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Abstract

We investigate an analogue of the likelihood ratio test for spatial Gibbs point
process models fitted by maximum pseudolikelihood or maximum composite
likelihood. The test statistic must be adjusted in order to obtain an asymptotic
χ2 distribution under the null hypothesis. Adjustments developed for compos-
ite likelihoods of finite systems of random variables are adapted to the point
process setting. Recent results in point process theory are used to estimate
the composite information J and sensitivity H from data. In a large simula-
tion experiment we find that the proposed test is exact if J and H are known
exactly; it is slightly conservative when J and H are estimated from data.

Keywords: Georgii-Nguyen-Zessin formula; Godambe-Heyde criterion; Moment
matching; Papangelou conditional intensity; Pseudolikelihood; Score test statis-
tic; Variance estimation.

1 Introduction

Statistical inference for spatial point processes [1, 2, 3] is difficult because, apart from
the Poisson point process, most of the useful models have intractable likelihoods
[4, 5]. It is therefore common to fit point process models to data by maximising
a composite likelihood [6], such as Besag’s [7] pseudolikelihood for point processes
with tractable conditional intensities, or the Palm likelihood [8, 9, 10] or second
order composite likelihood [11] for models with tractable pair correlation functions.
This is a good practical strategy: the computations are extremely fast [12], the
parameter estimates are the solutions of unbiased estimating equations, and they
are asymptotically normal under suitable conditions [13, 14].

However, formal inference such as model selection and hypothesis testing is prob-
lematic using these composite likelihoods, because the analogue of the likelihood
ratio test statistic based on composite likelihoods does not have an asymptotic χ2

distribution under the null hypothesis. Rather, the asymptotic null distribution is
that of a weighted sum of independent χ2 variables.
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The literature on composite likelihood for finite systems of random variables
contains several proposals for adjusting the log composite likelihood ratio so as to
obtain a null distribution which is approximately χ2. Pace et al [15] review these
proposals and offer a new one which performs very well in their examples.

Our aim is to apply these adjustments to the composite likelihoods of spatial
point process models of Gibbs type with tractable conditional intensity. In princi-
ple this should be possible – even though a spatial point process is a continuum
of random variables – because the adjustments depend mainly on the asymptotic
normality of the composite score, which typically holds in the point process context
as well.

In practice, the adjustments discussed in [15] are not directly applicable to Gibbs
point processes, because the composite information J (variance of the composite
score) and the Hessian H (negative expectation of the derivative of the composite
score) are not known explicitly as functions of the parameter θ.

For Gibbs point processes, estimators of H and J have recently been developed
[16, 17, 18], so it is now possible to perform “plug-in” versions of the composite likeli-
hood adjustments, in which the true H and J are approximated by data-dependent
estimators. It is an open question whether plug-in versions of the adjustments will
be satisfactory.

This paper gives explicit formulae for the adjustments for the pseudolikelihood
ratio test for Gibbs point processes, and reports the result of a large simulation
experiment assessing the performance of the adjustments. We find that the plug-
in versions of the adjustments perform reasonably well except for a “breakdown”
occurring when interaction between points is very strong.

Section 2 summarises adjustments to the composite likelihood ratio test statistic
that are known in the literature. Section 3 describes composite likelihoods for spatial
Gibbs point processes including recent results about variance. Section 4 spells out
the proposed procedure for adjusting the composite likelihood ratio test for a spatial
Gibbs point process. Section 5 reports on the results of a large experiment. We end
with a discussion.

2 Adjustments to composite likelihood ratio test

The general context is one in which a parametric model governed by a d-dimensional
parameter θ is fitted to data x by maximising a pseudolikelihood or composite
likelihood CL(θ,x). We assume there are no constraints on θ so the maximum is
found as the root of the composite score U(θ,x) = (∂/∂θ) log CL(θ,x). The vari-
ance/covariance matrix of the composite score J(θ) = var[U(θ,X)] is the ‘composite
information’, and the matrix H

H(θ) = Eθ
[
− ∂

∂θ
U(θ,X)

]
(2.1)

is the ‘sensitivity’. It is desired to test the null hypothesis H0 : θ ∈ Θ0 against the
alternative H1 : θ ∈ Θ1 where Θ0 ⊂ Θ1. A natural choice for the test statistic would
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be the analogue of the likelihood ratio test statistic

Λ = 2 log
CL(θ̂,x)

CL(θ̌,x)
(2.2)

where θ̂ = arg maxθ∈Θ1 CL(θ,x) and θ̌ = arg maxθ∈Θ0 CL(θ,x) are the maximum
composite likelihood estimates of θ under the alternative and null hypotheses re-
spectively. However, Λ does not have a asymptotic χ2 distribution under H0 as it
would in the case of the likelihood.

For composite likelihoods of finite systems of random variables, Pace et al [15,
eq. (3.8), (3.9)] proposed the following adjustments to Λ which are designed to bring
it closer to having a χ2 distribution.

2.1 Simple null hypothesis

In the case of a simple null hypothesis H0 : θ = θ0, the asymptotic distribution
of Λ is that of

∑
j λjχ

2
1 where λj, j = 1, . . . , d are the (not necessarily distinct)

eigenvalues of J(θ0)H(θ0)−1. In particular the mean of this asymptotic distribution
is m =

∑
j λj = trace(J(θ0)H(θ0)−1) [19, Thm 3.1]. The first moment matching

adjustment [20], [21, sec. 9.3.3] is

Λ∗ =
d

m
Λ. (2.3)

This simply rescales Λ so that its mean is equal to d, the mean of χ2
d. For brevity

we call this the “mean adjustment”.
The adjustment proposed by Pace et al is [15, eq. (3.8)]

Λ∗ =
U(θ0,x)>J(θ0)−1U(θ0,x)

U(θ0,x)>H(θ0)−1U(θ0,x)
· Λ (2.4)

which we will call the “Pace-Salvan-Sartori adjustment” or “PSS adjustment”. Notice
that the numerator U(θ0,x)>J(θ0)−1U(θ0,x) is the composite score test statistic,
which is asymptotically χ2 with d degrees of freedom under H0 [21, p. 193], while
the denominator U(θ0,x)>H(θ0)−1U(θ0,x) is a first order approximation to Λ, so
this adjustment effectively matches the first order asymptotic behaviour of Λ to that
of the score test statistic.

2.2 Composite null hypothesis

Suppose that θ = (ϕ, ψ) where ψ is a d0-dimensional parameter of interest and
consider the composite null hypothesis H0 : ψ = ψ0. Let the matrices H(θ) and J(θ)
be as defined above, and define the Godambe-Heyde criterion matrix

G(θ) = H(θ)J(θ)−1H(θ).

Let Uψ = (∂/∂ψ) log CL(θ) be the component of the score corresponding to ψ. Fol-
lowing [15] we write Hψψ(θ) for the (ψ, ψ) submatrix of H(θ)−1, the inverse of the

3



sensitivity matrix, and Gψψ(θ) for the (ψ, ψ) submatrix of G(θ)−1, the inverse of
the Godambe-Heyde criterion matrix.

The asymptotic null distribution of Λ is that of
∑

j λjχ
2
1 where λj, j = 1, . . . , d0

are the (not necessarily distinct) eigenvalues of (Hψψ)−1Gψψ. The mean adjustment
is then

Λ∗ =
d0

m
Λ (2.5)

where m =
∑

j λj = trace((Hψψ)−1Gψψ). The score test statistic is [15, eq. (2.4)]

S = Uψ(θ̌)>Hψψ(θ̌)Gψψ(θ̌)−1Hψψ(θ̌)Uψ(θ̌) (2.6)

where θ̌ = (ϕ̌(ψ0), ψ0) is the maximum composite likelihood estimate of θ under the
null hypothesis. Then the PSS adjustment is [15, eq. (3.9)]

Λ∗ =
S

Uψ(θ̌)>Hψψ(θ̌)Uψ(θ̌)
Λ. (2.7)

The corrected statistic Λ∗ has asymptotic null distribution χ2
d0

approximately. When
ψ is one-dimensional, the mean adjustment (2.5) and the PSS adjustment (2.7) both
collapse to the same quantity [15, p. 135]

Λ∗ =
Hψψ(θ̌)

Gψψ(θ̌)
Λ (2.8)

which has asymptotic distribution exactly χ2
1.

To avoid confusion we note that, because Hψψ and Gψψ are submatrices of H−1

and G−1 respectively, (2.8) has the same general form as (2.4).

3 Likelihood devices for Gibbs point processes

In the point process setting [5, 3, 2] the dataset x = {x1, . . . , xn} consists of points
in a bounded subset (window) W of Rm, and x is assumed to be a realisation of
a Gibbs point process X. In applications m is typically 2 or 3 (and all the exper-
iments in Section 5 have m = 2), but the theory holds for any natural number m.
The distribution of the process is determined by its Papangelou conditional inten-
sity λ(u,x) as explained in [5, 3]. For simplicity we consider a model in which the
conditional intensity is loglinear in the parameter,

λθ(u,x) = exp(θ>T (u,x)). (3.1)

3.1 Pseudolikelihood

Besag [7] defined the pseudolikelihood of the finite point process with Papangelou
conditional intensity λθ(u,x) as

PL(θ,x) =

[ n∏

i=1

λθ(xi,x)

]
exp

(
−
∫

W

λθ(u,x) du

)
. (3.2)
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Fast, practical algorithms exist for fitting models by maximising the pseudolikelihood
[22, 12]. For the loglinear model (3.1) the pseudolikelihood score is

U(θ,x) =
∂PL
∂θ

=
n∑

i=1

T (xi,x)−
∫

W

T (u,x)λθ(u,x) du. (3.3)

The pseudolikelihood score is an unbiased estimating function, by virtue of the
Georgii-Nguyen-Zessin formula [23, 24]. Under reasonable conditions, the pseudo-
likelihood score evaluated at the true value θ is asymptotically normal, and the
maximum pseudolikelihood estimator of θ is consistent and asymptotically normal
[7, 13, 14].

The sensitivity (2.1) is

H(θ) = Eθ
∫

W

T (u,X)T (u,X)>λθ(u,X) du = Eθ
n∑

i=1

T (xi,X)T (xi,X)>. (3.4)

Two estimators of H(θ) are

Ĥ(θ) =

∫

W

T (u,X)T (u,X)T (u,X)T (u,X)>λθ(u,X) du (3.5)

and H̃ =
n∑

i=1

T (xi,X)T (xi,X)>. (3.6)

Under a simple null hypothesis H0 : θ = θ0, both Ĥ(θ0) and H̃ are unbiased for
H(θ0). Under a composite null H0 : θ ∈ Θ0, Ĥ(θ̂) is approximately unbiased for H(θ̂)

and H̃ is unbiased for H(θ), where θ is the true value of the parameter governing
the distribution of X.

Formulae for the variance of U , and estimators of this variance, were derived
recently [16, 17]. The variance of the pseudolikelihood score (3.3) for fixed θ is

var[U(θ,X)] = A1 + A2 + A3 (3.7)

where A1 = H(θ) and

A2 = Eθ
∫

W

∫

W

T (u |X)T (v |X)>

(
λθ(u |X)λθ(v |X)− λ[2]

θ (u, v |X)
)

du dv (3.8)

A3 = Eθ
∫

W

∫

W

∆vT (u |X) ∆uT (v |X)>λ[2]
θ (u, v |X) du dv (3.9)

with the second order Papangelou conditional intensity given by

λ
[2]
θ (u, v |X) = λθ(u |X \ {v})λθ(v |X ∪ {u}),

and where ∆ is the increment operator for set functions,

∆uT (v |X) = T (v |X ∪ {u})− T (v |X).
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Consistent estimators of var[U(θ,X)] can be constructed by choosing consistent
estimators of the quantities A1, A2, A3 in (3.7) based on the identities (3.4) and
(3.8)–(3.9) as described in [17]. The estimators used in our experiments are (3.5),
(3.6) and

Â2 =
∑

i

∑

j 6=i
T (xi | x \ xj)T (xj | x \ xi)>

(
λθ(xj | x \ xi)
λθ(xj | x)

− 1

)
(3.10)

Â3 =
∑

i

∑

j 6=i
∆xiT (xj | x \ xi) ∆xjT (xi | x \ xj)>. (3.11)

These four estimators are unbiased and consistent if the model is true (with the
correct value of θ) while Ĥ(θ) and Â3 are unbiased and consistent even under a
misspecified model, by the Campbell-Mecke formula [25], [26, (4.4.3)].

3.2 Logistic likelihood

Baddeley et al [18] (see also [27]) proposed the logistic likelihood

LOL(θ,x) =

[ n∏

i=1

λθ(xi,x)

λθ(xi,x) + ρ(xi)

] [ m∏

j=1

ρ(yj)

λθ(yj,x) + ρ(yj)

]
(3.12)

where y = {y1, . . . , ym} is a randomly-generated set of “dummy points”, a realisation
of a point processY with intensity function ρ. They showed that the composite score
associated with (3.12) is an unbiased estimating function, and that under reasonable
conditions, the composite score evaluated at the true θ is asymptotically normal,
and the maximum composite likelihood estimator is consistent and asymptotically
normal.

Expressions for the composite information J and sensitivity H for the logistic
likelihood, and consistent estimators of these quantities, are given in [18].

4 Adjusted composite likelihood ratio test statistic
for Gibbs point process

Here we spell out the procedure for adjusting the composite likelihood ratio test
statistic for a point process model, in the case of the pseudolikelihood (3.2). Assume
a Gibbs point process model with loglinear conditional intensity (3.1).

We fit the null and alternative models by maximising the pseudolikelihood (3.2),
and evaluate the uncorrected test statistic Λ in (2.2) where CL is PL.

4.1 Simple null

In the case of a simple null hypothesis H0 : θ = θ0, we compute the pseudolikelihood
score U(θ0,x) of the alternative model at the null value, estimate the sensitivity
H(θ0,x) of the alternative model at the null value using either (3.5) or (3.6), and
estimate the composite information J(θ0) = var[U(θ0,X)], the variance of the score
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of the alternative model at the null value, by plugging into (3.7) the estimates
Â1, Â2, Â3 given by (3.10)–(3.11) and either (3.5) or (3.6). Then we compute the
mean adjustment (2.3) where d is the dimension of θ and m = trace(ĴĤ−1), and the
PSS adjustment (2.4).

4.2 Composite null

In the case of a composite null hypothesis H0 : ψ = ψ0 where θ = (ϕ, ψ), calcula-
tions are performed for the fitted null model, with parameter θ̌ = (ϕ̌, ψ0) obtained
by maximising the pseudolikelihood over the nuisance parameter ϕ. We compute
the pseudolikelihood score U(θ̌,x) of the alternative model at the null MPLE, and
estimate H(θ̌,x) and J(θ̌) = var[U(θ̌,X)] by Ĥ, Ĵ using the same expressions (3.5)
or (3.6) and (3.10)–(3.11). We form the Godambe-Heyde information Ĝ = Ĥ Ĵ−1Ĥ,
and extract Ĥψψ, Ĝψψ which are the submatrices of the inverses Ĥ−1 and Ĝ−1 cor-
responding to the parameter of interest ψ. Then we compute the mean adjustment
(2.5) where d0 is the dimension of ψ, and m = trace((Ĥψψ)−1Ĝψψ), and the PSS
adjustment (2.7).

5 Experimental results

We performed simulation experiments to evaluate the true null distributions of the
adjusted statistics.

5.1 Simple null hypothesis

The null hypothesis was taken to be a Strauss point process [28, 29, 5] in the unit
square. The interaction radius r = 0.05 was fixed and was not treated as a parameter.
The parameters of the Strauss model are then θ = (β, γ) where the interaction
strength γ penalises pairs of points within distance r of each other by a factor γ.
Thus when γ is close to zero almost no pairs of points will be within distance r of each
other while the points will appear completely at random when γ = 1 (values above
one yield an invalid model). The first order parameter β mainly adjusts the intensity
of points (but the parameter is not directly interpretable as an intensity). In our
experiment we used the parameter values θ0 = (β0, γ0) where γ0 ranged from 0.05 to
0.95 in steps of 0.05, then from 0.95 to 1 in steps of 0.01, and for each value of γ0,
we determined β0 so that the intensity (approximated by the Poisson-saddlepoint
approximation [30, 31]) was equal to 100.

For each value of θ0, we generated 1 million realisations of the null model using a
perfect simulation algorithm [32] on a supercomputing cluster. The model was fitted
to each simulated realisation by maximum pseudolikelihood [22] using the correct
value of r, and we evaluated the unadjusted pseudolikelihood ratio test statistic Λ,
the null score U(θ0;x), the estimated Hessian Ĥ(θ0;x) from (3.5), and the estimate
Ĵ(θ0) of the composite information from (3.5) and (3.10)–(3.11). From these we
calculated the adjusted composite likelihood ratio test statistics Λ∗ of (2.3) and
(2.4) for each simulation, plugging-in the estimates of H and J . Referring these
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adjusted statistics to the χ2 distribution with d = 2 degrees of freedom, we obtained
the p-values p∗ = P{χ2

2 > Λ∗}.
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Figure 1: Logarithmic plot of actual significance against nominal significance for the χ2

test of the simple null hypothesis H0 : γ = 0.5 based on the adjusted composite likelihood
ratio test statistic, with matrices H and J estimated from data. Left: first moment match-
ing adjustment. Right: Pace-Salvan-Sartori adjustment. Thickness of curve indicates 95%
confidence interval for true significance.

Figure 1 compares the empirical cumulative distribution function of p∗ (based on
1 million values) against the uniform distribution, on a logarithmic scale, for the case
γ = 0.5. This is effectively a plot of actual significance against nominal significance
for the χ2 test. The thickness of the solid curve indicates the 95% confidence interval
for the true significance level (based on the asymptotic normal distribution of the
proportions in this large experiment).

In order to check that the adjustments would work correctly for point process
pseudolikelihood ratios if the matrices J(θ0) and H(θ0) were known exactly, we first
computed very accurate approximations to J(θ0) and H(θ0) by averaging the 1 mil-
lion estimates obtained from the simulations. These were then used to calculate the
adjusted composite likelihood ratio test statistics (2.3) and (2.4) for each simula-
tion. The corresponding plots of actual significance against nominal significance are
shown in Figure 2.

Figure 2 indicates that both the mean adjustment and the PSS adjustment, using
the true values of H and J , work well in this case, giving adjusted statistics which
have a distribution close to χ2

2. Surprisingly the PSS adjustment does not perform
quite as well as the mean adjustment.

Plots similar to Figure 2 for different values of γ0 (given in the Appendix) suggest
that the adjustments work well for all γ0 ≥ 0.1. It is unclear whether the poor
behaviour for γ = 0.05 represents a genuine failure of the adjustments (due perhaps
to the non-Gaussian distribution of the composite score) or is an artefact of the
coarse quadrature algorithm for maximising the pseudolikelihood.

Figure 1 shows that when H and J must be estimated from observations, the χ2

test based on the adjusted statistics is slightly conservative over the usual range of
significance levels. At a nominal significance of 0.05 the true probability of Type I
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Figure 2: Counterpart of Figure 1 using ‘true’ values for the matrices H and J .

error is about 0.035. Similar plots for different values of γ0 suggest that there is a
“breakdown” value α† such that the test with nominal significance level α is approx-
imately exact or only slightly conservative when α ≥ α†, where α† increases as γ0

decreases: for γ0 = 0.4, 0.3, 0.2, 0.1 the breakdown values are about α† = 0.005, 0.01,
0.025, 0.05 respectively.

5.2 Composite null hypothesis

In each of the experiments described above, we also tested the composite null hy-
pothesis H0 : γ = γ0, in which the first order parameter β is treated as a nuisance
parameter. For each simulated point pattern x the null hypothesis was fitted by
maximum pseudolikelihood (optimising β for fixed γ = γ0 and r = 0.05) yielding
θ̌ = (β̌, γ0). We then computed the pseudolikelihood score U(θ̌,x) and the estimates
H(θ̌,x) and J(θ̌) using (3.5) and (3.10)–(3.11). The adjusted pseudolikelihood ra-
tio test statistic Λ∗ was then computed as described in section 4.2. Referring this
statistic to the χ2

1 distribution gave the adjusted p-value p∗ = P{χ2
1 > Λ∗}.

Figure 3, analogous to Figure 1, compares the empirical cumulative distribution
function of p∗ (based on 1 million values) against the uniform distribution, on a
logarithmic scale, for the case γ0 = 0.5. Performance is comparable to the case
of a simple null hypothesis. Similar figures for different values of γ0 (given in the
Appendix) show the same “breakdown” pattern as described above for the simple
null hypothesis.

Figure 4, analogous to Figure 2, shows the behaviour of the adjusted pseudo-
likelihood ratio test statistic using the exact values of composite information and
sensitivity estimated from 1 million simulations. Again the conclusion is that these
adjustments work correctly when the moments are known exactly.
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Figure 3: Logarithmic plot of actual significance against nominal significance for the χ2

test of the composite null hypothesis H0 : γ = 0.5 based on the adjusted composite likeli-
hood ratio test statistic, with matrices H and J estimated from data. Left: first moment
matching adjustment. Right: Pace-Salvan-Sartori adjustment. Thickness of curve indicates
95% confidence interval for true significance.

Theoretical

A
c
h

ie
v
e

d

0.5 0.1 0.025 0.005 0.001

0
.5

0
.1

0
.0

2
5

0
.0

0
5

0
.0

0
1

Theoretical

A
c
h

ie
v
e

d

0.5 0.1 0.025 0.005 0.001

0
.5

0
.1

0
.0

2
5

0
.0

0
5

0
.0

0
1

Figure 4: Counterpart of Figure 3 using ‘true’ values for the matrices H and J .

6 Discussion

Our experiments used the classical point process pseudolikelihood of Besag [7]. The
maximum pseudolikelihood estimator of θ is often substantially biased [5, 33] and
yet the proposed adjustments perform tolerably well.

Composite likelihoods which give better estimators of θ, such as the logistic like-
lihood (Section 3.2), should also give better performance in the adjusted composite
likelihood ratio test. This remains to be investigated.

The method developed here for Gibbs point process models should also extend
to Cox and Neyman-Scott point processes using the Palm likelihood [8, 9, 10] or
second order composite likelihood [11]. To our knowledge, variance estimators are
not yet available for these composite likelihoods.
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Many point process models have constraints on the parameter vector θ. A famous
example is the Strauss process [28, 29] which is well-defined only when γ ≤ 1.
Our analysis assumes no constraints on θ; further work is needed for constrained
maximum composite likelihood.
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Appendix

A Significance plots

Below follows a complete list of plots of actual significance against nominal signifi-
cance for the χ2 test. The thickness of the solid curve indicates the 95% confidence
interval for the true significance level (based on the asymptotic normal distribution
of the proportions in this large experiment). All plots here are for the approximate
test (with H and J estimated from data).
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Figure 5: Simple, γ0 = 0.05
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Figure 6: Simple, γ0 = 0.10
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Figure 7: Simple, γ0 = 0.20
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Figure 8: Simple, γ0 = 0.30
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Figure 9: Simple, γ0 = 0.40
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Figure 10: Simple, γ0 = 0.50
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Figure 11: Simple, γ0 = 0.60
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Figure 12: Simple, γ0 = 0.70
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Figure 13: Simple, γ0 = 0.80
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Figure 14: Simple, γ0 = 0.90

Theoretical

A
c
h
ie

v
e
d

0.5 0.1 0.025 0.005 0.001

0
.5

0
.1

0
.0

2
5

0
.0

0
5

0
.0

0
1

Theoretical

A
c
h
ie

v
e
d

0.5 0.1 0.025 0.005 0.001

0
.5

0
.1

0
.0

2
5

0
.0

0
5

0
.0

0
1

Figure 15: Composite, γ0 = 0.05

17



Theoretical

A
c
h
ie

v
e
d

0.5 0.1 0.025 0.005 0.001

0
.5

0
.1

0
.0

2
5

0
.0

0
5

0
.0

0
1

Theoretical

A
c
h
ie

v
e
d

0.5 0.1 0.025 0.005 0.001

0
.5

0
.1

0
.0

2
5

0
.0

0
5

0
.0

0
1

Figure 16: Composite, γ0 = 0.10
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Figure 17: Composite, γ0 = 0.20
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Figure 18: Composite, γ0 = 0.30
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Figure 19: Composite, γ0 = 0.40
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Figure 20: Composite, γ0 = 0.50
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Figure 21: Composite, γ0 = 0.60
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Figure 22: Composite, γ0 = 0.70
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Figure 23: Composite, γ0 = 0.80
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Figure 24: Composite, γ0 = 0.90

20


