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Abstract
Integral transforms of the lognormal distribution are of great importance in
statistics and probability, yet closed-form expressions do not exist. A wide
variety of methods have been employed to provide approximations, both ana-
lytical and numerical. In this paper, we analyze a closed-form approximation
L̃(θ) of the Laplace transform L(θ) which is obtained via a modified version
of Laplace’s method. This approximation, given in terms of the Lambert W (·)
function, is tractable enough for applications. We prove that L̃(θ) is asymptot-
ically equivalent to L(θ) as θ →∞. We apply this result to construct a reliable
Monte Carlo estimator of L(θ) and prove it to be logarithmically efficient in
the rare event sense as θ →∞.
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1 Introduction

The lognormal distribution is of major importance in probability and statistics as
it arises naturally in a wide variety of applications. For instance, the central limit
theorem implies that the limit distribution of a product of random variables often can
be well approximated by the lognormal distribution. Hence it is not surprising that
the lognormal distribution is frequently employed in disciplines such as engineering,
economics, insurance or finance, and it often appears in modeling across the sciences
including chemistry, physics, biology, physiology, ecology, environmental sciences and
geology; even social sciences and linguistics, see [1–5].

The lognormal distribution Fµ,σ2 is defined as the distribution of the exponential
of a N(µ, σ2) random variable and has density

f(x) =
1

x
√

2πσ
exp

{
−(log x− µ)2

2σ2

}
, x ∈ R+.
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However, closed-form expressions for transforms of the lognormal distribution do not
exist and reliable numerical approximations are scarce. In particular, an inspection
of the defining integrals

L( θ) =

∫ ∞

0

e−θxdFµ,σ2(x) =

∫ ∞

0

1

x
√

2πσ
exp

{
−θx− (log x− µ)2

2σ2

}
dx,

=

∫ ∞

−∞

1√
2πσ

exp

{
−θet − (t− µ)2

2σ2

}
dt (1.1)

for the Laplace transform L( θ) reveals that there is very little hope in finding
a closed form expression for transforms of the lognormal distribution (note that
the Laplace transform and the characteristic function ϕ are connected by ϕ(ω) =
L(−iω), L(θ) = ϕ(iθ)). Moreover, the integral defining L( θ) diverges when <(θ) < 0
and in consequence, the function L( θ) is not defined in the left half of the complex
plane and fails to be analytic on the imaginary axis (thus, the moment generating
function is not defined). Nevertheless, in the absence of a closed-form expression
it is desirable to have sharp approximations for the transforms of the lognormal
distributions as this paves the road for obtaining the distribution of a sum of i.i.d.
lognormal random variables via transform inversion.

In this paper, we further analyze the closed form approximation of the Laplace
transform of the Lognormal distribution which we reported in [6] and was obtained
via a modified version of Laplace’s method. Such expression will be denoted L̃(θ)
and it is given by

L̃(θ) =

exp

{
−W 2(θeµσ2) + 2W (θeµσ2)

2σ2

}

√
1 + W (θeµσ2)

, θ ∈ R+. (1.2)

In the expression above, W ( · ) is the Lambert W function which is defined as the
solution of the equation W (x)eW (x) = x; this function has been widely studied in
the last 20 years mainly due to the advent of fast computational methods, cf. [7].
Roughly speaking, the standard Laplace’s method [8] states that an integral of the
general form

∫ b

a

e−θh(t) g(t) dt =

√
2π e−θh(ρ)√
θh′′(ρ)

g(ρ)
(
1 + O(θ−1)

)
, θ →∞, (1.3)

where g(t) and h(t) are functions such that g(t) is “well behaved” and h(t) has a
unique global minimum at ρ ∈ (a, b). Therefore, the leading term of the expression
on the right hand side of (1.3) can be used as an asymptotic approximation of the
integral on the left hand side. Surprisingly, this approximation can be very accurate
for very general functions g(t) and h(t), not only in asymptotic regions but also for
relatively small values of θ. In our case, we employ a variant of Laplace’s method
by first noting the following

Lemma 1.1. Let θ > 0. Then the exponent hθ(t) := −θet − (t − µ)2/2σ2 in the
integrand in (1.1) has a unique maximum at ρθ = −W (θeµσ2) + µ.
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We then proceed in similar way as in the standard Laplace’s method with g(t) ≡ 1
and h(t) = −hθ(t)/θ dependent on θ. However, we also pay a price for such mod-
ification: the expression derived is no longer of an asymptotic order 1 + O(θ−1) as
given in formula (1.3). In the following section we will prove that

L(θ) = L̃(θ)(1 + O(log−1(θ))), θ →∞,

so the modification increases the order of the asymptotic series. Yet, the suggested
approximation remains asymptotically equivalent to the true Laplace transform as
the value of the argument goes to infinity. Moreover, based on these results we
will obtain a probabilistic representation of the error term and construct a Monte
Carlo estimator for the Laplace transform. We remark that one must be careful
in the implementation of Monte Carlo estimators as naive simulation can lead to
unreliable approximations. We show that our proposal corresponds to an importance
sampling estimator which delivers reliable estimates for any value of the argument
by proving its asymptotic efficiency in a rare-event sense to be defined. We further
provide numerical comparisons of our proposal against other methods available in
the literature.

We note that the problem of approximating the transforms of a lognormal is
of high complexity and it has been long standing. Therefore, a significant number
of methods have been developed to approximate both the Laplace and the charac-
teristic functions of the lognormal distribution. We give a more complete literature
survey at the end in Section 5 and mention here the work which is most relevant for
the present paper. Barakat [9] introduced the term iω(−t−1) in the exponent of the
integrand defining the characteristic function and by taking a series representation
of eiω(e

t−t−1), he obtains a representation in terms of Hermite polynomials after inte-
grating term by term. Holgate [10] employed the classical saddle point method [11],
which consists in applying Cauchy’s theorem to deform the path of integration in
such a way that it traverses through a saddlepoint of the integrand in the steepest
descent direction. In the lognormal case, the saddlepoint is given as the solution
t = ρ(ω) of the equation te−t = iσ2ω, so the saddlepoint approximation of the
characteristic function is of the form

ϕ(ω) ∼ (1− ρ(ω))−1/2 exp
{(
ρ(ω)2 − 2ρ(ω)

)
/2σ2

}
. (1.4)

Gubner [12] employed (as many others) numerical integration techniques and was
the first in proposing alternative path contours to reduce the oscillatory behavior
of the integrand. This approach was further extended in Tellambura and Senaratne
[13] where they proposed specific contours passing through the saddlepoint at a
steepest descent rate; this election has the effect that oscillations are removed in a
neighborhood around the saddlepoint. In addition, they also addressed the heavy-
tailed nature of the lognormal density by proposing a transformation which delivers
an integrand with lighter tails.

In this paper we followed a path somewhat different from Holgate to approximate
the Laplace transform of a Lognormal distribution (1.1) by using a variant of the
Laplace’s method (related to the saddlepoint method). To the best of our knowledge,
the resulting closed form approximation (1.2) derived from this methodology was
first reported in [6].
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The paper is organized as follows: In Section 2 we compute the approximation of
the Laplace transform of the lognormal distribution and analyze its asymptotic prop-
erties; in addition, we extend this result to the complex plane via the saddlepoint
method and establish the relationships with the results of Holgate. In section 3 we
construct an importance sampling estimator for approximating the Laplace trans-
form and prove its efficiency properties; we discuss the disadvantages of using naïve
Monte Carlo for estimating this Laplace transform. We verify the sharpness of our
approximations and present some numerical comparisons in the analysis presented
in Section 4. A discussion and concluding remarks are in Section 5.

2 Approximating the lognormal Laplace transform

We start by proving Lemma 1.1.

Proof of Lemma 1.1. Recall that for z ∈ (−e−1,∞) the Lambert W function w =
W (z) is defined as the unique solution w ∈ (−1,∞) of the equation wew = z. With
the change of variables t = µ− y we have hθ(y) = −θeµe−y − y2/2σ2,

h′θ(y) = θeµe−y − y

σ2
=

e−y

σ2

(
θeµσ2 − yey

)
.

Here θeµσ2 − yey is equal to 0 for y = W (θeµσ2), positive for 0 ≤ y < W (θeµσ2),
and negative for W (θeµσ2) < y <∞ since yey is strictly increasing on [0,∞). Also
θeµσ2 − yey > 0 for y < 0 since then yey > 0. This shows that there is a unique
maximum at y = W (θeµσ2), i.e. at t = µ−W (θeµσ2).

In the rest of this section we will make the approximation (1.2) more precise.
In Proposition 2.1, we show that L(θ)/L̃(θ) is given in terms of a certain expected
value, which in Proposition 2.2 we show goes to 1 as θ →∞. Finally, we note that
the approximation derived from Proposition 2.1 can be embedded in a more general
result which is valid in the right half of the complex plane including the imaginary
axis (Remark 2.7).

We assume that µ = 0. Notice that such assumption is made without loss of
generality as Lµ,σ2(θ) = L0,σ2(e−µθ) where Lµ,σ2 stands for the Laplace transform of
a lognormal random variable with parameters µ and σ2 (we also drop the subindexes
µ and σ2 used in the notation above and adopt the notation L(θ) for the rest of the
paper).

The approximation L̃(θ) given in (1.2) is derived from the following proposition:

Proposition 2.1. The Laplace transform of F0,σ2 can be written as

L(θ) =

exp

{
−W 2(θσ2) + 2W (θσ2)

2σ2

}

√
1 + W (θσ2)

E
[
g
(
σ̂(θ)Z; θ

)]
, θ > 0. (2.1)

where Z is an independent normal standard random variable, σ̂2(θ) = σ2
/

(1 +
W (θσ2)) and

g
(
t; θ
)

= exp

{
−W (θσ2)

σ2

(
et − 1− t− t2

2

)}
, t ∈ R.
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Observe that equality (2.1) in the previous proposition expresses the Laplace
transform of a lognormal distribution as the product of two terms: 1) a closed-form
expression in terms of the function Lambert W (·) and 2) an expected value of a
transformed standard normal random variable Z.

The first corresponds to the closed from approximation L̃(θ) given in (1.2) and
obtained by the modified version of the Laplace’s method. The heuristic arguments
used for its construction are illustrated next. Consider the representation

L(θ) = E[e−θX ] =

∞∫

−∞

1

σ
√

2π
exp
{
−θet − t2

2σ2

}
dt, θ > 0, (2.2)

and the infinite series representation of hθ(t) = −θet − t2/2σ2 around its maximum
ρθ = −W (θσ2) (recall Lemma 1.1). By truncating the series up to terms of second
order we can obtain a good approximation of the integral because the exponential
transformation makes the contribution from regions away from ρθ small. Therefore,
most of the total value of the integral will come from a region around the mode
point ρθ where the two functions have similar values. This truncated integral can be
solved explicitly and its value corresponds to the first term in (2.1).

The correction term derived from the use of the Laplace’s method comes in
the form of an expected value so it provides a probabilistic representation of the
error associated to such approximation. A crucial advantage of this representation
is that this approximation can be sharpened via a careful implementation of the
Monte Carlo method (section 3). Observe that the function g( · ; θ) roughly equals
1 in a neighborhood of 0; in consequence, the value E

[
g
(
σ̂(θ)Z; θ

)]
is relatively

close to 1. In fact, we will prove that the modified Laplace’s method delivers an
approximation with an error which is asymptotically negligible. Moreover, it turns
out that this approximation is sharp all over the domain of convergence of θ as we
will empirically corroborate in the numerical examples in section 4.

The proof of Proposition 2.1 provides transparency to the heuristic arguments
of the modified version of the Laplace’s method discussed above.

Proof of Proposition 2.1. Consider the expression (2.2) for the Laplace transform.
Lemma 1.1 implies that the maximum of the integrand occurs at ρθ = −W (θσ2). To
implement the Laplace’s method we consider a second order approximation of the
exponent around the mode point that is introduced in the exponent of the integrand;
then using the identity −θe−W (θσ2) = −W (θσ2)/σ2 we rewrite the r.h.s. of (2.2) as

1√
2πσ

∞∫

−∞

exp

{
− W (θσ2)

σ2

[
1 + (t+ W (θσ2))

+
(t+ W (θσ2))2

2

]
− t2

2σ2

}
g
(
t+ W (θσ2); θ

)
dt (2.3)

where the function g collects all the remaining terms, i.e.

g(t; θ) = exp

{
−W (θσ2)

σ2

(
et − 1− t− t2

2

)}
.
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After some extensive, but otherwise standard algebraic manipulations involving the
function W (·) and its properties, expression (2.3) becomes

exp

{
−W (θσ2)2 + 2W (θσ2)

2σ2

}

√
1 + W (θσ2)

·
∞∫

−∞

1√
2πσ̂(θ)

exp

{
−(t+ W (θσ2))2

2σ̂2(θ)

}
g
(
t+ W (θσ2); θ

)
dt,

where σ̂(θ)2 = σ2/(1 + W (θσ2)). The result of the proposition follows with a change
of variable y = (t+ W (θσ2))/σ̂(θ).

We refer to L̃(θ) in (1.2) as the LM-approximation of the Laplace transform of the
lognormal distribution (this name will be frequently used in our numerical investiga-
tions in Section 4). In the following proposition we make use of the asymptotic rep-
resentation of the standard Laplace’s method to prove that the LM-approximation
is asymptotically equivalent to the true Laplace transform and demonstrate that
the relative error of the approximation of L̃(θ) vanishes at a rate of convergence of
order log(θ)−1.

Proposition 2.2. E[g
(
σ̂(θ)Z; θ

)
] = 1 + O

(
log(θ)−1

)
as θ →∞.

Corollary 2.3. L(θ) = L̃(θ)(1 + O(log(θ)−1)),

lim
θ→∞

L(θ)

L̃(θ)
= 1, lim

θ→∞
L(θ) = lim

θ→∞
L̃(θ) = 0.

[For the last assertion, just note the obvious fact that the L(θ) → 0 as θ → ∞]. It
is also appealing to summarize the asymptotic behavior of L(θ) in the rough form
of logarithmic asymptotics familiar from large deviations theory:

Lemma 2.4.
lim
θ→∞

W (θ)

log(θ)
= 1, lim

θ→∞

logL(θ)

log2 θ
= − 1

2σ2
.

[For the first assertion, just use L’Hopital and W ′(θ) = W (θ)/(θW (θ) + θ)].
The proof of Proposition 2.2 is given in two parts. First we prove that the integral

over an open interval containing the mode point is asymptotically equal to 1. This
is accomplished by employing a standard asymptotic result which also provides
information about the asymptotic order of convergence. The second part of the
proof consists in proving that the contribution to the integral coming from the tails
is negligible as the value of the argument θ →∞. Consequently, we conclude that the
expected value goes to 1 as the value of the argument goes to infinity. In addition, we
will require both the asymptotic result in the first part of Lemma 2.4 and Lemma 2.5
below, which provides an alternative representation of the expected value in (2.1) in
a form that will useful to construct upper bounds satisfying the required asymptotic
conditions. Moreover, Lemma 2.5 will be use later for the construction of efficient
Monte Carlo estimators of the Laplace transform.
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Lemma 2.5. Let g(·; θ), σ̂2(θ) and Z be defined as in Proposition 2.1. Then

E
[
g
(
σ̂(θ)Z; θ

)]
=
√

1 + W (θσ2)E[ϑ(σZ; θ)] (2.4)

where
ϑ(t; θ) = exp

{
−W (θσ2)

σ2

(
et − 1− t

)}
, t ∈ R.

Furthermore, E
[
g
(
σ̂(θ)Z; θ

)]
≤
√

1 + W (θσ2) for all θ > 0.

Proof of Lemma 2.5.

E[g(σ̂(θ)Z; θ)] =

∫ ∞

−∞
exp

{
−W (θσ2)

σ2

(
eσ̂(θ)t − 1− σ̂(θ)t− σ̂2(θ) t2

2

)
− t2

2

}
dt

=

∫ ∞

−∞
ϑ(σ̂(θ) t; θ) exp

{
−t

2

2

(
− W (θσ2) σ̂2(θ)

σ2
+ 1

)}
dt

=

∫ ∞

−∞
ϑ(σ̂(θ) t; θ) exp

{
−1

2
· t2

1 + W (θσ2)

}
dt.

The change of variable z = t/
√

1 + W (θσ2) yields E
[
g
(
σ̂(θ)Z; θ

)]
=
√

1 + W (θσ2)
·E[ϑ(σZ; θ)]. The upper bound follows from the observation that ϑ(t; θ) ≤ 1 for all
t ∈ R and θ > 0. This completes the proof of the Lemma.

Proof of Proposition 2.2. Consider the representation (2.4) in Lemma 2.5 and rewrite

E[ϑ(σZ; θ)] =

∫ a

−∞
ϑ(σt; θ)φ(t)dt,+

∫ b

a

ϑ(σt; θ)φ(t)dt,+

∫ ∞

b

ϑ(σt; θ)φ(t)dt, (2.5)

where φ(t) is the density of the standard normal distribution; a, b are selected such
that 0 ∈ (a, b). For the second integral we can apply a standard asymptotic result
for the standard Laplace’s method [cf. p. 44, 14], which says that if a function h(z)
has a single minimum (mode point) ẑ ∈ (a, b) then it holds that

∫ b

a

e−ηh(z)φ(t)dt =

√
2πe−ηh(ẑ)√
η h′′(ẑ)

φ(ẑ)
(
1 + O(η−1)

)
, η →∞,

In our specific case, η = W (θσ2), and ẑ = 0 is the mode point of the function
h(t) = (eσt − 1 − σt)/σ2. Since h(0) = 0, h′′(0) = 1 and φ(0) = (2π)−1, then it
follows that

∫ b

a

ϑ(σt; θ)φ(t) dt =
1√

W (θσ2)

(
1 + O(W (θ)−1)

)
, θ →∞. (2.6)

For the first integral we use ϑ(σt; θ) ≤ exp{−W (θσ2)σ−2(−1 − σt)} to obtain an
upper bound:

∫ a

−∞
ϑ(σt; θ)φ(z) dt ≤

∫ a

−∞
exp

{
−W (θσ2)

σ2

(
− 1− σt

)}
φ(t)dt

= exp

{
W 2(θσ2) + 2W (θσ2)

2σ2

}
Φ

(
aσ −W (θσ2)

σ

)
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where Φ(·) corresponds to the normal standard distribution. Using Mill’s ratio we
find that the previous expression is asymptotically equivalent to

exp

{
W 2(θσ2) + 2W (θσ2)

2σ2

}
σ√

2π
∣∣aσ −W (θσ2)

∣∣ exp

{
−(aσ −W (θσ2))2

2σ2

}

∼ exp

{
(1 + aσ)W (θσ2)

σ2
− a2

2

}
σ√

2πW (θσ2)
(2.7)

For the third integral we have that ϑ(σt; θ) < exp{−W (θσ2) t2/2σ2} for t ≥ 0. Then
∫ ∞

b

ϑ(σt; θ) dΦ(t) <

∫ ∞

b

exp

{
−W (θσ2)t2

2σ2

}
dΦ(t)

=

∞∫

b

1√
2π

exp

{
−(1 + W (θσ2)σ−2)t2

2

}
dt

= 1− Φ
(
b
√

1 + W (θσ2)σ−2
)

(2.8)

Using Mill’s ratio we obtain the following asymptotically equivalent expression

1

b
√

2π(1 + W (θσ2)σ−2)
exp

{
−b

2(1 + W (θσ2)σ−2
)

2

}
.

Now, observe that if we select a < −σ−1, then the asymptotic order of the tail
integrals (2.7)-(2.8) is negligible compared to the asymptotic order of the integral
in the interval (a, b) given in expression (2.6). Hence, using Lemma 2.5 and the
asymptotic equivalence (2.6) we obtain

E
[
g
(
σ̂(θ)Z; θ

)]
=
√

1 + W (θσ2)

∫ ∞

−∞
ϑ(σt; θ) dΦ(t)

=
√

W (θσ2)−1 + 1 ·
(
1 + O(W (θσ2)−1)

)
. (2.9)

Since
√

W (θσ2)−1 + 1 = 1 + O(W (θσ2)−1) if follows that E
[
g
(
σ̂(θ)Z; θ

)]
= 1 +

O(W (θσ2)−1). Using the first part of Lemma 2.4 we obtain that W (θσ2) ∼ log(θ)
as θ →∞. This completes the proof.

The term O(log(θ)−1) in Proposition 2.2 arising from the approximation of
Laplace’s method can be further expanded into an asymptotic series, so we can
obtain more information on the asymptotic behavior of the Laplace transform of
the Lognormal distribution. For instance, the statement in Remark 2.6 provides a
second order term from the asymptotic series. Its proof is similar to that of Propo-
sition 2.2.

Remark 2.6.

E[g
(
σ̂(θ)Z; θ

)
] = 1 +

σ2

12 log(θ)
+ O

(
log(θ)−2

)
.
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However, one must be careful when using asymptotic series as approximations of
the real Laplace transform because it is common to obtain asymptotic series which
are divergent for certain given values. For instance, the second term in the asymptotic
series obtained above σ2/12 log(θ) → ∞ as θ → 0. One could employ asymptotic
techniques to obtain an optimal approximation by truncating the asymptotic series
up to a certain term. However, in our numerical results we found that the numerical
approximation derived from this strategy delivered poor numerical results even in
regions away from θ = 0. An alternative delivering better numerical results is the
Monte Carlo method which we explore in the section 3.

Proof of Remark 2.6. Take the function h(z) = (eσz−1−σz)/σ2, which has a mode
point at z = 0. Then, the term O(W (θσ2)−1) in the decomposition (2.9) has the
following expansion [cf. 2.20, 14]

1

W (θσ2)

{
5κ̂23
24
− κ̂4

8
+

φ′′(0)

2φ(0)h′′(0)
− κ̂3φ

′(0)

2φ(0)
√
h′′(0)

}
+ O(W (θσ2)−2).

where

κ̂3 :=
h(3)(0)

(h′′(0))3/2
= σ, κ̂4 :=

h(4)(0)

(h′′(0))2
= σ2.

Here φ′(0) = 0, φ(0) = −φ′′(0) = (2π)−1/2, h′′(0) = 1, h(3)(0) = σ and h(4)(0) = σ2.
Hence

1

W (θσ2)

{
5κ̂23
24
− κ̂4

8
+

φ′′(0)

2φ(0)h′′(0)
− κ̂3φ

′(0)

2φ(0)
√
h′′(0)

}
=

1

W (θσ2)

(
σ2

12
− 1

2

)
(2.10)

Now observe that
√

W (θσ2)−1 + 1 = 1 + W (θσ2)−1/2 + O(W (θσ2)−2). We insert
these terms into the expression (2.9) and since integrals (2.7)–(2.8) are of negligible
order we obtain

E
[
g
(
σ̂(θ)Z; θ

)]
= 1 +

1

12W (θσ2)
+ O(W (θσ2)−2)

Apply the first part of Lemma 2.4. This completes the proof.

Finally, we show the approximations obtained by using the so called asymptotic
saddlepoint methodology [8, 15] and discuss some of its standard theory. For that
purpose, we will consider the complex function

L(z) =

∫ ∞

0

e−zxdF (x) =

∫ ∞

−∞

1√
2πσ

exp

{
−zet − t2

2σ2

}
dt, <(z) ≥ 0.

The saddlepoint method makes use of the Cauchy-Goursat theorem to deform the
contour of integration so the new contour traverses the saddlepoint ρz of the function

hz(t) := −zet − t2/2σ2, t ∈ C.

This is possible because the function hz(t) is entire and there is a unique solution
t = ρz for the equation h′z(t) = 0 which is also a saddlepoint of the functions

9



defining the real and imaginary parts of hz. Under such assumptions, Perron’s sad-
dlepoint method indicates that we can select a new contour for which the maximum
of <(hz(t)) over the contour is reached at the saddlepoint ρz and =(hz(t)) is ap-
proximately constant over the contour in a neighborhood of the saddlepoint. In
consequence, the selected contour is such that the maximum of |ehz(t)| is reached at
the saddlepoint; in consequence most of the total value of the integral comes from
the section of the contour in the neighborhood of the saddlepoint Thus, the Laplace’s
method can be adapted to provide an approximation of this contour integral. The
resulting approximation is the complex analogue of (1.2).

Remark 2.7. The approximation of the function L(z) obtained by applying the
saddlepoint methodology is

L(z) ≈
exp

{
−W 2(zσ2) + 2W (zσ2)

2σ2

}

√
1 + W (zσ2)

, <(z) > 0.

[cf. 8, p. 84]. This approximation is relevant for the whole domain of convergence of
L(z) in the complex plane. In particular, when restricted to the imaginary axis it
coincides with the approximation of the characteristic function given by Holgate [10].
Similarly, when evaluated in the positive reals it coincides with the approximation
(1.2) studied in this paper.

3 Efficient Monte Carlo

The approximation of the Laplace transform of the lognormal distribution suggested
in the previous section turns out to be reasonable sharp for all positive values of the
argument θ when the value of the parameter σ is small; however, the quality of the
approximation deteriorates as the value of σ increases (see the numerical results in
section 4). When computing transforms it is crucial to count with approximations
which remain sharp for all values of σ and all over the domain of the transform;
in particular in the tail regions. Hence it is desirable to be able to achieve errors
within certain preselected margins. Resorting to numerical integration methods is a
natural choice so various proposals employing this approach have emerged across the
years [12, 13, 16]. However, the difficulty of approximating the defining integral is
such that most of the methods proposed are very complicated and deliver unreliable
results as corroborated in our numerical examples.

An alternative is the Monte Carlo method. Such approach has two notable ad-
vantages: (1) the approximations can be sharpened at the cost of computational
effort; (2) the precision of the estimates can be assessed with accuracy. The basic
version, known as Crude Monte Carlo, consists in simulating a sequence X1, . . . , XR

of i.i.d. random variables with common distribution LN(0, σ2), then applying the
transformation x 7→ e−θxe

µ to each random variable and finally returning the arith-
metic average of the transformed sequence as an estimator of the Lognormal Laplace
transform L(θ). The Law of Large Numbers ensures unbiasedness of this estimator
while the Central Limit Theorem implies that the margin of error can be used as a
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measure of performance of the estimator. In our case such quantity is defined as

Margin of error = zα

√
Var (e−θX)

R
, X ∼ LN(µ, σ2), (3.1)

where zα is the α-quantile associated to the normal distribution and R is the number
of replications. Ideally, one would like to obtain a margin of error which is relatively
small when compared to the value of the Laplace transform. In principle, one could
hope to attain a preselected size of the margin of error by simply selecting a big
enough number of replications, in fact, an inspection to the equation (3.1) reveals
that this number should be proportional to Var (e−θX)/L2(θ). However, this strategy
can clearly become unfeasible in the tail regions because the number of replications
required to estimate the Laplace transform using Crude Monte Carlo tends to infinity
as θ →∞. This is a consequence of the following Proposition.

Proposition 3.1. Let X ∼ LN(µ, σ2). Then

lim
θ→∞

Var(e−θX)

L2(θ)
=∞.

Proof. Without loss of generality we assume µ = 0. We start by observing that
W (θσ2)→∞, so we can apply the first part of Lemma 2.4 to obtain that

lim
θ→∞
−W (2θσ2) + 2W (θσ2) =∞.

By virtue of Proposition 2.2 and the previous limit it follows that

lim
θ→∞

L(2θ)

L2(θ)
= lim

θ→∞

L̃(2θ)

L̃2(θ)
= lim

θ→∞

exp

{
−W 2(2θσ2) + 2W (2θσ2)

2σ2

}

exp

{
−2W 2(θσ2) + 4W (θσ2)

2σ2

} 1 + W (θσ2)√
1 + W (2θσ2)

=∞.

Hence we conclude

lim
θ→∞

Var(e−θX)

L2(θ)
= lim

θ→∞

E(e−2θX)

L2(θ)
− 1 = lim

θ→∞

L(2θ)

L2(θ)
− 1 =∞.

Since the number of replications needed by the Crude Monte Carlo for achieving
a preselected margin of error is unbounded and grows to infinity as θ → ∞, it is
then clear that we need to construct new estimators without the pitfalls of Crude
Monte Carlo, as well as to consider an appropriate set of tools to assess the efficiency
of these new estimators. The set of advanced techniques used to produce improved
Monte Carlo estimators goes under the name of variance reduction methods and
their performance is conveniently analyzed under the rare-event framework. The
key ideas are discussed next.

We say that a given estimator L̂(θ) of L(θ) is strongly efficient or has bounded
relative error if

lim sup
θ→∞

Var L̂(θ)

L2(θ)
<∞.
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This efficiency property implies that the number of replications required to estimate
L(θ) with certain fixed relative precision remains bounded as θ → ∞. A weaker
criterion is logarithmic efficiency defined as

lim sup
θ→∞

Var L̂(θ)

L2−ε(θ)
= 0, ∀ε > 0.

This criterion implies that the number of replications needed for achieving certain
relative precision grows at most at rate of order | log(L(θ))|. While bounded relative
error is clearly a stronger form of efficiency, it is widely accepted that for practical
purposes (numerical implementations), there is no substantial difference between
these two criteria, although it is often more involved to prove bounded relative error
than logarithmic efficiency.

Our objective is to construct an efficient estimator of the Lognormal Laplace
transform L(θ). For that purpose we will construct a new estimator employing the
probabilistic representation of L(θ) obtained in Proposition 2.1. We will apply a vari-
ance reduction technique known as Importance Sampling which consists in sampling
from an alternative distribution and then applying an appropriate transformation
to remove the bias. In general, this method requires a careful analysis in order to be
effective as it not always produces a reduction in variance. We proceed to discuss
these ideas in detail:

Recall Proposition 2.1 which says that for any θ > 0, it holds that

LX(θ) = L̃X(θ)E[g(σ̂(θ)Z; θ)]

where L̃X(θ) is the LM-approximation (1.2) of the Laplace transform, Z is a normal
standard random variable and

σ̂2(θ) =
σ2

1 + W (θσ2)
, g(w; θ) = exp

{
−W (θσ2)

σ2

(
ew − (1 + w + w2/2)

)}
.

A naïve approach is to use a Crude Monte Carlo estimator of E[g(σ̂(θ)Z; θ)], i.e.
simulate Z ∼ N (0, 1) and return g(σ̂(θ)Z; θ). We refer to this estimator as Naïve
Monte Carlo and denote it L̂N(θ) in order to distinguish from the Crude Monte
Carlo estimator discussed previously.

The Naïve Monte Carlo estimator L̂N(θ) is still highly unreliable (in spite of
the apparent sharpness observed in the numerical examples in section 4) as it turns
out it has infinite variance when θ > e1σ−2. For proving this consider the second
moment

E[g2(σ̂(θ)Z; θ)] =

∫ ∞

−∞
exp

{
−2W (θσ2)

σ2

(
eσ̂(θ)t − 1− σ̂(θ)t− σ̂(θ)2t2

2

)
− t2

2

}
dt

=

∫ ∞

−∞
exp

{
−2W (θσ2)

σ2

(
eσ̂(θ)t − 1− σ̂(θ)t

)
+

W (θσ2)− 1

W (θσ2) + 1
· t

2

2

}
dt

(3.2)

If t→ −∞ the the exponential term eσ̂t vanishes and we are left with a second order
polynomial with leading coefficient

W (θσ2)− 1

2W (θσ2) + 1
.
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The last takes positive values if W (θσ2) > 1 which occurs if and only if θ > e1σ−2.
In such case, then the integrand goes to infinity as t→ −∞ (Figure 1).

Figure 1: Graph of the integrand in (3.2) with σ = 1 and θ = 30.

The argument above, shows that even when the random variable g2(σ̂(θ)Z; θ)
has a finite expected value which coincides with the value of the error term, the
naïve Monte Carlo estimator is fated to deliver unreliable estimates as it will have
infinite variance. The result above is not surprising as exponential transformations
of light tailed random variables (as the one obtained by applying the function g2

to a normal random variable) often yields heavy-tailed distributions with infinite
moments. Now, to fix this problem we propose a second estimator which is based
on a change of measure suggested by Lemma 2.5. Recall that such lemma says that

L(θ) := exp

{
−W 2(θσ2) + 2 W (θσ2)

2σ2

}
E
[
ϑ(σZ; θ)

]
,

ϑ(t; θ) = exp

{
−W (θσ2)

σ2

(
et − 1− t

)}
.

where σZ ∼ N (0, σ2). Hence, it follows that if Y ∼ N (0, σ2) then the following is
an unbiased estimator of L(θ)

L̂IS(θ) := exp

{
−W 2(θσ2) + 2 W (θσ2)

2σ2

}
· ϑ(Y, θ). (3.3)

For reasons to be explained next, we refer to this estimator as the Importance Sam-
pling estimator of the Lognormal Laplace transform L(θ) and denote it with L̂IS(θ).
The name of the new estimator is due to the fact that it can be constructed by us-
ing importance sampling. Such method relies on the existence of a Radon-Nykodym
derivative with respect to a probability measure, say Q. If we are interested in esti-
mating E[g(Y )] where Y is a random variable, E is the expectation operator under
the measure P and Q is an absolutely continuous measure with respect to P, then
it holds that

E[g(Y )] = EQ[L · g(Y )],

where EQ is the expectation operator under the measure Q and L := dP/dQ is
the Radon-Nykodym derivative of P with respect to Q (the last also goes under the
name likelihood ratio in the simulation community). Moreover, if the measures P and
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Q are absolutely continuous, then the Radon-Nykodym derivative/likelihood ratio
is simply the ratio of the corresponding density functions. Hence, if Y is simulated
according to Q, then L·g(Y ) serves as an unbiased estimator of the quantity E[g(Y )].

Notice that the importance sampling methodology ensures that the new estima-
tor is unbiased; also in most of the cases it will have a different variance. However,
there is no guarantee that the new variance is smaller and that of course depends
on an adequate selection of the importance distribution.

In our setting, we want to estimate the quantity E[g(Y ; θ)] where Y ∼ N (0, σ̂2(θ))
and g is the function given it Proposition 2.1. Thus, we select Q in such way that
Y ∼ N (0, σ2). It turns out that the the likelihood ratio is equal to

L(y) :=
f0,σ̂2(θ)(y)

f0,σ2(y)
=
√

1 + W (θσ2) exp

{
−W (θσ2)

y2

2σ2

}

where fµ,σ2(y) denotes the density of the normal distribution N(µ, σ2). Then it fol-
lows that

L · g(y; θ) =
√

1 + W (θσ2) exp

{
−W (θσ2)

y2

2σ2

}

· exp

{
−W (θσ2)

σ2

(
ey − (1 + y + y2/2)

)}

=
√

1 + W (θσ2) exp

{
− W (θσ2)

σ2

(
ey − (1 + y)

)}

=
√

1 + W (θσ2) · ϑ(y; θ).

This argument confirms that the estimator L̂IS(θ) is an importance sampling esti-
mator with respect to the Naïve Monte Carlo estimator L̂N(θ) and with N(0, σ2)

as importance sampling distribution. Moreover, it turns out that L̂IS(θ) achieves
logarithmic efficiency:

Proposition 3.2. L̂IS(θ) is an unbiased estimator of the Laplace transform of the
lognormal distribution LN(0, σ2). Moreover, it is logarithmic efficient as θ →∞.

Proof of Proposition 3.2. By construction, L̂IS(θ) is an unbiased estimator of L(θ).
To prove logarithmic efficiency we use the equivalence in Lemma 2.5 and the asymp-
totic relation in Corollary 2.3 to verify the following equivalence

lim
θ→∞

Var[L̂2(θ)]

L2−ε(θ)
= lim

θ→∞

L̃2(θ)
(
1 + W (θσ2)

)
· Var[ϑ(Y ; θ)]

L̃2−ε(θ)

= lim
θ→∞
L̃ε(θ)

(
1 + W (θσ2)

)
· Var[ϑ(Y ; θ)],

where L̃(θ) is the asymptotically equivalent approximation of L(θ) given by the
Laplace’s method. Since ϑ2(y; θ) ≤ 1 we have the following bounds

lim
θ→∞
L̃ε(θ)

(
1 + W (θσ2)

)
E[ϑ2(σZ; θ)] ≤ lim

θ→∞
L̃ε(θ)(1 + W (θσ2)) = 0.

The last limit is straightforward to verify by inserting the formula for L̃(θ) given in
(1.2) and checking that the term 1 + W (θσ2) is asymptotically bounded by L̃ε(θ)
for all ε > 0.
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Algorithm. The following generates a single replicate of the IS estimator.

1. Simulate Y ∼ N (0, σ2).

2. Compute ϑ(Y ; θ) = exp

{
− W (θσ2)

σ2

(
eY − 1− Y

)}
.

3. Return L̂IS(θ) := exp

{
−W 2(θσ2) + 2 W (θσ2)

2σ2

}
ϑ(Y ; θ).

4 Numerical examples

In this section we investigate the numerical performance of our proposals and com-
pare them against several approximations available in the literature; we further
discuss the quality of the approximates. First we conduct separate investigations on
approximations of the Laplace transform and the characteristic function. Secondly,
we corroborate empirically the efficiency properties of the Monte Carlo estimators
considered in this paper.

4.1 Approximations of the Laplace transform

We first considered approximations of the Laplace transform of the lognormal distri-
butions. For that purpose we examined the proposals of Barakat [9], Gubner [12] and
Tellambura/Senaratne [13] (further discussion on these results can be found in the
last section of this paper). These proposals were originally designed for approximat-
ing the characteristic function; however, one can make the appropriate comparisons
by using the relation L(iθ) = ϕ(θ). We compared these approximations against our
closed form expression (1.2) which was referred as LM-approximation. We decided
to use the importance sampling Monte Carlo estimator suggested in section 3 as
benchmark of comparison; recall that we employed the name IS estimator to refer
to it. We have employed 108 replications for each estimate. In the examples below,
we present tables with the values of both the approximation and the relative errors
with respect to the IS estimator. The latter is defined as

Relative Error =
Approximation− IS estimate

IS estimate
.

It is important to remark that for the approximations suggested by Gubner and
Tellambura-Senaratne we employed the Matlab codes provided by the authors.

Example 1. For our first example we have used a value of σ = 0.25 (this value is
employed in the numerical results presented in the paper of Barakat [9] and used
here for corroboration purposes). The results are presented in Table 1.

For this example, the results of Gubner were excluded since the corresponding
algorithm delivered values which were much larger than 1. The method of Tellam-
bura/Senaratne also produced unreliable results: notice for instance that it produces
an estimate of L(0) which has an error of about 5% (recall that L(0) = 1). In con-
trast, our two proposals delivered very similar results, thus confirming that the
Laplace’s method can produce indeed very sharp approximations of the Laplace
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Table 1: Approximated Values of L(θ) with σ = 0.25.

θ IS Monte Carlo LM approximation Tellambura/Senaratne Barakat

0.0 1.000000 1.000000 0.945115 1.000000
0.4 0.670006 0.670006 0.633173 0.670006
0.8 0.449189 0.449190 0.424455 0.449189
1.2 0.301335 0.301336 0.284715 0.301335
1.6 0.202274 0.202275 0.191099 0.202274
2.0 0.135862 0.135862 0.128344 0.135862

transform of the lognormal distribution. The results of Barakat coincide with our
results, thus reassuring the sharpness of our methods for small values of σ. Table 2
below shows the relative errors of the estimators. It is noted that the method of
Tellambura/Seranatne underestimates the real values with errors of about 5.5% no
only in a neighborhood of 0 but all across the domain of the transform.

Table 2: Relative Errors of L(θ) with σ = 0.25.

θ LM approximation Tellambura/Senaratne Barakat

0.0 0.000000× 100 −0.054885 0.000000× 100

0.4 7.986949× 10−7 −0.054974 4.080170× 10−8

0.8 2.009580× 10−6 −0.055064 5.047547× 10−7

1.2 2.381985× 10−6 −0.055154 1.410071× 10−7

1.6 2.876162× 10−6 −0.055245 −9.037186× 10−8

2.0 2.906645× 10−6 −0.055337 −7.750253× 10−7

Example 2. In the second example we consider a value of σ = 1. The results are
presented in Table 3.

Table 3: Approximated Values of L(θ) with σ = 1.

θ IS Monte Carlo LM approximation Tellambura Barakat Gubner

0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.4 0.616293 0.624119 0.616284 0.642997 0.615747
0.8 0.440037 0.445053 0.440053 0.673959 0.434538
1.2 0.335214 0.338399 0.335201 −1.753636 0.319962
1.6 0.265606 0.267730 0.265610 −50.847370 0.231162
2.0 0.216313 0.217758 0.216309 −596.161998 0.279931

One of the most notorious aspects of this case is that the approximation of
Barakat deteriorates rapidly. The method of Gubner delivers better results but still
with large errors. The algorithm of Tellambura seems to be the one delivering the
best results. In the case of our LM approximation, it delivers sensible results which
does not seem to deteriorate as the value of θ increases; nevertheless, it seems that
this closed form approximation looses accuracy as σ increases. These observations
are reaffirmed after examining the relative errors in Table 4.
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Table 4: Relative Errors of L(θ) with σ = 1.

θ LM approximation Tellambura/Senaratne Barakat Gubner

0.0 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100

0.4 1.269892× 10−2 −1.396821× 10−5 4.333043× 10−2 −8.854354× 10−4

0.8 1.139909× 10−2 3.720053× 10−5 5.315953× 10−1 −1.249595× 10−2

1.2 9.502939× 10−3 −3.903671× 10−5 −6.231395× 100 −4.549968× 10−2

1.6 7.997354× 10−3 1.402916× 10−5 −1.924392× 102 −1.296799× 10−1

2.0 6.681295× 10−3 −1.925373× 10−5 −2.757016× 103 2.941032× 10−1

Example 3. Next we consider a larger value σ = 4. The results are shown in Table 5.
The results of Gubner and Barakat deteriorated rapidly so these were excluded from
our analysis.

Table 5: Approximated Values of L(θ) with σ = 4.

θ IS Monte Carlo LM approximation Tellambura

2 0.382672 0.371296 0.382685
4 0.321163 0.307613 0.321194
6 0.287195 0.273413 0.287219
8 0.264198 0.250553 0.264181

10 0.246962 0.233637 0.246974

In this case Tellambura/Senaratne provided the best approximations. Our ap-
proximation delivered significantly larger errors. These observations are further cor-
roborated after an inspection of the relative errors. The approximation of Tellam-
bura/Senaratne seems to be remain accurate for large values of θ. These results are
given in Table 6.

Table 6: Relative Errors of L(θ) with σ = 4.

θ Our Proposal Tellambura/Senaratne

2 −0.029728 3.36825× 10−5

4 −0.042190 9.65352× 10−5

6 −0.047989 8.44206× 10−5

8 −0.051645 −6.49857× 10−5

10 −0.053957 4.96133× 10−5

4.2 Approximations of the Characteristic Function

Next we analyzed the approximations for the Characteristic function of the log-
normal distribution. In addition to the results of Barakat, Gubner and Tellam-
bura/Senaratne we inspected the results of Leipnik [17] who proposed a series rep-
resentations given in terms of Hermite polynomials. However, we could not obtain
values which could be considered reliable (other authors have faced the same chal-
lenges when trying to implement this algorithm [5]).
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Example 4. For our single example we considered a value of σ = 0.5. The graphs
of the real and imaginary part of ϕ(ω) are shown in Figure 2. Our approximation
and the Tellambura/Senaratne are indistinguishable in the graphs as these are very
accurate. However, the approximation of Barakat deteriorates in regions away from 0.
This phenomena could be explained by the fact that the Barakat approximation
is obtained by truncating a converging series. In particular, we observed that the
Barakat approximation also deteriorates as the value of σ increases thus requiring
an even larger amount of series terms.
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Figure 2: Real and imaginary parts of the Characteristic function of the Lognormal for
σ = 0.5.

We conducted similar experiments for alternative values of σ and we obtained
similar conclusions as in the case of the Laplace transform. For very small values of
the σ, the approximation of Tellabura/Senaratne delivers unreliable approximations
and sometimes it fails to converge. In the same case, the algorithm of Barakat and our
proposal deliver very sharp approximates. As the value of σ increases, the proposal
of Barakat deteriorates rapidly. Our proposal loses some precision but still delivered
sensible approximations. For moderately large values of σ it is the algorithm of
Tellambura/Seranarte the one which produces the best results.

4.3 Efficient Monte Carlo

Example 5. In this example we contrast the three estimators discussed in this pa-
per: Crude Monte Carlo, Naïve Monte Carlo and Efficient Monte Carlo. We selected
a value of σ = 1. In the three cases we have employed R = 108 replications. Fig-
ure 3 shows the estimates provided by the three methods in logarithmic scale. It is
observed that Crude Monte Carlo provides a reasonable approximation of the true
Laplace transform for small values of the argument; however, as the value of θ in-
creases, the quality of the crude estimate deteriorates as the relative error increases
(this explains the jiggled nature of the curve). On the other hand, it appears that
the two importance sampling methods discussed here provide sharp approximations
as their values are very close to each other (the curves are indistinguishable from
each other).

However, one of the two importance sampling estimators (Naïve Monte Carlo)
has an infinite variance, so it can provide unreliable estimates. This effect is noted
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Figure 3: Monte Carlo Estimates for the Laplace transform with σ = 1.

in the left panel of the Figure 4 where the variances of these two estimators are
plotted. It appears that the first estimator has a lower variance but this is only
due to the fact that the variance is underestimated (the random “peaks” are a clear
symptom of this problem). On the other hand, the efficient algorithm has a sharp
estimate of the real variance which is reflected in the smoothness of the curve. The
relative errors are plotted in the panel on the right of Figure 4. The relative error
of the IS estimator increases at a rate which appears to be at least logarithmic thus
corroborating its efficiency. In the case of the Naïve Monte Carlo estimator (infinite
variance) the estimators of the relative error are unreliable.
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Figure 4: Variance and Relative Errors of the two importance sampling algorithms sug-
gested.
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5 Discussion and Conclusion

More on earlier literature

The use of infinite series representations has been one of the most used approaches to
deal with the transforms of the Lognormal distribution. One of the most obvious at-
tempts in the study of L(θ) is using formal series representations as follows: consider
the following integral expression for the transform of the Lognormal distribution

L(θ) =

∫ ∞

−∞

1√
2πσ

exp

{
−θet − (t− µ)2

2σ2

}
dt, <(θ) > 0 ,

replace the term e−θt with its Taylor series, interchange the integral and sum and
perform a term by term integration, thus obtaining a formal series representation
with the moments of the lognormal distribution as coefficients. This attempt turns
to be invalid as the resulting series diverges. This is not surprising because the pro-
cedure described above is equivalent to deriving a Taylor series of the function L(θ)
around the origin, but as noted before, this function is not analytic in the imagi-
nary axis. This pathology is also related to the well known fact that the lognormal
distribution is not uniquely determined by its moment sequence (Heyde, 1963, [18]).
Other methods using series representations appear as early as 1976. The manuscript
of Barouch and Kaufman [19] provides various approximations in terms of series
representations which are valid in specific regions; for instance, a series expansion
of the lognormal density is employed to produce a closed-form asymptotic approx-
imation in terms of both the Gamma function and its derivatives. However, none
of these expressions can deliver reliable estimates in the whole domain of the char-
acteristic function. The Laplace transform representation proposed by Barakat has
the following closed form

L(θ) = e−θeθ
2σ2/2

∞∑

n=0

(−1)nσn

n!
an(θ)Hn(σθ), (5.1)

where an(θ) is the n-th coefficient in the MacLaurin series representation of e−θ(e
y−1−y)

and Hn is the n-th Hermite polynomial (notice that we have employed the probabilist
Hermite polynomials instead of the physicist Hermite polynomials in the definition
[cf. 20]). We found that the approximation (5.1) of Barakat [9] is sharp for small
values of σ2, but rapidly deteriorates for large values of σ2 in regions away from
the origin. A similar expression is obtained by Leipnik [17], but instead he shows
that the characteristic function satisfies a functional differential equation of the form
ϕ′(ω) = ieµ+σ

2/2ϕ(eσ
2
ω) (an observation that appeared previously in [19]). Leipnik

employs a method due to de Bruijn to solve this functional differential equation:
the solution (given as an integral involving the gamma function) is proven to have
an explicit convergent infinite series representation in terms of Hermite polynomials
which is of the form

ϕ(θ) =

√
π

2σ2
exp

{
− log2(θ + iπ/2)

2σ2

} ∞∑

n=0

in

σn
dnHn

(
log(θ + iπ/2)/σ

)
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where dn are the coefficients in the MacLaurin series representation of the recip-
rocal of the Gamma function Γ−1(y + 1). Leipnik includes a recursive formula for
calculating the coefficients dn in terms of the Euler’s constant and the Riemann
Zeta function; this recursion facilitates the calculation of this series representation.
However, the solution of the functional differential equation cannot be extended to
the whole complex plane, so it appears that this approximation only applies for
the characteristic function (in fact, we were not able to obtain a reliable numerical
estimate using any of these formulae).

In his study of the characteristic function, cf. [10], Holgate applied the Lagrange
inversion theorem to the equivalence te−t = iσ2ω to obtain an asymptotic series rep-
resentation of the saddle point function ρ(ω), which inserted into expression (1.4)
provides a representation of the function ϕ(ω) in terms of an asymptotic infinite
series. However, the resulting series oscillates wildly and cannot provide a reliable
numerical approximations. Finally, another interesting and somewhat different ap-
proach which delivers closed-form expressions is given by Rossberg [21], who pro-
vides a representation of general Laplace transforms in terms of a 2-fold convolution
involving the cdf of the random variable of interest.

Numerical integration methods have also received a good deal of attention and
most of these have been developed in parallel with the analytic approximations dis-
cussed above. One of the earliest references is [16], where the performance of various
standard integration methods is analyzed. It is remarked there that approximating
the characteristic function via numerical integration is very challenging due to the
oscillatory nature of the term eiωt and the heavy-tailed nature of the lognormal den-
sity [cf. 22]. This fact has been further discussed in several other papers [9, 12, 16]).
An obvious approach to deal with the oscillations is to employ complex analytic
techniques: besides the paper of Holgate [10] where the saddlepoint methodology
is exploited, it seems that Gubner [12] was the first in proposing alternative path
contours to reduce the oscillatory behavior of the integrand, as followed up by Tel-
lambura and Senaratne [13] where they proposed specific contours passing through
the saddlepoint at a steepest descent rate; this choice has the effect that oscillations
are removed in a neighborhood around the saddlepoint. In addition, they also ad-
dress the heavy-tailed nature of the lognormal density by proposing a transformation
which delivers an integrand with lighter tails.

Summary of the paper

A closed form expression of the Laplace transform of the lognormal distribution does
not exist. Providing a reliable approximation is a difficult problem since traditional
approximation methods fail mainly due to the fact that the Lognormal distribution
is heavy-tailed and its transforms are not analytic in the origin. In this paper we
proposed a closed form approximation of the Laplace transform which is obtained via
a modified version of the classic asymptotic Laplace’s method. The main result is a
decomposition of the Laplace transform which delivers a closed form approximation
of the Laplace transform and an expression of the exact error. The last turns to be
useful to prove the asymptotic equivalence of the proposed approximation. Moreover,
since the error term is given in a probabilistic representation it turns out to be
convenient for analysis.
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In addition, we constructed a Monte Carlo estimator of the Laplace transform of
the Lognormal distribution. This estimator is based on the probabilistic represen-
tation of the error term obtained via the modified version of the Laplace’s method.
We prove the efficiency of this estimator. In contrast, we illustrate that the Crude
and Naïve Monte Carlo implementations can deliver unreliable estimates for large
values of the argument.

Finally, we conducted numerical experiments where we compared our proposals
against other approximations available in the literature. We found that most ap-
proximations are very sensible for different values of σ. The method of Tellambura
is one of the most precise; however, it delivers unreliable results for small values of
σ and sometimes it fails to converge. The proposal of Barakat can deliver sharp re-
sults for small values of σ but fails for large values of the argument. Our closed-form
LM expression delivers approximations which remain precise all over the domain of
the transform; in particular, it tends to be more precise for small values of σ . An
attractive feature of our proposal is its simple closed-form.

In contrast, we showed that our efficient IS Monte Carlo estimator is the only
method which delivered reliable sharp results for any combination of values of the
parameters σ and θ. In particular, it remains sharp in asymptotic regions as it is
based on an asymptotic method. In addition it has a simple form and it is easy to
implement. Moreover, it does not have convergence issues. Overall, this seems to be
the best available option to approximate the Laplace transform of the Lognormal
distribution.

Work in progress

One obvious way to go is to apply our results to approximate the density and
cumulative distribution function of a sum of independent random variables. The
obvious idea is via transform inversion, but we could also apply the saddlepoint
methodology to obtain approximations in the left tail via Escher and Legendre-
Fenchel transforms (note that the left tail is of particular importance in finance
because of its interpretation related to, say, portfolio loss). In addition, one could
also construct reliable efficient Monte Carlo estimators based on this approximation.
Finally, Laplace transforms of correlated lognormals could also be explored.
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