ) (2.5)

=
n∑
t=1

log p(θt|θt−1,W ). (2.6)

Hence V and W can be estimated separately from (2.5) and (2.6). The
updated estimates can be found to be

V̂ =
1

n

n∑
t=1

F>t C̃tFt +
1

n

n∑
t=1

(Yt − F>t m̃t)(Yt − F>t m̃t)
>

and

Ŵ =
1

n

n∑
t=1

Lt +
1

n

n∑
t=1

(m̃t −Gtm̃t−1)(m̃t −Gtm̃t−1)
>

where
Lt = C̃t +GtC̃t−1G

>
t − C̃tB>t−1G

>
t −GtBt−1C̃

>
t .

A detailed derivation of these results can be found in Klein (2003).

2.3.3 Estimating equations

Here we consider an alternative method for estimation of the unknown
parameter ψ. Let ν(ψ, θ̄, y) be a function of the parameter ψ, a triple θ̄ of
consecutive states and an observed variable y. Let νi(ψ) = ν(ψ, θ̄i, yi) where
θ̄i = (θi−1, θi, θi+1). We think of

∑n
i=1 νi(ψ) = 0 as an estimating equation

had both the variables {θi}ni=1 and {yi}ni=1 been observed. Having observed
only the process {yi}ni=1 we use the estimating equation

n∑
i=1

Eψ[νi(ψ)|(1, n)] = 0, (2.7)

where Eψ[·|(1, n)] is the conditional mean given y1, . . . , yn. To solve (2.7)
one often uses an EM-type algorithm. That is,

∑n
i=1Eψ[νi(ψ̃)|(1, n)] = 0

is solved with respect to ψ̃, and this defines a new value improving on
the old value ψ. In the actual case where νi is chosen to be the terms of
score function dl

dψ
(ψ, θ̄i, yi) this algorithm corresponds to the EM algorithm.

This EEE-algorithm (EEE is short for Expectation-Estimating-Equation)
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2.3. Estimation of parameters

has been considered in Heyde and Morton (1996), Rosen et al. (2000) and
Elashoff and Ryan (2004). In Hansen et al. (2008) we use this algorithm to
estimate the parameters of a state space model and in Hansen and Jensen
(2008) asymptotic results of this kind of estimates are studied. In Sec-
tion 4.5 below a specific example of estimation using estimating equations
is presented.
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Chapter 3

The influence of breed and
parity on milk yield, and milk
acceleration curves

This paper is based on an experimental study which had two purposes.
Firstly, we wanted to determine the effects of breed and parity1 on milk
yield from cows. Secondly, milk yield acceleration2 was examined for an
introductory investigation of the possibility of using acceleration as an in-
dicator of physiological stress and therefore also health problems. Here the
statistical analysis involved in the study is briefly presented.

3.1 The Emmans and Fisher model

We analysed data consisting of daily recordings of milk yield for a large
group of cows of three different breeds and three different parities. The
daily milk yield at t days past calving is denoted µ(t). For each individual
cow-lactation the model of Emmans and Fisher (1986)

µ(t) = exp
(
ã− tec̃ − exp(G0 − teb̃)

)
(3.1)

was fitted to data. The parameters ã, b̃, c̃ and G0 of the model was estimated
using the ordinary least square procedure. In Figure 3.1 some typical ex-
amples of the development in daily milk yield through a lactation period
are shown together with the corresponding fits of the model (3.1).

1Parity denotes the number of calves a cow has given birth to. That is, a cow of first
parity has just given birth to its first calf.

2Denoting the daily yield at time t by µ(t), the yield acceleration is defined to be
the derivative µ′(t).
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Figure 3.1: Plots of milk yield (kg/d) (d=day) records for four cows of second
parity. The curves are vertically displaced by 0, 10, 20 and 30 kg/d to avoid
overlap. For each cow the corresponding fit of the Emmans and Fisher model is
shown.

3.2 Analysis of parameters

The investigation of the effect of breed and parity on the four parameters
ã, b̃, c̃ and G0 of the model were carried out using a mixed linear model.
Breed and parity were included as fixed effects and cow id was included
as a random effect. E.g. with b denoting breed, p parity and c cow the
parameter ã was analysed as

ãbpc = αb + βp + γbp + ubc + εbpc

with ubc ∼ N(0, ω2) and εbpc ∼ N(0, σ2).
The acceleration in milk yield at time t is defined to be the deriva-

tive µ′(t). Based on the estimates of the four parameters in model (3.1)
for each cow-lactation we could calculate the maximal acceleration and the
maximal daily milk yield as well as the two corresponding time points.
These four entities were analysed for breed and parity effects in the same
way as the original four parameters above.
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3.3. Results

3.3 Results

The effect of breed and parity found from the analysis is illustrated in
Figure 3.2. The differences found between breeds and between parities are
typical of the values reported in previous literature. Furthermore no signif-
icant interactions were found between the effects of breed and parity. With
regard to the introductory investigation of milk yield acceleration indexing
the degree of physiological stress experienced by cows, it was found that
the acceleration was highest immediately after calving and that acceler-
ation was highest for higher yielding cows. This means that the first de-
mands for acceleration to be considered an indicator of physiological stress
are fulfilled as literature says that the highest incidences of diseases occur
immediately after calving and that higher yielding cows are more likely to
have health problems. However, further study is required to show if milk
yield acceleration is a useful indicator of stress.
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Figure 3.2: Plots of mean daily milk yield. In the upper plot the mean daily
milk yield is plotted for cows of breed Danish Red for each parity. In the lower
plot the mean daily milk yield is plotted for cows of first parity for Danish Red,
Danish Holstein and Jersey. Along each group of points the curve obtained by
taking mean of the corresponding curve fits is drawn.
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Chapter 4

A state space model exhibiting
a cyclic structure with an
application to progesterone
concentration in cow milk

The aim of this study was to evaluate the concentration of progesterone as
an indicator for oestrus in cows. In its reproductive cycle the progesterone
secreted by a cow shows a cyclic pattern. For biological reasons the con-
centration of progesterone in the milk decreases before the cow goes into
oestrus (Peters and Ball 1995). This drop in progesterone is very rapid and
ends about 70 hours before ovulation (Roelofs et al. (2006)). To accomplish
the aim of the study a state space model, which supposedly should be able
to capture the decrease in progesterone concentration, was developed. The
ability of the model to predict when a cow is in oestrus was evaluated using a
dataset containing measurements of progesterone concentration in the milk
and knowledge of successful inseminations. In the following a short overview
of the model, the corresponding filter and the estimation techniques used
in the paper is given.

4.1 Cyclic state space model

The state space model that was developed incorporates the idea of m differ-
ent stages each describing a linear development in the mean of the observa-
tions, such that the mean is a continuous function of time. In Figure 4.1 a
possible development of the mean of the observations is shown. The model
is considered in discrete time t ∈ Z and has five hidden variables that hold
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Figure 4.1: Example of possible development in the mean of the observations.

information about the end points of the current stage and the mean of the
observations during the stage. The five variables are

Rt : the point in time prior to t with the most recent change of stage,
(Rt < t).

St : the stage entered at time Rt with value in {1, 2, . . . ,m}.
Nt : the point in time for the next change of stage after Rt, (Nt ≥ t).

at : the mean of an observation at time Rt.

bt : the mean of an observation at time Nt.

4.1.1 Stochastics of the state variable

With this notation the development of the state variables can now be de-
scribed. Given that there is a change to stage q at time t, the distribution
of the waiting time to the next change depends on q only. This distribution
is denoted Wq and the only restriction we put on Wq is that it has finite
support. Formally

St+1 = St + 1(mod m) (4.1)
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4.1. Cyclic state space model

and

(Nt+1 −Nt|Nt = t, St+1 = q) ∼ Wq. (4.2)

Thus (4.1) and (4.2) describes the dynamics of the three discrete hidden
variables (Rt, St, Nt).

Next, the stochastic behavior of the continuous hidden variables at and
bt is described. These two variables hold information about the mean of the
observations within a stage. For each time point t where there is a change
of stage, let x(t) denote the hidden mean of a possible observation yt. If the
stage of a time interval beginning at time t is q, then we assume

(x(t)|Nt = t, St+1 = q) ∼ N(µq, ω
2
q ), (4.3)

where µq and ω2
q are parameters. The hidden variables at and bt are then

defined to be

at = x(Rt) and bt = x(Nt). (4.4)

That is, at is the mean at the beginning and bt the mean at the end of the
stage entered at time Rt. This means that if there is no change of stage at
time t then (at+1, bt+1) = (at, bt). On the other hand if there is a change of
stage at time t, then at+1 = bt and bt+1 = x(Nt+1).

4.1.2 Stochastics of observations

The mean at any time point s ∈ R is defined by linear interpolation using
the mean at the end points of the stage. That is,

x(s) = at +
bt − at
Nt −Rt

(s−Rt), s ∈ R, t = dse,

where dse is the smallest integer greater than or equal to s. In this way
the underlying mean x(s) of the observation given the hidden variables is
continuous and piecewise linear. Figure 4.1 shows a realisation of x(·).

Data {(yi, si)|i = 1, . . . , n} consist of a set of observations yi recoded
at time points si, where n is the number of observations. To define the
distribution of data, assume that we have an observation yi at time si ∈ R.
Note that we do not restrict the observations to occur at time points that
are multiples of the time unit. If the stage at time si is q, that is, Sdsie = q,
we assume (

yi|(R, S,N, a, b)dsie
)

∼ N(x(si), σ
2
q ),

where σ2
q , q = 1, 2, . . . ,m are parameters.

To summarize the parameters of the model are
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Chapter 4. A state space model exhibiting a cyclic structure . . .

µq : the mean of the hidden stochastic mean at a time point where the
stage changes to q,

ω2
q : the variance of the hidden stochastic mean at a time point where the

stage changes to q,

σ2
q : residual variance of observations within stage q,

for q = 1, 2, . . . ,m. Note that the waiting time distributionsWq, q = 1, 2, . . . ,m
may depend on an unknown parameter θ.

4.2 Approximate filter

An approximate filter has been developed for the model defined in Section
4.1. Using the notation ys = {yi|si ≤ s} and ysr = {yi|r < si ≤ s} our goal
is to determine the filter densities which we write as

p(Rt = j, St = q,Nt = l, at, bt|yt) = pt(j, q, l, at, bt) for all t ∈ N. (4.5)

We use the approximation

pt(j, q, l, at, bt) = pt(j, q, l)φ(at, bt; µt(j, q, l),Σt(j, q, l)), (4.6)

where pt(·, ·, ·) on the right hand side of (4.6) is the marginal density of
(Rt, St, Nt) and φ(·, ·; µ,Σ) is the normal density with mean µ and variance
Σ. Therefore the filter densities (4.5) are specified by pt(j, q, l), µt(j, q, l)
and Σt(j, q, l). If the filter distribution at time t is of the form (4.6), the
distribution

p(at+1, bt+1| Rt+1, St+1, Nt+1, y
t+1) (4.7)

is again Gaussian if Rt+1 6= t. That is if there is no change of stage at time
t. But if the stage changes at time t this is not the case. The distribution
of (4.7) is then a mixture of Gaussian distribution. In this case we make
an approximation and therefore the filter is only an approximate filter. We
do not state the updating equations of the filter here as they are given in
Hansen et al. (2008).

4.3 Parameter estimation

Maximum likelihood can be used to estimate the residual variances σ2
q , q =

1, . . . ,m. This estimation procedure is described in Section 4.4. The waiting
time distributions can be estimated using an EEE-algorithm as described
in Section 4.5. We do not suggest any general procedures for estimation of
the parameters µq and ω2

q , q = 1, . . . ,m.
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4.4. Estimation of the residual variance

4.4 Estimation of the residual variance

The residual variance parameters σ2
q , q = 1, . . . ,m can be estimated using

maximum likelihood. From the derivation of the filter in Hansen et al. (2008)
it is seen that

p(yt)

p(yt+1)
=

1

p(yt+1
t |yt)

.

can be calculated approximately using entities found from the filter updates.
Therefore, using the approximate filter, we can calculate an approximation
to the likelihood function

L(σ2
1, . . . , σ

2
m) = p(yn) =

∏
t

p(yt+1
t |yt),

which can be maximized using numerical techniques to find estimates σ̂2
q of

the residual variances.

4.5 Estimation of the distribution of

waiting times

Given a model for the waiting time distributions Wq, q = 1, . . . ,m, we can
estimate the parameter θ of this model using an EEE algorithm as discussed
in Section 2.3.3. For a parameter θ of the waiting time distribution we use
an estimating function of the form

∑n
1 ψi, where ψi = ψ(zi, zi−1; θ) for a

function ψ, and where zi = (Ri, Si, Ni). The E (expectation) step is to
calculate

E
( n∑

1

ψi|yn
)
,

where n is the number of observations. As an example consider the case
where the waiting time probabilities are modeled with no other restriction
than

∑M
l=1Wq(l) = 1 for all q. We can then use the estimating functions

ψ(zt, zt−1; q, l)

= 1(Rt = t− 1, St = q,Nt = t− 1 + l)−Wq(l)1(Rt = t− 1, St = q),

where 1(·) is the indicator function. In the EE (estimating equation) step
the new value of Wq(l) becomes

Wq(l) =
E (
∑n

1 1(Rt = t− 1, St = q,Nt = t− 1 + l)|yn1 )

E (
∑n

1 1(Rt = t− 1, St = q)|yn1 )
,

where the nominator and denominator have been found in the E step.
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Chapter 5

Asymptotics for estimating
equations in hidden Markov
models

State space models and the Kalman filter was introduced more than fifty
years ago and since then the asymptotic behavior of parameter estimates
has been studied. Several contributions on this subject have been made.
Among these are the pioneering paper of Baum and Petrie (1966) where
asymptotic normality of the maximum likelihood estimator is established
for the case when the state spaces for both the hidden and the observed
variables are finite. This result is generalised to a general state space for the
observed variable in Bickel et al. (1998). In Jensen and Petersen (1999) a
further generalisation to a non-discrete state space for the hidden variable
is given. Here the contributions of Hansen and Jensen (2008) to this line
of results is shortly described in Section 5.1. In Section 5.2 an example to
which these new results can be applied is presented.

5.1 New asymptotic results

In Hansen and Jensen (2008) we generalise the existing results on asymp-
totic normality of the maximum likelihood estimator in state state mod-
els in two ways. Firstly, we introduce the possibility of non-stationarity of
the hidden process through a covariate process {zi} influencing the hidden
Markov process. Stationarity has been an important assumption for most
of the previous results on asymptotics in state space models. Secondly, we
consider not only the maximum likelihood estimate, but instead a class of
estimates obtained using estimating equations as in Section 2.3.3 above.
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Chapter 5. Asymptotics for estimating equations . . .

Formally, we consider an observed process y1, . . . , yn controlled by an
unobserved Markov process {xi}. Conditionally on the x-process the yis are
independent. Both the observed yi and the unobserved xi may be influenced
by a covariate zi, making the process inhomogeneous. Therefore, we write
the transition probabilities as pθ(xi|xi−1; zi) and pθ(yi|xi; zi), where θ is the
unknown parameter for which we want to establish asymptotic normality.
For estimation of θ we consider an estimating function ψ(θ, x̄, y, z) where
x̄ is a triple of consecutive states. Letting ψi(θ) = ψ(θ, x̄i, yi, zi), where
x̄i = (xi−1, xi, xi+1), we think of

∑n
i=1 ψi(θ) = 0 as an estimating equation

in the same way as in Section 2.3.3.
Under a set of conditions on the transitions probabilities and the es-

timating function we establish asymptotic normality of the EEE estimate
of θ. Essentially, the proof is split into two halves where first mixing re-
sults of the chain are studied before convergence results for the ‘observed
information’:

Jn(θ) = − ∂

∂θ
Eθ[

n∑
i=1

ψi(θ)|(1, n)]

are established. Here Eθ(·|(1, n)) is the conditional mean given y1, . . . , yn.
With θ0 denoting the true value of the parameter, in its final form the
asymptotic result for the parameter estimate is stated as

Corollary 1. Assume that the conditions imposed on the transition prob-
abilities and the estimating function hold. Assume that the covariates {zi}
are such that the variance of Sn =

∑n
i=1Eθ0(ψi(θ0)|(1, n))/

√
n converges

to a positive definite limit V (θ0), and also 1
n
Jn(θ0) converges to a positive

definite limit I(θ0). Then there exists a sequence θ̂n solving the estimating
equation such that θ̂ → θ0 in probability and

√
n(θ̂ − θ0) has a limiting

normal distribution with mean zero and variance I(θ0)
−1V (θ0)I(θ0)

−1.

5.2 Example

In the example of Section 3 in Hansen and Jensen (2008) asymptotic normal-
ity of an estimate obtained using estimating equations is established. The
model considered corresponds to the cyclic model of Hansen et al. (2008)
used to analyse the progesterone data as described in Chapter 4 above.
There are however two differences. Firstly, in Hansen and Jensen (2008)
we assume that the parameter controlling the distribution of waiting times
between points with a change of stage is cow specific. This is not the case in
Hansen et al. (2008) where it is assumed that the distribution is the same
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5.2. Example

for all cows. However, this difference is not important for the asymptotic
result. The other difference in the two models is that we assume that the
hidden variables corresponding to at and bt in (4.4) belong to compact sets.
This is not the case in the model (4.3) for the progesterone data, but the
assumption is needed to secure asymptotic normality. Had we chosen a dis-
tribution with compact support instead of the normal distribution in (4.3)
the assumptions of Hansen and Jensen (2008) would have been met.
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Chapter 6

Conclusions

In this thesis, we have studied two datasets consisting of online records. The
first dataset consisting of daily milk yields from cows was analysed using
a parametric model with the aim of quantifying the effects of breed and
parity on lactation curves and evaluating the acceleration in milk yield as
an indicator of physiological stress. The second dataset consisting of proges-
terone measurements was analysed using a state space model with the aim
of evaluating progesterone as an indicator of oestrus. Finally, asymptotic
behavior of estimates obtained using estimating equations were studied.
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Abstract

This study had two aims. Firstly, we wanted to quantify the
effects of breed and parity on lactation curves. A parametric model
for describing milk yield for cows (Friggens et al. (1999)) was used.
The data contained 155051 daily records of milk yield from 318 cows
of three different breeds; Danish Red, Danish Holstein and Jersey.
There were 276, 230, and 98 lactation curves for parities 1, 2 and 3
respectively. For every cow lactation, the parameters of the model
were estimated using a least squares procedure for non-linear mod-
els. The resulting parameters were analysed in a mixed linear model.
Significant effects of parity were observed on the same two param-
eters as in Friggens et al. (1999). Breed was also found to have a
significant effect on some of the parameters. However, there was no
significant interaction between breed and parity. The second aim
of the study was to evaluate the properties of acceleration in milk
yield in the context of providing an indicator for physiological stress
and subsequent health problems. Milk yield acceleration was high-
est around calving and also reflected trends for higher stress/risk for
higher yielding cows.

Key words: Milk yield, Lactation, Parity, Breed, Cows.
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1 Introduction

Being able to predict the potential milk production of a cow through lacta-
tion period is an important pre-requisite for designing feed rations that will
allow this potential to be expressed and feed efficiency maximized. In this
context, lactation curve models that can predict potential milk yield us-
ing limited information are of relevance. Under commercial conditions the
available information is frequently limited to factors such as breed, parity
and composite estimates of previous yield. Both breed and parity effects
have been shown to exist on lactation curves (e.g. Wood (1980), Collins-
Lusweti (1991), Friggens et al. (1999) and Rekaya et al. (2001)) and can
now easily be included as fixed factors in test-day models and other linear
models that incorporate time trends (Van der Werf et al. (1998) and Mac-
ciotta et al. (2005)). However, in such models it is not usually possible to
relate the breed or parity effects to the underlying biological processes (see
Vetharaniam et al. (2003)). This makes it difficult to build these effects into
prediction models that allow the consequences of different potential yields
to be evaluated.

An alternative approach is to estimate breed and parity effects in biolog-
ically derived lactation curve models (e.g. Dijkstra et al. (1997), Friggens
et al. (1999) and Pollott (2000)). These are usually non-linear. In this
context, Friggens et al. (1999) provided estimates of parity effects on the
different phases of lactation. However, this study was based on data from
only one herd and did not estimate how parity effects were affected by
breed. The first aim of the present study was to quantify parity effects on
lactation curves in different breeds.

It has been suggested that the degree of physiological stress experienced
by cows in early lactation can be indexed by the acceleration in milk yield,
which is the daily rate of change in yield, during this period (Ingvartsen
et al. (2003)). Formally, denoting the daily milk yield at time t by µ(t) the
acceleration in milk yield at that same time point is the derivative µ′(t).
The characteristics that acceleration in milk yield must have if it is to be
an indicator of stress, and thus of susceptibility to metabolic diseases, can
be deduced from litterature pertaining to production factors affecting dis-
ease incidences in early lactation. The highest incidences of diseases occur
immediately after calving, substantially before peak yield (Ingvartsen et al.
(1999) and Ingvartsen et al. (2003)). Higher yielding cows have also been
found to be more likely to have health problems (Pryce et al. (1999) and
Hansen (2000)). Thus, for milk yield acceleration to provide a suitable in-
dicator of physiological stress it should reflect these findings; being highest
immediately post calving and, at a given time point in lactation, higher for
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higher producing animals. To our knowledge there is no published infor-
mation concerning the properties of milk yield acceleration curves in real
datasets. Thus the second aim of this study was to characterise the prop-
erties of milk yield acceleration curves.

2 Materials and methods

2.1 Data material

The data set used consisted of daily recordings of milk yield for 604 cow
lactations. The cows were of three breeds; Danish red (106 cows), Danish
Holstein (129 cows), and Jersey (83 cows). The total number of lactations
in first, second and third parities were 276, 230 and 98 respectively. Breed
and parity are the factors studied here to determine the effects on the
parameters and quantities derived from these parameters. The data were
collected between January 1996 and October 2001 at the Danish Cattle
Breeders Organisation research farm, Ammitsbøl Skovg̊ard, as a part of a
long-term ongoing genetic evaluation programme. The design and methods
for the production aspects of the experiment has been described in detail in
Nielsen et al. (2003). The experiment was focused on genetic evaluation and
therefore environmental conditions including feeding conditions were kept
as constant as possible. Cows received one standard total mixed ration, fed
ad libitum, throughout lactation containing either 12.88 MJ/kg dry matter
or 13.55 MJ/kg dry matter. In Figure 1 on the following page some typical
examples of the development in milk yield through a lactation period are
shown. Observations where days from calving was greater than 180 were
discarded to exclude the depressing effects of pregnancy on milk yields at the
end of lactation. Those lactation periods with no more than 140 daily milk
yield recordings (in those first 180 days) and those with no measurement
made before the fifth day after calving were also excluded. These exclusions
reduced the number of lactation periods from 604 to 409.

2.2 Lactation curve coefficients

Several models with different functional forms have been proposed in the
litterature to model yield data (Rook et al. (1993), Olori et al. (1999) and
Val-Arreola et al. (2004)). The Wood’s model (Wood (1967)) has been the
most widely used. The models used for describing yield can be divided
into two groups. Those that aim to describe the underlying biology, and
the empirical models that are solely based on the actual data available.
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Figure 1: Plots of milk yield (kg/d) records for four cows of second parity. The
curves are vertically displaced by 10 kg/d to avoid overlap. For each cow the
corresponding fit of the Emmans and Fisher model is shown.
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The empirical models include those of (Wood (1967), Grossman and Koops
(1988) and Grossman et al. (1999)), whereas the models of Emmans and
Fisher (Emmans and Fisher (1986)), Dijkstra (Dijkstra et al. (1997)), Pol-
lott (Pollott (2000) and Pollott (2004)) and (Grossman and Koops (2003))
are amenable to biological interpretation. In this paper, the model of Em-
mans and Fisher (hereafter referred to as the EF model), which is mathe-
matically equivalent to the model of Dijkstra (see Friggens et al. (1999)),
has been used. This model and parametrization was chosen for two rea-
sons. Firstly we chose the model, because it fitted data slightly better than
the Wood’s model (see Section 3.1) and allows for non-zero yield at time
t = 0. Secondly, we used the parametrization of the EF model to allow
direct comparison with the results of this study with that of Friggens et al.
(1999). Also in this model the different parameters determine the develop-
ment in yield in different regions of time through lactation which is a useful
property making interpretation of the parameters possible.

To evaluate the effects of breed and parity on milk yield curves, a two
step procedure was used. Firstly, for each cow lactation we estimated the
parameters of the EF model. Secondly, these parameter estimates were
analysed as observations divided into nine groups by breed and parity as
described in Section 2.3. As an alternative to this procedure a non-linear
mixed effect model could have been used to model data. However, large
models like that will often fit data poorly. A consequence of using the sim-
pler two step procedure compared to a non-linear mixed effect model is that
the variance of the parameters a, b, c and G0 will be overestimated. This
will make it harder to find significant effects on the parameters. Therefore
conclusions about significant effects will tend to be more robust in this case.

The EF model states that the milk yield of a cow t days after calving is
given by the expression

µ(t) = a · exp (− exp (G0 − bt)) · exp (−ct) . (1)

Here a, b, c and G0 are the four parameters specific for every cow lactation
that are of interest. In the following, a slightly different parametrization of
this model was used: Instead of a, b and c, the logarithms of these three
parameters were used, while G0 was left unchanged. So, let ã = log(a) and
similarly let b̃ and c̃ be the logarithms of b and c. Then (1) becomes

µ(t) = exp (ã) · exp
(
− exp

(
G0 − teb̃

))
· exp

(−tec̃
)

= exp
(
ã− tec̃ − exp

(
G0 − teb̃

))
. (2)

The reason for these log-transforms of the parameters is that the trans-
formed estimates are much closer to being normally distributed than the

5



original ones. This is of importance in the subsequent analysis of the pa-
rameter estimates. Parametrization (2) was used for all analyses in this
paper.

The milk yield acceleration, µ′, as a function of time is obtained by
differentiation of (2):

µ′(t) = exp
(
ã− tec̃ − exp

(
G0 − teb̃

))
·
(
eb̃ exp

(
G0 − teb̃

)
− ec̃

)
= µ(t) ·

(
eb̃ exp

(
G0 − teb̃

)
− ec̃

)
. (3)

The time point for peak yield is found by equating (3) to zero, which gives

tPY =
G0 + b̃− c̃

eb̃
. (4)

Similarly the time point for the maximum milk yield acceleration can be
found by differentiating (3) and equating to zero, which yields

tMA =
G0 − log(

2ec̃+eb̃+
√

eb̃(4ec̃+eb̃)

2eb̃
)

eb̃
. (5)

For each cow lactation the parameters ã, b̃, c̃ and G0 were estimated using
the ordinary least squares method. Having estimated the four parameters
for one cow lactation, the time points for peak yield, tPY , and maximum
acceleration, tMA, can be calculated as well as the peak yield, PY , and the
maximal acceleration, MA, in milk yield. The time points, tPY and tMA,
can be found by (4) and (5). The peak yield and maximum acceleration
can then be evaluated as PY = µ(tPY ) and MA = µ′(tMA) respectively.

2.3 Effects on the parameters

All statistical analysis were carried out using the statistical programming
language R (R Development Core Team (2004)) and the MIXED procedure
in SAS (SAS Institute Inc (2001)). We investigated the effects of breed and
parity on the parameters and functions of these (i.e. tPY , tMA, PY and
MA). For each parameter, these effects were modelled using a mixed linear
model. Parity and breed were included as fixed effects of the parameters
and cow was included as a random effect, so that with b indexing breed, p
parity and c cow within breed, the parameter ã was analysed as

ãbpc = αb + βp + γbp + ubc + ǫbpc (6)
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with ubc ∼ N(0, ω2) and ǫbpc ∼ N(0, σ2). The values of αb and βp deter-
mine the fixed effects of breed and parity respectively, with γbp being the
interaction between the two factors. The parameter ω2 is the covariance
of estimates of ã from different lactations on the same cow and σ2 is the
residual variance for each estimate. This means that ω2/(ω2 + σ2) is the
correlation between estimates from different lactations coming from one
cow. When estimating the parameters ã, b̃, c̃ and G0 using the nls-function
of R (R Development Core Team (2004)) one also gets standard errors of
these estimates. These standard errors allow the possibility of weighting
the observations in the model (6) so that estimates with a high standard
error are given a correspondingly low weight.

3 Results and Discussion

3.1 Curve fitting

For each cow lactation the parameters of the EF model were estimated.
Out of the 409 cow lactations, the nls-function did not converge for 37
of them. Missing data in the phase of acceleration and around peak yield
caused these convergence problems. Some sets of estimates were regarded
as outliers: Sets where one or more of the four parameter estimates deviated
from the mean by ±2.5 standard deviations were excluded. This removed 26
cow lactations from further study so that 346 sets of estimates remained. In
most of these outlier lactations the cows had severe diseases that caused milk
yield to deviate substantially from the normal, potential lactation curve
shape. In Table 1 on the next page the mean of the parameter estimates
are given, grouped according to breed and parity. The average R2 of these
curve fits was 0.648 (first quartile=0.54, median=0.67, third quartile=0.77)
and the average residual standard deviation of the curve fit was 1.856 kg/d
(1.31, 1.67, 2.24). To compare with Wood’s model which converged for
all these 346 cow lactations we found an average R2 of 0.613 (0.50, 0.63,
0.74) and an average residual standard deviation of 1.941 kg/d (1.39, 1.75,
2.33) indicating that the EF model fitted the data slightly better than the
Wood’s model.

3.2 Parity and breed effects

The effect of breed and parity on milk yield is illustrated in Figure 2 on
page 9. The plots show that both factors have an effect on the yield. The
differences between breeds and between parities are typical of the values
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Table 1: The mean of the estimates of each parameter are given together with
the standard deviation of the estimates (in the parenthesis). The means are
calculated groupwise for every breed and also for every parity. In the last row
means and standard deviations of all estimates are given.

Group Parameter

ã b̃ c̃ G0

Danish Red 3.34(0.24) −2.00(0.67) −6.20(0.61) −0.18(0.33)
Danish Holstein 3.48(0.25) −2.02(0.78) −6.37(0.59) −0.19(0.38)
Jersey 3.17(0.20) −1.69(0.73) −6.12(0.60) −0.22(0.40)

Parity 1 3.22(0.21) −1.88(0.71) −6.45(0.63) −0.19(0.35)
Parity 2 3.43(0.24) −1.90(0.71) −6.13(0.55) −0.20(0.39)
Parity 3 3.49(0.27) −2.04(0.89) −5.94(0.46) −0.20(0.37)

Overall 3.34(0.26) −1.91(0.74) −6.24(0.60) −0.20(0.37)

reported in the literature, see e.g. Nielsen et al. (2003). Figure 2 suggests
that the time points for peaks of the mean yield curves do not match the
mean of the corresponding time points for peak yields though. This is
caused by the empirical fact that the milk yield acceleration a short while
before peak yield is larger in numerical value than the negative acceleration
shortly after peak yield (see Figure 3 on page 10). Therefore the peaks of
the curves in Figure 2 on the facing page are shifted to the right of the mean
of time points for peak yield. Now we will apply the models described in
Section 2.3 to the 346 sets of estimates in order to find out in which way
breed and parity affects the parameters of the EF model. Twelve tests for
no interaction between breed and parity were carried out. Two for each of
the four parameters of the EF model (with and without using the weights
as described in Section 2.3), and one test for each of the four functions of
the parameters. The lowest of the twelve p-values of these tests was 0.0099.
This means, no clear interactions between breed and parity was found. Also,
the significant effects of parity and breed on each of the parameters were
the same independent of the use of weights. Because there is no similar way
to easily obtain standard errors for the functions MA, PY ,tMA and tPY of
the four parameters, the following results are from the analysis using model
(6) without the weights. So for ã we use (6) with γbp eliminated:

ãbpc = αb + βp + ubc + ǫbpc (7)
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Figure 2: Plots of mean daily milk yield. In the upper plot the mean daily
milk yield is plotted for cows of breed Danish Red for each parity. In the lower
plot the mean daily milk yield is plotted for cows of first parity for Danish Red,
Danish Holstein and Jersey. Along each group of points the curve obtained by
taking mean of the corresponding curve fits is drawn.

where, as before, b denotes breed, p parity and c cow within breed. Similarly
the same model (7) is used for the other parameters and for the functions
of these.

The significance of the effects of breed and parity on the lactation curve
parameters are given in Table 2 on page 11. From the table it can also
be seen that the variance component due to cow, ω, is only significantly
different from zero in four of eight cases. This means, that for these four

9



−20 0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Days from calving

M
ilk

 Y
ie

ld
 A

cc
el

er
at

io
n 

(k
g/

d/
d)

1.Parity
2.Parity
3.Parity

Figure 3: The milk yield acceleration function, µ′(t), plotted for all three par-
ities. For each parity the corresponding means of the four parameters are used
to obtain a curve.

parameters; ã, maximum acceleration (MA), peak yield (PY) and time to
peak (tPY ), a significant proportion of the individual cow deviation from
the breed-parity mean was repeatable across parities.

In all cases, the effects of breed and parity were evaluated in the model
including the cow variance component. It was found that parity had a
highly significant effect on the two parameters ã and c̃ of the EF model but
no significant effect on b̃ and G̃0. This agrees with the previous findings
of Friggens et al. (1999). From Table 2 on the facing page it can also be
seen that breed had a highly significant effect on ã and b̃. There was also a
minor effect on c̃ and no significant effect of breed on G0. All the p-values
given in Table 2 on the next page are the results of testing three parameters
(breed DR, DH and Jersey or parity 1,2,3) to be equal. There is no exact
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Table 2: The significance of effects of breed and parity on the lactation curve
coefficients and on milk yield acceleration. In the last column the p-value for the
likelihood ratio test of the hypothesis that the between lactation variance within
cow, ω2, is zero, is given.

Parametera Breed Parity P(ω2 = 0)

ã <0.0001 <0.0001 <0.0001

b̃ 0.0007 0.19 0.51
c̃ 0.021 <0.0001 0.050
G0 0.77 0.99 0.27
MA(kg/d2) 0.096 0.062 0.016
PY (kg/d) <0.0001 <0.0001 <0.0001
tMA(d) 0.67 0.009 0.54
tPY (d) <0.0001 0.63 0.022

a ã, b̃, c̃ and G0 are the curve coefficients of model (2).
MA, PY, tMA and tPY are the maximum acceleration, the peak
yield and the time points to these events based on the lactation
curve coefficients.

correspondance between a factor being significant in such a test and all
three parameters being pairwise different. Therefore we also considered the
tests for the contrasts of parameters in the model (7). The results of testing
contrasts equal to zero revealed first of all, and not surprisingly, that second
and third parity cows were much more similar to each other than to cows of
first parity. It was found that the contrast between these parities 2 and 3
was barely significant for the parameter c̃ (p = 0.0359) even though parity
had a highly significant overall effect on this parameter.

Considering contrasts in a similar fashion for the breed effects, the con-
clusions in most cases, where significant breed effects were observed (Ta-
ble 2), were that the parameter of Danish Red was in between the param-
eters of the other two breeds, being slightly more similar to that of Danish
Holstein than that of Jersey. This was particularly seen for the parame-
ter b̃. Here, no significant differences was seen between Danish Red and
Danish Holstein (p = 0.80) while the other two contrasts were significantly
different from zero. In one case a different pattern was observed. This
was for the parameter c̃ which in Table 2 is seen to be slightly affected by
breed. Here we found that Danish Red was more similar to Jersey than
to Danish Holstien. The three tests for the contrasts being zero yielded
(p = 0.65, DR and Jersey), (p = 0.011, DH and Jersey) and (p = 0.032, DR
and DH). It is interesting to speculate on these breed differences, the Jersey
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and the Danish Holstein are both specialized dairy breeds whilst the Danish
Red is a dual purpose breed. The Danish Holstein and Danish Red are of
similar mature body size, considerably larger than the Jersey. Given that
size-scaling for lactational output has been reported across species (Linzell
(1972) and Taylor and Murray (1987)) it would be tempting to suggest
that the size differences between these breeds explain the breed differences
in lactation curve coefficients. However, given the differences in selection
history of these breeds for different purposes it is difficult to draw clear
conclusions.

In summary, the effect of parity on the lactation curve coefficients were
the the same as those previously reported by Friggens et al. (1999). Further,
as there were no significant interactions between breed and parity, for all
breeds one common adjustment for parity effects will suffice when predicting
parity adjusted milk yields within breed. There were however, significant
breed effects on 3 of the 4 curve coefficients. The breed specific estimates
found in this study provide a means to allow comparison of potential milk
yield curves across breeds.

3.3 Milk yield acceleration

For the four biologically interpretable functions of the parameter estimates;
maximum yield acceleration (MA), peak yield (PY), and the corresponding
time points, tMA and tPY , estimates and confidence intervals for the fixed
effects parameters are given in Table 3 on the facing page.

Breed was found to have significant effects on both the peak yield and
the time point, tPY , for peak yield but not on the maximum acceleration
and the corresponding time point (Table 2 on the previous page). Finally,
Table 2 on the preceding page shows that parity significantly affects peak
yield and also has slight effects on maximum acceleration and tMA.

When pairwise contrasts between breeds and parities were tested for, the
same general picture emerged as was found for the curve coefficients: The
significant breed effects were between (DR+DH) and Jersey and the main
parity differences were between 1 and (2+3). There was one exception to
this picture which was seen for the maximum acceleration. Here we found
DR and DH to be significantly different (p = 0.034) but Jersey not to be
different from either DR (p = 0.15) or DH (p = 0.56).

In Figure 3 on page 10, the acceleration curve is plotted for each parity.
Each curve is derived from the averages of the four parameters ã, b̃, c̃ and
G0 within each parity using (3). It should be noted that the levels of the
peaks of the curves in the Figure do not match the estimates in Table 3
on the facing page. It is seen from the expressions (3) and (5) that the

12



Table 3: Estimates and 95% confidence intervals for fixed effects parameters for
the functions MA,PY ,tMA and tPY . For every function significant effects are
included in the model. Though parity was not a significant effect on maximum
acceleration (p = 0.062) it is included here. Because no interactions between
breed and parity was observed estimates and confidence intervals of the mean of
the peak yield are not given for all nine combinations of the two factors.

Function Parameter mean lower estimate upper

MA(kg/d2) β1
a 1.47 1.72 1.97

β2 1.77 2.04 2.30
β3 1.80 2.20 2.61

PY (kg/d) αDR + β1
b 21.73 22.70 23.68

αDR + β2 27.26 28.24 29.21
αDR + β3 28.53 29.78 31.04
αDH + β1 26.08 26.99 27.91
αJer + β1 17.68 18.74 19.80

tMA(d) β1
c −3.69 −2.76 −1.82

β2 −4.27 −3.29 −2.31
β3 −6.85 −5.32 −3.78

tPY (d) αDR
d 27.78 30.36 32.94

αDH 30.77 33.18 35.59
αJer 21.44 24.17 26.90

a For i = 1, 2 and 3, βi is the mean of the maximum acceleration (MA) for cows
of parity i.

b For i = 1, 2 and 3, j = DR,DH and Jer, αj + βi is the mean peak yield (PY )
of cows from breed j and parity i.

c For i = 1, 2 and 3, βi is mean of the time to maximum acceleration (tMA) for
cows of parity i.

d For j = DR,DH and Jer, αj is the mean of the time to peak yield (tPY ) for
breed j.
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maximum acceleration is not a linear function of the parameters of the EF
model. As the parameters show a great deal of variation we can not expect
that the curves in the Figure peak at the average peak levels. If, instead,
the medians of the estimates of the maximum acceleration for each parity
(1.41, 1.54 and 1.57) are considered it is seen that the Figure 3 on page 10
levels match these numbers very well.

From Figure 3 on page 10, it can be seen that in the post calving period
the acceleration in milk yield is highest immediately post calving. This
means that the first demand for acceleration to be a possible indicator of
physiological stress and subsequent disease is fulfilled. The second criterion
for acceleration to be an indicator is that it is higher in higher yielding cows
at any given time-point in lactation (Ingvartsen et al. (2003)). If time to
peak yield was strongly related to peak yield then this criterion would not
be met. In Table 4 the correlation between the peak yield and the time to
peak yield is given for each combination of breed and parity. There is no
strong evidence for a relationship between peak yield and time to peak yield.
Only one of these nine correlations is seen to be significantly different from
zero. Thus, cows that reach peak yield early must have a correspondingly
high acceleration in early lactation as all cows have only a small yield at
calving. The Table also suggests that cows reaching their peak yield later
than average must have a positive acceleration for a longer time. These
findings fits with the hypothesis that at any time point in lactation higher
yielding cows have a higher acceleration.

Table 4: For each combination of breed and parity the observed correlation
between the the peak yield and the time for peak yield is given. The p-value of
Pearson’s test for no correlation is given in the parenthesis.

Parity Breed

DR DH Jersey

1 0.101(0.494) 0.015(0.906) 0.467(0.002)
2 0.024(0.868) 0.021(0.885) 0.354(0.025)
3 0.260(0.369) −0.082(0.738) −0.039(0.859)

In Table 5 on the facing page, the correlation between the maximum
milk yield acceleration and the peak yield is given for each combination of
breed and parity. None of these correlations are significantly different from
zero, so no clear dependence is seen between the maximum acceleration and
the peak yield. This means that there is no clear difference in maximum
acceleration between cows reaching a high level of yield at peak and cows
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reaching a lower level of yield. Now one possibility is that all cows reach
maximum acceleration at the same time i.e., they have identical lactation
curves in early lactation. That would mean that cows reaching a high peak
level are in the phase of high acceleration for a longer time than other
cows. The other possibility is that the maximum acceleration is reached
at different time points for different cows due to differences in the shape of
the growth phase of the lactation curve in which case there need not be a
relation between maximum acceleration and peak yield. If the first of these
was the case we would have seen a clearer dependence between peak yield
and time to peak yield in Table 4 on the preceding page. Since this was not
the case we believe the second possibility is more likely to be true. This
second case fits the assumption that at any time point in lactation higher
yielding cows have a higher acceleration in yield. Thus, this first analysis
of the properties of milk yield acceleration using real data indicated that
acceleration has the appropriate properties to be considered as a possible
indicator of physiological stress and subsequent health problems.

Table 5: For each combination of breed and parity the observed correlation
between the maximum milk yield acceleration and the peak yield is given. The
p-value of Pearson’s test for no correlation is given in the parenthesis.

Parity Breed

DR DH Jersey

1 −0.128(0.384) 0.031(0.812) −0.197(0.216)
2 0.035(0.810) 0.124(0.403) −0.155(0.340)
3 −0.026(0.930) 0.098(0.691) 0.313(0.146)

3.4 Further considerations

The present study has confirmed the findings of Friggens et al. (1999) that
parity affects only two out of the few lactation curve coefficients, having
no effect on the coefficients controlling the rate of ”growth” of milk yield.
Further, it was found that these effects were independent of breed although
there were significant effects of breed on lactation curve coefficients. The
magnitude of the breed differences reported here should be treated with
caution as these estimates are based on relatively few animals per breed
(approx. 80). However, because the three breeds were compared on the
same farm under identical management conditions, the relative differences
between breeds are well estimated. It should also be remembered that
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the effects on lactation curve parameters, and indeed the lactation curve
function used, relate to lactation curves that do not deviate significantly in
shape from potential lactation curves.

With respect to the properties of milk yield acceleration, this study
presented the first evaluation of the properties of acceleration curves. These
properties were assessed in terms of whether or not they fit the criteria for
providing a possible indicator of physiological stress and subsequent risk
of health and reproductive problems. Milk yield acceleration was greatest
around calving and no relationship was found between peak yield and time
to peak yield. These findings are prerequisites for any further evaluation of
milk yield acceleration as a risk indicator. Thus, the results presented in this
study suggest that milk yield acceleration warrants further study. However,
they do not, on their own, establish that acceleration is a useful indicator.
Evidence to show this requires careful relation of milk yield acceleration to
disease incidences in very substantial datasets, a task beyond the scope of
this paper.

4 Conclusions

The first aim of this study was to quantify breed and parity effects on lac-
tation curves. Here, the effects of parity on the coefficients of the lactation
curve were found to be independent of the breed of cow in question. Fur-
ther, the effects of parity matched the findings of Friggens et al. (1999) and
the lactation curves were seen to be also affected by breed. The second
aim was to evaluate the properties of acceleration in milk yield. This part
revealed that acceleration in milk yield has the appropriate properties for
consideration as an indicator of risk of health and reproduction problems.
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Abstract

Progesterone is a hormone linked to the reproductive status of
dairy cows. Hence, with the increasing availability of on-line records
of the concentration of progesterone in cow milk, there is a need
for new tools to analyse such data. The aim is to find techniques
for better determination of the time when cows are in oestrus to
increase the rate of succesful inseminations. In this paper we propose
a state space model for data with a continuous and cyclic trend in
the mean. Furthermore a matching Kalman filter is developed. The
model is tested on progesterone data from 112 cow-lactations with
the purpose of evaluating the use of progesterone for detection of
oestrus.

Keywords: cyclic model, dairy cow, Kalman filter, oestrus detection.

1 Introduction

Data from many biological processes exhibit a clear cyclic nature. A classi-
cal example is the yearly number of lynx in Canada (Elton and Nicholson,
1942) where the cyclic nature is caused by a predator-prey relationship. The
example of main interest to us in this paper is one where the oestrus cycle
in cows generates a cyclic behavior of the concentration of progesterone in
cow milk. A short presentation of the biology behind this process is given
in Section 2. In models for such data it is often natural to introduce hidden

1Jørgen V. Hansen, Department of Genetics and Biotechnology, Research Centre
Foulum, Blichers Allé, Postbox 50, DK-8830 Tjele.
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variables which have certain biological or physical interpretations. We study
a state space model which generates a cyclic behavior with continuous and
piecewise linear mean of the univariate observations. The continuity and
cyclic nature implies that a period of increase in the mean must at some
point be followed by a decrease in the mean. It can be useful to think of
a model with four stages, where the four stages correspond to an increase
in the mean, a high level of the mean, a decrease in the mean and finally a
low level of the mean. However, this does not exhaust the variety of possi-
ble cyclic models. In this way the time axis will be divided into segments
where all observations within a segment belong to the same stage. The hid-
den variables will include one variable holding the current stage and two
variables holding the time points for the beginning and end of the current
stage. The inference concerning time points at which paramters change is
known as changepoint detection, a subject on which Page (1954) wrote
one of the first papers. The state space model we consider can be seen as
a modification of the model of Fearnhead and Liu (2007) and Fearnhead
and Vasileiou (2008). The precise mathematical formulation of the model
is given in Section 3. In Section 4 we present an approximate filter for the
hidden variables of the state space model, leaving the detailed derivation
of this filter to Appendix B. In Section 5 we discuss how to estimate the
parameters of the model. In Section 6 we show how a model of the class
presented in Section 3 can be used to describe the level of progesterone in
cows. Also in Section 6 we describe an algorithm for finding the optimal
time point for insemination and we study how well the algorithm works
in practice. Finally, in Section 7 we discuss the results of this analysis in
the perspective of creating better tools to assess the optimal time point for
artificial insemination.

2 Biological background

The main motivation for this work is to detect oestrus in cows by modelling
the progesterone concentration in cow milk. Oestrus is usually defined to be
the period of low progesterone in the cyclic pattern of the hormone (Peters
and Ball, 1995). When we apply the cyclic model to the progesterone data
we therefore are specifically interested in determining when a cow is in the
stage corresponding to low progesterone measurements. Only during oestrus
can the cow be succesfully inseminated and then produce a calf. Cows in
oestrus usually exhibit physiological signs of sexually receptive behavior.
However, the traditional, visual, detection of oestrus signs (i.e. not using
progesterone) is becoming more difficult as genetic selection of cows for high
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milk yields has reduced the intensity of the oestrus (Dobson et al., 2008).
Also, in modern dairy cow herds there is a growing need for automated
management of the cows due to the large herd sizes. Therefore, detection
of the time the cow is in oestrus is one such problem where a farmer could
benefit from improved techniques.

The reproductive cycle of dairy cows is approximately 21 days (ranging
from 18 to 26 days), and for maximal chance of success insemination should
take place 12-24 hours before ovulation (Roelofs et al., 2006). Though sev-
eral indicators exist for determining when cows are in oestrus (Fulkerson
et al., 1983; Xu et al., 1998; Cavalieri et al., 2003) there is still a need for
better prediction of the time when cows are most susceptable for insemina-
tion. Progesterone, which can now be measured automatically in the milk,
is the accepted gold standard for assessing the reproductive status (Peters
and Ball, 1995; Cavalieri et al., 2001; Roelofs et al., 2006).

The oestrus cycle in a cow is initiated by the creation of a follicle in
the ovary. The follicle grows in size until ovulation where the follicle rup-
tures and releases the egg which is tranported down the oviduct toward
the uterus. After the ovulation the remains of the follicle, called the corpus
luteum, stay in the ovary. The cells of the corpus luteum begin to secrete
progesterone approximately 4 days after ovulation. Progesterone is required
for the maintance of pregnancy (Peters and Ball, 1995). The presence of a
fertilized egg (embryo) blocks regression of the corpus luteum which then
continue to secrete progesterone throughout pregnancy. If the egg is not
fertilized the corpus luteum will regress and stop producing progesterone
approximately 17 days after ovulation. The following drop in progesterone
then causes a new follicle to grow and the cycle repeats itself.

Progesterone can be measured in the milk throughout lactation which
is the period in time where a cow produces milk following a calving. In
this paper we define the term cow-lactation to be the statistical term of
the cross factor of cow and parity, where parity is the number of calves a
cow has given birth to. That is, a cow of first parity has just had its first
calf and so on. The concentration of progesterone in the milk is measured
in ng/ml and varies in the range from 0 to 30 ng/ml. An example showing
the development of the concentration of progesterone in milk from a cow
is seen in Figure 1. In this example the cyclic behavior of the hormone is
observed through several cycles.
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Figure 1: Progesterone measurements through a cow-lactation showing a cyclic
behavior through several cycles. The model apply to data only when the cow
is in its oestrus cycle. Therefore observations in the beginning and the end of
lactation are excluded in the analysis. This is indicated by the vertical lines.

3 Cyclic model

In the following, the model we consider in this paper is defined. We use
a state space model incorporating the idea of several different stages each
describing a linear development in the mean of the observations, such that
the mean as a function of time is continuous. The number of different stages
is denoted by m. The m stages follow each other in the same order, so that
one round of them stages constitute a cycle of the process. More specifically,
a time segment of stage q = 1 will be followed by a segment of stage q = 2,
and so forth, until a segment of stage q = m is again followed by stage q = 1.
An illustration of a possible development in the mean of the observation is
shown in Figure 2. In this illustration the number of stages is m = 4, which
is the value we use for modeling the progesterone data in Section 6.

3.1 Hidden variables

The model has five hidden variables. The hidden process is considered in
discrete time, t ∈ Z. In applications these discrete times will constitute a
scaling of real time. To each time point t these hidden variables contain in-
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Figure 2: Example of possible development in the mean of the observations.

formation about the position of the change points separating the stages, and
infomation on the mean level of the observations. The five hidden variables
are:

Rt : the point in time prior to t with the most recent change of stage,
(Rt < t).

St : the stage entered at time Rt with value in {1, 2, . . . , m}.
Nt : the point in time for the next change of stage after Rt, (Nt ≥ t).

at : the mean of an observation at time Rt.

bt : the mean of an observation at time Nt.

3.2 Stochastics of the state (Rt, St, Nt, at, bt)

The starting point of describing the stochastics governing the state variables
is to find the positions of the changepoints. Given that there is a change to
stage q at t, the distribution of the waiting time for the next change depends
on q only. This distribution is denoted Wq, where q is the new stage. The
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only restriction we put on Wq is that it has finite support. Formally, we
write

(Nt+1 −Nt|Nt = t, St+1 = q) ∼ Wq. (1)

Throughout the paper we use the notation Wq(r) = P (w = r) if w ∼
Wq. Thus (1) describes the dynamics of the three discrete hidden variables
(Rt, St, Nt). In terms of one step transition probabilities we have that

P (Rt+1 = j′, St+1 = q′, Nt+1 = l′|Rt = j, St = q,Nt = l)

=


Wq′(l′ − t) if l = t and j′ = t, q′ = q + 1(mod m),

1 if l > t and j′ = j < t, q′ = q, l′ = l,

0 otherwise.

(2)

The triple (Rt− t, St, Nt− t) as defined above constitutes by itself a Markov
chain. In Appendix A it is shown that the stationary distribution for (Rt −
t, St, Nt − t) is

π(j, q, l) =
Wq(l − j +M)∑

r ν(r)
,

where

M = max{r | ∃q : Wq(r) > 0} (3)

is the maximal possible waiting time between two consecutive changepoints
and ν(q) =

∑∞
i=1 iWq(i) is the mean of the waiting time distribution Wq.

The stationary distribution can be used as a prior when no information
about the state variables is at hand at the time of the first recording.

Next, the stochastic behavior of the continuous hidden variables at and
bt is described. These two variables hold information about the mean of
the observations within a stage. For each changepoint t, let x(t) denote the
hidden mean of a possible observation yt. If the stage of a time interval
beginning at time t is q, then we assume

(x(t)|Nt = t, St+1 = q) ∼ N(µq, ω
2
q ), (4)

where µq and ω2
q are parameters. The hidden variables at and bt are then

defined to be

at = x(Rt) and bt = x(Nt). (5)

That is, at is the mean at the beginning and bt the mean at the end of the
stage entered at time Rt. This means that if there is no change point at
time t then (at+1, bt+1) = (at, bt). On the other hand if there is a change of
stage at time t, then at+1 = bt and bt+1 = x(Nt+1).
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3.3 Stochastics of observations

The mean at any time point s ∈ R we define by linear interpolation using
the mean at the end points of the stage. That is,

x(s) = at +
bt − at

Nt −Rt

(s− Rt), s ∈ R, t = ⌈s⌉,

where ⌈s⌉ is the smallest integer greater than or equal to s. In this way
the underlying mean x(s) of the observation given the hidden variables is
continuous and piecewise linear.

Data {(yi, si)|i = 1, . . . , n} consist of a set of observations yi recoded
at time points si, where n is the number of observations. To define the
distribution of data, assume that we have an observation yi at time si ∈ R.
Note that we do not restrict the observations to occur at time points that
are multiples of the time unit. If the stage at time si is q, that is, S⌈si⌉ = q,
we assume (

yi|(R, S,N, a, b)⌈si⌉
)

∼ N(x(si), σ
2
q ),

where σ2
q , q = 1, 2, . . . , m are parameters.

To summarize the parameters of the model are

µq : the mean of the hidden stochastic mean at a time point where the
stage changes to q,

ω2
q : the variance of the hidden stochastic mean at a time point where the

stage changes to q,

σ2
q : residual variance of observations within stage q,

for q = 1, 2, . . . , m. Please note that the waiting time distributions Wq, q =
1, 2, . . . , m may depend on an unknown parameter θ.

4 An approximate filter

An approximate filter for the state space model presented in Section 3 is
described below. By using the notation ys = {yi | si ≤ s} and ys

r = {yi |
r < si ≤ s} our goal is to determine the filter densities which we write as

p(Rt = j, St = q,Nt = l, at, bt|yt) = pt(j, q, l, at, bt) for all t ∈ N. (6)

We use the approximation

pt(j, q, l, at, bt) = pt(j, q, l)φ(at, bt; µt(j, q, l),Σt(j, q, l)), (7)
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where pt(·, ·, ·) on the right hand side of (7) is the marginal density of
(Rt, St, Nt) and φ(·, ·; µ,Σ) is the normal density with mean µ and vari-
ance Σ. Therefore the filter densities (6) are specified by pt(j, q, l), µt(j, q, l)
and Σt(j, q, l). Here we only state the recursions for updating the filter. A
detailed derivation of the filter is given in Appendix B.

Let
∑

(t) (and
∏

(t)) denote the sum (and the product) over the set of

observations {yi} in the time interval from t to t + 1. When j = Rt+1 < t
the filter recursions are given as follows:

pt+1(j, q, l)

= ct+1(y
t+1)pt(j, q, l)

φ(0; µt(j, q, l),Σt(j, q, l))

φ(0; µt+1(j, q, l),Σt+1(j, q, l))

∏
(t)

φ(yi; 0, σ2
q ), (8)

with

Σt+1(j, q, l)
−1

= Σt(j, q, l)
−1 +

1

σ2
q (l − j)2

∑
(t)

(
(l − si)

2 (si − j)(l − si)
(si − j)(l − si) (si − j)2

)
(9)

and

Σt+1(j, q, l)
−1µt+1(j, q, l)

= Σt(j, q, l)
−1µt(j, q, l) +

1

σ2
q

∑
(t)

(
yi(l − si)/(l − j)
yi(si − j)/(l − j)

)
. (10)

The constant of proportionality ct+1(y
t+1) is found from (8) and (11) below

together with the condition
∑

j,q,l pt+1(j, q, l) = 1.
When Rt+1 = t the recursions are

pt+1(t, q, l) = ct+1(y
t+1)Wq(l − t)

∏
(t)

φ(yi; 0, σ2
q )

∑
j′<t

pt(j
′, q′, t)

× φ(0; µt(j
′, q′, t)2,Σt(j

′, q′, t)22)φ(0; µq̃, ω
2
q̃)

φ(0; µ̄t(j′, q′, t, l), Σ̄t(j′, q′, t, l))
, (11)

µt+1(t, q, l) =
∑
j′<t

αt(j
′, q′, t, l)µ̄t(j

′, q′, t, l), (12)

and

Σt+1(t, q, l) =
∑
j′<t

αt(j
′, q′, t, l)[Σ̄t(j

′, q′, t, l) + µ̄t(j
′, q′, t, l)µ̄t(j

′, q′, t, l)T ]

− µt+1(t, q, l)µt+1(t, q, l)
T (13)
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where q̃ = q+1(mod m) and where µ̄t(j
′, q′, t, l), Σ̄t(j

′, q′, t, l) and αt(j
′, q′, t, l)

are given in Appendix B.

5 Parameter estimation

Maximum likelihood can be used to estimate the residual variances σ2
q , q =

1, . . . , m. This estimation procedure is described in Section 5.1. The waiting
time distributions can be estimated using an EEE-algorithm as described
in Section 5.2. We do not suggest any general procedures for estimation of
the parameters µq and ω2

q , q = 1, . . . , m, but in Section 6 we describe how
to find crude estimates of these parameters to use for the modelling of the
progesterone data.

5.1 Estimation of the residual variance

The residual variance parameters σ2
q , q = 1, . . . , m are estimated using

maximum likelihood. The constant of proportionality ct+1(y
t+1) in (8) and

(11) can, from the derivation of the filter in Appendix B, be seen to be

ct+1(y
t+1) =

p(yt)

p(yt+1)
=

1

p(yt+1
t |yt)

.

Therefore, using the approximate filter, we can calculate an approximation
to the likelihood function

L(σ2
1 , . . . , σ

2
m) = p(yn) =

∏
t

p(yt+1
t |yt),

which can be maximized using numerical techniques to find estimates σ̂2
q of

the residual variances.

5.2 Estimation of the distribution of waiting times

Given M as defined in (3) and a model for the waiting time distributions
Wq, q = 1, . . . , m, we can estimate the parameter θ of this model using an
EEE algorithm which is proposed and discussed in e.g. Heyde and Morton
(1996), Rosen et al. (2000) and Elashoff and Ryan (2004). Fundamentally,
an EEE algorithm works similar to an EM algorithm (Dempster et al.,
1977). The difference is that the M-step of maximizing the likelihood is
replaced by a step where an estimating equation is solved. In the special case
where the estimating equation is the likelihood equation the EEE algorithm
is an EM algorithm. For a parameter θ of the waiting time distribution we
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use an estimating function of the form
∑n

1 ψi, where ψi = ψ(zi, zi−1; θ) for
a function ψ, and where zi = (Ri, Si, Ni). The E (expectation) step is to
calculate

E

( n∑
1

ψi|yn

)
,

where n is the number of observations. In Appendix C it is shown that
E

(∑k
1 ψi|yk

)
can be calculated iteratively in k using the filter probablities

of Section 4. As an example consider the case where the waiting time prob-
abilities are modelled with no other restriction than

∑M
l=1Wq(l) = 1 for

all q. We can then use the estimating functions

ψ(zt, zt−1; q, l)

= 1(Rt = t− 1, St = q,Nt = t− 1 + l) −Wq(l)1(Rt = t− 1, St = q),

where 1(·) is the indicator function. In the EE (estimating equation) step
the new value of Wq(l) becomes

Wq(l) =
E (

∑n
1 1(Rt = t− 1, St = q,Nt = t− 1 + l)|yn

1 )

E (
∑n

1 1(Rt = t− 1, St = q)|yn
1 )

,

where the nominator and denominator have been found in the E step.

6 Application

6.1 Progesterone data

The objective of this part of the study is to test the ability of the model to
predict the time of oestrus in cows from on-line progesterone concentration
measurements. We consider a data set where progesterone measurements
were made on milk samples taken from all milking cows in one research
herd (Danish Cattle Research Centre) during the period 12 Sept. 2002 to 30
Sept. 2006. In the this dataset 123 cow-lactations included an oestrus that
was identified as a confirmed oestrus, i.e. an oestrus at which insemination
resulted in a confirmed pregnancy. A detailed description of the collection
of data can be found in Friggens et al. (2008).

Parts of the dataset were collected before the cows had entered their
oestrus cycle or after the cows had succesfully been inseminated as seen in
Figure 1. Because only data collected when the cows are in their oestrus
cycle are of interest, we excluded parts of the data at the beginning and
at the end of each cow-lactation. For a small number of cows no data was
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left by this reduction of data. This was primarily the case when the cow
was succesfully inseminated at the first oestrus which is not preceeded by
a high progesterone stage. This reduction left us with 112 cow-lactations.

6.2 Model for progesterone data

The concentration of progesterone in milk has a cyclic nature with an aver-
age cycle length of about 21 days (ranging from 18 to 26 days). There is from
cycle to cycle a small variation in the cycle length within cows. Roughly the
cyclic nature of the progesterone content can be described in the following
way. In each cycle we see four different stages for the concentration of pro-
gesterone. Each with a different time length. The four stages we enumerate
as follows: 1. Low level of progesterone, 2. Slow increase in progesterone, 3.
High level of progesterone, 4. Rapid decrease in progesterone.

It seems reasonable to assume that the mean level at the beginning and
at the end of a low stage or a high stage is roughly the same. According
to the model specification in (4) we can formulate this as the restriction
µ1 = µ2 and µ3 = µ4. Also we let ω2

1 = ω2
2 and ω2

3 = ω2
4. The parameters µq

and ω2
q , q = 1, 2, 3, 4 will be the same for all cows and we estimate them as

described in Section 6.3.1.
We model the waiting time distributions Wq, q = 1, 2, 3, 4 as discretized

gamma distributions truncated at M . The gamma distributions are param-
eterized with parameters αq and βq, such that the means and variances
are αq/βq and αq/β

2
q , respectively. The waiting time distributions are also

asumed to be the same for all cows. To estimate the αq’s and βq’s we use
the estimating functions

ψ1(zt, zt−1) = 1(Rt = t− 1, St = q) log βq − 1(Rt = t− 1, St = q)
Γ′(αq)

Γ(αq)

+
∑

l

log(l) · 1(Rt = t− 1, St = q,Nt = t− 1 + l) (14)

and

ψ2(zt, zt−1) = 1(Rt = t− 1, St = q)
αq

βq

−
∑

l

l · 1(Rt = t− 1, St = q,Nt = t− 1 + l) (15)

chosen so as to resemble the likelihood equations for a sample from a gamma
distribution.

Finally we take the residual variances to be the same for all four stages,
but specific for each cow. The cow specific variances are estimated as de-
scribed in Section 5.1.
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6.3 Result of analysis

6.3.1 Estimation of parameters

We estimate the parameters µq and σ2
q , q = 1, . . . , 4 in the following way.

For each cow-lactation we find the 85 percent quantile of all observations in
that cow-lactation and regard this as an outcome of a N(µ3, ω

2
3)-distributed

variable. Similarly, we regard the 15 percent quantile as an outcome of
a N(µ1, ω

2
1)-distributed variable. In Figure 3, the 15 percent and the 85

percent quantile of all progesterone measurements for the cow-lactation of
Figure 1 is indicated by horizontal lines. Calculating the mean and variance
of these quantiles from all cow-lactations we obtain estimates for the µq’s
and the ω2

q ’s. These estimates will then be used as inputs when we make
inference using the filter. The estimates are given in the second and third
column of Table 1.
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Figure 3: In this plot the 15 percent and the 85 percent quantile of all mea-
surements are indicated by the horizontal lines. These two quantiles are used to
create crude estimates of the parameters µq and ω2

q , q = 1, 2, 3, 4.

The procedure for estimating the residual variances are carried out for
fixed values of the parameters αq and βq of the waiting time distributions
and vice versa. Therefore an iterative procedure is used for the simultaneous
estimation where each of the two sets of parameters (αq, βq, q = 1, 2, 3, 4)

12



Table 1: Estimates of those parameters of the cyclic model that are the same
for all cow-lactations.

q µq ωq E(Wq)
√
V (Wq)

(ng/ml) (ng/ml) (days) (days)

1
3.122 1.170

5.12 2.27

2 8.25 1.81

3
20.929 2.074

6.82 2.80

4 2.74 0.98

and (σ2 specific for every cow-lactation) are updated one at a time. To
speed up the computations we take the unit of time to be one day during
the estimation of the parameters. Furthermore, the maximal length of the
waiting time is set to M = 12 days. The estimates for the four gamma
distributions defining the waiting times are given in Table 1 summarized as
means (α/β) and standard deviations (

√
α/β2).

The result of estimating the residual variances is summarized in a his-
togram of the standard deviations shown in Figure 4.

6.3.2 Prediction of oestrus

For each cow-lactation in our data the day (but not the exact hour) at which
an artificial insemination resulted in a confirmed pregnancy is known. The
filter was run with a 6-hour interval between the updates. In Figure 5 the
development of the filter probability of being in the low stage, P(S=1), is
shown for nine cow-lactations. In each plot a vertical line is drawn at noon
on the day of succesful artificial insemination.

Knowing the day for the confirmed succesful inseminations we have the
possibility of evaluating how well our model can predict the time point
when a cow enters oestrus. A possible way of constructing an alarm telling
the farmer that a cow is about to go into oestrus is to say that when the
probability of being in the low stage increases to a certain level the alarm
should go off. For most of the cow-lactations the alarm goes off more than
once because we observe more than one cycle for most cows. In this case we
take the time of alarm tpredict to be the time point closest to the stipulated
time of confirmed succesful insemination tins, which we in all cases define to
be at noon. The difference tins− tpredict indicates how much time in advance
the farmer is given to observe the cow in detail. For 7 out of the 112 cow-
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Figure 4: Histogram of the estimates of the cow-lactation specific standard
deviation σ.

lactations, the time point for insemination was placed outside the time range
of the observations (which in Figure 1 is outside the two vertical lines) and
therefore no tpredict-value was found. With a threshold probability of 0.5 of
P (S = 1) we observed that the this probability did not exceed the threshold
in the cycle including the time of insemination for 3 of the remaining 105
cow-lactations. This leave 102 values of tins−tpredict. In Figure 6 a histogram
of these values are shown. The observed mean and standard deviation of
this sample was 1.431 days and 1.556 respectively meaning that on average
the alarm will tell the farmer to look for signs of oestrus a little less than
one and a half day before oestrus actually occurs. In 88 of the 102 cases the
alarm went off prior to the actual insemination of these cows.

All analysis was performed using R (R Development Core Team, 2008).
The speed of running the whole filter is proportional to the cube of the
number of updates per day. If for a cow-lactation the filter is updated each
hour with M = 288 hours (12 days) an update takes approximately 200
seconds on a standard laptop.

14



500 540 580 620

0
5

10
15

20
25

30

P
ro

ge
st

er
on

e(
ng

/m
l)

0
0.

5
1

45 55 65 75
0

5
10

15
20

25
30

0
0.

5
1

60 80 100 140

0
5

10
15

20
25

30

0
0.

5
1

80 120 160

0
5

10
15

20
25

30

P
ro

ge
st

er
on

e(
ng

/m
l)

0
0.

5
1

40 60 80 100

0
5

10
15

20
25

30

0
0.

5
1

10 30 50 70
0

5
10

15
20

25
30

0
0.

5
1

55 60 65 70

0
5

10
15

20
25

30

Days from calving

P
ro

ge
st

er
on

e(
ng

/m
l)

0
0.

5
1

20 30 40 50 60 70 80

0
5

10
15

20
25

30

Days from calving

0
0.

5
1

30 40 50 60 70

0
5

10
15

20
25

30

Days from calving

0
0.

5
1

Figure 5: Filter probabilities (full drawn curve) of being in the low stage plotted
against time for nine cow-lactations. The probability scale is shown on the right
vertical axis. The vertical line shows the time of an insemination resulting in a
confirmed pregnancy.

7 Conclusions

The first objective of this study was to develop a state space model with
a corresponding Kalman filter to model data with a cyclic nature. This
has been done as described in Section 3 and Section 4. Furthermore in
Section 5 we discussed techniques for estimation of some of the parameters
in the model.

In Section 6 we analysed the progesterone data using the state space
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Figure 6: Histogram of the time from alarm goes off to known time for artificial
insemination tins − tpredict. The observed mean of this sample is 1.431 meaning
that on average the alarm will tell the farmer to look for signs of oestrus a little
less than one and a half day before oestrus actually occurs.

model developed in this study. We discussed how the model was able to
provide an alarm for oestrus in cows. Because the aim was to evalute the
use of progesterone for detection of oestrus, the time difference tins− tpredict

has to be positive so that the farmer is told to look for signs of oestrus
before oestrus occurs. To be an efficient mechanism for detection of oestrus
the variance of tins − tpredict must be as small as possible. In Section 6 we
found the mean of tins− tpredict to be positive fulfilling the first requirement
of a possible alarm. To judge if the corresponding variance is small enough,
for this study to prove the usefulness of progesterone in oestrus detection,
two issues with the data need to be mentioned. Firstly, only the day for
succesful insemination is given for each cow-lactation. Secondly, the time
point of the succesful insemination is not the optimal measure to evaluate an
alarm. We would rather wish to know the time at which an insemination has
the highest probability of being succesful. In biological terms, this is related
to the time of ovulation, which has been shown to be a rather variable time
interval after the onset of oestrus. Onset of oestrus can not be measured by
progesterone. The confirmed inseminations in our data are spread around
this time of highest probability of success with some variation. Both of
these issues contribute to a certain variance that no alarm based on any
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progesterone model can remove.
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A Stationary distribution of (Rt, St, Nt)

Lemma 1. The stationary distribution of (Rt − t, St, Nt − t) is

π(j, q, l) =
Wq(l − j)∑

r ν(r)
.

Proof. With

P (j, q, l|j′, q′, l′) = P (Rt+1 = j, St+1 = q,Nt+1 = l|Rt = j′, St = q′, Nt = l′)

we must show that∑
j′,q′,l′

π(j′, q′, l′)P (j, q, l|j′, q′, l′) = π(j, q, l),

for all j, q and l. We split the proof in two cases. Firstly we consider
the case of no changepoint at time t which means j < −1. Then by (2)
P (j, q, l|j′, q′, l′) = 0 unless j′ = j + 1, l′ = l + 1 and q′ = q. Also by (2) we
find that

π(j + 1, q, l + 1)P (j, q, l|j + 1, q, l + 1) = π(j, q, l).

In the other case where j = −1 corresponding to a changepoint at time t
we have that P (j, q, l|j′, q′, l′) = 0 unless q′ = q − 1(mod m) and l′ = 0.
Here we find that∑

j′
π(j′, q − 1(mod m), 0)P (−1, q, l|j′, q − 1(mod m), 0)

=
∑

j′

Wq−1(mod m)(0− j′)∑
r ν(r)

Wq(l + 1)

=
1∑

r ν(r)
Wq(l − j),

to complete the proof of the lemma.

B Mathematical description of updating

equations

In section 4 we presented an approximate filter for the state variables of our
model. Here we give a detailed derivation of the filter recursions. That is, we
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derive p(Rt+1 = j, St = q,Nt+1 = l, at+1, bt+1|yt+1) = pt+1(j, q, l, at+1, bt+1)
from pt, the transition density and the likelihood of yt+1

t , using standard
updating formulas. Because we use the approximation (7), at each time
point t we have to update the quantities pt(j, q, l), µt(j, q, l) and Σt(j, q, l)
for all j, q and l. Therefore we now assume that all the quantities are known
at time t and in the following we will prove that the updating equations
given in Section 4 are valid.

We first consider the case where j < t, that is, there is no change of
the stage at time t. In this case according to (2), Rt = Rt+1, St = St+1

and Nt = Nt+1. Then by (5), at = at+1 and bt = bt+1. Therefore only one
transition is possible and we get directly

pt+1(j, q, l, a, b)

= ct+1(y
t+1)pt(j, q, l)φ(a, b; µt(j, q, l),Σt(j, q, l))

×
∏
(t)

φ
(
yi; a

l − si

l − j
+ b

si − j

l − j
, σ2

q

)
= pt(j, q, l)

φ(0; µt(j, q, l),Σt(j, q, l))

φ(0; µ̃t(j, q, l), Σ̃t(j, q, l))

× φ(a, b; µ̃t(j, q, l), Σ̃t(j, q, l))
∏
(t)

φ(yi; 0, σ2
q ), (16)

with Σ̃t(j, q, l)
−1 and µ̃t(j, q, l) given by the right hand sides of (9) and (10).

The normalizing constant ct+1(y
t+1) is p(yt)/p(yt+1). Integrating (16) with

respect to (a, b) the φ(a, b; ·) term disapear, and the formula (8) for pt+1(j, q, l)
is obtained. Next dividing (16) by (8) we see that the filtering distribution
of (at+1, bt+1) is the normal distribution with mean µ̃t(j, q, l) and variance
Σ̃t(j, q, l) which proves (9) and (10).

We next consider the case where j = t, that is, there is a change of
the stage at time t. In this case Nt = t, Rt can be any value j′ < t,
St = q′ = q − 1(mod m), and bt = at+1 = a. Letting q̃ = q + 1(mod m),
using the transistion density (2) we find

pt+1(t, q, l, a, b) = ct+1(y
t+1)Wq(l − t)

∑
j′<t

pt(j
′, q′, t)

×
∫

a′
φ(a′, a; µt(j

′, q′, t),Σt(j
′, q′, t))φ(b; µq̃, ω

2
q̃ )

×
∏
(t)

φ(yi; a
l − si

l − t
+ b

si − t

l − t
, σ2

q )
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= Wq(l − t)
∑
j′<t

pt(j
′, q′, t)φ(a; µt(j

′, q′, t)2,Σt(j
′, q′, t)22)

× φ(b; µq̃, ω
2
q̃ )

∏
(t)

φ(yi; a
l − si

l − t
+ b

si − t

l − t
, σ2

q )

= Wq(l − t)
∏
(t)

φ(yi; 0, σ2
q )

∑
j′<t

pt(j
′, q′, t)

× φ(0; µt(j
′, q′, t)2,Σt(j

′, q′, t)22)φ(0; µq̃, ω
2
q̃ )

φ(0; µ̄t(j′, q′, t, l), Σ̄t(j′, q′, t, l))
× φ(a, b; µ̄t(j

′, q′, t, l), Σ̄t(j
′, q′, t, l)), (17)

with

Σ̄t(j
′, q′, t, l)−1 =

(
Σt(j

′, q′, t)−1
22 0

0 (ω2
q̃)
−1

)
+

1

σ2
q

∑
(t)

(
[(l − si)/(l − t)]2 (si − t)(l − si)/(l − t)2

(si − t)(l − si)/(l − t)2 [(si − t)/(l − t)]2

)
(18)

and

Σ̄t(j
′, q′, t, l)−1µ̄t(j

′, q′, t, l)

=

(
µt(j

′, q′, t)2/Σt(j
′, q′, t)22

µq̃/ω
2
q̃

)
+

1

σ2
q

∑
(t)

(
yi(l − si)/(l − t)
yi(si − t)/(l − t)

)
(19)

Integrating (17) with respect to (a, b) the φ(a, b; ·) term disappear, and the
formula (11) is obtained. Dividing (17) by (11) we see that the density of
(at+1, bt+1) is∑

j′<t

αt(j
′, q′, t, l)φ(a, b; µ̄t(j

′, q′, t, l), Σ̄t(j
′, q′, t, l)), (20)

where

αt(j
′, q′, t, l) =

γt(j
′, q′, t, l)∑

j̃<t γt(j̃, q′, t, l)

with

γt(j
′, q′, t, l) = pt(j

′, q′, t)
φ(0; µt(j

′, q′, t)2,Σt(j
′, q′, t)22)

φ(0; µ̄t(j′, q′, t, l), Σ̄t(j′, q′, t, l))
.

We approximate the Gaussian mixture in (20) by a single Gaussian density
with the same mean and variance. This gives the formulas (12) and (13).
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C Estimation of waiting time distributions

When we estimate the waiting time probabilities Wq(l) as described in

Section 5.2 we need to calculate E(
∑k

1 ψi|yk) iteratively. Now let ψi =
ψ(zi, zi−1) be a general estimation function where zi = (Ri, Si, Ni). Using
the approximation

p(zk+1, yk+1|zk
1 , y

k
1) ≈ p(zk+1, yk+1|zk, y

k
1)

we have the following updating rule

E

(k+1∑
1

ψi|zk+1, y
k+1
1

)

=
∑
zk

(
E(

k∑
1

ψi|zk, y
k
1) + ψk+1

)
p(zk+1, yk+1|zk, y

k
1)p(zk|yk

1)∑
z̃k
p(zk+1, yk+1|z̃k, y

k
1)p(z̃k|yk

1)
.

We next specialize this formula. First we consider the case j = Rk+1 < k
for which we find

E

(k+1∑
1

ψi|(j, q, l), yk+1
1

)
= E

( k∑
1

ψi|(j, q, l), yk
1

)
+ ψ((j, q, l), (j, q, l)).

For the case j = k we use q′ = q − 1(mod m) and get

E

(k+1∑
1

ψi|(k, q, l), yk+1
1

)

=

∑
j′<k{E(

∑k
1 ψi|(j′, q′, k), yk

1) + ψ((k, q, l), (j′, q′, k))}γt(j
′, q′, t, l)∑

j′<k γt(j′, q′, t, l)
.

Finally, we find

E

(k+1∑
1

ψi|yk+1
1

)
=

∑
k,q,l

pk+1(k, q, l)E

(k+1∑
1

ψi|(k, q, l), yk+1
1

)
.
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ASYMPTOTICS FOR ESTIMATING
EQUATIONS IN HIDDEN MARKOV

MODELS

Jørgen Vinsløv Hansen and Jens Ledet Jensen

University of Aarhus

Abstract

Results on asymptotic normality for the maximum likelihood esti-
mate in hidden Markov models are extended in two directions. The
stationarity assumption is relaxed, which allows for a covariate pro-
cess influencing the hidden Markov process. Furthermore a class of
estimating equations is considered instead of the maximum likelihood
estimate. The basic ingredients are mixing properties of the process
and a general central limit theorem for weakly dependent variables.
The results are illustrated with a cyclic model for the progesterone
concentration in cowmilk.

Key words and phrases: Cyclic model, Estimating equation, Mixing
properties, Progesterone concentration.

1 Introduction

Unless simulation based methods are used inference in hidden Markov models
is based on the asymptotic normality of the parameter estimates. For the case
of a finite state space for both the hidden variable x and the observed variable
y, asymptotic normality for the maximum likelihood estimate was established
in the pioneering paper of Baum and Petrie (1966). More than thirty years
elapsed until this result was generalised to a general state space for the observed
variable y by Bickel, Ritov and Rydén (1998), and still further generalized to a
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non-discrete state space for the hidden variable x by Jensen and Petersen (1999).
In these papers stationarity is a crucial assumption. The log likelihood is a sum
where the individual terms are the log densitites of yi given the past y1, . . . , yi−1.
These are replaced by the similar expressions conditioned instead on the infinite
past . . . , y−1, y0, . . . , yi−1. A martingale central limit theorem is then used to
establish asymptotic normality of the score function. In this paper we use a
different approach that allows us to consider nonhomogeneous processes and to
consider alternatives to the maximum likelihood estimates. To illustrate the
scope of the setup we briefly describe an example from evolutionary biology.

Example 1. Let v(t) = (v1(t), . . . , vn(t)) be a sequence of letters from the al-
phabet {A,G,C, T} of nucleotides at time t. The sequence at time t = 0 is fixed
and known. Time is discrete. The process is observed at time t = T , but not
observed at the times t = 1, 2, . . . , T − 1 in between. The sequence v(t) evolves
according to a Markov chain with transition probabilitites of the form

p(v(t+ 1)|v(t)) =
n∏
i=1

h(vi(t+ 1)|vi−1(t+ 1), vi(t), vi+1(t)),

for some transition probability h. This formalizes a time discretized version of a
model where the probability of a change of a nucleotide vi(t) depends on the two
neighbouring nucleotides. Let now xi = (vi(1), vi(2), . . . , vi(T )) be the complete
history for nucleotide i. It can be seen that the conditional distribution of xi
given x1, . . . , xi−1 depends on (xi−2, xi−1) only. We thus have a second order
hidden Markov model where the observed variable is yi = vi(T ). The underlying
Markov structure is inhomogeneous due to the fixed initial sequence v(0).

Asymptotic normality for a class of estimating equations, in the setting af
evolutionary models for DNA, has been treated in Jensen (2005). In that paper
both the state space of the hidden variable x and the observed variable y is
finite. Here we extend the results in Jensen (2005) to a setup akin that of Jensen
and Petersen (1999) with a general state space for the observed variable and
a general state space for the hidden variable. Nonhomogeneity is introduced
through a covariate. We base the asymptotic normality of the “score function”
directly on the mixing properties of the process, using a central limit theorem
extracted from Götze and Hipp (1983). Although the state space is general the
conditions imposed effectively restricts the space to be compact.

In section 2 we describe the setup and results in detail and define the class of
estimating equations that we consider. In section 3 we illustrate the results for a
hidden cyclic model used to describe the progesterone concentration in cowmilk.
The proofs of the results are split into three sections. In section 4 we study the
mixing properties of the process and use these in section 5 to derive a central
limit theorem for the “score function”. Finally, in section 6 we derive the uniform
convergence of the “observed information”.
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2 Assumptions and results

We consider an observed process y1, . . . , yn controlled by an unobserved Markov
process {xi}. Conditionally on the x-process the yis are independent. Both the
observed yi and the unobserved xi may be influenced by a covariate zi, making
the process inhomogeneous. The transition density of the Markov process is
pθ(xi|xi−1; zi), where pθ(x̃|x; z) is a density in x̃ with respect to a probability
measure µ on the state space for the hidden variable. The conditional density of yi
is pθ(yi|xi; zi), where pθ(y|x; z) is a density in y with respect to a measure ν. Both
these densities are parametrized by the d-dimensional parameter θ. We split the
assumptions into two parts, one part concerned with the process itself, Conditions
2 and 3 below, and another part concerned with the estimating function used,
Condition 5 below.

Condition 2 ensures mixing of the underlying Markov chain. In order to allow
for the possibility that in a single step the Markov chain can reach only a subset
of the state space, we use the m0–step transition probabilities in the condition.
This transition density depends on several zi’s, but in order not to overburden
the notation we write simply z instead. We can start by establishing exponential
mixing of the m0–step chain {xjm0}, and from this trivially obtain mixing of the
original chain {xj}. To avoid complicated notation we consider in the proofs the
case with m0 = 1. In the setting of a DNA sequence as in Jensen (2005) the two-
step transition probabilities will suffice, whereas in the setting of a process with
a cyclic nature as described in section 3 higher order transitions may be needed.
Point (i) of Condition 3 limits the influence of the hidden variable on the observed
variable. This condition is needed when studying the mixing properties of the
hidden chain conditioned on the observed y–process. Point (ii) of Condition 3
limits the conditional score function based on (xi, yi) given xi−1. The true value
of the parameter is θ0.

Condition 2. There exists δ0 > 0, a positive integer m0, and constants 0 < τ <

σ <∞, such that

τ ≤ pθ(xm0 |x0; z) ≤ σ for all (x0, xm0 , z) and all |θ − θ0| ≤ δ0.

To state the next condition we introduce some notation. Likelihood quantities
for the chain (xi, yi) are denoted by ω as follows

ωi(θ) = log[pθ(xi|xi−1; zi)pθ(yi|xi; zi)] and ωri (θ) =
∂

∂θr
ωi(θ).

With δ0, τ , and σ from Condition 2 define

ξ(y) = sup
x1,x2,z,|θ−θ0|≤δ0

pθ(y|x1; z)
pθ(y|x2; z)

, ρ(y) = 1− τ2/(σξ(y)),
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and
β1 = inf

x,z

∫
pθ0(y|x; z)/ξ(y)ν(dy).

Condition 3. Let δ0 be as in Condition 2.

i) Assume that ξ(y) <∞ for all y and that β1 > 0.

ii) Assume that there exists a function h0(y) with

c0 = sup
x,z

∫
h0(y)pθ0(y|x; z)ν(dy) <∞,

such that for all r = 1, . . . , d and all i,

sup
xi−1,xi,zi,|θ−θ0|≤δ0

|ωri (θ)| ≤ h0(yi).

The second part of the conditions relates to the estimating equation. Let
ψ(θ, x̄, y; z) be a function of the parameter θ, a triple x̄ of consequtive states,
an observed variable y and covariates z. Let ψi(θ) = ψ(θ, x̄i, yi; z), where x̄i =
(xi−1, xi, xi+1). We think of

∑n
i=1 ψi(θ) = 0 as an estimating equation had both

x and y being observed. Having observed y only we use the estimating equation
n∑
i=1

Eθ[ψi(θ)|(1, n)] = 0, (1)

where Eθ(·|(1, n)) is the conditional mean given y1, . . . , yn. The coordinates
of ψi(θ) are denoted by ψri (θ), r = 1, . . . , d and the derivatives of these are
ψrsi (θ) = ∂

∂θs
ψri (θ). In Appendix I a recursive formula for evaluating the estimat-

ing function on the left hand side of (1) is given. To solve (1) one often uses an
EM-type algorithm, that is,

∑n
i=1Eθ[ψi(θ̃)|(1, n)] = 0 is solved with respect to θ̃,

and this defines a new value improving on the old value θ. This EEE-algorithm
(Expectation–Estimating–Equation) has been considered in Heyde and Morton
(1996), Rosen, Jiang and Tanner (2000) and Elashoff and Ryan (2004).

The “observed information” in this setting, that is, the derivative of the left
hand side of (1), is given by

Jn(θ) = − ∂

∂θ
Eθ

[ n∑
i=1

ψi(θ)|(1, n)
]

= −Eθ
[ n∑
i=1

∂

∂θ
ψi(θ)|(1, n)

]
− Vθ

[ n∑
i=1

ψi(θ),
n∑
i=1

∂

∂θ
ωi(θ)|(1, n)

]
.

This formula corresponds to the formula in Louis (1982) for the maximum like-
lihood equation. A derivation can be found in Jensen (2005).

Before stating the second part of the conditions it is convenient to introduce
a notation for a class of functions satisfying suitable conditions.
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Definition 4. Consider for each i a function ai(θ) which also depends on (x̄i, yi, z).
We say that these functions belong to class Gk if there exist δ0 > 0, a function
a0(y) and a finite constant ck0(a) such that

|ai(θ)| ≤ a0(yi) for all (x̄i, z) and all |θ − θ0| ≤ δ0,
and

sup
x,z

∫
a0(y)kpθ0(y|x; z)ν(dy) ≤ ck0(a).

If, furthermore, there exist a function a1(y) and finite constants c1(a), cm1 (a) such
that

|ai(θ)− ai(θ0)| ≤ |θ − θ0|a1(yi) for all (x̄i, z) and all |θ − θ0| ≤ δ0,
and

sup
x,z

∫
a1(y)pθ0(y|x; z)ν(dy) ≤ c1(a),

sup
x,z

∫
a0(y)mh0(y)pθ0(y|x; z)ν(dy) ≤ cm1 (a),

we say that the set of functions belong to class Gk,m.

Condition 5. i) For all r = 1, . . . , d the set of functions {ψri (θ)} belongs to
class G3 and Eθψi(θ) = 0.

ii) For all r, s = 1, . . . , d the set of functions {ψrsi (θ)} belongs to class G1,2.

iii) For all r = 1, . . . , d the set of functions {ωri (θ)} belongs to class G1,2.

We now formulate the results of this paper.

Theorem 6. Assumme that Condition 2, Condition 3(i), and Condition 5(i)
hold. Define Sn =

∑n
i=1Eθ0(ψi(θ0)|(1, n)/

√
n and assume that the covariates

{zi} are such that the variance of Sn converges to a positive definite limit. Then
a central limit theorem holds for the normalized sum Sn.

Theorem 7. Assume that Condition 2, 3, and 5 hold. Let δn → 0 for n → ∞.
Then

Eθ0

{
sup

|θ−θ0|≤δn

1
n

∣∣Jn(θ)− Jn(θ0)
∣∣}→ 0.

Corollary 8. Assume that Condition 2, 3, and 5 hold. Assume that the covari-
ates {zi} are such that the variance of Sn =

∑n
i=1Eθ0(ψi(θ0)|(1, n)/

√
n converges

to a positive definite limit V (θ0), and also 1
nJn(θ0) converges to a positive definite

limit I(θ0). Then there exists a sequence θ̂n solving the estimating equation such
that θ̂ → θ0 in probability and

√
n(θ̂− θ0) has a limiting normal distribution with

mean zero and variance I(θ0)−1V (θ0)I(θ0)−1.
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3 Example: cyclic model

In Hansen (2008) a cyclic hidden Markov model is described for the progesterone
concentration in cowmilk. The observed process yj is the measured progesterone
concentration in the milk at each milking. The underlying dynamic is described
by a stage ij , a level vj giving the mean of the observed process, a slope sj which
defines the increase in the level vj , and a waiting time rj until the next change
of the stage. The stage describes a cyclic nature where i = 1 corresponds to a
low stage, this is followed by an increasing stage i = 2, followed next by a high
stage i = 3, and ending in a decreasing stage i = 4. Below, when i = 4 the sum
i+1 means the stage 1. The process is controlled by two transition probabilities,
p(r|i; γ) which is the probability of a new waiting time r at a point in time where
the stage changes from i − 1 to i and which depends on a parameter γ, and
p(s|r, v, i) which is the probability of a new slope s at a point in time where the
stage changes from i − 1 to i, the present level is v, and the new waiting time
is r. Formally, the Markov structure for the hidden variable xj = (ij , rj , vj , sj)
is given by  rj > 1,

ij+1 = ij
rj+1 = rj − 1
vj+1 = vj + sj
sj+1 = sj  rj = 1.

ij+1 = ij + 1
rj+1 ∼ p(·|ij+1; γ)
vj+1 = vj + sj
sj+1 ∼ p(·|rj+1, vj+1, ij+1)

Conditionally on the hidden state the observed variable yj is normally distributed
with mean vj and variance σ2.

We consider γ and σ2 to be cow specific parameters with γ allowing for
variation in the mean cycle length from cow to cow, and with σ2 allowing for
varying degree of fit of the hidden model. Finally, we consider the case where
sj and vj belong to compact sets and rj belongs to a finite set (this is slightly
different from the setup in Hansen, 2008).

The full likelihood, having observed both xj and yj , j = 1, . . . , n, and condi-
tioning on x0, leads to the likelihood equations

n∑
j=1

[
(yj − vj)2 − σ2

]
= 0,

n∑
j=1

[ d
dγ

log p(rj |ij ; γ)
]
1(ij−1 6= ij) = 0.
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We replace the first of these equations with one giving a more robust estimate
of σ. Thus we use instead

n∑
j=1

[|yj − vj | − σ√ 2
π

]
= 0.

In relation to our general setup we thus have θ = (σ, γ) and

ψ1
j = |yj − vj | − σ

√
2
π
, ψ2

j =
[ d
dγ

log p(rj |ij ; γ)
]
1(ij−1 6= ij).

The derivatives of these with respect to σ and γ are

ψ11
j = −

√
2
π
, ψ12

j = 0,

ψ21
j = 0, ψ22

j =
[ d2

dγ2
log p(rj |ij ; γ)

]
1(ij−1 6= ij).

Furthermore, we have

ωj =

{
log
[
ϕ(yj ; vj , σ)

]
ij = ij−1,

log
[
p(rj |ij ; γ)p(sj |rj , vj , ij)ϕ(yj ; vj , σ)

]
ij 6= ij−1,

where ϕ(y; v, σ) is the density of a normal distribution with mean v and vari-
ance σ2.

The derivatives of ωj with respect to σ and γ are

ω1
j =

1
σ3

(yj − vj)2 − 1
σ
, ω2

j =
d

dγ
log p(rj |ij ; γ)

]
1(ij−1 6= ij).

Condition 2 will hold under mild conditions on the transition densities due to
the compactness of the state space. We do not discuss this further here. Since the
state space is bounded we make the assumption that the first three derivatives of
p(·|i; γ) are bounded. For condition 3 i) we find the bound ξ(y) ≤ exp(b0 + b1|y|)
for suitable constants b0 and b1, due to the finiteness of the level v. Then clearly
also β1 > 0. For condition 3 ii) we can take h0(y) = b0 + b1|y| + b2y

2 for
suitable constants b0, b1, b2. Similarly in condition 5 i) we can use a bound on
the form a0(y) = b0 + b1|y|. For condition 5 ii) a0(y) and a1(y) can be taken as
constants. And, finally, for condition 5 iii) both a0(y) and a1(y) can be bounded
by b0 + b1|y|+ b2y

2 for suitable constants b0, b1, b2.
In conclusion we see that the standard asymptotic results hold for the esti-

mates in a cyclic model as described here and considered (with slight modifica-
tions) in Hansen (2008).
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4 Mixing

As a first step in the proof of the main results we study the mixing properties of
the process. We use throughout Condition 2 with m0 = 1. Our results hold for
all |θ−θ0| ≤ δ0, and we skip θ in the notation below. First we state bounds on the
transition densities for the hidden chain conditioned on the observed y–process.
The lemma has been proved in Jensen and Petersen (1999).

Lemma 9. Assume Condition 2. Conditioned on the y–process {xn} constitute
a Markov chain with

τ2

σξ(ys)
≤ p(xs|xs−1, xs+1, y; z) ≤ σ2ξ(ys)

τ
.

For the original Markov chain (not conditioned on y) we have trivially from
Condition 2 that

τ2

σ
≤ p(xs+1|xs, xs+2; z) ≤ σ2

τ
. (2)

For easy reference we state here a Lemma from Jensen and Petersen (1999) that
will be used repeatedly.

Lemma 10. Assume that ν1 and ν2 are dominated by µ and ν1(X ) = ν2(X ).
Then for any real valued measurable function h on X we have∣∣∣∫

X
hdν1 −

∫
X
hdν2

∣∣∣ ≤ {sup
x
h(x)− inf

x
h(x)}{ν1(S+)− ν2(S+)},

where S+ = {dν1/dµ− dν2/dµ > 0}.
To establish mixing results for both the original hidden Markov chain and for
the chain conditioned on the y–process we consider a general Markov chain {xs}
satisfying

τs ≤ p(xs|xs−1, xs+1) ≤ σs. (3)

with 0 < τs < σs < ∞ for all s. We start with a result on one-sided and two-
sided mixing. To make the notation more transparent we let ur, for a lower case
letter u, denote xr = u, and let As, for a upper case letter A, denote xs ∈ A.

Lemma 11. Assume (3). Let r < s < t and let ρj = 1− τj. Then

sup
u
P (As|ur)− inf

v
P (As|vr) ≤

s∏
j=r+1

ρj ,

and

sup
a,b

P (As|ar, bt)− inf
u,v

P (As|ur, vt) ≤
s∏

j=r+1

ρj +
t−1∏
j=s

ρj .
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Proof. The proof of the one-sided case is given in Jensen and Petersen (1999)
based on Doob (1953, page 198). In Jensen(2005) a similar proof for the two-sided
case is indicated. We give here the details of this proof.

Let r < s < t. Define, for a fixed set A and a fixed state w, D(r) =
maxu P (As|ur, wt), d(r) = minu P (As|ur, wt), and Sr = {x : p(xr = x|ur−1, wt) >
p(xr = x|vr−1, wt)}. Using Lemma 10 in the first inequality below we find

D(r − 1)− d(r − 1)

= max
u,v

[P (As|ur−1, wt)− P (As|vr−1, wt)]

= max
u,v

∫
P (As|αr, wt) [p(αr|ur−1, wt)− p(αr|vr−1, wt)]µ(dα)

≤ (D(r)− d(r)) max
u,v

[P (Sr|ur−1, wt)− P (Sr|vr−1, wt)]

≤ (D(r)− d(r)) max
u,v

[1− P (Scr |ur−1, wt)− P (Sr|vr−1, wt)]

≤ (D(r)− d(r))
(
1− τr

)
= (D(r)− d(r))ρr,

where we used the bound

p(xr|ur−1, wt) =
∫
p(xr|ur−1, vr+1)p(vr+1|ur−1, wt)µ(dv) ≥ τr.

Iterating, we obtain

max
u,v
|P (As|ur, wt)− P (As|vr, wt)| ≤

s∏
j=r+1

ρj ,

A similar argument gives

max
u,v
|P (As|wr, ut)− P (As|wr, vt)| ≤

t−1∏
j=s

ρj .

Combining the two latter bounds lead to

max
a,b,u,v

|P (As|ar, bt)− P (As|ur, vt)|

≤ |P (As|ar, bt)− P (As|ur, bt)|+ |P (As|ur, bt)− P (As|ur, vt)|

≤
s∏

j=r+1

ρj +
t−1∏
j=s

ρj . (4)

Lemma 12. Assume Condition 2. Define ρ = 1 − τ2/σ. For the y-process we
have mixing as in Lemma 11 with ρj ≡ ρ.

9



Proof. For the original Markov chain {Xn} we have the bounds in Lemma 11
with ρj ≡ ρ. Letting yjr denote yr = yj and similarly with xjr, we find by using
Lemma 10 twice

P (ys ∈ A|y1
r , y

1
t ; z)− P (ys ∈ A|y2

r , y
2
t ; z)

=
∫∫

P (ys ∈ A|xs; z)p(xs|xr, xt; z)µ(dxs)

× [p(d(xr, xt)|y1
r , y

1
t ; z)− p(d(xr, xt)|y2

r , y
2
t ; z)]

≤ sup
x1

r,x
1
t ,x

2
r,x

2
t

[∫
P (ys ∈ A|xs; z)p(xs|x1

r , x
1
t ; z)µ(dxs)

−
∫
P (ys ∈ A|xs; z)p(xs|x2

r , x
2
t ; z)µ(dxs)

]
≤ sup

x1
r,x

1
t ,x

2
r,x

2
t ,B

[
p(xs ∈ B|x1

r , x
1
t ; z)− p(xs ∈ B|x2

r , x
2
t ; z)

]
≤ ρs−r + ρt−s.

5 Central limit theorem

In this section we prove Theorem 6. First some notation. Mean values and
probabilities are with respect to the true measure corresponding to θ = θ0. We
do not show θ0 in the notation. The conditional mean given (ys, ys+1, . . . , yt) is
denoted by E(·|(s, t)). If, furthermore, we condition on xs and xt we use the
notation E(·|[s, t]). The expression

∏t
j=s(−u) cj is a short hand notation for the

expression
∏u−1
j=s cj +

∏t
j=u+1 cj .

From Götze and Hipp (1983), which deals with Edgeworth expansion, we can
extract a central limit theorem suitable for our purpose. We have already seen
in Lemma 12 that the observed process is exponentially fast mixing. If wi is a
sequence of random variables with uniformly bounded third absolute moment a
central limit theorem holds for the normalized sum under two additional assump-
tions. The first condition is the standard assumption that the variance of the
normalized sum converge. The second condition says that each wi can for each m
be approximated by a function of yi+mi−m introducing an error that is exponentially
small in m. To handle this last requirement we have the following lemma.

Lemma 13. Assume Condition 2 and 3. Let ai be a function of (x̄i, yi, z).
Assume that the set {ai} belongs to class G1. Then

E
∣∣E (ai∣∣(1, n)

)− E (ai∣∣(i− l, i+ l)
)∣∣ ≤ 4c10(a)(1− τ2β1/σ)l−1,
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where i − l is replaced by 1 when i − l < 1 and, similarly, i + l is replaced by n
when i+ l > n.

Proof. For the case i− l ≥ 1 and i+ l ≤ n, one finds using Lemma 10 and Lemma
11 with ρj = ρ(yj) = 1− τ2/(σξ(yj)) (see Lemma 9) that∣∣E (ai∣∣(1, n)

)− E (ai∣∣(i− l, i+ l)
)∣∣

=
∣∣∣∣∫ E

(
ai
∣∣[i− l, i+ l]

) {
P
(
d(xi−l, xi+l)

∣∣(1, n)
)

− P (d(xi−l, xi+l)
∣∣(i− l, i+ l)

)}∣∣∣∣
≤ 2a0(yi) max

A,a,b,u,v
|P (x̄i ∈ A|ai−l, bi+l, y; z)− P (x̄i ∈ A|ui−l, vi+l, y; z)|

≤ 2a0(yi)
i+l−1∏

j=i−l+1(−i)
ρ(yj). (5)

To bound the mean of this we condition on the x–process and use the conditional
independence of the y’s given the x’s,

E
∣∣E (ai∣∣(1, n)

)− E (ai∣∣(i− l, i+ l)
)∣∣

≤ 2E
{
E(a0(yi)|xi)

i+l−1∏
j=i−l+1(−i)

E(ρ(yj)|xj)
}

≤ 2c10(a)
i+l−1∏

j=i−l+1(−i)

(
1− τ2

σ
β1

)
= 4c10(a)(1− τ2β1/σ)l−1,

where we have used Assumption 2 and 5. The two cases i− k < 1 and i+ k > n

are treated similarly using one-sided mixing.

Proof of Theorem 6. Since {ψri } are assumed to be of class G3 the third abso-
lute moments are uniformly bounded. Furthermore, since G3 ⊆ G1 we can use
Lemma 13 with ai replaced by ψri (θ0). The central limit theorem extracted from
Götze and Hipp (1983) is then applicable.

6 Uniform convergence of “observed

information”

As a final step we prove here Theorem 7. In particular then we work under
Condition 2.
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To show uniform convergence of 1
nJn(θ) we need to bound the difference

between conditional mean values evaluated under θ and under θ0.

Lemma 14. Let bu be a funtion of x̄u with |bu| ≤ 1. Let s ≤ u − 2 and let
t ≥ u+ 2. For |θ − θ0| ≤ δ0 we have

|Eθ(bu|[s, t])− Eθ0(bu|[s, t])| ≤ 2d|θ − θ0|
t∑

i=s+1

h0(yi).

Proof. This lemma corresponds to Lemma 5 in Jensen (2005) with sums replaced
by integrals. The representation of the conditional density of x̄u given [s, t] is in
our case ∫ ∏t

i=s+1 ωi(θ)
∏u−2
i=s+1 µ(dxi)

∏t
i=u+2 µ(dxi)∫ ∏t

i=s+1 ωi(θ)
∏t
i=s+1 µ(dxi)

,

with ωi(θ) = pθ(xi|xi−1; zi)pθ(yi|xi; zi). An interchange of differentiation and
integration is possible since the derivative of the integrand is bounded. The
details of the proof can be seen in Jensen (2005).

Lemma 15. Let bu be a function of x̄u with |bu| ≤ 1. For |θ − θ0| ≤ δ0 and any
integer l ≥ 1 we have

|Eθ(bu|(1, n))− Eθ0(bu|(1, n))| ≤ 2d|θ − θ0|
u+l∑

i=u−l+1

h0(yi) + 4
u+l−1∏

j=u−l+1(−u)
ρ(yj).

Proof. We can replace Eθ(bu|(1, n)) by Eθ(bu|[u− l, u+ l]) with an error less than

sup
xu−l,xu+l

Eθ(bu|(u− l, u+ l), xu−l, xu+l)− inf
xu−l,xu+l

Eθ(bu|(u− l, u+ l), xu−l, xu+l).

Combining Lemma 11 and Lemma 10 this gives the bound 2
∏u+l−1
j=u−l+1(−u) ρ(yj).

We use this for both Eθ and for Eθ0 . Finally we use the bound from Lemma 14
for Eθ(bu|[u− l, u+ l])− Eθ0(bu|[u− l, u+ l]).

Lemma 16. Let the functions ai(θ) belong to class G1,1 and let δn → 0 for
n→∞. Then

lim
n→∞Eθ0 sup

|θ−θ0|≤δn

∣∣∣ 1
n

n∑
i=1

{
Eθ(ai(θ)|(1, n))− Eθ0(ai(θ0)|(1, n))

}∣∣∣ = 0

Proof. We can replace Eθ(ai(θ)|(1, n)) by Eθ(ai(θ0)|(1, n)) with an error bound-
ed by δna1(yi). Next, from Lemma 15, we can replace Eθ(ai(θ0)|(1, n)) with
Eθ0(ai(θ0)|(1, n)). Adding together the error terms we need to consider

Eθ0

{
1
n

n∑
u=1

[
δna1(yu) + a0(yu)

(
2dδn

u+l∑
i=u−l+1

h0(yi) + 4
u+l−1∏

j=u−l+1(−u)
ρ(yj)

)]}
.
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Conditioning first on the hidden process this gives the bound

δnc1(a) + 2dδn
[
c11(a) + 2lc10(a)c0

]
+ 8c10(a)(1− τ2β1/σ)l−1.

If we take l = δ
−1/2
n the last expression tends to zero for n→∞.

Lemma 17. Let the functions ai(θ) and bj(θ) belong to the class G1,2. Then
there exist constants q1, q2, q3 such that for any integer l ≥ 1

Eθ0 sup
|θ−θ0|≤δ

|Vθ(au(θ), bv(θ)|(1, n))− Vθ0(au(θ0), bv(θ0)|(1, n))|

≤ dδ[q1 + q2(|v − u|+ 6l)
]

+ q3(1− τ2β1/σ)l−1.

Proof. Let u ≤ v. The difference between the covariances can be written as the
sum of the two terms

Eθ(au(θ)bv(θ)|(1, n))− Eθ0(au(θ0)bv(θ0)|(1, n))

and

Eθ(au(θ)|(1, n))Eθ(bv(θ)|(1, n))− Eθ0(au(θ0)|(1, n))Eθ0(bv(θ0)|(1, n))

= Eθ(au(θ)|(1, n)){Eθ(bv(θ)|(1, n))− Eθ0(bv(θ0)|(1, n))}
+ {Eθ(au(θ)|(1, n))− Eθ0(au(θ0)|(1, n))}Eθ0(bv(θ0)|(1, n)).

For each of these terms we apply Lemma 15. For the first term this gives the
bound

a0(yu)b0(yv)
{

2dδ
v+l∑

i=u−l+1

h0(yi) + 4
v+l−1∏

j=u−l+1(−(u:v))

ρ(yj)
}

for |θ − θ0| ≤ δ. For the second term the bound becomes

a0(yu)b0(yv)
{

2dδ
v+l∑

i=v−l+1

h0(yi) + 4
v+l−1∏

j=v−l+1(−v)
ρ(yj)

+ 2dδ
u+l∑

i=u−l+1

h0(yi) + 4
u+l−1∏

j=u−l+1(−u)
ρ(yj)

}
.

We next bound the mean of the sum of these two terms by first bounding the
conditional mean given the hidden process {xi}. For the case u 6= v we get the
bound in the lemma with

q1 = 4(c11(a)c10(b) + c11(b)c10(a)), q2 = 2c10(a)c10(b)c0, q3 = 24c10(a)c10(b),

and for the case u = v we get bound in the lemma with

q1 = 6
√
c21(a)c21(b), q2 = 2

√
c20(a)c20(b)c0, q3 = 24

√
c20(a)c20(b).

We use here that
∫
a0(y)b0(y)pθ0(y|x; z)ν(dy) is bounded by

√
c20(a)c20(b) and,

similarly,
∫
a0(y)b0(y)h0(y)pθ0(y|x; z)ν(dy) is bounded by

√
c21(a)c21(b).
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Lemma 18. Let the assumptions be as in Lemma 17. Let δn → 0 for n → ∞.
Then

lim
n→∞Eθ0

{
sup

|θ−θ0|≤δn

∣∣∣ 1
n

n∑
u,v=1

{
Vθ(au(θ), bv(θ)|(1, n))− Vθ0(au(θ0), bv(θ0)|(1, n))

}∣∣∣}

= 0

Proof. The mixing result in Lemma 11 for the hidden process conditioned on the
observed process gives (for the case v > u)

|Vθ(au(θ), bv(θ)|(1, n))| ≤ 4a0(yu)b0(yv)
v−2∏
i=u+2

ρ(yi),

see Ibragimov and Linnik (1971, Theorem 17.2.1). Taking the mean of this, by
first evaluating the conditional mean given the hidden process, gives the bound

4c10(a)c10(b)(1− τ2β1/σ)|v−u|−3. (6)

Consider now a fixed u and the sum over v of the difference between the
two covariances. We split this sum into terms with |u − v| > l and terms with
|u− v| ≤ l. For the first set we use the bound in (6) for each covariance, and for
the second set we use the bound from Lemma 17. This gives the bound

16c10(a)c10(b)
τ2β1/σ

(1− τ2β1/σ)l−3 + dδn
[
(2l + 1)q1 + q2(l(l + 1) + 6l(2l + 1))

]
+ q3(2l + 1)(1− τ2β1/σ)l−1.

Taking l = δ
−1/4
n this bound tends to zero as δ1/2n and the lemma has been

proved.

Proof of Theorem 7. The theorem follows directly from Lemma 18.

Appendix I: Recursions

Let us write the traditional recursive filter for the hidden Markov process in
terms of the joint density p(xk, yk1 ) of the state xk at time k and the observations
yk1 = (y1, y2, . . . , yk). We skip the covariates {zi} from the notation here. The
recursion takes the form

p(xk+1, y
k+1
1 ) = p(yk+1|xk+1)

∫
p(xk, yk1 )p(xk+1|xk)µ(dxk).
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We next state a similar recursion for the estimating function on the left hand
side of (1). Define ak(xk) = E

(∑k−1
i=1 ψi|xk, yk1

)
, where ψi is a function of yi and

x̄i = (xi−1, xi, xi+1). We then have

ak+1(xk+1) = E
(k−1∑
i=1

ψi + ψk|xk+1, y
k+1
1

)
=
∫ {

E
(k−1∑
i=1

ψi|xk, xk+1, y
k+1
1

)
+ E(ψk|xk, xk+1, y

k+1
1 )

}
× p(xk|xk+1, y

k+1
1 )µ(dxk)

=
∫ {

ak(xk) +
∫
ψkp(xk−1|xk, xk+1, y

k+1
1 )µ(dxk−1)

}
× p(xk, yk1 )p(xk+1|xk)p(yk+1|xk+1)

p(xk+1, y
k+1
1 )

µ(dxk)

=
∫ {

ak(xk) +
∫
ψk
p(xk−1, y

k−1
1 )p(xk|xk−1)p(yk|xk)
p(xk, yk1 )

µ(dxk−1)
}

× p(xk, yk1 )p(xk+1|xk)p(yk+1|xk+1)
p(xk+1, y

k+1
1 )

µ(dxk)

=
∫ {

ak(xk)p(xk, yk1 ) +
∫
ψkp(xk−1, y

k−1
1 )p(xk|xk−1)p(yk|xk)µ(dxk−1)

}
× p(xk+1|xk)p(yk+1|xk+1)

p(xk+1, y
k+1
1 )

µ(dxk).

A similar calculation gives that the estimating function is

E
( n∑
i=1

ψi|yn1
)

=
{∫

p(xn, yn1 )µ(dxn)
}−1

∫ {
an(xn)p(xn, yn1 ) +

∫∫
ψn

× p(xn−1, y
n−1
1 )p(xn|xn−1)p(yn|xn)p(xn+1|xn)µ(dxn−1)µ(dxn+1)

}
µ(dxn).

For the special case where ψi depends on yi and (xi−1, xi) only, we define
instead ãk(xk) = E

(∑k
i=1 ψi|xk, yk1

)
. The recursion becomes

ãk+1(xk+1) =
∫ {

ãk(xk) + ψk
}p(xk, yk1 )p(xk+1|xk)p(yk+1|xk+1)

p(xk+1, y
k+1
1 )

µ(dxk).
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