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Quasi-Einstein Kahler Metrics*

Henrik Pedersen|
Christina Tgnnesen-Friedman! Galliano Valent?

Abstract

We write an ansatz for quasi-FEinstein Kihler metrics and construct
new complete examples. Moreover, we construct new compact gener-
alized quasi-Einstein K&hler metrics on some ruled surfaces, including
some of Guan’s examples as special cases.

1 Introduction

Let (M,.J) be a complex manifold. In this paper we consider pairs (g, V)
consisting of a Kahler metric and a real holomorphic vector field V on M,
such that JV is an isometry of ¢ and

p—AQ = LyQ, (1)

where p is the Ricci form, €2 is the Kahler form and A is some constant. Such
structures are called quasi-Einstein Kahler metrics or Kahler Ricci solitons
[4, 7,9, 14]. Quasi-Einstein metrics are solitons for the Hamilton flow [9]

d St

Egt = -1+ —¢, (2)
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where r; 1s the Ricci curvature tensor and 5; is the average scalar curva-
ture of ¢;. Indeed, if go is quasi-Einstein then (®_;)*go solves (2), where
¢, = exp(tV). Friedan [6] studied quasi-Einstein metrics in connection with
bosonic o-models. He showed that the one-loop renormalizability of the
model is ensured if and only if the metric of the target space is quasi-Einstein.

If M is a compact manifold, equation (1) implies that [p] = A[Q] €
H?*(M,R). Thus a necessary condition for M to admit a quasi-Einstein
Kahler metric is that ¢;(M) = [;=] is either positive, negative, or zero. In
short, ¢; must have a sign. If ¢; <0, then Calabi, Yau and Aubin [3, 16, 1]
showed that there exist Kahler-Einstein metrics. However, for ¢; > 0 we
do not always have Kahler-Einstein metrics and the quasi-Einstein Kahler
metrics serve as suitable generalizations.

For any Kahler metric on a compact manifold, we have that

p—pu = \/—185999,

where pp is the harmonic part of p and ¢gq is called the Ricci potential. In
fact, pq = —G's, where (G is the Green’s operator of the Laplacian A and s
is the scalar curvature. In particular, if [p] = A[Q2], then

p— A = 90pq

(Bva

= I

sgradeg

gradeq

= I

sgradeg

Q

Y

where the last equality follows from the fact that p — AQ is real (we use § for
raising indices and b for lowering indices). Thus if gradeq is a holomorphic
vector field and [p] = A[Q], then (g, $gradypq) is a Kahler-Ricci soliton.
Conversely, if (¢, V') is a Kahler-Ricci soliton on a compact manifold with
positive first Chern class, then V = %gradcpg: From equation (1) we have
that
LyQ =1L,

QgTadan‘
Let W =V —4JV be the holomorphic (1,0) vector field corresponding to V.
Then

Lwﬂ = \/—_185999



or
d(JW)" = V=100¢q.

Since JW is holomorphic and ¢ is Kahler, we have that
IJIW) = d(vV—10pq).

Thus
(JVV)b =v—10pq + «,

where « is a d-closed (0, 1)-form. Moreover, by the Hodge decomposition,
(JW) =0f+H

for some function f and a harmonic form H. But since we assumed that
¢; > 0, there are no non-trivial harmonic 1-forms (see page 324 in [2]) and

hence B
af = v—10¢q + a.
This gives B B
A0f =/ —100pq.
Therefore

f=v—1lpqg + constant

and « must vanish. Thus
(JW)" = /=10pq

or

W= (8999)ﬁ7

which is equivalent to

1
V= §gradc,og )

In particular, gradpq is a holomorphic real vector field.

The observation above tells us that the existence of quasi-Einstein Kahler
metrics with non-trivial vector fields is an obstruction to the existence of
Kahler-Einstein metrics: The Futaki invariant of the Kahler class on the
vector field V' is given as the L*-norm of V [14]. In the compact case, Tian
and Zhu [14] have proved uniqueness (modulo automorphisms) for Kéhler-
Ricci solitons with a fixed vector field.



In this paper, we construct quasi-Einstein Kahler metrics on complex
line bundles (or their compactifications P(O& L)) over Kéhler-Einstein base
manifolds B. We impose no restriction on the sign of the scalar curvature
sp of B and our results therefore extend known constructions. However,
for sg < 0, the first Chern class of P(O @ L) does not have a sign. This
motivates our study of generalized quasi-Einstein Kahler metrics in section
4. Previously, a family of extremal Ké&hler metrics was obtained [13] on
P(O & L) over Riemann surfaces of genus at least two. Contrary to the result
in [13], our construction of generalized quasi-FEinstein Kéhler metrics on these
ruled surfaces exhausts the Kahler cone.

The structure of this paper is as follows. In section 2, we write an ansatz
for quasi-Einstein Kéahler metrics with a torus symmetry. In section 3, we
find solutions in the case of S symmetry and some additional assumptions.
This gives new complete (non-compact) quasi-Einstein Kéahler metrics, as
well as some already known examples. In section 4, we consider Guan’s
generalized quasi-Einstein K&hler metrics [7]. We then construct such metrics
in every Kahler class on the compactification of holomorphic line bundles over
compact Riemann surfaces. This construction includes new compact metrics,
as well as some metrics already constructed by Guan and Koiso.

2 An ansatz for quasi-Einstein Kahler met-
rics
In this section, assuming the existence of a real torus acting through holo-

morphic isometries on a Kahler manifold, we construct an ansatz for quasi-
Einstein Kahler metrics.

2.1 The moment map construction of Kahler metrics

Following [12], we consider the situation of a real torus 7% acting freely on
the Kahler manifold M*™ through holomorphic isometries.

Proposition 1 [12] Let (w;;), ¢, =1,..., N be a positive definite symmet-
ric matriz and (hy,), p,v =1,...,m—N a positive definite hermitian matrix
of smooth functions on an open set U in C*=N xRN with coordinates (£, 2").



Assume that the 2-form

—1 _
Q1= o de A dE

is a Kdhler form on an open set in C"~N with corresponding Kdihler metric
h. Let M be a TN -bundle over U with connection 1-form w = (wy,...,wn).

Suppose that
62hw 1 82wij

0210z + DERDEY =0, 3)
8wij B 8wik
dzk 0z (4)

and assume the torus bundle has curvature

P= —\/ahuu der A df‘y + /_ 2] d N der — /—1%dzj /\df_“. (5)

Then o B
g =h+w;dz" dz’ + www;, (6)
where w¥ = (wl);, is a Kdihler metric on M. Conversely any Kdhler

metric with a torus acting freely through holomorphic isometries can locally
be constructed as above.

Proof: The proof is straightforward and we just make some remarks concern-
ing the second part of the proposition. Suppose that M is a T™-symmetric
Kahler manifold with metric ¢, Kahler form {2 and complex structure J. Sup-
pose further that (Xi,..., Xy) are Hamiltonian vector fields generated by
the torus action. Let dz7 = —ix,§Y define the Hamiltonian functions 27, Then
the metric is given as in equation ( 6), where h is a K&hler metric in the quo-
tient space of each level set of the Hamiltonians. Note that w" = g(X;, X;)
and w; = win]b so Jw; = —wijdzj and Q = dz' A w; + Qy, where Q, is the
Kahler form of the of the Kahler quotient. As J is integrable, the exterior
derivative dp; of the (1,0) forms o; = w;;dz’ + /—1w; must have no (0,2)
part. Also for ¢ to be Kahler we need df) = 0. These conditions are cap-
tured by equation (4) and by the equation dw; = F; with F; asin (5)'. Then
equation (3) is just the integrability condition dF; = 0. i

1To be absolutely precise, the pull-back of F; with respect to the bundle projection is
given by dw;.



2.2 Quasi-Einstein Kahler metrics

Now let M?™ be a TV-symmetric Kahler metric as above. Let V be the
holomorphic vector field

N

V= —%ZJ (e Xi),

=1

where ¢; are constants. We will look for the condition under which the metric
is quasi-Finstein Kahler with respect to V' and some constant A. Thus the
equation to examine is

p— Q= LyQ. (7)
The Ricci form p is given by
= 1
p=—V—100u = —§deu,

where u = log(42), The Lie derivative of  with respect to V is given by

det w
Lvﬂ = d(lvﬂ) = §cid(w wj).

Using equation (5) with dw; = Fj, we find that equation (7) is equivalent to
the pair of equations

du if i i
(Cﬁ%)w]:—%%z + B)

and

0*u ; " Ohy,

where B' is some constant. We conclude

Proposition 2 Let M be a TN -symmetric Kihler manifold as in Propo-

sition 1. Then the metric is a quasi-Finstein Kdhler metric, p — AQ = Ly ),
with vector field V = —1 Efvzl J(¢; Xi) if and only if the following equations

are satisfied;

du if i i
(c”%)w]:—?MHB) (8)
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where B is some constant.

O
=2 (= (4 B )

Notice that by setting ¢; = 0 in the above ansatz, we get the Pedersen and
Poon ansatz for Kahler-Einstein metrics [12]. In fact, the difference between
the two ansitze appears only in equation (8).

In the case m = 2 and N = 1, we have that h = e*w(dz® + dy*) with
¢ = x + 1y and the above equations can be rewritten as

Y _oNz+B) (10)
w
and
Upy + Uyy + 2A(e"w0 — (2 + B)(e"w).) = 0. (11)

By changing the moment map by a constant, we may assume that B = 0.
Using equation (10), one can then replace equation (11) by an equation
completely decoupled for the u function:

Uy + Uyy + 22 (Z_Q(e“)z>z +c2? <2_26“>Z = 0. (12)

Equation (3), i.e., the constraint following from the Kéhler property, is given
by

Wee + Wyy + (weu)zz = 0.

However, this equation follows from equations (10) and (12). Thus, as in the
Kéhler-Einstein case considered in [12], we are left with the single partial
differential equation (12). Once we have solved this equation, we easily find
w, by using equation (10).

3 A construction of new complete quasi-Einstein
Kahler metrics

In this section we consider the case N = 1. By solving the differential
equations from the previous section in a special case, we find new complete
quasi-Einstein Kahler metrics. First, we give the details of the special case in
which we solve the equations. Then, we apply the ansatz from the previous
section.



3.1 The assumptions

Let (B,gg) be a (m — 1)-dimensional compact K&hler manifold with scalar
curvature sg. Assume that the Kahler form Qg is such that the deRham
class [2£] is contained in the image of H?*(B,Z) — H?*(B,R). Let L be a

27
holomorphic line bundle such that ¢;(L) = [Z2£]. On the total space M of

(L —0) 5 B we can form an S'-symmetric Kéhler metric

g=zgp+ wdz? + wtw?

where z, being the coordinate of (a,b) C (0,00], becomes the moment map
of ¢ with the obvious S! action on L, w is a positive function depending only
on z, and w is the connection one-form of the connection induced by ¢ on

the S'-bundle
(L —0) ™ B x (a,0).

That is
dw = QB.

Clearly, equations (3) and (4) are satisfied. The complex structure J on M
is given by the complex structure on B and

Jw = —wdz.
The Kahler form is given by
Q=z20+dz Aw.
If X is the Hamiltonian vector field generated by the S! action, then

dz = Q(-X,-) = (-JX),

w = g(X, X),
and (X..)
g )" b
w = =wX".
9(X, X)
The Ricci form p is given by
. m—1
p = pp —100log(——)
w



which implies that the scalar curvature s is given by

s (5)=

= Zm—l

If w=* (by which we mean 1/w) is such that w™'(a) = 0 and (w™)'(a) = 2,
then we can add a copy of B at z = a and extend the Kahler metric ¢ over
the zero-section of the bundle L. — B. If moreover b < oo, w™'(b) = 0, and
(w™!Y(b) = —2 then we can add another copy of B at z = b and extend ¢ to
a Kéahler metric on the total space of the CPy-bundle P(O & L). We refer to
[10, 11] for the details.

3.2 Applying the ansatz

In this special case, h is the local description of zgg. That is, if locally

1/_1 _
QB = qu,dfu /\ dfy,

then h,, = zq,,. Equation (8) is here

(c—l—uz)w_1 =-=2\-(z+ B) (13)
and equation (9) is
0*u
41— = 2)\Bq,. (14)
oErOEY

Since u = (m — 1)log z — log w + log(det ¢) and

2
oy = _\/_—16 log(det ¢)

PenGE de* A dgv

we see from equation (14) that gg must be K&hler-Einstein. From now on,
we assume that A # 0. Since, by the Lefschetz decomposition,

SB

S (15)

PB =
we have that B = %. Equation (13) now becomes

c+ u, SB
= -2\
w Z+(m—1)




or
z z SB

. = —2)2" + ———2""", 1
E o (16)
The general solution of this ODE is
Zm—l
( ” J=ke "+ A"+ 4 Az + Ao, (17)

where the A;s are fixed (given by A, ¢,m and sg) and k is chosen freely.
For sp # 0, we have from equation (15) that
—2(m — 1)[/)]3] —2(m —1)

S L—
3B 2 3B il )

(L) =

where K~! is the anti-canonical line bundle of B. Since ¢;(L) must be an
integer class, there are some restrictions on the size of sg. For sg = 0 we
cannot use equation (15) to calculate ¢ (L).

3.3 The case s < 0:

Given a > 0, suppose we chose (the unique) k such that w™!(a) = 0. Then
from equation (16), we see that (w™')(a) = 2 if and only if

sp—2(m—1)

A= 2a(m — 1)

Assume now that we have chosen k and A such that the endpoint conditions
at z = a are met. For any b > a, w™!(b) = 0 implies, together with equation
(16), that
2b SB b
() = -2 —2 =2 -2y
() = =2 s = B )

Since (w™')'(a) > 0, we conclude that there can be no such b. Hence the
function w™! is positive for all z > a. Thus we have a Kahler quasi-Einstein
metric g on the total space of . — B. If ¢ is chosen to be positive, then

limw™t=4,,:.

Z2— 00

This implies [12, 8] that ¢ is complete.

10



Theorem 1 Let (B, gg) be a non-positive compact Kihler-FEinstein manifold
of dimension (m —1). Assume that [g—f] is an integer cohomology class. Let
L be a holomorphic line bundle on B such that ¢;(L) = [Z22]. Let X denote
the Hamiltonian vector field generating the natural S* action on L and let J
denote the complex structure on the total space of L — B. Then, for a given
a >0 and a given ¢ > 0, there exists a complete Kdahler metric g on the total
space of the bundle L — B such that the pair (g, —%CJX) is quasi-Finstein,
satisfying the equation

p— A= L—;—CJ)(Qa
where
sp—2(m—1)

A= 2a(m — 1)

Notice that there is no hope of producing quasi-Einstein metrics on the
compact manifold P(O & L) — B. This can be seen by the fact that ¢
has no sign for sg < 0: If m = 2 the argument is quite simple. Let C
denote the fiber in P(O & L) — B and let Fy denote the zero-section in
P(O& L) — B. Then by the adjunction formula for complex surfaces we
have that ¢; - C' =2 >0 and ¢; - By = deg L — 2(gp — 1), where gp denotes
the genus of B. Thus for gg > 0 (or equivalently sp < 0) we see that ¢
cannot have a sign. In higher dimension, take any compact metric on M of
the type described in subsection 3.1. Since [, p > 0 and on pAQE2 <0
when sp < 0, we conclude that ¢; = [{=] does not have a sign.

In the next section we will consider Guan’s generalization of quasi-Einstein
Kahler metrics and get existence results for all ruled surfaces of the form

P(O@L) — B.

3.4 The case sz > 0:

This case has already been considered by others [9, 7, 5]. If L is such that
¢; of the compact complex manifold M = P(O & L) — B is positive, then
there exist compact quasi-Einstein Kahler metrics on M of the type de-
scribed in this section. This follows as a special case of the results in [7]?
which generalizes Koiso’s construction [9]. Moreover, Chave and Valent [3]

’In a private communication Prof. Guan pointed out that, due to editorial error,
Theorem 2 and Corollary 2 in [7] are both missing the assumption that pp (hence sp) is
non-negative.

11



considered the case B = CP,,_y. They found the compact solutions on
M =PO® K%) — B for p = 1,...,m — 1, where K is the canonical
line bundle. For p = m 4+ 1,m 4+ 2,... they found complete non-compact
quasi-Einstein Kahler metrics on the total space of Km — B. Note that
S — Zm(m=1), Using the same arguments that we used in the case sg < 0,
it is easy to show the following general result.

Theorem 2 Let (B, gg) be a positive compact Kihler-Finstein manifold of
dimension (m—1). Assume that s = W withp =m+1,m~+2,.... Let
L be a holomorphic line bundle on B such that ¢;(L) = £¢,(K), where K
is the canonical line bundle. (Such a line bundle L exists when B = CP,,_1.
In general, we may, at worst, have to assume that p = 2m,3m,....) Then
for a given a > 0 and a given ¢ > 0, there exvists a complete Kdhler metric
g on the total space of the bundle I — B such that the pair (g, —%CJX) is

quasi-Finstein, satisfying the equation

p— A= L—;—CJ)(Qa
where
m-p

pa

A=

4 Generalized quasi-Einstein Kahler metrics

In [7] Guan defines generalized quasi-Einstein Kahler metrics in any Ké&hler
class on any compact complex manifold. In this section, we introduce the
defining equation for such metrics. Then we solve it under the same condi-
tions as in subsection 3.1, with the additional assumptions that m = 2, gp
is Kahler-Einstein and that the final metric ¢ is compactified to a Kahler
metricon P(O& L) — B. In fact, our solutions exhaust the Kahler cone.

4.1 The equation

Let g be a Kéahler metric and V' be a real holomorphic vector field on a
compact manifold M. The pair (g, V') is said to be generalized quasi-Einstein
if

P — PH = Lvﬂ (18)

12



A generalized quasi-Einstein Kahler metric serves as a generalization of con-
stant scalar curvature Kahler metrics. Indeed, Guan proved that a general-
ized quasi-FEinstein Kahler metrics has constant scalar curvature if and only if
the Futaki invariant of the Kahler class vanishes. Thus, these metrics behave
very much like the extremal Kahler metrics.

4.2 The equation in a special case

We now make the same assumptions as in subsection 3.1. Moreover we
assume that m = 2, that is, B is a compact Riemann surface, and that gg
is Kéhler-Einstein, that is, pp = 20p. Finally, we assume that ¢ is such
that it can be extended to a smooth Kahler metric on the compact manifold
M =P(O& L) — B. This means that for a given pair (a, b) (determining the

Kéhler class [13]), with 0 < a < b, at the point z = a (resp. b) the function

% vanishes and has derivative equal to 2 (resp. —2). By rescaling, we may

assume that @ = 1. Since ¢ is a positive definite metric, we have that % must
be positive on the interval (1,5).
If V.= —L1cJX, then equation (18) implies that
§—8§ = 2<Lvﬂ, Q>
= 2(d(iv2),Q)
= ¢(dX", Q)
= c(d(w'w),Q)
= ¢(dJdz, Q)
= 2¢{y/~100z,w)
= —cAz,

where 5 denotes the average scalar curvature

S sdp
Jar i

s =

13



On the other hand, if

§—38=—cAz,

then, by the Hodge decomposition,
AGs = —cAz,

which implies that
wq = —G's = ¢z + constant.

Then gradpq = cgradz = 2V and, since
pP— pPH = L%gradapQQ

is satisfied for any compact Kéahler metric, we conclude that (g, V) is gener-
alized quasi-Einstein. The above is summarized in the following lemma.

Lemma 1 Let B be a compact Riemann surface with Kdhler-Einstein metric
gp and let M be the ruled surface P(O& L) — B, where L is a holomorphic
vector bundle such that ¢;(L) = [%] For each b > 1, that is, for each
Kihler class on M [13], consider the Kdhler metric from subsection 3.1

g = zgp + wdz* + w W,

1

where w™" is a smooth function, positive on the interval (1,0), such that it

satisfies the boundary conditions

w (1) = w ' (b) =0 (19)
(™) (1) =2, (20)

and
(w™)(b) = 2. (21)

Then the pair (g, k%JX) is a generalized quasi-Finstein Kahler metric if and
only if w™! is such that
s —35=kAz. (22)

In this case, kJX = gradpq.

14



4.3 Solving the equation in the special case

Recall that
s (5)e

z z
Inserting equation (19), (20), and (21) into equation (22), we get

sp_ (G2 9sp(b-D420041)
z z (v2-1) -

kEAz

or

() ~#(5) — 2 e

Integrating equation (23) and inserting equations (19), (20) and (21) we get
<Z> _k<3>:_83(6—1)+2(b+1) 2 2b(b+1) = spb(b—1)

” CE 1)

w

(24)
Notice now, that if w solves equation (24) and equation (19) is satisfied, then
equations (20) and (21) follow. Thus we have to find a solution of (24) such
that % vanishes at z = 1 and at z = b but is positive in the interval (1,5).
The solution of (24), such that (%) vanishes at z = 1, is given by

ie_kz =Gl(z,k) = / (Au2 + Bu + C)e_k“ du,
w 1

where P(u) = Au? 4+ Bu + C is the polynomial on the right hand side of
equation (24). Notice that P(1) = 2 and P(b) = —2b. Let wug be a zero of
the polynomial P(u) which lies in (1,6) and wu; the second possible zero.
In the case sg # —221'—}, elementary computations show that P(u) = A(u —

uq)(u — ug), with A(u —uq) < 0 for uw € (1,b). In the case sp = —221’—}, we
have that Au® + Bu + C = B(u — ug), with B < 0. It follows that we can
write P(u) = p(u)(u — ug) with p(u) negative for v € (1,b).

We want to prove that, given a fixed b > 1, G(b,k) = 0 has a unique
non-zero solution in k. Consider the auxiliary function

F(k) = G(b,k)e"* = /1 p(u)(u — up)e ) gy,

15



Its derivative with respect to the variable k is positive. Thus F(k) is mono-
tonic and increasing. Furthermore, F'(—o0) = —oo and F'(+00) = +00. This
proves the existence and uniqueness of k.

Lastly, the possibility of £ = 0 needs to be excluded. Toward this end,

we compute
(b—l)2 SBb—l
b,0) = — —2].
G(5,0) 3 2041

This vanishes only if sg = 421'—} > 4, which can be excluded by the following
reasoning. Recall that if sg # 0 then (L) = %cl([&'), where K is the
canonical line bundle on B. Thus if sg > 0 (equivalently, if the genus of B is
equal to 0), then ¢;(L) = i. However, since ¢;(L) must be an integer [15],
the situation sg > 4 is not possible. Since G/(b,0) < 0, it follows that & is
always strictly positive.

At this point, since equations (19), (20), and (21) are satisfied, and (Z)
is nothing but the sum of an exponential function and a second degree poly-
nomial, we can show that the function (%) and hence w must be positive
between z = 1 and z = b: clearly (i) has at most three zeroes (since the
graph of an exponential function intersects a parabola at, at most, three
points). We know from (19) that it vanishes at z = 1 and z = b. Suppose
that a third vanishing point, =, lies between 1 and b. Then one easily sees
that (i) is positive on the interval (1,x) and negative on the interval (x,b)
- or vice versa. In either case, (%)Z has the same sign at z = 1 and at

z = b. By equations (20) and (21), this is not possible. Therefore (%) # 0
for 1 < z < b. Since (i) is positive in a small neighborhood to the right of
z = a (alternatively in a small neighborhood to the left of z = b), it must be
positive everywhere on the interval (1,b).

By rescaling gp appropriately, we can obtain any (negative) holomorphic

line bundle on B.

We conclude with the following theorem.

Theorem 3 Let M =P(O® L) — B, where L is a non-trivial holomorphic
line bundle on a compact Riemann surface B. Then any Kdhler class on
M admits a generalized quasi-Finstein Kdhler metric (g,V), where V =
%gradc,og and W =V —JV is a multiple of the holomorphic vector field
generating the natural C* action on L.

16



Remark 1 If the genus of B is less than 2, then the metrics in the above
Theorem were constructed by Guan in [7]. In particular, if the genus of B is
equal to 0, L = K7 and b is such that the Kahler class is a multiple of ¢; (M),
we have the quasi-Einstein Kahler metric on CP2#CP; constructed by Koiso
in [9] (see also [3]).

If the genus of B is at least 2, we notice that, as opposed to the family
of extremal Kahler metrics constructed in [13], the metrics do exhaust the
Kahler cone.
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