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Abstract

We consider a continuous, infinitely divisible random field in Rd given as an
integral of a kernel function with respect to a Lévy basis with convolution
equivalent Lévy measure. For a large class of such random fields we compute
the asymptotic probability that the supremum of the field exceeds the level x
as x→∞. Our main result is that the asymptotic probability is equivalent to
the right tail of the underlying Lévy measure.
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1 Introduction

In the present paper we investigate the extremal behaviour of a field (Xt)t∈B defined
by

Xt =

∫

Rd
f(|t− s|)M(ds) , (1.1)

where M is an infinitely divisible, independently scattered random measure on Rd,
f is some kernel function, and B is a compact index set. We will assume that the
Lévy measure of the random measure M has a convolution equivalent right tail
([11, 12, 21]).

Under some further regularity conditions we derive in the present paper for
a random field (1.1) the very useful result that the asymptotic behaviour of the
supremum ofXt, t ∈ B, has a tail that is equivalent to the tail of the underlying Lévy
measure. More precisely under the assumption that the underlying Lévy measure of
M has a tail that is asymptotically equivalent to x−δ exp(−βx), β > 0, δ > 1, we
show that

P (sup
t∈B

Xt > x) ∼ Cx−δ exp(−βx)E exp(βXt0)md(B)

Corresponding author: Anders Rønn–Nielsen, arnielsen@math.ku.dk

1



as x → ∞, where C is a known constant and md(B) is the Lebesgue measure
of B. Measures with a tail asymptotically equivalent to x−δ exp(−βx) are indeed
convolution equivalent ([21, Lemma 2.3]) and cover the important cases of an inverse
Gaussian and a normal inverse Gaussian (NIG) basis, respectively, see Section 2
below.

Lévy models as defined in (1.1) provide a flexible and tractable modelling frame-
work that recently has been used for a variety of modelling purposes, including
modelling of turbulent flows ([10]), growth processes ([17]), Cox point processes
([16]), and brain imaging data ([18]). In [18], a model (1.1) with M following a NIG
distribution was suitable for modelling the neuroscience data under consideration.
For such data it is typically of interest to detect for which t ∈ B a given field obtains
values that are significantly large.

To the best of our knowledge, the extremal behaviour of a NIG field or more
generally a field (1.1) with convolution equivalent Lévy measure has not yet been
studied in detail. For Gaussian random fields it is known that the distribution of the
supremum of the field can be approximated by the expected Euler characteristic of
an excursion set (see [4] and references therein). In [15] an exact asymptotic result is
obtained for Gaussian random fields under the assumption of α(t)–local stationarity.
However, in [18] it is shown by simulations that using a model based on the NIG
distribution gives results that are substantially different from those obtained by
Gaussian models.

The supremum of a non–Gaussian field given by integrals with respect to an
infinitely divisible random measure has already been studied, when the random
measure has regularly varying tails. Results for the asymptotic distribution of the
supremum are found in [25], and these results are refined in [2] and [3], where results
are obtained on the asymptotic joint distribution of the number of critical points of
the excursion sets. The arguments are – as in the present paper – based on finding
the Lévy measure of a dense countable subset of the field. However, the remaining
proofs rely heavily on the assumption of regularly varying tails and can therefore
not be translated into the convolution equivalent framework.

Note that convolution equivalent distributions have heavier tails than Gaussian
distributions and lighter tails than those of regularly varying distributions. The
latter statement follows from the fact that convolution equivalent distributions have
exponential tails while regularly varying distributions have power function tails.

For real–valued one dimensional infinitely divisible distributions it is shown in
[11], [12] and [21] that if the Lévy measure has a convolution equivalent right tail,
then the distribution has a right tail that is asymptotically equivalent. The proofs
are based on a decomposition of the distribution into a compound Poisson part that
is dominating in the tail and a part with a lighter tail. The arguments in the present
paper applies a similar decomposition to the distribution of a dense countable subset
of the field.

In [13], results for a moving average process on R, obtained as an integral with
respect to a Lévy process with convolution equivalent tail, are derived. But here the
kernel function f satisfies f(t) = 0 for t < 0 such that

Xt =

∫ t

−∞
f(t− s)M(ds) .
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The present paper is organised as follows. In Section 2, we give a short introduc-
tion to random fields defined as an integral of a kernel function with respect to a
Lévy basis. Such a field X can be decomposed into a sum X1 + X2 + X3 of three
independent fields, including a compound Poisson sum X1 and a Gaussian part X3.
In Section 3, the tail asymptotics for X1 is studied, while it is shown in Section 4
that the supremum of the fields X2 and X3 have lighter tails than the supremum
of X1. This makes it possible to derive the overall extremal behaviour of the supre-
mum of X, which is also done in Section 4. The asymptotic behaviour of excursion
sets is shortly discussed in Section 5. Proofs concerning the existence of continuous
versions of the random fields considered are deferred to an Appendix.

2 Preliminaries

Consider an independently scattered random measure M on Rd. Then for a se-
quence of disjoint sets (An)n∈N ⊆ Rd in B(Rd) the random variables (M(An))n∈N
are independent and satisfy M(∪An) =

∑
M(An). Assume furthermore that M(A)

is infinitely divisible for all A ∈ B(Rd). Then M is called a Lévy basis, see [10] and
references therein.

For a random variable X let C(λ ‡X) denote its cumulant function logE(eiλX).
We shall assume that the Lévy basis is stationary and isotropic such that for A ∈
B(Rd) the variable M(A) has a Lévy–Khintchine representation given by

C(λ ‡M(A)) = iλamd(A) + 1
2
λ2θmd(A) +

∫

A×R

(
eiλu − 1− iλu1[−1,1](u)

)
F (ds, du) ,

(2.1)
where md is the Lebesgue measure on (Rd,B(Rd)), a ∈ R, θ ≥ 0 and F is a measure
on B(Rd × R) on the form

F (A×B) = ξmd(A)ρ(B) . (2.2)

We assume that ρ has an exponentially varying right tail with parameter β > 0

ρ((x,∞)) = L(x)e−βx , (2.3)

where L satisfies L(x) ∼ x−δ with δ > 1. Here we use the convention that f(x) ∼
g(x) if f(x)/g(x) → 1 as x → ∞. As noted in the introduction, this makes ρ
convolution equivalent. We furthermore assume

∫
z2 ρ(dz) <∞ . (2.4)

Note that the integrability along the right tail of ρ follows from (2.3) and that in
particular ∫

[−1,1]
z2 ρ(dz) <∞ ,

which is needed for ρ to be a Lévy measure. Finally we assume that there exists
another Lévy measure ρ̄ on the form

ρ̄(dx) = C|x|−r dx (2.5)

with r ∈ (2, 3) and C > 0, such that ρ̄− ρ is a non–negative measure.
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Example 2.1 (IG basis). Suppose that M is inverse Gaussian,

M(A) ∼ IG(ηmd(A), γ) ,

η, γ > 0. Then C(λ ‡M(A)) has the representation (2.1) from above with

a =
η

γ

∫ 1

0

x−1/2e(−1/2)γ
2x dx

θ = 0

ξ =
η

γ2

√
2

π

ρ(dx) =
γ2

2
1R+(x)x−3/2e(−1/2)γ

2x dx ,

see e.g., [8, 9, 17]. Thereby

ρ((x,∞)) =
γ2

2

∫ ∞

x

y−3/2e(−1/2)γ
2y dy ∼ x−3/2e(−1/2)γ

2x

as x→∞.

Example 2.2 (NIG basis). Suppose that M is normal inverse Gaussian,

M(A) ∼ NIG(α, β, µmd(A), δmd(A)) ,

0 ≤ |β| < α, µ ∈ R and 0 < δ. Then C(λ ‡M(A)) has the representation (2.1) from
above with

a = µ+
2δα

π

∫ 1

0

sinh(βx)K1(αx) dx

θ = 0

ξ =
δ

α− β

√
α

2π

ρ(dx) = (α− β)

√
2α

π

1

|x|K1(α|x|)eβx dx ,

where K1 is the modified Bessel function of second kind and index 1. For further
details concerning the Lévy measure of the NIG distribution, see [6] and [7]. Using
the well-known asymptotic formula for K1

K1(s) ∼
√
π

2
s−1/2e−s as s→∞ ,

we find √
2α

π

1

|x|K1(α|x|)eβx ∼ |x|−3/2e−α|x|+βx

as |x| → ∞ and thereby

ρ((x,∞)) ∼ (α− β)

∫ ∞

x

|y|−3/2e−α|y|+βy dy

∼ x−3/2e−(α−β)x

as x→∞.
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Now assume that f : [0,∞)→ [0,∞) is an integration kernel satisfying

f(0) = 1 , f(x) < 1 for x > 0 ,

∫

Rd
f(|s|)ds <∞ , (2.6)

and
f(x) ≤ K1

(x+ 1)d
for all x ≥ 0 (2.7)

for a finite, positive constant K1. Assume furthermore that f is differentiable with
f ′ satisfying

|f ′(x)| ≤ K2

(x+ 1)d
for all x ≥ 0 (2.8)

for a finite, positive constant K2. Let B be a compact subset of Rd with md(B) > 0
and consider the family of random variables (Xt)t∈B defined by

Xt =

∫

Rd
f(|t− s|)M(ds) .

The integrals defining each Xt exists according to [24, Theorem 2.7], where the
conditions (i)–(iii) can be easily verified under the given assumptions on M and f .
As explained in the Appendix, Theorem A.1, there furthermore exists a version of
(Xt)t∈B with continuous sample paths. In the following , it will be useful to note
that ∫

Rd
sup
t∈B

f(|t− s|) ds <∞ . (2.9)

Example 2.3 (Exponential kernel function). Suppose that

f(x) = e−σx ,

σ > 0, then the assumptions (2.6)–(2.8) are satisfied.

Example 2.4 (Gaussian kernel function). Suppose that

f(x) = e−σx
2

,

σ > 0, then the assumptions (2.6)–(2.8) are satisfied.

Example 2.5 (Matérn kernel function). Suppose that

f(x) =
1

2η−1Γ(η)
|λx|ηKη(λ|x|) ,

where Kη is the modified Bessel function of the second kind, index η, and λ > 0. The
use of this kernel function in Lévy based modelling and its relation to the so–called
Matérn correlation structure of the field (Xt)t∈B have been discussed in [18]. For a
further discussion of modelling, using a Matérn correlation structure, see [14]. Since
for η = 1

2
,

K 1
2
(x) =

√
π

2
x−

1
2 e−x ,
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the Matérn kernel reduces to the exponential kernel for η = 1
2
. Below, we show for

η ≥ 1
2
that the Matérn kernel satisfies the assumptions (2.6)–(2.8). Since for η > 0

Kη(x) ∼ 2η−1Γ(η)x−η

as x ↓ 0, we have f(0) = 1. The integrability of f is a result of the fact that for all
η > 0

Kη(x) ∼
√
π/2x−1/2e−x (2.10)

as x → ∞. Using (2.10), it also follows that (2.6) is fulfilled. It remains to show
that f(x) < 1 for x 6= 0 and that (2.8) is fulfilled for η ≥ 1

2
. Let us consider the

function fη : [0,∞) → [0,∞) defined by fη(x) = xηKη(x) for η > 0. We apply the
representation

Kη(x) =

∫ ∞

0

exp(−x cosh t) cosh(ηt) dt

to obtain for x > 0

K ′η(x) = −
∫ ∞

0

exp(−x cosh t) cosh t cosh(ηt) dt .

Using that cosh t cosh(ηt) = 1
2
(cosh((η+1)t)+cosh((η−1)t)) and rearranging terms

yields

f ′η(x) = ηxη−1Kη(x) + xηK ′η(x) = ηxη−1Kη(x)− xη

2

(
Kη+1(x) +Kη−1(x)

)
.

We can easily obtain the recurrence formula

−xKη−1(x) + xKη+1(x) = 2ηKη(x) ,

by using a similar recurrence formula for Bessel functions and the correspondence
between Bessel functions and modified functions, see [5, Chapter 4]. Combining this
with the expression for f ′η(x), we find

f ′η(x) = −xηKη−1(x) .

From this we conclude, that f ′η is strictly negative on (0,∞). It follows that f(x) <
f(0) for x 6= 0. Since furthermore for η > 0, xηKη(x) → 2η−1Γ(η) as x → ∞ and
Kη = K−η, we deduce that limx→0 f

′
η(x) = 0 for η > 1

2
and limx→0 f

′
η(x) = −∞ for

0 < η < 1
2
. For η = 1

2
we have that f 1

2
(x) =

√
π
2
e−x, so f ′1

2

(0) = −√π
2
. Combining

this with (2.10) we obtain the desired inequality (2.8) for f ′, when η ≥ 1/2.

For the study of the extremal behaviour of (Xt)t∈B, we will use that the cumulant
function of Xt =

∫
Rd f(|t− s|)M(ds) takes the following form

C(λ ‡Xt) = iλa

∫

Rd
f(|t− s|) ds+ 1

2
λ2θ

∫

Rd
f(|t− s|)2 ds

+ ξ

∫

Rd

∫

R

(
eif(|t−s|)λu − 1− if(|t− s|)λu1[−1,1](u)

)
ρ(du) ds ,
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cf. e.g., [24, Theorem 2.7]. A similar formula holds for finite linear combinations of
the Xts. Here, f(|t − s|) is substituted by

∑
t βtf(|t − s|). It follows that all finite

dimensional distributions of (Xt)t∈B are infinitely divisible. As a consequence, any
countable field (Xt)t∈T is itself infinitely divisible, see [20] for existence and unique-
ness of the infinite divisibility of the entire field. It follows from direct manipulations
and it is also noted in e.g., [25] that the Lévy measure of (Xt)t∈T is the measure ν
on (RT ,B(RT )) defined by ν = F ◦ V −1, where V : Rd × R→ RT is given by

V (s, z) = (zf(|t− s|))t∈T .

We will from now on assume that T = B ∩Qd, where Qd are the rational numbers
in Rd. For β ∈ RT with βt = 0 for all but finitely many t ∈ T we find

logE
(

exp(i
∑

t

βtXt)
)

= i
∑

t

βtat +
1

2
θ

∫

Rd

(∑

t

βtf(|t− s|)
)2

ds

+

∫

RT

(
exp
(
i
∑

t

βtxt

)
− 1− i

∑

t

βtxt1[−1,1]T (x)
)
ν(dx)

for an appropriate choice of (at)t∈T ∈ RT . It is furthermore seen that (at)t∈T is
bounded. Because of the infinite divisibility of (Xt)t∈T , we have the following de-
composition, see e.g., [25],

Xt = X1
t +X2

t +X3
t ,

where the fields (X1
t )t∈T , (X2

t )t∈T and (X3
t )t∈T are independent. The first field

(X1
t )t∈T is a compound Poisson sum

X1
t =

N∑

n=0

Un
t ,

where N is Poisson distributed with parameter ν(A) and

A = {x ∈ RT : sup
t∈T

xt ≥ 1} .

In the Appendix, it is shown that ν(A) <∞, see Lemma A.3. The fields (Un
t )t∈T are

independent and identically distributed with common distribution ν1 = νA/ν(A),
where νA is the measure on (RT ,B(RT )) obtained by restricting ν to A. The distri-
bution of (X1

t )t∈T is also determined by the following cumulant functions

log
(

exp
(
i
∑

t

βtX
1
t

))
=

∫

RT

(
exp
(
i
∑

t

βtxt

)
− 1
)
νA(dx) ,

where β ∈ RT satisfies βt = 0 for all t /∈ T0. Furthermore (X2
t )t∈T is infinitely

divisible with a Lévy measure νAc , the restriction of ν to Ac, and cumulant function
given by

logE
(

exp
(
i
∑

t

βtX
1
2

))

= i
∑

t

βtat +

∫

RT

(
exp
(
i
∑

t

βtxt

)
− 1− i

∑

t

βtxt1[−1,1]T (x)
)
νcA(dx) ,
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where β ∈ RT with βt = 0 for all but finitely many t ∈ T . Finally (X3
t )t∈T is defined

by

X3
t =

∫

Rd
f(|t− s|)M3(ds) ,

where M3 is a Gaussian Lévy basis satisfying C(λ ‡M3(A)) = iλ2θmd(A).
It will be crucial for the arguments in the following sections that each of the fields

X1, X2, and X3 can be extended to continuous fields indexed by B. Note that each
of the fields (Un

t )t∈T almost surely has the form zf(|t−s|). Hence there almost surely
exists a continuous extension (Un

t )t∈B. Since X1 is a finite sum of such fields it has a
continuous extension to B as well. As already stated, the field (Xt)t∈B has continuous
sample paths, see also Theorem A.1. Furthermore, (X3

t )t∈B has a continuous version
under the given assumptions on f , see the Appendix, Theorem A.2. Thereby also
X2 has continuous sample paths.

3 Tail asymptotics for compound Poisson sum of
Lévy fields

In this section, we will determine the extremal behaviour of P (X1
t > x−yt for some t)

for increasing values of x and (yt)t∈B a continuous field. The main result, formulated
in Theorem 3.5 below, will be used in the next section to study the extremal be-
haviour of P (supt∈BXt > x), using the fact thatX = X1+X2+X3 and conditioning
on X2 and X3.

It is convenient to introduce a notation that can be seen as a refinement of the
event {supt∈T Xt > x}. If (xt)t∈T is a field in RT , we define Γ((xt)t∈T ) to be the
following subset in B(RT )

Γ((xt)t∈T ) = {(yt)t∈T : yt > xt for some t ∈ T} .

If xt = x for all t ∈ T we shall use the notation Γ(x). Note that {supt∈T Xt > x} =
{X ∈ Γ(x)}.

The first step will be determining the behaviour of P (U ∈ Γ((x− yt)t∈T )), when
U is a field with distribution ν1.

Theorem 3.1. Let (yt)t∈B be continuous and bounded on B. Then

ν1(Γ((x− yt)t∈T ))

L(x) exp(−βx)
→ ξ

ν(A)

∫

B

exp(βys) ds as x→∞ . (3.1)

Furthermore,
ν1(Γ(x))

L(x) exp(−βx)
→ ξ

ν(A)
md(B) as x→∞ , (3.2)

and
ν1(Γ((x− yt)t∈T ))

ν1(Γ(x))
→
∫
B

exp(βys) ds

md(B)
as x→∞ . (3.3)

8



Proof. The results (3.2) and (3.3) are direct consequences of (3.1), so we focus on the
proof of (3.1). We can assume that (yt)t∈B is non–negative: Simply write x = x′−x0
for a suitable x0 such that (x0 + yt)t∈B is non–negative, and find the limit of

ν1(Γ((x′ − (x0 + yt))t∈T ))

L(x′) exp(−βx′)

as x′ →∞. We find

ν1(Γ((x− yt)t∈T ))

=
1

ν(A)
F ◦ V −1(Γ((x− yt)t∈T ))

=
1

ν(A)
F ({(s, z) ∈ Rd × R : ∃t ∈ T : zf(|t− s|) > x− yt})

=
1

ν(A)
F
({

(s, z) ∈ Rd × R : z > inf
t∈T

x− yt
f(|t− s|)

})

=
ξ

ν(A)

∫

Rd
L
(

inf
t∈T

x− yt
f(|t− s|)

)
exp

(
− β inf

t∈T

x− yt
f(|t− s|)

)
ds

=
ξ

ν(A)

∫

B

L
(

inf
t∈T

x− yt
f(|t− s|)

)
exp

(
− β inf

t∈T

x− yt
f(|t− s|)

)
ds

+
ξ

ν(A)

∫

Rd\B
L
(

inf
t∈T

x− yt
f(|t− s|)

)
exp

(
− β inf

t∈T

x− yt
f(|t− s|)

)
ds . (3.4)

First, we show that the second term in (3.4) is o
(
L(x) exp(−βx)

)
. Since L(x) ∼ x−δ,

δ > 1, there exists a constant C such that L(x) ≤ Cx−δ for all x > 0. With the
notation y∗ = sups ys the second term is

≤ C
ξ

ν(A)

∫

Rd\B

(
inf
t∈T

x− y∗
f(|t− s|)

)−δ
exp

(
− β inf

t∈T

x− y∗
f(|t− s|)

)
ds

= C
ξ

ν(A)

∫

Rd\B

( x− y∗
supt∈T f(|t− s|)

)−δ
exp

(
− β x− y∗

supt∈T f(|t− s|)
)

ds . (3.5)

The integrand in (3.5) is clearly o
(
L(x) exp(−βx)

)
, since supt∈T f(|t − s|) < 1 for

all s ∈ Rd \ B. If we denote the integrand of (3.5) by h(s;x), it follows by the
dominated convergence theorem that (3.5) is o(L(x) exp(−βx)) if we can find an
integrable function g such that

h(s;x)

x−δ exp(−βx)
≤ g(s) , s ∈ Rd .

Using the notation f0(s) = supt∈T f(|t− s|), we find for x > 2y∗

h(s;x)

x−δ exp(−βx)
=

(
x− y∗
x

)−δ
exp(βy∗)f0(s)

δ exp

(
−β
(

1

f0(s)
− 1

)
(x− y∗)

)

≤ 2δ exp(βy∗) exp

(
−β
(

1

f0(s)
− 1

)
y∗
)
. (3.6)
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Now, choose r > 0 such that B ⊆ Cr(0), where Cr(0) is the ball with radius r and
centre 0 ∈ Rd. Then, using (2.7), we get for s /∈ Cr(0)

f0(s) ≤ sup
t∈Cr(0)

f(|t− s|) ≤ sup
t∈Cr(0)

1

(|t− s|+ 1)d
=

1

(|s| − r + 1)d
.

It follows that the function (3.6) is integrable.
The theorem now follows from applying dominated convergence to the first term

of (3.4). Since for s ∈ B

inf
t∈T

x− yt
f(|t− s|) − (x− ys)→ 0 as x→∞ ,

we have

L
(

inf
t∈T

x− yt
f(|t− s|)

)
exp

(
− β inf

t∈T

x− yt
f(|t− s|)

)
∼ L(x− ys) exp(−β(x− ys)) ,

so
L
(

inft∈T
x−yt
f(|t−s|)

)
exp

(
− β inft∈T

x−yt
f(|t−s|)

)

L(x) exp(−βx)
→ eβys ,

and for x > 2y∗

∣∣∣∣∣∣

L
(

inft∈T
x−yt
f(|t−s|)

)
exp

(
− β inft∈T

x−yt
f(|t−s|)

)

L(x) exp(−βx)
− eβys

∣∣∣∣∣∣

≤ C

c

(
inft∈T

x−y∗
f(|t−s|)

)−δ
exp

(
− β inft∈T

x−y∗
f(|t−s|)

)

x−δ exp(−βx)
+ eβys

≤ C

c

(
x

x− y∗
)δ

eβy
∗

+ eβys

≤ C

c
2δeβy

∗
+ eβys

which is integrable over B. Above c is chosen such that cx−δ ≤ L(x) for x > 2y∗.

Below, we extend the result of Theorem 3.1 to the case P (U1 + · · · + Un ∈
Γ((x−yt)t∈T )), where Ui, i = 1, . . . , n, are independent with common distribution ν1.
For this purpose, we need the lemma below.

Lemma 3.2. We have ∫
eβ supt zt ν1(dz) <∞ .

Proof. Let (Zt)t∈T be distributed according to ν1. Then Z∗ = supt Zt satisfies

P (Z∗ > x) ∼ C1x
−δe−βx as x→∞, (3.7)

10



see Theorem 3.1. It therefore suffices to show that E
(
eβZ

∗) is finite for a random
variable Z∗ satisfying (3.7). For a suitable constant C ′ > C we have that P (Z > x) ≤
C ′x−δe−βx for all x > 0. Then,

E
(
eβZ

∗)
=

∫ ∞

0

P
(
eβZ

∗
> x

)
dx

=

∫ ∞

0

P
(
Z∗ >

log x

β

)
dx ≤ 1 + C ′βδ

∫ ∞

1

(log x)−δ

x
dx ,

which is finite.

If (Ut)t∈T and (Vt)t∈T are independent random fields with distributions ν and µ
on (RT ,B(RT )), then we will use the notation ν∗µ for the distribution of (Ut+Vt)t∈T .
Similarly, we write ν∗n for the n–fold convolution of ν. We have

Theorem 3.3. For all n ≥ N and (yt)t∈T bounded and continuous, it holds that

ν∗n1 (Γ((x− yt)t∈T )

ν1(Γ(x))
→ n

md(B)

(∫

B

eβys
∫
eβzs ν

∗(n−1)
1 (dz) ds

)

as x→∞.

Proof. In the proof we shall use the notation

K =

∫
eβ supt zt ν1(dz) .

The result is shown by induction over n. For n = 1, the result is shown in Theo-
rem 3.1. Assume now that the theorem is correct for some n ∈ N. Let (Ut)t∈T and
(Vt)t∈T be independent and with distribution ν1 and ν∗n1 , respectively. Then we have

(ν∗n1 ∗ν1)(Γ((x− yt)t∈T ))

= P (∃t : Ut + Vt > x− yt)
= P (∃t : Ut > (x− yt)/2, ∃t : Vt > (x− yt)/2, ∃t : Ut + Vt > x− yt)

+ P (∀t : Ut < (x− yt)/2, ∃t : Ut + Vt > x− yt)
+ P (∀t : Vt < (x− yt)/2, ∃t : Ut + Vt > x− yt) . (3.8)

The first term is bounded from above by

P (∃t : Ut > (x− yt)/2, ∃t : Vt > (x− yt)/2)

= ν1(Γ(((x− yt)/2)t∈T ))ν∗n1 (Γ(((x− yt)/2)t∈T )) .

This is o(νA(Γ(x))) according to Theorem 3.1 and the induction assumption.
For the evaluation of the second term in (3.8), we can assume that all the fields

z = (zt)t∈T have continuous extensions to B, since the distribution ν1 is concentrated
on a set of fields with this property. The second term in (3.8) can be rewritten as

11



follows
∫

{z :zt<(x−yt)/2 ∀t}
ν∗n1 (Γ((x− yt − zt)t∈T )) ν1(dz)

∼
∫

{z :zt<(x−yt)/2 ∀t}

n

md(B)
ν1(Γ(x))

(∫

B

eβ(ys+zs)
∫
eβus ν

∗(n−1)
1 (du) ds

)
ν1(dz)

∼ n

md(B)
ν1(Γ(x))

∫ (∫

B

eβ(ys+zs)
∫
eβus ν

∗(n−1))
1 (du) ds

)
ν1(dz)

=
n

md(B)
ν1(Γ(x))

(∫

B

eβys
∫
eβzs ν∗n1 (dz) ds

)
. (3.9)

The second asymptotic equivalence above is a simple result of the finiteness of ν1.
The first asymptotic equivalence follows if

∫
Cx,y

h(x, y, z) ν1(dz) has limit 0, where
Cx,y = {z : zt < (x− yt)/2 ∀t} and h(x, y, z) is given by

ν∗n1 (Γ((x− yt − zt)t∈T ))− n
md(B)

ν1(Γ(x))
(∫

B
eβ(ys+zs)

∫
eβus ν

∗(n−1)
1 (du) ds

)

ν1(Γ(x))
.

From the induction assumption the integrand has limit 0. There exists constants
0 < c < C and 0 < c′ < C ′ such that for all x ≥ 1

cx−δe−βx ≤ ν1(Γ(x)) ≤ Cx−δe−βx ,

c′x−δe−βx ≤ ν∗n1 (Γ(x)) ≤ C ′x−δe−βx .

Hence 1Cx,y(z)h(x, y, z) is numerically bounded from above by

1Cx,y(z)
ν∗n1 (Γ(x− supt yt − supt zt)) + nKn−1

md(B)
ν1(Γ(x))

∫
B

exp(β(supt yt + supt zt)) ds

ν1(Γ(x))

≤ 1Cx,y(z)

[
C ′

c

((x− 3 supt |yt|)/2)−δ

x−δ
+ nKn−1

]
exp

(
β sup

t
yt

)
exp

(
β sup

t
zt

)
,

where we have used that supt zt ≤ (x+ supt |yt|)/2 on Cx,y. Since
((x−3 supt |yt|)/2)−δ

x−δ is
bounded as x → ∞ and the second factor is integrable with respect to ν1(dz), ac-
cording to Lemma 3.2, then dominated convergence yields that

∫
Cx,y

h(x, y, z) ν1(dz)

has limit 0.
The third term in (3.8) equals

∫

{z :zt<(x−yt)/2 ∀t}
ν1(Γ((x− yt − zt)t∈T )) ν∗n1 (dz)

∼
∫

{z :zt<(x−yt)/2 ∀t}

ν1(Γ(x))

md(B)

(∫

B

eβ(ys+zs) ds

)
ν∗n1 (dz)

∼ 1

md(B)
ν1(Γ(x))

(∫

B

eβys
∫
eβzs ν∗n1 (dz) ds

)
.

where the asymptotic equivalences are obtained in the same way as to above.
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We are now ready to prove the main result of this section concerning the ex-
tremal behaviour of P (X ∈ Γ((x−yt)t∈T )) for large x. For a dominated convergence
argument, we need the Lemma below.

Lemma 3.4. There exists a constant K such that for all n ∈ N and all x ≥ 1

ν∗n1 (Γ(x)) ≤ Knν1(Γ(x)) .

Proof. Note that there exists constants 0 < c < C such that cx−δe−βx ≤ ν1(Γ(x))
for all x ≥ 1 and ν1(Γ(x)) ≤ Cx−δe−βx for all x > 0. Define

K =
C24δ

c
+ 2

C2δ

c

(∫
exp(β sup

t
yt) ν1(dy)

)
,

and note that K ≥ 1 so the result is true for n = 1. Now the result is obtained by
induction following the lines of the proof of Theorem 3.3. Assuming the result for
n ∈ N we have

ν
∗(n+1)
1 (Γ(x)) ≤ ν∗n1 (Γ(x/2))ν1(Γ(x/2))

+

∫

{y : sup yt≤x/2}
ν∗n1
(
Γ
(
(x− yt)t∈T

))
ν1(dy)

+

∫

{y : sup yt≤x/2}
ν1
(
Γ
(
(x− yt)t∈T

))
ν∗n1 (dy) .

First, we observe that for x ≥ 1

ν∗n1 (Γ(x/2))ν1(Γ(x/2)) ≤ Knν1(Γ(x/2))2 ≤ KnC24δx−2δe−βx

≤ KnC24δx−δe−βx ≤ KnC
24δ

c
ν1(Γ(x)) ,

and secondly, we have
∫

{y : sup yt≤x/2}
ν∗n1
(
Γ
(
(x− yt)t∈T

))
ν1(dy)

≤
∫

{y : sup yt≤x/2}
ν∗n1 (Γ(x− sup

t
yt)) ν1(dy)

≤ KnC

∫

{y : sup yt≤x/2}
(x− sup

t
yt)
−δ exp(−β(x− sup

t
yt)) ν1(dy)

≤ KnCx−δe−βx
∫

{y : sup yt≤x/2}

(
x/2

x

)−δ
exp(β sup

t
yt) ν1(dy)

≤ KnC2δ
(∫

exp(β sup
t
yt) ν1(dy)

)
x−δe−βx

≤ KnC2δ

c

(∫
exp(β sup

t
yt) ν1(dy)

)
ν1(Γ(x)) .
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Finally, using the same type of arguments, we find
∫

{y : sup yt≤x/2}
ν1
(
Γ
(
(x− yt)t∈T

))
ν∗n1 (dy)

≤ C2δ
(∫

exp(β sup
t
yt) ν

∗n
1 (dy)

)
x−δe−βx

≤ C2δ

c

(∫
exp(β sup

t
yt) ν1(dy)

)n
ν1(Γ(x)) ≤ C2δ

c
Knν1(Γ(x)) .

Combining the inequalities gives the result of the lemma for n+ 1.

Recall that (Un
t )t∈T are independent and identically distributed fields with com-

mon distribution ν1, and that N is independent of the Un fields and Poisson dis-
tributed with parameter ν(A). We have defined X1 by

X1
t =

N∑

n=0

Un
t .

Theorem 3.5. We have E exp(β suptX
1
t ) <∞ and for a continuous field, (yt)t∈B

lim
x→∞

P (X1 ∈ Γ((x− yt)t∈T )

ν(Γ(x))
=

∫
B
eβysE

(
eβX

1
s
)

ds

md(B)
.

Proof. The first result follows, since suptX
1
t ≤

∑N
n=0 supt U

n
t and E exp(β supt U

1
t )

is finite.
For the proof of the limit result, we use that

P (X1 ∈ Γ((x− yt)t∈T )) = e−ν(A)
∞∑

n=1

ν(A)n

n!
ν∗n1 (Γ((x− yt)t∈T )) .

Utilising Lemma 3.4, we find

∞∑

n=1

ν(A)n

n!

ν∗n1 (Γ((x− yt)t∈T ))

ν1(Γ(x− supt yt))
≤

∞∑

n=1

ν(A)n

n!

ν∗n1 (Γ(x− supt yt))

ν1(Γ(x− supt yt))

≤
∞∑

n=1

Knν(A)n

n!

ν1(Γ(x− supt yt))

ν1(Γ(x− supt yt))
=
∞∑

n=1

Knν(A)n

n!
<∞ ,

and, furthermore, we obtain from Theorem 3.3 that

lim
x→∞

ν∗n1 (Γ((x− yt)t∈T ))

ν1(Γ(x− supt yt))
=

n

eβ supt ytmd(B)

(∫

B

eβysE
(
eβUs

)n−1
ds

)
.

14



Then, dominated convergence gives

lim
x→∞

P (X1 ∈ Γ((x− yt)t∈T ))

ν1(Γ(x− supt yt))

= e−ν(A)
1

eβ supt ytmd(B)

∞∑

n=1

ν(A)n

n!
n

(∫

B

eβysE
(
eβUs

)n−1
ds

)

= ν(A)
1

eβ supt ytmd(B)

∫

B

eβys exp
[
ν(A)

(
E
(
eβUs

)
− 1
)]

ds

= ν(A)

∫
B
eβysE

(
eβX

1
s
)

ds

eβ supt ytmd(B)
,

which with a final reference to Theorem 3.1 and the definition of ν1 concludes the
proof.

4 The main theorem

Recall that we can write the field (Xt)t∈T as

Xt = X1
t +X2

t +X3
t ,

where the fields (X1
t )t∈T , (X2

t )t∈T and (X3
t )t∈T are independent, (X1

t )t∈T is a com-
pound Poisson sum of fields with distribution ν1, (X2

t )t∈T is an infinitely divisible
field with Lévy measure equal to the restriction of ν to Ac, and (X3

t )t∈T is Gaus-
sian obtained as the integral of f with respect to a Gaussian Lévy basis. Each of
the fields in the decomposition has a continuous extension to B. In Theorem 3.5
of Section 3 the extremal behaviour of X1 was determined. In this section we shall
investigate the extremal behaviour of X2 and X3 in order to obtain the main result
on X, presented in Theorem 4.5 below.

In the following lemmas we will need to restrict ν to different subsets of RT . For
this we introduce some notation with 0 < u < v ≤ ∞
A(−v,−u] =

{
x ∈ RT : −v < inf

t∈T
xt ≤ −u

}
A[u,v) =

{
x ∈ RT : u ≤ sup

t∈T
xt < v

}

A(−v,0) =
{
x ∈ RT : −v < inf

t∈T
xt < 0

}
A(0,v) =

{
x ∈ RT : 0 < sup

t∈T
xt < v

}
.

Furthermore, we write A(−u,u) = A(−u,0) ∪ A(0,u). Note that e.g., Ac = A(−∞,−1] ∪
A(−1,1) except for a ν null–set, since for ν almost all x ∈ RT it holds that either
xt > 0 for all t ∈ T or xt < 0 for all t ∈ T .

Define ν̄ by ν̄ = F̄ ◦V −1, where F̄ = ξmd⊗ρ̄. Let (Yt)t∈B be an infinitely divisible
random field with Lévy measure ν̄ and cumulant functions

logE
(

exp
(
i
∑

t

βtYt

))
=

∫

RT

(
exp
(
i
∑

t

βtxt

)
− 1− i

∑

t

βtxt1[−1,1]T (x)
)
ν̄(dx) ,

where β ∈ RT satisfies βt = 0 for all but finitely many t ∈ T . Note that (Yt)t∈T
is defined as the non-Gaussian part of (Xt)t∈T without the drift term and with ρ
replaced by ρ̄. We can decompose Y into an independent sum

Y = Y − + Y (−1,1) + Y + ,
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where Y −, Y (−1,1) and Y + are infinitely divisible with Lévy measures ν̄−, ν̄(−1,1) and
ν̄+, that are obtained by restricting ν̄ to A(−∞,−1], A(−1,1) and A respectively. Note
that ν̄− and ν̄− are finite measures due to Lemma A.3 in the Appendix. Furthermore
the three fields have cumulant functions

logE
(

exp
(
i
∑

t

βtY
−
t

))
=

∫

RT

(
exp

(
i
∑

t

βtxt

)
− 1
)
ν̄−(dx)

logE
(

exp
(
i
∑

t

βtY
(−1,1)
t

))
=

∫

RT

(
exp

(
i
∑

t

βtxt

)
− 1− i

∑

t

βtxt

)
ν̄(−1,1)(dx)

logE
(

exp
(
i
∑

t

βtY
+
t

))
=

∫

RT

(
exp

(
i
∑

t

βtxt

)
− 1
)
ν̄+(dx) .

Lemma 4.1. Let Y (−1,1) be defined as above. Then

E
(

exp
(
γ sup

t

∣∣Y (−1,1)
t

∣∣)) <∞

for all γ > 0.

Proof. Firstly, we argue that P (supt
∣∣Yt
∣∣ < ∞) = 1. For this note that ρ̄ can be

decomposed ρ̄ = ρ̄1 + ρ̄2, where ρ̄1(dx) = C|x|−r1[−1,1](x) + Cx−41[−1,1]c(x) and
ρ̄2 = ρ̄− ρ̄1. Thus we also have the decomposition ν̄ = ν̄1 + ν̄2, where ν̄i = F̄ i ◦ V −1
with F̄ i = ξmd ⊗ ρ̄i for i = 1, 2. From this we obtain that Y has the indepen-
dent decomposition Y = Y 1 + Y 2, where Y i has Lévy measure ν̄i, i = 1, 2. Since∫
x2 ρ̄1(dx) < ∞ there exists a version of Y 1 with a continuous extension to B,

see Theorem A.1 in The Appendix. In particular P (supt
∣∣Y 1
t

∣∣ < ∞) = 1. Since
ρ̄2([−1, 1]) = 0, we furthermore see that ν̄2 = ν̄2(−∞,−1] + ν̄2[1,∞), so ν̄

2 is finite due to
Lemma A.3 in the Appendix. Thus Y 2 is a compound Poisson sum of fields that are
almost surely on the form (zf(|t− s|))t∈T . In particular also P (supt

∣∣Y 2
t

∣∣ <∞) = 1.
Now we return to the decomposition Y = Y − + Y (−1,1) + Y +. We note that

Y − and Y + have continuous extensions to B, since both fields are compound Pois-
son sums of fields with continuous extensions. In particular P (supt

∣∣Y −t
∣∣ < ∞) =

P (supt
∣∣Y +
t

∣∣ <∞) = 1, and thereby also P (supt
∣∣Y (−1,1)
t

∣∣ <∞) = 1. Furthermore we
observe that ν̄(−1,1)

({
x ∈ RT : sup |xt| ≥ 1

})
= 0 so according to [25, Lemma 2.2]

there exists ε > 0 such that

E
(

exp
(
ε sup

t

∣∣Y (−1,1)
t

∣∣)) <∞ .

Let γ > 0 be given and choose n ∈ N such that γn−1/(r−1) < ε. For ease of notation,
write u = n−1/(r−1). We can rewrite the expression for the cumulant function for
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Y (−1,1) using the notation f0(s) = supt∈T f |t− s|) and the substitution z = uz,
∫

RT

(
exp
(
i
∑

t

βtxt

)
− 1− i

∑

t

βtxt1[−1,1]T (x)
)
ν̄(−1,1)(dx)

=

∫

Rd

∫ 1/f0(s)

−1/f0(s)

(
exp
(
i
∑

t

βtzf(|t− s|)
)
− 1− i

∑

t

βtzf(|t− s|)
) C

|z|r dz ds

= ur−1
∫

Rd

∫ u/f0(s)

−u/f0(s)

(
exp
(
i
∑

t

βt/uzf(|t− s|)
)
− 1

− i
∑

t

βt/uzf(|t− s|)
) C

|z|r dz ds

= ur−1
∫

RT

(
exp
(
i
∑

t

βt/uxt

)
− 1− i

∑

t

βt/uxt

)
ν̄(−u,u)ds .

This is the cumulant function for ( 1
u
Vt)t∈T , if V is an infinitely divisible random

field with Lévy measure ur−1ν̄(−u,u) = 1
n
ν̄(−u,u), where ν̄(−u,u) is the restriction of ν̄

to A(−u,u). Thus, 1
u
V and Y (−1,1) are identically distributed, so

E
(

exp
(
γ sup

t
|Vt|
))

= E
(

exp
(
γu sup

t

∣∣Y (−1,1)
t

∣∣)) <∞ , (4.1)

since γu < ε. Consider the independent decomposition

Y (−1,1) = Y (−1,−u] + Y (−u,u) + Y [u,1) , (4.2)

where Y (−1,−u], Y (−u,u) and Y [u,1) are infinitely divisible fields with Lévy measures
ν̄(−1,−u], ν̄(−u,u) and ν̄[u,1) obtained by restricting ν̄ to A(−1,−u], A(−u,u) and A[u,1).
Since Y (−u,u) has the representation

Y (−u,u) =
n∑

k=1

V k ,

where V 1, . . . , V n are independent copies of V , it follows from (4.1) that also

E
(

exp
(
γ sup

t

∣∣Y (−u,u)
t

∣∣)) <∞ . (4.3)

Furthermore we have that Y (−1,−u] and Y [u,1) have similar exponential moments,
since e.g., Y [u,1) has compound Poisson representation

Y
[u,1)
t =

M∑

k=0

Uk
t − yt ,

where M is Poisson distributed with parameter ν̄(A[u,1)) and the fields (Uk
t )t∈T are

independent and identically distributed with distribution ν̃[u,1) = ν̄[u,1)/ν̄(A[u,1)).
Furthermore yt =

∫
xt ν̄[u,1)(dx). Note that (Uk

t )t∈T is non–negative and bounded
from above by 1, and that for each t ∈ T

0 ≤ yt =

∫
xt ν̄[u,1)(dx) ≤ ν̄[u,1)(RT ) = ν̄(A[u,1)) <∞
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due to Lemma A.3 in the Appendix. Then

E(exp(γ sup
t∈T

∣∣Y [u,1)
t

∣∣)) ≤ E exp(γM) exp
(
γν̄(A[u,∞))

)
= exp

(
ν̄(A[u,∞))(e

γ − 1)
)
,

which is finite. It is seen with a similar argument that E(exp(γ supt∈T
∣∣Y (−1,−u]
t

∣∣)) is
finite. Combining this with (4.2) and (4.3), we conclude that also

E(exp(γ sup
t∈T

∣∣Y (−1,1)
t

∣∣)) <∞ . (4.4)

Lemma 4.2. We have for all γ > 0 that E(exp(γ suptX
2
t )) <∞ and

lim
x→∞

eγxP (X2 ∈ Γ(x)) = 0 .

Proof. We can write X2 as the independent sum of fields

X2
t = Z−t + Zt + at ,

where Z− and Z are infinitely divisible random fields with cumulant functions

logE
(

exp
(
i
∑

t

βtZ
−
t

))
=

∫

RT

(
exp

(
i
∑

t

βtxt

)
− 1
)
ν(−∞,−1](dx)

logE
(

exp
(
i
∑

t

βtZt

))
=

∫

RT

(
exp

(
i
∑

t

βtxt

)
− 1− i

∑

t

βtxt

)
ν(−1,1)(dx)

such that β ∈ RT satisfies βt = 0 for all but finitely many t ∈ T . The Lévy measures
ν− and ν(−1,1) are the restrictions of ν to A(−∞,−1] and A(−1,1) respectively.

Recalling that (at)t∈T is bounded, it suffices to show that E(exp(γ supt Z
−
t )) <∞

and E(exp(γ supt Zt)) < ∞ separately for all γ > 0. Since ν− is finite due to
Lemma A.3, we can write the (Z−t )t∈T field on the compound Poisson form

Z−t =
N∑

j=0

Sjt ,

where N is Poisson distributed with parameter ν(A(−∞,−1]), the fields (Sjt )t∈T are
independent and identically distributed with distribution ν̄− = ν−/ν(A(−∞,−1]). For
each j we have supt S

j
t ≤ −1, so we see in particular that E(exp(γ supt Z

−
t )) is finite

for all γ > 0. Note that both Z− and Z have continuous extensions to B, since
Z− is a compound Poisson sum of fields with continuous extensions. In particular,
P (supt |Zt| <∞) = 1.

Since we have the independent decomposition Y (−1,1) = Z1 + Z2, where Z1 is
distributed as Z, and Z2 is infinitely divisible with Lévy measure ν̄(−1,1) − ν(−1,1).
Note that ν̄(−1,1) − ν(−1,1) is a non–negative measure, since ρ̄ − ρ is assumed to be
non–negative. Also note that P (supt |Z2

t | < ∞) = 1, since both supt
∣∣Y (−1,1)
t

∣∣ and
supt |Z1

t | are finite almost surely. Applying Tonelli yields

E(exp(γ sup
t
Z1
t ))E(exp(γ inf

t
Z2
t )) ≤ E

(
exp

(
γ sup

t
Y

(−1,1)
t

))

which is finite because of Lemma 4.1. Since the second factor above is clearly non–
zero, we conclude that E(exp(γ supt Zt)) <∞ as desired.
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Lemma 4.3. For all γ > 0, we have E(exp(γ suptX
3
t )) <∞.

Proof. From Theorem 4.1.1 in [4] it follows for any η > 0 and C > 0 that

P (sup
t
X3
t > x) ≤ Cx4+ηe−x

2/(2σ2
X) ,

where σ2
X = E(X3

t )2. The result of the lemma follows from this.

Theorem 4.4. It holds that

lim
x→∞

P (supt∈BXt > x)

ν(Γ(x))
= E exp(βXt0)

as x→∞ with t0 ∈ B arbitrarily chosen.

Proof. Let π1 be the distribution of (X1
t )t∈T and π2 be the distribution of (X2

t )t∈T .
Then, with ε ∈ (β/γ, 1) for γ > β,

P (X1 +X2 ∈ Γ((x− yt)t∈T )) =

∫

{z :∀t zt<(x−yt)ε}
π1(Γ((x− yt − zt)t∈T ))π2(dz)

+

∫

{z : ∃t zt≥(x−yt)ε}
π1(Γ((x− yt − zt)t∈T ))π2(dz) .

(4.5)

The second term is bounded from above by

π2({z : ∃t zt ≥ (x− yt)δ}) ≤ π2
(
Γ(δ(x− sup

t
yt))
)

= o(ν(Γ(x))) ,

where we have used Theorem 3.1 and Lemma 4.2 since γ > β
ε
. Applying Theorem 3.5

and dominated convergence, we obtain for the first term in (4.5) the following

∼ ν(Γ(x))
1

md(B)

∫∫

B

eβ(ys+zs)E
(
eβX

1
s
)

ds π2(dz)

= ν(Γ(x))
1

md(B)

∫

B

eβysE
(
eβ(X

1
s+X

2
s )
)

ds

= ν(Γ(x))

∫
B
eβys ds

md(B)
E
(
exp(β(X1

t0
+X2

t0
))
)
,

where the last equality follows, since the distribution of X1
s +X2

s is independent of
s ∈ B. Repeating the arguments using Lemma 4.3 instead of 4.2 gives

P (X1 +X2 +X3 ∈ Γ(x)) ∼ ν(Γ(x))E(exp(β(X1
t0

+X2
t0

+X3
t0

))) ,

which is the desired result.

The theorem below is the main result of our paper. In the formulation of the
theorem, we explicitly state the assumptions under which the limit holds.
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Theorem 4.5. Under the assumptions (2.1)–(2.5) on M and (2.6)–(2.8) on f ,

lim
x→∞

P (supt∈BXt > x)

L(x) exp(−βx)
= E exp(βXt0)ξmd(B)

as x→∞ with t0 ∈ B arbitrarily chosen.

Proof. This follows from Theorem 4.4 and Theorem 3.1.

Example 4.6. We consider a model with a NIG basis with parameters α = 0.8,
β = 0.6, µ = 0.1, δ = 0.1 and an exponential kernel function with parameter σ = 0.1,
see Examples 2.2 and 2.3. Furthermore, we let B = [0, 20]2. The level of these
parameters is - after a reparameterisation - similar to the level of the parameters
estimated in [18]. In Figure 1, simulations of the probabilities P (supt∈BXt > x) are
plotted together with the function

E exp(βXt0)ξmd(B)x−3/2 exp(−(α− β)x) .

Figure 1: Simulated values of P (supt∈BXt > x) are plotted as a function of x together
with the asymptotic theoretical curve in the case of a NIG basis and an exponential kernel
function. For details, see text.

5 Excursion sets

In the present paper, we have been focusing on the asymptotic probability that
the supremum of the random field (Xt)t∈B exceeds a level x as x → ∞. Under
the assumptions of our paper, it is also possible to obtain asymptotic results for
excursion sets

Ax = {t ∈ B : Xt ≥ x}, x ∈ R .
One example is the asymptotic behaviour of the probability that an excursion set
contains a ball of a given size, i.e., the probability of the event

{
∃t0 ∈ B : inf

s∈Cr(t0)
Xs ≥ x

}
,
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where Cr(t0) is the ball in Rd with radius r and centre t0. Also, this probability is
asymptotically described by the right tail of the Lévy measure. The proof is based
on the same type of reasoning as in Sections 3 and 4 and is part of a forthcoming
paper ([26]).
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A Continuous versions of the relevant random
fields

In this Appendix we make the assumptions (2.1)–(2.4) on M and (2.6)–(2.8) on f .

Theorem A.1. There exists a continuous version of (Xt)t∈B.

Proof. We shall refer to Theorem 2.1 in [19] (see also [19, Theorem 3.1] that corre-
sponds to the case, where B is one dimensional). Note that Theorem 2.1 requires
a separable field, but a separable version can be chosen for all random fields, see
e.g., [23]. Let B̃ ⊇ B be a box in Rd containing B. With a change of measure (see
[22] for the existence of a Lévy–Ito decomposition ofM) we can write Yt = Xt−EXt

on the form
Yt =

∫

Rd×R
xf(|t− s|)

[
N(ds, dx)− F (ds, dx)

]
,

where N is a Poisson random measure on Rd × R with intensity measure F . The
integral is well defined since (as is easily verified)

∫

Rd×R

(
(xf(|t− s|))2 ∧ |x|f(|t− s|)

)
F (ds, dx) <∞ ,

see e.g., [19, Section 2] and references therein. Let D be the diameter of B̃. Since B̃
is a box in Rd we have that there exists a > 0 such that amd(Cr(t) ∩ B̃) ≥ (r/D)d

for all t ∈ B̃ and r ∈ (0, D). Using the notation from [19] we have

Iq(amd, | · |, δ) = sup
t∈B̃

∫ D

0

(
log

1

amd(Cr(t) ∩ B̃)

)1/q

dr ≤
∫ D

0

d(logD − log r)1/q dr

which is finite for all q ≥ 1, δ ∈ (0, D] and in particular for q = 2 and δ = D.
Furthermore we see that limδ↓0 Iq(amd, | · |, δ) = 0. From (2.8) and the mean value
theorem we find constants C1, C2 > 0 such that

sup
0<h≤D

∣∣f(x+ h)− f(x)
∣∣

h
≤ C1

(x+ C2)d
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for all x > 0. Thus with g(t, (s, x)) = xf(|t − s|) (recalling the inequality (2.7) we
can find

‖g‖(s, x) = |x|
(
D−1f(|s|) + sup

t,u∈B̃,t 6=u

∣∣f(|t− s|)− f(|u− s|)
∣∣

|t− u|

)
≤ |x| K3

(|s|+K4)d

for some constants K3, K4 ≥ 1 such that for all c ∈ (0, 1]

c2F
(
{(s, x) : ‖g‖ ∧ 1 > c}

)
≤ c2F

(
{(s, x) : |x| K3

(|s|+K4)d
∧ 1 > c}

)

≤ c2F
(
{(s, x) :

|x|K3

c
> |s|d, |x| > c/K3}

)

= c2
∫

[−c/K3,c/K3]c
md

(
C(K3|x|/c)1/d(0)

)
ρ(dx)

∝
∫

[−c/K3,c/K3]c
|x|(c/K3) ρ(dx) ≤

∫ ∞

0

x2 ρ(dx) <∞ .

Furthermore, f is bounded and continuous so it follows from [19, Theorem 2.1] that
(Yt)t∈B̃ has a version with continuous sample paths. In particular (Xt)t∈B has a
continuous version.

Theorem A.2. There exists a continuous version of the field (X3
t )t∈B.

Proof. Obviously, it suffices to find a continuous version of (Yt)t∈B, where Yt =
X3
t − EX3

t . The field (Yt)t∈B has covariance function Cov(Xt1 , Xt2) = R(|t2 − t1|),
where for some constant V ,

R(t) = V

∫

Rd
f(|s|)f(|t+ s|) ds ,

see e.g., Section 2 in [18]. The sum s+ t is interpreted as adding a vector of length
t and fixed direction to s. We note that R is continuous and furthermore

R(0)−R(t) ≤ V

∫

Rd
f(|s|)

∣∣f(|t+ s|)− f(|s|)
∣∣ ds ≤ V C ′|t|

∫

Rd
f(|s|) ds , (A.1)

where we have used the mean value theorem to obtain
∣∣f(|t+ s|)− f(|s|)

∣∣ = |f ′(ξ)|
∣∣|t+ s| − |s|

∣∣ ≤ C ′|t|

with ξ ∈
(
|s| ∧ |t + s|, |s| ∨ |t + s|

)
and C ′ an upper bound for f ′ chosen according

to (2.8). In particular for given ε > 0 there exists C > 0 such that

R(0)−R(t) ≤ C

| log(t)|1+ε

for all t > 0 smaller than the diameter of B. The existence of a continuous version
of (Yt)t∈B now follows from a corollary to [1, Theorem 3.4.1].

Define for all ε > 0 the subsets of RT

Aε = {x ∈ RT : sup xt ≥ ε} and Bε = {x ∈ RT : inf xt ≤ −ε}
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Lemma A.3. For all ε > 0 we have ν(Aε) <∞ and ν(Bε) <∞.

Proof. For Aε we find

ν(Aε) = F ({(s, z) ∈ Rd × R : sup
t∈T

zf(|t− s| ≥ ε})

= ξ

∫

Rd
ρ

([
ε

supt∈T f(|t− s|) ,∞
))

ds

=
ξ

ε

∫

Rd
sup
t∈T

f(|t− s|)
∫
x1[ ε

supt∈T f(|t−s|)
,∞
) ρ(dx) ds

≤ ξ

ε

(∫

Rd
sup
t∈T

f(|t− s|) ds

)(∫ ∞

ε

x ρ(dx)

)

which is finite due to (2.4) and (2.9). The proof for ν(Bε) <∞ is identical.
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