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Abstract

Let X be a Lévy process and V the reflection at boundaries 0 and b > 0.
A number of properties of V are studied, with particular emphasis on the
behaviour at the upper boundary b. The process V can be represented as
solution of a Skorokhod problem V (t) = V (0) + X(t) + L(t) − U(t) where
L,U are the local times (regulators) at the lower and upper barrier. Explicit
forms of V in terms of X are surveyed as well more pragmatic approaches to
the construction of V , and the stationary distribution π is characterised in
terms of a two-barrier first passage problem. A key quantity in applications
is the loss rate `b at b, defined as EπU(1). Various forms of `b and various
derivations are presented, and the asymptotics as b→∞ is exhibited in both
the light-tailed and the heavy-tailed regime. The drift zero case EX(1) =
0 plays a particular role, with Brownian or stable functional limits being a
key tool. Further topics include studies of the first hitting time of b, central
limit theorems and large deviations results for U , and a number of explicit
calculations for Lévy processes where the jump part is compound Poisson
with phase-type jumps.

Keywords: Applied probability, Central limit theorem, Finite buffer prob-
lem, First passage problem, Functional limit theorem, Heavy tails, Integro-
differential equation, Itô’s formula, Linear equations, Local time, Loss rate,
Martingale, Overflow, Phase-type distribution, Poisson’s equation, Queueing
theory, Siegmund duality, Skorokhod problem, Storage process
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1 Introduction

This article is concerned with a one-dimensional Lévy process X =
{
X(t)

}
t≥0

re-
flected at two barriers 0, b and is a mixture of a literature survey and new results or
proofs.

We denote the two-sided reflected process by V =
{
V (t)

}
t≥0

(or V b, when the
dependence on b needs to be stressed). The discrete time counterpart of V is a
two-sided reflected random walk

(
Vn : n = 0, 1, 2, . . .

)
defined by

Vn = min
(
b,max(0, Vn−1 + Yn)

)
(1.1)

where Y1, Y2, . . . are i.i.d. (with common distribution say F ) and initial condition
V0 = v for some v ∈ [0, b]; the role of the Lévy process X is then taken by the
random walk Xn = Y1 + · · ·+ Yn.

The study of such processes in discrete or continuous time has a long history and
numerous applications. For a simple example, consider the case X(t) =

∑N(t)
1 Zi −

ct of a compound Poisson process with drift, where N is Poisson(λ) and the Zi
independent of N , i.i.d. and non-negative. Here one can think of V as the amount
of work in a system with a server working at rate c, jobs arriving at Poisson rate λ
and having sizes Z1, Z2, . . . , and finite capacity b of storage. If a job of size y > b−x
arrives when the content is x, only b − x of the job is processed and x + y − b is
lost. One among many examples is a data buffer, where the unit is number of bits
(discrete in nature, but since both b and a typical job size z are huge, a continuous
approximation is motivated).

Studies of systems with such finite capacity are numerous, and we mention here
waiting time processes in queues with finite capacity ([44], [45], [25], [47]), and a
finite dam or fluid model ([11], [103], [122]). They are used in models of network
traffic or telecommunications systems involving a finite buffer ([74], [130], [86]), and
they also occur in finance, e.g. [59], [56]. In the queueing context, it should be noted
that even if in the body of literature, there is no upper bound b on the state space, the
reason is mainly mathematical convenience: the analysis of infinite-buffer systems
is in many respects substantially simpler than that of finite-buffer systems. In real
life, infinite waiting rooms or infinite buffers do not occur, so that the infinite-buffer
assumption is really just an approximation.

In continuous time, there is no obvious analogue of the defining equation (1.1).
We follow here the tradition of representation as solution of a Skorokhod problem

V (t) = V (0) +X(t) + L(t)− U(t) (1.2)

where L,U are non-decreasing right-continuous processes such that
∫ ∞

0

V (t) dL(t) = 0 ,

∫ ∞

0

(
b− V (t)

)
dU(t) = 0 . (1.3)

In other words, L can only increase when V is at the lower boundary 0, and L only
when V is at the upper boundary b. Thus, L represents the ‘pushing up from 0’
that is needed to keep V (t) ≥ 0 for all t, and U represents the ‘pushing down from
b’ that is needed to keep V (t) ≤ b for all t. An illustration is given in Fig. 1, with
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the unreflected Lévy process in the upper panel, whereas the lower panel has the
two-sided reflected process V (blue) in the middle subpanel, L (red) in the lower
and U (green) in the upper. Questions of existence and uniqueness are discussed in
Sections 3, 4.

0

0

b
V(0)

Figure 1: The processes X,V , L, U

As usual in applied probability, a first key question in the study of V is the long-
run behavior. A trivial case is monotone sample paths. For example if in continuous
time the underlying Lévy process X has non-decreasing and non-constant sample
paths, then V (t) = b for all large t. Excluding such degenerate cases, V regenerates
at suitable visits to 0 (see Section 5.1 for more detail), and a geometric trial argument
easily gives that the mean regeneration time is finite. Thus by general theory ([11]),
a stationary distribution π = πb exists and

1

N + 1

N∑

n=0

f(Vn)→ π(f) ,
1

T

∫ T

0

f(Vt) dt→ π(f) (1.4)

a.s. in discrete, resp. continuous time whenever f is (say) bounded or non-negative.
A further fundamental quantity is the overflow or loss at b which is highly relevant
for applications; in the dam context, it represents the amount of lost water and in
the data buffer context the number of lost bits. The long-run behavior in discrete
time is given by

1

N

N∑

n=1

f
(
Yn + Vn−1 − b

)+ →
∫ b

0

π(dx)

∫ ∞

b−x
f(y + x− b)F (dy) , (1.5)

as follows by conditioning on Yn = y and using (1.4). We denote by ` = `b the limit
on the r.h.s. of (1.5) and refer to it as the loss rate. For example, in data transmission
models the loss rate can be interpreted as the bit loss rate in a finite data buffer.
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The form of π in the general continuous-time Lévy case is discussed in Section 5.
In general, π is not explicitly available (sometimes the Laplace transform is). The
key result for us is a representation as a two-sided exit probability,

π[x,∞) = π[x, b] = P
(
V
(
τ [x− b, x)

)
≥ x

)
(1.6)

where τ [y, x) = inf
{
t ≥ 0 : X(t) 6∈ [y, x)

}
, y ≤ 0 ≤ x.

In continuous time, the obvious definition of the loss rate is ` = EπU(1) =
EπU(t)/t. However, representations like (1.5) are not apriori obvious, except for
special cases as X being compound Poisson where

` =

∫ b

0

π(dx)

∫ ∞

b−x
(x+ y − b)λG(dy) ,

where λ is the Poisson rate and G the jump size distribution. To state the main
result, we need to introduce the basic Lévy setup:

X(t) = ct+ σB(t) + J(t) ,

where B is standard Brownian motion and J an independent jump process with
Lévy measure ν and jumps of absolute size ≤ 1 compensated. That is, the Lévy
exponent

κ(α) = logEeαX(1) =
1

t
logEeαX(t)

is given by

κ(α) = cα + σ2α2/2 +

∫ ∞

−∞

(
eαy − 1− y1(|y| ≤ 1) ν(dy) , (1.7)

and one often refers to (c, σ2, ν) as the characteristic triplet of X (see the end of the
section for further detail and references). We further write

m = EX(1) = EX(t)/t = κ′(0) = c+

∫

|y|>1

y ν(dy)

for the mean drift of X.

Theorem 1.1. Assume that m is well-defined and finite. Then

`b =
1

2b

{
2mEV + σ2 +

∫ b

0

π(dx)

∫ ∞

−∞
ϕ(x, y)ν(dy)

}
,

where

ϕ(x, y) =





−(x2 + 2xy) if y ≤ −x,
y2 if − x < y < b− x,
2y(b− x)− (b− x)2 if y ≥ b− x.
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Figure 2: The function ϕ(x, y) plotted for b = 5, 0 ≤ x ≤ b, −5 ≤ y ≤ 5

Theorem 1.1 first appears in Asmussen & Pihlsgård [19], with a rather intricate
and lengthy proof. Section 6 contains a more direct and shorter proof originating
from Pihlsgård & Glynn [108]. In Section 8, we summarize the original approach
of [19], and in Section 15, some new representations of `b are presented using yet
another approach. Whereas the method in Section 8 uses asymptotic expansions of
identities obtained by martingale optional stopping, the ones in Sections 6 and 15
contain stochastic calculus as a main ingredient.

Starting from Theorem 1.1, it is fairly straightforward to derive an alternative
formula for `b, which can be convenient (note that the form (1.6) for the tail proba-
bility π[x, b] has a nicer form than the one for π(dx) that follows by differentiation).

Corollary 1.2. The loss rate `b can be written

`b =
1

2b

{
2mEV + σ2 +

∫ b

0

y2ν(dy) +

∫ ∞

b

(2yb− b2)ν(dy)

− 2

∫ b

0

{∫ −x

−∞
(x+ y)ν(dy) +

∫ ∞

b−x
(x+ y − b)ν(dy)

}
π[x, b]dx

}
.

Similar discussion applies to the underflow of 0, but for obvious symmetry rea-
sons, it suffices to consider the situation at the upper barrier. One should note,
however, that with `0 = EπL(1) one has

0 = m+ `0 − `b . (1.8)

Thus, `0 is explicit in terms of `b. Relation (1.8) follows by a rate conservation
principle, since in order for X + L − U to preserve stationarity, the drift must be
zero. One may note that no moment conditions on X are needed for the existence of
a stationary version of V . However, if E|X(1)| = ∞, then one of `b or `0 is infinite
(or both are).
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In many applications, the upper buffer size b is large. This motivates that instead
of going into the intricacies of exact computation of quantities like the loss rate
`b, one may look for approximate expression for b → ∞. Early references in this
direction iare Jelenković [74] who treated the random walk case with heavy tails, and
Kim & Shroff [86], who considered the light-tailed case but only gave logarithmic
asymptotics. Exact asymptotics for the light-tailed case is given in Asmussen &
Pihlsgård [19] and surveyed in Section 10, whereas asymptotics for the heavy-tailed
Lévy case first appears in Andersen [5] and is surveyed in Section 11. We assume
negative drift, i.e. m = EX(1) < 0, but by (1.8), the results can immediately be
translated to positive drift. Note, however, that with negative drift one has `b → 0
as b → ∞ (the results of Sections 10, 11 give the precise rates of decay), whereas
with positive drift `b → m (thus, (1.8) combined with Sections 10, 11 gives the
convergence rate). The case of zero drift m = 0 has specific features as studied in
Andersen & Asmussen [4], see Section 12; the key tool is here a functional limit
theorem with either a Brownian or a stable process limit.

Going one step further in the study of the loss rate, one may ask for transient
properties. One question is properties of the overflow time inf{t > 0 : V b(t) = b}
where one possible approach is regenerative process theory, Section 13 and another
integro-differential equations, Section 14.2. Another question is properties of U(t)
for t < ∞. From the above, U obeys the LLN EU(t)/t → ` as t → ∞. Obvious
questions are an associated CLT,

√
t
(
U(t)− `

)
→ N(0, σ2)

for some suitable σ2, and large deviations properties like the asymptotics of

P
(
U(t) > t(1 + ε)`

)
and P

(
U(t) < t(1− ε)`

)
.

These topics are treated (for the first time) in Sections 14.3 and 14.4.
Finally, the paper contains a number of explicit calculations for the special case

where the jump part is compound Poisson with phase-type jumps. There is a consid-
erable literature on this or closely related models. and we refer to Asmussen [12] for
a survey and references. We have also included some material on one-sided reflection
(Section 2) and two-sided reflection in discrete time (Section 3), which should serve
both as a background and to give an understanding of the special problems that
arise for the core topic of the paper, two-sided reflection in continuous time.

We conclude this introduction with some supplementary comments on the set-up on
the Lévy model. Classical general references are Bertoin [28] and Sato [119], but see
also Kyprianou [94] and Applebaum [7].

A simple case is jumps of bounded variation, which occurs if and only if
∫ ∞

−∞
|x| ν(dx) <∞.

Then the expression (1.7) can be rewritten

κ(α) = c̃α + σ2α/2 +

∫ ∞

−∞
(eαy − 1) ν(dy) , (1.9)
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where

c̃ = c−
∫ 1

−1

y ν(dy) , m = c̃+

∫ ∞

−∞
y ν(dy) . (1.10)

With infinite variation, the integrals in (1.9) diverge, so that one needs the form (1.7).
To avoid trivialities, we assume throughout that the sample paths of X are non-

monotone; in terms of the parameters of X, this means that either

(a) σ2 > 0,

(b) σ2 = 0 and X is of unbounded variation (i.e.
∫
|y| ν(dy) =∞),

(c) σ2 = 0, X is of bounded variation, and the Lévy measure ν has support both
in (−∞, 0) and (0,∞),

(d) σ2 = 0, X is of bounded variation, and either the Lévy measure ν has support
in (−∞, 0) and c̃ > 0 in (1.9), or ν has support in (0,∞) and c̃ < 0 in (1.9).

2 One-sided reflection

Consider first the discrete time case and let Xn = Y1 + · · ·+ Yn where Y1, Y2, . . . are
i.i.d. (with common distribution say F ) so that X is a random walk. The random
walk one-sided reflected at 0 (i.e., corresponding to b = ∞) is then defined by the
recursion

V ∞n = (V ∞n−1 + Yn)+ = max
(
0, V ∞n−1 + Yn

)
(2.1)

starting from V ∞0 ≥ 0. The process V ∞ also goes under the name a Lindley process
(see [11, III.6] for a survey and many facts used in the following) and is a Markov
chain with state space [0,∞).

For the following, it is important to note that the recursion (2.1) is explicitly
solvable:

V ∞n = max
(
V ∞0 +Xn, Xn −X1, . . . , Xn −Xn−1, 0

)
(2.2)

(for a proof, one may just note that the r.h.s. of (2.2) satisfies the recursion (2.1)).
Reversing the order of Y1, . . . , Yn yields

V ∞n
D
= max

(
V ∞0 +Xn, Xn−1, . . . , X1

)
. (2.3)

This shows in particular that V ∞n is increasing in stochastic order so that a limit in
distribution V ∞∞ exists. By a standard random walk trichotomy ([11, VIII.2]), one
of the following possibilities arises:

(a) Xn →∞ so that V ∞∞ =∞ a.s.;

(b) lim supn→∞Xn =∞, lim infn→∞Xn = −∞ so that

max
(
V0 +Xn, Xn−1, . . . , X1

)
→∞

and V ∞∞ =∞ a.s.;

(c) Xn → −∞ so that V∞ <∞ a.s.
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For our purposes, it is sufficient to assume E|Y | <∞, and letting m = EY , the
three cases then correspond to m > 0, m = 0, resp. m < 0, or, in Markov chain
terms, roughly to the transient, null recurrent, resp. positive recurrent (ergodic)
cases.

Consider from now on the ergodic case m < 0 (and, to avoid trivialities, assume
that P(Y > 0) > 0). Define M = maxn≥0Xn. Since Xn → −∞, V ∞0 + Xn in (2.3)
vanishes eventually, and letting n→∞ yields

V ∞∞
D
= M . (2.4)

It is often convenient to rewrite this is the form

π∞(x) = P(V ∞∞ > x) = P
(
τ(x) <∞

)
, (2.5)

where τ(x) = inf{n : Xn > x} and π∞ is the distribution of V ∞∞ .
Explicit or algorithmically tractable forms of π∞ can only be found assuming

some special structure, mainly skip-free properties or phase-type (or, more generally,
matrix-exponential) forms, see [11, VIII.5]. Therefore asymptotics is a main part of
the theory. The two main results are:

Theorem 2.1 (light-tailed case). Assume m < 0, that F is non-lattice and that
there exists γ > 0 with EeγY = 1, E

[
Y eγY

]
< ∞. Then there exists 0 < C < ∞

such that
π∞(x) = P(V ∞∞ > x) ∼ Ce−γx , x→∞. (2.6)

Theorem 2.2 (heavy-tailed case). Assume m < 0, that

F I(x) =

∫ ∞

x

F (y) dy

is a subexponential tail1 and that F is long-tailed in the sense that F (x+x0)/F (x)→
1 for any x0. Then

π∞(x) = P(V ∞∞ > x) ∼ 1

|m|F I(x) , x→∞. (2.7)

Sketch of proof of Theorem 2.1. We use a standard exponential change of measure
technique ([11, Ch.XIII]). Let P̃, Ẽ refer to the case where X has c.d.f.

F̃ (x) = E
[
eγX ; X ≤ x

]

rather than F (x). Using (2.5) and standard likelihood ratio identities gives

π∞(x) = P
(
τ(x) <∞

)
= Ẽ

[
e−γXτ(x) ; τ(x) <∞

]
= e−γxẼe−γξ(x) , (2.8)

where ξ(x) = Xτ(x)−x is the overshoot. Thus, the result follows with C = Ee−γξ(∞)

once it is shown that ξ(x) has a proper limit ξ(∞) in distribution. This is turn
follows by renewal theory by noting that ξ(x) has the same distribution as the time
until the first renewal after x in a renewal process with interarrivals distributed as
ξ(0) (the first ladder height). That ξ(0) is non-lattice follows from F being so, and
Ẽξ(0) <∞ follows from E[XeγX ] <∞. We omit the easy details.

1By this we mean that there exists a subexponential distribution G such that F I(x) = G(x)
for all large x. For background on heavy-tailed distributions, see e.g.[13, X.1] , [57] and the start
of Section 3.
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The computation of C = Ee−γξ(∞) is basically of the same level of difficulty as
the computation of π∞ itself and feasible in essentially the same situations. Result
of type Theorem 2.1 commonly go under the name Cramér-Lundberg asymptotics,
and the equation EeγY = 1 is the Lundberg equation.

Discussion of proofs of Theorem 2.2. The form of the result can be understood from
the ‘one big jump’ heuristics, stating that large values of sums and random walks
arise as consequence of one big Yi, while the remaining Yj are ‘typical’; in particular,
Xi−1 =

∑i−1
j=1 Yj ≈ im for large i. Splitting up after the value of i and noting that

the contribution from a finite segment 1, . . . , i0 is insignificant, we therefore get

P(M > x) =
∞∑

i=1

P
(
τ(x) = i

)
≈

∞∑

i=1

E
[
Xi−1 ≈ im, Yi > x− im

)

≈
∞∑

i=1

P(Yi > x− im) =
∞∑

i=1

F (x− im)

≈
∫ ∞

0

F (x− tm) dt =
1

|m|

∫ ∞

x

F (u) du =
1

|m|F I(x) .

The rigorous verification of (2.7) traditionally follows a somewhat different line
where the essential tool is ladder height representations. The first step is to show
that the first ladder height Xτ(0) has a tail asymptotically proportional to F I , and
next one uses the representation of M as a geometric sum of ladder heights to get
the desired result. The details are not really difficult but too lengthy to be given
here. See, e.g., [11, X.9] or [13, X.3]. A more recent proof by Zachary [129] (see
also Foss, Korshunov & Zachary [57]) is, however, much more in line with the above
heuristics.

We next turn to continuous time whereX is a Lévy process. There is no recursion
of equal simplicity as (2.1) here, so question on existence and uniqueness have to be
treated by other means.

One approach simply adapts the representation (2.2) by rewriting the r.h.s. as

(V ∞0 +Xn) ∨ max
i=0,...,n

(Xn −Xi) = Xn + max
(
V ∞0 ,− min

i=0,...,n
Xi

)
.

One then in complete analogue (which can be motivated for example by a discrete
skeleton approximation) defines the continuous-time one-sided reflected process V
by

V ∞(t) = X(t) + L(t) (2.9)
where

L(t) = max
(
V ∞(0),− min

0≤s≤t
X(s)

)
. (2.10)

Here L is often denoted the local time at 0, though this terminology is somewhat
unfortunate because ‘local time’ in used in many different meaning in the probability
literature. Often also the term regulator is used.

The second approach uses the Skorokhod problem: in (2.10), take L as a non-
decreasing right-continuous processes such that

∫ ∞

0

V ∞(t) dL(t) = 0 . (2.11)

10



In other words, L can only increase when V ∞ is at the boundary 0. Thus, L represents
the ‘pushing up from 0’ that is needed to keep V ∞(t) ≥ 0 for all t.

It is readily checked that the r.h.s. of (2.10) represents one possible choice of L.
Thus, existence is clear. Uniqueness also holds:

Proposition 2.3. Let
{
L∗(t)

}
be any nondecreasing right-continuous process such

that

(a) the process
{
V ∗(t)

}
given by V ∗(0) = V (0), V ∗(t) = Xt + L∗(t) satisfies

V ∗(t) ≥ 0 for all t,

(b) L∗ can increase only when V ∗ = 0, i.e.
∫ T

0
V ∗(t) dL∗(t) = 0 for all T .

Then L∗(t) = L(t), V ∗(t) = V ∞(t).

Proof. Let D(t) = L(t) − L∗(t), ∆D(s) = D(s) −D(s−). The integration-by-parts
formula for a right-continuous process of bounded variation gives

D2(t) = 2

∫ t

0

D(s)dD(s)−
∑

s≤t

(
∆D(s)

)2

= 2

∫ t

0

(
L(s)− L∗(s)

)
dL(s)− 2

∫ t

0

(
L(s)− L∗(s))dL∗(s)−

∑

s≤t

(
∆D(s)

)2

= 2

∫ t

0

(
V ∞(s)− V ∗(s)

)
dL(s)− 2

∫ t

0

(
V ∞(s)− V ∗(s)

)
dL∗(s)−

∑

s≤t

(
∆D(s)

)2

= −2

∫ t

0

V ∗(s) dL(s)− 2

∫ t

0

V ∞(s)dL∗(s)−
∑

s≤t

(
∆D(s)

)2
.

Here the two first integrals are nonnegative since V ∗(s), V ∞(s) are so, and also the
sum is clearly so. Thus D(t)2 ≤ 0, which is only possible if L(t) ≡ L∗(t).

Define M = max0≤t<∞X(t) and assume m = EX(1) < 0. The argument for
(2.4) then immediately goes through to get the existence of a proper limit V ∞(∞)
of V ∞(t) and the representation

V ∞(∞)
D
= M . (2.12)

Equivalently,
π∞(x) = P(V ∞(∞) > x) = P

(
τ(x) <∞

)
, (2.13)

where τ(x) = inf{n : X(t) > x} and π∞ is the distribution of V (∞).
The loss rate ` = `b is undefined in this setting since b = ∞. A closely related

quantity is `0 = Eπ∞L(1) and one has

`0 = −m. (2.14)

This follows by a conservation law argument: in (2.9), take t = 1, consider the
stationary situation and take expectations to get2

Eπ∞V (1) = Eπ∞V (0) + Eπ∞X(1) + Eπ∞L(1) = Eπ∞V (1) +m+ `0 .

2Strictly speaking, the argument requires Eπ∞V (0) < ∞ which amounts to a second moment
assumption. For the general case, just use a truncation argument.
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For an example of the relevance of `0, consider the M/G/1 workload process. Here
`0 can be interpreted as the average unused capacity of the server or as the average
idle time.

We next consider analogues of the asymptotic results in Theorems 2.1, 2.2. The
main results are the following two theorems (for a more complete treatment, see [13,
XI.2]):

Theorem 2.4 (light-tailed case). Assume m < 0, that X is not a compound Poisson
process with lattice support of the jumps, and that there exists γ > 0 with κ(γ) = 0,
κ′(γ) <∞. Then there exists 0 < C <∞ such that

π∞(x) = P
(
V ∞(∞) > x

)
∼ Ce−γx , x→∞. (2.15)

Theorem 2.5 (heavy-tailed case). Assume m < 0, that

ν(x) =

∫ ∞

x

ν(dy)

is a subexponential tail and that ν is long-tailed in the sense that ν(x+x0)/ν(x)→ 1
for any x0. Then

π∞(x) = P
(
V ∞(∞) > x

)
∼ 1

|m|νI(x) , x→∞, (2.16)

where νI(x) =

∫ ∞

x

ν(y) dy.

Sketch of proof of Theorem 2.4. The most substantial (but small) difference from
the proof of Theorem 2.1 is the treatment of the overshoot process ξ which has no
longer the simple renewal process interpretation. However, the process ξ is regener-
ative with regeneration points ω(1), ω(2), . . . where one can take

ω(k) = inf{t > ω(k − 1) + Uk : ξ(t) = 0} ,

where U1, U2, . . . are independent uniform(0, 1) r.v.’s. One can then check that the
non-compound Poisson property suffices for ξ

(
ω(1)

)
to be non-lattice and that

κ′(x) < ∞ suffices for Eξ
(
ω(1)

)
< ∞. These two facts entail the convergence in

distribution of ξ(t) to a proper limit.

As in discrete time, C can only be evaluated is special cases (general expressions
are in Bertoin & Doney [29] but require the full Wiener-Hopf factorization, a problem
of equal difficulty). However, if X is upward skipfree (i.e., ν is concentrated on
(−∞, 0)), then C = 1 as is clear from ξ(x) ≡ 0. See also [13, XI.2] for the downward
skipfree case as well as for related calculations, and [12] for the compound Poisson
phase-type case.

For the proof of Theorem 2.5, we need a lemma:

Lemma 2.6. P
(
X(1) > x

)
∼ ν(x) .

12



Proof. Write X = X ′+X ′′+X ′′′ where the characteristic triplets of X ′, X ′′, X ′′′ are
(c, σ2, ν ′), (0, 0, ν ′′) and (0, 0, ν ′′′), resp., with ν ′, ν ′′, ν ′′′ being the restrictions of ν to
[−1, 1], (−∞,−1) and (1,∞), respectively.

With β′′′ = ν(1), the r.v.X(1)′′′ is a compound Poisson sum of r.v.’s, with Poisson
parameter β′′′ and distribution ν ′′′/β′′′. Standard heavy-tailed estimates (e.g. [13,
X.2]) then give

P(X ′′′(1) > x) ∼ β′′′
ν ′′′(x)

β′′′
= ν(x) , x > 1.

The independence of X ′′(1) and X ′′′(1) > 0 therefore implies

P
(
X ′′(1) +X ′′′(1) > x

)
∼ ν(x) ,

cf. the proof of [13, X.3.2]. It is further immediate that κ′(r) < ∞ for all r. In
particular, X ′(1) is light-tailed, and the desired estimate for X(1) = X ′(1)+X ′′(1)+
X ′′′(1) then follows by [13, X.1.11].

Proof of Theorem 2.5. Define

Md = sup
n=0,1,2,...

X(n) .

Then
P(Md > u) ∼ 1

|EX(1)|

∫ ∞

u

ν(y) dy (2.17)

by Theorem 2.4 and Lemma 2.6. Also clearly P(Md > u) ≤ P(M > u) = ψ(u).
Given ε > 0, choose a > 0 with P

(
inf0≤t≤1X(t) > −a

)
≥ 1− ε. Then

P(Md > u− a) ≥ (1− ε)P(M > u) .

But by subexponentiality, P(Md > u − a) ∼ P(Md > u). Putting these estimates
together completes the proof.

The proof of Theorem 2.5 is basically a special case of what is called reduced load
equivalence. This principle states that if X has negative drift and X = X1 + X2,
where X1 has heavy-tailed increments and X2 has increments with lighter tails,
then M = suptX(t) has the same tail behavior as supt

(
X1(t) +EX2(t)

)
. For precise

versions of the principle, see e.g. Jelenković, Momcilović & Zwart [75].

3 Loss rate asymptotics for two-sided reflected
random walks

We recall from Section 1 that a two-sided reflected random walk {Vn}n=0,1,2,... is
defined by the recursion

Vn = min
(
b,max(0, Vn−1 + Yn)

)
(3.1)

13



where Y1, Y2, . . . are i.i.d. (with common distribution say F ) and initial condition
V0 = v for some v ∈ [0, b]. Let Xn = Y1 + · · ·+ Yn so that X is a random walk.

Existence of V is not an issue in discrete time because of the recursive nature
of (3.1). Recall from (1.6) that the stationary distribution πb can be represented in
terms of two-sided exit probabilities as

P(V ≥ x) = πb[x,∞) = πb[x, b] = P
(
Xτ [x−b,x) ≥ x

)
(3.2)

where V is a r.v. having the stationary distribution and τ [y, x) = inf
{
k ≥ 0 : Xk 6∈

[y, x)
}
, y ≤ 0 ≤ x (we defer the proof of this to Section 5).

The loss rate in discrete time as defined as the limit in (1.5) may be written as

`b = E(V + Y − b)+ = Emax(V + Y − b, 0) . (3.3)

where V is the stationary r.v. For later use we note the alternative form

`b = E(Y − b)+ +

∫ b

0

P(Y > b− y) π(y) dy, (3.4)

which follows by partial integration in (3.3).
From now on we assume that −∞ < m = EY < 0. The following two results on

the asymptotics of `b are close analogues of Theorems 2.1, 2.2:

Theorem 3.1. Under the assumptions on Y, γ in Theorem 2.1,

`b ∼ De−γb, b→∞,

where D is a constant given in (3.7) below.

Theorem 3.2. Let Y1, Y2, · · · be an i.i.d. sequence with mean m < 0 and let `b be
the loss rate at b of the associated random walk Xn = Y1 + · · · + Yn, reflected in 0
and b. Assume F (x) ∼ B(x) for some distribution B ∈ S∗. Then

`b ∼ F I(b), b→∞, where F I(b) =

∫ ∞

b

F (y) dy = E(Y − b)+.

We used here the standard notation for the classes L,S and S∗ of heavy-tailed
distributions (see e.g. [89] or [13]): If B is a distribution on [0,∞) we have B ∈ L
(B is long-tailed) iff

lim
x→∞

B(x+ y)

B(x)
= 1, for all y ,

where B(x) = 1 − B(x). The class S of subexponential distributions is defined by
the requirement

lim
x→∞

B∗n(x)

B(x)
= n n = 2, 3, . . .

where B∗n denotes the nth convolution power of B. A subclass of S is S∗, where we
require that the mean µB of B is finite and

lim
x→∞

∫ x

0

B(x− y)

B(x)
B(y) dy = 2µB.

14



The classes are related by S∗ ⊆ S ⊆ L. More generally, we will say a measure ν
belongs to, say, S if it is tail equivalent to a distribution in S, that is ν([x,∞)) ∼
B(x) for some B in S.

Theorem 3.1 is from Pihlsgård [107]. Theorem 3.2 was originally proved in Je-
lenković [74], but we provide a shorter proof by taking advantage of the representa-
tion of the stationary distribution provided by (1.6).

Proof of Theorem 3.1 (light tails)

We introduce the following notation (standard in random walk theory):

• M = supk≥0Xk.

• τ+(u) = inf{k ≥ 1 : Xk > u}, τw+ (u) = inf{k ≥ 1 : Xk ≥ u}, u ≥ 0.

• G+(x) = P(Xτ+(u) ≤ x), Gw
+(x) = P(Xtauw+(u)(u)) ≤ x).

• τ s−(−u) = inf{k ≥ 1 : Xk < −u}, u ≥ 0.

• The overshoot of level u, B(u) = Xτ+(u))−u, u ≥ 0.

• The weak overshoot of level u, Bw(u) = Xτw+ (u) − u, u ≥ 0.

• B(∞), a r.v. having the limiting distribution (if it exists) of B(u) as u→∞.

• Bw(∞), a r.v. having the limiting distribution (if it exists) of Bw(u) as u→∞.

Recall that κ(α) = logEeαY1 and that γ > 0 is the root of the Lundberg equation
κ(α) = 0 with κ′(γ) < ∞. We let PL and EL correspond to a measure which is
exponentially tilted by γ, i.e.,

P(G) = EL[e−γXτ ;G] (3.5)

when τ is a stopping time w.r.t. {F(n) = σ(Y1, Y2, . . . , Yn)} and G ∈ F(τ), G ⊆
{τ < ∞} where F(τ) is the stopping time σ-field. Note that ELY = κ′(γ) > 0 by
convexity.

Lemma 3.3. Assume that Y is non-lattice. Then, for each v ≥ 0,

P
(
τ s−(−v) > τw+ (u)

)
∼ e−γuELe−γB(∞)PL

(
τ s−(−v) =∞)

)
, u→∞.

Proof. We first note that τw+ (u) is a stopping time w.r.t. F(n) and that {τ s−(−v) >
τw+ (u)} ∈ F(τw+ (u)). Then (3.5) gives

P
(
τ s−(−v) > τw+ (u)

)
= EL

[
e−γZ(τw+ (u)); τ s−(−v) > τw+ (u)

]

= e−γuEL
[
e−γB(u); τ s−(−v) > τ+(u)

]
PL
(
τw+ (u) = τ+(u)

)

+ e−γuPL
[
τ s−(−v) > τw+ (u)

∣∣ τw+ (u) 6= τ+(u)
]
PL
(
τw+ (u) 6= τ+(u)

)
.

Since Y is non-lattice, it follows that Gw
+ is so (see [11], Lemma 1.3, p. 222) and

then the renewal theorem (see [11], Theorem 4.6, p. 155) applied to the renewal
process governed by Gw

+, in which the forward recurrence time process coincides
with the overshoot process Bw = Bw(u), yields Bw(u)

D−→ Bw(∞) w.r.t. PL where
Bw(∞) has a density. Thus 0 is a point of continuity of Bw(∞) and we then get that
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PL(τw+ (u) 6= τ+(u)) = PL(Bw(u) = 0)→ 0 and PL(τw+ (u) = τ+(u))→ 1, u→∞. We
now use that B(u)→ B(∞), {τ s−(−v) > τw+ (u)} ↑ {τ s−(−v) =∞} in PL-distribution
and apply the argument used in the proof of Corollary 5.9, p. 368 in [11] saying that
B(u) and {τ s−(−v) > τw+ (u)} are asymptotically independent.

In the representation of `b in (3.4), It follows from the assumption κ′(γ) < ∞
that E(Y − b)+ = o(e−γb). In the second term we make the change of variables
v = b− y and get

∫ b

0

P(Y > b− y)π(y)dy =

∫ ∞

0

1(v ≤ b)P(Y > v)P
(
τ s−(−v) > τw+ (b− v)

)
dv

= e−γb
∫ ∞

0

eγv1(v ≤ b)P(Y > v)eγ(b−v)P
(
τ s−(−v) > τw+ (b− v)

)
dv. (3.6)

Further, we have that P(τ s−(−v) > τw+ (b − v)) ≤ P(M ≥ b − v) ≤ e−γ(b−v) (the last
inequality is just a variant of Lundberg’s inequality), so

eγv1(v ≤ b)P(Y > v)eγ(b−v)P
(
τ s−(−v) > τw+ (b− v)

)
≤ eγvP(Y > v)

and since
∫∞

0
eγvP(Y > v)dv <∞ the assertion follows with

D = ELe−γB(∞)

∫ ∞

0

eγvP(Y > v)PL(τ s−(−v) =∞) dv (3.7)

by (3.6), Lemma 3.3 and dominated convergence.

Remark 3.4. The constants occurring in D and above are standard in Wiener-Hopf
theory for random walks. Note that alternative expressions for D are in [107].

Proof of Theorem 3.2 (heavy tails)

By (3.4), we need to prove that

lim sup
b→∞

I(b) = 0 where I(b) =

∫ b

0

P(Y > b− y)πb(y)

F I(b)
dy . (3.8)

For any A > 0

lim sup
b→∞

∫ A

0

P(Y > b− y)πb(y)

F I(b)
dy ≤ lim sup

b→∞

P(Y > b− A)

F I(b)

∫ A

0

πb(y) dy = 0

so therefore

lim sup
b→∞

∫ b

0

I(b) = lim sup
b→∞

∫ b

A

P(Y > b− y)πb(y)

F I(b)
dy . (3.9)

Define m+ =
∫∞

0
P(Y > t) dt and Fe(y) = (1/m+)

∫ x
0
P(Y > t) dt. According to

(2.7) we have π∞(y)|m| ∼ F I(y) so that for large A and y > A

π∞(y) ≤ 2F I(y)/|m| = 2m+F e(y)/|m|
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From Proposition 11.5 in Section 11 (proved there for Lévy processes but valid also
for random walks as it only relies on the representation (3.2) of π as a two-barrier
passage time probability),

0 ≤ π∞(x)− πb(x) ≤ π∞(b) . (3.10)

Using this, we have:

lim sup
b→∞

∫ b−A

A

P(Y > b− y)πb(y)

F I(b)
dy ≤ 2 lim sup

b→∞

∫ b−A

A

m+P(Y > b− y)F e(y)

|m|F I(b)
dy

= 2 lim sup
b→∞

∫ b−A

A

P(Y > b− y)F e(y)

|m|F e(b)
dy

= 2 lim sup
b→∞

F
∗2
e (b)

F e(b)

∫ b−A

A

P(Y > b− y)F e(y)

|m|F ∗2e (b)
dy

= 4 lim sup
b→∞

∫ b−A

A

P(Y > y)F e(b− y)

|m|F ∗2e (b)
dy

= 4 lim sup
b→∞

m+

|m|P(A < U ≤ b− A | U + V > b) =
2m+

|m| F e(A) .

where U and V are independent with U D
= V

D
= Fe and we have used that for i.i.d.

random variables in S

P(A < Y1 < b− A | Y1 + Y2 > b)→ 1
2
F (A), b→∞

(cf. [13], pp. 294, 296, slightly adapted). By combining the result above with (3.9)
we have

lim sup
b→∞

I(b) ≤ 2m+

|m| F e(A) + lim sup
b→∞

∫ b

b−A

P(Y > b− y)πb(y)

F I(b)
dy . (3.11)

Here the integral equals

lim sup
b→∞

∫ A

0

P(Y > y)πb(b− y)

F I(b)
dy ≤ lim sup

b→∞

πb(b− A)

F I(b)

∫ A

0

P(X > y) dy .

If we define σA = inf{n ≥ 0 | Xn < −A}, Mn = maxk≤nXk and use the representa-
tion (3.2) of the stationary distribution we have:

πb(b− A) = P(MσA > b− A) .

By Theorem 1 of [58] we have P(MσA > b−A) ∼ EσAF (b) and therefore πb(b− A)/
F I(b)→ 0 since the tail of F is lighter than that of the integrated tail. Using (3.11)
it thus follows that we can bound lim sup I(b) by 2m+F e(A)/|m|. Letting A → ∞
completes the proof.
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4 Construction and the Skorokhod problem

We consider here the problem of how to rigorously define V = V b in the continuous
time Lévy set-up.

First, we note that there is a simple pragmatic solution: Let y ∈ [0, b] be the initial
value. For y < b, take the segment up to the first hitting time τ(b) of b as the initial
segment of V ∞ (the one-sided reflected process started from y) until (b,∞) is hit; we
then let V

(
τ(b)

)
= b. For y = b, we similarly take the segment up to the first hitting

time τ ∗(0) of 0 by using the one-sided reflection operator (with the sign reversed
and change of origin) as constructed in Section 2; at time τ ∗(0) where this one-
sided reflected (at b) process hits (−∞, 0], we let V

(
τ ∗(0)) = 0. The whole process

V is then constructed by glueing segments together in an obvious way. Glueing
also local times together, we obtain the desired solution of the Skorokhod problem.
Uniqueness of this solution may be established using a proof nearly identical to that
of Proposition 2.3.

Before we proceed to a more formal definition of V we restate the Skorokhod
problem: Given a cadlag process {X(t)} we say a triplet ({V (t)}, {L(t)}, {U(t)}) of
processes is the solution to the Skorokhod problem on [0, b] if V (t) = X(t) + L(t)−
U(t) ∈ [0, b] for all t and

∫ ∞

0

V (t) dL(t) = 0 and
∫ ∞

0

(b− V (t)) dU(t) = 0 .

Note that the Skorokhod problem as introduced above is a purely deterministic
problem. We refer to the mapping which associates a triplet ({V (t)}, {L(t)}, {U(t)})
to a cadlag process X(t) as the Skorokhod map.

Remark 4.1. The Skorokhod problem on [0, b] is a particular case of reflection of
processes in convex regions of Rn, which is treated in Tanaka [126] where a proof of
existence and uniqueness is provided given that the involved processes are continuous
or step functions. This is extended in [6] to include cadlag processes, which covers
what is needed in this article. Apart from the generalizations to larger classes of
functions, other papers have focused on more general domains than convex subsets
of Rn, e.g. Lions & Snitzman [100] and Saisho [116]. The case of Brownian motion
in suitable regions has received much attention in recent decades, see e.g. Harrison
& Reiman [70] and Chen & Yao [40]. In [69] Ch. 2 § 4, the Skorokhod problem on
[0, b] is introduced as the two-sided regulator and is used to treat Brownian motion
with two-sided reflection; another early references on two-sided reflection problems
is Chen & Mandelbaum [39]. A comprehensive treatment of the Skorokhod map and
its continuity properties, as well as other reflection mappings and their properties,
is given in Whitt [127].

Various formulas for the Skorokhod map have appeared in the literature, among
them Cooper et al. [45]. See [91] for a survey of these formulas and the relation
between them. An alternative approach to estimation of stationary quantities is
to take advantage of the integral representation of the one-dimensional Skorokhod
reflection, see Konstantopoulos & |ast [88], Anantharam & Konstantopoulos [2],
and Buckingham et al. [36]. This is applicable when considering processes of finite
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variation, so that we can write S(t) = A(t)+B(t) for non-decreasing cadlag processes
A and B. It is then possible to write V (t) as an integral with respect to A(dt). This
representation can for example be used to derive the Laplace transform of V in
terms of the Palm measure.

As described in Section 2, specifically (2.9) and (2.10), an explicit expression for
V (t) is available when one is concerned with one-sided reflection. This is also the
case when dealing with Skorokhod problem on [0, b]. Indeed, from Kruk et al. [91]
we have:

V b(t) = X(t)−
(
(V (0)− b)+ ∧ inf

u∈[0,t]
X(u)

)
∨ sup
s∈[0,t]

(
(V (0)− b) ∧ inf

u∈[s,t]
X(u)

)
.

(4.1)

We shall assume V (0) = 0 a.s and in this case we have following simplification,
which was originally proved in [5].

Theorem 4.2. If V (0) = 0, then

V b(t) = sup
s∈[0,t]

((
X(t)−X(s)

)
∧ inf
u∈[s,t]

(
b+X(t)−X(u)

))
. (4.2)

Remark 4.3. Before we provide a rigorous proof, we note the following intuitive
explanation for the expression (4.2): For v > 0 consider the process {Vv(t)}t>v
obtained by reflecting Xv(t) = X(t)−X(v) at b from below (in terms of recursions
like (2.1) this is Vn = b ∨ (Vn−1 + Yn)). Similarly to (2.9) and (2.10) we obtain
Vv(t) = Xv(t) ∧ infv<u<t(b−Xv(t)−Xv(u)). Then obviously Vv(t) ≤ V (t) but since
Vv(t

∗) = V (t∗) for t∗ = sup0<u<t V (y) = 0, we have V (t) = sup0<v<t Vv(t).

The proof of (4.2) proceeds as follows: First we prove Proposition 4.4 and 4.5
which are the discrete time equivalents of (4.1) and (4.2). Then we prove Lemma 4.6,
which states that the implied mapping of X(t) in (4.2) is Lipschitz-continuous in
the J1 topology which is combined with an piecewise constant approximation to
obtain the equivalence of (4.2) and (4.1). To emphasize the deterministic nature
of the Skorokhod problem and for explicit treatment of the involved mappings, we
switch notation and let y = {yn}∞n=1 be a sequence in R∞ and consider the sequences
x and v obtained by respectively taking cumulative sums of y and applying two-
sided reflection, that is xn = y1 + · · · + yn and vn = min(b,max(0, vn−1 + yn) with
x0 = v0 = 0. We let Γ0,b denote the two-sided reflection mapping, that is Γ0,b(x) = v.

Proposition 4.4. The solution of the two-sided reflection is given by

Γ0,b(x)(n) = max
k∈{0,··· ,n}

(
min

j∈{k,··· ,n}
(xn − xk, b+ xn − xj)

)
. (4.3)

Proof. We prove the claim by induction. The case n = 1 is trivial, so we assume
(4.3) holds for some n, and consider the cases yn+1 ≤ 0 and yn+1 > 0 separately. For
the former case we have

Γ0,b(x)(n+ 1) = vn+1 = 0 ∨ (vn + yn+1) ∧ b = 0 ∨ (vn + yn+1)

= 0 ∨
(

max
k∈{0,··· ,n}

(
min

j∈{k,··· ,n}
(xn − xk, b+ xn − xj)

)
+ yn+1

)

= 0 ∨
(

max
k∈{0,··· ,n}

(
min

j∈{k,··· ,n}
(xn+1 − xk, b+ xn+1 − xj)

))
. (4.4)
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Since yn+1 ≤ 0, we have

min
j∈{k,··· ,n+1}

xn+1 − xj = min
j∈{k,··· ,n}

xn+1 − xj,

so that (4.4) equals

0 ∨
(

max
k∈{0,··· ,n}

(
min

j∈{k,··· ,n+1}
(xn+1 − xk, b+ xn+1 − xj)

))

= max
k∈{0,··· ,n+1}

(
min

j∈{k,··· ,n+1}
(xn+1 − xk, b+ xn+1 − xj)

)
, (4.5)

as desired. The case yn+1 > 0 is similar:

vn+1 = 0 ∨ (vn + yn+1) ∧ b = (vn + yn+1) ∧ b
=
(

max
k∈{0,··· ,n}

(
min

j∈{k,··· ,n}
(xn − xk, b+ xn − xj)

)
+ yn+1

)
∧ b

= max
k∈{0,··· ,n}

(
min

j∈{k,··· ,n}
(xn+1 − xk, b+Xn+1 − xj) ∧ b

)
,

which equals (4.5) as well. This completes the proof.

Proposition 4.4 provides the discrete-time analogue of (4.2). Next, we provide
the discrete-time analogue for (4.1), in the case v0 = 0.

Proposition 4.5. The solution of the two-sided reflection is given by

Γ0,b(x)(n) = min
k∈{0,...,n}

[(
(xn − xk + b) ∧ max

i∈{0,...,n}
(xn − xi)

)
∨ max
i∈{k,...,n}

(xn − xi)
]
.

(4.6)

Proof. The proof is again by induction and again the case n = 1 is straightforward,
so we assume the stated holds for some n. Then we have

Γ0,b(x)(n+ 1) = 0 ∨ (vn + yn+1) ∧ b
= 0 ∨

(
min

k∈{0,...,n}

[(
(xn − xk + b) ∧ max

i∈{0,...,n}
(xn − xi)

)

∨ max
i∈{k,...,n}

(xn − xi)
]

+ yn+1

)
∧ b

= 0 ∨ min
k∈{0,...,n}

[(
(xn+1 − xk + b) ∧ max

i∈{0,...,n}
(xn+1 − xi)

)

∨ max
i∈{k,...,n}

(xn+1 − xi)
]
∧ b

= min
k∈{0,...,n}

[(
(xn+1 − xk + b) ∧ max

i∈{0,...,n}
((xn+1 − xi) ∨ 0)

)

∨ max
i∈{k,...,n}

((xn+1 − xi) ∨ 0)
]
∧ b

= min
k∈{0,...,n}

[(
(xn+1 − xk + b) ∧ max

i∈{0,...,n+1}
(xn+1 − xi)

)

∨ max
i∈{k,...,n+1}

(xn+1 − xi)
]
∧ b.

(4.7)
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We notice that
(
(xn+1 − xk + b) ∧ max

i∈{0,...,n+1}
(xn+1 − xi)

)
∨ max
i∈{k,...,n+1}

(xn+1 − xi)

=

{
maxi∈{0,...,n+1}(xn+1 − xi) if k = 0

maxi∈{0,...,n+1}(xn+1 − xi) ∧ b if k = n+ 1,

so that (4.7) equals

min
k∈{0,...,n+1}

[(
(xn+1 − xk + b) ∧ max

i∈{0,...,n+1}
(xn+1 − xi)

)
∨ max
i∈{k,...,n+1}

(xn+1 − xi)
]
.

This proves the claim.

We now proceed to the proof of (4.2). Let ψ ∈ D[0,∞). From [91] we have:

Γ0,b(ψ)(t) = ψ(t)− sup
s∈[0,t]

[((
ψ(s)− b

)
∨ inf
u∈[0,t]

ψ(u)
)
∧ inf
u∈[s,t]

ψ(u)
]
, (4.8)

when the process is started at 0. In view of the two previous propositions it seems
reasonable to conjecture that Γ0,b = Ξ, where

Ξ[ψ](t) = sup
s∈[0,t]

[(
ψ(t)− ψ(s)

)
∧ inf
u∈[s,t]

(
b+ ψ(t)− ψ(u)

)]
. (4.9)

We prove this by first showing that Ξ is Lipschitz-continuous in the J1 topology.

Lemma 4.6. The mapping Ξ is Lipschitz-continuous in the uniform and J1 metrics
as a mapping from D[0, T ] for T ∈ [0,∞], with constant 2.

Proof. We follow the proof of Corollary 1.5 in [90] closely. Fix T <∞. We start by
proving Lipschitz-continuity in the uniform metric. Define

Rt[ψ](s) =
[(
−ψ(s)

)
∧ inf
u∈[s,t]

(b− ψ(u))
]
; S[ψ](t) = sup

s∈[0,t]

Rt[ψ](s). (4.10)

For ψ1, ψ2 ∈ D[0, T ] we have

S[ψ1](t)− S[ψ2](t) ≤ sup
s∈[0,t]

(
Rt[ψ1](s)−Rt[ψ2](s)

)

≤ sup
s∈[0,t]

[
|−ψ1(s)− (−ψ2(s))| ∨

∣∣ inf
u∈[s,t]

(b− ψ1(u))− inf
u∈[s,t]

(b− ψ2(u))
∣∣]

≤ ‖ψ1 −ψ2‖T .

The same inequality applies to S[ψ2](t) − S[ψ2](t), so that taking the supremum
leads to

‖S[ψ1]− S[ψ2]‖T ≤ ‖ψ1 −ψ2‖T ,
and this proves Lipschitz-continuity, with constant 2:

‖Ξ[ψ1]− Ξ[ψ2]‖T ≤ ‖ψ1 −ψ2‖+ ‖S[ψ1]− S[ψt]‖T ≤ 2‖ψ1 −ψ2‖T .

We now turn to the J1-metric, and we letM denote the class of strictly increasing
continuous functions from [0, T ] onto itself with continuous inverse. An elementary
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verification yields that for ψ ∈ D[0, T ] and λ ∈ M we have Ξ[ψ ◦ λ] = Ξ[ψ] ◦ λ.
With e being the identity, this leads to

dJ1(Ξ[ψ1],Ξ[ψ2]) = inf
λ∈M
{‖Ξ[ψ1] ◦ λ− Ξ[ψ2]‖T ∨ ‖λ− e‖T}

= inf
λ∈M
{‖Ξ[ψ1 ◦ λ]− Ξ[ψ2]‖T ∨ ‖λ− e‖T}

≤ inf
λ∈M
{2‖ψ1 ◦ λ−ψ2‖T ∨ ‖λ− e‖T} ≤ 2dJ1(ψ1,ψ2),

where we used the Lipschitz-continuity in the uniform metric. This proves Lipschitz-
continuity in the J1 metric, again with constant 2; it is valid for every T < ∞ and
hence also for T =∞.

We are now ready to prove that Γ0,b = Ξ.

Theorem 4.7. For ψ ∈ D[0,∞) we have Γ[ψ](t) = Ξ[ψ](t).

Proof. Let ψ ∈ D[0,∞) be given, and define γn and ψn by γn(t) = bntc/n, ψn(t) =
ψ(γn(t)). Since γn → e in the uniform topology, we have γn →dJ1

e and hence
(ψ,γn)→ (ψ, e) in the strong version of the J1 topology (see p. 83 in [127]). Since e
is strictly increasing we may apply Theorem 13.2.2 in [127] to obtain ψn →dJ1

ψ. Fix
t < T , and consider ψ as element of D[0, T ]. Since the image ψn([0, T ]) is finite, we
may apply Props. 4.4 and 4.5, in conjunction with (4.8), to obtain Γ0,b[ψn] = Ξ[ψn].
Finally, we let n→∞ and use the J1-continuity of the Γ0,b mapping proved in [90],
and the J1-continuity of Ξ proved in Lemma 4.6 to finish the proof.

Remark 4.8. Letting b → ∞ yields sups∈[0,t] [(ψ(t)− ψ(s))], which is indeed the
standard one-sided reflection from (2.9) and (2.10).

5 The stationary distribution

5.1 Ergodic properties

The following observation is easy but basic:

Proposition 5.1. The two-sided reflected Lévy process V = V b admits a unique
stationary distribution π = πb. Furthermore, for any initial distribution V converges
in distribution and total variation to π.

Proof. We appeal to the theory of regenerative processes ([11, Ch. VI]). The classical
definition of a stochastic process to be regenerative means in intuitive terms that
the process can be split into i.i.d. cycles (with the first cycle having a possibly
different distribution). There is usually a multitude of ways to define a cycle. The
naive approach in the case of V b is to take the instants of visits to state 0 (say) as
regeneration points, but these will typically have accumulation points (cf. the theory
of Brownian zeros!) and so a bit more of sophistication is needed. Instead we may,
e.g., define the generic cycle length T as starting at level 0 at time 0, waiting until
level b is hit and taking the cycle termination time T as the next hitting time of 0
(‘up to b from 0 and down again’). That is,

T = inf
{
t > inf{s > 0 : V b(s) = b} : V b(t) = 0

∣∣V b(0) = 0
}
.
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The regenerative structure together with the easily verified fact ET < ∞ then
immediately gives the existence of πb.

Tv. convergence just follows from coupling V b with the stationary version V̂ b

(cf. [11, VII.1]). Indeed, we may assume that V b and V̂ b both have the same driving
process X. Then V̂ b(t) ≥ V (t) for all t, and so τ = inf{t > 0 : V b(t) = V̂ b(t)} is
bounded by T1, hence a.s. finite.

Remark 5.2. T.v. convergence in distribution is often alternatively established by
verifying that the distribution of T is spread-out ([11, VI.1]). In the present context,
this is slightly more tedious but goes like this. T decomposes as the independent
sum T1 + T2 where T1 is passage time from 0 to b and T2 the passage from b to 0
so that it suffices to verify that one of T1, T2 is spread-out. This is obvious for
Brownian motion since there T1, T2 are both absolutely continuous. In the case
ν 6= 0 of a non-vanishing jump component, suppose, e.g., that ν does not vanish
on (0,∞). Then b may be hit by a jump, i.e. P0

(
∆X(T1) > 0

)
> 0. Then also

P0

(
∆X(T1) > ε

)
> 0 for some ε > 0 and the absolutely continuous part of T1 may

be taken as P0(T1 ∈ ·,
(
∆X(T1) > ε

)
> 0.

Another approach is to take advantage of the fact that V b is a Markov process on
a compact state space with a semi-group with easily verified smoothness properties,
cf. [87] for some general theory, and yet another to invoke Harris recurrence in
continuous time, cf. [23], [24]. We omit the details.

Remark 5.3. The process V b is in fact geometrically ergodic, i.e.

sup
A
|Px(V b(t) ∈ A)− πb(A)| = O(e−εt) (5.1)

for some ε > 0 where the O term is uniform in x. This follows again from the
coupling argument by bounding the l.h.s. of (5.1) by P(τ > t) and checking that τ
has exponential moments (geometric trials argument!).

It is easy to derive rough bounds on the tail of τ and thereby lower bounds on ε.
To get the exact rate of decay in (5.1) seems more difficult, as is typically the case
in Markov process theory (but see Linetsky [99] for the Brownian case).

5.2 First passage probability representation

The main result on the stationary distribution πb is as follows and states that πb
can be computed via two-sided exit probabilities for the Lévy process.

Theorem 5.4. The stationary distribution of the two-sided reflected Lévy process
V = V b is given by

πb[x, b] = P
(
V (∞) ≥ x

)
= P

(
X
(
τ [x− b, x)

)
≥ x

)
(5.2)

where τ [u, v) = inf{t ≥ 0 : X(t) 6∈ [u, v)}, u ≤ 0 ≤ v.

Note that in the definition of τ [u, v) we write t ≥ 0, not t > 0.
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We remark that the calculation of P
(
X
(
τ [x − K, x)

)
≥ x

)
is a special case of

scale function calculations for spectrally negative Lévy processes. For such a process,
the scale function W q is usually defined as the function with Laplace transform

∫ ∞

0

e−sxW q(x) dx =
1

κ(−s)− q .

However, it has a probabilistic interpretation related to (5.2) by means of

E
[
e−qτ [a,b)

1
(
X(τ [a, b)) ≥ b

)]
=

W q(|a|)
W q(|a|+ b)

(5.3)

The present state of the area of scale functions is surveyed in Kuznetsov et al. [92].
Classically, there has been very few explicit examples, but a handful more, most for
quite special structures, have recently emerged (see, e.g., Hubalek & Kyprianou [71]
and Kyprianou & Rivero [96]).

We shall present two approaches to the proof of Theorem 5.4. One is direct
and specific for the model, the other uses general machinery for certain classes of
stochastic processes with certain monotonicity properties.

Direct verification

Write V0(t) for V started from V0(0) = 0, let T be fixed and for 0 ≤ t ≤ T , let
{Rx(t)} be defined as Rx(t) = x−X(T ) + X(T − t) until (−∞, 0] or (b,∞) is hit;
the value is then frozen at 0, resp. ∞. We shall show that

V0(T ) ≥ x ⇐⇒ Rx(T ) = 0; (5.4)

this yields

P
(
V0(T ) ≥ x

)
= P

(
τ [x− b, x) ≤ T, X

(
τ [x− b, x)

)
≥ x

)

and the proposition then follows by letting T →∞.
Let σ = sup{t ∈ [0, T ] : V0(t) = 0} (well–defined since V0(0) = 0). Then V0(T ) =

X(T )−X(σ) +U(σ)−U(T ), so if V0(T ) ≥ x then X(T )−X(σ) ≥ x, and similarly,
for t ≥ σ

x ≤ V0(T ) = V0(t) +X(T )−X(t) + U(t)− L(T ) ≤ b+X(T )−X(t),

implying Rx(T − t) ≤ b. Thus absorbtion of {Rx(t)} at ∞ is not possible before
T − σ, and X(T )−X(σ) ≥ x then yields Rx(T − σ) = 0 and Rx(T ) = 0.

Assume converselyRx(T ) = 0 and write the time of absorbtion in 0 as T−σ. Then
x−X(T ) +X(σ) ≤ 0, and Rx(t) ≤ b for all t ≤ T − σ implies x−X(T ) +X(t) ≤ b
for all t ≥ σ. If V0(t) < b for all t ∈ [σ, T ], then U(T )− U(t) = 0 for all such t and
hence

V0(T ) = V0(σ) +X(T )−X(σ) + L(T )− L(σ)

≥ V0(σ) +X(T )−X(σ) ≥ 0 + x.

If V0(t) = b for some t ∈ [σ, T ], denote by ω the last such t. Then U(T ) = U(ω) and
hence

V0(T ) = V0(ω) +X(T )−X(ω) + L(T )− L(ω)

≥ b+X(T )−X(ω) + 0 ≥ x.
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Siegmund duality

Now consider the general approach. Let T = N or T = [0,∞), let {V (t)}t∈T be a
general Markov process with state space E = [0,∞) or E = N, and let Vx(t) be
the version starting from Vx(0) = x. We write interchangeably P(Vx(t) ∈ A) and
Px(V (t) ∈ A). Then {Vx(t)} is stochastically monotone if x ≤ y implies Vx(t) ≤so

Vx(t) (stochastical ordering) for all t ∈ T, i.e. if Px(V (t) ≥ z) ≤ Py(V (t) ≥ z) for all
t and z.

Proposition 5.5. The existence of a Markov process {R(t)}t∈T on E ∪ {∞} such
that

Px
(
V (t) ≥ y) = Py

(
R(t) ≤ x

)
(5.5)

is equivalent to (i) {V (t)} is stochastically monotone and (ii) Px
(
V (t) ≥ y

)
is a

right–continuous function of x for all t and y.

Proof. If {R(t)} exists, the l.h.s. of (5.5) is nondecreasing and right–continuous in x
and so necessity of (i), (ii) is clear. If conversely (i), (ii) hold, then the r.h.s. of (5.5)
defines a probability measure for each y that we can think of as the element P t(y, ·)
of a transition kernel P t (thus P t(y, {∞}) = 1− limx→∞ Px

(
V (t) ≥ y

)
), and we shall

show that the Chapman-Kolmogorov equations P t+s = P tP s hold. This follows since

P t+s
(
y, [0, x]

)
= Px

(
V (t+ s) ≥ y

)
=

∫

E

Px
(
V (t) ∈ dz)Pz

(
V (s) ≥ y

)

=

∫

E

Px
(
V (t) ∈ dz

) ∫ z

0

P s(y, du) =

∫ z

0

P s(y, du)Px
(
V (t) ≥ u

)

=

∫ z

0

P s(y, du)P t
(
u, [0, x]

)
= (P tP s)

(
y, [0, x]

)
.

Theorem 5.6. The state 0 is absorbing for {R(t)}. Furthermore, letting

τ = inf{t > 0 : Rx(t) ≤ 0} = inf{t > 0 : Rx(t) = 0} ,

one has
P0

(
V (T ) ≥ x

)
= Px(τ ≤ T ), (5.6)

and if V (t) converges in total variation, say to V = V (∞), then

P0(V ≥ x) = Px(τ <∞), (5.7)

Proof. Proof. Taking x = y = 0 in (5.5) yields P0

(
R(t) ≤ 0

)
= P0

(
V (t) ≥ 0

)
= 1

so that indeed 0 is absorbing for {R(t)}. We then get

Px(τ ≤ T ) = Px
(
R(T ) ≤ 0

)
= P0

(
V (T ) ≥ x

)
.

Let T →∞.
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Dual recursions

We turn to a second extension of (5.5), (5.7) which does not require the Markov
property but, however, works more easily when T = N than when T = [0,∞). We
there assume that {Vn}n∈N is generated by a recursion of the form

Vn+1 = f(Vn, Un), (5.8)

where {Un} (the driving sequence) is a stationary sequence of random elements
taking values in some arbitrary space F and f : E × F → E is a function. The
(time-homogeneous) Markov case arises when the Un are i.i.d. (w.l.o.g., uniform on
F = (0, 1)), but also much more general examples are incorporated. We shall need
the following lemma, which is essentially just summarizes the standard properties
of generalized inverses as occuring in, e.g., quantile functions.

Lemma 5.7. Assume that f(x, u) is continuous and nondecreasing in x for each
fixed u ∈ F and define g(x, u) = inf{y : f(y, u) ≥ x}. Then for fixed u g(x, u)
is left–continuous in x, nondecreasing in x and strictly increasing on the interval
{x : 0 < g(x, u) <∞}. Further, f(y, u) = sup{x : g(x, u) ≤ y} and

g(x, u) ≤ y ⇐⇒ f(y, u) ≥ x. (5.9)

W.l.o.g., we can take {Un} with doubly infinite time, n ∈ Z, and define the dual
process {Rn}n∈N by

Rn+1 = g(Rn, U−n), n ∈ N; (5.10)

when the initial value x = R0 is important, we write Rn(x).

Theorem 5.8. Equations (5.5) and (5.7) also hold in the set–up of (5.8) and (5.10).

Proof. Proof. For T ∈ N, define V (T )
0 (y) = y,

V
(T )

1 (y) = f
(
V

(T )
0 (y), U−(T−1)

)
, . . . , V

(T )
T (y) = f

(
V

(T )
T−1(y), U0

)
.

We shall show by induction that

V
(T )
T (y) ≥ x ⇐⇒ RT (x) ≤ y (5.11)

(from this (5.5) follows by taking expectations and using the stationarity; since
g(0, u) = 0, (5.6) then follows as above). The case T = 0 of (5.11) is the tautology
y ≥ x ⇐⇒ x ≤ y. Assume (5.11) shown for T . Replacing y by f(y, U−T ) then
yields

V
(T )
T

(
f(y, U−T )

)
≥ x ⇐⇒ RT (x) ≤ f(y, U−T ).

But V (T )
T

(
f(y, U−T )

)
= V

(T+1)
T+1 (y) and by (5.9),

RT (x) ≤ f(y, U−T ) ⇐⇒ RT+1(x) = g(RT (x), U−T ) ≤ y.

Hence (5.11) holds for T + 1.
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Example 5.9. Consider the a discrete time random walk reflected at 0, Vn+1 =
(Vn + ξn)+ with increments ξ0, ξ1, . . . which are i.i.d. or, more generally, stationary.

In the set-up of Proposition 5.5 and Theorem 5.6, we need (for the Markov
property) to assume that ξ0, ξ1, . . . are i.i.d. We take E = [0,∞) and for y > 0, we
then get

Py(R1 ≤ x) = Px(V1 ≥ y) = P(x+ ξ0 ≥ y) = P(y − ξ0 ≤ x).

For y = 0, we have P0(R1 = 0) = 1. These two formulas show that {Rn} evolves
as a random walk X̆n = −ξ0 − ξ−1 − · · · − ξ−n+1 with increments −ξ0,−ξ1, . . . as
long as Rn > 0, i.e. Rn(x) = x − X̆n, n < τ , Rn(x) = 0, n ≥ τ ; when (−∞, 0] is
hit, the value is instantaneously reset to 0 and {Rn} then stays in 0 forever. We see
further that we can identify τ and τ(x), and thus (5.7) is the same as the maximum
representation (2.5) of the stationary distribution of V .

Consider instead the approach via Theorem 5.8 (which allows for increments that
are just stationary). We let again E = [0,∞), take Uk = ξk and f(x, u) = (x+ u)+.
It is easily seen that g(y, u) = (y−u)+ and so {Rn} evolves as X̆ as long as Rn > 0,
while 0 is absorbing. With , X∗n = −X̆n it follows that τ = inf{n : x + X̆n ≤ 0}
= inf{n : X∗n ≥ x}. This last expression shows that (5.6) is the same as a classical
result in queueing theory known as Loynes’ lemma, [11, IX.2c].

Example 5.10. Consider two-sided reflection in discrete time,

Vn+1 = min
[
b, (Vn + ξn)+

]
. (5.12)

For Theorem 5.6, we take ξ0, ξ1, . . . i.i.d. and E = [0,∞) (not [0, b]!). For y > B,
we then get

Py(R1 ≤ x) = Px(V1 ≥ y) ≤ Px(V1 > b) = 0

for all x, i.e. Py(R1 =∞) = 1. For 0 ≤ y ≤ b, Py(R1 ≤ x) = Px(V1 ≥ y) becomes

P
(
(x+ ξ0)+ ≥ y

)
=

{
1 y = 0,

P(y −X0 ≤ x) 0 < y ≤ b.

Combining these facts show that {Rn} evolves as X̆ as long as Rn ∈ (0, b]. States 0
and∞ are absorbing, and from y > b {Rn} is in the next step absorbed at∞. Thus
for R0 = x ∈ (0, b], absorbtion at 0 before N , i.e. τ ≤ N , cannot occur if (b,∞) is
entered and with Xn = ξ0 + · · ·+ξn−1, τ [u, v) = inf{n ≥ 0 : Xn 6∈ [u, v)}, u ≤ 0 < v,
we get

P0(VN ≥ x) = Px(τ ≤ N)

= P
(
τ [x− b, x) ≤ N, Xτ [x−b,x) ≥ x

)
, (5.13)

P(V ≥ x) = P(Xτ [x−b,x) ≥ x) (5.14)

(note that τ [x− b, x) is always finite).

The Markov process approach of Theorem 5.6 is from Siegmund (1976a), and the
theory is often referred to as Siegmund duality, whereas the recursive approach of
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Theorem 5.8 is from Asmussen & Sigman (1996). None of the approaches generalizes
readily to higher dimension, as illustrated by Blaszczyszyn & Sigman (1999) in their
study of many–server queues. For stochastic recursions in general, see Brandt et al.
(1990) and Borovkov & Foss (1992).

The two–barrier formula (5.14) is implicit in Lindley (1959) and explicit in Sieg-
mund (1976a), but has often been overlooked so that there are a number of alterna-
tive treatments of stationarity in two-barrier models around.

When applying Siegmund duality when T = [0,∞), it is often more difficult
to rigorously identify {Rt} than when T = N. Asmussen (1995) gives a Markov-
modulated generalization for T = [0,∞), and there is some general theory for the
recursive setting in Ryan & Sigman (2000).

Example 5.11. An early closely related and historically important example is
Moran’s model for the dam ([103]), which is discrete-time with the analogue of
Yk having the form Yk = Ak − c.The inflow sequence {An} is assumed i.i.d. and
the release is constant, say c per time unit (if the content just before the release is
x < c, only the amount x is released), and we let b denote the capacity of the dam.
We will consider a slightly more general model where also the release at time n is
random, say Bn rather than c (the sequence {Bn} is assumed i.i.d. and independent
of {An}).

We let QA
n denote the content just before the nth input (just after the (n− 1)th

release) and QB
n the content just after that (just before the (n+ 1)th release). Then

QA
n =

[
QB
n−1 −Bn−1

]+
, (5.15)

QB
n =

(
QA
n + An

)
∧K, (5.16)

QA
n =

[
(QA

n−1 + An−1) ∧K −Bn−1

]+
, (5.17)

QB
n =

(
[QB

n−1 −Bn−1]+ + An
)
∧K. (5.18)

The recursions (5.17), (5.18) are obviously closely related to (3.1), but not a special
case.

The stationary distributions of the recursions (5.17), (5.18) can be studied by
much the same methods as used for (3.1). Consider e.g. (5.18) which can be written
as QB

n = f(QB
n−1,Un−1) where u = (a, b), f(x,u) = ([x− b]+ + a) ∧K and Un−1 =

(An, Bn−1). The inverse function g of f in the sense of Proposition 5.7 is then given
by

g(x, a, b) =





0 x = 0 or x ∈ (0, b], a ≥ b,

x− (a− b) x ∈ (0, b], a < b,

∞ x > b.

.

It follows that the dual process {Rn} started from x evolves as the unrestricted
random walk {(x − A0)+ − Sn}, starting from (x − A0)+ and having random walk
increments Zn = An−Bn−1, and that Pe(QB

n ≥ x) is the probability that this process
will exit (0, K] to the right.
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5.3 Further properties of πb

We first ask when πb has an atom at b, i.e., when πb{b} > 0 so that there is positive
probability of finding the buffer full. The dual question is whether πb{0} > 0. For
the answers, we need the fact that in the finite variation case, the underlying Lévy
process X has the form

X(t) = θt+ S1(t)− S2(t) (5.19)

where S1, S2 are independent subordinators.

Theorem 5.12. (i) In the infinite variation case, πb{b} = πb{0} = 0. In the
finite variation case (5.19):

(ii) πb{b} > 0 and πb{0} = 0 when θ > 0;

(iii) πb{b} = 0 and πb{0} > 0 when θ < 0;

Proof. We have πb{b} = P
(
X
(
τ [0, b)

)
≥ b

)
. In the unbounded variation case,

(−∞, 0) is regular for X, meaning that (−∞, 0) is immediately entered when start-
ing from X(0) = 0 ([94, p. x]), so that in this case X

(
τ [0, b)

)
= 0 and πb{b} = 0.

Thus πb{b} > 0 can only occur in the bounded variation case which is precisely
(5.19). Similarly for πb{0}.

One has
S1(t)/t

a.s.−−→ 0 , S2(t)/t
a.s.−−→ 0, t→ 0 (5.20)

(cf. [11, p. 254]). Thus if θ < 0, X takes on negative values close to arbitrarily close
to t = 0 so that τ [0, b) = 0, X

(
τ [0, b)

)
= 0 and πb{b} = 0.

If θ > 0, we get X(t) > 0 for 0 < t < ε for some ε. This implies that X has a
chance to escape to [b,∞) before hitting (−∞, 0) which entails P

(
X
(
τ [0, b)

)
≥ b
)
> 0

and πb{b} > 0.
Combining these facts with a sign reversion argument yields (ii), (iii).

Corollary 5.13. In the spectrally positive (downward skipfree) case, πb{b} = 0.

Proof. The conclusion follows immediately from Theorem 5.12(i) in the infinite vari-
ation case. In the finite variation case where S2 ≡ 0, our basic assumption that
the paths of X are non-monotonic implies θ < 0, and we can appeal to Theo-
rem 5.12(iii).

The next result relates one- and two-sided reflection.

Theorem 5.14. Assume m = EX(1) < 0 so that π∞ exists, and that X is spec-
trally positive with ν{b} = 0. Then πb is π∞ conditioned to [0, b], i.e. πb(A) =
π∞(A)/π∞[0, b] for A ⊆ [0, b]. Equivalently, πb is the distribution ofM = supt≥0X(t)
conditioned on M ≤ b.

Proof. For x ∈ (0, b), define p1(x) = P
(
X
(
τ [x − b, x)

)
≥ x

)
, p2(x) = P

(
X
(
τ [x −

b, x)
)
≥ b
)
. Then spectral positivity implies that X is downward skipfree so that

p2(x) = p1(x) +
(
1− p1(x)

)
p2(b) , p1(x) =

p2(x)

1− p2(b)
.
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In terms of stationary distributions, this means

πb[x, b] =
π∞[x,∞)

π∞[0, b)
=
π∞[x,∞)

π∞[0, b]
,

where the last equality follows from Corollary 5.13.

Corollary 5.15. Assume m = EX(1) > 0 and that X is spectrally negative with
ν{−b} = 0. Then πb is the distribution of b −M conditioned on M ≥ −b where
M = inft≥0X(t).

6 The loss rate via Itô’s formula

The identification of the loss rate `b of a Lévy process X first appeared in Asmussen
& Pihlsgård [19]. The derivation is based on optional stopping of the Kella-Whitt
martingale followed by lots of tedious algebra, see Section 8. In this section we will
follow an alternative more natural approach presented in Pihlsgård & Glynn [108].
One important point of that paper is that the dynamics of the two-sided reflection
are governed by stochastic integrals involving the feeding process. Thus, all that is
required is that stochastic integration makes sense. Hence, the natural framework is
to take the input X to be a semimartingale. What we will do in the current section
is to solve the more general problem of explicitly identifying the local times L and
U (in terms of X and V ) when the feeding process X is a semimartingale. The main
result in [19] follows easily from what will be presented below.

We start with a brief discussion about semimartingales. A stochastic process X
is a semimartingale if it is adapted, cadlag and admits a decomposition

X(t) = X(0) +N(t) +B(t)

where N is a local martingale, B a process of a.s. finite variation on compacts with
N(0) = B(0) = 0. Alternatively, a semimartingale is a stochastic process for which
the stochastic integral ∫

H(s)dX(s) (6.1)

is well defined forH belonging to a satisfactory rich class of processes (more precisely,
the predictable processes). In (6.1), we will in this exposition takeH to be an adapted
process with left continuous paths with right limits. The class of semimartingales
forms a vector space and contains e.g. all adapted processes with cadlag paths of
finite variation on compacts and Lévy processes. For a thorough introduction to
semimartingales we refer to Protter [113].

Let X and Y be semimartingales. [X,X] denotes the quadratic variation process
of X and [X,X]c is the continuous part of [X,X]. [X, Y ] is the quadratic covariation
process (by some authors referred to as the bracket process) of X and Y .

Section 4 contains a discussion concerning the existence and uniqueness of the
solution (V, L, U) to the underlying Skorokhod problem in which no assumptions
about the structure of X are made, so it applies to the case where X is a general
semimartingale. We will start by presenting two preliminary results.
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Lemma 6.1. V , L and U are semimartingales.

Proof. Since L and U are cadlag, increasing and finite (thus of bounded variation)
it follows that they are semimartingales. Semimartingales form a vector space, so
we are done.

Lemma 6.2. It holds that [V, V ]c = [X,X]c.

Proof. L−U is cadlag of bounded variation and it follows by Theorem 26, p. 71, in
[113] that [L − U,L − U ]c = 0 which is well known to imply [X,L − U ]c = 0, see,
e.g., Theorem 28, p. 75 in [113]. The claim now follows from

[V, V ]c = [X + L− U,X + L− U ]c

= [X,X]c + [L− U,L− U ]c + 2[X,L− U ]c = [X,X]c.

We now establish the link between (L,U) and X. We choose to mainly focus on
the local time U , by partly eliminating L, but it should be obvious how to obtain
the corresponding results for L.

Theorem 6.3. Let X be a semimartingale which is reflected at 0 and b. Then the
following relationship holds.

2bU(t) = V (0)2 − V (t)2 + 2

∫ t

0+

V (s−) dX(s) + [X,X]c(t) + JR(t) (6.2)

where JR is pure jump, increasing and finite with

JR(t) =
∑

0<s≤t
ϕ
(
V (s−),∆X(s)

)
, (6.3)

where

ϕ(x, y) =





−(x2 + 2xy) if y ≤ −x,
y2 if − x < y < b− x,
2y(b− x)− (b− x)2 if y ≥ b− x.

Proof. By the definition of the quadratic variation process [V, V ] and Lemma 6.2,

V (t)2 − V (0)2 − 2

∫ t

0+
V (s−)dV (s) = [V, V ](t) = [X,X]c(t) +

∑

0<s≤t
(∆V (s))2. (6.4)

Furthermore,

dV (t) = dX(t) + dL(t)− dU(t) and V (s−) = V (s)−∆V (s),

so it follows by the formulation of the Skorokhod problem that
∫ t

0+
V (s−)dV (s)

=

∫ t

0+
V (s−)dX(s) +

∫ t

0+
(V (s)−∆V (s))dL(s)−

∫ t

0+
(V (s)−∆V (s))dU(s)

=

∫ t

0+
V (s−)dX(s)−

∫ t

0+
∆V (s)dL(s)− bU(t) +

∫ t

0+
∆V (s)dU(s)

=

∫ t

0+
V (s−)dX(s)−

∑

0<s≤t
∆V (s)∆L(s)− bU(t) +

∑

0<s≤t
∆V (s)∆U(s). (6.5)
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(6.2) and (6.3) follow by combining (6.4) and (6.5) with the fact that

∆V (s) = max(min(∆X(s), b− V (s−)), 0) + min(max(∆X(s),−V (s−)), 0),

∆V (s)∆L(s) = −V (s−)(−min(∆X(s) + V (s−), 0)),

∆V (s)∆U(s) = (b− V (s−)) max(∆X(s) + V (s−)− b, 0).

Since 0 ≤ ϕ(x, y) ≤ y2 it follows that JR(t) is increasing and that

JR(t) ≤
∑

0<s≤t
(∆X(s))2 ≤ [X,X](t) <∞.

We will need the next result in order to go from the path-by-path representation
in Theorem 6.3 to the loss rate `b.

Lemma 6.4. Suppose that X is a Lévy process with characteristic triplet (µ, σ, ν)
and E|X(1)| <∞. Let

I(t) =

∫ t

0+

V (s−) dX(s).

If V (0)
D
= π it holds that EI(t) = tmEV (0).

Proof. Let X̃(t) = X(t)−∑0<s≤t ∆X(s)1(|∆X(s)| ≥ 1), so that

I(t) =

∫ t

0+

V (s−)dX̃(s) +
∑

0<s≤t
V (s−)∆X(s)1(|∆X(s)| ≥ 1).

We let Ỹ (t) = X̃(t)− tEX̃(1). Then Ỹ is a martingale (and thus a local martingale)
and it follows by Theorem 29, p. 128, in [113] that

J(t) =

∫ t

0+

V (s−) dỸ (s)

is also a local martingale. Theorem 29, p. 75, in [113] tells us that

[J, J ](t) =

∫ t

0+

V (s−)2d[Ỹ , Ỹ ](s) =

∫ t

0+

V (s−)2d[X̃, X̃](s) ≤ b2[X̃, X̃](t)

= b2
(
σ2t+

∑

0<s≤t
(∆X(s))2

1(|∆X(s)| < 1)
)

and it follows that E[J, J ](t) <∞ for all t ≥ 0, which implies that J is a martingale,
see Corollary 3, p. 73 in [113]. Then EJ(t) = EJ(0) = 0, and thus

E
∫ t

0+

V (s−) dX̃(s) = E
∫ t

0+

V (s−)EX̃(1) ds = tEV (0)EX̃(1).

Furthermore, since
∑

0<s≤t ∆X(s)1(|∆X(s)| ≥ 1) is a compound Poisson process
and V (s−) is independent of ∆X(s), we get that

E
∑

0<s≤t
V (s−)∆X(s)1

(
|∆X(s)| ≥ 1

)
= tEV (0)

(∫ ∞

1

x ν(dx) +

∫ −1

−∞
x ν(dx)

)
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and it follows that

EI(t) = tEV (0)EX̃(1) + tEV (0)

(∫ ∞

1

x ν(dx) +

∫ −1

−∞
x ν(dx)

)
= tmEV (0).

The next corollary is an easy consequence of Theorem 6.3 and Lemma 6.4 and
is precisely the main result in the paper [19]. Note that as we keep b fixed it is no
restriction to assume that the support of ν is [−a,∞)\{0} for some a ≥ b. Otherwise
we just truncate ν at −a (we then get a point mass of size ν((−∞,−a]) at −a). The
truncation does not affect V and hence not `b.

Corollary 6.5. Let X be a Lévy process with characteristic triplet (µ, σ, ν). If∫∞
1
yν(dy) =∞, then `b =∞ and otherwise

`b =
1

2b

{
2mEV + σ2 +

∫ b

0

π(dx)

∫ ∞

−∞
ϕ(x, y)ν(dy)

}
. (6.6)

Proof. The first part is obvious. The second part follows immediately from (6.2) and
(6.3) and Lemma 6.4 if we note that for a Lévy process [X,X]c(t) = σ2t.

7 Two martingales

We will need nothing more sophisticated here than taking the property of {M(t)}t≥0

to be a martingale as

E
[
M(t+ s)

∣∣F(t)
]

= M(t), t ≥ 0, s > 0 , (7.1)

where
{
F(t)

}
t≥0

is the natural filtration generated by the Lévy process, i.e. F(t) =

σ
(
X(v) : 0 ≤ v ≤ t

)
.

The applications of martingales in the present context are typically optional
stopping, i.e. the identity EM(τ) = M(0) for a stopping time τ when M(0) is
deterministic or EM(τ) = EM(0) in the general case. This is not universally true,
but conditions need to be verified, for example

E sup
t≤τ
|M(t)| <∞ . (7.2)

The Wald martingale

A classical example in the area of Lévy processes is the Wald martingale given by

M(t) = eαX(t)−tκ(α) ; (7.3)

The proof that this is a martingale is elementary using the property of independent
stationary increments and the definition of the Lévy exponent κ.

Remark 7.1. For the Wald martingale eθX(t)−tκ(θ), there is an usually easier ap-
proach to justify stopping than (7.2): consider the exponentially tilted Lévy process
with κθ(α) = κ(α + θ) − κ(θ). Then optional stopping is permissible if and only if
Pθ(τ <∞) = 1. See [11, p. 362].
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Example 7.2. Consider Brownian motion with drift µ and variance constant σ2,
and the problem of computing the two-sided exit probability

P
(
X
(
τ [x− b, x)

)
≥ x

)
= πb[x, b]

occurring in the calculation of the stationary distribution πb.
We have κ(α) = αµ + α2σ2/2, and take α = γ = −2µ/σ2 as the root of the

Lundberg equation κ(α) = 0. Then the martingale is eγX(t). Condition (7.2) holds
for τ = τ [x− b, x) since x− b ≤ X(t) ≤ x for t ≤ τ [x− b, x). Letting

p+(x) = P
(
X
(
τ [x− b, x)

)
≥ x

)
= P

(
X
(
τ [x− b, x)

)
= x

)
,

p−(x) = P
(
X
(
τ [x− b, x)

)
< x− b

)
= P

(
X
(
τ [x− b, x)

)
= x− b

)

(note the path properties of Brownian motion for the second expression!), optional
stopping thus gives

1 = M(0) = EM
(
τ [x− b, x)

)
= p+(x)eγx + p−(x)eγ(x−b) .

Together with 1 = p+(x) + p−(x) this gives

p+(x) =
1− eγ(x−b)

eγx − eγ(x−b) =
e−γx − e−γb

1− e−γb
. (7.4)

The last expression identifies πb as the distribution of an exponential r.v. W condi-
tioned to [0, b] when γ > 0, (i.e. µ < 0) and of −W when γ < 0 (i.e. µ > 0).

Example 7.3. Consider again the Brownian setting, but now with the problem of
computing quantities like

r+ = E[e−qτ ; X(τ) = v] , r− = E[e−qτ ; X(τ) = u] , r = r+ + r− = Ee−qτ

where τ = inf{t : X(t) 6∈ [u, v]} with u < 0 < b and q > 0, as occurring in the
calculation of the scale function.

We take α as root of
q = κ(α) = αµ+ α2σ2/2

(rather than the Lundberg equation κ(α) = 0). Since q > 0, there are two roots, one
positive and one negative,

θ+ = θ+(q) =
−µ+

√
µ2 + 2σ2q

2
, θ− = θ−(q) =

−µ−
√
µ2 + 2σ2q

2
.

We therefore have two Wald martingales at disposal, eθ
+X(t)−qt and eθ

−X(t)−qt.
Instead of verifying condition (7.2) (trivial for θ+ but not θ−!), it is easier to note

that in the present context, we have τ <∞ for all µ, and this implies the conditions
of Remark 7.1. Optional stopping thus gives

1 = r+eθ
+v + r+r−eθ

+v , 1 = r+eθ
−v + r+r−eθ

−v .

These two linear equations can immediately be solved for r+, r−, and then also
r = r+ + r− is available.
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Example 7.4. Consider again the two-sided exit problem, but now with exponential
(δ) jumps at rate λ in the positive directions added to the Brownian motion.

Inspired by Examples 7.2, 7.3 we look for solutions of the Lundberg equation

0 = κ(α) = αµ+ α2σ2/2 + λ
δ

δ − α .

This is a cubic, which looks promising since we have three unknowns, the probability
of exit below at u, the probability of continuous exit above at v, and the probability
of exit above by a jump. However, only two of the three roots θ leads to a permissible
Wald martingale; since logEeαX(1) is convex, there is at most two roots in the interval
where this function is finite.

The Kella-Whitt martingale

Consider a modification Z(t) = X(t) + B(t) of the Lévy process, where {B(t)}t≥0

is adapted with D-paths, locally bounded variation, continuous part {Bc(t)}, and
jumps ∆B(s) = B(s)−B(s−). The Kella-Whitt martingale

κ(α)

∫ t

0

eαZ(s) ds+ eαZ(0) − eαZ(t)

+ α

∫ t

0

eαZ(s) dBc(s) +
∑

0≤s≤t
eαZ(s)(1− e−α∆B(s)) . (7.5)

Since the Kella-Whitt martingale (ii) is less standard than the Wald martin-
gale (i), we add some discussion and references. The first occurence is in Kella &
Whitt [84] where it was identified as a rewriting of the stochastic integral

∫ t

0

exp
{
α
(
X(s−) +B(s−)

)
+ sκ(α)

}
dW (s)

whereW is the Wald martingale. The stochastic integral representation immediately
gives the local martingale property. To proceed from this, much subsequent work
next shows the global martingale property by direct calculations specific for the
particular application. However, recently Kella & Boxma [80] showed that this is
automatic under minor conditions.

A simple but still useful case is the Kella-Whitt martingale with B(t) ≡ 0,

κ(α)

∫ t

0

eαX(s) ds+ eαx − eαX(t) (7.6)

A survey of applications of the Kella-Whitt martingale is in Asmussen [11, IX.3];
see also Kyprianou [94], [95].

8 The loss rate via the Kella-Whitt martingale

In this section we summarize the original derivation of the loss rate ` = `b which is
presented in Asmussen & Pihlsgård [19]. It is essentially based on optional stopping
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of the Kella-Whitt martingale for V . As stated in the Introduction and in Section 6,
this is less straightforward than the direct Itô integration method used in Section 6.
It is not difficult to see why the latter approach leads more directly to the result:
the Kella-Whitt martingale, see Kella & Whitt [84], is itself obtained as a stochastic
integral with respect to the Wald martingale (indexed by, say, α) for V , so this
method implicitly relies on Itô’s formula and, more importantly, there is introduced
an arbitrariness via α which is removed by letting α → 0. This requires a delicate
analysis, which is to a large extent based on Taylor expansions and tedious algebra,
and hence of limited probabilistic interest. This is perhaps the most serious drawback
of the original approach. However, the martingale technique also has advantages.
E.g., if the process X is such that the equation κ(α) = 0 has a non-zero root γ, we
obtain an alternative formula for `, see Theorem 8.6 below, which turns out to be
very useful when we derive asymptotics for `b as b→∞ when X is light tailed. We
see no immediate way of deriving this result directly via Itô’s formula.

To follow the exposition in [19], we need to introduce some further notation.
First, we split L and U into their continuous and jump parts, i.e.,

L(t) = Lc(t) + Lj(t) and U(t) = Uc(t) + Uj(t) (8.1)

where Lc(t) is the continuous part of L, Lj(t) the jump part etc., i.e., Lj(t) =∑
0≤s≤t ∆L(s) and Lc(t) = L(t) − Lj(t). Further, we treat the contributions to L

and U coming from small and large jumps of X separately: let

∆L(s) = ∆L(s)1
(
−k ≤ ∆X(s) ≤ 0

)
, ∆L(s) = ∆L(s)1

(
∆X(s) < −k

)
,

∆U(s) = ∆U(s)1
(
0 ≤ ∆X(s) ≤ k

)
, ∆U(s) = ∆U(s)1

(
∆X(s) > k

)

where k is a constant such that k > max(1, b). Further, we let

`bj = EUj(1) , `bc = EUc(1) , `bj = E
∑

0≤s≤1

∆U(s) , `
b

j = E
∑

0≤s≤1

∆U(s) ,

and similarly at 0. Clearly `bj = `bj + `
b

j and `0
j = `0

j + `
0

j . The Lévy exponent κ(α)
can be rewritten as

ckα + σ2α2/2 +

∫ ∞

−∞

[
eαx − 1− αx1

(
|x| ≤ k

)]
ν(dx), (8.2)

where ck = c+
∫
|y|>k y ν(dy).

The paper [19] relies on the original reference on the Kella-Whitt local martin-
gale associated with Lévy processes, [84], and on Asmussen & Kella [18] for the
generalisation to a multidimensional local martingale associated with Markov addi-
tive processes with finite state space Markov modulation. However, it was recently
discovered in Kella & Boxma [80] that without any further assumptions, these local
martingales are in fact martingales. This very useful result makes it possible to keep
the treatment below slightly shorter than what was presented in [19].

The first step in the analysis is to show that `0 and `b are well defined if the
process X is sufficiently well behaved.

Lemma 8.1. If E|X(1)| <∞ then EL(t) <∞ and EU(t) <∞ (for all t).
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Proof. Assume (without loss of generality) that V (0) = 0. Let τ(0) = 0 and, for
j ≥ 1, υ(j) = inf{t > τ(j − 1) : V (t) = b}, τ(j) = inf{t > υ(j) : V (t) = 0}. We
view V as regenerative with ith cycle equal to [τ(i − 1), τ(i)). Let n(t) denote the
number of cycles completed in [0, t]. Then

L(t) =

n(t)∑

i=1

Ci +R(t)

where Ci is the contribution to L(t) from the ith cycle and R(t) is what comes
from [τ(n(t)), t]. Let m(t) be the local time corresponding to X reflected at 0. Then
Ci

D
= m(υ(1)) + J1 where J1 comes from a jump of X ending the cycle. It is known,

see Lemma 3.3 in [11], that Em(t) <∞ and this together with E|X(1)| <∞ yields
ECi <∞ and ER(t) <∞. Furthermore, E(τ(i)− τ(i−1)) > 0 and this implies that
En(t) <∞, see Proposition 1.4 in [11]. It now follows from Wald’s identity that

EL(t) = En(t)EC1 + ER(t) <∞.

EU(t) <∞ is now immediate from the formulation of the Skorokhod problem.

The next step is the construction of the Kella-Whitt martingale for the reflected
process V .

Proposition 8.2. Assume that E|X(1)| < ∞. For each t, let M(t) be the random
variable

κ(α)

∫ t

0

eαV (s)ds+ eαV (0) − eαV (t)

+α

∫ t

0

eαV (s)dLc(s) +
∑

0≤s≤t
eαV (s)(1− e−α∆L(s))

−α
∫ t

0

eαV (s)dUc(s) +
∑

0≤s≤t
eαV (s)(1− eα∆U(s)).

Then

M(t) = κ(α)

∫ t

0

eαV (s)ds+ eαV (0) − eαV (t) + αLc(t) +
∑

0≤s≤t
(1− e−α∆L(s))

− αeαbUc(t) + eαb
∑

0≤s≤t
(1− eα∆U(s)) (8.3)

and M is a zero mean martingale.

Proof. L and U solve the Skorokhod problem stated in the Introduction, so the first
claim is clearly true. L−U is of bounded variation and it follows by what was proven
in [80] that M is a martingale.

We proceeed by stating two lemmas.

37



Lemma 8.3. `b satisfies the following equation:

α(1− eαb)`b = − κ(α)EeαV (0) + αEX(1)− αeαb`
b

j + α`
0

j

+
α2

2
E
∑

0≤s≤1

(∆U(s))2 +
α2

2
E
∑

0≤s≤1

(∆L(s))2

− eαbE
∑

0≤s≤1

(1− eα∆U(s))− E
∑

0≤s≤1

(1− e−α∆L(s)) + o(α2),

(8.4)

where o(α2)/α2 → 0 if α→ 0.

Proof. If we take t = 1 in Proposition 8.2 and use the stationarity of V , we get

0 = κ(α)EeαV (0)+α`0
c+E

∑

0≤s≤1

(1−e−α∆L(s))−αeαb`bc+eαbE
∑

0≤s≤1

(1−eα∆U(s)). (8.5)

We write
∑

0≤s≤1

(1− eα∆U(s)) =
∑

0≤s≤1

(1− eα∆U(s)) +
∑

0≤s≤1

(1− eα∆U(s)), (8.6)

∑

0≤s≤1

(1− e−α∆L(s)) =
∑

0≤s≤1

(1− e−α∆L(s)) +
∑

0≤s≤1

(1− e−α∆L(s)) (8.7)

and apply the expansion

eαx = 1 + αx+
(αx)2

2
+

(αx)3

6
eθαx, θ ∈ (0, 1) (8.8)

to the first parts of the r.h.s. of (8.6) and (8.7) and get for the part in (8.6):

eαbE
∑

0≤s≤1

(1− eα∆U(s)) = eαbE
(
−α

∑

0≤s≤1

∆U(s)− α2

2

∑

0≤s≤1

(∆U(s))2
)

+ o(α2)

= −αeαb`bj − eαb
α2

2
E
∑

0≤s≤1

(∆U(s))2 + o(α2)

= −αeαb(`bj − `
b

j)−
α2

2
E
∑

0≤s≤1

(∆U(s))2 + o(α2), (8.9)

because E
∑

0≤s≤1 α
3(∆U(s))3eθα∆U(s)/6 = o(α2), `bj = `bj + `

b

j and eαbα2/2 = α2/2 +
o(α2). We proceed similarly for the part in (8.7) and get

E
∑

0≤s≤1

(1− e−α∆L(s)) = α(`0
j − `

0

j)−
α2

2
E
∑

0≤s≤1

(∆L(s))2 + o(α2). (8.10)

If we combine (8.5), (8.6), (8.7), (8.9) and (8.10) we get

0 = κ(α)EeαV (0) + α`0 − αeαb`b − α`0

j + αeαb`
b

j −
α2

2
E
∑

0≤s≤1

(∆U(s))2

− α2

2
E
∑

0≤s≤1

(∆L(s))2 + eαbE
∑

0≤s≤1

(1− eα∆U(s)) + E
∑

0≤s≤1

(1− e−α∆L(s)) + o(α2).

The claim now follows if we make the substitution `0 = `b − EX(1) and rearrange
terms.
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Lemma 8.4. Let, for x > 0, ν(x) = ν(x,∞) and, for x < 0, ν(x) = ν(−∞, x). In
stationarity it then holds that as α→ 0,

κ(α)EeαV (t)

= o(α2) +

∫ b

0

eαxπ(dx)

∫ ∞

−∞
eαy1(|y| ≥ k)ν(dy)

−
∫ ∞

−∞
I(|y| ≥ k)ν(dy) + α

(
ck −

∫ b

0

xπ(dx)

∫ ∞

−∞
1(|y| ≥ k)ν(dy)

)

+ α2

(
ck

∫ b

0

xπ(dx) + σ2/2 +

∫ k

−k
y2/2ν(dy)

−
∫ b

0

x2/2π(dx)

∫ ∞

−∞
1(|y| ≥ k)ν(dy)

)
,

(8.11)

eαbE
∑

0≤s≤1

(1− eα∆U(s)) = eαb
∫ b

0

π(dx)

∫ ∞

k

(1− eα(y−b+x))ν(dy)

= (1 + αb+ α2b2/2)ν(k)−
∫ b

0

eαxπ(dx)

∫ ∞

k

eαyν(dy) + o(α2), (8.12)

E
∑

0≤s≤1

(1− e−α∆L(s)) =

∫ b

0

π(dx)

∫ −k

−∞
(1− eα(x+y))ν(dy)

= ν(−k)−
∫ b

0

eαxπ(dx)

∫ −k

−∞
eαyν(dy) + o(α2), (8.13)

αeαb`
b

j = αeαb
∫ b

0

π(dx)

∫ ∞

k

(y − b+ x)ν(dy)

= (α + α2b)

∫ b

0

π(dx)

∫ ∞

k

(y − b+ x)ν(dy) + o(α2), (8.14)

α`
0

j = −α
∫ b

0

π(dx)

∫ −k

−∞
(x+ y)ν(dy), (8.15)

αm = αck + α

∫ ∞

−∞
y1(|y| ≥ k)ν(dy), (8.16)

α2

2
E
∑

0≤s≤1

(∆U(s))2 =
α2

2

∫ b

0

π(dx)

∫ k

b−x
(y − b+ x)ν(dy), (8.17)

α2

2
E
∑

0≤s≤1

(∆L(s))2 =
α2

2

∫ b

0

π(dx)

∫ −x

−k
(x+ y)2ν(dy). (8.18)

Proof. Clearly EeαV (s) =
∫ b

0
eαxπ(dx). (8.11) follows if we use the representation for

κ(α) in (8.2) and expand the integrands corresponding to the compact sets [−k, k]
and [0, b] according to (8.8). The remaining statements all follow by conditioning on
V (s−) and applying (8.8) where appropriate.
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We are now ready to identify `b in terms of π and (c, σ2, ν). We remind of the
remark just before Corollary 6.5.

Theorem 8.5. If
∫∞

1
yν(dy) =∞, then `b =∞ and otherwise

`b =
1

2b

{
2mEV + σ2 +

∫ b

0

π(dx)

∫ ∞

−∞
ϕ(x, y)ν(dy)

}
, (8.19)

where

ϕ(x, y) =





−(x2 + 2xy) if y ≤ −x,
y2 if − x < y < b− x,
2y(b− x)− (b− x)2 if y ≥ b− x.

Proof. The first claim is obvious. We use (8.4) and identify the terms in the right
hand side via Lemma 8.4 and get,

α(1− eαb)`b = −ckα2

∫ b

0

xπ(dx)− σ2α2

2
− α2

2

∫ b

0

π(dx)

∫ b−x

0

y2ν(dy)

− α2

2

∫ b

0

π(dx)

∫ 0

−x
y2ν(dy) + (ν(k) + ν(−k))

α2

2

∫ b

0

x2π(dx)

+
α2

2

∫ b

0

π(dx)

∫ k

b−x
((x− b)2 + 2y(x− b))ν(dy)− α2b

∫ ∞

k

yν(dy)

+
α2

2

∫ b

0

π(dx)

∫ −x

−k
(x2 + 2xy)ν(dy) + α2b

∫ b

0

(b− x)ν(k) + o(α2). (8.20)

We divide both sides of (8.20) by α(1 − eαb) and let first α → 0 and then k → ∞
and get the limit (8.19) (note that ck → EX(1) as k →∞).

The next result, which follows almost directly from the proof of Lemma 8.3, gives
an alternative expression for `b whenever we can find a non-zero root γ of κ(α) = 0
(a genuine root in the sense that the real part as well as the imaginary part of
EeγX(1) are finite, cf. Lemma 10.7 where the meaning of κ(α) = 0 is different). Note
that in the original version (Theorem 3.2 in [19]) it is required that γ is real but this
is not necessary.

Theorem 8.6. Assume that there exists a non-zero root γ of the equation κ(α) = 0.
Then

`b =
1

eγb − 1
{eγbI1 + I2 − EX(1)} (8.21)

where

I1 =

∫ b

0

π(dx)

∫ ∞

b−x
((y − b+ x) + γ−1(1− eγ(y−b+x)))ν(dy)

I2 =

∫ b

0

π(dx)

∫ −x

−∞
((x+ y) + γ−1(1− eγ(x+y)))ν(dy)
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Proof. Let ε > 0. We truncate the Lévy measure at ε and −ε. By arguing precisely
as when we derived (8.4) and taking α = γ, we get

γ(eγb − 1)`b = −γEX(1) + eγbIε1 + Iε2 + O(ε), (8.22)

where

Iε1 =

∫ b

0

π(dx)

∫ ∞

(b−x)∨ε
(γ(y − b+ x) + (1− eγ(y−b+x)))ν(dy),

Iε2 =

∫ b

0

π(dx)

∫ −(x∨ε)

−∞
(γ(x+ y) + (1− eγ(x+y)))ν(dy),

and the claim follows if we divide both sides of (8.22) by γ(eγb − 1), let ε ↓ 0 and
apply monotone convergence.

The identification of `b is almost trivial in the discrete time case, see Section 3.
However, the continuous time case is much more involved and less intuitive, no
matter the choice of method for deriving the expression(s) for `b (the direct Itô
approach presented in Section 6 or the methods used in the current section). In
order to provide the presentation with some intuition, we present an alternative
heuristic derivation of the formula for `b as given in (8.21). Recall the definitions
of `bc, `bj etc. given above. We will derive four equations involving `bc, `bj, `0

c and `0
j

and solve for the unknowns. The first equation follows directly from the Skorokhod
problem formulation and the stationarity of V :

`0
c + `0

j − `bc − `bj = −m. (8.23)

The second equation is

`bj =

∫ b

0

π(dx)

∫ ∞

b−x
(y − b+ x)ν(dy) (8.24)

and the third is

`0
j = −

∫ b

0

π(dx)

∫ −x

−∞
(x+ y)ν(dy). (8.25)

In order to obtain the fourth equation, we take α = γ in (8.3), which yields

γ`0
c − γeγb`bc = −eγb

∫ b

0

π(dx)

∫ ∞

b−x
(1− eγ(y−b+x))ν(dy)

−
∫ b

0

π(dx)

∫ −x

−∞
(1− eγ(x+y))ν(dy). (8.26)

(8.24), (8.25) and (8.26) apply at least if the jump part of X is of bounded variation,
i.e., if

∫ 1

−1
|x|ν(dx) < ∞. In this case they follow by straightforward conditioning

on the value of V immediately prior to a jump of X. By combining (8.23), (8.24),
(8.26) and (8.26), we may identify the unknowns and the expression for `b given in
(8.21) follows from `b = `bc + `bj.
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Example 8.7. Assume that X is Brownian motion with drift µ and variance σ2,
i.e., κ(α) = µα + σ2α2/2. Then γ = −2µ/σ2 and Theorem 8.6 gives us `b =
−µ/(e−2bµ/σ2 − 1).

Example 8.8. Suppose that X is a strictly stable Lévy process with index α ∈
(0, 2) \ {1} (note that if α = 1, then `b =∞ and if α = 2, then `b = σ2/2b), i.e.,

ν(dx) =

{
c+x

−(α+1)dx if x > 0,

c−|x|−(α+1)dx if x < 0,

where c+, c− ≥ 0 are such that c+ + c− > 0; see, e.g., Bertoin [28], pp. 216–218. Let
β = (c+ − c−)/(c+ + c−) and ρ = 1/2 + (πα)−1 arctan(β tan(πα/2)).

If α ∈ (0, 1) then `b is 0 if β = −1 (then X is the negative of a subordinator)
and ∞ otherwise. We now consider the case α ∈ (1, 2), which implies that EX(1) =
σ = 0. It follows from Theorem 1 in Kyprianou [93] and some rescaling manipulations
that if X is not spectrally one-sided, i.e., if ρ ∈ (1− 1/α, 1/α), then

π(dx) = (bB(αρ, α(1− ρ)))−1(1− x/b)αρ−1(x/b)α(1−ρ)−1dx,

where B(·, ·) is the beta function. Further, it turns out that in this example,
∫ ∞

−∞
ϕ(x, y)ν(dy) = 2(α(α− 1)(2− α))−1(c−x

2−α + c+(b− x)2−α),

and it follows from Theorem 8.5 (Theorem 3.1 in [19]) that

`b =
c−B(2− αρ, αρ) + c+B(2− α(1− ρ), α(1− ρ))

B(αρ, α(1− ρ))α(α− 1)(2− α)bα−1
.

9 Phase-type jumps

A key step in the analysis of two-sided reflection is the computation of the stationary
distribution or equivalently two-sided exit probabilities. This is not possible in gen-
eral, but requires additional structure. One example is the spectrally negative case
with the scale function available. Another one, that we concentrate on here, is phase-
type jumps in both directions and an added Brownian component. This class of Lévy
models has the major advantage of being dense (in the sense of D-convergence) in
the class of all Lévy processes. Further, not only are explicit computations available
for two-sided exit probabilities but also in a number of other problems standard
in fluctuation theory for Lévy processes, see the survey in Asmussen [12] and the
extensive list of references there.

9.1 Phase-type distributions

Phase-type distributions are absorption time distributions in finite continuous-time
Markov processes (equivalently, lifelength distributions in terminating finite Markov
processes). Let {J(t)}t≥0 be Markov with a finite state space E ∪ {∆} such that
∆ is absorbing and the rest transient. I.e., the process ends eventually up in ∆ so
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that the absorption time (lifetime) ζ = inf{t : J(t) = ∆} is finite a.s. For i, j ∈ E,
i 6= j, write tij for the transition rate i → j and ti for the transition rate i → ∆.
Define tii = ti +

∑
j∈E and let T be the E ×E matrix with ijth element tij. If α is

an E-row vector with elements αi summing to 1, we then define a phase-type (PH)
distribution F with representation (E,α,T ) (or just (α,T )) as the distribution of
ζ corresponding to the initial distribution Pα of {J(t)} given by Pα

(
J(0) = i

)
= 1.

The situation is illustrated in the following figure, where we have represented
the states by colored bullets, such that ∆ corresponds to black. The process can
be illustrated by a traditional graph, as above the horizontal line, or, as below, as
a line of length ζ with segments colored according to the sample path. This last
representation is the one to be used in subsequent figures.

•
•
•
•

0 ζ

Figure 3

Analytic expressions for PH distributions, say for the p.d.f., c.d.f., etc., typically
have matrix form. All that will matter to us is the form of the m.g.f. of PH(α,T ),

Eesζ = α(−sI − T )−1t , (9.1)

where t is the column vector with elements ti (the exit rate vector).
The exponential distribution corresponds to E having only one state, a mixture

of exponentials to tij = 0 for i 6= j, and an Erlang(p, δ) distribution (a gamma(p, δ)
distribution) to E = {1, . . . , p}, ti(i+1) = δ for i < p, all other off-diagonal elements
0, α = (1 0 . . . 0).

9.2 The PH Lévy model

Any one-point distribution, say at z > 0, is the limit as p→∞ of the Erlang(p, p/z)
distribution. The PH class is closed under mixtures, and so its closure contains all
distributions on (0,∞) with finite support. Hence the PH class is dense.

The class of compound Poisson processes is dense in D in the class of Lévy
processes. Hence the denseness properties of PH imply that the class of differences
of two compound Poisson processes with PH jumps are dense. In our key examples,
we will work in this class with an added Brownian component,

X(t) = µt+ σB(t) +

N+(t)∑

i=1

Y +
i −

N−(t)∑

j=1

Y −j (9.2)
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whereN± is Poisson(λ±) and the Y ± PH(E±,α±,T±), with n± states. Then by (9.1),
we have (in obvious notation) that

κ(s) = µs+ σ2s2/2

+ λ+
[
α+(−sI+ − T+)−1t+ − 1

]
+ λ−

[
α−(sI− − T−)−1t− − 1

]

where t+, t− are the exit vectors (minus the row sums of the phase generators).
Expanding the inverses as ratios between minors and the determinant, it follows

that κ(s) = r1(s)/r2(s) where r1, r2 are polynomials, with degree n+ + n− of

r2(s) = det(−sI+ − T+) det(sI− − T−)

and degree n+ + n−+ 2 of r1 if σ2 > 0, n+ + n−+ 1 if σ2 = 0, µ 6= 0, and n+ + n− if
σ2 = 0, µ = 0. Obviously, κ(s) therefore has an analytic continuation to the whole of
the complex plane with the zeros of r2 removed.This representation is fundamental
for the paper. We further let

Θ = {s ∈ C : Ee<(s)X(1) <∞} ;

then Θ is a strip of the form Θ =
{
s ∈ C : θ < <(s) < θ

}
for suitable θ < 0 < θ

(−θ is the eigenvalue of largest real part of T+ and θ the eigenvalue of largest real
part of T−).

The situation is illustrated in Fig. 4. The green-shaded area is the strip Θ ⊂ C
where the m.g.f. converges. The red squares are the singularities, i.e. the roots of r2

or, equivalently, the union of the sets of roots of det
(
−sI+−T+

)
and det

(
sI−−T−

)
.

The blue circles are the roots of r1 or, equivalently, of κ which will show up in
numerous computational schemes of the paper.

 θ
1

 θ
20

0

Figure 4: Features of κ

To avoid tedious distinctions between the various cases arising according to
whether σ2, µ are non-zero or not, we will assume that σ2 > 0. This assumption has
a further motivation from a common procedure (e.g. Asmussen and Rosinski [20])
of replacing small jumps by a Brownian motion with the same mean and variance.

44



9.3 Two-sided exit

Recall that τ [a, b) = inf{t ≥ 0 : X(t) 6∈ [a, b)} with a ≤ 0 < b; we want to compute
P
(
X
(
τ [a, b)

)
≥ b
)
.

Write

p+
c = P

(
X
(
τ [a, b)

)
= b
)
, p−c = P

(
X
(
τ [a, b)

)
= a
)
,

p+
i = P

(
X
(
τ [a, b)

)
> b, upcrossing occurs in phase i

)
, i = 1, 2, . . . , n+,

p−j = P
(
X
(
τ [a, b)

)
< a, downcrossing occurs in phase j

)
, j = 1, 2, . . . , n− .

In more detail, we can imagine each upward jump of the process to be governed by
a terminating Markov process J with generator T+, and if the first exit time from
[a, b) is t, ‘upcrossing in phase i’ then means J

(
b −X(τ [a, b)−)

)
= i (similarly for

the downward jumps). See Fig. 5 where F+ has two phases, red and green, and F−
just one, blue (we denote by F± the distributions of Y ±); thus on the figure, there
is upcrossing in the green phase.

b

a

0

Figure 5: The two-sided exit problem

We have P
(
X
(
τ [a, b)

)
≥ b
)

= p+
c +p+

1 + · · ·+p+
n+ and need n+ +n−+2 equations

to be able to solve for the unknowns. The first equation is the obvious

p+
c +

n+∑

i=1

p+
i + p−c +

n−∑

j=1

p−j = 1.

The following notation will be used. Let e+
i , e

−
i denote the ith unit row vec-

tors and let F̂±i [s] = e±i (−sI± − T±)−1t± denote the m.g.f. of the phase-type
distributions F±i with initial vector e±i and phase generator T±. Let further 0 =
ρ1, ρ2, . . . , ρn++n++2 denote the roots of κ(ρ) = 0, i.e., of the polynomial equation
r1(ρ) = 0.

Heuristics via the Wald martingale

If the drift κ′(0) is non-zero, a γ 6= 0 with EeγX(1) <∞, κ(γ) = 0 exists and we can
take ρ1 = 0, ρ2 = γ. Thus eρ2X(t) is an (integrable) martingale. Optional stopping
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at τ [a, b) then yields 1 = Eeρ2X(τ [a,b)), which, taking over- and undershoots into
account, means

1 = eρkb
(
p+
c +

n+∑

i=1

p+
i F̂

+
i [ρk]

)
+ eρka

(
p−c +

n−∑

j=1

p−j F̂
−
j [−ρk]

)
(9.3)

for k = 2. This is one equation more, but only one. If ρk, k > 2, is one of the
remaining n+ + n− roots and E|eρkX(1)| < ∞, we can then proceed as for ρk to
conclude that (9.3) holds also for this k, and get in this way potentially the needed
n+ +n− remaining equations. But the problem is that typically E|eρkX(1)| <∞ fails.
Now both sides of (9.3) are analytic functions. But the validity for two k is not
enough to apply analytic continuation.

Computation via the Kella-Whitt martingale

We will use the simple form (7.6) of the Kella-Whitt martingale. This gives that K
defined according to

K(t) = κ(α)

∫ t∧τ [a,b)

0

eαX(s)ds+ 1− eαX(t∧τ [a,b)), α ∈ Θ,

is a local martingale. In fact, K is a martingale as follows from Kella & Boxma [80].
Further, we have the bound

|K(t)| ≤ |κ(α)|te|α|max(|a|,b) + 1 + e|α|(x+V +) + e|α|(b−x+V −)

where V + and V − (the overshoot and undershoot of b and a, respectively, at τ [a, b))
are phase-type distributed. From Eτ [a, b) <∞ we then get E supt≤τ [a,b)|K(t)| <∞,
so optional stopping at τ [a, b) is permissible. Letting φ(α) = E

∫ τ [a,b)

0
eαX(s)ds, this

gives

0 = κ(α)φ(α) + 1

− eαb
(
p+
c +

n+∑

i=1

p+
i F̂

+
i [α]

)
− eαa

(
p−c +

n−∑

j=1

p−j F̂
−
j [−α]

)
, (9.4)

It is easily seen that the function φ(α) is well defined for all α ∈ C, not just for α ∈ Θ,
and analytic when the common singularities of κ and the F̂+

i , F̂
−
i are removed.

Therefore by analytic continuation (9.4) is valid for all α in this domain. In particular
we may take α as any of the ρk to obtain (9.3) for k = 1, . . . , n+ + n− + 2.

Example 9.1. Take as a simple example all jumps to be exponentially distributed
(with parameters µ+, µ−) and µ = −1. Then

κ(α) =
λ+α

µ+ − α −
λ−α

µ− + α
+
σ2α2

2
− α.

The method described above allows us to explicitly compute the c.d.f. πb[0, x] (in
terms of the parameters of the model and b). Even for this simple case, the re-
sulting expressions are quite complicated and rather than presenting them, we
display numerical results in Fig. 6 in the form of plots of the c.d.f. of πb, taking
λ+ = λ− = µ+ = µ− = 1, b = 2, and letting σ2 vary.
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9.4 The scale function

Though the scale function does not appear in the rest of the paper, we give for the
sake of completeness a sketch of its computation in the PH model. In view of (5.3),
we need to evaluate

E
[
e−qτ [a,b)

1(X(τ [a, b)) ≥ b)
]
. (9.5)

To this end, we use the Kella-Whitt martingale with B(t) = −qt/α which takes the
form

κ(α)

∫ t

0

eαX(s)−qs ds+ 1− eαX(t)−qt − q
∫ t

0

eαX(s)−qs ds

Optional stopping at τ [a, b) gives

1 = −
(
κ(α)− q

)
E
∫ τ [a,b)

0

eαX(s)−qs ds

+ eαb
(
p+
c y

+
c +

n+∑

i=1

p+
i F̂

+
i [α]y+

i

)
+ eαa

(
p−c y

−
c +

n−∑

j=1

p−j F̂
−
j [−α]y−j

)

where y+
c is the expectation of e−qτ [a,b) given continuous exit above, y+

i the expec-
tation of e−qτ [a,b) given exit above in phase i, and similarly for the y−c , y

−
j . As in

Section 9.3, we may now choose ρq1, . . . , ρ
q
n++n−+2 as the roots of κ(s) = q to con-

clude that

1 = eρ
q
kb
(
p+
c y

+
c +

n+∑

i=1

p+
i F̂

+
i [ρqk]y

+
i

)
+ eρ

q
ka
(
p−c y

−
c +

n−∑

j=1

p−j F̂
−
j [−ρqk]y−j

)

for k = 1, . . . , n+ +n−+2. These linear equations may be solved for the p+
c y

+
c , p

+
i y

+
i ,

p−c y
−
c , p

−
j y
−
j , and (9.5) can then be computed as p+

c y
+
c +

∑
p+
i y

+
i .

9.5 The loss rate

As before, we take N± to be Poisson(λ±) and Y ± to be PH(E±,α±,T±) with
n± phases, respectively. If we let x → b and x − b → a in (9.3), we obtain, for
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k = 1, . . . , n+ + n− + 2,

e−ρkx = p+
c +

n+∑

i=1

p+
i F̂

+
i [ρk] + e−ρkb

(
p−c +

n−∑

j=1

p−i F̂
−
j [−ρk]

)
(9.6)

(where, as above, we let ρ1 = 0). We let ak be the vector

ak =
(
1 F̂+

1 (ρk) . . . F̂+
n+(ρk) e−ρkb e−ρkbF̂−1 (−ρk) . . . e−ρkbF̂−n−(−ρk)

)

and construct the matrix A according to

A =




a1

a2
...

an++n−+2


 .

If we let
p =

(
p+
c p+

1 . . . p+
n+ p−c p−1 . . . p−n−

)T

and take e+ to be a row vector with the first n+ + 1 elements equal to one and zero
otherwise, we may compute π(x) = p+

c +
∑n+

i=1 p
+
i as e+p where p solves the set of

linear equations Ap = h(x), where

h(x) = (e−ρ1x . . . e−ρn++n−+2x)T,

i.e., formally
π(x) = gh(x) = g exp{Hx}e, (9.7)

where g = e+A
−1 and H = diag(−ρ1,−ρ2, . . . ,−ρn++n−+2) (the rightmost part in

(9.7) will prove itself useful below).
With this formula for π(x) at hand we may proceed to the computation of `b.

We will take as a starting point the alternative formula for `b which is presented in
the Introduction, i.e.,

`b =
1

2b

(
2mEV + σ2 + J1 + J2 − 2J3 − 2J4

)
(9.8)

where

J1 = J1(b) =

∫ b

0

y2ν(dy) ,

J2 = J2(b) =

∫ ∞

b

(2yb− b2)ν(dy) ,

J3 = J3(b) =

∫ b

0

∫ −x

−∞
(x+ y)ν(dy) π(x) dx ,

J4 = J4(b) =

∫ b

0

∫ ∞

b−x
(x+ y − b)ν(dy) π(x) dx .
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It thus remains to identify m,EV and J1, J2, J3, J4. If we note that

ν(dx) =

{
λ+α+ exp{T+x}t+dx if x > 0,

λ−α− exp{−T−x}t−dx if x < 0,

we see that the computation of `b is more or less a matter of routine (though te-
dious!). However, for the sake of completeness and clarity we will perform the cal-
culations in some detail anyway. Clearly,

m = µ− λ+α+(T+)−1e+ λ−α−(T−)−1e ,

EV =

∫ b

0

π(x)dx =

∫ b

0

gh(x)dx = gk ,

where

k =




b
ρ−1

2 (1− e−ρ2b)
...

ρ−1
n++n−+2(1− e−ρn++n−+2b)


 .

Let ⊗ and ⊕ denote Kronecker matrix multiplication and addition, respectively,
where ⊕ is defined for square matrices by A1 ⊕A2 = A1 ⊗ I + I ⊗A2. It is not
difficult to show that

∫
ν(dy) =

{
λ+a+(T+)−1 exp{T+y}t+ if y > 0,

−λ−a−(T−)−1 exp{−T−y}t− if y < 0,
(9.9)

∫
yν(dy) =

{
λ+a+(T+)−1(yI − (T+)−1) exp{T+y}t+ if y > 0,

−λ−a−(T−)−1(yI − (T−)−1) exp{−T−y}t− if y < 0,
(9.10)

∫
y2ν(dy) = λ+a+(T+)−1(y2I − 2y(T+)−1 + 2(T+)−2) exp{T+y}t+, if y > 0.

(9.11)

[Note that when we write
∫
f(y)dy (without integration limits) for some function f

we mean the primitive (indefinite integral), i.e.
∫
f(y)dy is a function such that its

derivative with respect to y equals f(y).] It follows from (9.7), (9.9), (9.10) and the
fact that all eigenvalues of T+ and T− have negative real part, see e.g. [11], p. 83,
that

J3 =

∫ b

0

λ−a−(T−)−2 exp{T−x}t− π(x) dx

=

∫ b

0

λ−a−(T−)−2 exp{T−x}t− g exp{Hx}e dx

= λ−
[
(a−(T−)−2)⊗ g

][∫ b

0

exp{(T− ⊕H)x}dx
]
[t− ⊗ e]

= λ−
[
(a−(T−)−2)⊗ g

][
(T− ⊕H)−1

(
exp{(T− ⊕H)b} − I

)]
[t− ⊗ e]
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where we used the standard identities

(A1B1C1)(A2B2C2) = (A1 ⊗A2)(B1 ⊗B2)(C1 ⊗C2)

exp{Rx} ⊗ exp{Sx} = exp{(R⊕ S)x}.

Similarly, J4 becomes

−λ+
[
(a+(T+)−2 exp{T+b})⊗ g

][
(−T+ ⊕H)−1(exp{(−T+ ⊕H)b} − I)

]
[t+ ⊗ e].

Finally, it follows easily from (9.9), (9.10) and (9.11), that

J1 = λ+a+(T+)−1
[
(b2I − 2b(T+)−1 + 2(T+)−2) exp{T+b} − 2(T+)−2

]
t+

J2 = −λ+a+(T+)−1
[
b2I − 2b(T+)−1

]
exp{T+b}t+,

and thereby all terms in (9.8) have been evaluated.

10 Loss rate asymptotics: light tails

In this section we derive asymptotics of `b as b → ∞ when X is assumed to be
light-tailed with −∞ < EX(1) < 0. By light-tailed, we simply mean that the set
Θ = {α ∈ R : EeαX(1) <∞} has a non-empty intersection with (0,∞).

We start by introducing the following notation.

• M(t) = sup0≤s≤tX(s), M(∞) = sup0≤t<∞X(t).

• τ+(u) = inf{t > 0 : X(t) > u}, τw+ (u) = inf{t > 0 : X(t) ≥ u}, u ≥ 0.

• τ−(−v) = inf{t > 0 : X(t) < −v}, v ≥ 0.

• The overshoot of level u, B(u) = X(τ+(u))− u, u ≥ 0.

• The weak overshoot of level u, Bw(u) = X(τw+ (u))− u, u ≥ 0.

• B(∞), a r.v. having the limiting distribution (if it exists) of B(u) as u→∞.

Furthermore, we will assume that the Lundberg equation κ(α) = 0 has a solution
γ > 0 with κ′(γ) < ∞. We let PL and EL correspond to a measure which is expo-
nentially tilted by γ, i.e.,

P(G) = EL(e−γX(τ);G) (10.1)

when τ is a stopping time and G ∈ F(τ), G ⊆ {τ < ∞}. Note that ELX(1) =
κ′(γ) > 0 by convexity of κ.

We need the following two lemmas. The first is just a reformulation of Theo-
rem 8.6 and the second describes the asymptotic probability, as u → ∞, of the
event that X’s first exit of the set [−v, u) occurs at the upper barrier.

Lemma 10.1. For the integrals I1 and I2 in Theorem 8.6 we have the following
alternative formulas.

I1 =

∫ ∞

b

((y − b) + γ−1(1− eγ(y−b)))ν(dy) +

∫ b

0

π(x)dx

∫ ∞

b−x
(1− eγ(y−b+x))ν(dy),

I2 =

∫ 0

−∞
(y + γ−1(1− eγy))ν(dy) +

∫ b

0

π(x)dx

∫ −x

−∞
(1− eγ(x+y))ν(dy).
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Proof. Just change order of integration and perform partial integration. Then switch
back to the original order of integration.

Lemma 10.2. Assume that X is not compound Poisson with lattice jump distribu-
tion. Then, for each v ≥ 0,

P
(
τ−(−v) > τw+ (u)

)
∼ e−γuELe−γB(∞)PL

(
τ−(−v) =∞

)
, u→∞.

Proof. It is easily seen that τw+ (u) is a stopping time and that {τ−(−v) > τw+ (u)} ∈
F(τw+ (u)). By the Blumenthal zero-one law (e.g. [28, p. 19]), it follows that P(τ+(0) = 0)
is either 0 or 1. In the first case the sample paths of M are step functions a.s. and
it follows in the same way as in the proof of Lemma 3.3 (Lemma 2.3 in [107]) that
P(τw+ (u) 6= τ+(u))→ 0, u→∞. In the second case it follows by the strong Markov
property applied at τw+ (u) that P(τw+ (u) 6= τ+(u)) = 0. From (10.1) we then get,

P
(
τ−(−v) > τw+ (u)

)
= EL[e−γX(τw+ (u)); τ−(−v) > τw+ (u)]

= e−γuEL[e−γB(u); τ−(−v) > τ+(u)]P
(
τw+ (u) = τ+(u)

)

+ e−γuPL
(
τ−(−v) > τw+ (u)

∣∣ τw+ (u) 6= τ+(u)
)
PL
(
τw+ (u) 6= τ+(u)

)

∼ e−γuELe−γB(∞)PL
(
τ−(−v) =∞

)
.

In the last step we used B(u) → B(∞), see [29] and [107],
{
τ−(−v) > τ+(u)

}
↑{

τ−(−v) = ∞
}

(both in PL-distribution) and asymptotic independence between
B(u) and

{
τ−(−v) > τ+(u)

}
, see the proof of Corollary 5.9, p. 368, in [11].

Remark 10.3. In the proof of Lemma 10.2 above we had to treat the cases P(τ+(0) = 0) =
1 and P(τ+(0) = 0) = 0 (corresponding to completely different short time behaviors
of X) in slightly different ways. In traditional terminology, these cases correspond
to whether the point 0 is regular, or irregular, for the set (0,∞), see [28], p. 104 or
[119], p. 313 and p. 353. As a small digression, we shall briefly discuss this issue. It
turns out that 0 is regular for (0,∞) if and only if

∫ 1

0

t−1P(X(t) > 0) dt =∞,

see Theorem 47.2 and the remark at the bottom of p. 353 in [119]. Perhaps more
interestingly, we can characterize the short time behavior of X via its Lévy triplet.
We will not give a complete account for all types of Lévy processes (this is done
in Theorem 47.5 on p. 355 in [119]), but note that whenever the paths of X are of
infinite variation then 0 is regular for (0,∞) and if X is the sum of a compound
Poisson process and a non-positive drift then 0 is irregular for (0,∞).

Next, we state the main result about the asymptotics for `b.

Theorem 10.4. Suppose that X fulfills the conditions in Lemma 10.2. Then, as
b→∞, `b ∼ Ce−γb where

C = −m+ ELe−γB(∞)

∫ ∞

0

eγxPL
(
τ−(−x) =∞

) ∫ ∞

x

(1− eγ(y−x)) ν(dy) dx

+

∫ 0

−∞

[
y + γ−1(1− eγy)

]
ν(dy) +

∫ ∞

0

P
(
τw+ (x) <∞

) ∫ −x

−∞
(1− eγ(x+y)) ν(dy) dx.

(10.2)
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Proof. It follows from Lemma 10.1 and κ′(γ) <∞ that

eγbI1 = o(1) + eγb
∫ b

0

P
(
τ−(x− b) > τw+ (x)

)
dx

∫ ∞

b−x
(1− eγ(y−b+x)) ν(dy)

= o(1) +

∫ b

0

eγzeγ(b−z)P
(
τ−(−z) > τw+ (b− z)

)
dz

∫ ∞

z

(1− eγ(y−z)) ν(dy)

→ ELe−γB(∞)

∫ ∞

0

eγxPL
(
τ−(−x) =∞

) ∫ ∞

x

(1− eγ(y−x)) ν(dy) dx, b→∞.

The convergence follows from the pointwise convergence in Lemma 10.2 and domi-
nated convergence, which is applicable because

eγbπ(b− x)1(x ≤ b) ≤ eγbP
(
M(∞) > b− x

)
1(x ≤ b) ≤ eγx

and
∫ ∞

0

eγx dx

∫ ∞

x

(1− eγ(y−x)) ν(dy) =

∫ ∞

0

(
γ−1eγy − yeγy − γ−1

)
ν(dy) > −∞.

In I2 we bound π(x)1(x ≤ b) by 1, note that
∫ ∞

0

dx

∫ −x

−∞
(1− eγ(x+y))ν(dy) =

∫ 0

−∞
(−y − γ−1 + γ−1eγy)ν(dy) <∞

and apply dominated convergence which together with π(x)→ P
(
τw+ (x) <∞

)
gives

I2 →
∫ 0

−∞

[
y + γ−1(1− eγy)

]
ν(dy) +

∫ ∞

0

P
(
τw+ (x) <∞

) ∫ −x

−∞
[1− eγ(x+y)] ν(dy) dx.

The assertion now follows from Theorem 8.6.

If X is spectrally one-sided the constant in Theorem 10.4 simplifies significantly.

Corollary 10.5. Let X satisfy the conditions in Lemma 10.2. If ν(−∞, 0) = 0,
then

C = −m
{

1 +
1

ELX(1)

∫ ∞

0

(eγx − 1)

∫ ∞

x

(1− eγ(y−x))ν(dy)dx
}
.

If ν(0,∞) = 0, then

C = −m+

∫ 0

−∞

[
y + γ−1(1− eγy)

]
ν(dy) +

∫ ∞

0

e−γx
∫ −x

−∞
[1− eγ(x+y)] ν(dy) dx.

Proof. In the spectrally positive case we have that ELe−γB(∞) = −m/ELX(1), see,
e.g., Bertoin & Doney [29], and that

PL
(
τ−(−x) =∞

)
= 1− PL

(
τ−(−x) <∞

)
= 1− EeγX(τ−(−x)) = 1− e−γx.

In the spectrally negative case,

P
(
τw+ (x) <∞

)
= ELe−γX(τw+ (x)) = e−γx.

The claim now follows from Theorem 10.4.
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We next turn our attention towards asymptotics for `b as b → ∞ in the PH
example. In principle, we should be able to describe the asymptotics by carefully
analyzing what comes out of (9.8), but we prefer to apply Theorem 10.4. Recall that
we assume negative drift of the feeding process X, i.e. EX(1) < 0. This means that
X(t)

a.s.−−→ −∞, t → ∞, and that there exists a real positive root γ of the equation
κ(α) = 0 such that EeγX(1) = 1, i.e. γ is a genuine root of the Lundberg equation
corresponding to X.

Theorem 10.6. In the PH Lévy model,

C = eTB−1eT1 γλ
+

×
[t]
{
−α+(γI + T+)−2e

+
(
(eTB̃−1)⊗ (α+(γI + T+)−1)

)
{J̃ ⊕ (γI + T+)}−1e

}

+ λ−α−
{

(T−)−1 − (−γI + T−)−1
}
e+ (−µ− λ+α+(T+)−1e

+ λ−α−(T−)−1e) + γλ−((eTB−1)⊗ (α−(−γI + T−)−1))(J ⊕ T−)−1e .
(10.3)

For the proof, we need two lemmas. The first is classical and relates to the
locations in the complex plane of the roots of κ(α) = q, q ≥ 0 (see [12], [46] and
references there).

Lemma 10.7. Let X be defined according to (9.2).

(i) Consider the equation κ(α) = 0. If m ≤ 0 then 0 is the only root with zero real
part. There are n− roots with negative real part and n+ + 1 roots with positive
real part.

(ii) Consider the equation κ(α) = q with q > 0. Then (regardless of the value of m)
there are no roots with zero real part, n−+1 with negative real part and n+ +1
with positive real part.

Lemma 10.8. Assume m < 0. Then γ > 0 is a simple root, i.e. of algebraic
multiplicity 1, and if ρ is any other root with <(ρ) > 0, then <(ρ) > γ.

Proof. Part (i) in Lemma 10.7 tells us that there are n+ + 1 roots of κ(α) = 0 with
positive real part. Clearly, γ is one of these. Let ρ = <(ρ) + i=(ρ) be one of the
remaining roots (with positive real part) and suppose that 0 < <(ρ) ≤ γ. Now,

1 = EeρX(1) = Ee<(ρ)X(1) (cos(=(ρ)X(1)) + i sin(=(ρ)X(1)))

= Ee<(ρ)X(1) cos(=(ρ)X(1)) + iEe<(ρ)X(1) sin(=(ρ)X(1)). (10.4)

From (10.4), the elementary inequality | cos(=(ρ)X(1))| ≤ 1 and the convexity of κ(·)
in (0, γ], it follows that <(ρ) < γ is impossible (no matter the distribution of X(1)).
Note that in the case under consideration, κ(α) is a rational function (i.e. κ(α) =
p(α)/q(α) where p and q are polynomials) and from the fact that 0 < κ′(γ) <∞, see
Section 10, we may conclude that the algebraic multiplicity of the root γ equals one,
i.e. p(α) = (α− γ)r(α) where r(α) does not contain the factor (α− γ). If <(ρ) = γ
and =(ρ) 6= 0 then it is easily seen that 1 = Ee<(ρ)X(1) cos(=(ρ)X(1)) is possible
provided that X(1) is lattice with span 2π/|=(ρ)|, a case which is clearly ruled out
by the structure of X.
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Proof of Theorem 10.6. We have to compute ELe−γB(∞), PL(τ−(−x) = ∞) and
P(τw+ (x) < ∞) for x > 0, see Theorem 10.4. Because of (thanks to!) the Brownian
component in X we need not distinguish between τw+ (x) and τ+(x), cf. Remark 10.3.
Define

p+
c (t) = P(X(τ+(x)) = x, τ+(x) ≤ t),

p+
i (t) = P(X(τ+(x)) > x, τ+(x) ≤ t, upcrossing occurs in state i) ,

i = 1, 2, . . . , n+. If we let φ(α, t) = E
∫ τ+(x)∧t

0
eαX(s)ds it follows by optional stopping

of the Kella-Whitt martingale at τ+(x) that

0 = κ(α)φ(α, t) + 1− eαx
(
p+
c (t) +

n+∑

i=1

p+
i (t)F̂+

i (α)
)

− E[eαX(t); t < τ+(x)], α ∈ Θ. (10.5)

Let ρ2, ρ3, . . . , ρn++2 denote the roots with positive real part (we tacitly assume that
these are distinct and ordered so that ρ2 = γ). If we mimic the derivation of (9.3),
and take α = ρk, we get

0 = 1− eρkx
(
p+
c (t) +

n+∑

i=1

p+
i (t)F̂+

i (ρk)
)
− E[eρkX(t); t < τ+(x)]. (10.6)

If we let t → ∞ in (10.6), it follows by X(t)
a.s.−−→ −∞ and dominated convergence

that

e−ρkx = p+
c +

n+∑

i=1

p+
i F̂

+
i (ρk), k = 2, 3, . . . , n+ + 2. (10.7)

Let B be the matrix with kth row equal to (1 F̂+
1 (ρk) . . . F̂

+
n+(ρk)). Then it is easily

seen that
P(τ+(x) <∞) = eTB−1 exp{Jx}e, (10.8)

where J = diag(−ρ2, . . . ,−ρn++2). Since P(τ+(x) < ∞) = P(M(∞) > x) and we
know that P(M(∞) > x) ∼ ELe−γB(∞)e−γx, x → ∞, we can use (10.8) and what
we know about the elements of J to identify ELe−γB(∞) as the sum of the elements
in the first column of B−1. Now, it is well known, see e.g. [14], that w.r.t. PL, X is
still the sum of a Brownian motion with drift and a compound Poisson process with
phase-type distributed jumps, with Lévy exponent κL(α) = κ(α+ γ). Furthermore,
if we define d = (γI − T−)−1t− and let D be the diagonal matrix with the di on
the diagonal then (w.r.t. PL) the intensity matrix corresponding to negative jumps
is T−γ = D−1T−D − γI. It is clear that the equation κL(α) = 0 has n− + 1 roots
with negative real part ρ̃k, k = 1, 2, . . . , n− + 1 (all of the form ρ̃k = ρ − γ where
κ(ρ) = 0 and <(ρ) ≤ 0). Define ˜̂

F
−
i in the same way as F̂−i with T− replaced by T−γ .

In a fashion similar to the derivation of (9.3), we obtain (in the obvious notation)

0 = 1− e−ρ̃kx
(
p̃−c (t) +

n−∑

i=1

p̃−i (t)
˜̂
F
−
i (−ρ̃k)

)
− EL[eρ̃kX(t); t < τ−(−x)]. (10.9)
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From (10.9) it follows that

eρ̃kx = p̃−c +
n−∑

i=1

p̃−i
˜̂
F
−
i (−ρ̃k), k = 1, 2, . . . , n− + 1, (10.10)

and if we define B̃ as the matrix with kth row equal to
(
1

˜̂
F
−
1 (−ρ̃k) . . . ˜̂

F
−
n−(−ρ̃k)

)
,

it is clear that
PL
(
τ−(−x) =∞

)
= 1− eTB̃−1 exp{J̃x}e, (10.11)

where J̃ = diag(ρ̃1, . . . , ρ̃n−+1). All that now remains in order to describe the asymp-
totics of `b is to evaluate the integrals in (10.2); we omit the details.

An important lesson to learn from this example is that the case where X is
spectrally one-sided is much easier than the general case. In fact, if we e.g. take
X to be spectrally positive then according to Corollary 10.5, `b ∼ Ce−γb, b → ∞,
where

C = −m
{

1− γλ+α+(γI + T+)−1
{

(γI + T+)−1 − (T+)−1
}
e/κ′(γ)

}
,

i.e. we need only know γ to compute C (the same thing holds when X is spectrally
negative, but C comes out in a slightly different way, again see Corollary 10.5),
whereas in the general case all roots of κ(α) = 0 are required in order to completely
describe the asymptotic behavior of `b.

11 Loss rate asymptotics: heavy tails

The main result of this section states that under some heavy-tailed conditions,
`b ∼

∫∞
b
ν(y)dy which in view of Lemma 2.6, can be interpreted as stating that

Theorem 3.2 still holds when the random walk is replaced by a Lévy process. More
precisely:

Theorem 11.1. Let X be a Lévy process with Lévy measure ν ∈ S and finite negative
mean m = EX(1) < 0. Consider the conditions

A: EX(1)2 <∞ and
∫∞
b
νI(y) dy/νI(b) = O(b) .

B: ν(b) ∼ L(b)b−α where L is a locally bounded slowly varying function and 1 <
α < 2.

If either A or B holds, then

`b ∼
∫ ∞

b

ν(y)dy. (11.1)

It is worth noting, that the requirement on the tail of ν inA is very weak. Indeed,
suppose νI(x) ∼ B(x) where B is either lognormal, Benktander or heavy-tailed
Weibull. Then we recognize a(x) =

∫∞
x
B(y) dy/B(x) as the mean-excess function

and it is known (see [65]), that a(x) = o(x). Furthermore, it is easily checked that
the condition is satisfied when B is a Pareto or Burr distribution, provided that the
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second moment is finite. Another remark is that we may use the results of [52] to
express sufficient conditions for Theorem 11.1 in terms of the distribution of X(1).

We will also derive Theorem 11.3 below, which gives an expression for the m.g.f.
of the stationary distribution in the case of one-sided reflection. This result is in-
teresting in its own right as well as useful in the proof of Theorem 11.1. Recall the
decomposition of the one-sided reflected process, V ∞(t) = V ∞(0) +X(t) +L(t), let
Lc(t) and Lj(t) denote the continuous and jump parts of the local time, respectively,
and recall that Θ = {α ∈ C : Ee<(α)X(1) <∞}.

Lemma 11.2. Consider a Lévy process X, let V ∞ be the process one-sided reflected
at 0 and let Lc and Lj be the continuous and jump part of the corresponding local
time L, respectively. Then, for α ∈ Θ and V ∞(0) = x ≥ 0,

M(t) = κ(α)

∫ t

0

eαV
∞(s) ds+ eαx − eαV

∞(t) + αLc(t) +
∑

0≤s≤t
(1− e−α∆L(s)) (11.2)

is a martingale.

Proof. The proof is similar to (but slightly easier than) the proof of Proposition 8.2,
once we note that L can increase only when V is zero.

Theorem 11.3. Suppose −∞ < m = EX(1) < 0, so that V ∞(∞) = limt→∞ V ∞(t)
exists in distribution. For α ∈ Θ we have

EeαV
∞(∞) = − 1

κ(α)

(
αEπ∞Lc(1) + Eπ∞

∑

0≤s≤1

(1− e−α∆L(s))
)
. (11.3)

Proof. Replacing x by a r.v. distributed as V ∞(∞) in (11.2) and taking expectations
at t = 1 gives

0 = κ(α)Eπ∞
∫ 1

0

eαV
∞(s) ds+ αEπ∞Lc(1) + Eπ∞

∑

0≤s≤1

(
1− e−α∆L(s)

)
.

Now just note that the expectation of the integral equals EeαV
∞(∞).

If X has no negative jumps, the term Eπ∞
∑

0≤s≤1(1− e−α∆L(s)) disappears, and
Eπ∞Lc(1) = Eπ∞L(1) = −m, and we see that Theorem 11.3 indeed is a gener-
alization of Corollary 3.4 in Chap. IX [11] which is itself a generalization of the
Pollaczeck-Khinchine formula.

Next, we use the results above to obtain an expression for the mean of the
stationary distribution in the case of one-sided reflection.

Corollary 11.4. If X is square integrable then V ∞ is integrable and we have

EV ∞ =
1

2m

(
Eπ∞

∑

0≤s≤1

∆L(s)2 − Var(X(1))
)

(11.4)

=
1

2m

(∫ ∞

−∞
y2ν(dy) + σ2 −

∫ ∞

0

∫ −x

−∞
(x+ y)2ν(dy)π∞(dx)

)
. (11.5)
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Proof. Since X(1) is non-degenerate, we have by Lemma 4 chapter XV.1 in [55] that
there exists ε > 0 such that κ(it) 6= 0 for t ∈ (−ε, ε) \ {0}, and we may use (11.3) to
obtain the characteristic function ψ of V . We wish to show that ψ is differentiable
at 0. Define

g(t) = Eπ∞
∑

0≤s≤1

(1− e−it∆L(s)) , `1 = Eπ∞Lc(1) .

By Doob’s inequality, we have that EX(1)2 <∞ implies EL2(1) <∞ and therefore
Eπ∞L2(1) <∞, which in turn implies that g is twice differentiable at 0. We see that

g′(0) = iEπ∞
∑

0≤s≤1

∆L(s) = iEπ∞Lj(1) , g′′(0) = Eπ∞
∑

0≤s≤1

∆L(s)2 ,

i`1 + g′(0) = iEπ∞L(1) = −im. Since X is square integrable, we may use formula
(2.4.1) p. 27 in [101] to get κ(it) = κ′(0)it + o(t). By combining this with equation
(11.3), we conclude that

lim
t→0

EeitV − 1

t
= lim

t→0

−ti`1 − g(t)− κ(it)

tκ(it)
= lim

t→0

−ti`1 − g(t)− κ(it)

κ′(0)it2
,

provided that the limit exists. We may confirm that this is true, by applying l’Hospital’s
rule twice to the real and imaginary part separately

lim
t→0

−ti`1 − g(t)− κ(it)

κ′(0)it2
= lim

t→0

−i`1 − g′(t)− iκ′(it)

2iκ′(0)t

= lim
t→0

−g′′(t) + κ′′(it)

2iκ′(0)
=
−g′′(0) + κ′′(0)

2iκ′(0)
.

We see that ψ is differentiable. In itself, this does not entail integrability of V , but a
short argument using the Law of Large Numbers and the fact that V is non-negative,
yields that V is integrable. The first moment is

EV =
−g′′(0) + κ′′(0)

2(−1)κ′(0)

which is (11.4). We obtain (11.5) by conditioning on the value of the process prior
to a jump.

We proceed to the proof of Theorem 11.1. In order to establish (11.1), we
need to prove that 1 is a lower bound for lim infb `

b/νI(b) and an upper bound
for lim supb `

b/νI(b). The former is established in Proposition 11.6 and is seen to
hold without the conditions assumed in Theorem 11.1. In the proof of the latter, we
use Proposition 11.5 to establish the inequality

m

b

∫ b

0

πb(x) dx ≤ m

b

∫ b

0

π∞(x) dx−mπ∞(b) (11.6)

and the proof then follows two distinct routes depending on which of the conditions
A or B is assumed. Under assumption A, we are allowed to rewrite the integral
on the right-hand side of (11.6) as

∫∞
0
π∞(x) dx −

∫∞
b
π∞(x) dx. The first of these
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integrals is the mean of the stationary distribution in the case of one-sided reflection.
This observation and Corollary 11.4 are important keys to the proof in this case.
Under assumption B the proof essentially consists of combining the inequality (11.6)
with repeated applications of Karamata’s theorem.

Proposition 11.5. Let X be a Lévy process, and let π∞(y), πb(y) be the tails of the
reflected (one/two-sided) distributions. Then we have the following inequalities for
x > 0, b > 0

0 ≤ π∞(x)− πb(x) ≤ π∞(b) . (11.7)

Proof. The inequalities in (11.7) are trivial for x > b. Let 0 ≤ x ≤ b. The inequality
πb(x) ≤ π∞(x) follows from the representations (1.6) and (2.13). The inequality
π∞(x)−πb(x) ≤ π∞(b), follows by dividing the sample paths of X which cross above
x into those which do so by first passing below x−b, and those which stay above x−b.
To be precise, define τ(y) = inf{t > 0 : X(t) ≥ y} and σ(y) = inf{t > 0 : X(t) < y}
to be the first passage times above and below y respectively. Then we can consider
the event that a path crosses below x − b before eventually passing above x, and
since such a path must pass an interval of length at least b, we find that

P
(
σ(x− b) < τ(x) <∞

)
≤ P

(
sup
t>0

X
(
σ(x− b) + t

)
−X

(
σ(x− b)

)
> b
)

= P
(
τ(b) <∞

)
.

where we used the strong Markov property in the last equality. Next, we apply (2.13)
to find

π∞(x) = P
(
τ(x) <∞

)
= P

(
τ(x) < σ(x− b)

)
+ P

(
σ(x− b) < τ(x) <∞

)

≤ πb(x) + P
(
τ(b) <∞

)
= πb(x) + π∞(b) ,

where we have used the equality P
(
τ(x) < σ(x − b) ≤ ∞

)
= πb(x), which is a

restatement of (1.6).

Proposition 11.6. For any Lévy process we have 1 ≤ lim inf
b→∞

`b

νI(b)
.

Proof. We have
∫ b

0

πb(dx)

∫ ∞

b

(y − b+ x) ν(dy) ≤ `b

since the left-hand side is the contribution to `b by the jumps larger than b. Now
just note that

νI(b) ≤
∫ ∞

b

(y − b)ν(dy) +

∫ b

0

xπb(dx)ν(b) =

∫ b

0

πb(dx)

∫ ∞

b

(y − b+ x)ν(dy) .

We are now ready for the proof of Theorem 11.1.
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Proof. Thanks to Proposition 11.6, we only need to prove

lim sup
b

`b/νI(b) ≤ 1 . (11.8)

Define

I1 =
m

b

∫ b

0

xπb(dx) , I2 =
σ2

2b
, I3 =

1

2b

∫ b

0

πb(dx)

∫ ∞

−∞
ϕb(x, y)ν(dy) .

where the function ϕb(·, ·) is that of Theorem 1.1, with the dependence on b made ex-
plicit. From Proposition 11.5 we have π∞(x)−π∞(b) ≤ πb(x) and sincem is assumed
to be negative, we have mπb(x) ≤ m(π∞(x) − π∞(b)). Applying this inequality to
expression for the loss rate in Theorem 1.1 we obtain the following inequality:

`b ≤ m

b

∫ b

0

π∞(x) dx−mπ∞(b) + I2 + I3 . (11.9)

First, we assume A holds. By (2.16) we have

lim
b

−mπ∞(b)

νI(b)
= 1 , (11.10)

so we will be done if we can show

lim sup
b

1

νI(b)

[
m

b

∫ b

0

π∞(y) dy + I2 + I3

]
= 0 . (11.11)

We start by rewriting the term in the brackets above. Using Corollary 11.4 and the
assumption that EX(1)2 <∞ we have that

∫∞
0
π∞(y)dy <∞ and using (11.4)

m

b

∫ b

0

π∞(y) dy =
m

b

∫ ∞

0

π∞(y) dy − m

b

∫ ∞

b

π∞(y) dy

=
Eπ∞ [

∑
0≤s≤1 ∆L(s)2]− Var(X(1))

2b
+
|m|
b

∫ ∞

b

π∞(y) dy .

Furthermore,

I2 + I3

=
σ2

2b
+

1

2b

∫ b

0

πb(dx)
(∫ −x

−∞
−(x2 + 2xy)ν(dy) +

∫ b−x

−x
y2ν(dy)

+

∫ ∞

b−x

[
2y(b− x)− (b− x)2

]
ν(dy)

)

=
σ2

2b
+

1

2b

∫ ∞

−∞
y2ν(dy) +

1

2b

∫ b

0

πb(dx)

∫ −x

−∞

[
− (x2 + 2xy)− y2

]
ν(dy)

+
1

2b

∫ b

0

πb(dx)

∫ ∞

b−x

[
2y(b− x)− (b− x)2 − y2

]
ν(dy)

=
σ2

2b
+

1

2b

∫ ∞

−∞
y2ν(dy)− 1

2b

∫ b

0

πb(dx)

∫ −x

−∞
(x+ y)2ν(dy)

− 1

2b

∫ b

0

πb(dx)

∫ ∞

b−x
(y − (b− x))2ν(dy)

=
Var(X(1))− Eπb

∑
0≤s≤1 ∆L(s)2

2b
− 1

2b

∫ b

0

πb(dx)

∫ ∞

b−x
(y − (b− x))2ν(dy).
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The last equation follows from Example 25.12 p. 163 in [119], as does the following:

Eπb
∑

0≤s≤1

∆L(s)2 = Eπb
∑

0≤s≤1

(V (s−) + ∆X(s))2
1(V (s−) + ∆X(s) < 0)

=

∫ b

0

(
E
∑

0≤s≤1

(x+ ∆X(s))2
1(x+ ∆X(s) < 0)

)
πb(dx)

=

∫ b

0

πb(dx)

∫ −x

−∞
(x+ y)2ν(dy) ,

where we use Theorem 2.7 p. 41 in [94] in the last equation. Next, we note the fact
that

Eπ∞
∑

0≤s≤1

∆L(s)2 ≤ Eπb
∑

0≤s≤1

∆L(s)2,

which can be verified using partial integration and (11.7). Using this in the last
equation above, we may continue our calculation and obtain

I2 + I3 ≤
Var(X(1))− Eπ∞

∑
0≤s≤1 ∆L(s)2

2b

− 1

2b

∫ b

0

πb(dx)

∫ ∞

b−x
(y − (b− x))2ν(dy) .

Comparing the expressions above we see that fractions cancel, and the expression
in the brackets in (11.11) is less than

|m|
b

∫ ∞

b

π∞(y) dy − 1

2b

∫ b

0

∫ ∞

b−x
(y − (b− x))2ν(dy)πb(dx) .

Applying partial integration

|m|
b

∫ ∞

b

π∞(y) dy − 1

2b

∫ b

0

∫ ∞

b−x
(y − (b− x))2ν(dy)πb(dx)

=
|EX(1)|

b

∫ ∞

b

π∞(y) dy − 1

2b

∫ ∞

b

(y − b)2ν(dy)− 1

b

∫ b

0

πb(x)νI(b− x)dx

≤ |m|
b

∫ ∞

b

π∞(y) dy − 1

2b

∫ ∞

b

(y − b)2ν(dy)

=
|m|
b

∫ ∞

b

π∞(y) dy − 1

b

∫ ∞

b

νI(y) dy.

Returning to (11.11) and applying the results above we get

lim sup
b

1

νI(b)

[
m

b

∫ b

0

π∞(y) dy + I2 + I3

]

≤ lim sup
b

1

νI(b)

[ |m|
b

∫ ∞

b

π∞(y) dy − 1

b

∫ ∞

b

νI(y) dy

]

= lim sup
b

∫∞
b
νI(y) dy

bνI(b)

[∫∞
b
|m|π∞(y) dy∫∞
b
νI(y) dy

− 1

]
= 0,
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where the last equality follows since the term in the brackets tends to 0, and the
fraction outside it is bounded by assumption. This proves that (11.1) holds under
condition A.

We now assume condition B and start by noticing the following consequences of
the assumptions

∫ ∞

b

ν(y) dy ∼
∫ ∞

b

L(y)

yα
dy ∼ b−α+1L(b)

α− 1
, b→∞ , (11.12)

where the last equivalence follows by Proposition 1.5.10 of [31] and the fact that
α > 1. Since by Proposition 1.3.6 of [31], we have b−α+2L(b) → ∞, (11.12) implies
bνI(b)→∞.

The inequality (11.9) still holds, as does the limit in (11.10), so we proceed to
analyze m

∫ b
0
π∞(y)dy/(νI(b)b). Since bνI(b)→∞ as b→∞ we see that for any A

lim
b→∞

m

bνI(b)

∫ A

0

π∞(y) dy = 0 . (11.13)

Because of the result above we have for any A

lim
b→∞

m

bνI(b)

∫ b

0

π∞(y) dy = lim
b→∞

m

bνI(b)

∫ b

A

π∞(y) dy

and using |m|π∞(b) ∼ νI(b) ∼ b−α+1L(b)/(α− 1) we have

lim
b→∞

m

bνI(b)

∫ b

A

π∞(y) dy = lim
b→∞
− 1

bνI(b)

∫ b

A

νI(y) dy

= − lim
b→∞

1

bνI(b)

∫ b

A

y−α+1L(y)

(α− 1)
dy

in the sense that if either limit exits so does the other and they are equal. Further-
more, since −α+ 1 > −1 and L is locally bounded, we may apply Proposition 1.5.8
in [31] to obtain

− lim
b→∞

1

bνI(b)

∫ b

A

y−α+1L(y)

(α− 1)
dy = − lim

b→∞

1

bνI(b)

b−α+2L(b)

(−α + 2)(α− 1)
= − 1

−α + 2
.

That is, we obtain

lim
b→∞

m

bνI(b)

∫ b

0

π∞(y) dy = − 1

−α + 2
. (11.14)

Returning to (11.9) we have

lim sup
b

`b

νI(b)
= lim sup

b

[
m

bνI(b)

∫ b

0

π∞(y) dy − mπ∞(b)

νI(b)
+
I2

νI(b)
+
I3

νI(b)

]

= − 1

−α + 2
+ 1 + lim sup

b

[ I2

νI(b)
+
I3

νI(b)

]
. (11.15)
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Since bνI(b)→∞ we have

lim sup
b
I2/νI(b) = lim sup

b

σ2

2bνI(b)
= 0 ,

and we may continue our calculation from (11.15)

− 1

−α + 2
+ 1 + lim sup

b

[ I2

νI(b)
+
I3

νI(b)

]
=− 1

−α + 2
+1+lim sup

b

[ I3

νI(b)

]
(11.16)

So we turn our attention to I3. First we divide the integral into two:

2bI3 =

∫ b

0

πb(dx)
(∫ −x

−∞
−(x2 + 2xy)ν(dy) +

∫ 0

−x
y2ν(dy)

)

︸ ︷︷ ︸
A(b)

(11.17)

+

∫ b

0

πb(dx)
(∫ b−x

0

y2ν(dy) +

∫ ∞

b−x
2(b− x)y − (b− x)2ν(dy)

)

︸ ︷︷ ︸
B(b)

. (11.18)

We may assume ν is bounded from below; otherwise truncate ν at −L for some
L > 0 chosen large enough to ensure that the mean of X(1) remains negative. This
truncation may increase the loss rate, which is not a problem, since we are proving
an upper bound. Thus, we may assume that A(b) is bounded:

A(b) ≤
∫ b

0

πb(dx)

∫ 0

−∞
y2ν(dy) ≤

∫ 0

−∞
y2ν(dy) <∞ .

And therefore, since bνI(b)→∞, we have

A(b)

2bνI(b)
→ 0 . (11.19)

Turning to B(b), we first perform partial integration

B(b) =

∫ b

0

y2ν(dy) +

∫ ∞

b

2by − b2ν(dy)−
∫ b

0

νI(b− x)πb(x) dx

≤
∫ b

0

y2ν(dy) +

∫ ∞

b

2by − b2ν(dy)

=

∫ b

0

2yν(y) dy − b2ν(b) +

∫ ∞

b

2by − b2ν(dy)

=

∫ b

0

2yν(y) dy + 2b

∫ ∞

b

ν(y) dy .

Since yν(y) ∼ y−α+1L(y) way may apply Proposition 1.5.8 from [31] to get
∫ b

0

2yν(y) dy ∼ 2
L(b)b−α+2

2− α ,
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and therefore

lim
b

1

2bνI(b)

∫ b

0

2yν(y) dy =
α− 1

2− α .

Combining this with our inequality for B(b) above, we have

lim sup
b→∞

B(b)

2bνI(b)
≤ α− 1

2− α + 1 =
1

2− α .

Finally, by combining this with (11.15), (11.19) and (11.16), we obtain (11.8).

12 Loss rate symptotics: no drift

In both sections 10 and 11 it was assumed that the underlying stochastic process had
negative mean, and as discussed in Section 1 this also gives the asymptotic behavior
in the case of positive drift. Thus, it remains to give an asymptotic expression as
b→∞ for the loss rate in the zero-mean case. The result is as follows:

Theorem 12.1. (a) Let {X(t)} be a Lévy process with m = EX(1) = 0 and

ψ2 = Var
(
X(1)

)
= κ′′(0) = σ2 +

∫ ∞

−∞
y2 ν(dy) <∞ .

Then

`b ∼ 1

2b
Var(X(1)) , b→∞ . (12.1)

(b) Let {X(t)} be a Lévy process with Lévy measure ν. Assume EX(1) = 0 and
that for some 1 < α < 2, there exist slowly varying functions L1(x) and L2(x)
such that for L(x) = L1(x) + L2(x), we have

ν(x) = x−αL1(x) ν(−x) = x−αL2(x) lim
x→∞

L1(x)

L(x)
=
β + 1

2
(12.2)

where ν(x) = ν(−∞, x]) and ν(x) = ν[x,∞). Then, setting

ρ = 1/2 + (πα)−1 arctan(β tan(πα/2)) ,

c+ = (β + 1)/2 , c− = (1− β)/2 ,

we have `b ∼ γL(b)/bα−1 where

γ =
c−B(2− αρ, αρ) + c+B(2− α(1− ρ), α(1− ρ))

B(αρ, α(1− ρ))(α− 1)(2− α)

and B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the Beta function.
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By comparing to Example 8.8, we see that the loss rate behaves asymptotically
like that of a stable Lévy process.

To prove Theorem 12.1, we will use the fact that by properly scaling our Lévy
process we may construct a sequence of Lévy processes which converges weakly
to either a Brownian Motion or a stable process. Since `b has been calculated for
both Brownian Motion and stable processes in Examples 8.7 and 8.8, we may use
this convergence to obtain loss rate asymptotics in the case of zero drift, provided
that the loss rate is continuous in the sense, that weak convergence (in the sense of
Proposition 12.4 below) of the involved processes implies convergence of the associ-
ated loss rates. The required continuity results are established in Theorem 12.2 and
Theorem 12.3.

Theorem 12.2. Let {Xn}n=0,1,... be a sequence of Lévy processes with associated
loss rates `b,n. Suppose Xn D−→ X0 in D[0,∞) and that the family (X(1)n)∞n=1 is
uniformly integrable. Then `b,n → `b,0 as n→∞.

We shall also need:

Theorem 12.3. Let {Xn}n=1,2,... be a sequence of weakly convergent infinitely divis-
ible random variables, with characteristic triplets (cn, σn, νn). Then for α > 0:

lim
a→∞

sup
n

∫

[−a,a]c
|y|ανn(dy) = 0 ⇐⇒ (

(∣∣Xn|α
)
|n≥1

is uniformly integrable.

The result is certainly not unexpected, but does not appear to be in the literature;
the closest we could find is Theorem 25.3 in [119].

Weak convergence of Lévy processes

We prove here Theorems 12.2 and 12.3. We will need the following weak convergence
properties, where D[0,∞) is the metric space of cadlag functions on [0,∞) endowed
with the Skorokhod topology (see Chap. 3, Sec. 16 in [32] or Chap. 3 in [127]).

Proposition 12.4. Let X0, X1, X2, . . . be Lévy processes with characteristic triplet
(cn, σn, νn) for Xn. Then the following properties are equivalent:

(i) X(t)n
D−→ X(t)0 for some t > 0;

(ii) X(t)n
D−→ X(t)0 for all t;

(iii) {X(t)n} D−→ {X(t)0} in D[0,∞);

(iv) ν̃n → ν̃0 weakly, where ν̃n is the bounded measure

ν̃n(dy) = σ2
nδ0(dy) +

y2

1 + y2
νn(dy) (12.3)

and c̃n → c̃0 where

c̃n = cn +

∫ (
y

1 + y2
− y1|y| ≤ 1

)
νn(dy)
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See e.g. [76] pp. 244–248, in particular Lemma 13.15 and 13.17. If one of (i)–(iv)
hold, we write simply Xn D−→ X0.

The following proposition is standard:

Proposition 12.5. Let p > 0 and let Xn ∈ Lp, n = 0, 1, . . . , such that Xn
D−→ X0.

Then E|Xn|p → E|X0|p if and only if the family
(
|Xn|p

)
n≥1

is uniformly integrable.

First, we prove Theorem 12.3. This is achieved through several preliminary re-
sults, of which the first is Lemma 12.6 which essentially states we may disregard the
behavior of the Lévy measures on the interval [−1, 1] in questions regarding uniform
integrability. It is therefore sufficient to prove Theorem 12.3 for compound Poisson
distributions, which is done in Proposition 12.8.

We start by examining the case where the Lévy measures have uniformly bounded
support, i.e., there exists A > 0 such that νn([−A,A]c) = 0 for all n. We know
from Lemma 25.6 and Lemma 25.7 in [119] that this implies the existence of finite
exponential moments of Xn and therefore the mth moment of Xn exists and is finite
for all n,m ∈ N.

Lemma 12.6. Suppose Xn
D−→ X0 and the Lévy measures have uniformly bounded

support. Then E[(Xn)m] → E[(X0)m] for m = 1, 2, · · · . In particular (cf. Proposi-
tion 12.5) the family

(
|Xn|α

)
n≥1

is uniformly integrable for all α > 0.

Proof. Since the Lévy measures are uniformly bounded, the characteristic exponent
from (1.7) is

κn(t) = cnt+ σ2
nt

2/2 +

∫ A

−A

(
ety − 1− ty1|y| ≤ 1

)
νn(dy) . (12.4)

With the aim of applying Proposition 12.4 we rewrite (12.4) as

κn(t) = c̃nt+

∫ A

−A

(
ety − 1− ty

1 + y2

)
1 + y2

y2
ν̃n(dy) . (12.5)

(the integrand is defined to be 0 at y = 0) where ν̃n is given by (12.3) and

c̃n = cn +

∫ A

−A

(
y

1 + y2
− y1|y| ≤ 1

)
νn(dy) .

According to Proposition 12.4 the weak convergence of {Xn}n≥1 implies c̃n → c̃0

and ν̃n
D−→ ν̃0. Since the integrand in (12.5) is bounded and continuous, this implies

that κn(t)→ κ0(t), which in turn implies that all exponential moments converge. In
particular, the family

(
eXn + e−Xn

)
n≥1

is uniformly integrable, which implies that(
|Xn|α

)
n≥1

is so.

Next, we express the condition of uniform integrability using the tail of the in-
volved distributions. We will need the following lemma on weakly convergent com-
pound Poisson distributions.

Lemma 12.7. Let U0, U1, . . . be a sequence of positive independent random variables
such that Un > 1, and let N0, N1, . . . be independent Poisson random variables with
rates λ0, λ1, . . . Set Xn =

∑Nn
1 Ui,n (empty sum = 0) with the Ui,n being i.i.d for

fixed n with Ui,n
D
= Un. Then Xn

D−→ X0 if and only if Un
D−→ U0 and λn → λ0.
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Proof. The ‘if’ part follows from the continuity theorem for characteristic functions.
For the converse, we observe that e−λn → e−λ0 = P(X0 ≤ 1/2) since 1/2 is a
continuity point of X0 (note that P(X0 ≤ x) = P(X0 = 0) for all x < 1). Taking logs
yields λn → λ0 and the necessity of Un

D−→ U0 then is obvious from the continuity
theorem for characteristic functions.

Using the previous result, we are ready to prove part of Theorem 12.3 for a class
of compound Poisson distributions:

Proposition 12.8. Let U0, U1, . . . , N0, N1, . . . , and X0, X1, . . . be as in Lemma 12.7.
Assume Xn

D−→ X0. Then for α > 0.

lim
a→∞

sup
n

E
[
Xα
n1Xn > a

]
= 0 ⇐⇒ lim

a→∞
sup
n

E
[
Uα
n1Un > a

]
= 0 .

Proof. To prove that the l.h.s. implies the r.h.s., we let Gn(x) = P(Xn ≤ x), Fn(x) =
P(Un ≤ x), F n(x) = 1− Fn(x), Gn(x) = 1−Gn(x), and let F ∗mn (x), G∗mn (x) denote
the m-fold convolutions. Then

Gn(x) =
∞∑

m=1

λmn
m!

e−λnF ∗mn (x) , x > 0

which implies Gn(x) ≥ λne−λnF n(x). Letting β = supn eλn/λn, which is finite by
Lemma 12.7, we get F n(x) ≤ βGn(x). Therefore:

E[Uα
n1Un > a] =

∫ ∞

0

αtα−1P(Un > a ∨ t)dt = aαF n(a) + α

∫ ∞

a

tα−1F n(t)dt

≤ βaαGn(a) + βα

∫ ∞

a

tα−1Gn(t)dt = βE[Xα
n1Xn > a] .

Taking supremum and limits completes the first part of the proof.
For the converse we note that by Lemma 12.7 we have F ∗1n

D−→ F ∗10 and it
follows from the continuity theorem for characteristic functions that F ∗mn

D−→ F ∗m0 .
Fix m ∈ N. Since

(∑m
i=1 Ui,n

)α ≤ mα
∑m

i=1 U
α
i,n and the family (mα

∑m
i=1 U

α
i,n)n≥1

is uniformly integrable, we have that also the family (
∑m

i=1 Ui,n)αn≥1 is uniformly
integrable. As noted above we have

∑m
i=1 Ui,n

D−→ ∑m
i=1 Ui,0, so Proposition 12.5

implies E(
∑m

i=1 Ui,n)α → E(
∑m

i=1 Ui,0)α.
We next show EXα

n → EXα
0 and thereby the assertion of the proposition. We

have:

lim
n

EXα
n = lim

n

∞∑

m=0

E
( m∑

i=1

Ui,n

)αλmn
m!

e−λn =
∞∑

m=0

lim
n

E
( m∑

i=1

Ui,n

)αλmn
m!

e−λn

=
∞∑

m=0

E
( m∑

i=1

Ui,0

)αλm0
m!

e−λ0 = EXα
0 ,

where we used dominated convergence with the bound

E
( m∑

i=1

Ui,n

)αλmn
m!

e−λn ≤ γmα+1βm/m! ,

where γ = supn EUα
n and β = supn λn.
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Proof of Theorem 12.3. Using the Lévy-Khinchine representation, we may write

Xn = X(1)
n +X(2)

n +X(3)
n , (12.6)

where the (X
(i)
n )n≥1 are sequences of infinitely divisible distributions having charac-

teristic triplets (0, 0, [νn]{y<−1}) , (cn, σn, [νn]{|y|≤1}) and (0, 0, [νn]{y>1}), respectively,
which are independent for each n. Assume the family (|Xn|α)n≥1 is uniformly inte-
grable. We wish to apply Proposition 12.8 to the family ((X

(3)
n )α)n≥1, and therefore

we need to show that this family is uniformly integrable. First, we rewrite (12.6)
as Xn − X

(2)
n = X

(1)
n + X

(3)
n and use Lemma 12.6 together with the inequality

|x− y|α ≤ 2α(|x|α + |y|α) to conclude that the family (|Xn−X(2)
n |α)n≥1 is uniformly

integrable, which in turn implies that the family (|X(1)
n + X

(3)
n |α)n≥1 is uniformly

integrable.
Assuming w.l.o.g. that 1 is a continuity point of ν0, we have that X(1)

n is weakly
convergent and therefore tight. This implies that there exists r > 0 such that
P(|X(1)

n | ≤ r) ≥ 1/2 for all n, which implies that for all n and for all t so large
that (t1/α − r)α > t/2, we have:

(1/2)P
(
(X(3)

n )α > t
)
≤ P

(
|X(1)

n | ≤ r
)
P
(
X(3)
n > t1/α

)

= P
(
|X(1)

n | ≤ r,X(3)
n > t1/α

)
≤ P

(
X(1)
n +X(3)

n > t1/α − r
)

≤ P
(
|X(1)

n +X(3)
n |α > (t1/α − r)α

)
≤ P

(
|X(1)

n +X(3)
n |α > t/2

)
.

This implies that ((X
(3)
n )α) is uniformly integrable, since (|X(1)

n +X
(3)
n |α) is so. Ap-

plying Proposition 12.8 yields

lim
a

sup
n

∫ ∞

a

yανn(dy) = 0 . (12.7)

Together with a similar relation for
∫ −a
−∞ this gives

lim
a→∞

sup
n

∫

[−a,a]c
|y|ανn(dy) = 0 .

For the converse, we assume lima supn
∫

[−a,a]c
|y|ανn(dy) = 0, and return to our

decomposition (12.6). As before, we apply Lemma 12.6 to obtain that the family
(X

(2)
n ) is uniformly integrable. Furthermore, applying Proposition 12.8, we obtain

that the families (|X(1)
n |α) and (|X(3)

n |α) are uniformly integrable, and since |Xn|α ≤
3α(|X(1)

n |α + |X(2)
n |α + |X(3)

n |α), the proof is complete.

Next, we prove Theorem 12.2.
We consider a sequence of Lévy processes {Xn} such thatXn D−→ X0 and use obvious
notation like `b,n, πb,n etc. Furthermore, we let τn(A) denote the first exit time of
Xn from A. Here A will always be an interval.

We first show that weak convergence of Xn implies weak convergence of the
stationary distributions.

Proposition 12.9. Xn D−→ X0 ⇒ πb,n
D−→ πb,0.
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Proof. According to Theorem 13.17 in [76] we may assume ∆n,t = supv≤t |Xn(v) −
X0(v)| P→ 0. Then

P
(
X0
τ0[y+ε−b,y+ε) ≥ y + ε, τ 0[y + ε− b, y + ε) ≤ t

)

≤ P
(
Xn
τn[y−b,y) ≥ y, τn[y − b, y) ≤ t

)
+ P(∆n,t > ε)

≤ P
(
Xn
τn[y−b,y) ≥ y

)
+ P(∆n,t > ε) .

Letting first n→∞ gives

lim inf
n→∞

πb,n(y) ≥ P
(
X0
τ0[y+ε−b,y+ε) ≥ y + ε, τ 0[y + ε− b, y + ε) ≤ t

)
,

and letting next t→∞, we obtain

lim inf
n→∞

πb,n(y) ≥ πb,0(y + ε) . (12.8)

Similarly,

P
(
Xn
τn[y−b,y) ≥ y, τn[y − b, y) ≤ t

)
≤ P

(
X0
τ0[y−ε−b,y−ε) ≥ y − ε

)
+ P(∆n,t > ε) ,

lim sup
n→∞

P
(
Xn
τn[y−b,y) ≥ y, τn[y − b, y) ≤ t

)
≤ πb,0(y − ε) . (12.9)

However,

P
(
τn[y − b, y) > t

)
≤ P

(
τ 0[y − ε− b, y + ε) > t

)
+ P(∆n,t > ε) ,

so that
lim sup
n→∞

P
(
τn[y − b, y) > t

)
≤ P

(
τ 0[y − ε− b, y + ε) > t

)
.

Since the r.h.s. can be chosen arbitrarily small, it follows by combining with (12.9)
that

lim sup
n→∞

πb,n(y) = lim sup
n→∞

P
(
Xn
τn[y−b,y) ≥ y

)
≤ πb,0(y − ε) .

Combining with (12.8) shows that πb,n(y) → πb,0(y) at each continuity point y of
πb,0, which implies convergence in distribution.

The following elementary lemma gives two properties of the function ϕ = ϕb
from Theorem 1.1. The proof is omitted.

Lemma 12.10. The function ϕb(x, y) is continuous in the region (x, y) ∈ [0, b]×R
and satisfies 0 ≤ ϕb(x, y) ≤ 2y2 ∧ 2b|y|.

We are now ready to prove Theorem 12.2.

Proof. Recall the definition (12.3) of the bounded measure ν̃ and let ϕ̃b(x, y) =
ϕ(x, y)(1 + y2)/y2 for y 6= 0, ϕ̃b(x, 0) = 1. Note that ϕ̃b(x, y) is continuous on
(0, b)× R, but discontinuous at y = 0 if x = 0 or x = b. We also get

∫ ∞

−∞
ϕ̃b(x, y)ν̃n(dy) = σ2

n +

∫ ∞

−∞
ϕb(x, y)νn(dy) ,
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so that

an = σ2
n +

∫ b

0

πb,n(dx)

∫ ∞

−∞
ϕb(x, y)νn(dy) =

∫ b

0

πb,n(dx)

∫ ∞

−∞
ϕ̃b(x, y)ν̃n(dy) .

Let ν̃1
n, ν̃

2
n denote the restrictions of ν̃n to the sets |y| ≤ a, resp. |y| > a. Using

0 ≤ ϕb(x, y) ≤ 2b|y|, and uniform integrability (Theorem 12.3) we can choose a such
that

0 ≤
∫

[−a,a]c
ϕ̃b(x, y)ν̃2

n(dy) < ε

for all x and n (note that ν̃n ≤ νn on R\{0}). We may also further assume that a
and −a are continuity points of ν0 which implies ν̃1

n → ν̃1
0 weakly. In particular,

sup
n
ν̃1
n([−a, a]) <∞. (12.10)

Define

fn(x) =

∫ a

−a
ϕb(x, y)νn(dy) + σ2

n =

∫ a

−a
ϕ̃b(x, y)ν̃1

ndy

we wish to prove that
∫
fn dπb,n→

∫
f0 dπb,0 which, by using the generalized continuous-

mapping theorem (e.g. [127]), will follow if

πb,0(F ) = 0 (12.11)

where

F =
{
x | ∃(xn)n≥1 : xn → x, fn(xn) 9 f0(x)

}
. (12.12)

The proof of this follows different routes depending on whether or not σ2
0 is zero.

First, we assume σ2
0 = 0 and consider the functions

f−n (x) = σ2
n +

∫

(−∞,0]

ϕb(x, y)ν1
n(dy) =

∫

(−∞,0]

ϕ̃b(x, y)ν̃1
n(dy) ,

f+
n (x) =

∫

(0,∞)

ϕb(x, y)ν1
n(dy) =

∫

(0,∞)

ϕ̃b(x, y)ν̃1
n(dy) .

It follows from the definition of ν̃1
n, that the assumption σ2

0 = 0 implies that ν̃1
n has

no mass at 0, and since this is the only possible discontinuity point of the integrands,
we have f−n (x) → f−0 (x) and f+

n (x) → f+
0 (x) for x ∈ [0, b]. Furthermore, it can be

checked that x 7→ f−n (x) is increasing, x 7→ f+
n (x) is decreasing, and, using the bound

ϕb(x, y) ≤ 2y2, that both functions are uniformly bounded. That is, the functions f−n
and f+

n form two uniformly bounded sequences of continuous, monotone functions
which converge to a continuous limit and as such, they converge uniformly. From
this we get

sup
0≤y≤b

|fn(y)− f0(y)| = sup
0≤y≤b

|f−n (y)− f−0 (y) + f+
n (y)− f+

0 (y)|

≤ sup
0≤y≤b

|f−n (y)− f−0 (y)|+ sup
0≤y≤b

|f+
n (y)− f+

0 (y)| → 0 .
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Using the calculation above, we see that if we consider any x ∈ [0, b] and sequence
(xn)n≥1 converging to x, we have

|fn(xn)− f0(x)| ≤ |fn(xn)− f0(xn)|+ |f0(xn)− f0(x)| (12.13)
≤ sup

0≤y≤b
|fn(y)− f0(y)|+ |f0(xn)− f0(x)| → 0 ,

where we use continuity of f0 in the last part of the statement. This gives us that
F in (12.12) is the empty set, and hence we obtain (12.11) in the case σ2

0 = 0.
Next, we consider the case where σ2

0 > 0. We note that σ2
0 > 0 implies that {X0}

is a process of unbounded variation and using Theorem 6.5 in [94], this implies
that 0 is regular for (0,∞). By comparing this to the representation (1.6) of the
stationary distribution, we see that this implies πb,0({0, b}) = 0. Consider x ∈ (0, b)
and a sequence (xn)n≥1 converging to x. Assume w.l.o.g. that xn ∈ [ε, b− ε] for some
ε > 0. Since ϕ̃b(x, y) is continuous on the compact set [ε, b− ε]× [−a, a], we can use
(12.11) to see that given ε1, there exists ε2 such that |fn(x′)− fn(x′′)| < ε1 for all n
whenever |x′ − x′′| < ε2 and x′, x′′ ∈ [ε, b − ε]. Since xn → x this means, that given
any ε1 > 0, we may use an inequality similar to (12.13) to conclude that for n large
enough

|fn(xn)− f0(x)| ≤ ε1 + |fn(x)− f0(x)|
and by taking lim supn we see that the convergence fn(xn) → f0(x) holds when
x ∈ (0, b), and can only fail x = 0 or x = b. Using that {0, b} has πb,0-measure 0, we
have

∫
fn dπb,n →

∫
f0 dπb,0 in this case as well. By combining this with the uniform

integrability estimate above, we get that for any ε > 0: |an − a0| ≤ |fn − f0| + 2ε.
(note that fi depends on ε) and hence lim supn |an−a0| ≤ 2ε, which implies an → a0.

By uniform integrability EXn(1) → EX0(1), and further πb,n D−→ πb,0 implies∫ b
0
πb,n(y)dy →

∫ b
0
πb,0(y)dy. Remembering an → a0 and inspecting the expression

(6.6) for the loss rate shows that indeed `b,n → `b,0.

Proof of Theorem 12.1

First we note the effect that scaling and time-changing a Lévy process has on the
loss rate:

Proposition 12.11. Let β, δ > 0 and define Xβ,δ(t) = X(δt)/β. Then the loss rate
`b/β(Xβ,δ) for Xβ,δ equals δ/β times the loss rate `b(X) = `b for X.

Proof. It is clear that scaling by β results in the same scaling of the loss rate. For the
effect of δ, note that the loss rate is the expected local time in stationarity per unit
time and that one unit of time for Xβ,δ corresponds to δ units of time for X.

Proof of Theorem 12.1 a). Define Xb(t) = X(tb2)/b. Then by Proposition 12.11 we
have

b`b(X) = `1(Xb)

By the central limit theorem we have Xb(1)
D−→ N(0, ψ2) as b → ∞. By Proposi-

tion 12.4, this is equivalent to Xb D−→ ψB where B is standard Brownian motion.
We may apply Theorem 12.2, since

E
[
(Xb(1))2

]
= Var(X1(1)) ,
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that is, {Xb(1)}∞b=1 is bounded in L2 and therefore uniformly integrable. Thus

lim
b
b`b(X) = lim

b
`1
(
Xb
)

= `1(ψB) = ψ2/2 ,

where the last equality follows directly from the expression for the loss rate in
Theorem 1.1.

Proof of Theorem 12.1 b). First we note that the stated conditions implies that the
tails of ν are regularly varying, and therefore they are subexponential. Then by [52]
we have that the tails of P(X(1) < x) are equivalent to those of ν and hence we may
write

P(X(1) > x) = x−αL1(x)g1(x) , P(X(1) < −x) = x−αL2(x)g2(x)

where limx→∞ gi(x) = 1, i = 1, 2. The next step is to show that the fact that the
tails of the distribution function are regularly varying allows us to apply the stable
central limit theorem. Specifically, we show that the assumptions of Theorem 1.8.1
in [118] are fulfilled.

We notice that if we defineM(x) = L1(x)g1(x)+L2(x)g2(x) then M(x) is slowly
varying and

xα
[
P(X(1) < −x) + P(X(1) > x)

]
= M(x) . (12.14)

Furthermore:
P (X(1) > x)

P(X(1) < −x) + P(X(1) > x)
= L1(x)g1(x)/M(x) ∼ L1(x)/L(x)→ β + 1

2
,

(12.15)

as x→∞ since L(x) ∼ M(x). Define L0(x) = L(x)(−1/α) and let L#
0 (x) denote the

de Bruin conjugate of L0 (cf. [31] p. 29) and set f(n) = n(1/α)L#
0 (n(1/α)). Let f← be

the generalized inverse of f . By asymptotic inversion of regularly varying functions
([31], p. 28-29) we have f←(n) ∼ (nL0(n))α which implies

f←(n)L(n)

nα
∼ (nL0(n))αL(n)

nα
= 1

and since f←(f(n)) ∼ n we have

nM(f(n))

f(n)α
∼ nL(f(n))

f(n)α
∼ f←(f(n))L(f(n))

f(n)α
→ 1 (12.16)

and therefore, if we define σ = (Γ(1− α) cos(απ/2))1/α we have

nM(σ−1f(n))

(σ−1f(n))α
∼ nM(f(n))

(σ−1f(n))α
→ σα (12.17)

using slow variation of M . By combining (12.14), (12.15) and (12.17) we may apply
the stable CLT Theorem 1.8.1 [118] 3 to obtain Xb/f(b)

D−→ Z where Z is a r.v. with
characteristic function ψ, where

ψ(u) = exp(−|σu|α(1− iβ sgn(u) tan(απ/2)) . u ∈ R
3Note that the constants there should be replaced by their inverses.
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Recalling that κ is the characteristic exponent of X, this is equivalent to

ebκ(iu/f(b)) → ψ(u)

and therefore

e(bL0(b))ακ(iu/f(f←(b))) ∼ ef
←(b)κ(iu/f(f←(b))) → ψ(u)

that is, for X̃b(t) = X(t(bL0(b))α)/f(f←(b)) we have X̃b(1)
D−→ Z, and using

f(f←(b)) ∼ b as well as the definition of L0(b), we see that the same applies to
Xb(1) = X(t(bα/L(b)))/b. Setting d = (β + 1)/2 and c = (1 − β)/2 we calculate
(cf. [118])

− |σt|α(1− iβ sgn(t) tan(απ/2) = −|σt|α(1 + i(d− c) sgn(t) tan(απ/2)

dα

∫ 0

−∞
(eivt − 1− ivt)(−t)−α−1 dt+ cα

∫ ∞

0

(eivt − 1− ivt)t−α−1 dt .

That is, the characteristic triplet of Z is (τ, 0, ν), where

ν(du) =





αc

(−u)α+1
du u < 0

αd

uα+1
du u > 0

(12.18)

and τ is a centering constant. We wish to use Theorem 12.2 and have to prove
uniform integrability. Note that by combining Proposition 11.10 and Corollary 8.3
in [119], we have that the Lévy measure of Xb is νb, where

νb(B) = bαL(b)−1ν({x : b−1x ∈ B}) .

Using the assumptions in (12.2), this implies

νb(a) = bαL(b)−1ν(ab) = L(b)−1a−αL1(ab) , νb(−a) = L(b)−1a−αL2(ab) .

Using partial integration and the remarks above, we find:
∫

[−a,a]c
|y|νb(dy) = aνb(a) +

∫ ∞

a

νb(t)dt+ aνb(−a) +

∫ −a

−∞
νb(t)dt

= a−α+1L(b)−1αL(ab) +

∫ ∞

a

t−αL(b)−1L(tb)dt .

Furthermore, using Potter’s Theorem (Theorem 1.5.6 in [31]) we have that for δ > 0
such that 1 + δ < α there exists ξ > 0 such that

L(ab)

L(b)
≤ 2 max(aδ, a−δ), ab > ξ, b > ξ .

Using this, we get that

lim
a

sup
b>ξ

a−α+1L(ab)

L(b)
≤ 2 lim

a
a−α+1 max(aδ, a−δ) = 0 (12.19)
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and similarly for the integral:

sup
b>ξ

lim
a

∫ ∞

a

t−α
L(tb)

L(b)
dt ≤ 2 lim

a

∫ ∞

a

t−α max(tδ, t−δ)dt = 0 . (12.20)

By combining (12.19) and (12.20) we get

lim
a→∞

sup
b>ξ

∫

[−a,a]c
|y|νb(dy) = 0 .

By Proposition 12.11 we have bα−1L(b)−1`b(X) = `1
(
Xb
)
, and since we have proved

uniform integrability, we may apply Theorem 12.2. Letting b→∞ and using Exam-
ple 8.8 which states that the loss rate for our stable distribution is γ (see also [93]),
yields the desired result.

13 The overflow time

We define the overflow time as

ω(b, x) = inf
{
t > 0 : V b(t) = b

∣∣V b(0) = x
}
, 0 ≤ x < b.

It can also be interpreted in terms of the one-sided reflected process as

ω(b, x) = inf
{
t > 0 : V ∞(t) ≥ b

∣∣V ∞(0) = x
}
, 0 ≤ x ≤ b .

It has received considerable attention in the applied literature. We consider here
evaulation of characteristics of ω(b, x), in particular expected values and distribu-
tions, both exact and asymptotically as b→∞. When no ambiguity exists, we write
ω instead of ω(b, x).

As may be guessed, the Brownian case is by far the easiest:

Example 13.1. Let X be BM(µ, σ2) with µ 6= 0 [the case µ = 0 requires a separate
treatment which we omit]. Consider the Kella-Whitt martingale with B(t) = x +
L(t)− qt/α where L is the local time at 0 for the one-sided reflected process,

κ(α)

∫ t

0

eαV
∞(s)−qs ds+ eαx − eαV

∞(t)−qt + α

∫ t

0

e−qs dL(s)− q
∫ t

0

eαV
∞(s)−qs ds

where we used that L can only increase when V ∞ is at 0 and so
∫ t

0

eαV
∞(s)−qs dL(s) =

∫ t

0

e−qs dL(s) .

Take first γ = −2µ/σ as the root of 0 = κ(s) = sµ+ s2σ2/2 and q = 0. Optional
stopping at ω then gives 0 = eγx − eγb + γEL(ω). Using V ∞ = x + B + L and
EB(ω) = µEω then gives

Eω(b, x) =
b− x− (eγb − eγx)/γ

µ
(13.1)
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Take next q > 0 and θ± as the two roots of κ(α) = q, cf. Example 7.3. We then
get

0 = eθ
+x − eθ

+xEe−qω − q E
∫ ω

0

eαV
∞(s)−qs ds .

Together with the similar equation with θ− this can then be solved to obtain Ee−qω

(the other unknown is E
∫ ω

0
eαV

∞(s)−qs ds).
Early calculations of these and some related quantities are in Glynn & Igle-

hart [62] who also discuss the probabilistically obvious fact that ω(b, 0) is exponen-
tially distributed in the Brownian case (as in the spectrally positive Lévy case), cf.
Athreya & Werasinghee [22].

13.1 Exact results in the PH model

Recall from Section 3 that the process V ∞ with one-sided reflection at 0 can be
constructed as V (t) = V (0) +X(t) + L(t), where

L(t) = − min
0≤s≤t

(V (0) +X(s))

is the local time. For our phase-type model with a Brownian component, L(t) de-
composes as Lc(t) + Ld(t), where Lc is the continuous part (the contribution to L
from the segments between jumps where V behaves as a reflected Brownian motion)
and Ld(t) the compensation of jumps of X that would have taken V below 0.

0

b

V

L

τV

Figure 7: One-sided reflected process V = V∞ and local time L

The situation is illustrated on Fig. 7. We have again phases red, green for F+

and blue for F−. The cyan Brownian segments are how Brownian motion would have
evolved without reflection. In the lower panel, the cyan segments of L correspond
to compensation when the Brownian motion would otherwise have taken V ∞ below
0, and the blue jumps are the compensation from jumps of X that would otherwise
have taken V ∞ below 0.

To compute the Laplace transform of ω, we use the Kella-Whitt martingale with
B(t) = V (0) +L(t)− qt/α. Thus αZ(t) = αV (t)− qt, and the martingale takes the
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form

κ(α)

∫ t

0

eαV (s)−qs ds+ eαV (0) − eαV (t)−qt

+ α

∫ t

0

eαV (s)−qs (dLc(s)− q ds/α
)

+
∑

0≤s≤t
eαV (s)−qs(1− e−α∆Ld(s))

=
(
κ(α)− q)

∫ t

0

eαV (s)−qs ds+ eαV (0) − eαV (t)−qt

+ α

∫ t

0

e−qs dLc(s) +
∑

0≤s≤t
e−qs(1− e−α∆Ld(s)) ,

where in the last step we used that L can only increase when V is at 0. Now
introduce the following unknowns: z+

c , the expectation of e−qω evaluated on the
event of continuous upcrossing of level b only; z+

i , the expectation of e−qω evaluated
on the event of upcrossing in phase i = 1, . . . , n+ only; `c = E

∫ ω
0

e−qs dLc(s); and
mj, the expected value of the sum of the e−qs with s ≤ ω such that at time s there
is a downcrossing of level 0 in phase j = 1, . . . , n−. Optional stopping then gives

0 =
(
κ(α)− q)E

∫ ω

0

eαV (s)−qs ds+ eαV (0)

− eαb
(
z+
c +

n+∑

i=1

F̂+
i [α]z+

i

)
+ α`c +

n−∑

j=1

mj(1− F̂−j [−α]) .

Taking α as one of the same roots as in Section 9.4, we get

0 =eρ
q
kV (0) − eρ

q
kb
(
z+
c +

n+∑

i=1

F̂+
i [ρqk]z

+
i

)
+ ρqk`c +

n−∑

j=1

mj(1− F̂−j [−ρqk]) ,

a set of linear equations from which the unknowns and hence Ee−qω = z+
c + z+

1 +
· · ·+ z+

n+ can be computed.

13.2 Asymptotics via regeneration

The asymptotic study of ω(b, x) is basically a problem in extreme value theory since

P(ω(b, x) ≤ t) = Px
(

max
0≤s≤t

V ∞(s) ≥ b
)
. (13.2)

This is fairly easy if m = EX(1) > 0 since then the max in (13.2) is of the same
order as X(t) which is in turn of order mt. Hence we assume m < 0 in the following.

For processes with dependent increments such as V ∞, the asymptotic study of the
quantitites in (13.2) is most often (with Gaussian processes as one of the exceptions)
done via regeneration, cf. [11, VI.4]

For V ∞, we define (inspired by the discussion in Section 5.1) a cycle by starting
at level 0, waiting until level 1 (say) has been passed and taking the cycle termination
time T as the next hitting time of 0 (‘up to 1 from 0 and down again’). That is,

T = inf
{
t > inf{s > 0 : V ∞(s) ≥ 1} : V ∞(t) = 0

∣∣V ∞(0) = 0
}
.
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The key feature of the regenerative setting is that the asymptotic discussion can
be reduced to the study of the behavior within a regenerative cycle. The quantities
needed are

mT = E0T , a(z) = P0

(
max

0≤s≤T
V ∞(s) ≥ z

)
.

Indeed one has by [11, VI.4] that:

Theorem 13.2. As b → ∞, it holds for any fixed x that a(b)Eω(b, x) → mT and
that a(b)ω(b, x)/mT has a limiting standard exponential distribution.

For the more detailed implementation, we note:

Proposition 13.3. (a) Assume that the Lévy measure ν is heavy-tailed, more pre-
cisely that ν(z) =

∫∞
z
ν(dy) is a subexponential tail. Then a(z) ∼ mTν(x) as

z →∞;

(b) Assume that the Lévy measure ν is light-tailed, more precisely that the Lundberg
equation κ(γ) = 0 has a solution γ > 0 with κ′(γ) <∞. Then a(z) ∼ CT e−γz

for some constant CT as z →∞

Sketch of proof. For (a), involve ‘the principle of one big jump’ saying that ex-
ceedance of z occurs as a single jump of order z (which occur at rate ν(z). The
rigorous proof, using the regenerative representation π∞(x) = a(x)/mT of the sta-
tionary distribution of V ∞ and known results on π∞, can be found in [10], [17].

For (b), let Pγ, Eγ refer to the exponentially tilted case κγ(α) = κ(α+ γ)−κ(α)
with V ∞(0) = 0. By standard likelihood ratio identities,

a(z) = P0

(
ω(z, 0) < T

)
= Eγ

[
exp
{
−γX

(
ω(z, 0)

)}
; ω(z, 0) < T

]
(13.3)

Nowmγ = κ′(γ) > 0 so that Pγ
(
V ∞(t)→∞

)
= 1. Hence

{
ω(z, 0) < T

}
↑ {T =∞}

where Pγ(T =∞) > 0, and

X
(
ω(z, 0)

)
+ L

(
ω(z, 0)

)
= V ∞

(
ω(z, 0)

)
= z + ξ(z)

where ξ(z), the overshoot, converges in Pγ-distribution to a limit ξ(∞) (in fact, the
same as when overshoot distribution are taken w.r.t. X, not V ∞), and L

(
ω(z, 0)

)

converges in Pγ-distribution to the finite r.v. L(∞). Combining with (13.3) and
suitable independence estimates along the lines of Stam’s lemma ([11, pp. 368–369]),
the result follows with

CT = Eγe−γξ(∞) · Eγ
[
eγL(∞); T =∞

]
.

That CT <∞ is seen by a comparison with Theorem 2.1 since clearly

a(z) ≤ P0

(
max

0≤s≤T
V ∞(s) ≥ z

)
= π∞(z) .
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In the heavy-tailed case, Theorem 13.2 and Proposition 13.3 determine the order
of ω(b, x) as ν(b). In the light-tailed case, we are left with the computation of the
constant CT . In general, one can hardly hope for an explicit expression beyond
special cases. Note, however, that for the spectrally negative case one can find the
Laplace transform Exe−qω(z,x) as Z(q)(x)/Z(q)(b), where

Z(q)(x) = 1 + q

∫ x

0

W (q)(y) dy

is the ‘second scale function’. See Pistorius [109] and Kyprianou [94, p. 228], with
extensions in Ivanovs & Palmowski [73]. We return to Eω in Section 14.2.

14 Studying V as a Markov process

14.1 Preliminaries

An alternative approach to computing probabilities and expectations associated with
V and its loss process U is to take advantage of the fact that V is a Markov jump-
diffusion process. As a consequence, a great number of probabilities / expectations
can be computed by solving linear integro-differential equations, subject to suit-
able boundary conditions related to the boundary behaviour of V and the specific
functional under consideration.

Our exposition is somewhat simpler if we require that the jump component of
X be of bounded variation (BV). So, we will henceforth assume that

∫

|y|≤1

|y| ν(dy) <∞ . (14.1)

In this setting,
X(t)−X(0) = µt+ σ B(t) +

∑

0<s≤t
∆X(s) ,

where ∆X(s) = X(s) − X(s−) and the sum converges absolutely for each t < ∞
because of (14.1). Cf. the discussion at the end of Section 1. Without (14.1), the
jump part would a.s. have unbounded variation. In order to deal with Lévy processes
having non-BV jumps, one needs to modify the equations and arguments of this
section slightly. We discuss this non-BV extension briefly at the end in Section 14.6.

The key to establishing suitable integro-differential equations in this context is
the systematic use of Itô’s formula in the form

f
(
V (s)

)
− f

(
V (s)

)
−
∑

0<s≤t

[
f
(
V (s)

)
− f

(
V (s−)

)]

=

∫ t

0

[
µf ′
(
V (s)

)
+
σ2

2
f ′′
(
V (s)

)]
ds+

∫ t

0

f ′
(
V (s)

)
dB(s)

+

∫ t

0

f ′
(
V (s)

)
dLc(s)−

∫ t

0

f ′
(
V (s)

)
dUc(s) (14.2)

[Note that in our context, V (s) could be replaced by b in the last integral and by 0
i the next-to-last.] This follows for compound Poisson jumps by using Itô’s formula
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in a form involving boundary modifications (see [43]) on intervals between jumps
of X (where V is continuous), and in the general case by approximation by such a
process. Equation (14.1) is the basic form of Itô’s formula that we will systematically
apply in what follows.

With the aid of Itô’s formula, we will illustrate the use of Markov process argu-
ments in deriving various integro-differential equations associated with V and its loss
process U . In fact, we will generalize from consideration of U to additive functionals
([33]) of the form

Λ(t) =

∫ t

0

f
(
V (s)

)
ds+

∑

0<s≤t
f̃
(
V (s−),∆X(s)

)
+ r1Lc(t) + r2Uc(t) . (14.3)

Note that we recover U if we set f ≡ 0, f̃(x, y) = [x + y − b]+, r1 = 0 and r2 = 1.
We assume throughout that f is bounded, that f̃(x, 0) = 0, and that

sup
0≤x≤b

∫
|f̃(x, y)| ν(dy) <∞ .

An additional notational simplification will be useful: we set

r(x, y) =





0 x+ y ≤ 0

x+ y 0 ≤ x+ y ≤ b

b x+ y ≥ b

and observe that V (s) = r
(
V (s−),∆X(s)

)
whenever ∆X(s) 6= 0.

The integro-differential equations to follow are typically expressed in terms of
the operator L defined on twice differentiable functions ϕ : [0, b]→ R and given by

(Lϕ)(x) = µϕ′(x) +
σ2

2
ϕ′′(x) +

∫

R

[
ϕ
(
r(x, y)

)
− ϕ(x)

]
ν(dy) ,

The expression on the r.h.s. is familiar from the theory of generators of Markov
processes, but given the multitude of formulations of this theory, we will not pursue
this aspect. The generator view, though, may sometimes be helpful to heuristically
understand the form of the results. For example, we will study the expectation
s(x) = ExTz where Tz = inf{t > 0 : V (t) ≥ z} is a level crossing time of V (and as
usual Px,Ex refer to the case V (0) = x). Intuitively, one should have

s(x) ≈ h+ Exs
(
x+ V (h)

)
≈ h+ s(x) + h (Ls)(x)

for small h, so that the equation to solve for computing s should be (Ls)(x) = −1
(subject to suitable boundary conditions). Our detailed analysis aims at making this
rigorous.

We will encounter functions h(θ, x) depending on two arguments and write then
as usual hθ(θ, x), hx(θ, x) for the partial derivatives. When working with h as a
function of x for a fixed θ, we write h(θ) rather than h(θ, ·).
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14.2 Level crossing times

Consider the level crossing time

Tz = inf
{
t > 0 : V (t) ≥ z}

defined for V (with 0 < z ≤ b) and

τ(w) = inf
{
t > 0 : Λ(t) ≥ w}

defined (with w > 0) for the additive functional Λ in (14.3). In this section, we for-
mulate the integro-differential equations appropriate for computing characteristics
of these quantities.

Theorem 14.1. Fix θ ≤ 0. Suppose that there exists a function h(θ) = h(θ, ·) :
[0, b] → R that is twice continuously differentiable in [0, z] satisfying the integro-
differential equation (

Lh(θ)
)
(x) + θh(θ, x) = 0 (14.4)

for 0 ≤ x ≤ z, subject to the boundary conditions

h(θ, x) = 1 for x ≥ z, hx(θ, 0) = 0 .

Then h(θ, x) = ExeθTz .

Proof. Observe that Uc(Tz) = 0. Hence, Itô’s formula yields

Eeθ(Tz∧t)h
(
θ, V (Tz ∧ t)

)
− h
(
θ, V (0)

)
=

4∑

j=1

Tj,

where

T1 =

∫ Tz∧t

0

ebs
[(
Lh(θ)

)(
V (s)

)
+ θh

(
θ, V (s)

)]
ds ,

T2 =

∫ Tz∧t

0

ebshx
(
θ, V (s)

)
ds ,

T3 =

∫ Tz∧t

0

ebshx
(
θ, V (s)

)
σ dB(s) ds ,

T4 =
∑

0<s≤Tz∧t
ebs
[
h
(
θ, V (s)

)
− h
(
θ, V (s−)

)]
,

−
∫ Tz∧t

0

ebs
∫

R

[
h
(
θ, r(V (s), y)

)
− h
(
θ, V (s)

)]
ν(dy) ds

Here T1+T2 = 0 because of the integro-differential equation (14.4) and the boundary
condition at x = 0, whereas T3 + T4 form a martingale. Hence

Eeθ(Tz∧t)h
(
θ, V (Tz ∧ t)

)
= h(θ, x)

for t ≥ 0. By monotone convergence and the boundary condition for x ≥ z,

E[eθTzh(θ, V (Tz)); Tz ≤ t] ↑ E[eθTz ; Tz <∞]
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as t → ∞. On the other hand, the boundedness of h(θ) and the fact that θ ≤ 0
ensure that

E
[
eθth

(
θ, V (t)

)
; Tz > t

]
→ 0 .

The conclusion follows by noting that Tz <∞ a.s. because of the reflection at 0.

We can now formally obtain our integro-differential equation for ExTz by differen-
tiating (14.4) and the boundary conditions. In particular note that ExTz = hθ(0, x).
Formally differentiating (14.4) w.r.t. θ yields

(Lhθ)(x) + h(θ, x) + θhθ(θ, x) = 0

for 0 ≤ x ≤ z, subject to

hθ(θ, x) = 0 for x ≥ z, hxθ(θ, 0) = 0 .

Letting h̃(x) = ETz, we conclude from h(0, x) = 1 for 0 ≤ x ≤ z that h̃ should
satisfy

(Lh̃)(x) = −1

for 0 ≤ x ≤ z, subject to

h̃(x) = 0 for x ≥ z, h̃′(0) = 0 .

By working with the martingale

h̃
(
V (Tz ∧ t)

)
+ Tz ∧ t ,

this can be rigorously verified by sending t → ∞, using the boundedness of h̃, and
exploiting the fact that h̃

(
V (Tz)

)
= 0.

Bounds on ExTz can be obtained similarly, in the presence of a non-negative
twice continuousy differentiable function γ for which

(Lγ)(x) ≤ −1

for 0 ≤ x ≤ z. In this case,

γ
(
V (Tz ∧ t)

)
+ Tz ∧ t

is a non-negative supermartingale. Because γ is non-negative, ExTz ∧ t ≤ γ(x) for
t ≥ 0, yielding the bound

ExTz ≤ γ(z)

for 0 ≤ x ≤ z upon application of the monotone convergence theorem.
We next turn to the computation of Exeθτ(w) with Λ(t) as in (14.3) (note for the

following result the quantities f, f̃ , r1, r2 occurring in the definition).

Theorem 14.2. Fix θ ≤ 0. Suppose that there exists a function k(θ) : [0, b]×R→ R
of x, λ that is twice continuously differentiable in x and continuously differentiable
in λ on [0, b]× (−∞, w], and satisfies

0 = µkx(θ, x, λ) +
σ2

2
kxx(θ, x, λ) + kλ(θ, x, λ)f(x) + θk(θ, x, λ) (14.5)

+

∫

R

[
k
(
θ, r(x, y), λ+ f̃(x, y)

)
− k(θ, x, λ)

]
ν(dy) (14.6)
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for 0 ≤ x ≤ b, λ ≤ w, subject to the boundary conditions

r1kλ(θ, x, λ) + kx(θ, x, λ) = 0 and r2kλ(θ, x, λ)− kx(θ, x, λ) = 0

for λ ≤ w. If EπΛ(1) ≥ 0, then k(θ, x, λ) = Exeθτ(w).

Proof. An application of Itô’s formula guarantees that

eθ(τ(w)∧t)k
(
θ, V (τ(w) ∧ t)),Λ(τ(w) ∧ t)

)
− k
(
θ, V (0), 0

)
=

6∑

j=1

Tj

where

T1 =

∫ τ(w)∧t

0

ebs
∫

R

[t]
[
k
(
θ, r(V (s), y),Λ(s) + f̃(V (s), y)

)

− k
(
θ, V (s),Λ(s)

)]
ν(dy) ds ,

T2 =

∫ τ(w)∧t

0

ebs
[t]
[
µkx
(
θ, V (s),Λ(s)

)σ2

2
kxx
(
θ, V (s),Λ(s)

)

+ kλ
(
θ, V (s),Λ(s)

)
f
(
V (s)

)
+ θkλ

(
θ, V (s),Λ(s)

)]
ds ,

T3 =

∫ τ(w)∧t

0

ebs
[
kx
(
θ, V (s),Λ(s)

)
+ r1kλ

(
θ, V (s),Λ(s)

)]
dLc(s) ,

T4 =

∫ τ(w)∧t

0

ebs
[
−kx

(
θ, V (s),Λ(s)

)
+ r2kλ

(
θ, V (s),Λ(s)

)]
dUc(s) ,

T5 =

∫ τ(w)∧t

0

ebskx
(
θ, V (s),Λ(s)

)
σ dB(s) ,

T6 =
∑

0<s≤t
ebs

[t]
[
k
(
θ, r(V (s−),∆X(s)),Λ(s−) + f̃(V (s−),∆X(s))

)

− k
(
θ, V (s),Λ(s−)

)]

−
∫ τ(w)∧t

0

ebs
∫

R

[t]
[
k
(
θ, r(V (s−), y),Λ(s−) + f̃(V (s−), y)

)

− k
(
θ, V (s−),Λ(s−)

)]
ds .

Here T1 + T2 = 0 because of the integro-differential equation (14.6), T3 = T4 = 0
because of the boundary conditions, and T5, T6 are martingales. Consequently,

k
(
θ, V (0), 0

)
= Ex

[
eθτ(w)k

(
θ, V (τ(w) ∧ t)),Λ(τ(w) ∧ t)

)]

Now τ(w) < ∞ a.s. because EπΛ(1) < ∞. Because θ ≤ 0 and k is bounded, the
r.h.s. converges to

Ex
[
eθτ(w)k

(
θ, V (τ(w))),Λ(τ(w))

)
.

The proof is completed upon recognizing that k(θ, x, λ) = 1 for λ ≥ w.

14.3 Poisson’s equation and the CLT

A natural complement to the computation of the loss rate `b is the development of a
central limit theorem (CLT) for the cumulative loss. In particular, we wish to obtain
a CLT of the form

U(t)− `bt√
t

D−→ ηN(0, 1) (14.7)
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as t→∞. This CLT lends itself to the approximation

U(t)
D≈ `bt+ η

√
tN(0, 1) (14.8)

when t is large, where
D≈ means ‘has approximately the same distribution as’ (and

carries no rigorous meaning, other than through (14.7)). The key new parameter to
be computed in the approximation (14.8) is the time-average variance constant η2.
Computing η2, in turn, involves representing U(t) in terms of the solution to Pois-
son’s equation which is well-known to play a fundamental role for Markov process
CLTs (cf. e.g. Bhattacharyya [30], Glynn [61], Glynn & Meyn [63], [11, I.7, II.4d]).
See also Williams [128] for the CLT for U in the Brownian case.

We develop the theory in terms of a general additive functional V of the form
(14.3) and its associated boundary processes L and U . Given a function g : [0, b]→ R
and a scalar c, we say that the pair (g, c) is a solution to Poisson’s equation for the
additive functional Λ if

g
(
V (t)

)
+ Λ(t)− ct

is a martingale. When Λ = U , c must clearly equal `b.

Theorem 14.3. Assume that f is bounded and that

sup
0≤x≤b

∫

R

(
|f̃(x, y)|+ f̃(x, y)2

)
ν(dy) <∞ . (14.9)

If there exists a twice continuously differentiable function g : [0, b]→ R satisfying

sup
0≤x≤b

∫

R

∣∣g
(
r(x, y)

)∣∣ ν(dy) <∞ . (14.10)

and a scalar c such that the pair (g, c) satisfies the integro-differential equation

(Lg)(x) = −
(
f(x) +

∫

R
f̃(x, y) ν(dy)− c

)
(14.11)

for 0 ≤ x ≤ b, subject to the boundary conditions

g′(0) = −r1, g′(b) = r2 , (14.12)

then
g
(
V (t)

)
+ Λ(t)− ct

is a martingale. Furthermore,

Λ(t)− `bt√
t

D−→ ηN(0, 1)

as t→∞, where

η2 =

∫ b

0

[
σ2g′(x)2 +

∫

R

(
f̃(x, y) + g

(
r(x, y)

)
− g(x)

)2
] ν(dy)

]
π(dx) .
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Proof. We note that Itô’s formula guarantees that

g
(
V (t)

)
− g
(
V (0)

)
+ Λ(t)− ct

=

∫ t

0

(Lg)
(
V (s)

)
ds+

∫ t

0

g′
(
V (s)

)
σ dB(s)

+
∑

0<s≤t

[
g
(
V (s)

)
− g
(
V (s−)

)]

−
∫ t

0

∫

R

[
g
(
r(V (s−), y)

)
− g
(
V (s−)

)]
ν(dy) ds

+

∫ t

0

f
(
X(s)

)
ds+

∫ t

0

∫

R
f̃
(
V (s−), y

)
ν(dy) ds

+
∑

0<s≤t
f
(
V (s−),∆X(s)

)
−
∫ t

0

∫

R
f̃
(
V (s−), y

)
ν(dy) ds

+ r1Lc(t) + r2Uc(t)− ct+ g′(0)Lc(t)− g′(b)Uc(t)

=

∫ t

0

g′
(
V (s)

)
σ dB(s)

+
∑

0<s≤t

[
g
(
V (s)

)
− g
(
V (s−)

)
+ f̃(V (s−),∆X(s)

)]

−
∫ t

0

∫

R

[
g
(
r(V (s−), y)

)
− g
(
V (s)

)
+ f̃
(
V (s−), y

)]
ν(dy) ds

= M(t) (say) ,

where (14.9) and (14.10) were used to obtain the second equality. In the presence of
(14.9), (14.10), and the boundedness of g and g′, it follows thatM(t) is a martingale.
Furthermore, the quadratic variation has the form

[M,M ](t) =

∫ t

0

g′
(
V (s)

)2
σ2 ds

+
∑

0<s≤t

[
g
(
V (s)

)
− g
(
V (s−)

)}
+ f̃(V (s−),∆X(s)

)]2

=

∫ t

0

[
σ2g
(
r(V (s−), y)

)2

+

∫

R

[
g
(
V (s)

)
− g
(
V (s−)

)
+ f̃(V (s−),∆X(s)

)]2]
ν(dy) ds

+M1(t)

where M1(t) is a martingale. It is easily seen that [M,M ](t)/t → η2 a.s. as t→∞.
Finally, to verify condition a) of the martingale CLT in [54, p. 340], we need to show
that

1√
t
Eπ sup

0≤s≤t

∣∣M(s)−M(s−)
∣∣→ 0 (14.13)

as t → ∞ (this needs only to be verified for V (0) distributed as π because we
can couple V to the stationary version from any initial distribution). Of course, a
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sufficient condition for (14.13) is to establish that

1

t
Eπ sup

0≤s≤t

∣∣M(s)−M(s−)
∣∣2 → 0 . (14.14)

It is well known that (14.14) is immediate if

Eπ sup
0≤s≤1

(
M(s)−M(s−)

)2
<∞ . (14.15)

But (14.15) is bounded by

Eπ
∑

0≤s≤1

[
M(s)−M(s−)

]2

= Eπ
∑

0≤s≤1

[
g
(
V (s)

)
− g
(
V (s−)

)
+ f̃(V (s−),∆X(s)

)]2

= Eπ
∫

R

[
g
(
r(V (s−), y)

)
− g
(
V (s−)

)
+ f̃(V (s−), y

)]2
ν(dy) ds

=

∫ b

0

∫

R

[
g
(
r(x, y)

)
− g
(
x,
)

+ f̃(x, y
)]2
ν(dy) π(dx)

due to the boundedness of g and condition (14.9). The martingale CLT then yields
the desired conclusion.

Theorem 14.3 therefore provides the CLT for general additive functionals asso-
ciated with V , provided that one can solve the integro-differential equation (14.11)
subject to the boundary condition (14.12). Finally, we note that the fact that
g
(
V (t)

)
+ Λ(t)− ct is, in great generality, a martingale, implies that

ExΛ(t) = ct+ g(x)− Exg
(
V (t)

)
,

where, as usual, Ex refers to the case V (0) = x. Since

Exg
(
V (t)

)
→ Eπg

(
V (t)

)

as t → ∞ (since V is regenerative with absolutely continuous cycles), we conclude
that

ExΛ(t) = ct+ g(x)− Eπg
(
V (t)

)
+ o(1) ,

as t→∞. Hence, the solution g to Poisson’s equation also provides a ‘correction’ to
the value of ExΛ(t) that reflects the influence of the initial condition on the expected
value of an additive functional.

14.4 Large deviations for the loss process

We turn next to obtaining a family of integro-differential equations from which the
large deviations behaviour of the additive functional Λ(·) can be derived (for earlier
work in this direction in the Brownian case, see Zhang & Glynn [131] and Forde et
al. [56]). The key to the analysis is the following result:

84



Theorem 14.4. Fix θ ∈ R. Suppose that

sup
0≤x≤b

∫

R
eθf̃(x,y) ν(dy) <∞ . (14.16)

If there exists a positive twice differentiable function u(θ) : [0, b] → R and a scalar
ψ(θ) such that the pair

(
u(θ), ψ(θ)

)
satisfies the integro-differential equation

0 = µux(θ, x) +
σ2

2
uxx(θ, x) +

(
θf(x)− ψ(θ)

)
u(θ, x)

+

∫

R

[
eθf̃(x,y)u

(
θ, r(x, y)

)
− u(θ, x)

]
ν(dy) (14.17)

for 0 ≤ x ≤ b, subject to the boundary conditions

ux(θ, 0) = −r1θ , ux(θ, b) = r2θ , (14.18)

then M(θ, t) = eθΛ(t)u
(
θ, V (t)

)
is a martingale.

Proof. Define A(s) = exp
{
θΛ(s)− ψ(θ)s

}
and

S(t) =
∑

0<s≤t
A(s)

[
exp
{
θf̃(V (s−),∆X(s)

)}
u
(
θ, V (s)

)
− u
(
θ, V (s−)

)]
.

Itô’s formula shows that M(θ, t)−M(θ, 0) equals

[t]S(t) +

∫ t

0

[
θf
(
V (s)

)
− ψ(θ)

]
A(s)u

(
θ, V (s−)

)
ds

+

∫ t

0

r1θA(s) dLc(s) +

∫ t

0

r2θA(s) dUc(s)

+

∫ t

0

[
µux

(
θ, V (s)

)
+
σ2

2
uxx
(
θ, V (s)

)]
A(s)ds

=

∫ t

0

A(s)ux
(
θ, V (s)

)
σ dB(s) + S(t)

−
∫ t

0

A(s)

∫

R

[
exp
{
θf̃
(
V (s), y

)}
u
(
θ, r
(
V (s), y

))
− u
(
θ, V (s)

)]
ν(dy) ds ,

where the second equality uses the fact that
(
u(θ), ψ(θ)

)
satisfy (14.17) and (14.18).

Given the boundedness of u(θ) and (14.16), the fact that M(θ, t) is integrable and
is a martingale is clear.

As a consequence of the martingale property and the fact that u(θ) is bounded
above and below by finite positive constants, it is straightforward to establish that

1

t
logExeθΛ(t) → ψ(θ)

as t→∞. Suppose that there exists θ∗ > 0 for which ψ(·) exists in a neighbourhood
of θ∗ and is continuously differentiable there. If we let a = ψ′(θ∗), then

1

t
logPx

(
Λ(t) ≥ at

)
→ ψ(θ∗)− θ∗a ;

see, for example, the proof of the Gärtner-Ellis theorem in [49, 45–51]. Hence, the
integro-differential equation (14.17) is intimately connected to the study of large
deviations for Λ.
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14.5 Discounted expectations for additive functionals

As our final illustration of how integro-differential equations naturally arise when
computing expectations of additive functionals of reflected Lévy processes, we con-
sider the calculation of an infinite horizon discounted expectation. Specifically, we
let the discounting factor at t be

Γ(t) =

∫ t

0

g
(
V (s)

)
ds+

∑

0<s≤t
g̃
(
V (s−),∆X(s)

)
+ u1Lc(s) + u2Uc(t)

for given functions g, g̃ (where g̃ is such that g̃(x, 0) = 0 for 0 ≤ x ≤ b), and set

D =

∫ ∞

0

e−Γ(s) dΛ(s) .

As for f, f̃ , we assume that g is bounded and that

sup
0≤x≤b

∫

R

∣∣g̃(x, y)
∣∣ ν(dy) <∞.

Theorem 14.5. Assume that f, f̃ , g, g̃, u1, u2 are non-negative with g strictly pos-
itive. If there exists a twice continuously differentiable function k : [0, b] → [0,∞)
satisfying the integro-differential equation

0 = µk′(x) +
σ2

2
k′′(x)− g(x)k(x)

+

∫

R

[
e−g̃(x,y)k

(
r(x, y)

)
− k(x)

]
ν(dy)

+ f(x) +

∫

R
f̃(x, y) ν(dy)

for 0 ≤ x ≤ b, subject to the boundary conditions

k′(0)− u1k(0) = −r1 , k′(b) + u2k(b) = −r2 ,

then ExD = k(x) for 0 ≤ x ≤ b.

Proof. Ito’s formula ensures that

D(s) + e−Γ(t)k
(
V (s)

)
− k
(
V (0)

)
=

8∑

j=1

Tj
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where

T1 =

∫ t

0

e−Γ(s)
[
µk′
(
V (s)

)
+
σ2

2
k′
(
V (s)

)
− g(x)k

(
V (s)

)]
,

T2 =

∫ t

0

e−Γ(s)

∫

R

[
e−g̃
(
V (s),y

)
k
(
r
(
V (s), y

))
− k
(
V (s)

)]
ν(dy) ,

T3 =

∫ t

0

e−Γ(s)f
(
V (s)

)
ds+

∫ t

0

e−Γ(s)

∫

R
f̃
(
V (s), y

)
ν(dy) ds ,

T4 =

∫ t

0

e−Γ(s)
[
r1 − u1k

(
V (s)

)
+ k′

(
V (s)

)]
dLc(s) ,

T5 =

∫ t

0

e−Γ(s)
[
r2 − u2k

(
V (s)

)
− k′

(
V (s)

)]
dUc(s) ,

T6 =

∫ t

0

k′
(
V (s)

)
σ dB(s) ,

T7 =
∑

0<s≤t
e−Γ(s)f̃

(
V (s),∆X(s)

)
−
∫ t

0

e−Γ(s)f̃
(
V (s), y

)
ν(dy) ds ,

T8 =
∑

0<s≤t
e−Γ(s)

[
e−g̃(V (s−),∆X(s))k

(
r
(
V (s),∆X(s)

))
− k
(
V (s−)

)]

−
∫ t

0

e−Γ(s)

∫

R

[
e−g̃(V (s−),y)k

(
r
(
V (s), y

))
− k
(
V (s−)

)]
ν(dy) ds .

Here T1 + T2 + T3 = 0 because of the integro-differential equation, T4 = T5 = 0
because of the boundary conditions satisfied by k, and T6, T7, T8 are all martingales.
Consequently,

k(x) = Ex
∫ t

0

e−Γ(s) dΛ(s) + Exe−Γ(t)k
(
V (t)

)
.

Sending t→∞, the non-negativity assumption ensures that
∫ t

0

e−Γ(s) dΛ(s) ↑ ExD ,

while the non-negativity of g, g̃, u1, u2, positivity of g and boundedness of k ensure
that ∫ t

0

e−Γ(s)k
(
V (t)

)
→ 0 ,

proving the theorem.

14.6 Jumps of infinite variation

Lévy processes are permitted to have a jump part of infinite variation as long as the
FV condition (14.1) is weakened to

∫

|y|<1

y2 ν(dy) <∞ . (14.19)
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In this setting, one must compensate the small jumps, by considering the random
measure ∫

|y|<1

y
[
µ(dy, ds)− ν(dy) ds

]
<∞ (14.20)

where µ is the Poisson random measure having intensity measure ν ⊗m (where m
is Lebesgue measure). The centered random measure is well-defined, and forms a
square-integrable martingale when integrated over s (due to (14.19)). Thus, in the
non-BV jump setting we can write the Lévy process X as

X(t)−X(0) = at+ σB(t)

+
∑

0<s≤t
∆X(s)1

(∣∣∆X(s)
∣∣ ≥ 1

)
+

∫ t

0

∫

|y|<1

y
[
µ(dy, ds)− ν(dy) ds

]

for some suitably defined constant a; observe that when the stronger FV condition
(14.1) holds,

a = µ+

∫

|y|<1

y ν(dy) .

In order to develop an Itô-type formla in this setting, we note than when ν[−ε, ε] =
0 for some ε > 0, we can write (for f twice differentiable)

f
(
V (t)

)
− f

(
V (0)

)

=

∫ t

0

∫

R

[
f
(
V (s−) + y

)
−f
(
V (s−)

)]
µ(dy, ds) +

σ2

2

∫ t

0

f ′′
(
V (s)

)
ds

+

∫ t

0

f ′
(
V (s)

)[
a ds+ σ dB(s)−

∫

|y|<1

y ν(dy) ds+ dLc(s)− dUc(s)
]

=

∫ t

0

∫

R

[
f
(
V (s−) + y

)
−f
(
V (s−)

)](
µ(dy, ds)− ν(dy) ds

)

+

∫ t

0

∫

|y|≥1

[
f
(
V (s−) + y

)
−f
(
V (s−)

)]
ν(dy) ds

+

∫ t

0

∫

|y|<1

[
f
(
V (s−) + y

)
−f
(
V (s−)

)
− yf ′

(
V (s−)

)]
ν(dy) ds (14.21)

+

∫ t

0

f ′
(
V (s)

)
σ dB(s) + f ′(0)

(
Lc(t)− Lc(0)

)
− f ′(b)

(
Uc(t)− Uc(0)

)
.

By sending ε ↓ 0 and utilising (14.19), we find that this formula extends to the
general case in the general Lévy setting. We note that the smoothness of f guarantees
that

f
(
V (s−) + y

)
−f
(
V (s−)

)
− yf ′

(
V (s−)

)

is of order y2 when y is small, thereby guaranteeing that the term (14.21) on the
r.h.s. is well-defined. As a consequence of the martingale property of the centered
stochastic integral,

Exf
(
V (t)

)
− Exf

(
V (0)

)
=

∫ t

0

(L̃f)
(
V (s)

)
ds ,
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where for some suitable µ̃

(L̃ϕ)(x) = µ̃ϕ′(x) +
σ2

2
ϕ′′(x)

+

∫

|y|>1

[
ϕ
(
r(x, y)

)
− ϕ(x)

]
ν(dy) +

∫

|y|≤1

[
ϕ
(
r(x, y)

)
− ϕ(x)− yϕ′(x)

]
ν(dy) ,

provided that ϕ′(0 = ϕ′(b) = 0. The integro-differential operator L̃ replaces the
operator L that appeared earlier in the BV case (it can be easily verified that L̃ = L
in the BV case). For example, to compute ExTz, the Itô argument above establishes
that if h satisfies (L̃h)(x) = −1 subject to h′(0) = 0 and h(x) = 0 for x ≥ z, then
h(x) = ExTz. In a similar fashion all the other integro-differential equations derived
earlier in this section can be generalised to Lévy processes having non-BV jumps.

15 Additional representations for the loss rate

In Sections 6 and 8, two representations for `b were provided, in which `b was repre-
sented in terms of an integral against the stationary distribution π for the ‘interior
process’ V . In this section, we return to the computation of `b and provide a simple
argument establishing that there are infinitely many such representations of `b in
terms of π.

The notation is the same as in Section 14; recall in particular the function r(x, y)
associated with two-sided reflection and the integro-differential operator L.

We first write the local time U(t) at b in terms of the jump component and its
continuous component, so that

U(t)− U(0) =
∑

0<s≤t
∆U(s) + Uc(t) ,

where, as usual, ∆U(s) = U(s)− U(s−) for s > 0. Clearly,

`b = `bj + `bc ,

where
`bj = lim

t→∞
1

t

∑

0<s≤t
∆U(s) , `bc = lim

t→∞
1

t
Uc(t) a.s.

We now show how `bj and `bc can be individually calculated in terms of π. Dealing
with `bj is easy. Note that

M̃(t) =
∑

0<s≤t
∆U(s)−

∫ t

0

∫

R

[
V (s) + y − b]+ν(dy) ds

is a martingale, and hence

E
1

t

∑

0≤s≤t
∆U(s) = E

1

t

∫ t

0

∫

R

[
V (s) + y − b]+ν(dy) ds .
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Consequently,

`bj =

∫ b

0

∫

R

[
x+ y − b]+ν(dy) π(dx) .

It remains only to compute `bc. For a given twice differentiable function h :
[0, b]→ R, Itô’s formula ensures that

h
(
V (t)

)
− h
(
V (0)

)
=
∑

0<s≤t

[
h
(
V (s)

)
− h
(
V (s−)

)]

+

∫ t

0

[
µh′
(
V (s)

)
+
σ2

2
h′′
(
V (s)

)]
ds (15.1)

+ σ

∫ t

0

h′
(
V (s))

)
dB(s) + h′(0)Lc(t)− h′(b)Uc(t) ,

where Lc(·) is the continuous component of L(·). Letting

M(t) =
∑

0<s≤t

[
h
(
V (s)

)
− h
(
V (s−)

)]
+ σ

∫ t

0

h′
(
V (s)

)
dB(s)

−
∫ t

0

∫

R

[
h
(
r
(
V (s−), y

))
− h
(
V (s−)

)]
ν(dy) ds ,

and rewriting (15.1) in terms of L, we get

h
(
V (t)

)
− h
(
V (0)

)
= M(t) +

∫ t

0

(Lh)
(
V (s)

)
ds+ h′(0)Lc(t)− h′(b)Uc(t)

Further, M(·) is a square integrable martingale, and since h and its derivatives are
bounded, it follows by taking stationary expectations at t = 1 that

0 =

∫ b

0

(Lh)(x)π(dx) + h′(0)`0
c − h′(b)`bc , (15.2)

where `0
c = limt→∞

1
t
Lc(t) a.s.

As a consequence, we can now compute `0
c and `bc by choosing two (twice differ-

entiable) functions h1 and h2. According to (15.2),

(
h′1(b) −h′1(0)
h′2(b) −h′2(0)

)(
`bc
`0
c

)
=




∫ b

0

(Lh1)(x) π(dx)
∫ b

0

(Lh2)(x) π(dx)


 (15.3)

Thus, if h1 and h2 are chosen so that the coefficient matrix on the l.h.s. of (15.3)
is non-singular, this yields formulae for `0

c and `bc in terms of π. Consequently, there
are infinitely many representations of `b in terms of π (two of which have been
introduced in Sections 6 and 8).

Even in situations where π is not easily computable, the above approach provides
a mechanism for easily computing bounds on `b. For example, by choosing h1 so that
h′1(0) = 0 and h′1(b) = 1 (and h2(·) arbitrarily), we can compute bounds on `bc in
terms of the supremum of (Lh1)(x).
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16 Markov-modulation

Models with the parameters varying according to the state of a finite Markov chain
or -process have a long history and are popular in many areas: in statistics, they go
unded the name of hidden Markov models (e.g. Cappé, Moulines & Ryden [38]), in
finance the term Markov regime switching is used (e.g. Elliott, Chan & Siu [51]),
and in queueing the first occurrence was with theMarkov-modulated Poisson process.
We consider here Lévy processes with the characteristic triplet (ci, σ

2
i , νi) depending

on the state J(t) = i of an underlying finite ergodic Markov process J , with the
extension that additional jumps may occur at state changes of J . This is important
since then the model class becomes dense in the whole of D[0,∞), cf. [11, Ch.XI]
where also the connection to Markov additive processes is explained.

In this section we generalize the results from Section 6 and Section 8 to hold for a
Markov-modulated Lévy process X. We will use the same technique as in Section 6
(a direct application of Ito’s formula for general semimartingales) to derive a formula
for `b. In [19] an approach based on optional stopping of a multi-dimensional version
of the Kella-Whitt martingale is used to obtain `b, but this will not be presented
here, since it is very complicated and does not really shed any probabilistic light
upon the underlying Skorokhod problem. Further, the direct Ito approach leads
directly to an easier expression for `b.

We start by constructing X. We assume that we are given an underlying prob-
ability space with filtration F, which satisfies the usual conditions, i.e., it is aug-
mented and right-continuous. Let J (the modulating process) be a right-continuous
irreducible Markov process with state space {1, . . . , p}, intensity matrix Q = (qij)
and stationary row vector α = (αi). Let X1, . . . , Xp be Lévy processes (with re-
spect to F) with characteristic triplets (ci, σ

2
i , νi), i = 1, . . . , p, which are inde-

pendent of J and each other and satisfy E|X i(1)| < ∞, i = 1, . . . , p. Further, let
{U ij : 1 ≤ i, j ≤ p} and {U ij

n : n ≥ 1, 1 ≤ i, j ≤ p} be independent random variables
which are also independent of X1, . . . , Xp and J , such that for each i, j, n, U ij and
U ij
n are identically distributed with distribution H ij and E|U ij| <∞. Let T0, T1, . . .

be the jump epochs of J (with T0 = 0). It is assumed that for every i, j, n, U ij
n is

measurable with respect to F(Tn) and that U ij ∈ F(0). We then define the process
X according to

X(t) =
∑

n≥1

∑

1≤i,j≤p
i 6=j

(X i(Tn)−X i(Tn−1) + U ij
n )1(J(Tn−1) = i, J(Tn) = j, Tn ≤ t)

+
∑

n≥1

p∑

i=1

(X i(t)−X i(Tn−1))1(J(Tn−1) = i, Tn−1 ≤ t < Tn), (16.1)

or, equivalently, X(0) = 0 and

dX(s) =

p∑

i=1

1(J(s) = i)dX i(s) +
∑

n≥1

∑

1≤i,j≤p
i 6=j

U ij
n 1(s = Tn, J(Tn−) = i, J(Tn) = j).

(16.2)
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We denote the stationary measure of (V, J) by π(·, ·) ((V, J) is assumed to be
stationary throughout this section). Let H̃ ij = Hji and J̃ be time-reversed version of
J (note that J̃ has intensity matrix Q̃ = A−1QTA where A is the diagonal matrix
with α on the diagonal, and that α is also stationary for J̃). X̃ is constructed by
using (16.1) with H ij replaced by H̃ ij and J replaced by J̃ . In the same way as in
Proposition 2.11 in [11], p. 314, we obtain the following representation of π in the
Markov-modulated case.

π([y, b], i) = αiPi(X̃(τ [y − b, y)) ≥ y), (16.3)

where τ [u, v) = inf{t ≥ 0 : X̃(t) /∈ [u, v)}, u ≤ 0 ≤ v, and Pi(·) = P(· | J̃(0) = i).
Now, we turn our attention towards the identification of `b. The only differences

between the Markov-modulated case and the standard Lévy process case are that we
now have to treat time segments corresponding to different states of J separately and
that state changes in J generate jumps in X. E.g., we get the following equivalent
to (6.4) (where dX(s) is given by (16.2))

V (t)2 − V (0)2 −
∫ t

0+

2V (s−)dX(s)

= − 2bU(t) +

∫ t

0+

d[X,X]c(s)

+
∑

0<s≤t
{−2∆V (s)∆L(s) + 2∆V (s)∆U(s) + (∆V (s))2}.

where (cf. Corollary 2.5 and Corollary 2.9 on p. 313 in [11])

m = EπX(1) =

p∑

i=1

αi

(
mi +

∑

j 6=i
qijEU ij

)
(16.4)

with mi = EX i(1). Thus, we have

− 2mEV = −2b`b + Eπ
∫ 1

0+

d[X,X]c(s)

+ Eπ
∑

0<s≤1

{−2∆V (s)∆L(s) + 2∆V (s)∆U(s) + (∆V (s))2}.

What remains is to identify terms which is fairly straightforward. It is easily seen
that

E
∫ 1

0+

d[X,X]c(s) =

p∑

i=1

αiσ
2
i , EV =

p∑

i=1

∫ b

0

xπ(dx, i).

For the sum of jumps we get (condition on
(
V (s−), J(s−)

)
),

E
∑

0<s≤1

∆V (s)∆L(s)

=

p∑

i=1

∫ b

0

π(dx, i)

∫ ∞

−∞
x(x+ y)1(y ≤ −x)

(
νi(dy) +

∑

j 6=i
qijH

ij(dy)
)
,
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E
∑

0<s≤1

∆V (s)∆U(s)

=

p∑

i=1

∫ b

0

π(dx, i)

∫ ∞

−∞
(b− x)(y − b+ x)1(y ≥ b− x)

(
νi(dy) +

∑

j 6=i
qijH

ij(dy)
)
,

E
∑

0<s≤1

(∆V (s))2

=

p∑

i=1

∫ b

0

π(dx, i)

∫ ∞

−∞
y2
1(−x < y < b− x)

(
νi(dy) +

∑

j 6=i
qijH

ij(dy)
)

+

p∑

i=1

∫ b

0

π(dx, i)

∫ ∞

−∞
(b− x)2

1(y ≥ b− x)
(
νi(dy) +

∑

j 6=i
qijH

ij(dy)
)

+

p∑

i=1

∫ b

0

π(dx, i)

∫ ∞

−∞
x2
1(y ≤ −x)

(
νi(dy) +

∑

j 6=i
qijH

ij(dy)
)
.

Putting the pieces together, we get the final expression for `b in the Markov-modulated
case,

`b =
1

2b

{
2
( p∑

i=1

∫ b

0

xπ(dx, i)
)( p∑

i=1

αi

(
mi +

∑

j 6=i
qijEU ij

))

+

p∑

i=1

αiσ
2
i +

p∑

i=1

∫ b

0

π(dx, i)

∫ ∞

−∞
ϕ(x, y)

(
νi(dy) +

∑

j 6=i
qijH

ij(dy)
)}

. (16.5)
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