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Abstract

We study efficient simulation algorithms for estimating P(X > x), where
X is the total time of a job with ideal time T that needs to be restarted after
a failure. The main tool is importance sampling where one tries to identify a
good importance distribution via an asymptotic description of the conditional
distribution of T given X > x.

If T ≡ t is constant, the problem reduces to the efficient simulation of
geometric sums, and a standard algorithm involving a Cramér type root γ(t)
is available. However, we also discuss an algorithm avoiding the rootfinding.
If T is random, particular attention is given to T having either a gamma-like
tail or a regularly varying tail, and to failures at Poisson times. Different
type of conditional limits occur, in particular exponentially tilted Gumbel
distributions and Pareto distributions. The algorithms based upon impor-
tance distributions for T using these asymptotical descriptions have bounded
relative error as x →∞ when combined with the ideas used for a fixed t.

Nevertheless, the paper gives examples that algorithms carefully designed
to enjoy bounded relative error may provide little or no asymptotic improve-
ment of crude Monte Carlo simulation when the computational effort is taken
into account. To resolve this problem, an alternative algorithm using two-
sided Lundberg bounds is suggested.
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inequality, rare event simulation, regular variation, RESTART.
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1 Introduction

Consider a task of length T that is subject to failures and must be restarted if a
failure occurs before completion. For example, the task may be the execution of
a computer program, the transmission of a file on a communications channel, or a
conversation with a call center.

The distribution of the (ideal) task time T is throughout denoted by F , and
the distribution of the failure time U by G. For convenience, the densities f, g
are asssumed to exist except when T ≡ t is constant. Due to the possibility of
(multiple) failures, the total task time X can possibly be large (certainly, we always
have X ≥ T ). We are here interested in the distribution H of X, more specifically
in its tail H(x) = P(X > x).

This problem has a long history in computer science where the model goes un-
der the name of RESTART (see [5] for references). Nevertheless, a comprehensive
description of the tail asymptotics of X was only recently provided by Sheahan et
al. [16] and Asmussen et al. [5]. At about the same time (in part independently),
Jelenković & Tan [14], [15] performed a related study in the communications en-
gineering context; a main difference from [5] is an on-off assumption on the chan-
nel, which in the computer reliability context corresponds to incorporating repair
times. Further aspects involve parallel computing, [2], and checkpointing (fragmen-
tation), [6].

In the early work of Sheahan et al. [16], a numerical comparison of approxima-
tions and simulated values was performed. This turned out to be a computationally
extremely demanding task, since R = 108 independent copies of X were needed to
be generated to obtain sufficiently precise estimates of P(X > x) in the range of
x-values under study.1

The present paper suggests and analyzes some more sophisticated algorithms
designed to reduce the computational effort. Given the literature on rare event
simulation (surveyed in, e.g., [4] Ch. VI), it is not unexpected that importance
sampling is the main tool (though other ideas like conditional Monte Carlo and
splitting have been used for specific purposes, see again loc. cit.). The classical idea
when using importance sampling is to look for an asymptotical description of the
conditional distribution given the rare event and use this as importance distribution.
This is also the path we follow here and leads to some additional theoretical problems
on the model, since we must analyze such problems as how failures accumulate within
a long but fixed time horizon, and what is the asymptotics as x → ∞ of T given
that X > x. We will see some rather non-standard limit distributions arise.

For most applications, it would be of particular interest to assume G to be
exponential, say at rate µ, and F to be either degenerate (say at t), gamma-like in
the sense that

f(t) ∼ ctα−1e−λt , t→∞, (1.1)

(this incorporates as a special case the three distributions in the numerical example
of [16]) or of power-form in the sense that log f(t)/t → −α − 1; this covers as a

1[16] says R = 106 but this is a typo.
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special case a regularly varying f ,

f(t) ∼ L(t)

tα+1
, t→∞, (1.2)

with L slowly varying. We shall therefore pay particular attention to these specific
cases.

The paper is organized as follows. In Section 2, we give the relevant preliminaries
both on RESTART and rare event simulation. In particular, a crucial quantity
for the rest of the paper is introduced, a Cramér-type root γ(t). Section 3 and
Appendix B studies the simulation problem when T ≡ t is deterministic. This
is fairly standard in its simplest formulation since as surveyed in Section 2, X −
T = X − t then admits a geometric sum representation, and it is folklore that the
simulation of tails of light-tailed geometric sums is most efficiently carried out by
exponential tilting; in the RESTART setting, this means involving γ(t). However,
we also discuss to which extent the evaluation of γ(t) can be avoided.

The rest of the paper deals with the case of a random T . The asymptotic results
of [5] exhibit a great diversity depending on the specific form of the tails of F and G,
and for this reason one has to expect the same to be the case for the form of efficient
rare event simulation algorithms. We consider two cases, in both of which G is
taken to be exponential(µ). Section 4 studies the gamma-like case (1.1). Motivated
from general principles for rare event simulation, the asymptotic behavior of T given
X > x is studied, and after appropriate centering, we obtain a non-standard limit,
the exponentially tilted Gumbel distribution Qβ . The use of this as importance
distribution is discussed, and an important message is that importance sampling on
T alone is only modestly efficient — to do better, one has to combine with the more
sophisticated algorithms for geometric sums.

In Section 5, a similar discussion is carried out for the regularly varying case (1.2).
Here T given X > x needs to be both centered and scaled (not just centered), and
the limit is Pareto. However, using the Pareto (shifted and scaled back to T ) as
importance distribution one encounters an absolute continuity problem. This is
resolved by combining with another importance sampling algorithm.

A maybe surprising feature of these algorithms is that even if the distribution
of X is always heavy-tailed when T has unbounded support, then the ideas all come
from the light-tailed area; in general, the methodologies for simulation of light versus
heavy tails are intrinsically different, cf. [4] Ch.VI.

The algorithms just outlined enjoy bounded relative error, a concept in the center
of the rare event simulation literature (the definition is given in Section 2.2), and
generally considered to represent the ultimate improvement of crude Monte Carlo
simulation one can hope for. However, focusing solely on bounded relative error
as efficiency measure is misleading — one needs to consider also the computational
effort. This is done in Section 6, and a considerably more diverse picture emerges.
A partial solution to the problem based upon two-sided Lundberg type bounds is
suggested in Section 7. Finally, Section 8 contains some numerical examples.
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2 Preliminaries

2.1 The RESTART model

Consider a deterministic T ≡ t and let X(t) be the corresponding simple RESTART
total time, Ht(x) = P(X(t) ≤ x).

As in [5], we can write X(t) = t + S(t) where S(t) =
∑N

1 Ui(t) is a geometric
sum: N,U1(t), U2(t), . . . are independent such that P(N = n) = (1 − ρ)ρn with
ρ = G(t), and the Ui(t) have the distribution G|t defined as G conditioned to (0, t).
That is, the c.d.f. is P(Ui(t) ≤ s) = G(s)/G(t) for s ≤ t, P(Ui(t) ≤ s) = 1 for s > t,
and the density is g(s)/G(t) for s ≤ t, 0 for s > t. By general theory for geometric
sums, [17] (see also [5]), we know that

P
(
S(t) > x

) ∼ C1(t)e
−γ(t)x , (2.1)

where γ(t) is the solution of

1 =

∫ t

0

eγug(u) du (2.2)

and

C1(t) =
G(t)

γ(t)m(t)
where m(t) =

∫ t

0

ueγ(t)ug(u) du . (2.3)

Since P
(
X(t) > x

)
= P

(
S(t) > x− t

)
, we therefore have

H t(x) = P
(
X(t) > x

) ∼ C2(t)e
−γ(t)x where C2(t) = eγ(t)tC1(t) . (2.4)

From [5], we also quote the two-sided Lundberg inequality:

e−γ(t)x ≤ Ht(x) ≤ eγ(t)te−γ(t)x . (2.5)

It is shown in [5] that for a general G, γ(t) ∼ µG(t) as t → ∞ where µ is the
mean of G. For the exponential case, we shall need certain refinements and related
results that are proved/collected in Appendix A. In particular:

µe−µt ≤ γ(t) = µe−µt + µ2te−2µt + o(te−2µt) as t→∞ , (2.6)

γ(t) = −µ log t/t
(
1 + o(1)

)
as t ↓ 0 . (2.7)

2.2 Rare Event Simulation

Consider the probability z(x) of an event A(x) (in our case, {X > x}) that is rare
in the sense that z(x) → 0 as x→∞. As in [4], we denote by an estimator for z(x)
a r.v. Z(x) that can be generated by simulation and is unbiased, EZ(x) = z(x). A
family

{
Z(x)

}
x>0

of such estimators (or just Z(x)) is said to have bounded relative

error if VarZ(x) = O
(
z(x)2

)
as x → ∞, and to be logarithmically efficient if

VarZ(x) = O
(
z(x)2−ε

)
for all ε > 0 ( cf. [4] p. 159). In practice, the estimate of

z(x) for a given x is obtained by averaging R replications of Z(x), and Gaussian
confidence intervals can be produced in a standard way by computing the empirical
variance.
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If we (in a non-standard terminology!) define the logarithmic efficiency factor of
an estimator Z(x) as

sup
{
p > 0 :

VarZ(x)

z(x)p
→ 0

}
,

then crude Monte Carlo method has logarithmic efficiency factor 1 and an estima-
tor that is logarithmically efficient or has bounded relative error has logarithmic
efficiency factor at least 2.

The traditional approach to exhibiting estimators with logarithmic efficiency
factor > 1 via importance sampling is to provide an asymptotic description of the
conditional distribution P

( · |A(x)
)

given the rare event A(x), and to use this as
importance distribution. The philosophy is that sampling from P

( · |A(x)
)

yields a
zero-variance estimator, so that an importance distribution that is close hopefully
has a small variance.

As already touched upon in Section 1, also computational effort needs to be
taken into account; this is often neglected in the rare event simulation literature.
We defer the discussion of this to Section 6.

3 Simulation Algorithms for a Deterministic

T ≡ t

In this section, we discuss efficient algorithms for simulation of z(x) = P
(
S(t) > x

)
for a fixed t. One of them (Algorithm 1) has bounded relative error. Replacing x by
x− t gives algorithms with bounded relative error for simulation of H t(x) (the case
of a random T is the subject of the rest of the paper and requires more work). The
other approach, Algorithm 2, is conceptually simpler and reduces variance with an
exponential factor, but does not have bounded relative error.

We will allow G to be general, not necessarily exponential. We write

Sn = U1 + · · ·+ Un , τ(x) = inf{n : Sn > x} .
Recall from Section 2 that G|t denotes G conditioned to (0, t), and define Gγ(t) as
the distribution on (0, t) with density gγ(t)(y) = eγ(t)yg(y), 0 < y < t.

The first algorithm is a special case of the one given in [4], Exercise 2.3 p. 172,
for general geometric sums (see also Blanchet & Li [9]). An outline of the approach
is given in Appendix B. One needs to determine a certain root and to define a cor-
responding exponentially tilted distribution. When specialized to the RESTART
setting, it is easy to see that the root is precisely γ(t) and that the exponentially
tilted distribution bevomes Gγ(t) (see Remark 8.1). This yields the following algo-
rithm:

Algorithm 1 Generate U1, U2, . . . from Gγ(t). Stop the simulation at τ(x) and re-
turn the estimator Z1(x) = e−γ(t)Sτ(x) .

From Appendix B we have at once:

Theorem 3.1 The estimator Z1(x) is unbiased for z(x) and has bounded relative
error. That is, Varγ(t) Z1(x) = O

(
z(x)2

)
as x→∞.
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Random variate generation from Gγ(t) as well as the rootfinding may sometimes
be tedious. A simpler idea is to take advantage of the special feature of bounded
support (that is not available for general geometric sums) and simulate using the
distribution G|t. This leads to:

Algorithm 2 Generate U1(t), U2(t), . . . from G|t. Stop the simulation at τ(x) and
return the estimator Z2(x) = G(t)τ(x).

Proposition 3.1 The estimator Z2(x) is unbiased for z(x). Further, Var|tZ2(x) is
of order e−(γ(t)+ξ(t))x where ξ(t) is the solution of

1 = G(t)

∫ t

0

e(γ(t)+ξ(t))ug(u) du (3.1)

and satisfies 0 < ξ(t) < γ(t). That is, the logaritmic efficiency factor is 1 +
ξ(t)/γ(t) ∈ (1, 2).

Proof. For u < t, we have

P|t(U1 ∈ du) =
g(u)du

G(t)
=

e−γ(t)u

G(t)
Pγ(t)(U1 ∈ du) ,

and it follows by a standard extension to stopping times (e.g., [4] pp. 131–132) that

E|tZ2(x) = Eγ(t)

[e−γ(t)Sτ(x)

G(t)τ(x)
Z2(x)

]
= Eγ(t)e

−γ(t)Sτ(x) = Eγ(t)Z1(x) = z(x) ,

showing unbiasedness.
Since (3.1) can be rewritten as 1 = G(t)Eγ(t)e

ξ(t)U1 , it follows in a similar way
that

E|tZ2(x)
2 = Eγ(t)

[e−γ(t)Sτ(x)

G(t)τ(x)
Z2(x)

2
]

= Eγ(t)

[
e−γ(t)Sτ(x)G(t)τ(x)

]
= Eγ(t)

[
e−(γ(t)+ξ(t))Sτ(x)eξ(t)Sτ(x)/

[
Eγ(t)e

ξ(t)U1
]τ(x)

]
.

Using |Sτ(x) − x| ≤ t shows that this expression is bounded up and below by a
constant times

e−(γ(t)+ξ(t))x · Eγ(t)

[
eξ(t)Sτ(x)/

[
Eγ(t)e

ξ(t)U1
]τ(x)

]
.

But the expectation is the expectation of the Wald martingale stopped at τ(x). The
condition for optional stopping ([3] p. 362) is trivially satisfied because by positivity,
τ(x) is automatically finite for any exponential tilting of Pγ(t). Thus the expectation
is indeed one, so that the order of Var|tZ2(x) is as asserted.

To complete the proof, it remains to show that 0 < ξ(t) < γ(t). Clearly, the
r.h.s. of (3.1) is increasing in ξ(t). The value at ξ(t) = 0 is G(t) < 1 because of the
definition of γ(t). This implies ξ(t) > 0. Similarly, ξ(t) < γ(t) will follow if we can
show that the value at γ(t) is > 1. But this value is

G(t)

∫ t

0

e2γ(t)ug(u) du = G(t)2E|te2γ(t)U1 > G(t)2
[
E|teγ(t)U1

]2
= 1 ,
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where the last step used that the definition of γ(t) can be rewritten

1 =

∫ t

0

eγ(t)ug(u) du = G(t)E|teγ(t)U1 . �

The last part of Proposition 3.1 shows that indeed Algorithm 2 provides expo-
nential variance reduction (at rate ξ(t)) but does not have bounded relative error
(for this ξ(t) ≥ γ(t) would have needed). However, the loss of efficiency vanishes as
t→∞:

Proposition 3.2 Assume Ĝ[ǫ] =
∫∞
0

eǫt G(dt) < ∞ for some ǫ > 0. Then ξ(t) ∼
γ(t) ∼ µe−µt as t → ∞. That is, the logarithmic efficiency factor of Algorithm 2
goes to 2 as t→∞.

For the proof, see Appendix A.

Algorithm 2 is simpler than Algorithm 1 by avoiding the rootfinding and the
exponential tilting. However, for G exponential the exponentially tilted distribution
is truncated exponential. So, both algorithms require simulation from an exponential
distribution truncated to (0, t) (but with different parameters µ1 = µ−γ(t), µ2 = µ).
This can easily be done by inversion: generate the r.v. as − log

(
(1−e−µit)V/µi

)
with

V uniform on (0, 1), cf. [4], Remark 2.4 p. 39. Another way is acceptance-rejection:
use the exponential(µi) distribution as proposal and reject values > t.

4 Simulation Algorithms for a Gamma-Like T

If T is random, one expects a large X to occur as consequence of a large T . Thus the
general principles of importance sampling surveyed in Section 2.2 suggest to look
for the conditional distribution of T given X > x. Our result is:

Theorem 4.1 Assume that F is gamma-like as in (1.1). Then the conditional
distribution of Y = Y (x) = µT−log x−log µ given X > x has a limit in distribution
as x→∞, namely the distribution Qβ with density

q(y) = exp
{−e−y − βy

}
/Γ(β) , −∞ < y <∞ where β = λ/µ . (4.1)

One simple message is that T given X > x is of order log x/µ. When λ = µ, Q = Q1

is the Gumbel distribution familiar from extreme value theory (also known as the
Fisher-Tippet distribution). The c.d.f. at y is exp

{−e−y
}
. When λ 6= µ, Qβ is an

exponentially tilted Gumbel distribution, and the properties are less standard. We
return to this at the end of the section.

Proof of Theorem 4.1. Specializing Corollary 1.1 (or Theorem 2.2) of [5], we get

P(X > x) ∼ cΓ(β)

µα+β

logα−1 x

xβ
. (4.2)

Let f(t; x) be the density of T on the event X > x, that is,

f(t; x) dt = P(T ∈ dt, X > x) ,
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and let t(x, y) = (log x + logµ + y)/µ. Then the density q(y|x) at y of Y given
X > x is f

(
t(x, y); x

)
/µP(X > x). Using (2.6) gives

γ
(
t(x, y)

)
= e−y/x+ O(log x/x2) .

It follows then from the two-sided Lundberg inequality (2.5) that

P
(
X > x

∣∣T = t(x, y)
) ∼ exp{−e−y} ,

and so

q(y|x) =
1

µP(X > x)
f
(
t(x, y); x

)
=

1

µP(X > x)
f
(
t(x, y)

)
P
(
X > x

∣∣T = t(x, y)
)

∼ µα+β−1

cΓ(β)

xβ

logα−1 x
ct(x, y)α−1e−λt(x,y) exp{−e−y}

∼ µα+β−1

cΓ(β)

xβ

logα−1 x
c
logα−1 x

µα−1
x−βµ−βe−βy exp{−e−y} = q(y) .

But Scheffé’s theorem ([7]) states that convergence of densities implies convergence
in distribution. �

Theorem 4.1 suggests that in the case of a gamma-like F as in (1.1), one should
proceed as follows in order to simulate z(x) = P(X > x):

Algorithm 3 Generate Y from the density q in (4.1) and let T = t = (log x +
logµ + Y )/µ. If T ≤ 0, return the estimator Z3(x) = 0. Otherwise calculate the
likelihood ratio

W = f(T )/µq(µT − log x− logµ) = f(T )x−βµ−1−βΓ(β) exp
{
µe−µTx+ λT

}
,

compute the crude Monte Carlo estimator Z0(x−t) for P
(
S(t) > x−t) = P(X(t) > x),

and return the estimator Z3(x) = WZ0(x− t).

The algorithm is motivated from the general principle of rare event simulation,
that one should use a distribution close to the conditional distribution given the
rare event (here X > x) as importance distribution, cf. [4] Example 1.3 p. 128.
Indeed, the suggested importance distribution for T corresponds to the asymptotic
description of this conditional distribution provided by Theorem 4.1 and the event
X > x is not rare when T is simulated from q. The following result shows that
the algorithm indeed has a substantial smaller asymptotic variance than the Crude
Monte Carlo method, but does not get close to bounded relative error or logarithmic
efficency:

Proposition 4.1 The estimator Z3(x) has logarithmic efficiency factor at most 3/2,
and exactly equal to 3/2 provided

∫ t0
0
f(t)2 dt < ∞ for all t0 <∞.

In the proof, we shall need the following analytical result:

Lemma 4.1 For any t0 > 0,

∫ ∞

t0

exp
{−ke−ηtx

}
ctδ−1e−λt dt ∼ Γ(λ/η)

ηδkλ/η

logδ−1 x

xλ/η
as

x→∞.

8



The Lemma is of the same type as a crucial step in the proof of (4.2) in [5], but
since the proof is short, we reproduce it here: substituting s = e−ηt, the integral
becomes ∫ e−ηt0

0

e−ksx (− log s)δ−1

ηδ
sλ/η−1 ds ,

and Karamata’s Tauberian theorem ([8] Theorems 1.5.11 and 1.7.1) implies that
this has the asserted asymptotics. �

Proof of Proposition 4.1. From EZ0(x− t)2 = P
(
S(t) > x− t

)
= H t(x), we get by

conditioning upon T = t that

EZ3(x)
2

=

∫ ∞

0

Ht(x)
f(t)2

µ2q(µt− log x− log µ)2
µq(µt− log x− log µ)/µ dt (4.3)

= x−β

∫ ∞

0

Ht(x)f(t)2Γ(β)µ−1−β exp
{
µe−µtx+ λt

}
dt (4.4)

≥ k1x
−β

∫ ∞

t0

e−γ(t)xt2α−2e−2λt exp
{
µe−µtx+ λt

}
dt

≥ k1x
−β

∫ ∞

t0

t2α−2 exp
{−O

(
te−2µt

)
x− λt

}
dt

≥ k1x
−β

∫ ∞

t0

t2α−2 exp
{−k2(ǫ)e

−(2−ǫ)µtx− λt
}

dt

∼ k3(ǫ)
log2α−2 x

xλ/(2−ǫ)µ
= k3(ǫ)x

−β log2α−2 x

xβ(1+1/(2−ǫ))
,

where we used the lower Lundberg bound in (2.5), the r.h. inequality in (2.6) and
Lemma 4.1. Combining with (4.2) shows that the logarithmic efficiency factor is as
most 1 + 1/(2− ǫ) and therefore at most 3/2.

For the lower bound, first note that the upper Lundberg bound implies that (4.4)
can be bounded by

k5x
−β

∫ ∞

0

f(t)2 exp
{
ψ(t, x)− λt

}
dt

where ψ(t, x) = γ(t)t− γ(t)x+ µe−µtx. Let I1, I2, denote the contributions to this
integral from the intervals 0 < t ≤ t0, resp. t > t1, where t0, t1 will be specified later.
Then, with k7 = supt>t0 γ(t)t, we have by the r.h.s. of (2.6) that

I2 ≤ k6

∫ ∞

t1

t2α−2 exp
{
k7 − k8te

−2µtx− λt
}

dt

≤ k9

∫ ∞

t1

t2α−2 exp
{−k8t1e

−2µtx− λt
}

dt ∼ k10
log2α−2 x

xλ/2µ
.

For x ≥ 1, we can bound I1 by∫ t0

0

f(t)2 exp
{
ψ(t)x

}
dt

9



where ψ(t) = γ(t)t− γ(t) + µe−µt. Using (2.7) yields

ψ(t) ≤ −µ log t(1− 1/t)
(
1 + O(1)

)
+ µ

as t ↓ 0. This shows that is t0 is small enough, then ψ(t) < 0 uniformly in 0 < t ≤ t0.
Hence using the assumption on f 2 shows that I1 goes to 0 exponentially fast as
x→∞.

Replacing t1 by a smaller value, we may assume t1 ≤ t0 and then (4.4) is bounded
by x−β(I1 + I2), which in turn by the above estimates is O(x−δ) for all δ < 3β/2.
This completes the proof. �

Remark 4.1 An essential ingredient of the proof is informally to replace
P
(
S(t − x) > x

)
for a large t by its Cramér-Lundberg approximation C2(t)e

−γ(t)x,
note that C2(t) ∼ 1 and γ(t) ∼ µe−µt as t → ∞, so that the final approximation
is exp{−µe−µtx}; to justify this, Lundberg’s inequality (and in part more refined
estimates like (2.7)) were used.. The same procedure will be used later in the paper
in Section 5, but since we have carefully given the details for the present case, we
will not do so there. �

To improve Algorithm 3, we involve further properties of the conditional distri-
bution given the rare event, namely the behaviour of U1(t), . . . , UN(t)(t) as used in
Algorithms 1, 2 (it is not apriori obvious that this will help since since the event
X > x is not rare when T is simulated from q!)

Algorithm 4 Generate Y from the density q in (4.1) and let T = t = (log x +
logµ+ Y )/µ. If T ≤ 0, return Z4(x) = 0. Otherwise calculate the likelihood ratio

W = f(t)/µq(µt− log x− log µ) ,

compute one of the two estimators Zi(x − t) of Section 3 (i = 1 or 2), and return
Z4(x) = WZi(x).

Theorem 4.2 The estimator Z4(x) has bounded relative error provided∫ t0
0
f(t)2 dt <∞ for all t0 <∞.

Proof. The proof is a small variant of the last part of the proof of Proposition 4.1.
Let first i = 1. From EZ1(x− t)2 ≤ e−2γ(t)(x−t), we get by conditioning upon T = t
and replacing H(t) by e−2γ(t)(x−t) in (4.4) that

EZ4(x)
2 ≤ x−β

∫ ∞

0

e2γ(t)tf(t)2 exp
{−2γ(t)x+ µe−µtx+ λt

}
dt

Let again I1, I2, denote the contributions to this integral from the intervals 0 < t ≤
t0, resp. t > t1. The proof that I1 goes to 0 exponentially fast follows the same lines
as above. Further,

I2 ≤ k12

∫ ∞

0

e2k7t2α−2 exp
{−µe−µtx− λt

}
dt ∼ k13

log2α−2 x

xβ
.

10



This shows the assertion for i = 1. For i = 2, we have

EZ4(x)
2 ≤ k14

∫ ∞

0

eγ(t)t+ξ(t)tf(t)2 exp
{−γ(t)x− ξ(t)x+ µe−µtx+ λt

}
dt

For I1, we insert ξ(t) ≥ 0 and are then back to the same integral as above. For I2,
we use ξ(t) ≥ k15γ(t) for t ≥ t1 and can then use just the same estimates. �

For the implementation of Algorithms 3, 4, we note the following results:

Proposition 4.2 The distribution Qβ in (4.1) has c.d.f.

Qβ(y) =
1

Γ(β)

∫ ∞

e−y

uβ−1e−u du .

Proof. In the identity Qβ(y) =
∫ y

−∞ q(v) dv, substitue u = e−v. �

Corollary 4.1 Assume β > 1. Then a r.v. Y with distribution Qβ can be generated
as Y = − logZβ with Zβ gamma with density zβ−1e−z/Γ(β).

Proof. P(− logZβ ≤ y) = P(Zβ ≥ e−y) = P(Y ≤ y). �

5 Simulation Algorithms for Heavy-Tailed F

In this section, we assume that F is regularly varying, cf. (1.2). As in Section 4,
the first step in the design of simulation algorithms is to look for the conditional
distribution of T given X > x, that is, for an analogue of Theorem 4.1. We then
face the difficulty that the results of [5] (more precisely part (2:1) of Theorem 2.1
of [5]) only gives logarithmic asymptotics. Part (i) of the following result improves
this to sharp asymptotics:

Theorem 5.1 Assume that G is exponential with rate µ and that f(t) = L(t)/tα+1

with α > 0 and L(x) slowly varying as t→∞. Then:

(i) H(x) ∼ L(log x)µα

α logα x
;

(ii) P(X > x, T > log x/µ) ∼ L(log x)µα

α logα x
;

(iii) P(X > x, T ≤ log x/µ) ∼ L(log x)µαE1(µ)

logα+1 x
.

Here E1(z) =
∫ ∞

z
v−1ev dv denotes the exponential integral, cf. [1].

Note that the asymptotics in (i) and (ii) are the same, whereas the one in (iii)
exhibits a lighter tail. Thus, the main contribution to P(X > x) comes from the
event T > log x/µ.

Proof of Theorem 5.1. Obviously, (i) is a trivial consequence of (ii), (iii), so it suffices
to prove (ii), (iii).

11



Consider first (ii). Appealing to Remark 4.1 and substituting t = log x/µ +
y log x/µ, we get

1

L(log x)
P(X > x, T > log x/µ) ∼ 1

L(log x)

∫ ∞

log x/µ

exp{−µe−µtx}L(t)

tα+1
dt

=
1

L(log x)

∫ ∞

0

exp{−µe−y log x} L
(
log x(1/µ+ y/µ)

)
(log x(1/µ+ y/µ)α+1

log x

µ
dy

∼ µα

logα x

∫ ∞

0

R(x, y)

(1 + y)α+1
dy . (5.1)

where R(x, y) = L(log x(1/µ + y/µ
)
/L(log x). Choose 0 < δ < α. By the Potter

bounds ([8] p. 25) there exists k and y0 such that R(x, y) ≤ kyδ for all y > y0, and by
the uniform convergence theorem for slowly varying functions ([8] p. 22 with ρ = 0
and a = 1/µ), R(x, y) → 1 uniformly on (0, y0). Since R(x, y) → 1 also on (y0,∞),
dominated convergence applies to the integral over this interval, and we conclude
that (5.1) asymptotically behaves like

µα

logα x

∫ ∞

0

1

(1 + y)α+1
dy =

µα

α logα x

as claimed.
For (iii), P(X > x, T ≤ t0) goes to 0 exponentially fast (at rate at least γ(t0))

and can be neglected. Further (cf. again Remark 4.1)

P(X > x, t0 ≤ T ≤ log x/µ) ∼
∫ log x/µ

t0

exp{−µe−µtx}L(t)

tα+1
dt

=

∫ log x/µ−t0

0

exp{−µey} L(log x/µ− y)

(log x/µ− y)α+1
dy

∼ L(log x)µα+1

logα+1 x

∫ ∞

0

exp{−µey} dy ,

where the last step used similar arguments as in the proof of (ii). But substituting
v = ey, the integral becomes E1(µ)/µ. �

Theorem 5.2 Assume that F is regularly varying as in (1.2). Then the conditional
distribution of Y = µT/ log x−1 given X > x has a limit in distribution as x→∞,
namely the Pareto(α) distribution Pα with density pα(y) = α/(1 + y)α+1, y > 0.

It follows that given X > x, the order of T is again log x/µ. However, whereas the
deviation of T from log x/µ remained of constant order in the gamma case, it now
has to be scaled by log x.

Proof of Theorem 5.2. We recall from Theorem 5.1(i) that

P(X > x) ∼ L(log x)µα

α logα x
.

Let t(x, y) = log x(1 + y)/µ. Then

γ
(
t(x, y)

) ∼ µe−µt(x,y) = µe−y log x/x

12



and therefore (cf. Remark 4.1)

P
(
S(t(x, y)) > x− t(x, y)

) ∼ exp
{−γ(t(x, y))x} → 1.

With f(t; x) as in the proof of Theorem 4.1, we therefore have it follows that the
density of Y given X > x is

log x

µP(X > x)
f
(
t(x, y); x

)
P
(
S(t(x, y)) > x− t(x, y)

)
∼ α logα+1 x

µα+1L(log x)

L
(
log x(1 + y)/µ

)
µα+1

(1 + y)α+1 logα+1 x

∼ α

L(log x)

L(log x)

(1 + y)α+1
= pα(y) .

�
For simulation of P(X > x), Theorem 5.2 suggest to use the distribution of

T (Y ) = (Y log x+ log x)/µ as importance distribution for T . This choice meets the
difficulty that the support of T (Y ) is (log x/µ,∞), so that absolute continuity fails
and the algorithm can only estimate P(X > x, T > log x/µ):

Algorithm 5 Generate Y from the Pareto density pα and let T = t = (Y log x +
log x)/µ. Calculate the likelihood ratio

W =
µf(t)

log x pα(µt/ log x− 1)
=
f(t)µα+2 tα+1

α logα+2 x
.

Compute the crude Monte Carlo estimator Z0(x − t) for P
(
S(t) > x − t

)
. Return

the estimator Z5(x) = WZ0(x− t) for P(X > x, T > log x/µ).

That only the crude Monte Carlo estimator of P
(
S(t) > x − t

)
needs to be used

comes of course from the fact that the event X > x is not rare even in the whole
support of T (Y ), and indeed:

Theorem 5.3 Algorithm 5 has bounded relative error for estimating P(X > x, T >
log x/µ).

Proof. Appealing to Remark 4.1, we get

EZ5(x)
2 ∼

∫ ∞

log x/µ

P
(
S(t) > x− t

)f(t)2µαtα+1

α logα x
dt

≤ k15

logα x

∫ ∞

log x/µ

exp
{−µe−µtx

}L(t)2

t2α+2
· tα+1 dt

≤ k15

logα x

∫ ∞

log x/µ

L(t)2

tα+1
dt ∼ k15L(log x/µ)2

log2α x

∼ k15L(log x)2

log2α x
∼ k16P(X > x, T > log x/µ)2 ,

where we used Karamata’s theorem for the integral asymptotics and (in the last step)
Theorem 5.1(i). �

To provide an unbiased estimate of P(X > x), we thus need an estimator of
P(X > x, T ≤ log x/µ). We first note:

13



Theorem 5.4 The conditional distribution of Y = log x − µT given X > x and
T ≤ log x/µ has a limit in distribution as x→∞, namely the distribution Rµ with
density rµ(y) = exp

{−µey
}
/E1(µ), y > 0.

It follows that given X > x and T < log x/µ, the order of T is again log x/µ.
However, whereas the deviation of T from log x/µ had to be scaled by log x when T
was unrestricted as in Theorem 5.2, it now remains constant.

Proof of Theorem 5.4. Let t(x, y) = log x/µ − y/µ. Since T = log x/µ − Y/µ, it
follows that the density of Y given X > x and T ≤ log x/µ is asymptotically

1

µP(X > x, T ≤ log x/µ)
f
(
t(x, y))P

(
S(t(x, y)) > x− t(x, y)

)
∼ logα+1 x

µα+1L(log x)E1(µ)
f(log x/µ− y/µ) exp

{−µe−µ(log x/µ−y/µ)x
}

∼ exp
{−µey

}
E1(µ)

�
We are now lead to the following algorithm for eatimating P(X > x, T ≤ log x/µ):

Algorithm 6 Generate Y from the density rµ and let T = t = log x/µ − Y/µ.
Calculate the likelihood ratio

W = f(t)/µrµ(log x− µt) = E1(µ)f(t) exp
{
µe−µtx

}
/µ .

Compute one of the two estimators Zi(x− t) of Section 3 (i = 1 or 2). Return the
estimator Z6(x) = WZi(x− t) of P(X > x, T ≤ log x/µ).

Theorem 5.5 Algorithm 6 has bounded relative error for estimating P(X > x, T ≤
log x/µ).

Let first i = 1. Then

EZ6(x)
2 =

∫ log x/µ

0

EZ1(x− t)2E1(µ)f(t)2 exp
{
µe−µtx

}
/µ dt

≤ k17

∫ log x/µ

0

e−2γ(t)xf(t)2 exp
{
µe−µtx

}
/µ dt .

A similar argument as in the proof of Theorem 5.3 together with the bound (2.6)
for γ(t) shows that this asymptotically is bounded by

k17

∫ log x/µ

t0

e−2γ(t)xL(t)2

t2α+2
exp

{
µe−µtx

}
dt

≤ k17

∫ log x/µ

t0

exp
{−µe−µtx

}L(t)2

t2α+2
dt

= k18

∫ log x−µt0

0

exp
{−µey

} L(log x/µ− y/µ)2

(1 + log x/µ− y/µ)2α+2
dy

∼ k19
L(log x)2

log2α+2 x
∼ k20P(X > x)2 .

We omit the details for i = 2. �
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6 Computational Effort

It was noted alreday by Hammersley & Handscombe [13] that considering variance
alone as performance measure of an algorithm may be misleading: one needs also to
consider the computational effort. They even quantified this effect in the statement
that “The efficiency of a Monte Carlo process may be taken as inversely proportional
to the product of the sampling variance and the amount of labour expended in
obtaining this estimate.”

The philosophy behind this is the fact that the “inverse efficiency” VarZ ·TimeZ
of a simulation estimator Z can be identified with the variance per unit computer
time; here TimeZ is the expected computer time to generate Z. See Glynn &
Whitt [12] and [4] III.10. To identify TimeZ in a mathematical rigorous way may
of course be difficult, but in many situations a natural definition suggests itself. For
the huge majority of standard rare event simulation algorithms TimeZ(x), however,
grows logaritmically in VarZ(x), and so involving TimeZ(x) makes little difference.
The situation in this paper will now be seen to be quite different.

Crude Monte Carlo simulation of P(X > x) was implemented in [16] by gener-
ating X and returning Z(x) = 1{X > x}. The effort in generating X is roughly
proportional to the number of restarts, which in turn is roughly proportional to X.
Thus we take TimeZ(x) = EX and get

VarZ(x) ·TimeZ(x) = P(X > x)
(
1−P(X > x)

) ·EX ≈ P(X > x) ·EX . (CMC0)

For the algorithms considered sofar in this paper, we can take TimeZ(x) ≈ x and
the bounded relative error property implies

VarZ(x) · TimeZ(x) ≈ P(X > x)2 · x . (IS)

To ompare these two expressions, we consider the case of F being exponen-
tial (λ) and G exponential(µ). With β = λ/µ, the probability of no restarts is∫∞
0
λe−(µ+λ)t dt = β/(1+β). Thus we have many restarts for β small and many for

β large. Further P(X > x) is of order x−β by (4.2). In particular, EX = ∞ when
β ≤ 1, and then the advantage of (IS) over (CMC0) if of course enormous. However,
for β > 1 (CMC0) is of order x−β , (IS) of order x1−2β which is only notably better
if β is large.

The calculation does, however, not pay full justice to crude Monte Carlo simu-
lation because in order to simulate P(X > x) it is not necessary to generate X but
only X1{X ≤ x}. Thus, when β < 1, (CMC0) has to be replaced by

VarZ(x) · TimeZ(x) ≈ P(X > x) · E[X1{X ≤ x}] ≈ x1−2β . (CMC1)

where the last step used

E[X1{X ≤ x}] =

∫ x

0

P(X > s) ds ≈
∫ x

x0

s−β ds ≈ x1−β .

Thus, the order is of the same magnitude as (IS). In order words, the importance
sampling algorithm does not lead to any asymptotic improvement in the work-
corrected variance!
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This raises the problem of finding a complexity O(1) but still efficient estimator
of P

(
S(t) > x − t). One may note that this probability is simply the probability

that the largest interevent time of a Poisson(µ) process M on the interval [0, x− t]
is at most t (counting 0 and x − t as epochs). An explicit expression for this is
known (Fisher [11]; see also Davis [10]) given the number m = M(x− t) of Poisson
epochs, but is an alternating series with order m terms, so using this formula would
not reduce the complexity from O(x) and could potentially be numerically unstable.
We have therefore not pursued this approach, but suggest a different solution in the
next section.

7 An Algorithm Exploiting Lundberg’s

Inequality

The problem in the analysis of Section 6 is the order of increase in TimeZ(x) in x.
We now suggest an alternative estimator having the property TimeZ(x) = O(1).
The estimator may lead to increased confidence bands, in particular for small x, but
the problem vanishes as x→∞.

The idea is to avoid the O(x) simulation of P
(
S(t) > x − t

)
by just replacing

this probability by its upper and lower Lundberg bounds. For example, in the
gamma-exponential setting of Section 4:

Algorithm 7 Generate Y from the density q in (4.1) and let T = t = (log x +
logµ + Y )/µ. If T ≤ 0, return the estimator Z3(x) = 0. Otherwise calculate γ(t)
and the likelihood ratio

W = f(T )/µq(µT − log x− logµ) = f(T )x−βµ−1−βΓ(β) exp
{
µe−µTx+ λT

}
,

and let Z ′
8(x) = W e−γ(t)x, Z ′′

8 (x) = W e−γ(t)(x−t). Repeat R times and compute the
empricial means z′8(x), z

′′
8 (x) and variances s′7(x)

2, s′′7(x)
2. Return the interval(

z′8(x)− 1.96s′8(x)/R
1/2, z′′8 (x) + 1.96s′′8(x)/R

1/2
)
. (7.1)

It follows immediately that:

Theorem 7.1 The interval (7.1) is an asymptotic 95% confidence interval for
P(X > x). That is, as R → ∞ it contains P(X > x) with probability at least
95%.

The limiting probability that (7.1) contains P(X > x) is of course somewhat larger
than 95%. How much depends on how tight the Lundberg bounds are, but as noted
above, these bounds are asymptotically tight as t→∞.

8 Numerical Examples

We took F as exponential(1) and G as exponential(0.8). Thus we are in the setting
of Section 4 with α = 1, β = 1.25. We consider 10 x-values 10i/2, i = 1, . . . , 10; in
this range, z(x) = P(X > x) varies approximately from 10−1 to 10−6.
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We implemented first Algorithm 4 with R = 1000 replications.
Figure 1 shows the 95% twosided confidence band (the scale is log10–log10 as

for all figures except Figure 4). As is seen, the precision is excellent even with the
modest value R = 1000, except for small values of x. The error appears to be
decreasing in x and this is further confirmed by Figure 2 that gives the relative
error of the algorithm, as defined by the halfwidth of the confidence band divided
by the simulated values. It may even look as if the relative error goes to zero, even
if our theoretical analysis rather suggest it has a limit. This could be explained by
Algorithm 2 becoming more and more efficient as t → ∞ because ξ(t) ↑ γ(t) as
t→∞, cf. Proposition 3.2, and that the limit γ(t) is not yet attained in the range
of x-values under consideration.
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confidence bands

Figure 1: Confidence bands for Algorithm 4
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relative precision

Figure 2: Relative precision of Algorithm 4
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In comparison to Figure 1, the confidence bands produced by Algorithm 7 are
given in Figure 3.
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Figure 3: Confidence bands for Algorithm 7

The precision is comparable to Algorithm 4 except for the smallest values of x. Of
course, one expects this to be due to the inaccuracy of the Lundberg bounds for
small x, and this is confirmed by Figure 4 that shows the upper and lower Lundberg
bounds divided by the simulated values.
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1

1.1
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Figure 4: Lundberg bounds

The following table gives a comparison of the running time for Algorithms 4
and 7, more precisely the ration between the one for Algorithm 7 and the one for
Algorithm 4 as produced by Matlab’s tic and toc commands.

x 101/2 101 103/2 102 105/2 103 107/2 104 109/2 105

407 377 228 157 50 18 4.8 1.2 0.35 0.12
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It is seen that indeed the rootfinding in Algorithm 7 (implemented via Matlab’s
fsolve) is much more expensive than the O(x) complexity of Algorithm 4 for small
or moderate x. The overall picture when comparing this with the precision as
discussed above is that Algorithm 4 is preferable for small or moderate x, but Al-
gorithm 7 for large x.

We finally took the opportunity to use our Matlab program to check the ac-
curacy of the approximations of [5], in this specific setting (4.2). Figure 5 shows
the simulated values versus approximations, and Figure 6 the relative error of the
approximations, as defined by the absolute value of the difference between the simu-
lated value and the approximation divided by the simulated value. The relative error
indeed appears to go to 0, as should be, and the roughly linear shape of Figure 6
(cf. the log–log scale) suggests a roughly power-like rate of decrease.
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Figure 5: Simulated values versus approximations

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
relative error of approximation

Figure 6: Relative error of approximation
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Appendix A: Root Properties

It is shown in [5] that for a general G, γ(t) ∼ µG(t) as t→∞. If G is exponential(µ),
as assumed in the following, we shall need certain refinements and related results.
First note that the defining equation (2.2) for γ(t) means

1 = ϕ
(
γ(t)

)
, where ϕ(γ) =

µ

γ − µ

(
e(γ−µ)t − 1

)
. (A.1)

Proof of (2.6). The r.h.s. of (2.2) (or, equivalently, of ϕ(γ)) is an increasing function
of γ. Taking γ = µe−µt, this r.h.s. becomes

µ

µ− µe−µt

(
1− exp

{
(µe−µtt− µt)

}
<

µ

µ− µe−µt
(1− e−µt) = 1 .

Therefore the desired solution γ(t) must be > µe−µt.
Since

∞∑
k=2

γ(t)k

k!

∫ t

0

ykµe−µy dy ≤ γ(t)2
∞∑

k=0

γ(t)k

k!

∫ ∞

0

ykµe−µy dy

= γ(t)2

∫ ∞

0

µeγ(t)y−µy dy ∼ γ(t)2

∫ ∞

0

µe−µy dy = O
(
γ(t)2

)
as t→∞, we further get

1 =

∫ t

0

(
1 + γ(t)y

)
µe−µy dy + O

(
γ(t)2

)
= 1− e−µt + γ(t)

1

µ
− γ(t)

∫ ∞

t

µye−µy dy + O
(
γ(t)2

)
= 1− e−µt + γ(t)

1

µ
− γ(t)te−µtγ(t) +

γ(t)

µ
e−µt + O

(
γ(t)2

)
= 1− e−µt + γ(t)

1

µ
− γ(t)te−µt

(
1 + o(1)

)
+ O

(
γ(t)2

)
.

This implies the r.h. inequality in (2.6). �

Equivalent form of (A.1) are

γ(t) = µeγ(t)t−µt , (A.2)

γ(t) = µ+
log γ(t)− log µ

t
(A.3)

[indeed, (A.2) follows from (A.1) by trivial algebra, and (A.3) from (A.2) by taking
logarithms]. Obviously, there is no explicit solution. Since some of our algorithms
require computation of γ(t) for a large number of t, an efficient numerical scheme is
needed. In our numerical examples, we used Matlab’s routine fsolve. Another pos-
sibility is involving the Lambert W function (the root of θe−θ = y, in terms of which
the solution of (A.2) can be expressed). In software environments, where general
rootfinding algorithms are unavailable, one may use traditional Newton-Raphson
iteration γn+1 = γn − ϕ(γn)/ϕ

′(γn) or iterative schemes based upon (A.2), (A.3):
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Proposition 8.1 We have γ(t) > µ, γ(t) = µ or γ(t) < µ according as µt < 1,
µt = 1 or µt > 1. Further γ = γ(t) can be computed as γ = limn→∞ γn, where in
the case µt > 1

γn+1 = µeγnt−µt

and the initial value γ0 is chosen with γ0 < µ, and in the case µt < 1

γn+1 = µ+
log γn − logµ

t
and the initial value γ0 is chosen with γ0 > µ.

The need to distinguish between the cases µt < 1 and µt > 1 arises because (A.2),
(A.3) have the additional fixpoint µ, and γ(t) is attractive for (A.2) and µ repulsive
when µt > 1, but repulsive when µt < 1 (similar remarks apply to (A.3)), see Fig. 7.
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Figure 7: Iterations for γ(t)

Proof of Proposition 8.1. The first statement follows immediately since the r.h.s. of
(2.2) equals µt when γ = µ and is increasing in γ.

The convergence properties follow by standard arguments based upon convexity,
resp. concavity, see again Fig. 7. �
Proof of (2.7). γ(t) = −µ log t/t

(
1+o(1)

)
as t ↓ 0. Define γδ = µ−δ log t/t−log µ.

Then the r.h.s. of (A.2) is of order t−δ for γ = γδ, whereas the l.h.s. is of order
| log t|/t. If δ > 1, t−δ increases faster than | log t/t|, and since the r.h.s. of (A.2)
is convex and the l.h.s. affine, the desired solution γ(t) must be < γδ. A similar
argument shows that γ(t) > γδ when δ < 1. �
We finally give the

Proof of Proposition 3.2. That γ(t) ∼ µG(t) is shown in [5]. For ξ(t) ∼ γ(t), note
that the definition of ξ(t) means

1 = G(t)

∫ t

0

e(γ(t)+ξ(t))ug(u)du

=
(
1−G(t)

) ∫ t

0

eγ(t)u
[
(1 + ξ(t)u+ ξ(t)O

(
t2ξ(t)

)]
g(u)du

=
(
1−G(t)

)[
1 + ξ(t)/µ+ o

(
ξ(t)

)
] , (A.4)
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where we used ξ(t) < γ(t) ∼ µG(t) together with Ĝ[ǫ] <∞ to infer that t2ξ(t) → 0,

and Ĝ[ǫ] <∞ and dominated convergence to infer that∫ t

0

ueγ(t)ug(u) du = 1/µ+ o(1) .

However, (A.4) is only, possible if ξ(t) ∼ µG(t) �

Appendix B: Simulation of Geometric Sums

Let U∗
1 , U

∗
2 , . . . be i.i.d. with common distribution G∗ concentrated on (0,∞) and let

N be an independent geometric r.v., P(N = n) = (1− ρ)ρn for n = 0, 1, . . . Define
further

S∗n = U∗
1 + · · ·+ U∗

n , z(x) = P(S∗N > x) , τ ∗(x) = inf{n : U∗
1 + · · ·+ U∗

n > x} .
In [4], Exercise 2.3 p. 172 (see also Blanchet & Li [9]), the following algorithm is

suggested for simulation of z(x) and it is claimed that it has bounded relative error
as x→∞.2 As set-up, compute γ∗ as solution of

1 = ρ

∫ ∞

0

eγ∗y G∗(dy) . (B.1)

Let G∗ be the distribution defined by dGγ∗/dG
∗(y) = ρeγ∗y, and to generate one

replication of the estimator, proceed as follows:

Algorithm 8 Generate U∗
1 , U

∗
2 , . . . from Gγ∗ . Stop the simulation at τ ∗(x) and

return the estimator Z∗(x) = e−γ∗Sτ∗(x).

To understand the algorithm, note first that z(x) = P
(
τ ∗(x) ≤ N

)
. Next let Pγ∗ be

the probability measure where the U∗
i are i.i.d. with distribution Gγ∗ and N remains

independent and geometric. Then by the definition of Gγ∗ ,

P(U∗
1 ∈ du) =

1

ρ
Eγ∗

[
e−γ∗U∗1 ; U∗

1 ∈ du
]
.

By a standard extension to stopping times (see, e.g., [4] pp. 131–132), this implies

z(x) = Eγ∗
[ 1

ρτ∗(x)
e−γ∗Sτ∗(x); τ ∗(x) ≤ N

]
= Eγ∗e

−γ∗S∗
τ(x) ,

where we used that N remains geometric and independent of the U∗
i under Pγ∗ . I.e.,

the estimator Z∗(x) is unbiased.
Further

Eγ∗Z
∗(x)2 = Eγ∗e

−2γ∗Sτ(x) ≤ e−2γ∗x = O
(
z(x)2

)
,

where the last step used the standard Cramér-Lundberg asymptotics z(x) ∼ C∗e−2γ∗x

valid with 0 < C∗ <∞ under weak additional assumptions. This shows that Z∗(x)
has bounded relative error.

2Note that the expression for the estimator in loc. cit. contains typos, corrected here.
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Remark 8.1 For the geometric sum occuring in RESTART with T ≡ t as discussed
in Section 2, we have ρ = G(t) and G∗ is the distribution with density g(y)/G(t),
0 < y < t. Therefore γ∗ is the root γ(t) defined in (2.2), and Gγ∗ is the distribution
with density eγ(t)yg(y), 0 < y < t. �

Remark 8.2 Algorithm 8 may appear rather different from the best algorithm
known for Poisson (rather than geometric) sums discussed in [4] VI.2d, where one
exponentially tiltes the whole distribution of S∗N , leading to a new compound sum
with changed Poisson parameter and exponentially tilted increment distribution.
The tilting parameter θ = θ(x) is determined by ES∗NeθS∗N/EeθS∗N = x . Performing
the same operation for a geometric sum S∗N , one can easily check that the relevant
θ has limit γ∗ so that the two algorithms asymptotically coincide. �
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