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Abstract

In this paper, we introduce a natural generalization of non-uniform system-
atic sampling to two dimensions. Under optimal auxiliary information about
the function of interest, this design yields an estimator with zero variance.
In a simulation study imitating sampling situations in microscopy, the 2D
non-uniform systematic designs show similar efficiency as proportional-to-size
sampling with replacement. An exception is area estimation where the 2D
non-uniform systematic designs are superiour in a number of cases considered.

Keywords: Cavalieri estimator, efficiency, Horvitz-Thompson estimator, mi-
croscopy, systematic sampling, 2D sampling

1 Introduction

In this paper, we introduce a new 2D non-uniform systematic sampling design that
respects the spatial information available and study its efficiency. In designs like
the proportionator (Gardi et al., 2008a,b), which is used in microscopy, all spatial
information is lost, prior to sampling. Therefore, a natural idea to improve upon such
designs, is to include spatial information in the sampling procedure. We propose to
use transformations of 2D uniform systematic sampling into non-uniform sampling,
while still maintaining some of the spatially balanced arrangement. Unlike Grafström
and Tillé (2012) and Stevens Jr and Olsen (2004), which also try to balance non-
uniform samples spatially, our proposal is a genuine 2D sampling procedure.

The suggested 2D non-uniform systematic sampling design is a generalization
of Dorph-Petersen et al. (2000), where non-uniform systematic sampling was intro-
duced in 1D. In that paper it was concluded from simulations, that non-uniform
sampling was more efficient than traditional uniform sampling, known as the classi-
cal 2D Cavalieri estimator, in an example of area estimation from lengths of linear
intercepts. In the present paper we propose a 2D non-uniform systematic sampling
design, which under optimal auxiliary information about the function of interest,
yields zero variance of the estimator. Furthermore, a simulation study resembling
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sampling in microscopy, has been performed to investigate the applicability of the
method.

The paper is organised as follows. First we recall results from Dorph-Petersen
et al. (2000) for the 1D sampling procedure. Then, we derive the generalization to
higher dimensions and propose various transformations of 2D uniform systematic
sampling. Subsequently, methods and results of the simulation study are presented,
followed by a discussion. Technical proofs are deferred to two appendices.

2 Generalized systematic sampling in 1D

2.1 Theoretical considerations

Let f be a bounded non-negative function with bounded support, assumed to be
the interval [0, 1] without loss of generality. The objective is to estimate the integral

Q =

∫ 1

0

f(x) dx, (2.1)

using values of f at a set of random sampling points. In uniform systematic sampling
(Cruz-Orive, 1993; Gundersen et al., 1999), a random systematic set of n points is
selected, Yi = (U + i)/n, where U ∼ unif[0, 1) and i = 0, 1 . . . , n− 1, from which f
is estimated by a simple step function. Thus, Q can be estimated unbiasedly by

Q̂n =
1

n

n−1∑

i=0

f(Yi). (2.2)

Instead of equidistant sampling points, it may be more efficient to choose points
closer to each other in some areas, while keeping a spatially spread sample. This can
be obtained by considering an increasing bijective function G : [0, 1]→ [0, 1], which
transforms the sampling points into new points Xi = G−1(Yi), i = 0, . . . , n−1. Using
that

Q =

∫ 1

0

f(x) dx =

∫ 1

0

f(G−1(x))
1

G′(G−1(x))
dx, (2.3)

we obtain a new unbiased estimator

Q̂n =
1

n

n−1∑

i=0

f(Xi)

G′(Xi)
=

1

n

n−1∑

i=0

f(G−1(Yi))

G′(G−1(Yi))
,

which corresponds to the uniform systematic sampling estimator of the function

f̃(y) = f(G−1(y))/G′(G−1(y)).

2.2 Choice of sampling points

Finding efficient sampling points, hence G and thereby f̃ , is considered in Dorph-
Petersen et al. (2000), where three choices are investigated. An obvious possibility
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is to choose G such that f̃ is constant. Then Q̂n is constant and always yields the
true value Q. Under the assumption that f > 0, the function G can be defined by

G(x) =

∫ x
0
f(t) dt

∫ 1

0
f(t) dt

. (2.4)

In Dorph-Petersen et al. (2000), the relation between this choice and sampling
proportional-to-size in the discrete setting, is established. Another suggestion uses
that the transformation corresponds to uniform systematic sampling for f̃ , hence
asymptotic results in the uniform case can be used. Transitive methods yield that
the asymptotic variance depends on the smoothness of f̃ , hence it is preferable to
have f̃ smoother than f . The third suggestion is based on the idea of sampling the
most, where f varies the most.

The three possibilities considered in the paper each depend on the function f ,
thus prior knowledge of f or properties of f are needed. In practice f is unknown,
therefore a function f0 similar to f is used instead. For instance using this in (2.4),
the estimator Q̂n becomes

Q̂n =

∫ 1

0

f0(t) dt · 1

n

n−1∑

i=0

f(Xi)

f0(Xi)
, Xi = G−1((U + i) 1

n
). (2.5)

3 Generalized systematic sampling in 2D

3.1 Theoretical considerations

The idea is now to generalize this to higher dimensions. For simplicity, we restrict our
considerations to two dimensions as the theoretical considerations are directly trans-
ferable to any dimension. Let f be a bounded non-negative function with bounded
support [0, 1]2. The objective is to estimate the integral

Q =

∫

[0,1]2
f(x, y) dx dy, (3.1)

using values of f at a set of random sampling points in [0, 1]2. In uniform systematic
sampling, a random systematic set of n×m points is selected,

(Y1i, Y2j) = ((U1 + i) 1
n
, (U2 + j) 1

m
),

where U1 and U2 are independent and U1, U2 ∼ unif[0, 1), i = 0, 1 . . . , n − 1 and
j = 0, 1 . . . ,m − 1. From these points f is estimated by a simple step function,
hence Q can be estimated unbiasedly by

Q̂nm =
1

nm

n−1∑

i=0

m−1∑

j=0

f(Y1i, Y2j).

Similar to the 1D case, it might be better to choose points closer to each other in some
areas. This can be obtained by considering a diffeomorphism G : [0, 1]2 → [0, 1]2,
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which transforms the sampling points into new points (X1i, X2j) = G−1(Y1i, Y2j),
i = 0, . . . , n− 1, j = 0, . . . ,m− 1. Using that

Q =

∫

[0,1]2
f(x, y) dx dy

=

∫

[0,1]2
f(G−1(x, y))

1

| det(G′(G−1(x, y)))| dx dy,

where G′ denotes the Jacobi matrix of G, we obtain a new unbiased estimator

Q̂nm =
1

nm

n−1∑

i=0

m−1∑

j=0

f(X1i, X2j)

| det(G′(X1i, X2j))|

=
1

nm

n−1∑

i=0

m−1∑

j=0

f(G−1(Y1i, Y2j))

| det(G′(G−1(Y1i, Y2j)))|

which, again, corresponds to the uniform systematic sampling estimator of the func-
tion

f̃(x, y) = f(G−1(x, y))/| det(G′(G−1(x, y)))|.
In the Appendix, we proof that Q̂nm is in fact unbiased.

3.2 Choice of sampling points

Analogously to 1D we would like to choose the sampling points in an efficient manner.
In particular, we can determine G such that f̃ is constant, which implies that the
variance of Q̂nm becomes zero. Assuming f(x, y) > 0, f̃ is constant if we choose any
G with

|det(G′(u, v))| = cf(u, v), (3.2)

for some constant c > 0. There are many possible choices of diffeomorphisms with
property (3.2), one example is G = (G1, G2), where

G1(x, y) =

∫ x

0

g(u) du, G2(x, y) =
1

g(x)∆

∫ y

0

f(x, v) dv, (3.3)

and

g(x) =
1

∆

∫ 1

0

f(x, v) dv, ∆ =

∫

[0,1]2
f(u, v) du dv. (3.4)

The Jacobi matrix is given by
(
∂G1

∂x
∂G1

∂y
∂G2

∂x
∂G2

∂y

)
=

(
g(x) 0

· · · f(x,y)
g(x)∆

)
,

hence |det(G′(u, v))| = f(u, v)/∆. Replacing f with a known function f0, which is
similar to f , will be used in practice. This could be colour values obtained by image
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Figure 1: Left: 2D uniform systematic sampling. Right: 2D non-uniform systematic sam-
pling, where the points have been transformed proportional to the colour values using
(3.3) and (3.4). The colours are obtained from the bei -data in the R-package Spatstat, see
Baddeley and Turner (2005).

analysis. Like in 1D this choice of G is related to sampling proportional-to-size in
the discrete set-up. In the Appendix, this relation is established. Replacing f with
f0 in (3.3) and (3.4), the estimator becomes

Q̂nm =

∫

[0,1]2
f0(u, v) du dv

1

nm

n−1∑

i=0

m−1∑

j=0

f(X1i, X2j)

f0(X1i, X2j)
, (3.5)

(X1i, X2j) = G−1((U1 + i) 1
n
, (U2 + j) 1

m
).

Figure 1 illustrates a 2D uniform systematic sample, which is transformed into a
non-uniform systematic sample, proportional to the colour values. Note that the
non-uniform sample is still spatially spread. However, the statistical behaviour of
the estimator Q̂nm depends on which coordinate in (3.3) and (3.4) is chosen first. If
we interpret Φ as the result of a gravitational force acting on the systematic grid of
points, G has to be given as G(x, y) = ∇Φ(x, y) for some scalar potential Φ. Hence
to fulfil property (3.2), we seek a solution of the Monge-Amper equation

∂2Φ

∂x2

∂2Φ

∂y2
− ∂2Φ

∂x∂y
= cf(x, y)

see e.g. Kołodziej (1998), subject to some suitable boundary and convexity condi-
tions. Unfortunately this equation is known to be very difficult to solve even numer-
ically.

Instead, keeping the ideas behind G in (3.3) and (3.4), it is possible to decrease
the strong dependence on the order of the coordinates by working with the com-
position G = Ψ ◦ Φ of two transformations, where Φ : [0, 1]2 → [0, 1]2 is given
by

Φ1(x, y) =

∫ x

0

g(u) du,

Φ2(x, y) =
1

g(x)∆g

∫ y

0

f(x, v)α dv,
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where α ∈ (0, 1),

g(x) =
1

∆g

∫ 1

0

f(x, v)α dv, ∆g =

∫

[0,1]2
f(u, v)α du dv.

and Ψ : [0, 1]2 → [0, 1]2 is given by

Ψ1(x, y) =
1

h(y)∆h

∫ x

0

(f ◦ Φ−1)(u, y)1−α du,

Ψ2(x, y) =

∫ y

0

h(v) dv,

where

h(y) =
1

∆h

∫ 1

0

(f ◦ Φ−1)(u, y)1−α du,

∆h =

∫

[0,1]2
(f ◦ Φ−1)(u, v)1−α du dv.

It is straight forward to show, that this choice of G fulfils (3.2), and we expect
that the resulting estimator is more efficient. Unlike G in (3.3) and (3.4), where
the transformed points are aligned in one direction, this composition of G results
in a completely deformed grid of points, which is not effected much by the order
of coordinates. In practice, it may be difficult to work with a transformation of the
form G = Ψ ◦ Φ as inverting G can be very hard even numerically.

4 Simulation study

4.1 Motivation

To support our theoretical findings and to investigate the efficiency of the new design
compared to existing designs, a simulation study was carried out. As the project
was motivated by sampling in microscopy, it is natural to construct set-ups, which
resemble data obtained from this field of research. Here, non-uniform sampling is
mainly used for counting purposes, for instance for determining the total number
of cells in a cell population, but also area estimation is considered, see e.g. Gardi
et al. (2008a,b). Both number estimation and area estimation will be studied in
the present paper, as well as estimation of the integral of a function. The latter
case will be called integral estimation and involves investigation of more smooth
functions than the measurement functions in the first two cases, which are based on
indicator functions. In microscopy, the value of the measurement function in a point
corresponds to complete information from a small observation window, located at
this point.

We use a selection of stochastic point processes to generate the centres of the
imaginary cells for number estimation, and thereby a selection of measurement func-
tions f . Various choices of the function f0, which controls the transformation G of
the sampling points, is investigated in all three cases of estimation. The function f0

is constructed from f with different levels of noise including spatial errors. In this
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set-up, f0 corresponds to known auxiliary information, obtainable from automatic
image analysis of a tissue section, for instance the amount of a predetermined color
identifying a staining of the cells.

4.2 Sampling approximations

The inverse of some non-standard integrals is needed to obtain the samples, but as
this is quite time consuming, the integrals are approximated by sums, and only the
non-decomposed choice of G given in (3.3) and (3.4) is considered. Furthermore, f0

is only determined in a finite number of points, corresponding to a pixelation of the
image. Let f0 be determined in a finite number of points in [0, 1]2, say in N ×M
equidistant points, (xk, yl), k = 1, . . . , N , l = 1, · · · ,M , where xk = (k − 1)/N and
yl = (l − 1)/M . These values correspond to an approximation of G using the lower
left corners of the ‘pixels’. This choice allows for a particularly simple approximation
of G−1. We assume that N and M are large compared to the size of the observation
window, thus we have a set-up, which resembles a continuous set-up. Replacing f
with f0 in (3.3) and (3.4), we obtain for x ∈ [xk, xk+1) = [k−1

N
, k
N

), y ∈ [yl, yl+1) =
[ l−1
M
, l
M

), k = 1, . . . , N , l = 1, . . . ,M , discrete approximations given by

∆ =

∫

[0,1]2
f0(u, v) du dv ≈ 1

NM

N∑

i=1

M∑

j=1

f0(xi, yj),

g(x) =
1

∆

∫ 1

0

f0(x, v) dv ≈ 1

∆M

M∑

j=1

f0(xk, yj),

G1(x) =

∫ x

0

g(u) du =
k−1∑

i=1

∫ xi+1

xi

g(u) du+

∫ x

xk

g(u) du

≈ 1

N

k−1∑

i=1

g(xi) + (x− k−1
N

)g(xk)

≈ 1

∆NM

M∑

j=1

(k−1∑

i=1

f0(xi, yj) + (Nx− k + 1)f0(xk, yj)
)
,

G2(x, y) =
1

∆g(x)

∫ y

0

f0(x, v) dv

≈ 1

∆g(xk)

( l−1∑

j=1

∫ yj+1

yj

f0(xk, v) dv +

∫ y

yl

f0(xk, v) dv
)

≈ 1

∆g(xk)M

( l−1∑

j=1

f0(xk, yj) + (My − l + 1)f0(xk, yl)
)
.

7



In particular,

G1(xk) ≈
1

∆NM

M∑

j=1

k−1∑

i=1

f0(xi, yj),

G2(xk, yl) ≈
1

∆g(xk)M

l−1∑

j=1

f0(xk, yj),

for k = 1, . . . , N , l = 1, . . . ,M . To approximate the inverse we take for u, v ∈ [0, 1),
G−1(u, v) ≈ (xk, yl), where k = max {i |G1(xi) ≤ u}, l = max {j |G2(xk, yj) ≤ v}.
For a given choice of f0, using the approximations above, it is straight forward
to simulate non-uniform samples from uniformly generated random variables, and
calculate the estimate from (3.5).

4.3 Sampling designs

In order to investigate the efficiency of the sampling design, the variance or CE2

(squared coefficient of error) of the design is compared to the ones for standard
sampling designs. The designs which are considered are

• 2D continuous: 2D non-uniform systematic sampling, described above and in
Section 3.2 (continuous sampling).

• 2D discrete: 2D non-uniform systematic sampling, described in Appendix B,
corresponding to proportional-to-size sampling (PPS sampling) with spatial
information. This design is a new design proposed in the present paper. It is
thought as a compromise between the continuous design above and standard
PPS sampling with no spatial information (discrete sampling).

• PPS WR: Proportional-to-size sampling with replacement (discrete sampling).

• SRS WOR: Simple random sampling without replacement (discrete sampling).

When discrete sampling is considered, the section is divided by an equally spaced
grid into fields of size w × w (determined in the section below), thus sampling is
performed on a finite number of elements.

4.4 The measurement function

Without loss of generality we assume, that the measurement function is defined
on the unit square [0, 1]2. We imitate observations in microscopy by letting the
measurement function f(x, y) be proportional to the measurement of interest on a
whole observation window (x, y) + [0, w]2, with side-length 0 ≤ w ≤ 1. As we shall
see, the parameters of interest are expressible as an integral (3.1) of f over [0, 1]2 if
the spatial structure is contained in [w, 1]2.

4.4.1 The measurement function for number estimation

Let Z = {z1, z2, . . .} be points in [w, 1]2, generated by a pre-chosen point process,
indicating centres of a cell population, and assume we want to estimate the number
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of points in Z, NZ . Then, Wi = zi − [0, w]2 is the set of (x, y) in [0, 1]2 for which zi
is counted in the observation window (x, y) + [0, w]2. If we let f(x, y) be the total
number of points, counted in (x, y) + [0, w]2, normalized with 1/w2,

f(x, y) =

NZ∑

i=1

1Wi
(x, y)

w2
, (4.1)

we obtain, as desired, the total number of points NZ by

Q =

∫

[0,1]2
f(x, y) dx dy =

∫

[0,1]2

NZ∑

i=1

1Wi
(x, y)

w2
dx dy

=

NZ∑

i=1

|Wi|
w2

= NZ .

4.4.2 The measurement function for area or integral estimation

Let λ be a non-negative function on R2 that is identically 0 outside [w, 1]2, and
assume we want to estimate

∫

[w,1]2
λ(u, v) du dv,

which for λ(x, y) = 1((x, y) ∈ A) corresponds to the area of the set A ⊆ [w, 1]2. If
we let f(x, y) be the integral of λ over (x, y) + [0, w]2, normalized with 1/w2,

f(x, y) =
1

w2

∫

(x,y)+[0,w]2
λ(u, v) du dv, (4.2)

we obtain the complete integral by

Q =

∫

[0,1]2
f(x, y) dx dy

=
1

w2

∫

[0,1]2

(∫

(x,y)+[0,w]2
λ(u, v) du dv

)
dx dy

=
1

w2

∫

[0,1]2

(∫

[0,w]2
λ(u+ x, v + y) du dv

)
dx dy

=
1

w2

∫

[0,w]2

(∫

[0,1]2
λ(u+ x, v + y) dx dy

)
du dv

=
1

w2

∫

[0,w]2

(∫

(u,v)+[0,1]2
λ(x, y) dx dy

)
du dv

=
1

w2

∫

[0,w]2

(∫

[w,1]2
λ(x, y) dx dy

)
du dv

=

∫

[w,1]2
λ(u, v) du dv.
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4.5 Computational details

The simulations have been performed under the following specifications:
• The constructed images consist of 128× 128 pixels covering [w, 1]2.
• We let the observation windows consist of 8 × 8 pixels, thus |Wi| = w2, w =

8/(128 + 8− 1).
• We have N = M = 128 + 8− 1 = 135.
• The set [w, 1]2 can be covered by 16× 16 observation windows, which is con-

sidered in the cases of discrete sampling.
• For each set-up we used sample sizes n×m, where n = m = 3.
• For each set-up 10 000 samples were simulated to approximate the theoretical

variance of the estimator.

4.6 Number estimation
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Figure 2: The three cases of the measurement function f , cf. (4.1), together with the
points from realizations of the point process Z. The full-drawn red lines indicates the
lower and left boundary of [w, 1]2, and the red dashed lines indicates the ‘invisible’ part
of Z, for some choices of f0, see (4.3) and Table 1.

4.6.1 Choices of f and f0

Several set-ups have been tested, including different sample sizes (n and m) and
population sizes (NZ). Only some of these will be discussed in detail here. We con-
sider three cases of the measurement function f , which are shown in Figure 2. In
all cases, f is given by (4.1), generated by point patterns obtained as realizations of
different inhomogeneous point processes, resulting in approximately 400 points. We
define the auxiliary information f0 by the same sum of indicator functions as the
measurement function f in (4.1), but with additional spatial error and a constant
added, to avoid division by zero. More precisely,

f0(x, y) =
∑

zi∈[0,1]2\B
αi

1Wi
(x, y)

w2
+ c, (4.3)

with different choices of αi, B and c. The 9 choices are shown in Table 1 and
illustrated in Figure 8 in Appendix A.3. Both αi and B are used to introduce a
spatial error, in particular B is used to make some of the points ‘invisible’, that is,
the points are not expressed in f0.
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Table 1: Parameter choices for f0 in formula (4.3).

f0 αi B c

1 xi + yi ∅ 1000
2 1 ∅ 1000
3 xi + yi ∅ 250
4 1 ∅ 250
5 xi + yi [0.6; 1]× [0; 0.4] 1000
6 1 [0.6; 1]× [0; 0.4] 1000
7 xi + yi [0.6; 1]× [0; 0.4] 250
8 1 [0.6; 1]× [0; 0.4] 250
9 0 0 1

4.6.2 Results

Figure 3 shows the estimated CE2 (Row 1) and the estimated relative CE2 (Row 2)
obtained by 10 000 sample simulations, for different choices of the auxiliary infor-
mation f0 (x-axis), as detailed in Table 1, with n = m = 3.

The values of the three measurements functions f lies in the intervals [0; 3417],
[0; 2563] and [0; 4841], thus when constructing f0 from f with error, the non-uniformity
is considerable and large ‘smoothing’ parameters are needed, e.g. large values of
the constant c in Table 1, to prevent extreme estimates. Moreover, extreme non-
uniformity results in overlaps between the sample windows in the 2D continuous
systematic sampling design and non-fixed effective sample-sizes in the 2D discrete
systematic sampling design, even for relative small sample sizes. Due to the extreme
non-uniformity, n = m = 3 is the upper bound on the sample size in the three cases
considered here, and this sample size was therefore chosen.

Figure 3 shows that the main effect on efficiency is from the choice of f0, and
there is almost no difference in efficiency between the three designs, 2D continu-
ous, 2D discrete and PPS WR, which uses non-uniform sampling. The effect from
the two more complicated designs, which use spatial information, compared to the
much more simple PPS WR design, is therefore negligible. The variances naturally
become larger in the non-uniform cases, when many of the cells are placed in the
invisible part of the section, but due to the large value of c, this effect is not clearly
expressed in the results. In the uniform case, choice 9 of f0, the effect solely from
systematic sampling can be seen. Systematic uniform sampling surprisingly yields in
its continuous implementation a higher CE2 than SRS WOR for the second choice
of f , and only little effect is seen for the remaining two choices of f , which may
explain why the non-uniform systematic sampling designs do not have the expected
effect. In general, it seems that when spatial error is introduced (choices 1,3,5 and 7
of f0), 2D continuous systematic sampling is either almost as efficient or slightly
more efficient than PPS WR, and overall the 2D discrete systematic sampling de-
sign performs better than the continuous version and often even slightly better than
PPS WR.
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Figure 3: Results for number estimation with n = m = 3. Row 1: The estimated CE2 for
the four sampling designs, in the three cases of f . For each choice of f , the nine choices of f0

are displayed. Row 2: The estimated relative CE2 for the two 2D non-uniform systematic
sampling designs, relative to PPS WR, in the three cases of f . For each choice of f , the
nine choices of f0 are displayed.

4.7 Area estimation

4.7.1 Choices of f and f0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Left: The function λ equal to the indicator function of the set of interest. Right:
The corresponding measurement function f , see (4.2).

The integration function λ is in this case an indicator function, indicating where
the tissue of interest is located. A simple example is investigated here, see Figure 4,
where we consider the area of a circular disc with centre (0.5, 0.5) and radius 0.25,
denoted B((0.5, 0.5), 0.25). More precisely, using (4.2), the measurement function f
can be written as

f(x, y) = |B((0.5, 0.5), 0.25) ∩ ((x, y) + [0, w]2)|/w2. (4.4)
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We define the auxiliary information f0 from the measurement function f by adding
spatial error in the following way

f0(x, y) = c1f(x, y) + c2f(x, y)

× Γ(x, y)(ΦR(x, y)− Φr(x, y)) + c3, (4.5)

where Φr(x, y) = 1((x − 0.5)2 + (y − 0.5)2 > r2) and ΦR(x, y) = 1((x − 0.5)2 +
(y − 0.5)2 ≤ R2), creating a smoother band around the boundary of the circular
disk, and with different choices of Γ, c1, c2 and c3. The choices are shown in Table 2
and illustrated in Figure 9 in Appendix A.3. In all cases r = 0.15 and R = 0.35.

Table 2: Parameter choices for f0 in formula (4.5).

f0 Γ c1 c2 c3

1 x+ y 1 0.4 0.2
2 1 1 0.4 0.2
3 x+ y 0 0.4 0.2
4 1 0 0.4 0.2
5 x+ y 1 1 0.2
6 1 1 1 0.2
7 x+ y 0 1 0.2
8 1 0 1 0.2
9 x+ y 1 0.4 0.4

10 1 1 0.4 0.4
11 x+ y 0 0.4 0.4
12 1 0 0.4 0.4
13 x+ y 1 1 0.4
14 1 1 1 0.4
15 x+ y 0 1 0.4
16 1 0 1 0.4
17 0 0 0 1
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Figure 5: Results for area estimation with n = m = 3. Left: The estimated CE2 for the
four sampling designs for the nine choices of f0 are displayed. Right: The estimated relative
CE2 for the two 2D non-uniform systematic sampling designs, relative to PPS WR.
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4.7.2 Results

Figure 5 shows the estimated CE2 and the estimated relative CE2 obtained by
10 000 sample simulations, for different choices of the auxiliary information f0, as
detailed in Table 2, with n = m = 3.

For most choices of f0, the non-uniformity is only moderate, hence sample sizes
up to n×m, with n = m = 5, without non-fixed effective sample sizes are possible in
2D discrete sampling. Nevertheless, in order to minimize the probability of repeated
sampling of the same window in PPS WR, we consider only results for n = m = 3.
Difference between PPS WR and the 2D systematic sampling designs will therefore
not solely be due to the re-sampling probability.

The effect from just introducing systematic sampling in the uniform case, choice 17
of f0, is clearly substantial, and might explain why, in contrast to the case of number
estimation, 2D non-uniform systematic sampling (2D continuous and 2D discrete in
Figure 5) overall performs better than PPS WR. Although uniform systematic sam-
pling is an efficient design here, the efficiency may still be increased by combining the
systematic sampling with non-uniform sampling. The efficiency is most pronounced
for moderate non-uniformity, as large values of c3 reduces the variance of the 2D
sampling designs relative to both SRS WOR and PPS WR. There seems to be al-
most no difference in the results from the discrete and the continuous 2D systematic
sample designs.

Clearly the parameter c1 affects the efficiency relative to SRS WOR, as c1 = 1
results in high agreement between f and f0, thus non-uniform sampling is close to
optimal. The influence of c1 for the non-uniform designs is less clear. The parameter
c2 controls the magnitude of spatial error, and clearly larger values of c2 results in a
higher variance, but in contrast to what is expected, it also results in less efficiency
compared to PPS WR. There seems to be no or negligible effect from the spatial
error introduced by Γ.

4.8 Integral estimation

4.8.1 Choices of f and f0

Here we consider three cases of functions λ, which together with the corresponding
measurement functions f , see (4.2), are shown in Figure 6. The integrals have been
scaled, such that they integrate to one, which unifies the set-up and choices of
parameters. We define the auxiliary information f0 from the measurement function
f by adding spatial error in the following way

f0(x, y) = c1f(x, y) + c2f(x, y)Γ(x, y) + c3, (4.6)

with different choices of Γ, c1, c2 and c3. The choices are shown in Table 3 and
illustrated in Figure 10 in Appendix A.3.
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Figure 6: Row 1: The three functions λ. Row 2: The three corresponding measurement
functions f .

Table 3: Parameter choices for f0 in formula (4.6), with A = [0, 1]2\([0.6, 1]× [0, 0.4]).

Sim Γ c1 c2 c3

1 x+ y 1 0.4 0.4
2 1 1 0.4 0.4
3 x+ y 0 0.4 0.4
4 1 0 0.4 0.4
5 x+ y 1 1 0.4
6 1 1 1 0.4
7 x+ y 0 1 0.4
8 1 0 1 0.4
9 (x+ y + 0.1)1((x, y) ∈ A) 1 0.4 0.4

10 1((x, y) ∈ A) 1 0.4 0.4
11 (x+ y + 0.1)1((x, y) ∈ A) 0 0.4 0.4
12 1((x, y) ∈ A) 0 0.4 0.4
13 (x+ y + 0.1)1((x, y) ∈ A) 1 1 0.4
14 1((x, y) ∈ A) 1 1 0.4
15 (x+ y + 0.1)1((x, y) ∈ A) 0 1 0.4
16 1((x, y) ∈ A) 0 1 0.4
17 0 0 0 1
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4.8.2 Results

5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

C
E

2

f0

●

●

●

●

2D Continuous
2D Discrete
PPS WR
SRSWOR

●
●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

C
E

2

f0

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

C
E

2

f0

● ●

●
●

●
●

●

● ● ●

● ●

● ●

●

●

●

● ●

●

● ●
●

●

● ● ●

●

●

● ●

●

●

●● ●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

 C
E

2

f0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

 C
E

2

f0

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
● ●

● ●
●

●

●

●
● ●

●

●
●

●
●

●

5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

 C
E

2

f0

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

Figure 7: Results for area estimation with n = m = 3. Row 1: The estimated CE2 for the
four sampling designs, in the three cases of f . Row 2: The estimated relative CE2 for the
two 2D non-uniform systematic sampling designs, relative to PPS WR, in the three cases
of f . For each choice of f , the seventeen choices of f0 are displayed.

Figure 7 shows the estimated CE2 and the estimated relative CE2, obtained
by 10 000 sample simulations, for different choices of the auxiliary information f0,
detailed in Table 3, with n = m = 3.

In all cases of f0, the non-uniformity is only moderate, hence allow sample sizes
up to n×m, with n = m = 5, without non-fixed effective sample sizes in 2D discrete
sampling. Nevertheless, with arguments stated in the previous section, we consider
only results for n = m = 3.

The main effect is again from the choice of f0, and there is almost no difference
between the three designs, which use non-uniform sampling. The relative differences
seem on the other hand more significant. In particular the 2D continuous design
does not perform well, but the 2D discrete design perform similar or better than
PPS WR.

Introducing systematic sampling in the uniform case, choice 17 of f0, increases
the efficiency in the first and third case, where the non-uniformity is most systematic,
whereas in the second case the efficiency decreases. Interchanging the sampling order
(first on the y-axis, then on the x-axis instead of the opposite order) did not change
the results much.

5 Discussion and other perspectives

We have shown the existence of an optimal choice of 2D non-uniform systematic sam-
pling. The design reduces the variance substantially compared to uniform sampling,
when the auxiliary information used to construct the sampling inclusion probabili-
ties have a close connection to the measurement function under consideration. More
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precisely, when a function proportional to the measurement function is known, the
design yields zero variance of the estimator.

To support our theoretical findings and investigate the efficiency of this new
design compared to other designs, a simulation study was carried out. As the project
was motivated by sampling in microscopy, it was natural to construct a set-up,
which resembles data obtained from this field of research. Number estimation, area
estimation and general integral estimation was simulated for several choices of the
measurement function and the auxiliary information, with different levels of spatial
error added.

In most cases considered, the 2D non-uniform systematic designs had similar
efficiency as PPS WR. An exception was area estimation where the non-uniform
systematic designs were superior in a number of cases considered. Within the non-
uniform systematic designs, the new discrete design is more efficient than the con-
tinuous design in a number of cases. The discrete design is easy to simulate and
with a moderate constant added a robust and efficient choice, if one suspects that
the auxiliary information f0 is not optimal.

In the simulation study, other sample sizes (n and m) were considered such that
the range 3 % to 25 % of the total number of observation windows was covered. The
conclusion concerning the relative efficiency of the designs was the same as for the
sample sizes considered in the present paper.

In the case of number estimation in a Poisson point process, it is expected that
2D non-uniform systematic sampling does not have higher efficiency than the pro-
portionator, simply because the numbers counted in disjoint observation windows
are independent. The simulation study shows that in a wider range of sampling
situations in microscopy the gain in efficiency, if any, is modest.

One might wonder whether it is possible to construct a theoretical class of
sampling situations for which the parameter of interest is more efficiently esti-
mated, using 2D non-uniform systematic sampling compared to independent 2D
non-uniform sampling. For this purpose, let fhom be a bounded non-negative func-
tion with bounded support [0, 1]2. Suppose that

Var
( 1

nm

∑

i,j

fhom(Y1i, Y2j)
)
< Var

( 1

nm

∑

i,j

fhom(U1i, U2j)
)
,

where (Y1i, Y2j) = ((U1 + i) 1
n
, (U2 + j) 1

m
) and U1, U2 ∼ unif[0, 1) independent, while

the U1is and U2js are all independent and unif[0,1). Furthermore, let G : [0, 1]2 →
[0, 1]2 be any diffeomorphism. Then,

finhom(x, y) = fhom(G(x, y)) · |detG′(x, y)|
is more efficiently estimated using 2D non-uniform systematic sampling than in-
dependent 2D non-uniform sampling, induced by G. More precisely, the variance
of

1

nm

∑

i,j

finhom(G−1(Y1i, Y2j))

|detG′(G−1(Y1i, Y2j))|
is smaller than the variance of

1

nm

∑

i,j

finhom(Vij)

|detG′(Vij)|
,
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where Vij = (V1ij, V2ij) are independent and with common density | detG′(v)|. The
practical consequences of this finding are subject of future research.
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Appendix

A.1 Unbiasedness of Q̂nm

The estimator Q̂nm is unbiased, which follows directly by using the distribution of
U1 and U2. We let An = [0, 1

n
]× [0, 1

m
] and obtain

E(Q̂nm) = E
( 1

nm

n−1∑

i=0

m−1∑

j=0

f(G−1(Y1i, Y2j))

|det(G′(G−1(Y1i, Y2j)))|
)

=
1

nm

n−1∑

i=0

m−1∑

j=0

E
( f(G−1(U1+i

n
, U2+j

m
))

|det(G′(G−1(U1+i
n
, U2+j

m
)))|
)

=
1

nm

n−1∑

i=0

m−1∑

j=0

∫

An

nmf(G−1(u+ i
n
, v + j

m
))

|det(G′(G−1(u+ i
n
, v + j

m
)))| du dv

=
n−1∑

i=0

m−1∑

j=0

∫

[ i
n
, i+1

n
]×[ j

m
, j+1

m
]

f(G−1(u, v))

|det(G′(G−1(u, v)))| du dv

=

∫

[0,1]2
f(G−1(u, v))

1

|det(G′(G−1(u, v)))| du dv

=

∫

[0,1]2
f(x, y) dx dy

= Q.

A.2 Relation to proportional-to-size sampling

2D systematic sampling proportional-to-size can be described as follows. Let us con-
sider a population of N×M units P = {(i, j), i = 1, . . . , N, j = 1, . . .M}, where the
numbers refer to the spatial arrangement. For each unit we have an unknown vari-
able of interest xij, and a known auxiliary variable zij, which is positively correlated
with xij. The object is to estimate

Q =
∑

(i,j)∈P

xij,

from a systematic sample S ⊆ P of fixed size n × m. The sampling procedure
performed below generates samples, where the probability of including unit (i, j)
in S, is proportional to zij. The procedure uses the (marginal) cumulative values
of zij in two steps, where in each step, systematic sampling is performed analogous
to the procedure in 1D. First, the units are divided into N groups according to
the values of the first coordinate, from which n groups are sampled, followed by
sampling m units, for each of the n groups. Let zg =

∑M
j=1 zgj, g = 1, . . . , N , denote

the marginal auxiliary variables and ∆0 = 0, ∆g =
∑g

i=1 zi, g = 1, . . . , N , the
cumulative ones. Then, letting U1 ∼ unif[0, 1), the group g is chosen if there exists
an i = 0, . . . , n− 1, such that

(U1 + i) 1
n
∆N ∈ [∆g−1,∆g).
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Assume zg < ∆N/n, g = 1, . . . , N , such that no group is sampled more than once.
Next, for each of the n sampled groups g, let ∆g0 = 0, ∆gk = (∆gM/zg)

∑k
j=1 zgj, k =

1, . . . ,M , denote the (scaled) cumulative auxiliary variables within the group g.
Then, letting U2 ∼ unif[0, 1), unit k is chosen if there exists an j = 0, . . . ,m − 1,
such that

(U2 + j) 1
m

∆gM ∈ [∆g(k−1),∆gk).

Assume again that zgk < ∆gM/m, k = 1, . . . ,M . It can be shown (see calculations
below), that πij = P((i, j) ∈ S) = nmzij/∆N from which we get the Horvitz-
Thompson estimator

Q̂nm =
∑

(i,j)∈S

xij
πij

=
1

nm
∆N

∑

(i,j)∈S

xij
zij
.

The following calculation verifies that the scaling of the auxiliary variables re-
sults in the correct inclusion probabilities, using the distribution of U1, U2 and
the assumptions zg < ∆N/n and zgk < ∆gM/m. We have with Ag = [∆g−1,∆g),
Agk = [∆g(k−1),∆gk) and Bg(i, j) = [i, i+ 1) 1

n
∆N × [j, j + 1) 1

m
∆gM

πgk = P((g, k) ∈ S)

=
n−1∑

i=0

m−1∑

j=0

P((U1 + i) 1
n
∆N ∈ Ag, (U2 + j) 1

m
∆gM ∈ Agk)

=
n−1∑

i=0

m−1∑

j=0

∫

Ag×Agk∩Bg(i,j)

nm

∆N∆gM

du dv

=
nm

∆N∆gM

|Ag × Agk|

=
nm

∆N∆gM

zg
∆gMzgk
zg

= nm
zgk
∆N

.

The relation to the set-up with integrals of a measurement function follows when
we let

f(x, y) = NMxij,

f0(x, y) = NMzij, when
(x, y) ∈ [i− 1, i) 1

N
× [j − 1, j) 1

M
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and

G1(x, y) =

∫ x

0

g(u) du

=
1

∆

( i−1∑

k=1

M∑

j=1

zkj + (Nx− i+ 1)
M∑

j=1

zij

)

G2(x, y) =
1

g(x)∆

∫ y

0

f0(x, v) dv

=
1∑M

j=1 zij

( j−1∑

k=1

zik + (My − j + 1)zij

)
,

where

g(x) =

∫ 1

0
f0(x, y) dy

∆
=
N
∑M

j=1 zij

∆
,

∆ =

∫

[0,1]2
f0(x, y) dx dy =

∑

(i,j)∈P

zij,

when (x, y) ∈ [i− 1, i)/N × [j − 1, j)/M , for i = 1 . . . , N and j = 1, . . . ,M .

A.3 Figures
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Figure 8: The eight cases of non-uniform auxiliary information f0 for number estimation,
for the second measurement function, together with one example of sample points.
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Figure 9: The sixteen cases of non-uniform auxiliary information f0 for area estimation,
together with one example of sample points.
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Figure 10: The auxiliary information in the sixteen cases of f0 for integral estimation, for
the second measurement function, together with one example of sample points.
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