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Abstract

This paper presents a simple branch-and-bound method based on Lagrangean re-
laxation and subgradient optimization for solving large instances of the capacitated
facility location problem (CFLP) to optimality. In order to guess a primal solu-
tion to the Lagrangean dual, we average solutions to the Lagrangean subproblem.
Branching decisions are then based on this estimated (fractional) primal solution.
Extensive numerical results reveal that the method is much more faster and robust
than other state-of-the-art methods for solving the CFLP exactly.
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1 Introduction

The capacitated facility location problem (CFLP) is a well-known combinatorial op-
timization problem with a number of applications in the area of distribution and
production planning. It consists in deciding which facilities to open from a given set
J of potential facility locations and how to assign customers i ∈ I to those facilities.
The objective is to minimize total fixed and shipping costs. Constraints are that
each customer’s demand di ≥ 0 must be satisfied and that each plant cannot supply
more than its capacity sj > 0 if it is open. Denoting the cost of supplying all of
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customer i’s demand from facility j by cij and the fixed cost of operating facility j
by fj, the CFLP is usually written as the mixed-integer program

Z = min
∑

i∈I

∑

j∈J
cijxij +

∑

j∈J
fjyj (1)

s. t.
∑

j∈J
xij = 1 , i ∈ I , (2)

∑

i∈I
dixij ≤ sjyj , j ∈ J , (3)

∑

j∈J
sjyj ≥ d(I) :=

∑

i∈I
di , (4)

xij − yj ≤ 0 , i ∈ I , j ∈ J , (5)

0 ≤ xij ≤ 1 , 0 ≤ yj ≤ 1 , i ∈ I , j ∈ J , (6)

yj ∈ {0, 1} , j ∈ J . (7)

A usual way of obtaining lower bounds on Z is to relax the demand constraints
(2) in a Lagrangean manner and to apply subgradient optimization for approxi-
mately computing the resulting Lagrangean dual bound. Several Lagrangean heuris-
tics and branch-and-bound algorithms for the CFLP follow this approach (Shetty,
1990; Cornuejols et al., 1991; Ryu and Guignard, 1992; Sridharan, 1993). Admit-
tedly, subgradient optimization shows the drawback of not providing a (fractional)
primal solution to the Lagrangean dual. Deciding on which variable to branch gets
therefore cumbersome and ad hoc heuristic rules are mostly used to this end. If the
branch-and-bound method is then additionally based on a depth-first search, the
resulting implementation usually fails in solving larger problem instances.

An optimal primal solution to the Lagrangean dual is a convex combination of
optimal solutions to the Lagrangean subproblem at given optimal Lagrangean mul-
tiplier values. Simply counting how many times a binary variable yj equals one in
the solutions obtained for the Lagrangean subproblem should thus probably give
sufficient information on optimal solutions to the linear primal master problem,
that is the Lagrangean dual’s dual program. In a similar way the Volume Algorithm
(Barahona and Anbil, 2000) approximates primal solutions within the framework of
subgradient optimization. Barahona and Chudak (2005) use this method in conjunc-
tion with randomized rounding for computing heuristic solutions to the CFLP and
UFLP. Section 2 discusses our method for computing lower bounds and estimating
a corresponding (fractional) primal solution. Section 3 then summarizes how this
bounding scheme is embedded in a branch-and-bound procedure for computing op-
timal solutions to the CFLP, and Sect. 4 presents extensive numerical results as well
as a comparison with other state-of-the-art methods for exactly solving the CFLP.
Finally, some conclusions are drawn in Sect. 5.
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2 Computation of a lower bound

Dualizing the demand constraints (2) with multipliers λi, i ∈ I, yields the La-
grangean subproblem

ZD(λ) =
∑

i∈I
λi + min

x,y

∑

i∈I

∑

j∈J
(cij − λi)xij +

∑

j∈J
fjyj

s.t.: (3), (4), (5), (6), (7).
(8)

Let ji ∈ arg min{cij : j ∈ J}. It is straightforward to show that optimal Lagrangean
multipliers can be found in the interval [λmin, λmax], where

λmin
i = min

{
cij : j ∈ J \ {ji}

}
and λmax

i = max
{
cij : j ∈ J

}
. (9)

Moreover, it is well-known that (8) reduces to the binary knapsack problem

λ0 = min
y

{∑

j∈J
(fj − vj)yj :

∑

j∈J
sjyj ≥ d(I) , yj ∈ {0, 1} ∀ j ∈ J

}
, (10)

where

vj = max
x

{∑

i∈I
(λi − cij)xij :

∑

i∈I
dixij ≤ sj , 0 ≤ xij ≤ 1 ∀ i ∈ I

}
, j ∈ J .

The Lagrangean function ZD(λ) = λ0 +
∑
i∈I λi and thus also the Lagrangean dual

bound

ZD = max
{
ZD(λ) : λ ∈ [λmin, λmax]

}
(11)

can therefore be computed in pseudo-polynomial time (Cornuejols et al., 1991).
A broad range of different methods is available for exactly solving the Lagrangean

dual (11) and obtaining a corresponding primal solution. A stabilized column gener-
ation method for solving the corresponding primal linear master problem is applied
in (Klose and Drexl, 2005) and extended to a branch-and-price algorithm for the
CFLP in (Klose and Görtz, 2007). Alternatively, regularized decomposition or bun-
dle methods (Lemaréchal, 1989; Ruszczyński, 1995; Ruszczyński and Świȩtanowski,
1997) may be used for solving (11). The main principle of a bundle method is to keep
an inner polyhedral approximation to the ε-subdifferential ∂εZD(λ) of the piecewise
linear and concave function ZD(λ). A trial step is then taken into the best direction
found in this set (which requires to solve a quadratic master program). If this gives
a sufficient increase in ZD(λ), a “serious step” is taken to the next iterate; otherwise
a “null step” is performed and the current approximation of ∂εZD(λ) improved by
adding further subgradients. The Volume Algorithm of Barahona and Anbil (2000)
can be seen as a heuristic version of a bundle method. The procedure keeps an es-
timate of a primal solution to the Lagrangean dual. This estimated solution is an
exponentially weighted average of the solutions obtained to the Lagrangean sub-
problem in the course of the algorithm. Furthermore, this estimated primal solution
is also used for determining subgradient-like search directions. If a move into such a
direction gives an ascent, a serious step is taken and the new dual iterate accepted;
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otherwise a “null step” is performed. With respect to the Lagrangean dual (11), the
Volume Algorithm consists in the application of the following steps.

Step 1: Initialize the Lagrangean multipliers λ with initial values λ. Solve the
Lagrangean subproblem (8) with λ = λ and let (x, y) denote the solution. Set t = 1
and ZD = ZD(λ).

Step 2: Set gti = 1 −∑j∈J xij for all i ∈ I and λt = λ + θtg
t, where θt > 0 is the

step length. Solve (8) with λ = λt. Let (xt, yt) denote the solution. Set (x, y) :=
µ(xt, yt) + (1− µ)(x, y), where 0 < µ < 1.

Step 3: If ZD(λt) > ZD, update λ = λt and set ZD = ZD(λt). Let t := t + 1 and
return to Step 2 if a termination criteria is not met.

In Step 2, the usual step size formula

θt = αt
UB − ZD(λt)

‖gt‖2 (12)

is applied, where UB is an upper bound on ZD and 0 < αt ≤ 2. Barahona and Anbil
(2000) propose a special updating scheme for the step size parameter αt. There is no
guarantee that the method converges, neither to an optimal primal nor to an optimal
dual solution. Bahiense et al. (2002) show how to modify the Volume Algorithm such
that convergence is guaranteed. This revised version is however very close to bundle
methods.

In order to restore at least dual convergence, it seems appropriate to resort to
standard subgradient optimization. Instead of the exponentially weighted average
(x, y) used in the Volume Algorithm above, we might then also just simply use the
arithmetic average

(x̃, ỹ) =
1

t

t∑

τ=1

(xτ , yτ ) (13)

for the purpose of estimating primal solutions. When the dual multipliers λt converge
to the optimal ones, say λ∗, the solutions (xt, yt) of the Lagrangean subproblem
tend to be very close to those that are optimal at optimal multipliers λ∗. Hence,
despite its simplicity, the arithmetic average should be relatively close to a suitable
convex combination of optimal solutions to the Lagrangean relaxation for optimal
multipliers λ∗, and thus quite well approximate an optimal solution to the linear
primal master problem. Moreover, in case of the CFLP, the bound ZD on Z is
generally quite strong. It is thus usually not required and also does not pay off to
include additional (polyhedral) cutting planes. A fractional primal solution is then
only used for the purpose of selecting a suitable branching variable – optionally,
the solution may also be used for obtaining further heuristic solutions. To this end,
however, exact knowledge of an optimal primal solution should not be required
and rough information sufficient for finding a suitable branching variable, e.g., by
simply branching on a variable yj showing a value of ỹj closest to 0.5. Sherali and
Choi (1996) also give some theoretical support for the simple average weighting
rule (13). They propose to recover primal solutions by taking convex combinations
of the solutions (xt, yt) generated in the course of the subgradient optimization. They
moreover provide sufficient conditions on the dual step sizes and primal weights for
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ensuring that the primal and dual iterates converge to optimal solutions. It is in
particular shown that (13) converges to an optimal primal solution if θt ≥ θt+1 > 0
∀ t and limt→∞ tθt =∞. Although the step size strategy (12) will probably not meet
these conditions, it can be expected that this way a sufficiently precise estimate is
generated, in particular if the number of binary variables is small compared to the
total number of variables as in the case of the CFLP.

Sherali and Choi (1996) also consider the case of deflected subgradient optimiza-
tion. We have experimented with a deflected subgradient strategy and also with
exponentially smoothed subgradients as suggested in Baker and Sheasby (1999);
but our computational experiments indicated that in case of the CFLP these en-
hanced strategies do not show any advantage over the simple standard subgradient
strategy, in particular not for larger problem instances.

3 Branch-and-bound procedure

The lower bounding procedure described in the preceding section is used within
a branch-and-bound algorithm for computing optimal solutions to the CFLP. The
method uses a best lower bound search strategy and is based on the following com-
ponents.
• The lower bound ZD is computed approximately by means of subgradient opti-

mization. At the root node, the Lagrangean multipliers are initialized by setting
λ = λmin, where λmin is defined in (9). At all other nodes of the enumeration tree,
the multipliers are initialized with the values obtained at the father node. The
number of subgradient steps is limited to 350 at the root node and to 30 at the
subsequent nodes. At each node, the step size αt in the step size formula (12) is
first set to 2 and halved if there is no improve in the (local) lower bound after 5
subsequent subgradient steps.
• Upper bounds UB and feasible solutions are computed by solving the transporta-

tion problem that results by opening facilities j ∈ J with ytj = 1. At the root node,
a feasible solution is obtained after each subgradient step; at each other node, the
transportation problem is solved only one time after completion of the subgradi-
ent procedure using the Lagrangean solution yt obtained at the best multipliers
found in the course of the subgradient method. In order to avoid that the same
transportation problem is repeatedly solved, the different sets of open facilities
generated so far are stored in a hash table of at most 1009 hash values based on
a solution’s total fixed cost.
• The variable yj showing a “relative frequency” ỹj closest to 0.5 is selected as the

branching variable. Ties are broken arbitrarily. The current node is then replaced
by two sons where yj is forced to be 0 and 1, respectively.
• A best lower bound search is used, that is, the unprocessed node of the enumer-

ation tree showing the smallest lower bound is processed next. Ties are broken
arbitrarily.
• In order to further reduce the problem, Lagrangean probing is applied whenever

the best feasible solution found during the search improves. Let yt be the current
Lagrangean solution. The binary variable yj is tentatively set to 1 − ytj and the
Lagrangean bound recomputed. If the resulting bound is not less than the best
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global upper bound computed so far, the variable yj can be pegged to the value ytj.
At the root node the Lagrangean probing is performed after each subgradient step
leading to an improved feasible solution. At each other node of the enumeration
tree, the probing is only executed one time after completion of the subgradient
procedure.

4 Computational results

The proposed branch-and-bound algorithm (BB-SG) was coded in C and compiled
using the Gnu C compiler version 3.3.5 on an IBM PC with 3 GB RAM, an Intel
PD 930 processor of 3 GHz and a Linux operating system. The COMBO algo-
rithm of Martello et al. (1999) and David Pisinger’s C code (http://www.diku.
dk/~pisinger) was used to solve the binary knapsack problems (10). The trans-
portation problems that need to be solved to obtain the upper bounds were solved
by calling the network simplex algorithm of CPLEX’s callable library, version 8.0
(ILOG, 2002).

The code was used to solve four different sets of test problems. The first set
of test problems comprises the 75 problem instances from Klose and Görtz (2007).
These test problems range in size from instances with 100 customers and facilities up
to instances involving 500 customers and 200 potential facility sites. The instances
were generated using the following procedure proposed by Cornuejols et al. (1991):
(1) Customer and facility sites are generated as uniformly randomly distributed

points in a unit square. The unit transportation cost cij/di are then obtained
as the Euclidian distance multiplied by 10.

(2) Demands di and capacities sj are respectively generated from U [5, 35] and
U [10, 160], where U [a.b] denotes the uniformly distributed random number from
[a, b). A facility’s fixed cost reflects economies of scale and is obtained from
fj = U [0, 90] + U [100, 110]

√
sj.

(3) The capacities sj are then rescaled such that a prefixed capacity ratio r =∑
j sj/

∑
i di results. In Klose and Görtz (2007) and also here, a ratio of r = 3, 5

and 10 is used.
The second set of 100 test instances are the ones used by Avella and Boccia (2007)
and available at the web page http://www.ing.unisannio.it/boccia/CFLP.htm.
The sizes of these problem instances range from 300 up to 1000 customer and facility
sites. According to Avella and Boccia (2007), these instances are also generated by
the procedure described above. A closer look at the data reveals, however, that for
all these problem instances the range of the fixed facility cost is much larger than
usual for problem instances generated with the procedure of Cornuejols et al. In case
of the problem instances with |I| > |J |, the unit transportation costs are, moreover,
ten times higher than it should be according to the Cornuejols et al. procedure. We
thus used the same problem sizes and capacity ratios r as Avella and Boccia (2007)
to generate a third test bed of problem instances based on the procedure described
above. The appendix lists the C-code used for creating these test problem instances.
Finally, the fourth set of test instances is taken from the OR-library (Beasley, 1990).

We compared the results obtained with the subgradient-based branch-and-bound
method (BB-SG) with the following other exact solution procedures:
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(1) the branch-and-price algorithm of Klose and Görtz (2007);
(2) Ryu’s and Guignard’s (1992) CAPLOC algorithm;
(3) CPLEX’s MIP solver, version 8.0;
(4) the branch-and-cut procedure of Avella and Boccia (2007);
(5) the same branch-and-bound procedure as BB-SG, where however the volume

algorithm is applied instead of subgradient optimization (BB-VA).

4.1 Comparison with the branch-and-price algorithm of Klose and Görtz (2007)

Table 1 compares the subgradient-based method with the branch-and-price al-
gorithm (B&P) on the test problem instances used in Klose and Görtz (2007). Each
row of the table shows the average results over 5 single problem instances of the
given problem size |I| × |J | and capacity ratio r =

∑
j sj/

∑
i di. For both methods

the table indicates the number of enumerated nodes (nodes), the maximum depth
of the enumeration tree reached during the search (depth) and the computation
time in CPU seconds (time). For reasons of this comparison, the branch-and-price
algorithm was recoded in C and compiled and run on the same machine as BB-SG.

Both algorithms are based on the same Lagrangean relaxation. Whilst the branch-
and-price methods computes the lower bound and in particular a corresponding
(fractional) primal solution exactly by means of stabilized column generation, the
subgradient-based method just gets a lower approximate to this lower bound and an
estimate of a corresponding (fractional) primal solution. Accordingly, the branch-
and-price method enumerates much less nodes than BB-SG. Although significant,
the increase in the number of nodes enumerated by BB-SG is relatively moderate,
when compared to the branch-and-price method. This indicates that estimating a
primal solution by averaging the Lagrangean solutions works pretty well– at least
in case of the CFLP and the relaxation under consideration. BB-SG hardly ever
needed to go deeper in the enumeration tree than the branch-and-price method did.
BB-SG requires however much less effort for enumerating a single node than the
branch-and-price method does. The net effect is that BB-SG highly outperforms
the branch-and-price procedure. On average, BB-SG was about 20 times faster than
B&P; in case of larger instances and a capacity ratio of r = 10, the subgradient-
based method in particular showed to be much more efficient. Table 2 summarizes
the comparison by additionally averaging results over different values of r.

4.2 Comparison with CAPLOC

Ryu’s and Guignard’s (1992) CAPLOC algorithm is based on the same La-
grangean relaxation as BB-SG and also applies subgradient optimization for com-
puting the Lagrangean dual bound. CAPLOC is, however, a depth-first search and
uses quite different branching rules. Before branching at the top node, CAPLOC
tries to fix as many yj variables as possible by means of an extensive Lagrangean
probing. Let (xB, yB) denote the best feasible solution CAPLOC found so far and
let zB denote its objective value. Variables yj are temporarily fixed to 1 − yBj and
a limited number of subgradient steps is applied. If the resulting lower bound is
no smaller than zB, the binary variable yj is pegged to yBj . If further branching
is required, the procedure always branches on a variable yj with smallest value of
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Table 1
Comparison of B&P and BB-SG

B&P BB-SG

|I| × |J | nodes depth time nodes depth time

r = 3
100× 100 9 3 0.50 9 3 0.43
200× 100 53 9 6.86 58 7 1.29
200× 200 29 6 4.68 39 6 2.18
500× 100 537 15 722.30 794 14 37.94
500× 200 693 17 745.05 678 16 54.80
max 1347 24 1785.33 1733 19 91.79
mean 264 10 295.88 316 9 19.33

r = 5
100× 100 14 4 0.98 15 4 0.44
200× 100 89 10 22.80 133 10 3.07
200× 200 53 6 12.47 49 6 2.63
500× 100 256 11 915.66 437 13 21.73
500× 200 3070 21 6376.10 5061 17 434.98
max 8605 25 17860.59 12419 21 1319.37
mean 696 10 1465.60 1139 10 92.57

r = 10
100× 100 6 2 0.52 13 4 0.28
200× 100 26 5 13.53 37 5 1.36
200× 200 21 6 5.47 54 8 2.16
500× 100 37 6 242.93 83 7 6.45
500× 200 610 12 3458.33 1312 13 85.32
max 2099 18 10872.92 4495 18 230.96
mean 140 6 744.16 300 7 19.11

Table 2
Summarized comparison of B&P and BB-SG

B&P BB-SG

|I| × |J | nodes depth time nodes depth time

100× 100 10 3 0.67 12 4 0.38
200× 100 56 8 14.4 76 7 1.91
200× 200 34 6 7.54 47 7 2.32
500× 100 277 11 626.96 438 11 22.04
500× 200 1458 17 3526.49 2350 15 191.70
mean 367 9 835.21 585 9 43.67
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(νj + fj)/sj, where

νj = min
x

{∑

i∈I
cijxij :

∑

i∈I
dixij = sj , 0 ≤ xij ≤ 1 ∀ i ∈ I

}
.

The branch that results from requiring the selected plant to be open is then always
investigated first.

We used a FORTRAN code of Ryu and Guignard, but replaced the out-of-
kilter method used in this code for solving the transportation problems by calls
to the network simplex algorithm of CPLEX’s callable library. The code was then
compiled and run on the same machine as BB-SG. Table 3 compares CAPLOC
and BB-SG on the test problem instances from Klose and Görtz (2007) and Table 4
summarizes these results by again averaging over the capacity ratio r. As can be seen
from Table 3 and 4, BB-SG is far superior to CAPLOC. (The number of enumerated
nodes reported for CAPLOC in this table does not include the branches investigated
in the Lagrangean probing.) On the test problems of Table 3, BB-SG was on average
about 55 times faster than CAPLOC. Basically, both algorithms are based on the
same methodology; they apply the same Lagrangean relaxation and use subgradient
optimization for lower bounding. BB-SG however greatly benefits from, firstly, the
best lower bound search and, secondly and mostly, from better branching decisions
based on a reasonable estimate of a primal solution.

Since also the test problem instances from the OR-library are of a size and
difficulty that can be managed by CAPLOC, we also compared both methods on
these test problems. Each of these problem instances is of size |I| × |J | = 1000 ×
100. Table 5 shows the results, which again indicate the superiority of BB-SG. The
ORLIB instances are easier to solve than the instances of Table 3, but still BB-SG
is about 17 times faster than CAPLOC on these instances.

4.3 Comparison with CPLEX and the branch-and-cut method of Avella and Boccia
(2007)

We used CPLEX’s MIP solver in the following way for solving the CFLP (1)–(7).
We started with the weaker aggregate formulation that is obtained by taking for each
j ∈ J the sum of constraints (5) over all i ∈ I. Additional variable upper bounds (5)
were then included “on the fly” whenever violated by the current LP solution. The
model formulation found this way was then passed to the MIP solver, after remov-
ing beforehand those added constraints (5) that showed a positive slack at the final
LP solution. We also passed a feasible solution and upper bound to CPLEX’s MIP
solver. The solution was obtained using a simple rounding procedure, which was
applied each time the current LP relaxation was solved. To this end, the facilities
j ∈ J are sorted according to non-decreasing LP value of the associated variable yj
and then opened as long as yj ≥ 0.9 or the capacity of the open facilities is smaller
than the total demand. CPLEX’s MIP solver was called with default option values
except that (i) CPLEX’s internal primal heuristic was switched off; (ii) the relative
optimality tolerance was set to 10−6; (iii) the parameters CutsFactor, CutPass and
AggCutLim respectively controlling the number of cuts CPLEX may add, the num-
ber of cutting rounds CPLEX may perform, and the number of constraints that can
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Table 3
Comparison of CAPLOC and BB-SG

CAPLOC BB-SG

|I| × |J | nodes time nodes depth time

r = 3
100× 100 11 0.36 9 3 0.43
200× 100 293 5.36 58 7 1.29
200× 200 586 12.12 39 6 2.18
500× 100 8424 402.48 794 14 37.94
500× 200 22470 978.93 678 16 54.80
max 54679 2773.29 1733 19 91.79
mean 6357 279.85 316 9 19.33

r = 5
100× 100 67 0.84 15 4 0.44
200× 100 810 13.61 133 10 3.07
200× 200 365 10.33 49 6 2.63
500× 100 13427 591.76 437 13 21.73
500× 200 250202 29314.56 5061 17 434.98
max 850016 119911.52 12419 21 1319.37
mean 52974 5986.22 1139 10 92.57

r = 10
100× 100 13 0.34 13 4 0.28
200× 100 504 12.31 37 5 1.36
200× 200 76 3.63 54 8 2.16
500× 100 5193 298.16 83 7 6.45
500× 200 65110 4973.16 1312 13 85.32
max 265228 21419.38 4495 18 230.96
mean 14179 1057.52 300 7 19.11

Table 4
Summarized comparison of CAPLOC and BB-SG

CAPLOC BB-SG

|I| × |J | nodes time nodes depth time
100× 100 30 0.51 12 4 0.38
200× 100 536 10.43 76 7 1.91
200× 200 342 8.69 47 7 2.32
500× 100 9015 430.80 438 11 22.04
500× 200 112594 11755.55 2350 15 191.70
mean 24503 2441.20 585 9 43.67
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Table 5
Comparison of CAPLOC and BB-SG on ORLIB instances

CAPLOC BB-SG

problem nodes time nodes depth time

capa1 30 26.55 9 3 2.91
capa2 8 23.84 7 2 2.89
capa3 7 26.86 9 3 2.18
capa4 1 21.22 1 0 0.84
capb1 1 10.12 1 0 1.66
capb2 1510 361.92 27 5 11.06
capb3 280 243.44 29 6 11.49
capb4 4 25.12 17 7 4.32
capc1 95 61.25 9 3 3.40
capc2 569 164.91 59 8 12.63
capc3 22 52.19 11 4 6.01
capc4 18 51.87 5 2 2.40
mean 212 89.11 15 4 5.15

be aggregated for deriving flow cover inequalities and mixed-integer rounding cuts
were considerably increased over the default values.

Table 6 compares this way of using CPLEX with BB-SG on the instances of Klose
and Görtz (2007) and Table 7 summarizes again these results. As these tables show,
BB-SG also outperformed CPLEX on these instances. On average, BB-SG was about
16 times faster than CPLEX in solving these test problem instances, and in no single
case, CPLEX showed to be faster.

Table 8 compares the application of CPLEX and BB-SG on the instances from
the OR library. Avella and Boccia (2007) also report on the application of their
branch-and-cut algorithm (in the sequel denoted by B&C) as well as CPLEX’s MIP
solver to these instances. They used their branch-and-cut method and CPLEX 8.1
on a Pentium IV with 1.7 GHz and 512 MB RAM. In Table 8, we repeat the
computation times they reported for CPLEX 8.1 and their own branch-and-cut
method; we however divided these times by 2, since the computer they used might
be (at most) up to two times slower than the one we used. On average, BB-SG
showed to be about 75 times faster than the way we used CPLEX 8.0 and 113
times faster than the computation times reported by Avella and Boccia (2007) for
CPLEX 8.1. BB-SG also outperformed Avella’s and Boccia’s branch-and-cut method
and showed, on average, to be about 40 times faster in solving the ORLIB instances.

We then also applied BB-SG and CPLEX to the test problem instances of Avella
and Boccia (2007) and compared the computation times to those Avella and Boccia
report for their B&C method. Avella and Boccia generated five instances for each
problem size and capacity ratio r. In Table 9 averages over these five instances are
taken, and Table 10 additionally averages over r in order to further summarize the
results. It has to be noted that the method of Avella and Boccia failed to solve two
instances of size 1000× 1000 and ratio r = 15 to optimality within the time limit of
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Table 6
Comparison of CPLEX and BB-SG on instances of Klose & Görtz (2007)

CPLEX BB-SG

|I| × |J | nodes time nodes depth time

r = 3
100× 100 231 1.76 9 3 0.43
200× 100 814 10.40 58 7 1.29
200× 200 2333 46.82 39 6 2.18
500× 100 4764 290.96 794 14 37.94
500× 200 8103 567.57 678 16 54.80
max 15982 1209.54 1733 19 91.79
mean 3249 183.5 316 9 19.33

r = 5
100× 100 522 4.04 15 4 0.44
200× 100 1114 27.62 133 10 3.07
200× 200 3998 71.44 49 6 2.63
500× 100 2952 291.90 437 13 21.73
500× 200 42969 4529.83 5061 17 434.98
max 101633 11449.88 12419 21 1319.37
mean 10311 984.97 1139 10 92.57

r = 10
100× 100 111 2.58 13 4 0.28
200× 100 423 26.58 37 5 1.36
200× 200 2952 62.24 54 8 2.16
500× 100 188 108.23 83 7 6.45
500× 200 13456 4747.06 1312 13 85.32
max 32445 11402.14 4495 18 230.96
mean 3426 989.34 300 7 19.11

Table 7
Summarized comparison CPLEX and BB-SG on instances of Klose & Görtz (2007)

CPLEX BB-SG

|I| × |J | nodes time nodes depth time

100× 100 288 2.79 12 4 0.38
200× 100 784 21.53 76 7 1.91
200× 200 3094 60.17 47 7 2.32
500× 100 2635 230.36 438 11 22.04
500× 200 21509 3281.49 2350 15 191.70
mean 5662 719.27 585 9 43.67
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Table 8
Comparison of CPLEX, Avella’s & Boccia’s B&C and BB-SG on ORLIB instances

CPLEXa CPLEX 8.1b B&Cb BB-SG

problem nodes time time nodes time nodes depth time

capa1 8 364.58 151.11 608 159.63 9 3 2.91
capa2 0 391.56 92.26 452 82.02 7 2 2.89
capa3 28 741.18 66.74 129 95.29 9 3 2.18
capa4 0 251.97 18.40 2 47.91 1 0 0.84
capb1 0 106.12 147.86 622 128.42 1 0 1.66
capb2 82 598.70 597.59 853 293.78 27 5 11.06
capb3 134 498.35 2845.63 5121 743.83 29 6 11.49
capb4 40 573.28 857.31 5684 288.65 17 7 4.32
capc1 7 288.43 114.08 368 84.88 9 3 3.40
capc2 282 493.59 1987.18 1048 449.21 59 8 12.63
capc3 15 214.75 116.52 345 84.73 11 4 6.01
capc4 0 160.28 27.49 48 36.41 5 2 2.40
mean 50 390.23 585.18 1273 207.90 15 4 5.15

a Zero number of nodes means that the rounding heuristic solution’s value equalled the LP lower
bound computed before actually calling the MIP solver.

b Computation times as reported by Avella and Boccia (2007) divided by 2.

100,000 CPU seconds they used in their experiments (which approximately corre-
sponds to at most 50,000 CPU seconds on our machine). Our application of CPLEX
solved these two instances within 14,670 and 26,290 CPU seconds, respectively. The
BB-SG code even just required 5052 and 6779 CPU seconds for solving these two
instances. On the other hand, BB-SG failed to solve one instance of size 1000×1000
and capacity ratio r = 5. The computations stopped after 33,617 CPU seconds due
to insufficient memory with a remaining gap of 0.04% between the global lower and
upper bound. Avella and Boccia solved this instance within 38,264 seconds, which is
about 19,132 seconds on our machine; and our application of CPLEX even required
only 2904 seconds. In Table 9, we take in case of the Avella and Boccia method (col-
umn B&C) the average only over the three remaining instances of size 1000× 1000
and ratio r = 15 that were solved to optimality by Avella and Boccia. Accordingly,
in column BB-SG, we only average the results obtained on the four instances of size
1000×1000 and ratio r = 5 successfully solved by this method. Table 10 shows that
BB-SG is, on average, about 3 times faster than B&C in solving the instances of
Avella and Boccia; in particular in case of r > 5 BB-SG proved to be much faster.
In only a few single cases B&C required less computation time than BB-SG. BB-SG
was also, on average, significantly faster than CPLEX; except in the case of r = 5,
where CPLEX was fastest. CPLEX did also better than the method of Avella and
Boccia, however, on almost all of the 100 instances, except in case of five instances
with capacity ratio r = 20.

In case of the instances of Avella and Boccia, the fixed facility cost are in a
range of 50 to 1450 with a mean of about 580. Instances generated with Cornuejols
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Table 9
Comparison of CPLEX, B&C and BB-SG on Avella’s & Boccia’s instances

CPLEX B&Ca,b BB-SGc

|I| × |J | nodes time nodes time nodes depth time

r = 5
300× 300 599 31.09 436 294.24 657 16 19.00
500× 500 1746 232.34 1258 1549.32 2867 22 209.33
700× 700 2544 509.82 1696 4578.12 28709 32 3717.48
1000× 1000 8909 3820.74 4123 18722.79 46893 37 15635.69
1500× 300 205 69.76 32 836.33 547 13 235.71
max 18958 8681.39 6314 32099.24 104561 52 35682.33
mean 2801 932.75 1509 5196.16 15935 24 3963.44

r = 10
300× 300 760 46.21 131 201.31 535 14 12.53
500× 500 1830 303.00 476 912.32 2431 19 120.56
700× 700 4673 1166.34 808 5532.38 8729 27 899.63
1000× 1000 19614 9677.84 3370 30432.92 26267 32 5096.53
1500× 300 22 42.61 9 426.49 19 4 27.45
max 38706 17405.73 5862 44959.06 63333 36 12526.19
mean 5380 2247.20 959 7501.08 7596 19 1231.34

r = 15
300× 300 251 24.91 52 89.24 239 11 4.82
500× 500 588 141.05 65 334.72 358 17 18.69
700× 700 3847 1571.06 356 2495.46 8423 25 674.53
1000× 1000 27033 17944.19 2070 32987.13 47956 34 7323.29
1500× 300 8 35.93 2 204.33 9 2 23.25
max 43295 26289.96 2334 40759.87 96421 37 15802.47
mean 6345 3943.43 509 7222.18 11397 18 1608.92

r = 20
300× 300 139 21.06 18 71.21 60 7 1.75
500× 500 614 145.47 47 240.77 264 12 13.13
700× 700 1075 557.57 40 533.13 221 12 22.83
1000× 1000 3800 4034.44 354 4757.19 2362 21 328.71
1500× 300 4 33.70 2 146.99 3 1 14.82
max 10267 10882.98 986 14646.77 4783 25 707.57
mean 1126 958.45 92 1149.86 582 11 76.25

a Averaged computation times reported by Avella and Boccia (2007) divided by 2.
b Two unsolved instances of size 1000× 1000 and r = 15 not included in the average.
c One unsolved instance of size 1000× 1000 and r = 5 not included in the average.
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Table 10
Summarized comparison of CPLEX, B&C, BB-SG on Avella’s & Boccia’s instances

CPLEX B&Ca,b BB-SGc

|I| × |J | nodes time nodes time nodes depth time

300× 300 437 30.82 159 164.00 373 12 9.53
500× 500 1195 205.47 462 759.28 1480 18 90.43
700× 700 3035 951.20 725 3284.78 11521 24 1328.62
1000× 1000 14839 8869.30 2479 21725.01 30870 31 7096.06
1500× 300 60 45.50 11 403.54 145 5 75.31
mean 3913 2020.46 767 5267.32 8878 18 1719.99

a Averaged computation times reported by Avella and Boccia (2007) divided by 2.
b Two unsolved instances of size 1000× 1000 and r = 15 not included in the average.
c One unsolved instance of size 1000× 1000 and r = 5 not included in the average.

et al.’s procedure should however usually show fixed facility cost of approximately
350 to 1400 with a mean of about 1000. Due to the smaller average fixed cost,
more facilities should be open in optimal solutions to these instances, which in
tendency should contribute to less restrictive capacity constraints. In particular the
instances with r = 20 were easy to solve. The instances of size |I|× |J | = 1500×300
show, moreover, unit transportation cost of about 50, which is ten times larger
than usual for problem instances generated with Cornuejols et al.’s procedure. This
explains why the instances of this size were quite easy to solve. We therefore again
applied the Cornuejols et al. procedure to generate new test problem instances of the
same size and capacity ratio r as the ones used by Avella and Boccia. Additionally,
we respectively generated for each ratio r ∈ {5, 10, 15, 20} five problem instances
of size |I| × |J | = 1500 × 600. This time, we were not able to solve all of these
120 problem instances to optimality by means of CPLEX and BB-SG. Some of
the computations terminated due to insufficient memory; other computations were
stopped after reaching a time limit of 100,000 CPU seconds. Table 11 compares the
performance of CPLEX and BB-SG in solving these problem instances. Since not
all instances could be solved to optimality, the table shows averages taken only over
those instances that could be solved. The column headed “unsolved” shows how
many of the five instances per given size and ratio r were not solved to optimality.
Detailed results for every single problem instance are listed in the appendix. We
also did not apply CPLEX to the instances of size 1500× 300 and 1500× 600; the
results on the other instances already show the strong superiority of BB-SG over
CPLEX. Our application of CPLEX did not succeed in solving any of the instances
of size 1000 × 1000 within the available time and memory limitations. Only four
out of the twenty instances of size 700 × 700 could be solved to optimality. Also
in case of eight out of twenty instances of size 500× 500, the computations needed
to be stopped, since the size of the enumeration tree took all of the available main
memory; one single instance even stopped due to a segmentation fault after about
31,000 seconds of computations. BB-SG solved all instances of size 500× 500, failed
on only two instances of size 700× 700, and succeeded in solving nine of the twenty
instances of size 1000 × 1000. All instances of size 1500 × 300 and also fourteen of
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Table 11
Comparison of CPLEX and BB-SG on new the problem instances

size BB-SG CPLEX

|I| × |J | nodes depth time unsolved nodes time unsolved

r = 5
300× 300 2906 16 141.01 0 17709 1223.64 0
500× 500 19975 24 2126.33 0 76111 13909.53 1
700× 700 108496 29 21630.22 0 442184 82444.34 4
1000× 1000 98489 25 36900.07 3 – – 5
1500× 300 21564 27 5826.42 0 not tried
1500× 600 69406 38 32865.19 3 not tried

r = 10
300× 300 711 16 46.64 0 11943 1407.59 0
500× 500 10147 23 1367.05 0 26966 11732.39 2
700× 700 70396 28 13871.00 2 – – 5
1000× 1000 58135 30 22323.44 3 – – 5
1500× 300 9511 24 2653.70 0 not tried
1500× 600 94607 31 40941.48 3 not tried

r = 15
300× 300 607 11 37.10 0 6399 1730.46 0
500× 500 5235 18 613.16 0 12538 11556.94 3
700× 700 22841 23 3583.20 0 43385 61078.82 4
1000× 1000 127615 31 49895.25 3 – – 5
1500× 300 3286 18 844.57 0 not tried
1500× 600 26393 26 9191.11 0 not tried

r = 20
300× 300 217 11 15.58 0 5664 1577.20 0
500× 500 4803 19 469.61 0 28751 25509.65 2
700× 700 7917 20 1316.71 0 33863 57957.03 3
1000× 1000 21066 25 12018.90 2 – – 5
1500× 300 8387 23 3280.89 0 not tried
1500× 600 11949 22 9412.24 0 not tried

the twenty instances of size 1500× 600 were solved by BB-SG within the available
memory and time limitations. No single instance that could not be solved by BB-
SG was successfully solved by CPLEX, and on no successfully solved single problem
instance CPLEX was faster. On those instances tested and successfully solved by
CPLEX, CPLEX required, on average, 17 times more computation time than BB-
SG did. For a single instance of size 500 × 500 and ratio r = 5, BB-SG was only 3
times faster; for one instance of size 500 × 500 and ratio r = 10, BB-SG did even
360 times faster than CPLEX.
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4.4 Using the volume algorithm instead of subgradient optimization

We finally also compared BB-SG with the same branch-and-bound method,
where however instead of subgradient optimization the volume algorithm is used for
computing lower bounds (BB-VA). In contrast to BB-SG, the volume algorithm esti-
mates primal solutions by taking an exponentially smoothed average of the generated
Lagrangean solutions. The guessed primal solution is also used to determine a direc-
tion into which the method searches for improved dual solutions, whilst BB-SG sim-
ply makes a step in direction of a subgradient. In our experiments, we used a smooth-
ing parameter µ = 0.1. We also experimented with taking simple arithmetic aver-
ages, but this showed to be far less effective. Barahona and Anbil (2000) and Bara-

hona and Chudak (2005) suggested to choose µ = max
{
µmax/10, min{µ∗, µmax}

}
,

where µ∗ minimizes ‖µst + (1 − µ)gt‖, st and gt respectively denotes the current
subgradient and direction, and µmax is initially set to 0.1 and halved if ZD(λ) is not
increased by 1 % in 100 consecutive iterations. Table 12 compares the performance
of the two methods on the test problem instances from Klose and Görtz (2007).
Table 13 again summarizes these results by additionally taking averages over the
different ratios r. BB-SG significantly outperformed the method based on the vol-
ume algorithm. On average, BB-SG was 4 to 5 times faster than BB-VA. The clear
superiority of BB-SG suggests that the method will still do better than BB-VA
even if the smoothing parameter µ is determined in a more sophisticated way. We
therefore also refrained from extending the comparison to the other types of test
problems. In our computational experiments, we in particular observed that the
method based on the volume algorithm showed at times week dual convergence be-
havior and difficulties to get close enough to the optimal Lagrangean dual solution.
In such cases, the branch-and-bound method went deep down the enumeration tree
and enumerated too much nodes. In contrast to BB-SG, the method based on the
volume algorithm also needs to average the solutions xt and thus usually required
more computational effort per node than BB-SG.

5 Conclusions

In this paper we proposed a simple subgradient-based branch-and-bound algorithm
for solving the CFLP exactly. The method’s main idea is to average solutions ob-
tained for the Lagrangean subproblem in order to estimate fractional primal so-
lutions to the Lagrangean dual and to base branching decisions on the estimated
primal solution. If combined with a best-lower bound search strategy, the method
consistently showed to significantly outperform other existing state-of-the-art meth-
ods for solving the CFLP exactly. The method is capable to solve difficult instances
of the CFLP with up to 1000 customer and 1000 potential facility sites as well as
1500 customer and 600 potential facility sites. The method also showed to be rather
robust, in the sense that it worked fine on sets of different test problem instances
showing different problem characteristics. In addition, the method has the advan-
tage of being relatively simple and relatively easy to implement. We think that
the efficiency of the method can primarily attributed to the following points: (i)
Subgradient optimization works very well for getting very close to the Lagrangean
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Table 12
Comparison of BB-SG and BB-VA on the instances from Klose and Görtz (2007)

BB-SG BB-VA

|I| × |J | nodes depth time nodes depth time

r = 3
100× 100 9 3 0.43 91 42 0.62
200× 100 58 7 1.29 523 60 25.51
200× 200 39 6 2.18 31 8 3.96
500× 100 794 14 37.94 1321 58 259.42
500× 200 678 16 54.80 1282 108 417.11
max 1733 19 91.79 3485 200 1035.95
mean 316 9 19.33 650 55 141.32

r = 5
100× 100 15 4 0.44 136 32 1.78
200× 100 133 10 3.07 227 35 10.69
200× 200 49 6 2.63 232 39 10.40
500× 100 437 13 21.73 497 44 95.84
500× 200 5061 17 434.98 4490 92 1598.30
max 12419 21 1319.37 9459 128 4055.70
mean 1139 10 92.57 1116 48 343.40

r = 10
100× 100 13 4 0.28 84 33 0.49
200× 100 37 5 1.36 73 18 3.06
200× 200 54 8 2.16 727 134 13.43
500× 100 83 7 6.45 73 10 21.23
500× 200 1312 13 85.32 1594 95 520.52
max 4495 18 230.96 5181 200 1675.48
mean 300 7 19.11 510 58 111.75

Table 13
Summarized comparison of BB-SG and BB-VA

BB-SG BB-VA

|I| × |J | nodes depth time nodes depth time

100× 100 12 4 0.38 104 36 0.96
200× 100 76 7 1.91 274 38 13.09
200× 200 47 7 2.32 330 60 9.26
500× 100 438 11 22.04 630 37 125.50
500× 200 2350 15 191.70 2455 98 845.31
mean 585 9 43.67 759 54 198.82
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dual bound resulting from relaxing demand constraints in the CFLP. (ii) This La-
grangean dual bound is generally a sharp lower bound on the optimal objective
function value of the CFLP. (iii) The number of binary variables is only a small per-
centage of the total number of variables. The good results obtained for the CFLP
with this subgradient-based approach and the simple averaging of Lagrangean solu-
tions for primal solution recovery suggests that similar results may possibly also be
obtainable for mixed-integer programming problems, which only show a relatively
small number of integer variables and where subgradient optimization works well in
providing sharp lower bounds.
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A Detailed results obtained with BB-SG on instances from Klose and
Görtz (2007)

Tables A.1–A.3 show the detailed results obtained on the test problem instances from
Klose and Görtz (2007). In these tables, Z denotes the optimal objective value.

Table A.1
Detailed results on instances with ratio r = 3

no. Z BB-SG CPLEX

nodes depth time nodes time

|I| × |J | = 100× 100
1 28345.99 7 3 0.56 9 0.54
2 29580.17 7 3 0.34 679 3.65
3 27062.23 7 3 0.21 200 2.02
4 28988.34 17 4 0.54 109 0.97
5 25279.40 9 3 0.52 160 1.61

|I| × |J | = 200× 100
1 29740.15 41 7 1.33 1293 12.00
2 31509.51 13 3 0.64 56 2.49
3 29135.00 47 8 1.28 282 6.39
4 29910.45 139 9 2.28 2108 25.64
5 29923.01 49 8 0.93 330 5.49

|I| × |J | = 200× 200
1 52824.22 23 5 1.10 223 6.46
2 52148.07 15 7 1.60 2092 34.32
3 52810.44 89 9 4.41 7148 134.09
4 50434.02 11 3 1.24 1232 37.31
5 52643.74 55 6 2.54 968 21.93

|I| × |J | = 500× 100
1 36629.27 207 13 11.11 2116 146.27
2 36145.85 1733 19 68.13 8891 531.23
3 36070.42 1565 15 85.42 10794 544.32
4 37976.41 399 11 19.65 1162 71.36
5 36445.01 67 10 5.37 859 161.64

|I| × |J | = 500× 200
1 58992.74 149 14 9.27 1651 109.15
2 59295.73 1079 16 83.03 11726 1209.54
3 63551.98 859 17 91.79 9653 446.80
4 56691.81 213 15 11.50 1505 91.00
5 60315.26 1091 17 78.41 15982 981.37
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Table A.2
Detailed results on instances with ratio r = 5

no. Z BB-SG CPLEX

nodes depth time nodes time

|I| × |J | = 100× 100
1 17489.90 17 5 0.46 272 2.38
2 18329.44 3 1 0.21 89 1.49
3 17118.53 15 5 0.47 354 3.47
4 18082.94 29 5 0.69 1551 10.04
5 17949.61 13 5 0.35 344 2.83

|I| × |J | = 200× 100
1 19677.03 33 6 1.43 766 23.14
2 21288.57 101 9 2.13 1830 28.16
3 19621.73 159 13 4.23 1113 35.97
4 20856.96 85 14 1.92 449 13.16
5 20789.09 285 9 5.63 1412 37.69

|I| × |J | = 200× 200
1 32586.04 27 4 1.81 1189 24.12
2 32714.25 75 9 2.88 4347 69.87
3 32741.33 21 4 1.20 1046 21.29
4 32542.34 113 9 5.96 13345 235.66
5 33078.76 9 4 1.31 62 6.28

|I| × |J | = 500× 100
1 27591.52 299 11 16.61 1930 221.17
2 28647.41 871 16 43.52 5269 589.31
3 27587.79 747 15 32.18 5600 368.76
4 27501.23 115 10 9.52 1282 174.42
5 26701.75 153 12 6.81 678 105.83

|I| × |J | = 500× 200
1 39240.06 977 16 82.84 34464 3936.16
2 40406.43 12419 20 1319.37 101633 11449.88
3 39352.31 563 12 39.55 7776 1013.79
4 38179.74 3279 18 183.21 38746 3569.95
5 40050.19 8067 21 549.94 32227 2679.35
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Table A.3
Detailed results on instances with ratio r = 10

no. Z BB-SG CPLEX

nodes depth time nodes time

|I| × |J | = 100× 100
1 9041.94 5 2 0.22 15 1.68
2 9100.71 9 4 0.33 102 1.83
3 10271.16 17 4 0.31 203 4.86
4 9546.92 17 4 0.28 197 2.80
5 9493.98 17 5 0.27 37 1.73

|I| × |J | = 200× 100
1 13997.38 59 8 2.12 635 34.37
2 14231.66 23 5 0.85 122 21.12
3 13902.67 1 0 0.15 0 5.94
4 14091.49 49 6 1.35 803 42.37
5 14044.54 51 7 2.35 554 29.10

|I| × |J | = 200× 200
1 18887.23 115 11 3.16 2261 49.08
2 17170.88 23 8 1.78 726 40.29
3 17105.23 17 5 1.11 1179 26.83
4 18410.24 105 11 3.00 3332 72.06
5 17716.32 9 4 1.74 7263 122.93

|I| × |J | = 500× 100
1 23457.95 173 9 13.17 290 133.72
2 23254.49 13 3 2.32 0 30.75
3 23544.74 125 10 9.27 325 139.38
4 22883.94 61 8 3.41 229 89.38
5 22489.53 43 7 4.07 97 147.94

|I| × |J | = 500× 200
1 26633.61 213 10 28.77 1441 655.63
2 27356.97 271 11 40.45 795 417.88
3 26762.47 411 13 34.43 1677 740.06
4 26967.45 1169 15 92.01 32445 10519.60
5 27158.26 4495 18 230.96 30922 11402.14
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B Detailed results obtained with BB-SG on the instances from Avella
and Boccia (2007)

Table B.1
Detailed results on instances with ratio r = 5

no. Z BB-SG B&Ca CPLEX

nodes depth time time nodes time

|I| × |J | = 300× 300
1 16350.66 145 11 4.81 199.28 265 35.21
2 15948.45 751 14 22.59 407.56 1010 43.98
3 15474.85 471 13 13.34 132.23 161 9.23
4 17989.98 735 23 20.52 357.42 797 36.88
5 18037.62 1181 19 33.73 374.73 761 30.15

|I| × |J | = 500× 500
1 26412.42 3655 31 269.30 640.59 1477 182.72
2 28130.74 4371 24 299.07 2033.39 3209 343.43
3 27904.52 1191 15 92.51 1280.69 624 89.09
4 28159.03 3511 20 284.63 1342.48 1273 175.52
5 24702.77 1609 19 101.12 2449.44 2149 370.96

|I| × |J | = 700× 700
1 36905.93 83325 52 9773.50 4923.98 973 225.24
2 34311.72 11687 28 1831.99 6798.11 4336 786.61
3 34294.64 4179 21 625.62 994.28 1732 404.81
4 38090.91 7597 28 1087.33 3097.86 2768 569.14
5 37802.11 36759 31 5268.96 7076.38 2909 563.30

|I| × |J | = 1000× 1000
1 49509.82 42719 47 14563.75 26025.86 10135 4112.86
2 50688.10 104561 44 35682.33 32099.24 18958 8681.39
3 47202.64 16709 30 5150.33 13930.51 2573 1016.97
4 48868.55 59559 33616.95b 19132.00 6954 2904.15
5 50743.54 23581 28 7146.35 2426.33 5927 2388.31

|I| × |J | = 1500× 300
1 154750.44 175 10 100.10 1167.32 89 53.98
2 159256.55 1243 14 468.87 745.08 139 61.31
3 157011.46 297 16 129.87 1043.22c 71 58.37
4 157406.34 857 16 372.22 814.04 611 116.43
5 160946.21 163 11 107.48 412.01 113 58.72

a Computation times reported in Avella and Boccia (2007) divided by 2.
b Computations stopped due to insufficient memory. Remaining gap = 0.04 %.
c Non-optimal solution value reported in Avella and Boccia (2007).
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Table B.2
Detailed results on instances with ratio r = 10

no. Z BB-SG B&C1 CPLEX

nodes depth time time nodes time

|I| × |J | = 300× 300
6 11251.20 371 18 10.40 226.29 1252 77.61
7 11392.53 1179 19 25.85 298.13 1215 54.65
8 11377.34 45 8 1.27 58.10 177 15.75
9 10878.05 1003 16 22.60 364.20 1097 74.95
10 11232.78 77 10 2.55 59.83 57 8.08

|I| × |J | = 500× 500
6 15756.82 1083 21 55.21 370.92 291 62.97
7 16109.29 743 21 38.27 1076.99 908 173.64
8 16041.73 4415 22 225.50 1582.58 1209 211.04
9 16327.72 5693 20 270.16 984.27 6294 968.71
10 15815.13 223 13 13.66 546.85 446 98.66

|I| × |J | = 700× 700
6 19910.68 15929 27 1624.39 4453.21 8341 2379.27
7 21297.30 7807 18 793.86 4126.32 4886 1163.08
8 20659.96 2651 36 271.84 1664.20 1020 289.16
9 20979.89 8591 29 829.95 8284.52 4170 923.62
10 22055.42 8667 26 978.09 9133.66 4949 1076.57

|I| × |J | = 1000× 1000
6 27823.85 12169 32 2464.26 27110.03 12075 6854.47
7 27252.33 36659 36 6927.12 29982.27 23986 12971.66
8 27375.38 11739 30 2124.05 44959.06 14898 7408.11
9 26857.09 63333 36 12526.19 31306.72 38706 17405.73
10 27187.00 7435 25 1441.03 18806.51 8405 3749.22

|I| × |J | = 1500× 300
6 156621.18 65 8 57.85 472.36 56 48.42
7 156950.23 3 1 17.59 345.60 4 40.34
8 157687.61 7 3 18.85 353.78 18 40.54
9 156893.90 13 5 16.33 514.28 12 37.42
10 157678.50 7 3 26.63 446.40 22 46.34

a Computation times reported in Avella and Boccia (2007) divided by 2.
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Table B.3
Detailed results on instances with ratio r = 15

no. Z BB-SG B&Ca CPLEX

nodes depth time time nodes time

|I| × |J | = 300× 300
11 10023.94 73 9 2.24 43.41 226 18.33
12 9336.64 177 10 2.72 72.72 151 13.11
13 10058.49 821 16 15.16 79.34 686 62.43
14 9699.36 51 9 2.03 179.88 91 15.76
15 9842.17 75 11 1.94 70.85 103 14.94

|I| × |J | = 500× 500
11 13437.72 181 16 9.89 122.33 232 103.62
12 14675.03 775 20 39.72 584.99 518 126.23
13 13666.25 177 13 12.15 177.01 553 130.34
14 13580.02 323 19 13.82 616.69 1071 195.80
15 13896.76 333 18 17.87 172.55 568 149.26

|I| × |J | = 700× 700
11 17120.16 36179 26 2873.80 5194.97 9225 3850.82
12 18130.43 717 33 68.03 1038.63 1557 665.32
13 17239.97 967 19 86.66 1071.26 1103 485.28
14 17337.63 3189 28 244.02 3491.86 3849 1340.12
15 18145.50 1063 20 100.13 1680.59 3502 1513.74

|I| × |J | = 1000× 1000
11 22180.34 37103 31 5052.26 50222.91c 25823 14670.24
12 22160.40 46435 35 6779.15 50202.63c 33947 26289.96
13 22648.25 96421 32 15802.47 40759.87b 43295 25419.57
14 22313.02 11231 33 1701.02 20911.33 13314 8980.62
15 22627.63 48591 37 7281.53 37290.20b 18786 14360.56

|I| × |J | = 1500× 300
11 149995.75 3 1 16.61 211.40b 2 29.65
12 154883.50 35 7 34.49 289.55 29 43.38
13 151593.03 1 0 16.28 74.06 1 39.47
14 151788.86 1 0 13.40 135.27 1 30.33
15 156417.45 7 3 35.45 311.39 9 36.84

a Computation times reported in Avella and Boccia (2007) divided by 2.
b Non-optimal solution value reported in Avella and Boccia (2007).
c Time limit of 100,000 sec. (50,000 sec. on our machine) reached.
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Table B.4
Detailed results on instances with ratio r = 20

no. Z BB-SG B&Ca CPLEX

nodes depth time time nodes time

|I| × |J | = 300× 300
16 9158.76 65 9 1.89 59.41 76 18.94
17 9171.67 103 9 2.13 144.35 211 24.18
18 9553.60 33 7 2.09 50.83 77 24.18
19 9053.71 93 10 1.95 94.05 326 28.64
20 9046.33 5 2 0.69 7.43 6 9.37

|I| × |J | = 500× 500
16 12584.49 229 15 10.50 436.20 818 165.68
17 13347.40 569 14 27.67 299.86 636 169.79
18 12831.13 263 10 11.46 193.37 465 119.17
19 13489.62 143 10 7.36 161.94 760 148.87
20 12342.26 117 12 8.67 112.50 389 123.86

|I| × |J | = 700× 700
16 16000.04 153 13 14.56 313.81 852 387.52
17 16171.67 193 10 24.56 603.38 615 387.81
18 16414.81 205 12 20.42 667.77 684 550.16
19 16366.79 359 10 37.19 577.59 1021 571.46
20 15434.22 195 13 17.44 503.11 2201 890.88

|I| × |J | = 1000× 1000
16 21331.82 4783 21 707.57 14646.77 4087 4449.72
17 21188.89 305 15 48.82 1747.62 400 604.61
18 20713.43 657 25 111.41 1264.76 780 1098.16
19 20537.45 1317 19 201.27 2427.50 3464 3136.74
20 21560.86 4749 25 574.46 3699.31 10267 10882.98

|I| × |J | = 1500× 300
16 155489.36 1 0 10.46 146.52 2 31.50
17 156033.33 11 4 24.78 143.59 5 36.87
18 156777.58 1 0 10.71 127.95 4 34.35
19 155946.26 1 0 12.04 158.96 2 31.18
20 156409.40b 1 0 16.13 157.92 6 34.60

a Computation times reported in Avella and Boccia (2007) divided by 2.
b Avella and Boccia (2007) report on this instance a solution value of 156, 407.23. We could

however not achieve this value.
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C Detailed results obtained with BB-SG on the new instances

Table C.1–C.4 show the results obtained on the newly generated test instances. In
these tables, the column headed UB is the final upper bound computed by means
of the respective method. In case that optimality is not proven and UB may thus
differ from the optimal solution value, we additionally indicate the percentage gap
between the upper bound (UB) and the global lower bound (LB) computed by the
respective method. The percentage gap is defined as

gap = 100
UB − LB

LB −∑i∈I minj∈J cij
.

We substract
∑
i∈I minj∈J cij in the denominator, since otherwise the gap can be

made arbitrarily small by adding for each customer i ∈ I a sufficiently large constant
to the transportation costs cij for each j ∈ J .
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Table C.1
Detailed results on instances with ratio r = 5

no. BB-SG CPLEX

UB nodes depth time gap UB nodes time gap

|I| × |J | = 300× 300
1 50638.73 2357 17 91.24 50638.73 27373 931.93
2 49261.65 617 12 28.35 49261.65 15668 559.36
3 49879.18 441 12 18.75 49879.18 1597 73.63
4 50449.52 485 13 23.25 50449.52 22438 1096.29
5 49721.60 10631 24 543.44 49721.60 21470 3457.00

|I| × |J | = 500× 500
1 78662.68 2211 24 257.05 78662.68 88662 30704.46
2 82057.96 26691 22 3383.02 82057.96 75000 35475.21 0.03a

3 80763.30 15755 27 1440.32 80763.30 59042 6288.02
4 80988.59 52475 27 5299.12 80988.59 126818 15146.69
5 78429.26 2741 19 252.13 78429.26 29921 3498.95

|I| × |J | = 700× 700
1 111890.01 39537 34 9172.19 111923.52 70900 50528.57 0.07a

2 112581.89 133053 27 21525.98 112581.89 442184 82444.34
3 112628.49 166285 33 34942.47 112665.00 144500 38714.36 0.07a

4 111333.92 141045 30 28952.73 111357.60 155400 35325.08 0.06a

5 112124.09 62559 22 13557.74 112399.49 116900 35226.71 0.30a

|I| × |J | = 1000× 1000
1 155907.13 59252 76047.67 0.04a 155933.90 85500 41650.08 0.06a

2 160380.33 58684 52244.50 0.02a 160401.46 96500 44810.08 0.04a

3 159971.71 147221 24 56346.88 159991.70 98800 45194.62 0.03a

4 158189.69 49757 25 17453.25 158194.50 48000 39434.93 0.02a

5 159228.79 59160 47446.83 0.02a 159270.35 80500 37940.90 0.06a

|I| × |J | = 1500× 300
1 65630.64 43375 35 11487.98
2 65831.00 15379 25 3798.34
3 67537.85 29891 25 8136.86
4 67670.70 5069 28 1662.28
5 67578.34 14107 24 4046.64

|I| × |J | = 1500× 600
1 105381.44 45804 57589.38 0.13a

2 106736.07 45530 54212.58 0.05a

3 107296.34 44206 44071.32 0.03a

4 104051.34 87677 37 41896.71
5 104171.76 51135 39 23833.66
a Terminated due to insufficient memory.
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Table C.2
Detailed results on instances with ratio r = 10

no. BB-SG CPLEX

UB nodes depth time gap UB nodes time gap

|I| × |J | = 300× 300
1 28474.02 293 13 16.18 28474.02 16422 2129.03
2 27008.17 527 14 53.10 27008.17 4302 1889.55
3 28826.24 1179 16 76.62 28826.24 23969 1465.70
4 27662.75 641 19 35.41 27662.75 9628 679.58
5 28682.42 917 18 51.89 28682.42 5395 874.07

|I| × |J | = 500× 500
1 45081.83 3921 22 455.12 45081.83 45037 20855.99
2 43420.27 273 17 33.40 43420.27 24829 12012.48
3 44899.66 23257 28 3458.19 44968.09 73300 44505.23 0.40a

4 43396.79 22153 23 2794.76 43438.93 52200 48614.37 0.27a

5 43511.99 1129 23 93.76 43511.99 11031 2328.70

|I| × |J | = 700× 700
1 59572.55 71615 30 14022.36 59572.55 95800 40789.26 0.08a

2 60832.31 44023 23 7468.60 60846.78 60000 56448.26 0.13a

3 62120.52 237975 30 100000.42 0.03b 62249.18 83400 37008.56 0.37a

4 60055.82 95551 31 20122.04 60101.53 64700 72927.47 0.19a

5 60920.86 167490 84648.77 0.04a 61139.75 62400 30543.04 0.58a

|I| × |J | = 1000× 1000
1 85384.46 47515 22 100000.02 0.10b 85549.72 61000 64249.75 0.40a

2 83054.52 64427 23 100002.41 0.11b 83394.50 54600 41384.11 0.61a

3 82864.38 59797 27 25859.98 82933.14 57500 47629.46 0.16a

4 84331.57 80936 73527.65 0.06a 84506.92 48600 32129.46 0.36a

5 83394.66 56473 33 18786.89 83394.66 42800 66488.31 0.07a

|I| × |J | = 1500× 300
1 49730.88 20261 30 4433.79
2 50255.27 7581 19 3458.74
3 49974.14 8605 22 1970.75
4 49869.27 5233 24 1466.44
5 50925.93 5877 23 1938.76

|I| × |J | = 1500× 600
1 65859.94 152305 34 68850.16
2 63493.10 36909 27 13032.79
3 67117.28 61290 57054.54 0.07a

4 65277.42 60512 73016.79 0.14a

5 65151.72 61718 51813.71 0.07a

a Terminated due to insufficient memory.
b Time limit of 100,000 seconds reached.
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Table C.3
Detailed results on instances with ratio r = 15

no. BB-SG CPLEX

UB nodes depth time gap UB nodes time gap

|I| × |J | = 300× 300
1 21253.35 13 5 1.63 21253.35 53 79.32
2 21814.36 73 8 4.74 21814.36 820 1 45.76
3 22529.39 1941 17 130.95 22529.39 16858 5382.56
4 22168.57 91 9 3.91 22168.57 744 154.62
5 22523.41 917 17 44.26 22523.41 13522 2890.04

|I| × |J | = 500× 500
1 33435.69 1019 21 123.56 33435.69 18186 19391.52
2 33507.69 329 13 44.14 33507.69 6890 3722.35
3 33959.00 2277 15 497.95 33959.00 20300 30996.04 0.16c

4 33709.19 15603 20 1576.54 33785.23 68400 32433.31 0.42a

5 33833.95 6947 23 823.59 34025.29 69100 29448.15 0.81a

|I| × |J | = 700× 700
1 45104.89 5183 24 1147.89 45104.89 43385 61078.82
2 45100.44 59121 30 8749.40 45101.74 56500 73651.92 0.17a

3 45032.72 34687 26 5503.07 45100.81 51000 60907.68 0.28a

4 44992.00 4219 16 852.30 44992.00 75694 100425.30 0.04b

5 46197.17 22581 21 6428.29 46451.16 44900 39507.25 0.74a

|I| × |J | = 1000× 1000
1 62522.86 71933 30 100000.17 0.14b 62605.11 33300 77854.68 0.43a

2 62492.39 75877 23 100001.02 0.08b 62796.25 31700 44235.52 0.75a

3 62025.59 149679 31 56430.57 62186.92 39700 61674.28 0.46a

4 62404.53 105551 31 43359.93 62471.88 32900 72169.08 0.23a

5 62401.91 218013 100000.04 0.02b 62768.69 28400 49560.19 0.81a

|I| × |J | = 1500× 300
1 46379.99 1007 18 391.25
2 45562.90 13541 22 2995.91
3 45872.96 1181 17 497.83
4 46456.43 441 14 199.65
5 46516.67 259 17 138.23

|I| × |J | = 1500× 600
1 54285.13 82527 41 26848.46
2 54459.33 2995 16 1341.99
3 54273.96 14707 23 4902.58
4 54688.17 18575 23 6923.03
5 54626.06 13159 25 5939.51
a Terminated due to insufficient memory.
b Time limit of 100,000 seconds reached.
c CPLEX terminated with a segmentation fault.
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Table C.4
Detailed results on instances with ratio r = 20

no. BB-SG CPLEX

UB nodes depth time gap UB nodes time gap

|I| × |J | = 300× 300
1 19519.92 547 14 27.52 19519.92 17175 4700.24
2 19090.29 261 11 15.32 19090.29 5411 1397.63
3 19618.22 49 8 8.50 19618.22 1857 465.16
4 19323.48 115 11 9.28 19323.48 2344 785.32
5 19287.12 111 9 17.28 19287.12 1531 537.66

|I| × |J | = 500× 500
1 29294.42 12015 20 978.32 29417.09 44900 39519.52 0.72a

2 28485.57 5711 25 520.09 28485.57 34884 30797.72
3 29183.51 3687 17 506.92 29400.98 50900 31358.79 1.19a

4 29245.49 815 17 119.12 29245.49 8422 9121.40
5 29128.85 1787 15 223.61 29128.85 42948 36609.82

|I| × |J | = 700× 700
1 38426.66 1875 19 297.97 38426.66 24988 55198.34
2 37863.00 1037 19 200.63 37863.00 54100 93763.46 0.13a

3 37794.64 16285 20 2763.86 37805.71 36261 100924.82 0.20b

4 38083.00 2485 21 353.92 38083.00 42737 60715.71
5 37542.15 17903 22 2967.16 37580.17 35072 100895.36 0.29b

|I| × |J | = 1000× 1000
1 51408.02 24523 26 11397.95 51516.16 19098 102639.95 0.44b

2 51721.28 120158 67046.95 0.06a] 52080.13 19700 48874.67 1.04a

3 51363.95 92283 31 100000.65 0.17b 51593.60 17681 102355.67 0.94b

4 52309.10 19775 23 7938.05 52319.24 25842 102373.61 0.17b

5 50859.51 18899 25 16720.70 51066.12 19700 74882.71 0.64a

|I| × |J | = 1500× 300
1 44723.91 3529 30 863.72
2 44441.89 12131 20 5689.69
3 44096.78 1197 16 573.94
4 44705.09 6429 23 1687.60
5 43000.61 18649 25 7589.52

|I| × |J | = 1500× 600
1 49838.08 35243 24 30271.56
2 49648.02 7231 24 5684.19
3 49880.14 5223 23 4891.04
4 50094.26 7815 20 3060.95
5 49905.11 4231 21 3153.47

a Terminated due to insufficient memory.
a Time limit of 100,000 seconds reached.
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D Test problem generator

In the following, we reproduce the C-code used for generating the test problem
instances.

/*----------------------------------------------------------------*/
/* FILE : gencflp.c */
/* VERSION : 1.0 */
/* DATE : July 13, 2000 */
/* AUTHOR : Andreas Klose */
/* SUBJECT : program to generate CFLP test problems */
/*----------------------------------------------------------------*/
/* USAGE : gencflp <inputfile > <path > */
/* */
/* where "inputfile" is an ascii file providing the following */
/* information on how to generate the test instances: */
/* (1) Seed , that is an integer number specifying the seed to be */
*/ used for the random number generator (if Seed=0 then a seed*/
/* is generated automatically) */
/* (2) for every problem class: */
/* #customers #depot sites ratio problem name */
/* where ratio is the desired ratio of total capacity to total*/
/* total demand. */
/* The second argument "path ‘‘ is an optional and should specify */
/* the output path */
/*----------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
long unifRand (long m);
/* returns uniform integer random number in [0,m). See file rnd.c */
double URand ();
/* returns uniform real random number in [0,1). See file rnd.c */
/*----------------------------------------------------------------*/
int m,n,num; /* number of customers , depots , instances */
int *f, *d, *s; /* fixed depot costs , demands and capacities */
int *x, *y; /* coordinates */
int totd ,totc; /* total demand and total capacity */
char name [512]; /* problem name */
char fname [512]; /* name of file where to store problem data */
double r; /* r = totc/totd */
time_t tt;
/*----------------------------------------------------------------*/
void gencusts( void ) {
/* Generate customers with demand 5 + u[0,30] */

int i;
totd = 0;
for (i=0;i<m;i++){

d[i] = unifRand (31)+5;
x[i] = unifRand (1000);
y[i] = unifRand (1000);
totd += d[i];

}
}
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/*----------------------------------------------------------------*/
void gendepots( void ) {
/* generate depots with capacity s[j] = 10 + u[0 ,150] and fixed cost

f[j] = (u[0 ,10] + 100)* sqrt(s[j])+u[0 ,90] */
int j;
double ff;
double corr;
totc = 0;
for (j=0;j<n;j++){

s[j] = unifRand (151)+10;
ff = (unifRand (10) + 100.0)* sqrt(( double)s[j])

+ unifRand (90) + 0.5;
f[j] = (int) ff;
x[j+m] = unifRand (1000);
y[j+m] = unifRand (1000);
totc += s[j];

}
corr = ( (double)totd/( double)totc)*r;
totc = 0;
for (j=0;j<n;j++){

ff = s[j]*corr +0.5;
s[j] = (int)ff;
totc += s[j];

}
}
/*----------------------------------------------------------------*/
void writeprob( void ) {
/* write problem to file */

FILE *out;
double cost ,dx ,dy;
int i, j, *pdx , *pdy , *pcx , *pcy;
time(&tt);
out = fopen(fname ,"wt");
pcx = x, pcy = y;
pdx = x+m, pdy = y+m;
if ( out ){

fprintf(out ,"[CFLP -PROBLEMFILE ]\n");
fprintf(out ,"%s %s"," generated at: ",ctime(&tt));
fprintf(out ,"%s %-d %s %-d %s %-.2f\n","# customers:",m,

"; #depot sites:",n,"; ratio:",r);
fprintf(out ,"\n[DEPOTS ]\n");
fprintf(out ," capacity fixcost varcost xcoord ycoord name\n");
for (j=0;j<n;j++){

fprintf(out ,"%-d %-d %-s %-d %-d %-s%-d\n",
s[j],f[j],"0",pdx[j],pdy[j],"Depot",j);

}
fprintf(out ,"\n[CUSTOMERS ]\n");
fprintf(out ," demand xcoord ycoord name\n");
for (i=0;i<m;i++){

fprintf(out ,"%-d %-d %-d %-s%-d\n",d[i],pcx[i],pcy[i],
"Customer",i);

}
fprintf(out ,"\n[COSTMATRIX ]\n");
fprintf(out ,"c= d_eucli(a,b) * 0.01\n");
fprintf(out ,"ROWS = DEPOTS / COLS=CUSTOMERS\n");
fprintf(out ,"[ MATRIX ]\n");
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fprintf(out ,"%-s %-d %-d\n","Dim",n,m);
for (j=0;j<n;j++){

for (i=0;i<m;i++){
dx = abs(x[i]-x[m+j]);
dy = abs(y[i]-y[m+j]);
cost = sqrt(dx*dx + dy*dy )*0.01*d[i];
fprintf(out ,"% -.4f ",cost);

}
fprintf(out ,"\n");

}
}
fclose(out);

}
/*----------------------------------------------------------------*/
int main(int argc , char **argv) {

char *Ext = ".cfl", *nc , path [256], *slash = "/";
int count , goon , len;
long seed;
float ratio;
FILE *file;
printf ("\n%s\n" ,"==============================================");
printf ("%s\n"," CFLP TEST PROBLEM GENERATOR ");
printf ("%s\n" ,"==============================================");
printf ("%s\n"," USAGE: input_file [path ]");
printf ("%s\n"," input_file = input file ");
printf ("%s\n"," path = output directory (optional )");
printf ("%s\n" ,"==============================================");
printf ("%s\n"," Structure of input file :");
printf ("%s\n"," (1) seed = seed to initialize rndnum generator ");
printf ("%s\n"," (selected automatically if seed <=0)");
printf ("%s\n"," (2) for every problem class :");
printf ("%s\n"," #cust #depots ratio problem name ");
printf ("%s\n" ,"==============================================");

strcpy(path ,"");
nc = (char *) calloc (10, sizeof(char ));
file = fopen(argv [1],"r");
goon = (int)(file != NULL);
if (goon){

if (argc > 2){
strcpy(path ,argv [2]);
len = strlen(path)-1;
if ( path[len] != *slash ) strcat(path ,slash);

}
goon = fscanf(file ,"%d\n",&seed);
if ( seed <= 0 ) {

time(&tt);
seed = (long)tt;

}
if (goon) initRand(seed);

}
while (goon > 0){

goon = fscanf(file ,"%d%d%f%d%s\n",&m,&n,&ratio ,&num ,name);
r = (double)ratio;
if (goon > 0){

f = (int *) calloc(n, sizeof(int) );
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d = (int *) calloc(m, sizeof(int) );
s = (int *) calloc(n, sizeof(int) );
x = (int *) calloc(n+m, sizeof(int) );
y = (int *) calloc(n+m, sizeof(int) );
for (count =1;count <=num;count ++){

strcpy(fname ,path);
strcat(fname ,name);
gcvt(( double)count ,1,nc);
strcat(fname ,nc);
strcat(fname ,Ext);
gencusts ();
gendepots ();
writeprob ();
printf ("%s%d %s %s\n","Problem instance no.",count ,

"written to",fname );
}
free(f);
free(d);
free(s);
free(x);
free(y);

}
}
if ( file != NULL ) fclose(file);
printf ("%s%d\n"," Terminated. Used seed number = ",seed);
return( 0 );

}

Random number generator

The above test instance generator uses the following C-code for generating random
numbers. (The code is from Lionnel Maugis and taken from http://www.cenaath.

cena.dgac.fr/~maugis)

/*----------------------------------------------------------------*/
FILE Rnd.c
VERSION : 1.0
DATE : 21 September 1998
LANGUAGE: C
AUTHOR : Lionnel Maugis * Sofreavia / ATM

maugis@cenaath.cena.dgac.fr
http :// www.cenaath.cena.dgac.fr/~ maugis
1, rue de Champagne - 91200 ATHIS -MONS
Postal Address : Orly Sud 205 - 94542 ORLY AEROGARE CEDEX

SUBJECT : Portable Uniform Integer Random Number in [0 -2^31] range
Performs better than ansi -C rand()
D.E Knuth , 1994 - The Stanford GraphBase

/*----------------------------------------------------------------*/
#define RANDOM () (* rand_fptr >= 0 ? *rand_fptr -- : flipCycle ())
#define two_to_the_31 (( unsigned long)0 x80000000)
#define RREAL (( double)RANDOM ()/( double)two_to_the_31)
#define mod_diff(x,y) (((x)-(y))&0 x7fffffff)
static long A[56]= {-1};
long *rand_fptr = A;
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/* ---------------------------------------------------------------*/
long flipCycle () {

register long *ii ,*jj;
for (ii = &A[1], jj = &A[32]; jj <= &A[55]; ii++, jj++)

*ii= mod_diff (*ii, *jj);
for (jj = &A[1]; ii <= &A[55]; ii++, jj++)

*ii= mod_diff (*ii, *jj);
rand_fptr = &A[54];
return A[55];

}
/* ---------------------------------------------------------------*/
void initRand (long seed) {

register long i;
register long prev = seed , next = 1;
seed = prev = mod_diff (prev ,0);
A[55] = prev;
for (i = 21; i; i = (i+21)%55) {

A[i] = next;
next = mod_diff (prev , next);
if (seed &1) seed = 0x40000000 + (seed >> 1);
else seed >>= 1;
next = mod_diff (next ,seed);
prev = A[i];

}
for (i = 0; i < 7; i++) flipCycle ();

}
/* ---------------------------------------------------------------*/
long unifRand (long m) {

register unsigned long t = two_to_the_31 - (two_to_the_31%m);
register long r;
do {

r = RANDOM ();
} while (t <= (unsigned long)r);
return r%m;

}
/* ---------------------------------------------------------------*/
double URand () {

double x;
x = RREAL;
return ( x );

}

Compiling the program

The “makefile” listed below can be used for compiling the program

#-------------------------------------------------------------------
# FILE: makefile for program gencflp
# Date : August 15, 2001
#-------------------------------------------------------------------
# Compilers:
CC = gcc
CFLAGS = -O4 -Wall -I./
obj = gencflp.o rnd.o
main = gencflp
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libs = -lm

$(main): $(obj)
$(LINK.c) -o $@ $(obj) $(libs)

%.o: %.c
$(COMPILE.c) $<

After compiling the code, the test instances can be generated by entering the com-
mand “gencfl gencflp.input”, where the file gencflp.input is as follows.

963490972
300 300 5.0 5 T300x300_5_
500 500 5.0 5 T500x500_5_
700 700 5.0 5 T700x700_5_
1000 1000 5.0 5 T1000x1000_5_
1500 300 5.0 5 T1500x300_5_
1500 600 5.0 5 T1500x600_5_
300 300 10.0 5 T300x300_10_
500 500 10.0 5 T500x500_10_
700 700 10.0 5 T700x700_10_
1000 1000 10.0 5 T1000x1000_10_
1500 300 10.0 5 T1500x300_10_
1500 600 10.0 5 T1500x600_10_
300 300 15.0 5 T300x300_15_
500 500 15.0 5 T500x500_15_
700 700 15.0 5 T700x700_15_
1000 1000 15.0 5 T1000x1000_15_
1500 300 15.0 5 T1500x300_15_
1500 600 15.0 5 T1500x600_15_
300 300 20.0 5 T300x300_20_
500 500 20.0 5 T500x500_20_
700 700 20.0 5 T700x700_20_
1000 1000 20.0 5 T1000x1000_20_
1500 300 20.0 5 T1500x300_20_
1500 600 20.0 5 T1500x600_20_
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