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Preface

Abstract

Stochastic processes are widely used for modeling and nowadays, in many applica-
tions, data is observed very frequently. That makes it necessary to have statistical
procedures in order to deal with functionals that are based on these high frequency
observations. A particular example comes from finance, where for instance prices
of stocks are recorded frequently. Under some type of no-arbitrage conditions it is
further known that those price processes must be semimartingales (see [2]).

In this dissertation U- and V-statistics of high frequency observations of such
semimartingales are investigated. Those types of statistics are classical objects in
mathematical statistics and are widely used in estimation and test theory. In the
case that the underlying semimartingale is continuous a functional law of large
numbers and central limit theorem are presented. The main tools that are used
in the derivation of the theory is the empirical process approach for U-statistics
(see [1]) and a general stable central limit theorem for sums of triangular arrays
(see [3]). The results are then generalized to the case where the semimartingale is
discontinuous. There however, the asymptotic theory is more sophisticated because
it heavily depends on the kernel function of the U-statistic. This leads to several
different types of limiting processes.

Resumé

Stokastiske processer anvendes i mange sammenhænge til modellering af tilfældige
fænomener over tid og i mange nutidige anvendelser observeres data ofte med høj
frekvens. Dette nødvendiggører statistiske procedurer, som kan behandle funktioner
af disse højfrekvente data. Prisen påaktier kan nævnes som et konkret eksempel på-
sådanne data. Det er yderligere kendt, at under visse antagelser om ingen arbitrage,
mådisse priser være semimartingaler (se [2]).

I denne afhandling studeres U- og V-statistik for højfrekvente observation fra
disse semimartingaler. Disse statistikker er klassiske elementer i matematisk stati-
stik og anvendes ofte inden for estimations- og testteori. Der vil blive præsenteret
en store tals lov og en central grænseværdisætning for funktionaler i tilfældet, hvor
den underliggende semimartingal er kontinuert. Hovedredskabet som anvendes til
udledningen af teorien er den empiriske process tilgang for U-statistikker (se [1]) og
et generel stabilt central grænseværdisætning for summer af uafhængige trekant-
skemaer (se [3]). Disse resultater generaliseres til situationen, hvor semimartingalen
er diskontinuert. I denne situation bliver den asymptotiske teori mere sofistikeret,
da den i høj grad afhænger af kernefunktion af U-statistikken. Dette leder til flere
forskellige typer af grænseprocesser.
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Introduction

The purpose of this section is to give an introduction to the main objects and prob-
lems that appear in this dissertation. In the first section we give a short overview
on semimartingales. We further discuss Itô semimartingales, which is a certain sub-
class of semimartingales, and provide the so-called Grigelionis decomposition for
this type of processes. In the second section we introduce the notion of U- and
V-statistics and briefly describe the empirical process approach, which is used in
this thesis in order to derive an asymptotic theory. In the last section we define
what we mean by U- and V- statistics for semimartingales in the high frequency
setting. Further we indicate what the main results of this dissertation are and how
they are related to the literature.

1.1 Semimartingales

In this section we will introduce the class of processes that is studied in this dis-
sertation. For this let (Ω,F , (Ft)t≥0,P) be a filtered probability space that fulfills
the usual assumptions. A stochastic process (Mt)t≥0 that is defined on this space
is called a local martingale with respect to the filtration (Ft)t≥0 if there exists an
increasing sequence (Tn)n∈N of stopping times such that Tn →∞ almost surely and
such that the process (Mt∧Tn)t≥0 is a martingale with respect to (Ft)t≥0 for each
n ∈ N. We say that a function g : R→ R is of finite variation on the interval [0, t]
for t > 0 if

sup
P

n∑
i=1

|g(ti)− g(ti−1)| <∞,

where n ∈ N and the supremum runs over all partitions P = {t0, . . . , tn} of [0, t]
with 0 = t0 < t1 < · · · < tn = t.

A process (Xt)t≥0 is called semimartingale if it has a decomposition

Xt = X0 +Mt +At, t ≥ 0,

where X0 is F0-measurable, (Mt)t≥0 is a local martingale with respect to (Ft)t≥0

and (At)t≥0 is adapted, càdlàg and pathwise of finite variation on [0, t] for all t > 0.
We further require that M0 = A0 = 0.

We are interested in a certain type of semimartingales, the so-called Itô semi-
martingales. In order to state their definition we need to introduce the character-
istics of a semimartingale. To do this we first define the jump measure µX that is
associated to X by

µX(ω, dt, dx) =
∑
s

1{∆Xs 6=0}ε(s,∆Xs(ω))(dt, dx),

1



2 Introduction

where εu is the Dirac measure that puts mass 1 to u ∈ R+×R and ∆Xs = Xs−Xs−
stands for the jump size of X at time s. We denote the compensator of µX by νX .
In terms of those random measures the semimartingale X has a decomposition

X = X0 +B +Xc + (x1{|x|≤1}) ∗ (µX − νX) + (x1{|x|>1}) ∗ µX ,

which is known as Lévy-Itô decomposition (see [14]). Here Xc is a continuous lo-
cal martingale and B a process of locally finite variation. The last two terms in
the decomposition stand for stochastic integrals. For a random measure γ and an
optional function f on Ω× R+ × R the stochastic integral process f ∗ γ is defined
by ∫

[0,t]×R
f(ω, s, x)γ(ω, ds, dx),

whenever the integral exists. We remark that

(x1{|x|>1}) ∗ µXt =
∑
s≤t
|∆Xs|1{|∆Xs|>1}

is the sum of the jumps of size bigger than 1, which are only finitely many. Since
the jumps of a semimartingale do not need to be absolutely summable, the small
jumps are compensated and expressed in the (purely discontinuous) martingale
(x1{|x|≤1}) ∗ (µX − νX). Given the Lévy-Itô decomposition the characteristics of
the semimartingale X are defined to be the triplet (B,C, νX), where B and νX are
given above and C is the quadratic variation of Xc. When those characteristics are
absolutely continuous with respect to the Lebesgue measure, i.e.

Bt =

∫ t

0
bsds, Ct =

∫ t

0
σ2
sds, νX(ω, dt, dx) = dtFt(ω, dx),

where (bs)s≥0 and (σs)s≥0 are stochastic processes and Ft(ω, dx) is a measure on
R for fixed (ω, t), then X is called Itô semimartingale. In particular Lévy processes
are also Itô semimartingales. Because of this special structure Itô semimartingales
can be written in the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + (x1{|x|≤1}) ∗ (µX − νX)t + (x1{|x|>1}) ∗ µXt ,

where W is a standard Brownian motion. For some technical reasons a slightly
different decomposition will be used. It is generally possible (see [13]) to replace
the jump measure µX by a Poisson random measure p and the compensator νX by
the compensator q of the Poisson random measure, which is given by q(dt, dz) =
dt ⊗ λ(dz) for some σ-finite measure λ on R. What changes then is that x has to
be replaced by some predictable function δ : Ω × R+ × R → R. Finally X can be
represented as

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + (δ1{|δ|≤1}) ∗ (p− q)t + (δ1{|δ|>1}) ∗ pt.

This decomposition is known as Grigelionis decomposition.
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1.2 U- and V-statistics

The introduction of U-statistics goes back to Hoeffding in [10], whose work is partly
based on a paper by Halmos [8]. The interest in U-statistics is mainly due to its great
importance in estimation theory. In the classical setting of i.i.d. data U-statistics
form a large class of unbiased estimators for certain parameters of the underlying
distribution. More precisely a U-statistic of order d based on a sequence of i.i.d.
real-valued random variables (Xk)k∈N that live on a probability space (Ω,F ,P) is
defined as

Un =

(
n

d

)−1 ∑
1≤i1<···<id≤n

H(Xi1 , . . . , Xid),

where the kernel function H : Rd → R is generally assumed to be symmetric.
Clearly Un is an unbiased estimator for

θ = E(H(X1, . . . , Xd)),

whenever the expectation exists and is finite. The estimator is also optimal in the
sense that it has the smallest variance among all unbiased estimators of θ. Simple
examples for quantities that can be estimated by U-statistics are of course the
sample mean and the sample variance. In the case d = 2 we can useH(x, y) = |x−y|
as a kernel function, which is known as Gini’s mean difference and serves as a
measure of concentration of the distribution of X1. Another famous example is the
so-called Wilcoxon statistic, which uses H(x, y) = 1{x≤y} as a kernel function (see
[17]). In manuscript A we will come back to those examples in our setting.

Closely related to U-statistics are V-statistics, which were first investigated by
von Mises [18]. By a V-statistic of order d we mean a statistic of the type

Vn =
1

nd

∑
1≤i1,...,id≤n

H(Xi1 , . . . , Xid),

where H : Rd → R is again some kernel function. In some situations (like e.g. in
manuscript A) the summands for which not all indices are different, are asymptot-
ically negligible and hence both U- and V-statistics result in the same asymptotic
theory. Besides their importance for estimation theory both types of statistics are
also used for testing. Since in many situations the exact distributions of Un or
Vn are unknown it is reasonable to develop at least asymptotic tests in such sit-
uations which requires to have a law of large numbers and an associated central
limit theorem. Even in the given setting of i.i.d. random variables Xk this is not
straightforward. A first solution to this problem was given by Hoeffding who used
the well-known Hoeffding decomposition. Since then various approaches like Her-
mite expansion (see [5, 6]) or empirical process theory (see [2]) have been proposed
to give an asymptotic theory under weaker assumptions on (Xk)k∈N. For example
results are given in the situation where the underlying data inherits some weak
dependence ([3, 7]) or long range dependence (see [5, 6]).

For our purpose the empirical process approach seems to be most suitable and
we therefore shortly describe what is meant by this. We can always write the a
V-statistic as

Vn =

∫
Rd
H(x1, . . . , xd)Fn(dx1) . . . Fn(dxd),
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where

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}

denotes the empirical distribution function of the underlying data. We know that
this function converges almost surely in the uniform topology to the distribution
function F of X1. Often it possible to deduce

Vn
P−−→ V =

∫
Rd
H(x1, . . . , xd)F (dx1) . . . F (dxd)

from this. Assume that we also have a central limit theorem for the empirical
distribution function of the form

√
n(Fn − F )

d−−→ G for some random variable
G, which is typically some Brownian bridge in the i.i.d. case. We then use the
decomposition

√
n(Vn−V ) =

d∑
k=1

∫
Rd
H(x1, . . . , xd)

√
n(Fn(dxk)−F (dxk))

k−1∏
i=1

Fn(dxi)

d∏
i=k+1

F (dxi).

Knowing the results for the empirical distribution function and assuming the H is
symmetric, it is then sometimes possible to deduce

√
n(Vn − V )

d−−→ d

∫
Rd
H(x1, . . . , xd)G(dx1)F (dx2) . . . F (dxd)

for the V-statistic.

1.3 High Frequency Data and Stable Convergence

We generally assume that we observe an Itô semimartingale X on a finite time
interval [0, T ] at high frequency. This means we observe the data

Xi/n, i = 0, . . . , bnT c

and we are interested in the case n→∞, which is also known as infill asymptotics.
In the literature many statistics have been investigated in this setting. Two of the
most important ones are given by

V (f,X)nt =
1

n

bntc∑
i=1

f(
√
n∆n

i X), (1.1)

V ′(f,X)nt =

bntc∑
i=1

f(∆n
i X), (1.2)

where f : R → R is some sufficiently smooth function, 0 ≤ t ≤ T and ∆n
i X =

Xi/n − X(i−1)/n. An asymptotic theory (law of large numbers and central limit
theorem) for those statistics under various assumptions is provided by Jacod in
[12]. Generally V (f,X)nt is used if X is continuous because the order of ∆n

i X is
n−1/2 and hence

√
n is the right scaling in the function f . For discontinuous X

the analysis is more complicated. This is mainly due to fact that increments of the
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jump and continuous part of X are of different order and hence the choice of the
statistics depends on the function f . For instance, let f(x) = |x|p. If p > 2 one
uses V ′(f,X)nt and only the jump part of X appears in the limit. For p < 2 one
considers V (f,X)nt and the limit is dominated by the continuous part of X. If p = 2
both statistics coincide and both the continuous and the jump part of X appear in
the limit.

In the literature many other statistics of similar type have been investigated. See
for example [1] for bipower variation or [15] for truncated power variation, which
basically deal with the estimation of certain functionals of the volatility (σs)s≥0

in the presence of jumps. In [9] the authors considers statistics that are based on
multidimensional Itô semimartingales that are observed at high frequency, but with
non-synchronous observations times. Many of those cases were by now also extended
to the situation that only a noisy version of X is observed (see e.g. [16, 4]).

What essentially all the statistics have in common is that the distribution of the
limiting process in the central limit theorem is, at least in all cases that are relevant
for applications, mixed normal. This means in general we have limit theorems of
the type Ln → L, where the random variable L is mixed normal, that is it can be
written as L = UV , where U > 0 and V are independent random variables and
V ∼ N (0, 1). In general the law of U is unknown, what makes the central limit
theorem infeasible in the given form. Usually it is however possible to consistently
estimate U by some estimator Un. If the mode of convergence in the central limit
theorem is only weak convergence, then, of course, we cannot automatically deduce
the feasible standard central limit theorem Ln/Un

d−−→ N (0, 1). This implication is
however true if the convergence Ln → L is stable.

We say that a sequence (Zn)n∈N of random variables defined on a probability
space (Ω,F ,P) with values in a Polish space (E, E) converges stably in law to a
random variable Z that is defined on an extension (Ω′,F ′,P′) of (Ω,F ,P) and takes
also values in (E, E), if and only if

E(f(Zn)Y )→ E′(f(Z)Y ) as n→∞

for all bounded and continuous f and bounded, F-measurable Y . We write Zn
st−−→

Z for stable convergence of Zn to Z. The main theorem that is used in the high
frequency setting in order to proof stable central limit theorems is provided by
Jacod in [11].

The aim of this thesis is to develop an asymptotic theory for U- and V-statistics
when the underlying data comes from an Itô semimartingale X that is observed
at high frequency. More precisely we are interested in the asymptotic theory of
statistics of the type

1

nl

∑
1≤i1,...,id≤bntc

H(
√
n∆n

i1X, . . .
√
n∆n

il
X,∆n

il+1
X, . . . ,∆n

id
X)

for some 0 ≤ l ≤ d. Clearly this generalizes results from [12] for the statistics
defined at (1.1) and (1.2). The main problem here is to deal with the dependency
structure of the multiple increments, which makes it impossible to directly apply
the techniques that can be found in the literature.

In manuscript A we deal with the case that l = d andX is a continuous Itô semi-
martingale. The method employed in the proofs is a combination of techniques that
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were developed in the high frequency setting and the empirical process approach
for U- and V- statistics that was discussed in the previous section. In manuscript
B the underlying process is a discontinuous Itô semimartingale and the asymptotic
theory developed in manuscript A for l = d is generalized to this setting. The case
l = 0, in which the limiting distribution is dominated by the jump part, is also
treated separately. Afterwards both results are combined to obtain a law of large
numbers and a central limit theorem for general l.
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U-statistics of continuous
semimartingales
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Abstract

This paper presents the asymptotic theory for non-degenerate U-statistics
of high frequency observations of continuous Itô semimartingales. We
prove uniform convergence in probability and show a functional stable
central limit theorem for the standardized version of the U-statistic. The
limiting process in the central limit theorem turns out to be condition-
ally Gaussian with mean zero. Finally, we indicate potential statistical
applications of our probabilistic results.
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A.1 Introduction

Since the seminal work by Hoeffding [15], U-statistics have been widely investi-
gated by probabilists and statisticians. Nowadays, there exists a vast amount of
literature on the asymptotic properties of U-statistics in the case of independent
and identically distributed (i.i.d.) random variables or in the framework of weak
dependence. We refer to [23] for a comprehensive account of the asymptotic theory
in the classical setting. The papers [4, 5, 11] treat limit theorems for U-statistics
under various mixing conditions, while the corresponding theory for long memory
processes has been studied for example in [9, 14]; see [16] for a recent review of
the properties of U-statistics in various settings. The most powerful tools for prov-
ing asymptotic results for U-statistics include the classical Hoeffding decomposition
(see e.g. [15]), Hermite expansions (see e.g. [9, 10]), and the empirical process ap-
proach (see e.g. [3]). Despite the activity of this field of research, U-statistics for
high frequency observations of a time-continuous process have not been studied in
the literature thus far. The notion of high frequency data refers to the sampling
scheme in which the time step between two consecutive observations converges to
zero while the time span remains fixed. This concept is also known under the name
of infill asymptotics. Motivated by the prominent role of semimartingales in mathe-
matical finance, in this paper we present novel asymptotic results for high frequency
observations of Itô semimartingales and demonstrate some statistical applications.

The seminal work of Jacod [17] marks the starting point for stable limit theorems
for semimartingales. Stimulated by the increasing popularity of semimartingales as
natural models for asset pricing, the asymptotic theory for partial sums processes of
continuous and discontinuous Itô semimartingales has been developed in [2, 18, 22];
see also the recent book [20]. We refer to [25] for a short survey of limit theorems for
semimartingales. More recently, asymptotic theory for Itô semimartingales observed
with errors has been investigated in [19].

The methodology we employ to derive a limit theory for U-statistics of contin-
uous Itô semimartingales is an intricate combination and extension of some of the
techniques developed in the series of papers mentioned in the previous paragraph,
and the empirical process approach to U-statistics.

In this paper we consider a one-dimensional continuous Itô semimartingale of
the form

Xt = x+

∫ t

0
asds+

∫ t

0
σsdWs, t ≥ 0,

defined on a filtered probability space (Ω,F , (Ft)t≥0,P) (which satisfies the usual
assumptions), where x ∈ R, (as)s≥0, (σs)s≥0 are stochastic processes, and W is a
standard Brownian motion. The underlying observations of X are

X i
n
, i = 0, . . . , [nt],

and we are in the framework of infill asymptotics, i.e. n → ∞. In order to present
our main results we introduce some notation. We define

Ant (d) := {i = (i1, . . . , id) ∈ Nd | 1 ≤ i1 < i2 < · · · < id ≤ [nt]},

Zs := (Zs1 , . . . , Zsd), s ∈ Rd,
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where Z = (Zt)t∈R is an arbitrary stochastic process. For any continuous function
H : Rd → R, we define the U-statistic U(H)nt of order d as

U(H)nt =

(
n

d

)−1 ∑
i∈Ant (d)

H(
√
n∆n

iX) (A.1)

with ∆n
iX = Xi/n−X(i−1)/n. For a multi-index i ∈ Nd, the vector i−1 denotes the

multi-index obtained by componentwise subtraction of 1 from i. In the following
we assume that the function H is symmetric, i.e. for all x = (x1, . . . , xd) ∈ Rd
and all permutations π of {1, . . . , d} it holds that H(πx) = H(x), where πx =
(xπ(1), . . . , xπ(d)).

Our first result determines the asymptotic behavior of U(H)nt :

U(H)nt
u.c.p.−−−→ U(H)t :=

∫
[0,t]d

ρσs(H)ds,

where Zn u.c.p.−−−→ Z denotes uniform convergence in probability, that is, for any
T > 0, supt∈[0,T ] |Znt − Zt|

P−−→ 0, and

ρσs(H) :=

∫
Rd
H(σs1u1, . . . , σsdud)ϕd(u)du (A.2)

with ϕd denoting the density of the d-dimensional standard Gaussian law Nd(0, Id).
The second result of this paper is the stable functional central limit theorem

√
n(U(H)n − U(H))

st−−→ L,

where st−−→ denotes stable convergence in law and the function H is assumed to
be even in each coordinate. The limiting process L lives on an extension of the
original probability space (Ω,F , (Ft)t≥0,P) and it turns out to be Gaussian with
mean zero conditionally on the original σ-algebra F . The proofs of the asymptotic
results rely upon a combination of recent limit theorems for semimartingales (see
e.g. [17, 20, 22]) and empirical processes techniques.

The paper is organized as follows. In § A.3 we present the law of large numbers
for the U-statistic U(H)nt . The associated functional stable central limit theorem
is provided in §A.4. Furthermore, we derive a standard central limit theorem in
§ A.5. In § A.6 we demonstrate statistical applications of our limit theory including
Gini’s mean difference, homoscedasticity testing and Wilcoxon statistics for testing
of structural breaks. Some technical parts of the proofs are deferred to § A.7.

A.2 Preliminaries

We consider the continuous diffusion model

Xt = x+

∫ t

0
asds+

∫ t

0
σsdWs, t ≥ 0, (A.3)

where (as)s≥0 is a càglàd process, (σs)s≥0 is a càdlàg process, both adapted to the
filtration (Fs)s≥0. Define the functional class Ckp (Rd) via

Ckp (Rd) := {f : Rd → R | f ∈ Ck(Rd) and all derivatives up to order k

are of polynomial growth}.
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Note that H ∈ C0
p(Rd) implies that ρσs(H) < ∞ almost surely. For any vector

y ∈ Rd we denote by ‖y‖ its maximum norm; for any function f : Rd → R,
‖f‖∞ denotes its supremum norm. Finally, for any z 6= 0, Φz and ϕz stand for
the distribution function and density of the Gaussian law N (0, z2), respectively; Φ0

denotes the Dirac measure at the origin. The bracket [M,N ] denotes the covariation
process of two local martingales M and N .

A.3 Law of large numbers

We start with the law of large numbers, which describes the limit of the U-statistic
U(H)nt defined at (A.1). First of all, we remark that the processes (as)s≥0 and
(σs−)s≥0 are locally bounded, because they are both càglàd. Since the main results
of this subsection (Proposition A.2 and Theorem A.3) are stable under stopping,
we may assume without loss of generality that:

The processes a and σ are bounded in (ω, t). (A.4)

A detailed justification of this statement can be found in [2, § 3].
We start with the representation of the process U(H)nt as an integral with

respect to a certain empirical random measure. For this purpose let us introduce
the quantity

αnj :=
√
nσ j−1

n
∆n
jW, j ∈ N, (A.5)

which serves as a first order approximation of the increments
√
n∆n

jX. The em-
pirical distribution function associated with the random variables (αnj )1≤j≤[nt] is
defined as

Fn(t, x) :=
1

n

[nt]∑
j=1

1{αnj ≤x}, x ∈ R, t ≥ 0. (A.6)

Notice that, for any fixed t ≥ 0, Fn(t, ·) is a finite random measure. Let Ũ(H)nt be
the U-statistic based on αnj ’s, i.e.

Ũ(H)nt =

(
n

d

)−1 ∑
i∈Ant (d)

H(αni ). (A.7)

The functional U ′nt (H) defined as

U ′nt (H) :=

∫
Rd
H(x)F⊗dn (t, dx), (A.8)

where
F⊗dn (t, dx) := Fn(t, dx1) · · ·Fn(t, dxd),

is closely related to the process Ũ(H)nt ; in fact, if both are written out as mul-
tiple sums over nondecreasing multi-indices then their summands coincide on the
set Ant (d). They differ for multi-indices that have at least two equal components.
However, the number of these diagonal multi-indices is of order O(nd−1). We start
with a simple lemma, which we will often use throughout the paper. We omit a
formal proof since it follows by standard arguments.
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Lemma A.1. Let Zn, Z : [0, T ] × Rm → R, n ≥ 1, be random positive functions
such that Zn(t, ·) and Z(t, ·) are finite random measures on Rm for any t ∈ [0, T ].
Assume that

Zn(·,x)
u.c.p.−−−→ Z(·,x),

for any fixed x ∈ Rm, and supt∈[0,T ],x∈Rm Z(t,x), supt∈[0,T ],x∈Rm Zn(t,x), n ≥ 1,
are bounded random variables. Then, for any continuous function Q : Rm → R with
compact support, we obtain that∫

Rm
Q(x)Zn(·, dx)

u.c.p.−−−→
∫
Rm

Q(x)Z(·, dx).

The next proposition determines the asymptotic behavior of the empirical dis-
tribution function Fn(t, x) defined at (A.6), and the U-statistic U ′nt (H) given at
(A.8).

Proposition A.2. Assume that H ∈ C0
p(Rd). Then, for any fixed x ∈ R, it holds

that

Fn(t, x)
u.c.p.−−−→ F (t, x) :=

∫ t

0
Φσs(x)ds. (A.9)

Furthermore, we obtain that

U ′nt (H)
u.c.p.−−−→ U(H)t :=

∫
[0,t]d

ρσs(H)ds, (A.10)

where the quantity ρσs(H) is defined at (A.2).

Proof. Recall that we always assume (A.4) without loss of generality. Here and
throughout the paper, we denote by C a generic positive constant, which may
change from line to line; furthermore, we write Cp if we want to emphasize the
dependence of C on an external parameter p. We first show the convergence in
(A.9). Set ξnj := n−1

1{αnj ≤x}. It obviously holds that

[nt]∑
j=1

E[ξnj |F j−1
n

] =
1

n

[nt]∑
j=1

Φσ j−1
n

(x)
u.c.p.−−−→ F (t, x),

for any fixed x ∈ R, due to Riemann integrability of the process Φσ. On the other
hand, we have for any fixed x ∈ R

[nt]∑
j=1

E[|ξnj |2|F j−1
n

] =
1

n2

[nt]∑
j=1

Φσ j−1
n

(x)
P−−→ 0.

This immediately implies the convergence (see [20, Lemma 2.2.11, p. 577])

Fn(t, x)−
[nt]∑
j=1

E[ξnj |F j−1
n

] =

[nt]∑
j=1

(
ξnj − E[ξnj |F j−1

n
]
)

u.c.p.−−−→ 0,

which completes the proof of (A.9). If H is compactly supported then the conver-
gence in (A.10) follows directly from (A.9) and Lemma A.1.
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Now, let H ∈ C0
p(Rd) be arbitrary. For any k ∈ N, let Hk ∈ C0

p(Rd) be a
function with Hk = H on [−k, k]d and Hk = 0 on ([−k − 1, k + 1]d)c. We already
know that

U ′n(Hk)
u.c.p.−−−→ U(Hk),

for any fixed k, and U(Hk)
u.c.p.−−−→ U(H) as k → ∞. Since the function H has

polynomial growth, i.e. |H(x)| ≤ C(1 + ‖x‖q) for some q > 0, we obtain for any
p > 0

E[|H(αni )|p] ≤ CpE[(1 + ‖αni ‖qp)] ≤ Cp (A.11)

uniformly in i, because the process σ is bounded. Statement (A.11) also holds for
Hk. Recall that the function H − Hk vanishes on [−k, k]d. Hence, we deduce by
(A.11) and Cauchy-Schwarz inequality that

E[ sup
t∈[0,T ]

|U ′nt (H −Hk)|]

≤ C
(
n

d

)−1 ∑
1≤i1,...,id≤[nT ]

(
E[1{|αni1 |≥k}

+ · · ·+ 1{|αnid |≥k}
]
)1/2

≤ CT sup
s∈[0,T ]

(
E[1− Φσs(k)]

)1/2 → 0

as k →∞. This completes the proof of (A.10).

Proposition A.2 implies the main result of this section.

Theorem A.3. Assume that H ∈ C0
p(Rd). Then it holds that

U(H)nt
u.c.p.−−−→ U(H)t :=

∫
[0,t]d

ρσs(H)ds, (A.12)

where the quantity ρσs(H) is defined at (A.2).

Proof. In § A.7 we will show that

U(H)n − Ũ(H)n
u.c.p.−−−→ 0, (A.13)

where the functional Ũ(H)nt is given at (A.7). In view of Proposition A.2, it re-
mains to prove that Ũ(H)nt −U ′nt (H)

u.c.p.−−−→ 0. But due to the symmetry of H and
estimation (A.11), we obviously obtain that

E[ sup
t∈[0,T ]

|Ũ(H)nt − U ′nt (H)|] ≤ CT
n
→ 0,

since the summands in Ũ(H)nt and U ′nt (H) are equal except for diagonal multi-
indices.
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Remark A.1. The result of Theorem A.3 can be extended to weighted U-statistics
of the type

U(H;X)nt :=

(
n

d

)−1 ∑
i∈Ant (d)

H(X i−1
n

;
√
n∆n

iX). (A.14)

Here, H : Rd×Rd → R is assumed to be continuous and symmetric in the first and
last d arguments. Indeed, similar methods of proof imply the u.c.p. convergence

U(H;X)nt
u.c.p.−−−→ U(H;X)t =

∫
[0,t]d

ρσs(H;Xs)ds,

with
ρσs(H;Xs) :=

∫
Rd
H(Xs;σs1u1, . . . , σsdud)ϕd(u)du.

It is not essential that the weight process equals the diffusion process X. Instead,
we may consider any k-dimensional (Ft)-adapted Itô semimartingale of the type
(A.3). We leave the details to the interested reader.

A.4 Stable central limit theorem

In this section we present a functional stable central limit theorem associated with
the convergence in (A.12).

Stable convergence

The concept of stable convergence of random variables has been originally intro-
duced by Renyi [26]. For properties of stable convergence, we refer to [1, 25]. We
recall the definition of stable convergence: Let (Yn)n∈N be a sequence of random
variables defined on (Ω,F ,P) with values in a Polish space (E, E). We say that Yn
converges stably with limit Y , written Yn

st−−→ Y , where Y is defined on an ex-
tension (Ω′,F ′,P′) of the original probability space (Ω,F ,P), if and only if for any
bounded, continuous function g and any bounded F-measurable random variable
Z it holds that

E[g(Yn)Z]→ E′[g(Y )Z], n→∞.

Typically, we will deal with E = D([0, T ],R) equipped with the Skorohod topol-
ogy, or the uniform topology if the process Y is continuous. Notice that stable
convergence is a stronger mode of convergence than weak convergence. In fact, the
statement Yn

st−−→ Y is equivalent to the joint weak convergence (Yn, Z)
d−−→ (Y,Z)

for any F-measurable random variable Z; see e.g. [1].

Central limit theorem

For the stable central limit theorem we require a further structural assumption on
the volatility process (σs)s≥0. We assume that σ itself is a continuous Itô semi-
martingale:

σt = σ0 +

∫ t

0
ãsds+

∫ t

0
σ̃sdWs +

∫ t

0
ṽsdVs, (A.15)
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where the processes (ãs)s≥0, (σ̃s)s≥0, (ṽs)s≥0 are càdlàg, adapted and V is a Brow-
nian motion independent of W . This type of condition is motivated by potential
applications. For instance, when σt = f(Xt) for a C2-function f , then the Itô for-
mula implies the representation (A.15) with ṽ ≡ 0. In fact, a condition of the type
(A.15) is nowadays a standard assumption for proving stable central limit theorems
for functionals of high frequency data; see e.g. [2, 18]. Moreover, we assume that
the process σ does not vanish, i.e.

σs 6= 0 for all s ∈ [0, T ]. (A.16)

We believe that this assumption is not essential, but dropping it would make the
following proofs considerably more involved and technical. As in the previous sub-
section, the central limit theorems presented in this paper are stable under stopping.
This means, we may assume, without loss of generality, that

The processes a, σ, σ−1, ã, σ̃ and ṽ are bounded in (ω, t). (A.17)

We refer again to [2, § 3] for a detailed justification of this statement.
We need to introduce some further notation to describe the limiting process.

First, we will study the asymptotic properties of the empirical process

Gn(t, x) :=
1√
n

[nt]∑
j=1

(
1{αnj ≤x} − Φσ j−1

n

(x)
)
, (A.18)

where αnj is defined at (A.5). This process is of crucial importance for proving the
stable central limit theorem for the U-statistic U(H)nt . We start with the derivation
of some useful inequalities for the process Gn.

Lemma A.4. For any even number p ≥ 2 and x, y ∈ R, we obtain the inequalities

E[ sup
t∈[0,T ]

|Gn(t, x)|p] ≤ CT,pφ(x), (A.19)

E[ sup
t∈[0,T ]

|Gn(t, x)−Gn(t, y)|p] ≤ CT,p|x− y|, (A.20)

where φ : R→ R is a bounded function (that depends on p and T ) with exponential
decay at ±∞.

Proof. Recall that the processes σ and σ−1 are assumed to be bounded. We begin
with the inequality (A.19). For any given x ∈ R, (Gn(t, x))t∈[0,T ] is an (F[nt]/n)-
martingale. Hence, the discrete Burkholder inequality implies that

E[ sup
t∈[0,T ]

|Gn(t, x)|p] ≤ CT,pE
[∣∣∣ [nT ]∑

j=1

ζnj

∣∣∣p/2]
with ζnj := n−1(1{αnj ≤x} − Φσ(j−1)/n

(x))2. Recalling that p ≥ 2 is an even number
und applying the Hölder inequality, we deduce that∣∣∣ [nT ]∑

j=1

ζnj

∣∣∣p/2 ≤ CTn−1

[nT ]∑
j=1

(1{αnj ≤x} − Φσ j−1
n

(x))p

= CTn
−1

[nT ]∑
j=1

p∑
k=0

(
p

k

)
(−1)kΦk

σ j−1
n

(x)1{αnj ≤x}.
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Thus, we conclude that

E[ sup
t∈[0,T ]

|Gn(t, x)|p] ≤ CT,p sup
s∈[0,T ]

E[Φσs(x)(1− Φσs(x))p] =: CT,pφ(x),

where the function φ obviously satisfies our requirements. This completes the proof
of (A.19). By exactly the same methods we obtain, for any x ≥ y,

E[ sup
t∈[0,T ]

|Gn(t, x)−Gn(t, y)|p]

≤ CT,p sup
s∈[0,T ]

E[(Φσs(x)− Φσs(y))(1− (Φσs(x)− Φσs(y)))p]

Since σ and σ−1 are both bounded, there exists a constant M > 0 such that

sup
s∈[0,T ]

|Φσs(x)− Φσs(y)| ≤ |x− y| sup
M−1≤z≤M,y≤r≤x

ϕz(r).

This immediately gives (A.20).

Our next result presents a functional stable central limit theorem for the process
Gn defined at (A.18).

Proposition A.5. We obtain the stable convergence

Gn(t, x)
st−−→ G(t, x)

on D([0, T ]) equipped with the uniform topology, where the convergence is functional
in t ∈ [0, T ] and in finite distribution sense in x ∈ R. The limiting process G is
defined on an extension (Ω′,F ′,P′) of the original probability space (Ω,F ,P) and
it is Gaussian conditionally on F . Its conditional drift and covariance kernel are
given by

E′[G(t, x) | F ] =

∫ t

0
Φσs(x)dWs,

E′[G(t1, x1)G(t2, x2) | F ]− E′[G(t1, x1) | F ]E′[G(t2, x2) | F ]

=

∫ t1∧t2

0
Φσs(x1 ∧ x2)− Φσs(x1)Φσs(x2)− Φσs(x1)Φσs(x2)ds,

where Φz(x) = E[V 1{zV≤x}] with V ∼ N (0, 1).

Proof. Recall that due to (A.17) the process σ is bounded in (ω, t). (However, note
that we do not require the condition (A.15) to hold.) For any given x1, . . . , xk ∈ R,
we need to prove the functional stable convergence

(Gn(·, x1), . . . ,Gn(·, xk))
st−−→ (G(·, x1), . . . ,G(·, xk)).

We write Gn(t, xl) =
∑[nt]

j=1 χ
n
j,l with

χnj,l :=
1√
n

(
1{αnj ≤xl} − Φσ j−1

n

(xl)
)
, 1 ≤ l ≤ k.
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According to [21, Theorem IX.7.28] we need to show that

[nt]∑
j=1

E[χnj,rχ
n
j,l|F j−1

n
]

P−−→
∫ t

0

(
Φσs(xr ∧ xl)− Φσs(xr)Φσs(xl)

)
ds, (A.21)

[nt]∑
j=1

E[χnj,l∆
n
jW |F j−1

n
]

P−−→
∫ t

0
Φσs(xl)ds, (A.22)

[nt]∑
j=1

E[|χnj,l|21{|χnj,l|>ε}|F j−1
n

]
P−−→ 0, for all ε > 0, (A.23)

[nt]∑
j=1

E[χnj,l∆
n
jN |F j−1

n
]

P−−→ 0, (A.24)

where 1 ≤ r, l ≤ d and the last condition must hold for all bounded continuous
martingales N with [W,N ] = 0. The convergence in (A.21) and (A.22) is obvious,
since ∆n

jW is independent of σ(j−1)/n. We also have that

[nt]∑
j=1

E[|χnj,l|21{|χnj,l|>ε}|F j−1
n

] ≤ ε−2

[nt]∑
j=1

E[|χnj,l|4|F j−1
n

] ≤ Cn−1,

which implies (A.23). Finally, let us prove (A.24). We fix l and define Mu :=
E[χnj,l|Fu] for u ≥ (j − 1)/n. By the martingale representation theorem we deduce
the identity

Mu = M j−1
n

+

∫ u

j−1
n

ηsdWs

for a suitable predictable process η. By the Itô isometry we conclude that

E[χnj,l∆
n
jN |F j−1

n
] = E[M j

n
∆n
jN |F j−1

n
] = E[∆n

jM∆n
jN |F j−1

n
] = 0.

This completes the proof of Proposition A.5.

We suspect that the stable convergence in Proposition A.5 also holds in the
functional sense in the x variable. However, proving tightness (even on compact
sets) turns out to be a difficult task. In particular, inequality (A.20) is not sufficient
for showing tightness.

Remark A.2. We highlight some probabilistic properties of the limiting process
G defined in Proposition A.5.

(i) Proposition A.5 can be reformulated as follows. Let x1, . . . , xk ∈ R be arbi-
trary real numbers. Then it holds that

(Gn(·, x1), . . . ,Gn(·, xk))
st−−→
∫ ·

0
vsdWs +

∫ ·
0
w1/2
s dW ′s,
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where W ′ is a k-dimensional Brownian motion independent of F , and v and
w are Rk-valued and Rk×k-valued processes, respectively, with coordinates

vrs = Φσs(xr),

wrls = Φσs(xr ∧ xl)− Φσs(xr)Φσs(xl)− Φσs(xr)Φσs(xl),

for 1 ≤ r, l ≤ k. This type of formulation appears in [21, Theorem IX.7.28].
In particular, (G(·, xl))1≤l≤k is a k-dimensional martingale.

(ii) It is obvious from (i) that G is continuous in t. Moreover, G is also continuous
in x. This follows from Kolmogorov’s criterion and the inequality (y ≤ x)

E′[|G(t, x)−G(t, y)|p]

≤ CpE
[( ∫ t

0

{
Φσs(x)− Φσs(y)− (Φσs(x)− Φσs(y))2

}
ds
)p/2]

≤ Cp(x− y)p/2,

for any p > 0, which follows by the Burkholder inequality. In particular, G(t, ·)
has Hölder continuous paths of order 1/2− ε, for any ε ∈ (0, 1/2).

(iii) A straightforward computation (cf. (A.19)) shows that the function

E[supt∈[0,T ] G(t, x)2] has exponential decay as x→ ±∞. Hence, for any func-
tion f ∈ C1

p(R), we have∫
R
f(x)G(t, dx) <∞, a.s..

If f is an even function, we also have that∫
R
f(x)G(t, dx) =

∫
R
f(x)(G(t, dx)− E′[G(t, dx)|F ]),

since ∫
R
f(x)E′[G(t, dx)|F ] =

∫ t

0

(∫
R
f(x)Φσs(dx)

)
dWs,

and, for any z > 0,∫
R
f(x)Φz(dx) =

∫
R
xf(x)ϕz(x)dx = 0,

because fϕz is an even function. The same argument applies for z < 0. Fur-
thermore, the integration by parts formula and the aforementioned argument
imply the identity

E′
[∣∣∣ ∫

R
f(x)G(t, dx)

∣∣∣2|F]
=

∫ t

0

(∫
R2

f ′(x)f ′(y)
(

Φσs(x ∧ y)− Φσs(x)Φσs(y)
)
dxdy

)
ds.

We remark that, for any z 6= 0, we have

var[f(V )] =

∫
R2

f ′(x)f ′(y)
(

Φz(x ∧ y)− Φz(x)Φz(y)
)
dxdy

with V ∼ N (0, z2).
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Now, we present a functional stable central limit theorem of the U-statistic
U ′nt (H) given at (A.8), which is based on the approximative quantities (αnj )1≤j≤[nt]

defined at (A.5).

Proposition A.6. Assume that the conditions (A.15), (A.16), and (A.17) hold.
Let H ∈ C1

p(Rd) be a symmetric function that is even in each (or, equivalently, in
one) argument. Then we obtain the functional stable convergence

√
n(U ′n(H)− U(H))

st−−→ L,

where

Lt = d

∫
Rd
H(x1, . . . , xd)G(t, dx1)F (t, dx2) · · ·F (t, dxd). (A.25)

The convergence takes place in D([0, T ]) equipped with the uniform topology. Fur-
thermore, G can be replaced by G−E′[G|F ] without changing the limit and, conse-
quently, L is a centered Gaussian process, conditionally on F .

Proof. First of all, we remark that∫
R
H(x1, . . . , xd)E′[G(t, dx1)|F ] = 0

follows from Remark A.2(iii). The main part of the proof is divided into five steps:

(i) In § A.7 we will show that under condition (A.15) we have

√
n
(
U(H)t −

∫
Rd
H(x)F

⊗d
n (t, dx)

)
u.c.p.−−−→ 0 (A.26)

with

Fn(t, x) :=
1

n

[nt]∑
j=1

Φσ j−1
n

(x).

Thus, we need to prove the stable convergence Ln st−−→ L for

Lnt :=
√
n
(
U ′nt (H)−

∫
Rd
H(x)F

⊗d
n (t, dx)

)
. (A.27)

Assume that the function H ∈ C1(Rd) has compact support. Recalling the defini-
tion (A.18) of the empirical process Gn, we obtain the identity

Lnt =

d∑
l=1

∫
Rd
H(x)Gn(t, dxl)

l−1∏
m=1

Fn(t, dxm)

d∏
m=l+1

Fn(t, dxm).

In step (iv) we will show that both Fn(t, dxm) and Fn(t, dxm) can be replaced by
F (t, dxm) without affecting the limit. In other words, Ln − L′n u.c.p.−−−→ 0 with

L′nt :=
d∑
l=1

∫
Rd
H(x)Gn(t, dxl)

∏
m 6=l

F (t, dxm).
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But, since H is symmetric, we readily deduce that

L′nt = d

∫
Rd
H(x)Gn(t, dx1)

d∏
m=2

F (t, dxm).

The random measure F (t, x) has a Lebesgue density in x due to assumption (A.16),
which we denote by F ′(t, x). The integration by parts formula implies that

L′nt = −d
∫
Rd
∂1H(x)Gn(t, x1)

d∏
m=2

F ′(t, xm)dx,

where ∂lH denotes the partial derivative of H with respect to xl. This identity
completes step (i).

(ii) In this step we will start proving the stable convergence L′n st−−→ L (the
function H ∈ C1(Rd) is still assumed to have compact support). Since the stable
convergence Gn

st−−→ G does not hold in the functional sense in the x variable, we
need to overcome this problem by a Riemann sum approximation. Let the support
of H be contained in [−k, k]d. Let −k = z0 < · · · < zl = k be the equidistant
partition of the interval [−k, k]. We set

Q(t, x1) :=

∫
Rd−1

∂1H(x1, . . . , xd)

d∏
m=2

F ′(t, xm)dx2 . . . dxd,

and define the approximation of L′nt via

L′nt (l) = −2dk

l

l∑
j=0

Q(t, zj)Gn(t, zj).

Proposition A.5 and the properties of stable convergence imply that(
Q(·, zj),Gn(·, zj)

)
0≤j≤l

st−−→
(
Q(·, zj),G(·, zj)

)
0≤j≤l

.

Hence, we deduce the stable convergence

L′n· (l)
st−−→ L·(l) := −2dk

l

l∑
j=0

Q(·, zj)G(·, zj).

as n→∞, for any fixed l. Furthermore, we obtain the convergence

L(l)
u.c.p.−−−→ L

as l→∞, where we reversed all above transformations. This convergence completes
step (ii).
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(iii) To complete the proof of the stable convergence L′n st−−→ L, we need to show
that

lim
l→∞

lim sup
n→∞

sup
t∈[0,T ]

|L′nt (l)− L′nt | = 0,

where the limits are taken in probability. With h = l/2k we obtain that

|L′nt (l)− L′nt | = d

∣∣∣∣∫
R

{
Q(t, [xh]/h)Gn(t, [xh]/h)−Q(t, x)Gn(t, x)

}
dx

∣∣∣∣ .
Observe that

sup
t∈[0,T ]

|F ′(t, xm)| =
∫ T

0
ϕσs(xm)ds ≤ T sup

M−1≤z≤M
ϕz(xm), (A.28)

where M is a positive constant with M−1 ≤ |σ| ≤ M . Recalling the definition of
Q(t, x) we obtain that

sup
t∈[0,T ]

|Q(t, x)| ≤ CT , sup
t∈[0,T ]

|Q(t, x)−Q(t, [xh]/h)| ≤ CT η(h−1), (A.29)

where η(ε) := sup
{
|∂1H(y1)−∂1H(y2)|

∣∣ ‖y1−y2‖ ≤ ε, y1,y2 ∈ [−k, k]d
}
denotes

the modulus of continuity of the function ∂1H. We also deduce by Lemma A.4 that

E[ sup
t∈[0,T ]

|Gn(t, x)|p] ≤ CT , (A.30)

E[ sup
t∈[0,T ]

|Gn(t, x)−Gn(t, [xh]/h)|p] ≤ CTh−1, (A.31)

for any even number p ≥ 2. Combining the inequalities (A.29), (A.30) and (A.31),
we deduce the convergence

lim
l→∞

lim sup
n→∞

E[ sup
t∈[0,T ]

|L′nt (l)− L′nt |] = 0

using that Q(t, ·) has compact support contained in [−k, k]. Hence, L′n st−−→ L and
we are done.

(iv) In this step we will prove the convergence

Ln − L′n u.c.p.−−−→ 0.

This difference can be decomposed into several terms; in the following we will treat
a typical representative (all other terms are treated in exactly the same manner).
For l < d define

Rnt (l) :=

∫
Rd
H(x)Gn(t, dxl)

l−1∏
m=1

Fn(t, dxm)

×
d−1∏

m=l+1

Fn(t, dxm)[Fn(t, dxd)− F (t, dxd)].
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Now, we use the integration by parts formula to obtain that

Rnt (l) =

∫
R
Nn(t, xl)Gn(t, xl)dxl,

where

Nn(t, xl) =

∫
Rd−1

∂lH(x)
l−1∏
m=1

Fn(t, dxm)

×
d−1∏

m=l+1

Fn(t, dxm)[Fn(t, dxd)− F (t, dxd)].

As in step (iii) we deduce for any even p ≥ 2,

E[ sup
t∈[0,T ]

|Gn(t, xl)|p] ≤ Cp, E[ sup
t∈[0,T ]

|Nn(t, xl)|p] ≤ Cp.

Recalling that the function H has compact support and applying the dominated
convergence theorem, it is sufficient to show that

Nn(·, xl)
u.c.p.−−−→ 0,

for any fixed xl. But this follows immediately from Lemma A.1, since

Fn(·, x)
u.c.p.−−−→ F (·, x), Fn(·, x)

u.c.p.−−−→ F (·, x),

for any fixed x ∈ R, and ∂lH is a continuous function with compact support. This
finishes the proof of step (iv).

(v) Finally, let H ∈ C1
p(Rd) be arbitrary. For any k ∈ N, let Hk ∈ C1

p(Rd) be a
function with Hk = H on [−k, k]d and Hk = 0 on ([−k− 1, k+ 1]d)c. Let us denote
by Lnt (H) and Lt(H) the processes defined by (A.27) and (A.25), respectively, that
are associated with a given function H. We know from the previous steps that

Ln(Hk)
st−−→ L(Hk)

as n→∞, and L(Hk)
u.c.p.−−−→ L(H) as k →∞. So, we are left to proving that

lim
k→∞

lim sup
n→∞

sup
t∈[0,T ]

|Lnt (Hk)− Lnt (H)| = 0,

where the limits are taken in probability. As in steps (ii) and (iii) we obtain the
identity

Lnt (Hk)− Lnt (H)

=

d∑
l=1

∫
Rd
∂l(H −Hk)(x)Gn(t, xl)dxl

l−1∏
m=1

Fn(t, dxm)
d∏

m=l+1

Fn(t, dxm)

=:

d∑
l=1

Ql(k)nt .
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We deduce the inequality

|Ql(k)nt | ≤ n−(l−1)

[nt]∑
i1,...,il−1=1

∫
Rd−l+1

|∂l(H −Hk)(α
n
i1 , . . . , α

n
il−1

, xl, . . . , xd)|

× |Gn(t, xl)|
d∏

m=l+1

F
′
n(t, xm)dxl . . . dxd.

We remark that ∂l(Hk − H) vanishes if all arguments lie in the interval [−k, k].
Hence,

|Ql(k)nt | ≤ n−(l−1)

[nt]∑
i1,...,il−1=1

∫
Rd−l+1

|∂l(H −Hk)(α
n
i1 , . . . , α

n
il−1

, xl, . . . , xd)|

×
( l−1∑
m=1

1{|αnim |>k}
+

d∑
m=l

1{|xm|>k}

)
|Gn(t, xl)|

d∏
m=l+1

F
′
n(t, xm)dxl . . . dxd.

Now, applying Lemma A.4, (A.11), (A.28) and the Cauchy-Schwarz inequality, we
deduce that

E[ sup
t∈[0,T ]

|Ql(k)nt |]

≤ CT
∫
Rd−l+1

(
(l − 1) sup

M−1≤z≤M
(1− Φz(k)) +

d∑
m=l

1{|xm|>k}

)1/2

× ψ(xl, . . . , xd)φ(xl)
d∏

m=l+1

sup
M−1≤z≤M

ϕz(xm)dxl . . . dxd,

for some bounded function φ with exponential decay at ±∞ and a function ψ ∈
C0
p(Rd−l+1). Hence

∫
Rd−l+1

ψ(xl, . . . , xd)φ(xl)

d∏
m=l+1

sup
M−1≤z≤M

ϕz(xm)dxl . . . dxd <∞,

and we conclude that

lim
k→∞

lim sup
n→∞

E[ sup
t∈[0,T ]

|Ql(k)nt |] = 0.

This finishes step (v) and we are done with the proof of Proposition A.6.

Notice that an additional F-conditional bias would appear in the limiting pro-
cess L if we would drop the assumption that H is even in each coordinate. The
corresponding asymptotic theory for the case d = 1 has been studied in [22]; see
also [17].

Remark A.3. Combining limit theorems for semimartingales with the empirical
distribution function approach is probably the most efficient way of proving Propo-
sition A.6. Nevertheless, we shortly comment on alternative methods of proof.
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Treating the multiple sum in the definition of U ′n(H) directly is relatively com-
plicated, since at a certain stage of the proof one will have to deal with partial
sums of functions of αnj weighted by an anticipative process. This anticipation of
the weight process makes it impossible to apply martingale methods directly.

Another approach to proving Proposition A.6 is a pseudo Hoeffding decomposi-
tion. This method relies on the application of the classical Hoeffding decomposition
to U ′n(H) by pretending that the scaling components σ(i−1)/n are non-random.
However, since the random variables αnj are not independent when the process σ
is stochastic, the treatment of the error term connected with the pseudo Hoeffding
decomposition will not be easy, because the usual orthogonality arguments of the
Hoeffding method do not apply in our setting.

Remark A.4. In the context of Proposition A.6 we would like to mention a very re-
cent work by Beutner and Zähle [3]. They study the empirical distribution function
approach to U- and V-statistics for unbounded kernels H in the classical i.i.d. or
weakly dependent setting. Their method relies on the application of the functional
delta method for quasi-Hadamard differentiable functionals. In our setting it would
require the functional convergence

Gn(t, ·) st−−→ G(t, ·),

where the convergence takes place in the space of càdlàg functions equipped with
the weighted sup-norm ‖f‖λ := supx∈R |(1+|x|λ)f(x)| for some λ > 0. Although we
do not really require such a strong result in our framework (as can be seen from the
proof of Proposition A.6), it would be interesting to prove this type of convergence
for functionals of high frequency data; cf. the comment before Remark A.2.

To conclude this section, we finally present the main result: A functional stable
central limit theorem for the original U-statistic U(H)n.

Theorem A.7. Assume that the symmetric function H ∈ C1
p(Rd) is even in each

(or, equivalently, in one) argument. If σ satisfies conditions (A.15) and (A.16), we
obtain the functional stable central limit theorem

√
n
(
U(H)n − U(H)

)
st−−→ L, (A.32)

where the convergence takes place in D([0, T ]) equipped with the uniform topology
and the limiting process L is defined at (A.25).

Proof. In § A.7 we will show the following statement: Under condition (A.15) it
holds that

√
n|U(H)n − Ũ(H)n| u.c.p.−−−→ 0. (A.33)

In view of Proposition A.6, it remains to prove that
√
n|Ũ(H)nt −U ′nt (H)| u.c.p.−−−→ 0.

But due to the symmetry of H, we obtain as in the proof of Theorem A.3

E[ sup
t∈[0,T ]

|Ũ(H)nt − U ′nt (H)|] ≤ CT
n
.

This finishes the proof of Theorem A.7.
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We remark that the stable convergence at (A.32) is not feasible in its present
form, since the distribution of the limiting process L is unknown. In the next section
we will explain how to obtain a feasible central limit theorem that opens the door
to statistical applications.

A.5 Estimation of the conditional variance

In this section we present a standard central limit theorem for the U-statistic
U(H)nt . We will confine ourselves to the presentation of a result in finite distri-
butional sense. According to Remark A.2 (iii) applied to

ft(x) := d

∫
Rd−1

H(x, x2 . . . , xd)F (t, dx2) · · ·F (t, dxd),

the conditional variance of the limit Lt is given by

Vt := E′[|Lt|2|F ] =

∫ t

0

(∫
R
f2
t (x)ϕσs(x)dx−

(∫
R
ft(x)ϕσs(x)dx

)2
)
ds.

Hence, the random variable Lt is non-degenerate when

var
(
E[H(x1U1, . . . , xdUd)|U1]

)
> 0, (U1, . . . , Ud) ∼ Nd(0, Id),

for all x1, . . . , xd ∈ {σs | s ∈ A ⊆ [0, t]} and some set A with positive Lebesgue
measure. This essentially coincides with the classical non-degeneracy condition for
U-statistics of independent random variables.

We define the functions G1 : R2d−1 → R and G2 : R2 × R2d−2 → R by

G1(x) = H(x1, x2 . . . , xd)H(x1, xd+1, . . . , x2d−1), (A.34)
G2(x;y) = H(x1, y1, . . . , yd−1)H(x2, yd, . . . , y2d−2), (A.35)

respectively. Then Vt can be written as

Vt = d2

∫
[0,t]2d−1

ρσs(G1)ds

− d2

∫
[0,t]2d−2

∫ t

0

∫
R

∫
R
ρσs(G2(x1, x2; ·))ϕσq(x1)ϕσq(x2)dx1 dx2 dq ds.

We denote the first and second summand on the right hand side of the preceding
equation by V1,t and V2,t, respectively. Let G̃1 denote the symmetrization of the
function G1. By Theorem A.3 it holds that

V n
1,t = d2U(G̃1)nt

u.c.p.−−−→ d2U(G̃1)t = V1,t.

The multiple integral V2,t is almost in the form of the limit in Theorem A.3, and
it is indeed possible to estimate it by a slightly modified U-statistic as the fol-
lowing proposition shows. The statistic presented in the following proposition is a
generalization of the bipower concept discussed e.g. in [2] in the case d = 1.
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Proposition A.8. Assume that H ∈ C0
p(Rd). Let

V n
2,t :=

d2

n

(
n

2d− 2

)−1 ∑
i∈Ant (2d−2)

×
[nt]−1∑
j=1

G̃2(
√
n∆n

jX,
√
n∆n

j+1X;
√
n∆n

i1X, . . . ,
√
n∆n

i2d−2
X),

where G̃2 denotes the symmetrization of G2 with respect to the y-values, that is

G̃2(x;y) =
1

(2d− 2)!

∑
π

G2(x;πy),

for x ∈ R2, y ∈ R2d−2, and where the sum runs over all permutations of {1, . . . , 2d−
2}. Then

V n
2

u.c.p.−−−→ V2.

Proof. The result can be shown using essentially the same arguments as in the
proofs of Proposition A.2 and Theorem A.3. We provide a sketch of the proof.
Similar to (A.7) we define

Ṽ n
2,t :=

d2

n

(
n

2d− 2

)−1 ∑
i∈Ant (2d−2)

[nt]−1∑
j=1

G̃2(αnj , α
′n
j+1;αni1 , . . . , α

n
i2d−2

),

where α′nj+1 :=
√
nσ j−1

n
∆n
i+1W . Analogously to (A.8) we introduce the random

process

V ′n2,t := d2

∫
R2d−2

∫
R2

G̃2(x;y)F̃n(t, dx)F⊗(2d−2)
n (t, dy),

where

F̃n(t, x1, x2) =
1

n

[nt]−1∑
j=1

1{αnj ≤x1}1{α′nj+1≤x2}.

Writing out V ′n2,t as a multiple sum over nondecreasing multi-indices in the y argu-
ments, one observes as before that V ′n2,t and Ṽ n

2,t differ in at most O(n2d−3) sum-
mands. Therefore, using the same argument as in the proof of Theorem A.3

Ṽ n
2,t − V ′n2,t

u.c.p.−−−→ 0.

For any fixed x, y ∈ R it holds that

F̃n(t, x, y)
u.c.p.−−−→ F̃ (t, x, y) :=

∫ t

0
Φσs(x)Φσs(y)ds.

This can be shown similarly to the proof of Proposition A.2 as follows. Let ξnj =

n−1
1{αnj ≤x1}1{α′nj+1≤x2}. Then,

[nt]−1∑
j=1

E[ξnj |F j−1
n

] =
1

n

[nt]−1∑
j=1

Φσ j−1
n

(x1)Φσ j−1
n

(x2)
u.c.p.−−−→ F̃ (t, x, y).
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On the other hand, we trivially have that
∑[nt]−1

j=1 E[|ξnj |2|F j−1
n

]
P−−→ 0, for any

fixed t > 0. Hence, the Lenglart’s domination property (see [21, p. 35]) implies the
convergence

[nt]−1∑
j=1

(
ξnj − E[ξnj |F j−1

n
]
)

u.c.p.−−−→ 0,

which in turn means that F̃n(t, x, y)
u.c.p.−−−→ F̃ (t, x, y).

We know now that V ′n2,t converges to the claimed limit if G2 is compactly sup-
ported. For a general G2 with polynomial growth one can proceed exactly as in
Proposition A.2. To conclude the proof, one has to show that V n

2,t − V ′n2,t
u.c.p.−−−→ 0.

This works exactly as in § A.7.

The properties of stable convergence immediately imply the following theorem.

Theorem A.9. Let the assumptions of Theorem A.7 be satisfied. Let t > 0 be fixed.
Then we obtain the standard central limit theorem

√
n
(
U(H)nt − U(H)t

)√
V n
t

d−−→ N (0, 1), (A.36)

where V n
t = V n

1,t − V n
2,t using the notation defined above.

The convergence in law in (A.36) is a feasible central limit theorem that can be
used in statistical applications. It is possible to obtain similar multivariate central
limit theorems for finite dimensional vectors

√
n
(
U(H)ntj −U(H)tj

)
1≤j≤k; we leave

the details to the interested reader.

A.6 Statistical applications

In this section we present some statistical applications of the limit theory for U-
statistics of continuous Itô semimartingales.

Gini’s mean difference

Gini’s mean difference is a classical measure of statistical dispersion, which serves
as robust measure of variability of a probability distribution [7]. Recall that for a
given distribution Q, Gini’s mean difference is defined as

MD := E[|Y1 − Y2|],

where Y1, Y2 are independent random variables with distribution Q. In the frame-
work of i.i.d. observations (Yi)i≥1 the measureMD is consistently estimated by the
U-statistic 2

n(n−1)

∑
1≤i<j≤n |Yi − Yj |. Gini’s mean difference is connected to ques-

tions of stochasic dominance as shown by [27]. We refer to the recent paper [24] for
the estimation theory for Gini’s mean difference under long range dependence.

In the setting of continuous Itô semimartingales we conclude by Theorem A.3
that

U(H)nt
u.c.p.−−−→MDt := m1

∫
[0,t]2
|σ2
s1 + σ2

s2 |
1/2ds1ds2,
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where the function H is given by H(x, y) = |x − y| and mp is the p-th absolute
moment of N (0, 1). In mathematical finance the quantity MDt may be viewed as
an alternative measure of price variability, which is more robust to outliers than
the standard quadratic variation [X,X]t.

Formally, we cannot directly apply Theorem A.7 to obtain a weak limit theory
for the statistic U(H)nt , since the function H(x, y) = |x − y| is not differentiable
and H is not even in each component. Since Y1 − Y2 and Y1 + Y2 have the same
distribution for centered independent normally distributed random variables Y1, Y2,
the modification

H(x, y) := 1
2(|x− y|+ |x+ y|),

which is even in each component, has the same limit, i.e. U(H)nt
u.c.p.−−−→ MDt.

Moreover, using sub-differential calculus and defining

gradH(x, y) := 1
2

(
sign(x− y) + sign(x+ y), sign(x− y) + sign(x+ y)

)
,

all the proof steps remain valid (we also refer to [2], who prove the central limit
theorem for non-differentiable functions). Thus, by the assertion of Theorem A.7,
we deduce the stable convergence

√
n
(
U(H)nt −MDt

)
st−−→ Lt =

∫
R2

(|x1 − x2|+ |x1 + x2|)G(t, dx1)F (t, dx2),

where the stochastic fields G(t, x) and F (t, x) are defined in Proposition A.5 and
(A.9), respectively. Now, we follow the route proposed in § A.5 to obtain a standard
central limit theorem. We compute the symmetrization G̃1, G̃2 of the functions
G1, G2 defined at (A.34) and (A.35), respectively:

G̃1(x1, x2, x3) = 1
6

(
(|x1 − x2|+ |x1 + x2|)(|x1 − x3|+ |x1 + x3|)

+ (|x2 − x1|+ |x2 + x1|)(|x2 − x3|+ |x2 + x3|)

+ (|x3 − x1|+ |x3 + x1|)(|x3 − x2|+ |x3 + x2|)
)
,

G̃1(x1, x2; y1, y2) = 1
4

(
(|x1 − y1|+ |x1 + y1|)(|x2 − y2|+ |x2 + y2|)

+ (|x1 − y2|+ |x1 + y2|)(|x2 − y1|+ |x2 + y1|)
)
.

Using these functions we construct the statistics V n
1,t and V n

2,t (see § A.5). Finally,
for any fixed t > 0 we obtain a feasible central limit theorem

√
n
(
U(H)nt −MDt

)√
V n

1,t − V n
2,t

d−−→ N (0, 1).

The latter enables us to construct confidence regions for mean difference statistic
MDt.

Lp-type tests for constant volatility

In this subsection we propose a new homoscedasticity test for the volatility process
σ2. Our main idea relies on a certain distance measure, which is related to Lp-norms;
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we refer to [12, 13] for similar testing procedures in the L2 case. Let us define

h(s1, . . . , sd) :=
d∑
i=1

σ2
si , s1, . . . , sd ∈ [0, 1],

and consider a real number p > 1. Our test relies on the Lp-norms

‖h‖Lp :=

(∫
[0,1]d

|h(s)|pds

)1/p

.

Observe the inequality ‖h‖Lp ≥ ‖h‖L1 and, when the process h is continuous,
equality holds if and only if h is constant. Applying this intuition, we introduce a
distance measureM2 via

M2 :=
‖h‖pLp − ‖h‖

p
L1

‖h‖pLp
∈ [0, 1].

Notice that a continuous process σ2 is constant if and only if M2 = 0. Further-
more, the measure M2 provides a quantitative account of the deviation from the
homoscedasticity hypothesis, as it takes values in [0, 1].

For simplicity of exposition we introduce an empirical analogue of M2 in the
case d = 2. We define the functions

H1(x) := 1
2(|x1 − x2|2p + |x1 + x2|2p), H2(x) := x2

1 + x2
2

with x ∈ R2. Notice that both functions are continuously differentiable and even in
each component, hence they satisfy the assumptions of Theorems A.3 and A.7. In
particular, Theorem A.3 implies the convergence in probability

U(H1)n1
P−−→ U(H1)1 = m2p‖h‖pLp , U(H2)n1

P−−→ U(H2)1 = ‖h‖L1 ,

where the constant m2p has been defined in the previous subsection. The main
ingredient for a formal testing procedure is the following result.

Proposition A.10. Assume that conditions of Theorem A.7 hold. Then we obtain
the stable convergence
√
n
(
U(H1)n1 −m2p‖h‖pLp , U(H2)n1 − ‖h‖L1

)
(A.37)

st−−→ 2
(∫

R2

H1(x1, x2)G(1, dx1)F (1, dx2),

∫
R2

H2(x1, x2)G(1, dx1)F (1, dx2)
)

Furthermore, the F-conditional covariance matrix V = (Vij)1≤i,j≤2 of the limiting
random variable is given as

Vij =

∫ 1

0

(∫
R
fi(x)fj(x)ϕσs(x)dx (A.38)

−
(∫

R
fi(x)ϕσs(x)dx

)(∫
R
fj(x)ϕσs(x)dx

))
ds

with
fi(x) := 2

∫
R
Hi(x, y)F (1, dy), i = 1, 2.
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Proof. As in the proof of Theorem A.7 we deduce that
√
n(U(Hi)

n
1 − U(Hi)1) = L′n1 (i) + oP(1), i = 1, 2,

where L′n1 (i) is defined via

L′n1 (i) = 2

∫
R2

Hi(x1, x2)Gn(1, dx1)F (1, dx2).

Now, exactly as in steps (ii)–(v) of the proof of Proposition A.6, we conclude the
joint stable convergence in (A.37). The F-conditional covariance matrix V is ob-
tained from Remark A.2(iii) as in the beginning of § A.5.

Let nowM2
n be the empirical analogue ofM2, i.e.

M2
n :=

m−1
2p U(H1)n1 − (U(H2)n1 )p

m−1
2p U(H1)n1

P−−→M2.

Observe the identities

M2
n = r

(
U(H1)n1 , U(H2)n1

)
, M2 = r

(
m2p‖h‖pLp , ‖h‖L1

)
,

where r(x, y) = 1−m2p
yp

x . Applying Proposition A.10 and delta method for stable
convergence, we conclude that

√
n(M2

n −M2) converges stably in law towards a
mixed normal distribution with mean 0 and F-conditional variance given by

v2 := ∇r
(
m2p‖h‖pLp , ‖h‖L1

)
V∇r

(
m2p‖h‖pLp , ‖h‖L1

)?
,

where the random variable V ∈ R2×2 is defined at (A.38).
For an estimation of V we can proceed as in § A.5. Define the functions Gij1 :

R3 → R and Gij2 : R4 → R by

Gij1 (x1, x2, x3) = Hi(x1, x2)Hj(x1, x3)

Gij2 (x1, x2, y1, y2) = Hi(x1, y1)Hj(x2, y2), i, j = 1, 2.

Let further G̃ij1 be the symmetrization of Gij1 and G̃ij2 the symmetrization of Gij2
with respect to the y-values. With

Wij :=
4

n

(
n

2

)−1 n−1∑
i1=1

∑
1≤i2<i3≤n

G̃ij2 (
√
n∆n

i1X,
√
n∆n

i1+1X,
√
n∆n

i2X,
√
n∆n

i3X),

we can, exactly as in § A.5, deduce that

V n := (4U(G̃ij1 )n1 −Wij)i,j=1,2
P−−→ V.

Using the previous results, we directly get

v2
n := ∇r

(
U(H1)n1 , U(H2)n1

)
V n∇r

(
U(H1)n1 , U(H2)n1

)? P−−→ v2.
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Now, the properties of stable convergence yield the following feasible central limit
theorem:

√
n(M2

n −M2)√
v2
n

d−−→ N (0, 1). (A.39)

With these formulas at hand we can derive a formal test procedure for the hypoth-
esis

H0 : σ2
s is constant on [0, 1] vs. H1 : σ2

s is not constant on [0, 1].

These hypotheses are obviously equivalent to

H0 : M2 = 0, vs. H1 : M2 > 0.

Defining the test statistic Sn via

Sn :=

√
nM2

n√
v2
n

,

we reject the null hypothesis at level γ ∈ (0, 1) whenever Snt > c1−γ , where c1−γ
denotes the (1− γ)-quantile of N (0, 1). Now, (A.39) implies that

lim
n→∞

PH0(Sn > c1−γ) = γ, lim
n→∞

PH1(Snn > c1−γ) = 1.

In other words, our test statistic is consistent and keeps the level γ asymptotically.

Wilcoxon test statistic for structural breaks

Change-point analysis has been an active area of research for many decades (we
refer to [6] for a comprehensive overview). The Wilcoxon statistic is a standard
statistical procedure for testing structural breaks in location models. Let (Yi)1≤i≤n,
(Zi)1≤i≤m be mutually independent observations with Yi ∼ Qθ1 , Zi ∼ Qθ2 , where
Qθ(A) = Q0(A− θ) for all A ∈ B(R) and Q0 is a non-atomic probability measure.
In this classical framework the Wilcoxon statistic is defined by

1

nm

n∑
i=1

m∑
j=1

1{Yi≤Zj}.

Under the null hypothesis θ1 = θ2, the test statistic is close to 1/2, while deviations
from this value indicate that θ1 6= θ2. We refer to the recent work [8] for change-
point tests for long-range dependent data.

Applying the same intuition we may provide a test statistic for structural breaks
in the volatility process σ2. Assume that the semimartingale X is observed at high
frequency on the interval [0, 1] and the volatility is constant on the intervals [0, t)
and (t, 1] for some t ∈ (0, 1), i.e. σ2

s = σ2
0 on [0, t) and σ2

s = σ2
1 on (t, 1]. Our aim is

to test the null hypothesis σ2
0 = σ2

1 or to infer the change-point t when σ2
0 6= σ2

1. In
this framework the Wilcoxon type statistic is defined via

WLnt :=
1

n2

[nt]∑
i=1

n∑
j=[nt]+1

1{|∆n
i X|≤|∆n

jX|}.

Notice that the kernel is neither symmetric nor continuous. Nevertheless, we deduce
the following result.



34 Paper A

Proposition A.11. Assume that condition (A.16) holds. Then we obtain the con-
vergence.

WLnt
u.c.p.−−−→WLt :=

∫ t

0

∫ 1

t

(∫
R2

1{|σs1u1|≤|σs2u2|}ϕd(u)du

)
ds1ds2 (A.40)

=

∫ t

0

∫ 1

t

(
1− 2

π
arctan

∣∣∣∣σs1σs2

∣∣∣∣) ds1ds2.

Proof. As in the proof of Theorem A.3, we first show the convergence (A.40) for
the approximations αni of the scaled increments

√
n∆n

i X. We define

U ′nt :=

∫
R2

1{|x|≤|y|}Fn(t, dx)(Fn(1, dy)− Fn(t, dy)).

Since condition (A.16) holds, the measure Fn(t, dx) is non-atomic. Hence, we con-
clude that

U ′nt
u.c.p.−−−→WLt

exactly as in the proof of Proposition A.2. It remains to prove the convergence

WLnt − U ′nt
u.c.p.−−−→ 0.

Observe the identity

WLnt − U ′nt =
1

n2

[nt]∑
i=1

n∑
j=[nt]+1

(
1{|∆n

i X|≤|∆n
jX|} − 1{|αni |≤|αnj |}

)

=
1

n2

[nt]∑
i=1

n∑
j=[nt]+1

(
1{|∆n

i X|≤|∆n
jX|} − 1{|

√
n∆n

i X|≤|αnj |}

+ 1{|
√
n∆n

i X|≤|αnj |} − 1{|αni |≤|αnj |}
)

In the following we concentrate on proving that

1

n2

[nt]∑
i=1

n∑
j=[nt]+1

(
1{|
√
n∆n

i X|≤|αnj |} − 1{|αni |≤|αnj |}
)

u.c.p.−−−→ 0,

as the other part is negligible by the same arguments. Using the identity

1{|
√
n∆n

i X|≤|αnj |}−1{|αni |≤|αnj |} = 1{|
√
n∆n

i X|≤|αnj |,|αni |>|αnj |}−1{|
√
n∆n

i X|>|αnj |,|αni |≤|αnj |}

we restrict our attention on proving

1

n2

[nt]∑
i=1

n∑
j=[nt]+1

1{|
√
n∆n

i X|>|αnj |,|αni |≤|αnj |}
u.c.p.−−−→ 0.

For an arbitrary q ∈ (0, 1/2), we deduce the inequality

E[1{|
√
n∆n

i X|>|αnj |,|αni |≤|αnj |}] ≤ E

[
|
√
n∆n

i X − αni |q

||αnj | − |αni ||q

]

≤ E[|
√
n∆n

i X − αni |2q]1/2E[||αnj | − |αni ||−2q]1/2
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For a standard normal random variable U , and for any x > 0, y ≥ 0, define

gq(x, y) := E[|x|U | − y|−2q].

Since 2q < 1, we have

gq(x, y) = E[|x|U | − y|−2q
1{|x|U |−y|≤1}] + E[|x|U | − y|−2q

1{|x|U |−y|>1}]

≤
∫
R
|x|u| − y|−2q

1{|x|u|−y|≤1}du+ 1 ≤ Cq
x

+ 1 <∞ (A.41)

Due to assumption (A.16) and by a localization argument we can assume that σt
is uniformly bounded away from zero. Therefore and by (A.41) we obtain

E[||αnj | − |αni ||−2q] = E[E[||αnj | − |αni ||−2q|F j−1
n

]]

= E[gq(σ j−1
n
, αni )] ≤ Cq <∞.

Hence,

1

n2

[nt]∑
i=1

n∑
j=[nt]+1

E[1{|
√
n∆n

i X|>|αnj |,|αni |≤|αnj |}]

≤ C

n2

[nt]∑
i=1

n∑
j=[nt]+1

E[|
√
n∆n

i X − αni |2q]1/2
u.c.p.−−−→ 0,

where the last convergence follows as in (A.42). This completes the proof of Propo-
sition A.11.

Now, observe that when the process σ2 has no change-point at time t ∈ (0, 1)
(i.e. σ2

0 = σ2
1) the limit at (A.40) is given by WLt = 1

2 t(1− t). Thus, under the null
hypothesis σ2

0 = σ2
1, we conclude that WLnt

u.c.p.−−−→ 1
2 t(1 − t). Since the time point

t ∈ (0, 1) is unknown in general, we may use the test statistic

sup
t∈(0,1)

|WLnt − 1
2 t(1− t)|

to test for a possible change point. Large values of this quantity speak against the
null hypothesis. On the other hand, under the alternative σ2

0 6= σ2
1, the statistic

t̂n := argsupt∈(0,1)|WLnt − 1
2 t(1− t)| provides a consistent estimator of the change-

point t ∈ (0, 1). A formal testing procedure would rely on a stable central limit
theorem for WLnt , which is expected to be highly complex, since the applied kernel
is not differentiable.

A.7 Proofs of some technical results

Before we start with the proofs of (A.13) and (A.33) we state the following Lemma,
which can be shown exactly as [2, Lemma 5.4].
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Lemma A.12. Let f : Rd → Rq be a continuous function of polynomial growth.
Let further γni , γ

′n
i be real-valued random variables satisfying E[(|γni |+ |γ′ni |)p] ≤ Cp

for all p ≥ 2 and (
n

d

)−1 ∑
i∈Ant (d)

E[‖γni − γ′ni ‖2]→ 0.

Then we have for all t > 0:(
n

d

)−1 ∑
i∈Ant (d)

E[‖f(γni )− f(γ′ni )‖2]→ 0.

Recall that we assume (A.4) without loss of generality; in §A.7 and §A.7 we
further assume (A.17), i.e. all the involved processes are bounded.

Proof of (A.13)

The Burkholder inequality yields that E[(|
√
n∆n

i X|+ |αni |)p] ≤ Cp for all p ≥ 2. In
view of the previous Lemma U(H)n − Ũ(H)n

u.c.p.−−−→ 0 is a direct consequence of

(
n

d

)−1 ∑
i∈Ant (d)

E[‖
√
n∆n

iX − αni ‖2] ≤ C

n

[nt]∑
j=1

E[|
√
n∆n

jX − αnj |2]→ 0 (A.42)

as it is shown in [2, Lemma 5.3].

Proof of (A.33)

We divide the proof into several steps.

(i) We claim that

√
n(U(H)n − Ũ(H)n)− Pn(H)

u.c.p.−−−→ 0

where

Pnt (H) :=
√
n

(
n

d

)−1 ∑
i∈Ant (d)

∇H(αni )(
√
n∆n

iX − αni ).

Here, ∇H denotes the gradient of H. This can be seen as follows. Since the process
σ is itself a continuous Itô semimartingale we have

E[|
√
n∆n

i X − αni |p] ≤ Cpn−p/2 (A.43)

for all p ≥ 2. By the mean value theorem, for any i ∈ Ant (d), there exists a random
variable χni ∈ Rd such that

H(
√
n∆n

iX)−H(αni ) = ∇H(χni )(
√
n∆n

iX − αni )
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with ‖χni − αni ‖ ≤ ‖
√
n∆n

iX − αni ‖. Therefore, we have

E[sup
t≤T
|
√
n(U(H)nt − Ũt(H)n)− Pnt (H)|]

≤ C
√
n

(
n

d

)−1 ∑
i∈AnT (d)

E[‖(∇H(χni )−∇H(αni )‖‖(
√
n∆n

iX − αni )‖]

≤ C
√
n

(
n

d

)−1( ∑
i∈AnT (d)

E[‖(∇H(χni )−∇H(αni ))‖2]
)1/2

×
( ∑
i∈AnT (d)

E[‖(
√
n∆n

iX − αni )‖2]
)1/2

≤ C
{(n

d

)−1 ∑
i∈AnT (d)

E[‖(∇H(χni )−∇H(αni ))‖2]
}1/2

→ 0

by (A.42) and Lemma A.12.

(ii) In this and the next step we assume that H has compact support. Now we
split Pnt up into two parts:

Pnt =
√
n

(
n

d

)−1 ∑
i∈Ant (d)

∇H(αni )vni (1) +
√
n

(
n

d

)−1 ∑
i∈Ant (d)

∇H(αni )vni (2), (A.44)

where
√
n∆n

iX − αni = vni (1) + vni (2) and i = (i1, . . . , id), with

vnik(1) =
√
n
(
n−1a ik−1

n

+

∫ ik
n

ik−1

n

{
σ̃ ik−1

n

(Ws −W ik−1

n

) + ṽ ik−1

n

(Vs − V ik−1

n

)
}
dWs

)
vnik(2) =

√
n

(∫ ik
n

ik−1

n

(as − a ik−1

n

)ds+

∫ ik
n

ik−1

n

{∫ s

ik−1

n

ãudu

+

∫ s

ik−1

n

(σ̃u− − σ̃ ik−1

n

)dWu +

∫ s

ik−1

n

(ṽu− − ṽ ik−1

n

)dVu

}
dWs

)
.

We denote the first and the second summand on the right hand side of (A.44) by
Snt and S̃nt , respectively. First, we show the convergence S̃n u.c.p.−−−→ 0. Since the
first derivative of H is of polynomial growth we have E[‖∇H(αni )‖2] ≤ C for all
i ∈ Ant (d). Furthermore, we obtain by using the Hölder, Jensen, and Burkholder
inequalities

E[|vnik(2)|2] ≤ C

n2
+

∫ ik
n

ik−1

n

(as − a [ns]
n

)2 + (σ̃s− − σ̃ [ns]
n

)2 + (ṽs− − ṽ [ns]
n

)2ds.
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Thus, for all t > 0, we have

√
n

(
n

d

)−1

E
∑

i∈Ant (d)

|∇H(αni )vni (2)|

≤ C
√
n

(
n

d

)−1(
E
[ ∑
i∈Ant (d)

‖∇H(αni )‖2
])1/2(

E
[ ∑
i∈Ant (d)

‖vni (2)‖2
])1/2

≤ C
(
n

(
n

d

)−1

E
[ [nt]∑
i1,...,id=1

(|vni1(2)|2 + · · ·+ |vnid(2)|2)
])1/2

≤ C
(
E
[ [nt]∑
j=1

|vnj (2)|2
])1/2

≤ C
(
n−1 + E

∫ t

0
(as − a [ns]

n

)2 + (σ̃s− − σ̃ [ns]
n

)2 + (ṽs− − ṽ [ns]
n

)2ds
)1/2

→ 0

by the dominated convergence theorem and S̃n u.c.p.−−−→ 0 readily follows.

(iii) To show Sn
u.c.p.−−−→ 0 we use

Snt =
d∑

k=1

√
n

(
n

d

)−1 ∑
i∈Ant (d)

∂kH(αni )vnik(1) =:
d∑

k=1

Snt (k)

Before we proceed with proving Sn(k)
u.c.p.−−−→ 0, for k = 1, . . . , d, we make two

observations: First, by the Burkholder inequality, we deduce

E[|
√
nvnik(1)|p] ≤ Cp, for all p ≥ 2, (A.45)

and second, for fixed x ∈ Rd−k, and for all i = (i1, . . . , ik) ∈ Ant (k), we have

E[∂kH(αni , x)vnik(1)|F ik−1

n

] = 0, (A.46)

since ∂kH is an odd function in its k-th component. Now, we will prove that

√
nn−k

∑
i∈Ant (k)

∂kH(αni , x)vnik(1)
u.c.p.−−−→ 0, (A.47)

for any fixed x ∈ Rd−k. From (A.46) we know that it suffices to show that

[nt]∑
ik=1

E
[( ∑

1≤i1<···<ik−1<ik

χi1,...,ik

)2∣∣F ik−1

n

]
P−−→ 0,

where χi1,...,ik :=
√
nn−k∂kH(αni , x)vnik(1). (Note that the sum in the expectation

only runs over the indices i1, . . . , ik−1.) But this follows from the L1 convergence
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and (A.45) via

[nt]∑
ik=1

E
[( ∑

1≤i1<···<ik−1<ik

χi1,...,ik

)2]

≤ C

nk

[nt]∑
ik=1

∑
1≤i1<···<ik−1<ik

E
[
(∂kH(αni , x)vnik(1))2

]
≤ C

n
→ 0.

Recall that we still assume that H has compact support. Let the support of H be
a subset of [−K,K]d and further −K = z0 < · · · < zm = K be an equidistant
partition of [−K,K]. We denote the set {z0, . . . , zm} by Zm. Also, let η(ε) :=
sup
{
‖∇H(x)−∇H(y)‖

∣∣ ‖x−y‖ ≤ ε} be the modulus of continuity of ∇H. Then
we have

sup
t≤T
|Snt (k)| ≤ C

√
nn−k sup

t≤T
sup

x∈[−K,K]d−k

∣∣∣ ∑
i∈Ant (k)

∂kH(αni , x)vnik(1)
∣∣∣

≤ C
√
nn−k sup

t≤T
max
x∈Zd−km

∣∣∣ ∑
i∈Ant (k)

∂kH(αni , x)vnik(1)
∣∣∣

+ C
√
nn−k

∑
i∈AnT (k)

η

(
2K

m

)
|vnik(1)|.

Observe that, for fixedm, the first summand converges in probability to 0 as n→∞
by (A.47). The second summand is bounded in expectation by Cη(2K/m) which
converges to 0 as m → ∞. This implies Snt (k)

u.c.p.−−−→ 0 which finishes the proof of
(A.33) for all H with compact support.

(iv) Now, let H ∈ C1
p(Rd) be arbitrary and Hk be a sequence of functions in

C1
p(Rd) with compact support that converges pointwise to H and fulfills H = Hk

on [−k, k]d. In view of step (i) it is enough to show that

lim
k→∞

lim sup
n→∞

E
[

sup
t≤T

∣∣∣√n(n
d

)−1 ∑
i∈Ant (d)

∇(H −Hk)(α
n
i )(
√
n∆n

iX − αni )
∣∣∣] = 0.

Since H −Hk is of polynomial growth and by (A.43) we get

E
[

sup
t≤T

∣∣∣√n(n
d

)−1 ∑
i∈Ant (d)

∇(H −Hk)(α
n
i )(
√
n∆n

iX − αni )
∣∣∣]

≤ C
√
n

(
n

d

)−1 ∑
i∈AnT (d)

E[‖∇(H −Hk)(α
n
i )‖‖
√
n∆n

iX − αni ‖]

≤ C
(
n

d

)−1 ∑
i∈AnT (d)

E
[( d∑

l=1

1{|αnil |>k}
)2
‖∇(H −Hk)(α

n
i )‖2

]1/2
≤ C

k
,

which finishes the proof.
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Proof of (A.26)

We can write

U(H)t =

∫
[0,t]d

∫
Rd
H(x)ϕσs1 (x1) · · ·ϕσsd (xd)dxds.

We also have

F
′
n(t, x) =

∫ [nt]
n

0
ϕσ [ns]

n

(x)ds,

where F ′n(t, x) denotes the Lebesgue density in x of Fn(t, x) defined at (A.26). So
we need to show that Pn(H)

u.c.p.−−−→ 0, where

Pnt (H) :=
√
n

∫
[0,t]d

∫
Rd
H(x)

×
(
ϕσs1 (x1) · · ·ϕσsd (xd)− ϕσ [ns1]

n

(x1) · · ·ϕσ [nsd]
n

(xd)
)
dxds.

As previously we show the result first for H with compact support.

(i) Let the support of H be contained in [−k, k]d. From [2, § 8] we know that, for
fixed x ∈ R, it holds that

√
n

∫ t

0

(
ϕσs(x)− ϕσ [ns]

n

(x)
)
ds

u.c.p.−−−→ 0. (A.48)

Also, with ρ(z, x) := ϕz(x) we obtain, for x, y ∈ [−k, k],∣∣∣ ∫ t

0
(ϕσs(x)− ϕσ [ns]

n

(x))− (ϕσs(y)− ϕσ [ns]
n

(y))ds
∣∣∣

≤
∫ t

0

∣∣∂1ρ(ξs, x)(σs − σ [ns]
n

)− ∂1ρ(ξ′s, y)(σs − σ [ns]
n

)
∣∣ds

≤
∫ t

0

∣∣∂11ρ(ξ′′s , ηs)(ξs − ξ′s) + ∂21ρ(ξ′′s , ηs)(x− y)
∣∣∣∣σs − σ [ns]

n

∣∣ds
≤ C

∫ t

0
|σs − σ [ns]

n

|2 + |σs − σ [ns]
n

||y − x|ds,

where ξs, ξ′s, ξ′′s are between σs and σ[ns]/n and ηs is between x and y. Now, let
Zm = {jk/m | j = −m, . . . ,m}. Then, we get

sup
t≤T
|Pnt (H)| ≤ CT sup

t≤T

√
n

∫
[−k,k]

∣∣∣ ∫ t

0
ϕσs(x)− ϕσ [ns]

n

(x)ds
∣∣∣dx

≤ CT sup
t≤T

sup
x∈[−k,k]

√
n
∣∣∣ ∫ t

0
ϕσs(x)− ϕσ [ns]

n

(x)ds
∣∣∣

≤ CT sup
t≤T

max
x∈Zm

√
n
∣∣∣ ∫ t

0
ϕσs(x)− ϕσ [ns]

n

(x)ds
∣∣∣

+ CT
√
n

∫ T

0

(
|σs − σ [ns]

n

|2 +
k

m
|σs − σ [ns]

n

|
)
ds
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≤ CT
∑
x∈Zm

sup
t≤T

√
n
∣∣∣ ∫ t

0
ϕσs(x)− ϕσ [ns]

n

(x)ds
∣∣∣

+ CT
√
n

∫ T

0

(
|σs − σ [ns]

n

|2 +
k

m
|σs − σ [ns]

n

|
)
ds

Observe that, for fixedm, the first summand converges in probability to 0 by (A.48).
By the Itô isometry and (A.17) we get for the expectation of the second summand:

E
[√

n

∫ T

0

(
|σs − σ [ns]

n

|2 +
k

m
|σs − σ [ns]

n

|
)
ds
]

=
√
n

∫ T

0
E
[
|σs − σ [ns]

n

|2 +
k

m
|σs − σ [ns]

n

|
]
ds ≤ CT

(
1√
n

+
1

m

)
.

Thus, by choosing m large enough and then letting n go to infinity, we obtain the
convergence Pnt (H)

u.c.p.−−−→ 0.

(ii) Now let H ∈ C1
p(Rd) and Hk be an approximating sequence of functions in

C1
p(Rd) with compact support and H = Hk on [−k, k]d. Observe that, for x, s ∈ Rd,

we obtain by the mean value theorem that

E
[∣∣ϕσs1 (x1) · · ·ϕσsd (xd)− ϕσ [ns1]

n

(x1) · · ·ϕσ [nsd]
n

(xd)
∣∣]

≤ ψ(x)
d∑
i=1

E|σsi − σ [nsi]

n

| ≤ C√
n
ψ(x),

where the function ψ is exponentially decaying at ±∞. Thus

lim
k→∞

lim sup
n→∞

E
[

sup
t≤T
|Pnt (H)− Pnt (Hk)|

]
≤ CT lim

k→∞
lim sup
n→∞

∫
Rd
|(H −Hk)(x)|ψ(x)dx = 0,

which finishes the proof of (A.26).

Acknowledgements

We would like to thank Herold Dehling for his helpful comments.

Bibliography

[1] D. J. Aldous and G. K. Eagleson. On mixing and stability of limit theorems.
Ann. Probab., 6(2):325, 1978.

[2] O. E. Barndorff-Nielsen, O. E. Graversen, J. Jacod, M. Podolskij, and N. Shep-
hard. A central limit theorem for realised power and bipower variations of con-
tinuous semimartingales. In Yu. Kabanov, R. Liptser, and J. Stoyanov, editors,
From Stochastic Calculus to Mathematical Finance. Festschrift in Honour of
A.N. Shiryaev, pages 33–68. Springer, Heidelberg, 2006.



42 Paper A

[3] E. Beutner and H. Zähle. Deriving the asymptotic distribution of u- and v-
statistics of dependent data using weighted empirical processes. Bernoulli,
18(3):803–822, 2012.

[4] S. Borovkova, R. Burton, and H. Dehling. Consistency of the takens estimator
for the correlation dimension. Ann. Appl. Probab., 9:376–390, 1999.

[5] S. Borovkova, R. Burton, and H. Dehling. Limit theorems for functionals of
mixing processes with applications to u-statistics and dimension estimation.
Trans. Amer. Math. Soc., 353:4261–4318, 2001.

[6] M. Csörgó and L. Horváth. Limit theorems in change-point analysis. J. Wiley
& Sons, 97.

[7] H. A. David. Gini’s mean difference rediscovered. Biometrika, 55:573–575,
1968.

[8] H. Dehling, A. Rooch, and M. Taqqu. Non-parametric change-point tests for
long-range dependent data. Scandinavian Journal of Statistics, 40(1):153–173,
2013.

[9] H. Dehling and M. S. Taqqu. The empirical processes of some long-range
dependent sequences with an application to u-statistics. Ann. Statist., 17:1767–
1783, 1989.

[10] H. Dehling and M. S. Taqqu. Bivariate symmetric statistics of long-range
dependent observations. J. Statist. Plann. Inference, 28:153–165, 1991.

[11] M. Denker and G. Keller. On u-statistics and von mises’ statistic for weakly
dependent processes. Z. Wahrsch. Verw. Gebiete, 64:505–552, 1983.

[12] H. Dette and M. Podolskij. Testing the parametric form of the volatility in
continuous time diffusion models - an empirical process approach. Journal of
Econometrics, 143:56–73, 2008.

[13] H. Dette, M. Podolskij, and M. Vetter. Estimation of integrated volatility in
continuous time financial models with applications to goodness-of-fit testing.
Scandinavian Journal of Statistics, 33:259–278, 2006.

[14] L. Giraitis and M. S. Taqqu. Limit theorems for bivariate appell polynomials.
i. central limit theorems. Probab. Theory Related Fields, 107:359–381, 1997.

[15] W. Hoeffding. A class of statistics with asymptotically normal distribution.
Ann. Math. Statist., 19:293–325, 1948.

[16] T. Hsing and W. B. Wu. On weighted u-statistics for stationary processes.
Ann. Probab., 32:1600–1631, 2004.

[17] J. Jacod. On continuous conditional gaussian martingales and stable conver-
gence in law. Sémin. probab. Strasbg, XXXI:232–246, 1997.

[18] J. Jacod. Asymptotic properties of realized power variations and related func-
tionals of semimartingales. Stoch. Process. Appl., 118:517–559, 2008.



A.7. Proofs of some technical results 43

[19] J. Jacod, M. Podolskij, and M. Vetter. Limit theorems for moving averages of
discretized processes plus noise. Ann. Statist., 38(3):1478–1545, 2010.

[20] J. Jacod and P. Protter. Discretization of Processes. Springer, Berlin, 2012.

[21] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes.
Springer, Berlin, 2nd edition, 2003.

[22] S. Kinnebrock and M. Podolskij. A note on the central limit theorem for
bipower variation of general functions. Stoch. Process. Appl., 118:1056–1070,
2008.

[23] V. S. Koroljuk and Yu. V. Borovskich. Theory of U -Statistics. Kluver, Dor-
drecht, 1994.

[24] C. Lévy-Leduc, H. Boistard, E. Moulines, M. S. Taqqu, and V. A. Reisen.
Asymptotic properties of u-processes under long-range dependence. Annals of
Statistics, 39(3):1399–1426, 2011.

[25] M. Podolskij and M. Vetter. Understanding limit theorems for semimartin-
gales: a short survey. Stat. Neerl., 64(3):329–351, 2010.

[26] A. Renyi. On stable sequences of events. Sankhya A, 25:293–302, 1963.

[27] S. Yitzhaki. Stochastic dominance, mean variance, and Gini’s mean difference.
Amer. Econ. Rev., 71:178–185, 1982.





P
a

p
e

r

B
On U- and V-statistics for
discontinuous Itô semimartingales

By Mark Podolskij, Christian Schmidt and Mathias Vetter

Abstract

In this paper we examine the asymptotic theory for U- and V-statistics
of discontinuous Itô semimartingales that are observed at high frequency.
For different types of kernel functions we show laws of large numbers and
associated stable central limit theorems. In most of the cases the limiting
process will be conditionally centered Gaussian. The structure of the kernel
function determines whether the jump and/or the continuous part of the
semimartingale contribute to the limit.
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B.1 Introduction

U- and V-statistics are classical objects in mathematical statistics. They were intro-
duced in the works of Halmos [9], von Mises [22] and Hoeffding [10], who provided
(amongst others) the first asymptotic results for the case that the underlying ran-
dom variables are independent and identically distributed. Since then there was a
lot of progress in this field and the results were generalized in various directions.
Under weak dependency assumptions asymptotic results are for instance shown in
Borovkova, Burton and Dehling [4], in Denker and Keller [8] or more recently in
Leucht [16]. The case of long memory processes is treated in Dehling and Taqqu
[5, 6] or in Lévy-Leduc et al. [17]. For a general overview we refer to the books of
Serfling [21] and Lee [15]. The methods applied in the proofs are quite different.
One way are decomposition techniques like the famous Hoeffding decomposition
or Hermite expansion as for example in [5, 6, 17]. Another approach is to use em-
pirical process theory (see e.g. [1, 18]). In Beutner and Zähle [2] this method was
recently combined with a continuous mapping approach to give a unifying way to
treat the asymptotic theory for both U- and V-statistics in the degenerate and
non-degenerate case.

In this paper we are concerned with U- and V-statistics where the underlying
data comes from a (possibly discontinuous) Itô semimartingale of the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, t ≥ 0, (B.1)

where W is a standard Brownian motion, (bs)s≥0 and (σs)s≥0 are stochastic pro-
cesses and Jt is some jump process that we will specify later. Semimartingales play
an important role in stochastic analysis because they form a large class of integra-
tors with respect to which the Itô integral can be defined. This is one reason why
they are widely used in applications, for instance in mathematical finance. Since
the seminal work of Delbaen and Schachermayer [7] it is known that under cer-
tain no arbitrage conditions asset price processes must be semimartingales. Those
price processes are nowadays observed very frequently, say for example at equidis-
tant time points 0, 1/n, . . . bnT c /n for a fixed T ∈ R and large n. It is therefore of
great interest to infer as many properties of the semimartingale from the given data
X0, X1/n, . . . , XbnT c/n as possible for large n. In particular we are interested in the
limiting behavior when n tends to infinity. This setting is known as high frequency
or infill asymptotics and is an active field of research since the last decades. For a
comprehensive account we refer to the book of Jacod and Protter [12].

In Podolskij, Schmidt and Ziegel [18] an asymptotic theory for U-statistics of
continuous Itô semimartingales (i.e. Jt ≡ 0 in (B.1)) was developed in the high
frequency setting, where a U-statistic of order d is defined by

U(X,H)nt =

(
n

d

)−1 ∑
1≤i1<...<id≤bntc

H(
√
n∆n

i1X, . . . ,
√
n∆n

id
X),

for some sufficiently smooth kernel function H : Rd → R and ∆n
i X = Xi/n −

X(i−1)/n. In [18] it is shown that U(X,H)nt converges in probability to some func-
tional of the volatility σ. Also an associated functional central limit theorem is
given where the limiting process turned out to be conditionally Gaussian.



48 Paper B

In this paper we will extend those results to the case of discontinuous Itô semi-
martingales X. A general problem when dealing with discontinuous processes is
that, depending on the function H, the U-statistic defined above might not con-
verge to any finite limit. Therefore, in this work, we will deal with the slightly
different V-statistics, where by V-statistic of order d we mean a statistic of the
type

Y n
t (H,X, l) =

1

nl

∑
i∈Bnt (l)

∑
j∈Bnt (d−l)

H(
√
n∆n

iX,∆
n
jX),

where 0 ≤ l ≤ d and

Bnt (k) =
{
i = (i1, . . . , ik) ∈ Nk

∣∣ 1 ≤ i1, . . . , ik ≤ bntc
}

(k ∈ N).

In the definition of Y n
t (H,X, l) we used a vector notation, that we will employ

throughout the paper. For s = (s1, . . . , sd) ∈ Rd and any stochastic process (Zs)s∈R,
we write

Zs = (Zs1 , . . . , Zsd).

Comparing the definitions of the U- and V-statistics we can see that they are of
very similar type if l = d. In fact, for continuous X, both statistics will converge
to the same limit if H is symmetric. A major difference is the scaling inside the
function H whenever l 6= d. Already for d = 1 we can see why we need different
scaling depending on the function H. In Jacod [11] the author considers (among
others) the statistics

Y n
t (H,X, 1) =

1

n

bntc∑
i=1

H(
√
n∆n

i X) and Y n
t (H,X, 0) =

bntc∑
i=1

H(∆n
i X)

for some function H and d = 1. To give an example we consider the so-called
power variation, for which Hp(x) = |x|p. The results in [11] yield that, in the case
0 < p < 2 and under some additional assumptions, we have

Y n
t (Hp, X, 1)

P−−→ mp

∫ t

0
|σs|pds,

where mp is the p-th absolute moment of a standard normal distribution. It follows
then that Y n

t (Hp, X, 0) would explode for this specific Hp. On the other hand, if
p > 2, we have

Y n
t (Hp, X, 0)

P−−→
∑
s≤t
|∆Xs|p, (B.2)

where ∆Xs = ∆Xs − ∆Xs− stands for the jumps of X. Clearly this implies that
Y n
t (Hp, X, 1) diverges in this case. For the associated central limit theorems the

assumptions need to be stronger. One needs to require 0 < p < 1 for Y n
t (Hp, X, 1)

and p > 3 for Y n
t (Hp, X, 0). The limiting processes will in most cases again be

conditionally Gaussian (see Theorems B.3 and B.13 for more details). The structure
however is quite different. In the p < 1 case the conditional variance of the limit will
only depend on the continuous part of X, whereas in the p > 3 case the conditional
variance is more complicated and depends on both the jump and the continuous
part of X.
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To accommodate these different behaviors we will in our general setting of V-
statistics Y n

t (H,X, l) of order d consider kernel functions of the form

H(x1, . . . , xl, y1, . . . , yd−l) =
l∏

i=1

|xi|pi
d−l∏
j=1

|yj |qjL(x1, . . . , xl, y1, . . . , yd−l),

where L has to fulfill some boundedness conditions and needs to be sufficiently
smooth. Further we assume p1, . . . , pl < 2 and q1, . . . , qd−l > 2. Clearly there are
two special cases. If l = 0 we need a generalization of (B.2) to V-statistics of higher
order. If l = d the V-statistic is of similar form as the U-statistic U(X,H)nt defined
above. In particular we need to extend the theory of U-statistics of continuous Itô
semimartingales in [18] to the case of discontinuous Itô semimartingales. Finally,
in the sophisticated situation of arbitrary l, we will combine the two special cases.
The limiting processes in the central limit theorem will still be (in most cases)
conditionally Gaussian.

The paper is organized as follows. In Section B.2 we give some basic definitions
and the notation that we use. In Section B.3 we present a law of large numbers and
a central limit theorem in the case l = 0 for a slightly more general statistics than
Y n
t (H,X, l). In Section B.4 we use those results in order to obtain, under stronger

assumptions, again a law of large numbers and an associated central limit theorem
for Y n

t (H,X, l) for general l. In the appendix we will prove, besides some technical
results, a uniform central limit theorem for U-statistics, which can in some sense
be seen as a generalization of the results for U-statistics given in [18] and which is
crucial for the proof of the main Theorem B.13 in Section B.4.

B.2 Preliminaries

Throughout the paper we will assume that for some T ∈ R+ = {x ∈ R | x ≥ 0} the
process

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + (δ1{|δ|≤1}) ∗ (p− q)t + (δ1{|δ|>1}) ∗ pt,

defined for t ∈ [0, T ], is a 1-dimensional Itô-semimartingale defined on a filtered
probability space (Ω,F , (Ft)t≥0,P) that satisfies the usual assumptions. Further we
require that W is a Brownian motion and p is a Poisson random measure with
compensator q(dt, dz) = dt ⊗ λ(dz) for some σ-finite measure λ. Also we assume
that b is locally bounded and σ is càdlàg and that δ is some predictable function
on Ω× R+ × R.

Moreover we will use the following vector notation: If p = (p1, . . . , pn),x =
(x1, . . . , xn) ∈ Rn, then we let |x|p :=

∏n
k=1 |xk|pk . Define further p ≤ x⇐⇒ pi ≤

xi for all 1 ≤ i ≤ n. If t ∈ R we let x ≤ t ⇐⇒ xi ≤ t for all 1 ≤ i ≤ n. Also we
define |x|t = |x1|t · · · |xn|t. By ‖·‖ we denote the maximum norm for vectors and
the supremum norm for functions.

Finally we introduce the notation

P(l) :=
{
p : Rl → R

∣∣∣ p(x1, . . . , xl) =
∑
α∈A
|x1|α1 · · · |xl|αl , A ⊂ Rl+ finite

}
. (B.3)

We will assume in the whole paper thatK is some generic constant that may change
from line to line.
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B.3 The jump case

In this section we analyze the asymptotic behavior of the V-statistic V (H,X, l)nt
defined by

V (H,X, l)nt :=
1

nd−l

∑
i∈Bnt (d)

H(∆n
iX) =

1

nd−l
Y n
t (H,X, 0) (B.4)

for different types of continuous functions H : Rd → R. As a toy example in the
case d = 2 serve the two kernel functions

H1(x1, x2) = |x1|p and H2(x1, x2) = |x1x2|p

for some p > 2. Already for these basic functions it is easy to see why there should be
different rates of convergence, i.e. different l, in the law of large numbers. Consider

V (H1, X, l)
n
t =
bntc
n2−l

bntc∑
i=1

|∆n
i X|p and V (H2, X, l)

n
t =

1

n2−l

( bntc∑
i=1

|∆n
i X|p

)2

.

In order to get convergence in probability to some non-trivial limit we know from
the 1-dimensional theory (see (B.2)) that we have to choose l = 1 for H1 and l = 2
for H2.

In the following two subsections we will provide a law of large numbers and an
associated central limit theorem for the statistics defined at (B.4).

Law of large numbers

For the law of large numbers we do not need to impose any additional assumptions
on the process X. We only need to require that the kernel function H fulfills (B.5),
which is in the d = 1 case the same condition that is given in [11]. We have

Theorem B.1. Let H : Rd → R be continuous and 1 ≤ l ≤ d such that

lim
(x1,...,xl)→0

H(x1, . . . , xd)

|x1|2 · . . . · |xl|2
= 0. (B.5)

Then, for fixed t > 0,

V (H,X, l)nt
P−−→ V (H,X, l)t := td−l

∑
s∈(0,t]l

H(∆Xs,0).

Remark B.1. Note that we can write H in the form

H = |x1 · . . . · xl|2L(x1, . . . , xd),

where

L(x1, . . . , xd) =

{
H(x1,...,xd)
|x1·...·xl|2

, if x1, . . . , xl 6= 0,

0, otherwise.

By assumption (B.5), L is continuous and consequently the limit V (H,X, l)t is well-
defined, since the squared jumps of a semimartingale are absolutely summable.
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Remark B.2. Condition (B.5) is stated in a somewhat asymmetric way because
it only concerns the first l arguments of H. Generally one should rearrange the
arguments of H in a way such that (B.5) is fulfilled for the largest possible l. In
particular, H(x1, . . . , xl,0) is not identically 0 then, which will lead to non-trivial
limits.

Proof of Theorem B.1. Let t > 0 be fixed. The proof will be divided into two parts.
In the first one we will show that

ξnt :=
1

nd−l

∑
i∈Bnt (d)

(H(∆n
iX)−H(∆n

i1X, . . . ,∆
n
il
X,0))

P−−→ 0.

Then we are left with proving the theorem in the case l = d, which will be done in
the second part.

Since the paths of X are càdlàg and therefore bounded on compacts by a con-
stant At(ω) = sup0≤s≤t |Xs(ω)|, we have the estimate

|ξnt | ≤
1

nd−l

∑
i∈Bnt (d)

|∆n
i1X · . . . ·∆

n
il
X|2δL,At(max(|∆n

il+1
X|, . . . , |∆n

id
X|))

=

(bntc∑
i=1

|∆n
i X|2

)l 1

nd−l

bntc∑
il+1,...,id=1

δL,At(max(|∆n
il+1

X|, . . . , |∆n
id
X|)),

where

δL,At(ε) := sup
{
|L(x)− L(y)|

∣∣ x,y ∈ [−2At, 2At]
d, ‖x− y‖ < ε

}
, ε > 0

denotes the modulus of continuity of L.
We will now use the elementary property of the càdlàg process X, that for every

ε > 0, there exists N ∈ N such that |∆n
i X| < 2ε for all n ≥ N , if X does not have

a jump of size bigger than ε on
(
i−1
n , in

]
. Since the number of those jumps is finite,

we obtain for sufficiently large n the estimate

1

nd−l

bntc∑
il+1,...,id=1

δL,At(max(|∆n
il+1

X|, . . . , |∆n
id
X|)) ≤ td−lδL,At(2ε) +

K(ε)

n
.

Using the continuity of L, the left hand side becomes arbitrarily small, if we first
choose ε small and then n large. From [13] we know that

[X,X]nt :=

bntc∑
i=1

|∆n
i X|2

P−−→ [X,X]t =

∫ t

0
σ2
s ds+

∑
0<s≤t

|∆Xs|2, (B.6)

and thus we obtain ξnt
P−−→ 0.

For the second part of the proof, i.e. the convergence V (H,X, l)nt
P−−→ V (H,X, l)t

in the case l = d, we define the functions gnk : Rd−1 → R by

gnk (x) =

bntc∑
i=1

|∆n
i X|2L(x1, . . . , xk−1,∆

n
i X,xk, . . . , xd−1)

−
∑
s≤t
|∆Xs|2L(x1, . . . , xk−1,∆Xs, xk, . . . , xd−1)
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and deduce

|V (H,X, d)nt − V (H,X, d)t| =
∣∣∣ ∑
i∈Bnt (d)

H(∆n
iX)−

∑
s∈[0,t]d

H(∆Xs)
∣∣∣

=
∣∣∣ d∑
k=1

{ ∑
i∈Bnt (k)

∑
s∈[0,t]d−k

H(∆n
iX,∆Xs)−

∑
i∈Bnt (k−1)

∑
s∈[0,t]d−k+1

H(∆n
iX,∆Xs)

}∣∣∣
≤

d∑
k=1

([X,X]nt )k−1[X,X]d−kt sup
‖x‖≤2At

|gnk (x)|.

By using (B.6) again we see that it remains to show sup‖x‖≤2At |g
n
k (x)| P−−→ 0 for

1 ≤ k ≤ d. In the following we replace the supremum by a maximum over a finite
set and give sufficiently good estimates for the error that we make by doing so.

For any m ∈ N define the (random) finite set Amt by

Amt :=

{
k

m

∣∣∣∣ k ∈ Z,
|k|
m
≤ 2At

}
.

Then we have

sup
‖x‖≤2At

|gnk (x)| ≤ max
x∈(Amt )d−1

|gnk (x)|+ sup
‖x‖,‖y‖≤2At
‖x−y‖≤1/m

|gnk (x)−gnk (y)| =: ζnk,1(m)+ζnk,2(m).

Since the sets Amt are finite, we immediately get ζnk,1(m)
a.s.−→ 0 as n → ∞ from

Remark 3.3.3 in [12] for any fixed m. For the second summand ζnk,2(m) observe that

|ζnk,2(m)| ≤
( bntc∑
i=1

|∆n
i X|2 +

∑
s≤t
|∆Xs|2

)
δL,At(m

−1),

which implies

lim
m→∞

lim sup
n→∞

P(|ζnk,2(m)| > ε) = 0 for every ε > 0.

The proof is complete.

Central limit theorem

In this section we will show a central limit theorem that is associated to the law of
large numbers in Theorem B.1. The mode of convergence will be the so-called stable
convergence. This notion was introduced by Renyi [20] and generalized the concept
of weak convergence. We say that a sequence (Zn)n∈N of random variables defined
on a probability space (Ω,F ,P) with values in a Polish space (E, E) converges
stably in law to a random variable Z that is defined on an extension (Ω′,F ′,P′) of
(Ω,F ,P) and takes also values in (E, E), if and only if

E(f(Zn)Y )→ E′(f(Z)Y ) as n→∞

for all bounded and continuous f and bounded, F-measurable Y . We write Zn
st−−→

Z for stable convergence of Zn to Z. For a short summary of the properties of
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stable convergence we refer to [19]. The main property that we will use here is that
if we have two sequences (Yn)n∈N, (Zn)n∈N of real-valued random variables and real-
valued random variables Y,Z with Yn

P−−→ Y and Zn
st−−→ Z, then we automatically

obtain joint convergence (Zn, Yn)
st−−→ (Z, Y ).

In contrast to the law of large numbers, we need to impose some assumptions
on the jumps of the process X. We assume that |δ(ω, t, z)| ∧ 1 ≤ Γn(z) for all
t ≤ τn(ω), where τn is an increasing sequence of stopping times going to infinity.
The functions Γn are assumed to fulfill∫

Γn(z)2λ(dz) <∞.

Since the main result of this section, which is Theorem B.5, is stable under stopping,
we may assume by a standard localization argument (see [12, Section 4.4.1]) that
the following boundedness condition is satisfied:

|bt| ≤ A, |σt| ≤ A, |Xt| ≤ A, |δ(t, z)| ≤ Γ(z) ≤ A

holds uniformly in (ω, t) for some constant A and a function Γ with∫
Γ(z)2λ(dz) ≤ A.

A common technique for proving central limit theorems for discontinuous semi-
martingales is to decompose the process X for fixed m ∈ N into the sum of two
processes X(m) and X ′(m), where the part X ′(m) basically describes the jumps
of X, which are of size bigger than 1/m and of whom there are only finitely many.
Eventually one lets m go to infinity.

So here we define Dm = {z |Γ(z) > 1/m} and (S(m, j))j≥1 to be the successive
jump times of the Poisson process 1{Dm\Dm−1} ∗ p. Let (Sq)q≥1 be a reordering of
(S(m, j)), and

Pm = {p | Sp = S(k, j) for j ≥ 1, k ≤ m},

Pnt (m) =

{
p ∈ Pm

∣∣∣∣ Sp ≤ bntcn
}
,

Pt(m) = {p ∈ Pm | Sp ≤ t}.

Further let

R−(n, p) =
√
n(XSp− −X i−1

n
)

R+(n, p) =
√
n(X i

n
−XSp)

R(n, p) = R−(n, p) +R+(n, p),

if i−1
n < Sp ≤ i

n . Now we split X into a sum of X(m) and X ′(m), where X ′(m) is
the “big jump part” and X(m) is the remaining term, by

b(m)t = bt −
∫
{Dm∩{z||δ(t,z)|≤1}}

δ(t, z)λ(dz)

X(m)t =

∫ t

0
b(m)sds+

∫ t

0
σsdWs + (δ1Dcm) ∗ (p− q)t

X ′(m) = X −X(m) = (δ1Dm) ∗ p.
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Further let Ωn(m) denote the set of all ω such that the intervals ( i−1
n , in ] (1 ≤ i ≤ n)

contain at most one jump of X ′(m)(ω), and

|X(m)(ω)t+s −X(m)(ω)t| ≤
2

m
for all t ∈ [0, T ], s ∈ [0, n−1].

Clearly, P(Ωn(m))→ 1, as n→∞.
Before we state the main result of this section we begin with some important

lemmas. The first one gives useful estimates for the size of the increments of the
process X(m). For a proof see [12, (2.1.44) and (5.1.24)].

Lemma B.2. For any p ≥ 1 we have

E(|X(m)t+s −X(m)t|p|Ft) ≤ K(s(p/2)∧1 +mpsp)

for all t ≥ 0, s ∈ [0, 1].

As a simple application of the lemma we obtain for p ≥ 2 and i ∈ Bnt (d) with
i1 < · · · < id

E
[
|∆n

i1X(m)|p · . . . · |∆n
id
X(m)|p

]
= E

[
∆n
i1X(m)|p · . . . · |∆n

id−1
X(m)|pE

[
|∆n

id
X(m)|p

∣∣F id−1

n

]]
≤ K

( 1

n
+
mp

np

)
E
[
|∆n

i1X(m)|p · . . . · |∆n
id−1

X(m)|p
]
≤ · · · ≤ K(n,m)

nd

for some positive sequence K(n,m) which satisfies lim supn→∞K(n,m) ≤ K for
any fixed m. Consequently, for general i ∈ Bnt (d), we have

E
[
|∆n

i1X(m)|p · . . . · |∆n
id
X(m)|p

]
≤ K(n,m)n−#{i1,...,id}.

Since the number of elements i = (i1, . . . , id) ∈ Bnt (d) with # {i1, . . . , id} = k is of
order nk, we obtain the useful formula

E
[ ∑
i∈Bnt (d)

|∆n
i1X(m)|p · . . . · |∆n

id
X(m)|p

]
≤ K(n,m), (B.7)

and similarly

1√
n
E
[ ∑
i∈Bnt (d)

|∆n
i1X(m)|p · . . . · |∆n

id−1
X(m)|p|∆n

id
X(m)|

]
≤ K(n,m). (B.8)

The next lemma again gives some estimate for the process X(m) and is central
for the proof of Theorem B.5.

Lemma B.3. Let C > 0 be a constant. Assume further that f : R×[−C,C]d−1 → R
is defined by f(x) = |x1|pg(x), where p > 3 and g ∈ C(R × [−C,C]d−1) is twice
continuously differentiable in the first argument. Then we have

E
(
1Ωn(m)

√
n
∣∣∣bntc∑
i=1

(
f(∆n

i X(m), x2, . . . , xd)−
∑

i−1
n
<s≤ i

n

f(∆X(m)s, x2, . . . , xd)
)∣∣∣)

≤ βm(t)

for some sequence (βm(t)) with βm(t)→ 0 as m→∞, uniformly in x2, . . . , xd.
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Proof. The main idea is to apply Itô formula to each of the summands and then
estimate the expected value. For fixed x2, . . . , xd this was done in [12, p. 132]. We
remark that the proof there essentially relies on the following inequalities: For fixed
z ∈ [−C,C]d−1 and |x| ≤ 1/m (m ∈ N) there exists βm(z) such that βm(z)→ 0 as
m→∞ and

|f(x, z)| ≤ βm(z)|x|3, |∂1f(x, z)| ≤ βm(z)|x|2, |∂2
11f(x, z)| ≤ βm(z)|x|. (B.9)

Further, for x, y ∈ R, define the functions

k(x, y,z) = f(x+ y,z)− f(x, z)− f(y,z), g(x, y,z) = k(x, y, z)− ∂1f(x, z)y.

Following [12] we obtain for |x| ≤ 3/m and |y| ≤ 1/m that

|k(x, y,z)| ≤ Kβm(z)|x||y|, |g(x, y, z)| ≤ Kβm(z)|x||y|2. (B.10)

Since f is twice continuously differentiable in the first argument and z lies in a
compact set, the estimates under (B.9) and (B.10) hold uniformly in z, i.e. we can
assume that the sequence βm(z) does not depend on z, and hence the proof in [12]
in combination with the uniform estimates implies the claim.

At last we give a lemma that can be seen as a generalization of the fundamental
theorem of calculus.

Lemma B.4. Consider a function f ∈ Cd(Rd). Then we have

f(x) = f(0) +
d∑

k=1

∑
1≤i1<···<ik≤d

∫ xi1

0
· · ·
∫ xik

0

∂ik · · · ∂i1f(gi1,...,ik(s1, . . . , sk))dsk . . . ds1,

where gi1,...,ik : Rk → Rd with

(gi1,...,ik(s1, . . . , sk))j =

{
0, if j /∈ {i1, . . . , ik}
sl, if j = il.

Proof. First write

f(x) = f(0) +

d∑
k=1

(
f(x1, . . . , xk, 0, . . . , 0)− f(x1, . . . , xk−1, 0, . . . , 0)

)
,

which yields

f(x) = f(0) +

d∑
k=1

∫ xk

0
∂kf(x1, . . . , xk−1, t, 0, . . . , 0) dt.

Now we can apply the first step to the function gt(x1, . . . , xk−1) := ∂kf(x1, . . . ,
xk−1, t, 0, . . . , 0) in the integral and by doing this step iteratively we finally get the
result.
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We still need some definitions before we can state the central limit theorem (see
for comparison [12, p. 126]). For the definition of the limiting processes we introduce
a second probability space (Ω′,F ′,P′) equipped with sequences (ψn+)n≥1, (ψn−)n≥1,
and (κn)n≥1 of random variables, where all variables are independent, ψn± ∼
N (0, 1), and κn ∼ U([0, 1]). Let now (Tn)n≥1 be a weakly exhausting sequence
of stopping times for the jumps of X. We then finally define a very good filtered
extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the original space by

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′, P̃ = P⊗ P′.

The filtration F̃t is chosen in such a way that it is the smallest filtration containing
Ft and that κn and ψn± are F̃Tn-measurable. Further let

Rn = Rn− +Rn+, with Rn− =
√
κnσTn−ψn−, Rn+ =

√
1− κnσTnψn+.

Also define the sets

Al(d) :=
{
L ∈ Cd+1(Rd)

∣∣ lim
y→0

∂kL(x,y) = 0 for all x ∈ Rl, k = l + 1, . . . , d
}

for l = 1, . . . , d.

Remark B.3. The following properties hold:

(i) Al(d) = Cd+1(Rd) for l = d.

(ii) If f, g ∈ Al(d), then also f + g, fg ∈ Al(d), i.e. Al(d) is an algebra.

(iii) Let f ∈ Cd+1(R) with f ′(0) = 0, then

L(x1, . . . , xd) = f(x1 · . . . · xd) and L(x1, . . . , xd) = f(x1) + · · ·+ f(xd)

are elements of Al(d) for all 1 ≤ l ≤ d.

We obtain the following stable limit theorem.

Theorem B.5. Let 1 ≤ l ≤ d and H : Rd → R with H(x) = |x1|p1 · . . . · |xl|plL(x),
where p1, . . . , pl > 3 and L ∈ Al(d). For t > 0 it holds that
√
n
(
V (H,X, l)nt − V (H,X, l)t

)
st−−→ U(H,X, l)t := td−l

∑
k1,...,kl:Tk1 ,...,Tkl≤t

l∑
j=1

∂jH(∆XTk1
, . . . ,∆XTkl

,0)Rnj .

The limit is F-conditionally centered with variance

E(U(H,X, l)2
t |F) = 1

2 t
2(d−l)

∑
s≤t

( l∑
k=1

V̄k(H,X, l,∆Xs)
)2

(σ2
s− + σ2

s),

where

V̄k(H,X, l, y)

=
∑

s1,...,sk−1,sk+1,...,sl≤t
∂kH(∆Xs1 , . . . ,∆Xsk−1

, y,∆Xsk+1
, . . . ,∆Xsl ,0).

Furthermore the F-conditional law does not depend on the choice of the sequence
(Tk)k∈N and U(H,X, l)t is F-conditionally Gaussian, if X and σ do not have com-
mon jump times.
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Remark B.4. In the case d = 1 this result can be found in Jacod [11] (see Theorem
2.11 and Remark 2.14 therein). A functional version of the central limit theorem
in the given form does not exist even for d = 1. For an explanation see Remark
5.1.3 in [12]. In order to obtain functional results one generally needs to consider
the discretized sequence

√
n
(
V (H,X, l)nt − V (H,X, l)bntc/n

)
.

In the proof below we would have to show that all approximation steps hold in
probability uniformly on compact sets (instead of just in probability), which seems
to be out of reach with our methods. What we could show with our approach is
that Theorem B.5 holds in the finite distribution sense in t.

Remark B.5. In the case that the limit is F-conditionally Gaussian we can get a
standard central limit theorem by just dividing by the square root of the conditional
variance, i.e. √

n
(
V (H,X, l)nt − V (H,X, l)t

)√
E(U(H,X, l)2

t |F)

d−−→ N (0, 1).

Since the conditional variance is generally unknown, we might need to consistently
estimate it in order to obtain a feasible central limit theorem.

Proof. In the appendix we will show that U(H,X, l)t is in fact well-defined and
fulfills the aforementioned conditional properties. To simplify notations we will give
a proof only for symmetric L and p1 = · · · = pl = p for some p > 3. Note that in
this case H is symmetric in the first l components, which implies

∂jH(x1, . . . , xl, 0, . . . , 0) = ∂1H(xj , x2, . . . , xj−1, x1, xj+1, . . . , xl, 0, . . . , 0).

Therefore, we have for fixed j∑
k1,...,kl:

Tk1 ,...,Tkl≤t

∂kH(∆XTk1
, . . . ,∆XTkl

,0)Rkj

=
∑

k1,...,kl:
Tk1 ,...,Tkl≤t

∂1H
(
∆XTkj

,∆XTk2
, . . . ,∆XTkj−1

,

∆XTk1
,∆XTkj+1

, . . . ,∆XTkl
,0
)
Rkj

=
∑

k1,...,kl:
Tk1 ,...,Tkl≤t

∂1H(∆XTk1
, . . . ,∆XTkl

,0)Rk1 ,

and thus the limit can be written as

U(H,X, l)t = ltd−l
∑

k1...,kl:Tk1 ,...,Tkl≤t
∂1H(∆XTk1

, . . . ,∆XTkl
, 0 . . . , 0)Rk1 .

Later we will prove
√
n(V (H,X, l) bntc

n

−V (H,X, l)t)
P−−→ 0 as n→∞, so it will be

enough to show the discretized version of the central limit theorem, i.e.

ξnt :=
√
n(V (H,X, l)nt − V (H,X, l) bntc

n

)
st−−→ U(H,X, l)t. (B.11)

For the proof of this result we will use a lot of decompositions and frequently apply
the following claim.
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Lemma B.6. Let (Zn)n∈N be a sequence of random variables, where, for each
m ∈ N, we have a decomposition Zn = Zn(m) + Z ′n(m). If there is a sequence
(Z(m))m∈N of random variables and a random variable Z with

Zn(m)
st−−−→

n→∞
Z(m), Z(m)

P−−−−→
m→∞

Z, and lim
m→∞

lim sup
n→∞

P(|Z ′n(m)| > η) = 0

for all η > 0, then
Zn

st−−→ Z.

Proof. For a proof of this result see [12, Prop. 2.2.4].

For the proof of (B.11) we will successively split ξnt into several terms and then
apply Lemma B.6. As a first decomposition we use

ξnt = 1Ωn(m)ξ
n
t + 1Ω\Ωn(m)ξ

n
t .

Since P(Ωn(m)) → 1 as n → ∞, the latter term converges to 0 almost surely as
n→∞, so we can focus on the first summand, which we further decompose into

1Ωn(m)ξ
n
t = 1Ωn(m)

(
ζn(m) +

l∑
k=0

d−l∑
j=0

(
ζnk,j(m)− ζ̃nk,j(m)

)
−

l∑
k=1

ζnk (m)
)

(B.12)

with

ζn(m) =

√
n

nd−l

( ∑
i∈Bnt (d)

H(∆n
mathbfiX(m))

− bntcd−l
∑

u1,...,ul≤ bntcn

H(∆X(m)u1 , . . . ,∆X(m)ul ,0)
)

ζnk,j(m) =

√
n

nd−l

∑
p,∈Pnt (m)k

q∈Pnt (m)j

∑′

i∈Bnt (l−k)
r∈Bnt (d−l−j)

βk,jH
(

∆XSp +
R(n,p)√

n
,∆n

iX(m),∆XSq +
R(n, q)√

n
,∆n

rX(m)
)

ζ̃nk,j(m) =

√
n

nd−l

∑
p,q∈Pnt (m)k×j

∑′

i∈Bnt (l−k)
r∈Bnt (d−l−j)

βk,jH
(R(n,p)√

n
,∆n

iX(m),
R(n, q)√

n
,∆n

rX(m)
)

ζnk (m) =
√
n
bntc
nd−l

d−l ∑
p∈Pnt (m)k

∑
uk+1,...,ul≤ bntcn(

l

k

)
H
(

∆XSp ,∆Xuk+1
(m), . . . ,∆Xul(m),0

)
,

where
βk,j =

(
l

k

)(
d− l
j

)
.
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The prime on the sums indicates that we sum only over those indices i and r such
that ∆n

iX
′(m) and ∆n

rX
′(m) are vanishing, which in other word means that no big

jumps of X occur in the corresponding time intervals.
The basic idea behind the decomposition is that we distinguish between intervals

( i−1
n , in ] where X has a big jump and where not. Essentially we replace the original

statistic ξnt by the same statistic ζn(m) for the process X(m) instead of X. Using
the trivial identity∑

i∈Bnt (d)

H(∆n
iX) =

∑
i∈Bnt (d)

H(∆n
iX(m)) +

∑
i∈Bnt (d)

(
H(∆n

iX)−H(∆n
iX(m))

)
we can see that an error term appears by doing this. Of course, we have ∆n

iX(m) =
∆n
iX if no big jump occurs. In the decomposition above, ζnk,j(m) − ζ̃nk,j(m) gives

the error term if we have k big jumps in the first l coordinates and j big jumps in
the last d− l coordinates. In the same manner the term ζnk (m) takes into account
that we might have big jumps in k arguments of H(∆Xu1 , . . . ,∆Xul ,0). All the
binomial coefficients appear because of the symmetry of H in the first l and the
last d − l arguments. Note also that this decomposition is not valid without the
indicator function 1Ωn(m).

In the appendix we will prove the following claim.

Proposition B.7. It holds that

1Ωn(m)

∣∣∣ l∑
k=0

d−l∑
j=0

(
ζnk,j(m)− ζ̃nk,j(m)

)
−

l∑
k=1

ζnk (m)− (ζnl,0(m)− ζnl (m))
∣∣∣ P−−→ 0

if we first let n→∞ and then m→∞.

So in view of Lemma B.6 we are left with considering the terms ζnl,0(m)−ζnl (m)
and ζn(m), where the first one is the only one that contributes to the limiting
distribution. We will start with proving the three assertions

lim
m→∞

lim sup
n→∞

P(1Ωn(m)|ζnl,0(m)− ζ̂nl,0(m)| > η) = 0 for all η > 0, (B.13)

1Ωn(m)(ζ̂
n
l,0(m)− ζnl (m))

st−−→ U(H,X ′(m), l)t, as n→∞, (B.14)

U(H,X ′(m))t
P̃−→ U(H,X, l)t, as m→∞, (B.15)

where

ζ̂nl,0(m) :=

√
n

nd−l

∑
p∈Pnt (m)l

∑
j∈Bnt (d−l)

H
(

∆XSp +
R(n,p)√

n
,0
)
.

For (B.13) observe that we have

1Ωn(m)|ζnl,0(m)− ζ̂nl,0(m)|

≤ 1Ωn(m)

∑
p∈Pt(m)l

∣∣∣∆XSp +
1√
n
R(n,p)

∣∣∣p √n
nd−l

×
∑

j∈Bnt (d−l)

d−l∑
k=1

sup
x∈[−2A,2A]l

y∈[−2/m,2/m]d−l

|∂kL(x,y)||∆n
jk
X(m)|+OP(n−1/2)
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by the mean value theorem. The error of small order in the estimate above is due
to the finitely many large jumps, which are included in the sum over j now, but do
not appear in ζnl,0(m) by definition. Clearly,

lim
M→∞

lim sup
m→∞

lim sup
n→∞

P
( ∑
p∈Pt(m)l

∣∣∣∆XSp +
1√
n
R(n,p)

∣∣∣p > M
)

= 0,

and by Lemma B.2 we have

E
( √n
nd−l

∑
j∈Bnt (d−l)

d−l∑
k=1

sup
x∈[−2A,2A]l

sup
y∈[−2/m,2/m]d−l

|∂kL(x,y)||∆n
jk
X(m)|

)
≤ K(1 +mn−1/2) sup

x∈[−2A,2A]l
sup

y∈[−2/m,2/m]d−l
|∂kL(x,y)|,

which converges to 0 if we first let n→∞ and then m→∞, since L ∈ Al(d) and
[−2A, 2A]l is compact. This immediately implies (B.13).

For the proof of (B.14) we need another Lemma, which can be found in [12,
Prop. 4.4.10].

Lemma B.8. For fixed p ∈ N the sequence (R(n, p))n∈N is bounded in probability,
and

(R(n, p)−, R(n, p)+)p≥1
st−−→ (Rp−, Rp+)p≥1

as n→∞.

Then we have, by the mean value theorem, Lemma B.8, the properties of stable
convergence, and the symmetry of H in the first l components

1Ωn(m)(ζ̂
n
l,0(m)− ζnl (m))

=
√
n1Ωn(m)

(
bntcd−l

nd−l

∑
p∈Pnt (m)l

[
H
(

∆XSp +
1√
n
R(n,p),0

)
−H

(
∆XSp ,0

)])
st−−→ U(H,X ′(m), l)t = ltd−l

∑
p∈Pt(m)l

∂1H
(

∆XSp ,0
)
Rp1 as n→∞,

i.e. (B.14). For the proof of (B.15) we introduce the notation Pt = {p ∈ N |Sp ≤ t}.
We then use the decomposition

U(H,X, l)t − U(H,X ′(m), l)t

= ltd−l
l∑

k=1

∑
p∈Pk−1

t

∑
pk∈Pt\Pt(m)

∑
r∈Pt(m)l−k

∂1H(∆XSp ,∆XSpk
,∆XSr ,0)Rp1

=: ltd−l
l∑

k=1

ψk(m).

We have to show that, for each k, ψk(m) converges in probability to 0 as m→∞.
We will give a proof only for the case k = 1. Therefore, define the set

A(M) :=
{
ω ∈ Ω

∣∣∣∑
s≤t

(|∆Xs(ω)|p+|∆Xs(ω)|2p+|∆Xs(ω)|2p−2) ≤M
}
, M ∈ R+.
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Then we have

P̃(|ψ1(m)| > η) ≤ P̃(|ψ1(m)|1A(M) > η/2) + P(Ω\A(M)). (B.16)

By the continuity of L and ∂1L, and since the jumps of X are uniformly bounded
in ω, we get

P̃(|ψ1(m)|1A(M) > η/2) ≤ KE(1A(M)Ẽ(ψ1(m)2|F))

≤ KE
(
1A(M)

∑
q∈Pt\Pt(m)

( ∑
r∈Pt(m)l−1

∂1H(∆XSq ,∆XSr , 0, . . . , 0)
)2
)

≤ KE
(
1A(M)

∑
q∈Pt\Pt(m)

(|∆XSq |p + |∆XSq |p−1)2
( ∑
r∈Pt(m)

|∆XSr |p
)2(l−1)

)

≤ KM2(l−1)E
(
1A(M)

∑
q∈Pt\Pt(m)

(|∆XSq |2p + |∆XSq |2p−2)

)
→ 0

as m → ∞ by the dominated convergence theorem. Since the second summand in
(B.16) is independent of m and converges to 0 as M →∞, we have

P̃(|ψ1(m)| > η)→ 0 for all η > 0.

The proof for the convergence in probability of ψk(m) to 0 for 2 ≤ k ≤ l is similar.
It remains to show that

lim
m→∞

lim sup
n→∞

P(1Ωn(m)|ζn(m)| > η) = 0 (B.17)

for all η > 0.
Again, we need several decompositions. We have

ζn(m) =
√
n
( 1

nd−l

∑
i∈Bnt (d)

H(∆n
iX(m))− bntc

nd−l

d−l ∑
u∈[0,n−1bntc]l

H(∆X(m)u,0)
)

=
√
n
( 1

nd−l

∑
i∈Bnt (d)

H(∆n
iX(m))− bntc

nd−l

d−l ∑
i∈Bnt (l)

H(∆n
iX(m),0)

)

+
√
n
(bntc
nd−l

d−l ∑
i∈Bnt (l)

H(∆n
iX(m),0)− bntc

nd−l

d−l ∑
u∈[0,n−1bntc]l

H(∆X(m)u,0)
)

=: Ψn
1 (m) + Ψn

2 (m).

First observe that we obtain by the mean value theorem, and since X is bounded,

|Ψn
1 (m)| =

√
n

nd−l

∑
i∈Bnt (d)

|∆n
i1X(m) · · ·∆n

il
X(m)|p

× |L(∆n
iX(m))− L(∆n

i1X(m), . . . ,∆n
il
X(m),0)|

≤ K
√
n

nd−l

∑
i∈Bnt (d)

d∑
k=l+1

|∆n
i1X(m) · · ·∆n

il
X(m)|p|∆n

ik
X(m)|

= K(d− l)
√
n

nd−l

∑
i∈Bnt (d)

|∆n
i1X(m) · · ·∆n

il
X(m)|p|∆n

il+1
X(m)|

≤ K(d− l)
m(p−2)l

1√
n

∑
i∈Bnt (l+1)

|∆n
i1X(m) · · ·∆n

il
X(m)|2|∆n

il+1
X(m)|.
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By (B.8) and lim supn→∞K(m,n) ≤ K we get

lim
m→∞

lim sup
n→∞

E(1Ωn(m)|Ψn
1 (m)|) = 0.

When showing that Ψn
2 (m) converges to 0 we can obviously restrict ourselves to

the case l = d. We need further decompositions:

Ψn
2 (m) =

√
n

d∑
k=1

( ∑
i∈Bnt (k)

∑
s∈(0,

bntc
n

]d−k

H(∆n
iX(m),∆X(m)s)

−
∑

i∈Bnt (k−1)

∑
s∈(0,

bntc
n

]d−k+1

H(∆n
iX(m),∆X(m)s)

)
=:

d∑
k=1

Ψn
2 (m, k).

For a fixed k we have

Ψn
2 (m, k) =

∑
i∈Bnt (k−1)

|∆n
i1X(m) · · ·∆n

ik−1
X(m)|p

×
∑

s∈(0,
bntc
n

]d−k

|∆X(m)s1 · · ·∆X(m)sd−k |
p

×
√
n
( bntc∑
j=1

|∆n
jX(m)|pL(∆n

iX(m),∆n
jX(m),∆X(m)s)

−
∑

u≤ bntc
n

|∆X(m)u|pL(∆n
iX(m),∆X(m)u,∆X(m)s)

)
,

where we denote the latter factor by Θn
k(m, i, s). What causes problems here is

that Θn
k(m, i, s) depends on the random variables ∆n

iX(m) and ∆X(m)s and we
therefore cannot directly apply Lemma B.3. To overcome this problem we introduce
the function fy ∈ Cd+1(Rd−1) defined by

fy(x) = |y|pL(x1, . . . , xk−1, y, xk+1, . . . , xd).

Then we have

Θn
k(m, i, s) =

√
n
( bntc∑
j=1

f∆n
jX(m)(∆

n
iX(m),∆X(m)s)

−
∑

u≤ bntc
n

f∆X(m)u(∆n
iX(m),∆X(m)s)

)
.

Now we replace the function fy according to Lemma B.4 by

fy(x) = fy(0) +

d∑
k=1

∑
1≤i1<···<ik≤d

∫ xi1

0
· · ·
∫ xik

0

∂ik · · · ∂i1fy(gi1,...,ik(s1, . . . , sk))dsk . . . ds1.
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Since all of the appearing terms have the same structure we will exemplarily treat
one of them:

√
n
∣∣∣ bntc∑
j=1

∫ ∆Xn
i1

(m)

0
|∆n

jX(m)|p∂1L(s1, 0, . . . , 0,∆
n
jX(m), 0, . . . , 0)ds1

−
∑

u≤ bntc
n

∫ ∆Xn
i1

(m)

0
|∆X(m)u|p∂1L(s1, 0, . . . , 0,∆X(m)u, 0, . . . , 0)ds1

∣∣∣
≤
∫ 2

m

− 2
m

√
n
∣∣∣ bntc∑
j=1

|∆n
jX(m)|p∂1L(s1, 0, . . . , 0,∆

n
jX(m), 0, . . . , 0)

−
∑

u≤ bntc
n

|∆X(m)u|p∂1L(s1, 0, . . . , 0,∆X(m)u, 0, . . . , 0)
∣∣∣ds1.

This means that we can bound |Θn
k(m, i, s)| from above by some random variable

Θ̃n
k(m) which is independent of i and s and which fulfills

lim
m→∞

lim sup
n→∞

E
[
1Ωn(m)Θ̃

n
k(m)

]
= 0 (B.18)

by Lemma B.3. Using the previous estimates we have

|Ψn
2 (m, k)| ≤ Θ̃n

k(m)

(bntc∑
j=1

|∆n
jX(m)|p

)k−1( ∑
u≤ bntc

n

|∆X(m)u|p
)d−k

.

Clearly the latter two terms are bounded in probability and therefore (B.18) yields

lim
m→∞

lim sup
n→∞

P(1Ωn(m)|Ψn
2 (m)| > η) = 0,

which proves (B.17).
The last thing we have to show is

√
n
(
V (H,X, l)t − V (H,X, l) bntc

n

)
P−−→ 0,

e.g. in the case l = d. From [12, p. 133] we know that in the case d = 1 we have
√
n

∑
bntc
n
<sk≤t

|∆Xsk |
p P−−→ 0. (B.19)

The general case follows by using the decomposition∣∣∣√n( ∑
s1,...,sd≤t

H(∆Xs1 , . . . ,∆Xsd)−
∑

s1,...,sd≤ bntcn

H(∆Xs1 , . . . ,∆Xsd)
)∣∣∣

=
∣∣∣√n d∑

k=1

( ∑
s1,...,sk−1≤t

∑
sk+1,...,sd≤ bntcn

∑
bntc
n
<sk≤t

H(∆Xs1 , . . . ,∆Xsd)

)∣∣∣
≤

d∑
k=1

∑
s1,...,sk−1≤t

∑
sk+1,...,sd≤ bntcn

|∆Xs1 · · ·∆Xsk−1
∆Xsk+1

· · ·∆Xsd |
p
(√

n
∑

bntc
n
<sk≤t

|∆Xsk |
p
)
,
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which converges to 0 in probability. Hence the proof of Theorem B.5 is complete.

As a possible application of the theory we want to indicate how one could obtain
information about the jump sizes of the process X. For instance we will show how
one could test if all the jump sizes lie on a grid α+ βZ for a given β, but unknown
α.

We start with a slightly more general situation and consider sets M ⊂ R, for
which we can find a non-negative function gM : R → R that fulfills gM (x) = 0 if
and only if x ∈M , and such that the function LM : R2 → R defined by LM (x, y) =
gM (x − y) lies in A2(2). Then our theory gives for HM = |x|p1 |y|p2LM (x, y) that
the limit V (HM , X, 2) in the law of large numbers vanishes if and only if there is
α ∈ R such that all jump sizes (which are not zero) lie in the set α +M . In other
words our theory enables us to give testing procedures to test if such an α exists.
As a more explicit example we consider the following one.

Example B.9. For given β ∈ R consider the function

H(x, y) = |x|4|y|4 sin2
(π(x− y)

β

)
.

Then we have
bntc∑
i,j=1

H(∆n
i X,∆

n
jX)

P−−→ L(β) :=
∑

s1,s2≤t
|∆Xs1 |4|∆Xs2 |4 sin2

(π(∆Xs1 −∆Xs2)

β

)
.

It holds that L(β) = 0 if and only if there exists an α ∈ R such that

∆Xs ∈ α+ βZ for all s ≤ t with ∆Xs 6= 0.

To formally test whether there exists an α ∈ R such that the jump sizes lie in
the set α + βZ one would of course need to derive estimators for the conditional
variance of the limit in Theorem B.5.

B.4 The mixed case

In this section we will present an asymptotic theory for statistics of the type

Y n
t (H,X, l) =

1

nl

∑
i∈Bnt (l)

∑
j∈Bnt (d−l)

H(
√
n∆n

iX,∆
n
jX), (B.20)

where H behaves as |x1|p · · · |xl|p for p < 2 in the first l arguments and in the last
d − l arguments as |xl+1|q · · · |xd|q for some q > 2 . As already mentioned in the
introduction, powers < 2 and powers > 2 lead to completely different limits. This
makes the treatment of Y n

t (H,X, l) for general l way more complicated than in the
case in which only large powers > 2 appear as in Section B.3. In fact we use the
results from Section B.3 and combine them with quite general results concerning
the case l = d, that we derive in the appendix. The limits turn out to be a mixture
of what one obtains in the p > 2 and p < 2 setting. In the central limit theorem we
get a conditionally Gaussian limit, where the conditional variance is a complicated
functional of both the volatility σ and the jumps of X.
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Law of large numbers

We will prove a law of large numbers for the quantity given in (B.20). As already
mentioned we will need a combination of the methods from Section B.3 and methods
for U-statistics of continuous Itô-semimartingales that were developed in [18]. We
obtain the following result.

Theorem B.10. Let H(x,y) = |x1|p1 · · · |xl|pl |y1|q1 · · · |yd−l|qd−lL(x,y) for some
continuous function L : Rd → R with p1, . . . , pl < 2 and q1, . . . , qd−l > 2 for
some 0 ≤ l ≤ d. The function L is assumed to fulfill |L(x,y)| ≤ u(y) for some
u ∈ C(Rd−l). Then, for fixed t > 0

Y n
t (H,X, l)

P−−→ Yt(H,X, l) =
∑

s∈[0,t]d−l

∫
[0,t]l

ρH(σu,∆Xs)du,

where
ρH(x,y) = E[H(x1U1, . . . , xlUl,y)]

for x ∈ Rl,y ∈ Rd−l, and (U1, . . . , Ul) ∼ N (0, idl).

Remark B.6. We can see that in the special case l = 0 we again obtain the
result from Theorem B.1. For l = d we basically get the same limit as the case of
U-statistics for continuous semimartingales X (see Theorem 3.3 in [18]).

Proof. By the standard localization procedure we may assume that X and σ are
bounded by a constant A. We will start by proving the following two assertions:

sup
y∈[−2A,2A]d−l

∣∣∣ 1

nl

∑
i∈Bnt (l)

g(
√
n∆n

iX,y)−
∫

[0,t]l
ρg(σu,y)du

∣∣∣ P−−→ 0, (B.21)

sup
x∈[−A,A]l

∣∣∣ ∑
j∈Bnt (d−l)

ρH(x,∆n
jX)−

∑
s∈[0,t]d−l

ρH(x,∆Xs)
∣∣∣ P−−→ 0, (B.22)

where g(x,y) = |x1|p1 · · · |xl|plL(x,y). The proofs mainly rely on the following
decomposition for any real-valued function f defined on some compact set C ⊂ Rn:
If C ′ ⊂ C is finite and for any x ∈ C there exists y ∈ C ′ such that ‖x− y‖ ≤ δ for
some δ > 0, then

sup
x∈C
|f(x)| ≤ max

x∈C′
|f(x)|+ sup

x,y∈C
‖x−y‖≤δ

|f(x)− f(y)|.

Now denote the continuous part of the semimartingale X by Xc. For the proof of
(B.21) we first observe that for fixed y ∈ Rd−l we have

1

nl

∑
i∈Bnt (l)

(
g(
√
n∆n

iX,y)− g(
√
n∆n

iX
c,y)

) P−−→ 0.

We will not give a detailed proof of this "elimination of jumps" step since it follows
essentially from the corresponding known case l = 1 (see [12, Section 3.4.3]) in
combination with the methods we use in the proof of (B.23). Using the results of
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the asymptotic theory for U-statistics of continuous Itô semimartingales given in
[18, Prop. 3.2] we further obtain (still for fixed y)

1

nl

∑
i∈Bnt (l)

g(
√
n∆n

iX
c,y)

P−−→
∫

[0,t]l
ρg(σu,y)du.

To complete the proof of (B.21) we will show

ξn(m) := sup
x,y∈[−2A,2A]d−l

‖x−y‖≤ 1
m

1

nl

∣∣∣ ∑
i∈Bnt (l)

(
g(
√
n∆n

iX,x)− g(
√
n∆n

iX,y)
)∣∣∣ P−−→ 0 (B.23)

if we first let n and then m go to infinity. The corresponding convergence of the
integral term in (B.21) is easy and will therefore be omitted.

Let ε > 0 be fixed such that max(p1, . . . , pl) + ε < 2, and for all α > 0 and
k ∈ N define the modulus of continuity

δk(α) := sup
{
|g(u,x)− g(u,y)|

∣∣∣ ‖u‖ ≤ k, ‖(x,y)‖ ≤ 2A, ‖x− y‖ ≤ α
}
.

Then we have

ξn(m) ≤ K
(
δk(m

−1) + sup
x∈[−2A,2A]d−l

1

nl

∑
i∈Bnt (l)

1{‖√n∆n
iX‖≥k}|g(

√
n∆n

iX,x)|
)

≤ K
(
δk(m

−1) +
1

nl

∑
i∈Bnt (l)

|
√
n∆n

i1X|
p1 · · · |

√
n∆n

il
X|pl

l∑
j=1

|
√
n∆n

ij
X|ε

kε

)
P−−→ K

(
δk(m

−1) +
1

kε

l∑
j=1

l∏
i=1

∫ t

0
mpi+δijε|σs|

pi+δijεds
)

as n→∞,

where mp is the p-th absolute moment of the standard normal distribution and δij
is the Kronecker delta (for a proof of the last convergence see [11, Theorem 2.4]) .
The latter expression obviously converges to 0 if we let m→∞ and then k →∞,
which completes the proof of (B.21).

We will prove (B.22) in a similar way. Since ρH(x,y)/|y1 · . . . · yd−l|2 → 0 as
y → 0 , Theorem B.1 implies∑

j∈Bnt (d−l)

ρH(x,∆n
jX)

P−−→
∑

s∈[0,t]d−l

ρH(x,∆Xs),

i.e. pointwise convergence for fixed x ∈ [−A,A]l. Moreover,

sup
x,y∈[−A,A]l

‖x−y‖≤ 1
m

∑
j∈Bnt (d−l)

∣∣∣ρH(x,∆n
jX)− ρH(y,∆n

jX)
∣∣∣

≤
(d−l∏
i=1

bntc∑
j=1

|∆n
jX|qi

)
sup

x,y∈[−A,A]l

‖x−y‖≤ 1
m

sup
‖z‖≤2A

∣∣∣ρg(x, z)− ρg(y, z)
∣∣∣.



B.4. The mixed case 67

The term in brackets converges in probability to some finite limit by Theorem B.1
as n → ∞, and the supremum goes to 0 as m → ∞ because ρg is continuous. By
similar arguments it follows that

sup
x,y∈[−A,A]l

‖x−y‖≤ 1
m

∑
s∈[0,t]d−l

∣∣∣ρH(x,∆Xs)− ρH(y,∆Xs)
∣∣∣ P−−→ 0,

if we let m go to infinity. Therefore (B.22) holds.
We will now finish the proof of Theorem B.10 in two steps. First we have∣∣∣ 1

nl

∑
i∈Bnt (l)

∑
j∈Bnt (d−l)

H(
√
n∆n

iX,∆
n
jX)−

∑
j∈Bnt (d−l)

∫
[0,t]l

ρH(σu,∆
n
jX)du

∣∣∣
≤
(d−l∏
i=1

bntc∑
j=1

|∆n
jX|qi

)
× sup
y∈[−2A,2A]d−l

∣∣∣ 1

nl

∑
i∈Bnt (l)

g(
√
n∆n

iX,y)−
∫

[0,t]l
ρg(σu,y)du

∣∣∣
and the latter expression converges in probability to 0 by (B.21). From (B.22) we
obtain the functional convergence (σs)0≤s≤t∑

j∈Bnt (d−l)

ρH(·,∆n
jX)

 P−−→

 (σs)0≤s≤t∑
s∈[0,t]d−l

ρH(·,∆Xs)


in the space D([0, t])× C([−A,A]l). Define the mapping

Φ : D([0, t])× C(Rl)→ R, (f, g) 7−→
∫

[0,t]l
g(f(u1), . . . , f(ul))du.

This mapping is continuous and therefore we obtain by the continuous mapping
theorem ∑

j∈Bnt (d−l)

∫
[0,t]l

ρH(σu,∆
n
jX)du

P−−→
∑

s∈[0,t]d−l

∫
[0,t]l

ρH(σu,∆Xs)du,

which ends the proof.

Central limit theorem

In the mixed case we need some additional assumptions on the process X. First we
assume that the volatility process σt is not vanishing, i.e. σt 6= 0 for all t ∈ [0, T ],
and that σ is itself a continuous Itô-semimartingale of the form

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0
ṽsdVs,

where b̃s, σ̃s, and ṽs are càdlàg processes and Vt is a Brownian motion independent
of W . As a boundedness condition on the jumps we further require that there is
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a sequence Γn : R → R of functions and a localizing sequence (τn)n∈N of stopping
times such that |δ(ω, t, z)| ∧ 1 ≤ Γn(z) for all ω, t with t ≤ τn(ω) and∫

Γn(z)rλ(dz) <∞

for some 0 < r < 1. In particular, the jumps of the process X are then absolutely
summable.

The central limit theorem will be stable under stopping, so we can assume
without loss of generality that there is a function Γ : R→ R and a constant A such
that δ(ω, t, z) ≤ Γ(z) and

|Xt(ω)|, |bt(ω)|, |σt(ω)|, |σt(ω)−1|, |b̃t(ω)|, |σ̃t(ω)|, |ṽt(ω)| ≤ A,

uniformly in (ω, t). We may further assume Γ(z) ≤ A for all z ∈ R and∫
Γ(z)rλ(dz) <∞.

Before we state the central limit theorem we give a few auxiliary results. At some
stages in the proof of Theorem B.13 we will replace the scaled increments of X
in the first l arguments by the first order approximation αni :=

√
nσ i−1

n
∆n
iW of

the continuous part of X. After several more approximations we will later see that√
n(Y n

t (H,X, l)− Yt(H,X, l)) behaves asymptotically like

∑
q:Sq≤t

(
1

nl

∑
i∈Bnt (l)

d∑
k=l+1

∂kH
(
αni ,∆XSq

)
R(n, qk)

+
√
n
( 1

nl

∑
i∈Bnt (l)

H
(
αni ,∆XSq

)
−
∫

[0,t]l
ρH(σs,∆XSq)ds

))
.

For now, consider only the term in brackets without R(n, qk). We can see that
if ∆XSq was just a deterministic number, we could derive the limit by using the
asymptotic theory for U-statistics developed in [18]. For the first summand we would
need a law of large numbers and for the second one a central limit theorem. Since
∆XSq is of course in general not deterministic, the above decomposition indicates
that it might be useful to have the theorems for U-statistics uniformly in some
additional variables. As a first result in that direction we have the following claim.

Proposition B.11. Let 0 ≤ l ≤ d and G : Rl × [−A,A]d−l → R be a continuous
function that is of polynomial growth in the first l arguments, i.e. |G(x,y)| ≤ (1 +
‖x‖p)w(y) for some p ≥ 0 and w ∈ C([−A,A]d−l). Then

Bnt (G,x) :=
1

nl

∑
i∈Bnt (l)

G
(
αni ,y

) P−−→ Bt(G,y) :=

∫
[0,t]l

ρG(σs,y)ds

in the space C([−A,A]d−l), where

ρG(x,y) := E[G(x1U1, . . . , xlUl,y)]

for a standard normal variable U = (U1, . . . , Ul).
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Proof. This result follows exactly in the same way as (B.21) without the elimination
of jumps step in the beginning.

In addition to this functional law of large numbers we further need the associated
functional central limit theorem for

Unt (G,y) =
√
n
( 1

nl

∑
i∈Bnt (l)

G
(
αni ,y

)
−
∫

[0,t]l
ρG(σs,y)ds

)
, (B.24)

In order to obtain a limit theorem we will need to show tightness and the con-
vergence of the finite dimensional distributions. We will use that, for fixed y, an
asymptotic theory for (B.24) is given in [18, Prop. 4.3], but under too strong assump-
tions on the function G for our purpose. In particular, we weaken the assumption
of differentiability of G in the following proposition whose proof can be found in
the appendix.

Proposition B.12. Let 0 ≤ l ≤ d and let G : Rd → R be a function that is even in
the first l arguments and can be written in the form G(x,y) = |x1|p1 · · · |xl|plL(x,y)
for some function L ∈ Cd+1(Rd) and constants p1, . . . , pl ∈ R with 0 < p1, . . . , pl <
1. We further impose the following growth conditions:

|L(x,y)| ≤ u(y),
∣∣∣∂2
iiL(x,y)

∣∣∣ ≤ (1 + ‖x‖βi)u(y) (1 ≤ i ≤ d),∣∣∣∂j1 · · · ∂jkL(x,y)
∣∣∣ ≤ (1 + ‖x‖γj1...jk )u(y), (1 ≤ k ≤ d; 1 ≤ j1 < · · · < jk ≤ d)

for some constants βi, γj1...jk ≥ 0, and a function u ∈ C(Rd−l). The constants are
assumed to fulfill γj + pi < 1 for i 6= j and i = 1, . . . , l, j = 1, . . . , d. Then we have,
for a fixed t > 0

(Unt (G, ·), (R−(n, p), R+(n, p))p≥1))
st−−→ (Ut(G, ·), (Rp−, Rp+)p≥1)

in the space C([−A,A]d−l)×RN×RN, where (Ut(G, ·), (Rp−, Rp+)p≥1) is defined on
an extension (Ω′,F ′,P ′) of the original probability space, Ut(G, ·) is F-conditionally
independent of (κn, ψn±)n≥1 and F-conditionally centered Gaussian with covariance
structure

C(y1,y2) := E[Ut(G,y1)Ut(G,y2)|F ] (B.25)

=

l∑
i,j=1

∫ t

0

(∫
R
fi(u,y1)fj(u,y2)φσs(u)du−

( 2∏
k=1

∫
R
fi(u,yk)φσs(u)du

)
ds
)

where

fi(u,y) =

∫
[0,t]l−1

∫
Rl−1

G(σs1v1, . . . , σsi−1vi−1, u, σsi+1vi+1, . . . , σslvl,y)φ(v)dvds.

Remark B.7. The proposition is formulated for the approximations αni of the
increments of X. We remark that the result is still true in the finite dimensional
distribution sense if we replace αni by the increments ∆n

i X. This follows by the same
arguments as the elimination of jumps step in Theorem B.13 and Proposition B.14.
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We will now state the main theorem of this section. After some approxima-
tion steps the proof will mainly consist of an application of the methods from the
previous section in combination with the continuous mapping theorem.

Theorem B.13. Let 0 ≤ l ≤ d and H : Rd → R be a function that is even in
the first l arguments and can be written in the form H(x,y) = |x1|p1 · · · |xl|pl ×
|y1|q1 · · · |yd−l|qd−lL(x,y) for some function L ∈ Cd+1(Rd) and constants p1, . . . , pl,
q1, . . . , qd−l ∈ R with 0 < p1, . . . , pl < 1 and q1, . . . , qd−l > 3. We further assume
that L fulfills the same assumptions as in Proposition B.12. Then we have, for a
fixed t > 0

√
n
(
Y n
t (H,X, l)− Yt(H,X, l)

)
st−−→ V ′(H,X, l)t =

∑
k:Tk≤t

( d∑
j=l+1

∫
[0,t]l

ρ∂jH(σu,∆XTk)duRkj + Ut(H,∆XTk)
)
.

The limiting process is F-conditionally centered Gaussian with variance

E[(V ′(H,X, l)t)
2|F ]

=
∑
s≤t

( d∑
k=l+1

Ṽk(H,X, l,∆Xs)
)2
σ2
s +

∑
s1,s2∈[0,t]d−l

C(∆Xs1 ,∆Xs2),

where the function C is given in (B.25) and

Ṽk(H,X, l, y)

=
∑

sl+1,...,sk−1≤t
sk+1,...,sd≤t

∫
[0,t]l

ρ∂kH(σu,∆Xsl+1
, . . . ,∆Xsk−1

, y,∆Xsk+1
, . . . ,∆Xsd)du.

Furthermore the F-conditional law of the limit does not depend on the choice of the
sequence (Tk)k∈N.

Remark B.8. The result coincides with the central limit theorem in Section B.3
if l = 0, but under stronger assumptions. In particular the assumed continuity of σ
yields that the limit is always conditionally Gaussian. We further remark that the
theorem also holds in the finite distribution sense in t.

Proof. In the first part of the proof we will eliminate the jumps in the first argument.
We split X into its continuous part Xc and the jump part Xd = δ ∗ p via X =
X0 +Xc+Xd. Note that Xd exists since the jumps are absolutely summable under
our assumptions. We will now show that

ξn =

√
n

nl

∑
i∈Bnt (l)

∑
j∈Bnt (d−l)

(
H(
√
n∆n

iX,∆
n
jX)−H(

√
n∆n

iX
c,∆n

jX)
) P−−→ 0.

Observe that under our growth assumptions on L we can deduce

|L(x+ z,y)− L(x,y)| ≤ Ku(y)(1 +

l∑
i=1

‖x‖γi)
l∑

j=1

|zj |pj (B.26)
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This inequality trivially holds if ‖z‖ > 1 because ‖L(x,y)‖ ≤ u(y). In the case
‖z‖ ≤ 1 we can use the mean value theorem in combination with |z| ≤ |z|p for
|z| ≤ 1 and 0 < p < 1. Since we also have

∣∣|xi + zi|pi − |xi|pi
∣∣ ≤ |zi|pi for 1 ≤ i ≤ l,

we have, with q = (q1, . . . , qd−l), the estimate

|H(x+ z,y)−H(x,y)| ≤ Ku(y)|y|q
∑
m

Pm(x)|z|m

where Pm ∈ P(l) (see (B.3) for a definition) and the sum runs over all m =
(m1, . . . ,ml) 6= (0, . . . , 0) with mj either pj or 0. We do not give an explicit formula
here since the only important property is E[Pm(

√
n∆n

iX
′)q] ≤ K for all q ≥ 0,

which directly follows from the Burkholder inequality. Because of the boundedness
of X and the continuity of u this leads to the following bound on ξn:

|ξn| ≤
(
K

∑
j∈Bnt (d−l)

|∆n
jX|q

)(√n
nl

∑
i∈Bnt (l)

∑
m

Pm(
√
n∆n

iX
c)|
√
n∆n

iX
d|m
)
.

The first factor converges in probability to some finite limit, and hence it is enough
to show that the second factor converges in L1 to 0. Without loss of generality
we restrict ourselves to the summand with m = (p1, . . . , pk, 0, . . . , 0) for some
1 ≤ k ≤ l. From [12, Lemma 2.1.7] it follows that

E[|∆n
i X

d|q|F i−1
n

] ≤ K

n
for all q > 0. (B.27)

Let r := max1≤i≤l pi and bk(i) := # {i1, . . . , ik} for i = (i1, . . . , il). Note that
the number of i ∈ Bnt (l) with bk(i) = m is of order nm+l−k for 1 ≤ m ≤ k. An
application of Hölder inequality, successive use of (B.27) and the boundedness of
X gives

E
(√n
nl

∑
i∈Bnt (l)

Pm(
√
n∆n

iX
c)|
√
n∆n

i1X
d|p1 . . . |

√
n∆n

ik
Xd|pk

)
≤ n1/2+kr/2

nl

∑
i∈Bnt (l)

(
E[Pm(

√
n∆n

iX
c)

4
1−r ]

) 1−r
4

×
(
E
[(
|∆n

i1X
d|p1 . . . |∆n

ik
Xd|pk

) 4r
3+r
]) 3+r

4

≤ Kn1/2+kr/2

nl

∑
i∈Bnt (l)

n−bk(i)(3+r)/4 ≤ Kn1/2+kr/2

nl

k∑
j=1

n−j(3+r)/4nj+l−k

= K

k∑
j=1

n(2−2k+(2k−j)(r−1))/4.

The latter expression converges to 0 since r < 1.
In the next step we will show that we can replace the increments ∆n

i X
c of the

continuous part of X by their first order approximation αni =
√
nσ i−1

n
∆n
iW .
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Proposition B.14. It holds that

ξ′n =
√
n
( 1

nl

∑
i∈Bnt (l)

∑
j∈Bnt (d−l)

H(
√
n∆n

iX
c,∆n

jX)

− 1

nl

∑
i∈Bnt (l)

∑
j∈Bnt (d−l)

H(αni ,∆
n
jX)

)
P−−→ 0

as n→∞.

We shift the proof of this result to the appendix. Having simplified the statistics
in the first argument, we now focus on the second one, more precisely on the process

θn(H) =
√
n
( 1

nl

∑
i∈Bnt (l)

∑
j∈Bnt (d−l)

H(αni ,∆
n
jX)− 1

nl

∑
i∈Bnt (l)

∑
s∈[0,t]d−l

H(αni ,∆Xs)
)
.

In the following we will use the notation from Section B.3. We split θn(H) into

θn(H) = 1Ωn(m)θn(H) + 1Ω\Ωn(m)θn(H).

Since Ωn(m)
P−−→ Ω as n → ∞, the latter term converges in probability to 0 as

n→∞. The following result will be shown in the appendix as well.

Proposition B.15. We have the convergence

1Ωn(m)θn(H)− 1

nl

∑
i∈Bnt (l)

∑
q∈Pnt (m)d−l

d∑
k=l+1

∂kH(αni ,∆XSq)R(n, qk)
P−−→ 0

if we first let n→∞ and then m→∞.

Using all the approximations, in view of Lemma B.6 we are left with

Φn
t (m) :=

1

nl

∑
i∈Bnt (l)

∑
q∈Pnt (m)d−l

d∑
k=l+1

∂kH(αni ,∆XSq)R(n, qk) +
∑

s∈[0,t]d−l

Unt (H,∆Xs)

=
∑

q∈Nd−l

(
1Pnt (m)d−l(q)

d∑
k=l+1

Bnt (∂kH,∆XSq)R(n, qk) + Unt (H,∆XSq)
)
.

The remainder of the proof will consist of four steps. First we use for all k ∈ N the
decomposition Φn

t (m) = Φn
t (m, k) + Φ̃n

t (m, k), where

Φn
t (m, k) :=

∑
q1,...,qd−l≤k

1Pnt (m)d−l(q)

d∑
k=l+1

Bnt (∂kH,∆XSq)R(n, qk) +
∑

q∈Nd−l
Unt (H,∆XSq),

i.e. we consider only finitely many jumps in the first summand. We will successively
show

lim
k→∞

lim sup
n→∞

P(|Φ̃n
t (m, k)| > η) = 0 for all η > 0,

Φn
t (m, k)

st−−→ Φt(m, k) as n→∞,
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for a process Φt(m, k) that will be defined in (B.30). Finally, with Φt(m) defined in
(B.33) we will show

Φt(m, k)
P−−→ Φt(m) as k →∞, (B.28)

Φt(m)
P−−→ V ′(H,X, l)t. (B.29)

For (B.4) observe that we have Pnt (m) ⊂ Pt(m) and therefore

P
(
|Φ̃n
t (m, k)| > η

)
≤ P

({
ω : Pt(m,ω) 6⊂ {1, . . . , k}

})
→ 0 as k →∞,

since the sets Pt(m,ω) are finite for fixed ω and m. For (B.4) recall that g was
defined by g(x,y) = |x1|p1 · · · |xl|plL(x,y). By Propositions B.11 and B.12 and from
the properties of stable convergence (in particular, we need joint stable convergence
with sequences converging in probability, which is useful for the indicators below)
we have

(Unt (g, ·), (Bnt (∂jH, ·))dj=l+1, (∆XSp)p∈N, (R(n, p))p∈N, (1Pnt (m)(p))p∈N)
st−−→ (Ut(g, ·), (Bt(∂jH, ·))dj=l+1, (∆XSp)p∈N, (Rp)p∈N, (1Pt(m)(p))p∈N)

as n → ∞ in the space C[−A,A](d−l) × (C[−A,A](d−l))d−l × `2A × RN × RN, where
we denote by `2A the metric space

`2A := {(xk)k∈N ∈ `2 | |xk| ≤ A for all k ∈ N}.

For k ∈ N we now define a continuous mapping

φk : C[−A,A](d−l) × (C[−A,A](d−l))d−l × `2A × RN × RN → R

by

φk(f, (gr)
d−l
r=1, (xj)j∈N, (yj)j∈N, (zj)j∈N)

=
k∑

j1,...,jd−l=1

zj1 · · · zjd−l
d∑

r=l+1

gr(xj1 , . . . , xjd−l)yjr

+
∞∑

j1,...,jd−l=1

|xj1 |q1 · · · |xjd−l |
qd−lf(xj1 , . . . , xjd−l).

The continuous mapping theorem then yields

Φn
t (m, k) (B.30)

= φk(Unt (g, ·), (Bnt (∂rH, ·))dr=l+1, (∆XSp)p∈N, (R(n, p))p∈N, (1Pnt (m)(p))p∈N)
st−−→ φk(Ut(g, ·), (Bt(∂rH, ·))dr=l+1, (∆XSp)p∈N, (Rp)p∈N, (1Pt(m)(p))p∈N)

=
∑

q1,...,qd−l≤k
1Pt(m)d−l(q)

d∑
r=l+1

Bt(∂rH,∆XSq)R(n, qr) (B.31)

+
∑

q∈Nd−l
Ut(H,∆XSq)

=: Φt(m, k). (B.32)
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For k →∞ we have Φt(m, k)
a.s.−→ Φt(m) with

Φt(m) :=
∑

q∈Nd−l

(
1Pt(m)d−l(q)

d∑
r=l+1

Bt(∂rH,∆XSq)R(n, qr)

+
∑

q∈Nd−l
Ut(H,∆XSq)

)
,

(B.33)

i.e. (B.28). For the last assertion (B.29) we have

P(|Φt(m)− V ′t (H,X, l)| > η)

≤ KE[(Φt(m)− V ′t (H,X, l))2] = KE[E[(Φt(m)− V ′t (H,X, l))2|F ]]

≤ KE[
∑

k∈Nd−l

d∑
r=l+1

(1− 1Pt(m)d−l(k))|Bt(∂rH,∆XSk
)|2]

≤ KE[
∑

k∈Nd−l

d∑
r=l+1

(1− 1Pt(m)d−l(k))
d−l∏
i=1

(
|∆XSki

|qi + |∆XSki
|qi−1

)2
].

Since the jumps are absolutely summable and bounded the latter expression con-
verges to 0 as m→∞.

B.5 Appendix

Existence of the limiting processes

We give a proof that the limiting processes in Theorem B.5 and Theorem B.13 are
well-defined. The proof will be similar to the proof of [12, Prop. 4.1.4]. We restrict
ourselves to proving that∑

k:Tk≤t

∫
[0,t]l

ρ∂l+1H(σu,∆XTk)duRk1 (B.34)

is defined in a proper way, corresponding to Theorem B.13. For l = 0 we basically
get the result for Theorem B.5, but under slightly stronger assumptions. The proof,
however, remains the same.

We show that the sum in (B.34) converges in probability for all t and that the
conditional properties mentioned in the theorems are fulfilled. Let Im(t) = {n |
1 ≤ n ≤ m,Tn ≤ t}. Define

Z(m)t :=
∑

k∈Im(t)d−l

∫
[0,t]l

ρ∂l+1H(σu,∆XTk)duRk1 .

By fixing ω ∈ Ω, we further define the process Zω(m)t on (Ω′,F ′,P′) by putting
Zω(m)t(ω

′) = Z(m)t(ω, ω
′). The process is obviously centered, and we can imme-

diately deduce

E′(Zω(m)2
t ) =

∑
k1∈Im(t)

( ∑
k∈Im(t)d−l−1

∫
[0,t]l

ρ∂l+1H(σu,∆XTk1
,∆XTk)du

)2
σ2
Tk1
,

(B.35)
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E′(eiuZ
ω(m)t) =

∏
k1∈Im(t)

∫
e
iu

∑
k∈Im(t)d−l−1

∫
[0,t]l

ρ∂l+1H
(σu,∆XTk1

,∆XTk )duRk1dP′.

(B.36)

The processes X and σ are both càdlàg and hence bounded on [0, T ] for a fixed
ω ∈ Ω. Let now m,m′ ∈ N with m′ ≤ m and observe that Im(t)q\Im′(t)q ⊂
Im(T )q\Im′(T )q for all q ∈ N and t ≤ T . Since L and ∂1L are bounded on compact
sets, we obtain

E′
[(

sup
t∈[0,T ]

|Zω(m)t − Zω(m′)t|
)2]

= E′
[(

sup
t∈[0,T ]

∣∣∣ ∑
k∈Im(t)d−l\Im′ (t)d−l

∫
[0,t]l

ρ∂l+1H(σu,∆XTk)duRk1

∣∣∣)2]
≤ E′

[( ∑
k∈Im(T )d−l\Im′ (T )d−l

∫
[0,T ]l

∣∣ρ∂l+1H(σu,∆XTk)
∣∣du|Rk1 |)2]

≤ K(ω)
( ∑
k∈Im(T )d−l\Im′ (T )d−l(
|∆XTk1

|q1−1 + |∆XTk1
|q1
)
|∆XTk2

|q2 · · · |∆XTkd−l
|qd−l

)2

→ 0 as m,m′ →∞

for P-almost all ω, since
∑

s≤t |∆Xs|p is almost surely finite for any p ≥ 2. Therefore
we obtain, as m,m′ →∞,

P̃
(

sup
t∈[0,t]

|Z(m)t − Z(m′)t| > ε
)

=

∫
P′
(

sup
t∈[0,T ]

|Zω(m)t − Zω(m′)t| > ε
)
dP(ω)→ 0

by the dominated convergence theorem. The processes Z(m) are càdlàg and conti-
tute a Cauchy sequence in probability in the supremum norm. Hence they converge
in probability to some F̃t-adapted càdlàg process Zt. By the previous estimates we
also obtain directly that

Zω(m)t → Zt(ω, ·) in L2(Ω′,F ′,P′). (B.37)

As a consequence it follows from (B.35) that∫
Zt(ω, ω

′)2dP′(ω′)

=
∑
s1≤t

( ∑
s2,...,sd−l≤t

∫
[0,t]l

ρ∂l+1H(σu,∆Xs1 ,∆Xs2 , . . . ,∆Xsd−l)du
)2
σ2
s1 .

Note that the multiple sum on the right hand side of the equation converges abso-
lutely and hence does not depend on the choice of (Tn). By (B.37) we obtain

E′(eiuZ
ω(m)t)→ E′(eiuZt(ω,·)).
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Observe that for any centered square integrable random variable U we have∣∣∣ ∫ eiyU − 1dP
∣∣∣ ≤ EU2|y|2 for all y ∈ R.

Therefore the product in (B.36) converges absolutely as m → ∞, and hence the
characteristic function and thus the law of Zt(ω, ·) do not depend on the choice of
the sequence (Tn). Lastly, observe that Rn is F-conditionally Gaussian. (In the case
of a possibly discontinuous σ as in Theorem B.5 we need to require that X and σ
do not jump at the same time to obtain such a property.) So we can conclude that
Zω(m)t is Gaussian, and Zt(ω, ·) as a stochastic limit of Gaussian random variables
is so as well.

Uniform limit theory for continuous U-statistics

In this chapter we will give a proof of Proposition B.12. Mainly we have to show
that the sequence in (B.24) is tight and that the finite dimensional distributions
converge to the finite dimensional distributions of Ut. For the convergence of the
finite dimensional distributions we will generalize Proposition 4.3 in [18]. The basic
idea in that work is to write the U-statistic as an integral with respect to the
empirical distribution function

Fn(t, x) =
1

n

bntc∑
j=1

1{αnj ≤x}.

In our setting we have

1

nl

∑
i∈Bnt (l)

G(αni ,y) =

∫
Rl
G(x,y)Fn(t, dx1) · · ·Fn(t, dxl).

Of particular importance in [18] is the limit theory for the empirical process con-
nected with Fn, which is given by

Gn(t, x) =
1√
n

bntc∑
j=1

(
1{αnj ≤x} − Φσ j−1

n

(x)
)
,

where Φz is the cumulative distribution function of a standard normal random
variable with variance z2. As a slight generalization of [18, Prop. 4.2] and by the
same arguments as in [12, Prop. 4.4.10] we obtain the joint convergence

(Gn(t, x), (R−(n, p), R+(n, p))p≥1)
st−−→ (G(t, x), (Rp−, Rp+)p≥1).

The stable convergence in law is to be understood as a process in t and in the finite
distribution sense in x ∈ R. The limit is defined on an extension (Ω′,F ′,P ′) of the
original probability space. G is F-conditionally independent of (κn, ψn±)n≥1 and
F-conditionally Gaussian and satisfies

E′[G(t, x)|F ] =

∫ t

0
Φσs(x)dWs,

E′[G(t1, x1)G(t2, x2)|F ]− E′[G(t1, x1)|F ]E′[G(t2, x2)|F ]

=

∫ t1∧t2

0
Φσs(x1 ∧ x2)− Φσs(x1)Φσs(x2)− Φσs(x1)Φσs(x2)ds,
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where Φz(x) = E[V 1{zV≤x}] with V ∼ N (0, 1). As in the proof of Prop. 4.3 in [18]
we will use the decomposition

Unt (G,y) =
l∑

k=1

∫
Rl
G(x,y)Gn(t, dxk)

k−1∏
m=1

Fn(t, dxm)
l∏

m=k+1

F̄n(t, dxm)

+
√
n
( 1

nl

∑
j∈Bnt (l)

ρG(σ(j−1)/n,y)−
∫

[0,t]l
ρG(σs,y)ds

)

=:
l∑

k=1

Znk (G,y) +Rn(y),

where

F̄n(t, x) =
1

n

bntc∑
j=1

Φσ(j−1)/n
(x).

From [18, Prop. 3.2] we know that both Fn and F̄n converge in probability to
F (t, x) =

∫ t
0 Φσs(x)ds for fixed t and x. If G is symmetric and continuously differ-

entiable in x with derivative of polynomial growth, [18, Prop. 4.3] gives for fixed y

l∑
k=1

Znk (G,y)
st−−→

l∑
k=1

∫
Rl
G(x,y)G(t, dxk)

∏
m6=k

F (t, dxm) =:
l∑

k=1

Zk(G,y). (B.38)

We remark that the proof of this result mainly relies on the following steps: First,
use the convergence of Fn and F̄n and replace both by their limit F , which is
differentiable in x. Then use the integration by parts formula for the Riemann-
Stieltjes integral with respect to Gn(t, dxk) plus the differentiability of G in the
k-th argument to obtain that Znk (G,y) behaves asymptotically exactly the same as
−
∫
Rl ∂kG(x,y)Gn(t, xk)

∏
m6=k F

′(t, xm)dx. Since one now only has convergence in
finite dimensional distribution of Gn(t, ·) to G(t, ·), one uses a Riemann approxi-
mation of the integral with respect to dxk and takes limits afterwards. In the end
do all the steps backwards.

From the proof and the aforementioned joint convergence ofGn and the sequence
(R±(n, p))p≥1 it is clear that we can slightly generalize (B.38) to(

(Znk (G,y))1≤k≤l, (R−(n, p), R+(n, p))p≥1)
)

st−−→
(

(Zk(G,y))1≤k≤l, (Rp−, Rp+)p≥1

)
,

(B.39)

where the latter convergence holds in the finite distribution sense in y and also for
non-symmetric, but still continuously differentiable functions G. A second conse-
quence of the proof of (B.38) is that the mere convergence Znk (G,y)

st−−→ Zk(G,y)
only requires G to be continuously differentiable in the k-th argument if k is fixed.

To show that (B.39) holds in general under our assumptions let ψε ∈ C∞(R)
(ε > 0) be functions with 0 ≤ ψε ≤ 1, ψε(x) ≡ 1 on [−ε/2, ε/2], ψε(x) ≡ 0 outside
of (−ε, ε), and ‖ψ′ε‖ ≤ Kε−1 for some constant K, which is independent of ε. Then
the function G(x)(1 − ψε(xk)) is continuously differentiable in the k-th argument
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and hence it is enough to prove

lim
ε→0

lim sup
n→∞

P( sup
y∈[−A,A]d−l

|Znk (Gψε,y)| > η) = 0 (B.40)

lim
ε→0

P( sup
y∈[−A,A]d−l

|Zk(Gψε,y)| > η) = 0 (B.41)

for all η > 0 and 1 ≤ k ≤ l. For given k the functions ψε are to be evaluated at xk.
We show (B.40) only for k = l. The other cases are easier since F̄n is continuously
differentiable in x and the derivative is bounded by a continuous function with
exponential decay at ±∞ since σ is bounded away from 0.

For k = l, some P ∈ P(1), Q ∈ P(l − 1) and xl 6= 0, we have

|∂l(G(x,y)ψε(xl))| ≤ K(1 + |xl|p1−1)P (xl)Q(x1, . . . , xl−1) +K|x1|p1 · · · |xl|plε−1.

Since p1− 1 > −1 the latter expression is integrable with respect to xl on compact
intervals. Therefore the standard rules for the Riemann-Stieltjes integral and the
monotonicity of Fn in x yield

sup
y∈[−A,A]d−l

|Znl (Gψε,y)|

= sup
y∈[−A,A]d−l

∣∣∣ ∫
Rl
G(x,y)ψε(xl)Gn(t, dxl)

l−1∏
m=1

Fn(t, dxm)
∣∣∣

= sup
y∈[−A,A]d−l

∣∣∣ ∫
Rl
−Gn(t, xl)∂l(G(x,y)ψε(xl))dxl

l−1∏
m=1

Fn(t, dxm)
∣∣∣

≤
∫
Rl−1

∫ ε

−ε
K|Gn(t, xl)|(1 + |xl|p1−1)P (xl)Q(x1, . . . , xl−1)dxl

l−1∏
m=1

Fn(t, dxm)

+

∫
Rl−1

∫ ε

−ε
K|Gn(t, xl)||x1|p1 · · · |xl|plε−1dxl

l−1∏
m=1

Fn(t, dxm)

=

∫ ε

−ε
K
( 1

nl−1

∑
i∈Bnt (l−1)

Q(αni )
)
|Gn(t, xl)|(1 + |xl|p1−1)P (xl)dxl

+

∫ ε

−ε
K
( 1

nl−1

∑
i∈Bnt (l−1)

|αni1 |
p1 · · · |αnil−1

|pl−1

)
|Gn(t, xl)||xl|plε−1dxl.

We have E|αni |q ≤ K uniformly in i for every q ≥ 0. From [18, Lemma 4.1] it further
follows that E|Gn(t, x)|q ≤ K for all q ≥ 2. Then we deduce from Hölder inequality

E
(

sup
y∈[−A,A]d−l

|Znl (Gψε,y)|
)
≤ K

∫ ε

−ε
(1 + |xl|p1−1)P (xl) + |xl|plε−1dxl,

which converges to 0 if we let ε → 0. We omit the proof of (B.41) since it follows
by the same arguments.

So far we have proven that (B.39) holds under our assumptions on G. Further-
more, we can easily calculate the conditional covariance structure of the condition-
ally centered Gaussian process

∑l
k=1 Zk(G,y) by simply using that we know the
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covariance structure of G(t, x). We obtain the form in (B.25); for more details see
[18, sect. 5].

Next we will show that

sup
y∈[−A,A]d−l

|Rn(y)| P−−→ 0 (B.42)

as n → ∞. Observe that ρG(x,y) is Cd+1 in the x argument. Therefore we get
Rn(y)

P−−→ 0 for any fixed y from [18, sect. 7.3]. Further we can write

Rn(y) =
√
n

∫
[0,bntc/n]l

(ρG(σbnsc/n,y)− ρG(σs,y))ds

+
√
n
(∫

[0,t]l
ρG(σs,y)ds−

∫
[0,bntc/n]l

ρG(σs,y)ds
)
.

The latter term converges almost surely to 0 and hence we can deduce (B.42) from
the fact that E|Rn(y) − Rn(y′)| ≤ K ‖y − y′‖, which follows because ρG(x,y) is
continuously differentiable in y and E(

√
n|σbnuc/n − σu|) ≤ K for all u ∈ [0, t].

Therefore we have proven the convergence of the finite dimensional distributions

((Unt (G,yi))
m
i=1, (R−(n, p), R+(n, p))p≥1))

st−−→ ((Ut(G,yi))mi=1, (Rp−, Rp+)p≥1).

What remains to be shown in order to deduce Proposition B.12 is that the limiting
process is indeed continuous and that the sequences Znk (G, ·) (1 ≤ k ≤ l) are tight.
For the continuity of the limit observe that

E[|Ut(G,y)− Ut(G,y′)|2|F ]

=

∫ t

0

∫
R

( l∑
i=1

(fi(u,y)− fi(u,y′))
)2
φσs(u)du

−
( l∑
i=1

∫
R

(fi(u,y)− fi(u,y′))φσs(u)du
)2
ds.

Here we can use the differentiability assumptions and the boundedness of σ and
σ−1 to obtain

E[|Ut(G,y)− Ut(G,y′)|2] = E[E[|Ut(G,y)− Ut(G,y′)|2|F ]] ≤ K
∥∥y − y′∥∥2

.

Since Ut(G, ·) is F-conditionally Gaussian we immediately get

E[|Ut(G,y)− Ut(G,y′)|p] ≤ Kp

∥∥y − y′∥∥p
for any even p ≥ 2. In particular, this implies that there exists a continuous version
of the multiparameter process Ut(G, ·) (see [14, Theorem 2.5.1]).

The last thing we need to show is tightness. A tightness criterion for multi-
parameter processes can be found in [3]. Basically we have to control the size of
the increments of the process on blocks (and on lower boundaries of blocks, which
works in the same way). By a block we mean a set B ⊂ [−A,A]d−l of the form
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B = (y1, y
′
1]× · · · × (yd−l, y

′
d−l], where yi < y′i. An increment of a process Z defined

on [−A,A]d−l on such a block is defined by

∆B(Z) :=
1∑

i1,...,id−l=0

(−1)d−l−
∑
j ijZ(y1 + i1(y′1 − y1), . . . , yd−l + id−l(y

′
d−l − yd−l)).

We remark that if Z is sufficiently differentiable, then

∆B(Z) = ∂1 · · · ∂d−lZ(ξ)(y′1 − y1) · . . . · (y′d−l − yd−l)

for some ξ ∈ B. We will now show tightness for the process Znl (G,y). According
to [3] it is enough to show

E[|∆B(Znl (G, ·))|2] ≤ K(y′1 − y1)2 · . . . · (y′d−l − yd−l)2

in order to obtain tightness. As before we use the standard properties of the
Riemann-Stieltjes integral to deduce

E[|∆B(Znl (G, ·))|2] = E
[( ∫

Rl
∆B(G(x, ·))Gn(t, dxl)

l−1∏
k=1

Fn(t, dxk)
)2]

= E
[( ∫

Rl
∆B(∂lG(x, ·))Gn(t, xl)dxl

l−1∏
k=1

Fn(t, dxk)
)2]

= E
[( ∫

Rl
∂l∂l+1 · · · ∂dG(x, ξ)Gn(t, xl)dxl

l−1∏
k=1

Fn(t, dxk)
)2] l∏

i=1

(yi − y′i)2

for some ξ ∈ B. As it is shown in [18] there exists a continuous function γ : R→ R
with exponential decay at ±∞ such that E[Gn(t, x)4] ≤ γ(x). Using the growth
assumptions on L we further know that there exist P ∈ P(1) and Q ∈ P(l − 1)
such that

|∂l∂l+1 · · · ∂dG(x, ξ)| ≤ K(1 + |xl|pl−1)P (xl)Q(x1, . . . , xl−1)

and hence

E
[( ∫

Rl
∂l∂l+1 · · · ∂dG(x, ξ)Gn(t, xl)dxl

l−1∏
k=1

Fn(t, dxk)
)2]

≤ KE
[ ∫

R2

( 1

nl−1

∑
i∈Bnt (l−1)

Q(αni )
)2( 2∏

j=1

(1 + |uj |pl−1)P (uj)|Gn(t, uj)|
)
du1du2

]
≤ K

by Fubini, the Cauchy-Schwarz inequality, and the aforementioned properties of
Gn(t, x). The proof for the tightness of Znk (G,y) (1 ≤ k ≤ l − 1) is similar and
therefore omitted.

Proofs of some technical results

Proof of Proposition B.7. We will prove this in two steps.
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(i) For j > 0 consider the terms ζnk,j(m) and ζ̃nk,j(m), which appear in decompo-
sition (B.12). Since X is bounded and Pnt (m) a finite set, we have the estimate

max(|ζnk,j(m)|, |ζ̃nk,j(m)|) ≤ K(m)
√
nn−j

∑
i∈Bnt (l−k)

|∆n
i1X(m)|p · · · |∆n

il−k
X(m)|p.

By (B.7) we therefore obtain

E(1Ωn(m)(|ζnk,j(m)|+ |ζ̃nk,j(m)|))→ 0 as n→∞.

In the case k > 0 we have

|ζ̃nk,j(m)| ≤ K(m)
√
nn−j−k

p
2

∑
p∈Pnt (m)k

|R(n,p)|p
∑

i∈Bnt (l−k)

|∆n
iX(m)|p.

Since (R(n, p)) is bounded in probability as a sequence in n, we can deduce

1Ωn(m)|ζ̃nk,j(m)| P−−→ 0 as n→∞.

Furthermore, in the case j = k = 0, we have ζn0,0(m) = ζ̃n0,0(m).

(ii) At last we have to show the convergence

lim
m→∞

lim sup
n→∞

P(1Ωn(m)|
l−1∑
k=1

(
ζnk,0(m)− ζnk (m)

)
| > η) = 0 for all η > 0.

First we will show in a number of steps that we can replace ∆XSp + 1√
n
R(n,p) by

∆XSp in ζnk,0(m) without changing the asymptotic behaviour. Fix k ∈ {1, . . . , l − 1}.
We start with∣∣∣∣∣
(
l

k

)−1

ζnk,0(m)−
√
n

nd−l

∑
p∈Pnt (m)k−1

pk∈P
n
t (m)

∑′

i∈Bnt (d−k)

H
(

∆XSp +
1√
n
R(n,p),∆XSpk

,∆n
iX(m)

)∣∣∣∣∣
=

∣∣∣∣∣
√
n

nd−l

∑
p∈Pnt (m)k−1

pk∈P
n
t (m)

∑′

i∈Bnt (d−k)

∫ R(n,pk)√
n

0

∂kH
(

∆XSp +
1√
n
R(n,p),∆XSpk

+ u,∆n
iX(m)

)
du

∣∣∣∣∣
≤ |K

∑
p∈Pt(m)k−1

pk∈Pt(m)

|R(n, pk)| sup
|u|,|v|≤ |R(n,pk)|√

n

(|∆XSpk
+ u|p + |∆XSpk

+ v|p−1)

×
k−1∏
r=1

∣∣∣∆XSpr +
R(n, pr)√

n

∣∣∣p ∑
i∈Bnt (l−k)

l−k∏
j=1

|∆n
ijX(m)|p

=: KΦn
1 (m)× Φn

2 (m).
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The first factor Φn
1 (m) converges, as n→∞, stably in law towards

Φ1(m) =
∑

p∈Pt(m)k−1

pk∈Pt(m)

|Rpk |(|∆XSpk
|p + |∆XSpk

|p−1)

k−1∏
r=1

|∆XSpr |
p.

By the Portmanteau theorem we obtain

lim sup
n→∞

P(|Φn
1 (m)| ≥M) ≤ P̃(|Φ1(m)| ≥M) for all M ∈ R+,

whereas, as m→∞,

Φ1(m)
P̃−→
(∑
s≤t
|∆Xs|p

)k−1 ∑
pk∈Pt

Rpk(|∆XSpk
|p + |∆XSpk

|p−1).

So it follows that

lim
M→∞

lim sup
m→∞

lim sup
n→∞

P(|Φn
1 (m)| ≥M) = 0.

Furthermore

lim
m→∞

lim sup
n→∞

E(1Ωn(m)Φ
n
2 (m))

≤ lim
m→∞

lim sup
n→∞

K

m(l−k)(p−2)
E
( ∑
i∈Bnt (l−k)

l−k∏
j=1

|∆n
ijX(m)|2

)
= 0

by Lemma B.2. We finally obtain

lim
m→∞

lim sup
n→∞

P
(
1Ωn(m)|Φn

1 (m)Φn
2 (m)| > η

)
= 0 for all η > 0.

Doing these steps successively in the first k − 1 components as well, we obtain

lim
m→∞

lim sup
n→∞

P
(
1Ωn(m)

∣∣∣( l
k

)−1

ζnk,0(m)− θnk (m)
∣∣∣ > η

)
= 0 for all η > 0

with
θnk (m) :=

√
n

nd−l

∑
p∈Pt(m)k

∑
i∈Bnt (d−k)

H
(

∆XSp ,∆
n
iX(m)

)
.

By the same arguments as in the proof of the convergence 1Ωn(m)Ψ
n
1 (m)

P−−→ 0 in
Section B.3 we see that we can replace the last d−l variables ofH in 1Ωn(m)θ

n
k (m) by

0 without changing the limit. So we can restrict ourselves without loss of generality
to the case l = d now and have to prove

lim
m→∞

lim sup
n→∞

P(1Ωn(m)|Θn
k(m)| > η) = 0 (B.43)

with

Θn
k(m) :=

√
n

∑
p∈Pt(m)k

( ∑
i∈Bnt (d−k)

H
(

∆XSp ,∆
n
iX(m)

)
−

∑
s∈(0,

bntc
n

]d−k

H
(

∆XSp ,∆X(m)s

))
.
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Since ∑
q∈Pt(m)

|∆XSq |p ≤
∑
s≤t
|∆Xs|p

is bounded in probability, we can adopt exactly the same method as in the proof of
1Ωn(m)Ψ

n
2 (m)

P−−→ 0 to show (B.43), which finishes the proof of Proposition B.7.

Proof of Proposition B.14. We will only show that we can replace
√
n∆n

i X
c by αni

in the first argument, i.e. the convergence of

ζn :=

√
n

nl

bntc∑
k=1

∑
i∈Bnt (l−1)

∑
j∈Bnt (d−l)(

H(
√
n∆n

kX
c,
√
n∆n

iX
c,∆n

jX)−H(αnk ,
√
n∆n

iX
c,∆n

jX)
) (B.44)

to 0 in probability. All the other replacements follow in the same manner. Define
the function g : Rd → R by g(w,x,y) = |w|p1L(w,x,y). In a first step we will show
that, for fixed M > 0, we have

1√
n

sup
‖z‖≤M

bntc∑
k=1

(
g(
√
n∆n

kX
c, z)− g(αnk , z)

) P−−→ 0, (B.45)

where z = (x,y) ∈ Rl−1×Rd−l. Note that our growth assumptions on L imply the
existence of constants h, h′, h′′ ≥ 0 such that

w 6= 0 =⇒ |∂1g(w,x,y)| ≤ Ku(y)(1 + ‖(w,x)‖h)
(
1 + |w|p1−1

)
(B.46)

w 6= 0, |z| ≤ |w|/2 =⇒ |∂1g(w + z,x,y)− ∂1g(w,x,y)|

≤ Ku(y)|z|(1 + ‖(w,x)‖h
′
+ |z|h′)

(
1 + |w|p1−2

)
|g(w + z,x,y)− g(w,x,y)| ≤ Ku(y)(1 + ‖(w,x)‖h

′′
)|z|p1 (B.47)

The first inequality is trivial, the second one follows by using the mean value the-
orem, and the last one can be deduced by the same arguments as in the derivation
of (B.26). In particular, for fixed x,y all assumptions of [12, Theorem 5.3.6] are
fulfilled and hence

1√
n

max
z∈Km(M)

bntc∑
k=1

(
g(
√
n∆n

kX
c, z)− g(αnk , z)

) P−−→ 0,

where Km(M) is defined to be a finite subset of [−M,M ]d−1 such that for each
z ∈ [−M,M ]d−l there exists z′ ∈ Km(M) with ‖z − z′‖ ≤ 1/m. In order to show
(B.45) it is therefore enough to prove

1√
n

sup
‖(z1,z2)‖≤M
‖z1−z2‖≤1/m

∣∣∣ bntc∑
k=1

(
g(
√
n∆n

kX
c, z1)− g(αnk , z1)

− (g(
√
n∆n

kX
c, z2)− g(αnk , z2))

)∣∣∣ P−−→ 0

if we first let n and then m go to infinity.
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Now, let θnk =
√
n∆n

kX
c − αnk and Bn

k = {|θnk | ≤ |αnk |/2}. Clearly, g is differen-
tiable in the last d − 1 arguments and on Bn

k we can also apply the mean value
theorem in the first argument. We therefore get

1Bnk

(
g(
√
n∆n

kX
c, z1)− g(αnk , z1)− (g(

√
n∆n

kX
c, z2)− g(αnk , z2))

)
=

d∑
j=2

1Bnk
∂1∂jg(χnj,k, ξ

n
j,k)(z

(j)
2 − z

(j)
1 )θnk ,

where χnj,k is between
√
n∆n

kX
c and αnk and ξnj,k is between z1 and z2. z

(j)
i stands

for the j-th component of zi. We have |∂1∂jg(w, z)| ≤ p1|w|p1−1|∂jL(w, z)| +
|w|p1 |∂1∂jL(w, z)| and therefore the growth conditions on L imply that there exists
q ≥ 0 such that

|∂1∂jg(w, z)| ≤ Ku(y)(1 + |w|p1−1)(1 + ‖(w,x)‖q).

On Bn
k we have |χnj,k| ≤

3
2 |α

n
k |. From ‖z‖ ≤M we find

1√
n
E
(

sup
‖(z1,z2)‖≤M
‖z1−z2‖≤1/m

∣∣∣ bntc∑
k=1

1Bnk

2∑
j=1

(−1)j−1
(
g(
√
n∆n

kX
c, zj)− g(αnk , zj)

)∣∣∣)

≤ K(M)√
nm

bntc∑
k=1

E
(

(1 + |αnk |p1−1)(1 + |αnk |q + |
√
n∆n

kX
c|q)|θnk |

)
.

By Burkholder inequality we know that E
(
(1 + |αnk |q + |

√
n∆n

kX
c|q)u

)
≤ K for all

u ≥ 0. Since σ is a continuous semimartingale we further have E(|θnk |u) ≤ Kn−u/2

for u ≥ 1. Finally, because σ is bounded away from 0, we also have E
(
(|αnk |p1−1)u

)
≤

K for all u ≥ 0 with u(1− p1) < 1. Using this results in combination with Hölder
inequality we obtain

K(M)√
nm

bntc∑
k=1

E
(

(1 + |αnk |p1−1)(1 + |αnk |q + |
√
n∆n

kX
c|q)|θnk |

)
≤ K(M)

m
,

which converges to 0 as m→∞.
Now we focus on (Bn

k )C . Let 2 ≤ j ≤ d. Observe that, similarly to (B.26), by
distinguishing the cases |z| ≤ 1 and |z| > 1, we find that

|∂jL(w + z,x,y)− ∂jL(w,x,y)| ≤ K(1 + |w|γj+γ1j )|z|γj .

We used here that ‖(x,y)‖ is bounded and the simple inequality 1+a+b ≤ 2(1+a)b
for all a ≥ 0, b ≥ 1. From this we get

|∂jg(w + z,x,y)− ∂jg(w,x,y)|
≤
∣∣|w + z|p1 − |w|p1

∣∣|∂jL(w + z,x,y)|
+ |w|p1 |∂jL(w + z,x,y)− ∂jL(w,x,y)|

≤ K(1 + |w|q)(|z|γj+p1 + |z|γj )
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for some q ≥ 0. Recall that γj < 1 and γj + p1 < 1 by assumption. For some ξnj
between z(j)

1 and z(j)
2 we therefore have

1√
n
E
(

sup
‖(z1,z2)‖≤M
‖z1−z2‖≤1/m

∣∣∣ bntc∑
k=1

1(Bnk )C

2∑
j=1

(−1)j−1
(
g(
√
n∆n

kX
c, zj)− g(αnk , zj)

)∣∣∣)

=
1√
n
E
(

sup
‖(z1,z2)‖≤M
‖z1−z2‖≤1/m

∣∣∣ bntc∑
k=1

d∑
j=2

1(Bnk )C
(
∂jg(
√
n∆n

kX
c, ξnj )− ∂jg(αnk , ξ

n
j )
)
(z

(j)
2 − z

(j)
1 )
∣∣∣)

≤ K(M)√
nm

bntc∑
k=1

E
(
1(Bnk )C (1 + |αnk |q + |

√
n∆n

kX
c|q)(|θnk |γ1 + |θnk |γj+p1)

)

≤ K(M)√
nm

bntc∑
k=1

E
(
1(Bnk )C (1 + |αnk |q + |

√
n∆n

kX
c|q)
( |θnk |
|αnk |1−γ1

+
|θnk |

|αnk |1−(γj+p1)

))
≤ K(M)

m

by the same arguments as before, and hence (B.45) holds. For any M > 2A we
therefore have (with q = (q1, . . . , qd−l))

∣∣∣√n
nl

bntc∑
k=1

∑
i∈Bnt (l−1)

∑
j∈Bnt (d−l)

1{‖√n∆n
iX

c‖≤M}

×
(
H(
√
n∆n

kX
c,
√
n∆n

iX
c,∆n

jX)−H(αnk ,
√
n∆n

iX
c,∆n

jX)
)∣∣∣

≤
( 1

nl−1

∑
i∈Bnt (l−1)

∑
j∈Bnt (d−l)

|
√
n∆i1X

c|p2 · · · |
√
n∆il−1

Xc|pl |∆n
jX|q

)

×
∣∣∣ 1√
n

sup
‖z‖≤M

bntc∑
k=1

(
g(
√
n∆n

kX
c, z)− g(αnk , z)

)∣∣∣
The first factor converges in probability to some finite limit, and hence the whole
expression converges to 0 by (B.45). In order to show (B.44) we are therefore left
with proving that

√
n

nl

bntc∑
k=1

∑
i∈Bnt (l−1)

∑
j∈Bnt (d−l)

1{‖√n∆n
iX

c‖>M}

×
(
H(
√
n∆n

kX
c,
√
n∆n

iX
c,∆n

jX)−H(αnk ,
√
n∆n

iX
c,∆n

jX)
)

converges in probability to 0 if we first let n and then M go to infinity. As before
we will distinguish between the cases that we are on the set Bn

k and on (Bn
k )C . Let

p̃ = (p2, . . . , pl). With the mean value theorem and the growth properties of ∂1g
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from (B.46) we obtain for all M ≥ 1:

∣∣∣√n
nl

bntc∑
k=1

∑
i∈Bnt (l−1)

∑
j∈Bnt (d−l)

1{‖√n∆n
iX

c‖>M}1Bnk

×
(
H(
√
n∆n

kX
c,
√
n∆n

iX
c,∆n

jX)−H(αnk ,
√
n∆n

iX
c,∆n

jX)
)∣∣∣

≤ K
( ∑
j∈Bnt (d−l)

|∆n
jX|q

)√n
nl

bntc∑
k=1

∑
i∈Bnt (l−1)

|
√
n∆n

iX
c|p̃1{‖√n∆n

iX
c‖>M}

× (1 + |αnk |h + |
√
n∆n

kX
c|h +

∥∥√n∆n
iX

c
∥∥h)
(
1 + |αnk |p1−1

)
|θnk |

≤
(
K

∑
j∈Bnt (d−l)

|∆n
jX|q

)
×
( 1

nl−1

∑
i∈Bnt (l−1)

1{‖√n∆n
iX

c‖>M}|
√
n∆n

iX
c|p̃
∥∥√n∆n

iX
c
∥∥h )

×
( 1√

n

bntc∑
k=1

(1 + |αnk |h + |
√
n∆n

kX
c|h)
(
1 + |αnk |p1−1

)
|θnk |
)

=: AnBn(M)Cn,

where we used M ≥ 1 and 1 + a + b ≤ 2(1 + a)b for the final inequality again. As
before, we deduce that An is bounded in probability and E(Cn) ≤ K. We also have
E(Bn(M)) ≤ K/M and hence

lim
M→∞

lim sup
n→∞

P(AnBn(M)Cn > η) = 0

for all η > 0.
Again, with (B.47), we derive for M ≥ 1:

∣∣∣√n
nl

bntc∑
k=1

∑
i∈Bnt (l−1)

∑
j∈Bnt (d−l)

1{‖√n∆n
iX

c‖>M}1(Bnk )C

×
(
H(
√
n∆n

kX
c,
√
n∆n

iX
c,∆n

jX)−H(αnk ,
√
n∆n

iX
c,∆n

jX)
)∣∣∣

=

√
n

nl

bntc∑
k=1

∑
i∈Bnt (l−1)

∑
j∈Bnt (d−l)

1{‖√n∆n
iX

c‖>M}1(Bnk )C |∆n
jX|q|

√
n∆n

iX
c|p̃

×
∣∣∣g(αnk + θnk ,

√
n∆n

iX
c,∆n

jX)− g(αnk ,
√
n∆n

iX
c,∆n

jX)
∣∣∣

≤ K
( ∑
j∈Bnt (d−l)

|∆n
jX|q

)
×
( 1

nl−1

∑
i∈Bnt (l−1)

1{‖√n∆n
iX

c‖>M}|
√
n∆n

iX
c|p̃
∥∥√n∆n

iX
c
∥∥h′′ )

×
( 1√

n

bntc∑
k=1

1(Bnk )C (1 + |αnk |h
′′
)|θnk |p1

)
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≤ K
( ∑
j∈Bnt (d−l)

|∆n
jX|q

)
×
( 1

nl−1

∑
i∈Bnt (l−1)

1{‖√n∆n
iX

c‖>M}|
√
n∆n

iX
c|p̃
∥∥√n∆n

iX
c
∥∥h′′ )

×
( 1√

n

bntc∑
k=1

(1 + |αnk |h
′′
)|αnk |p1−1|θnk |

)
.

For the last step, recall that we have the estimate |θnk |1−p1 ≤ K|αnk |1−p1 on the set
(Bn

k )C . Once again, the final random variable converges to 0 if we first let n and
then M to infinity.

Proof of Proposition B.15:. We will give a proof only in the case d = 2 and l = 1.
We use the decomposition

1Ωn(m)θn(H)

=
1Ωn(m)√

n

( bntc∑
i,j=1

H(αni ,∆
n
jX(m))−

bntc∑
i=1

∑
s≤ bntc

n

H(αni ,∆X(m)s)
)

−
1Ωn(m)√

n

bntc∑
i=1

∑
bntc
n
<s≤t

H(αni ,∆Xs)

+
1Ωn(m)√

n

bntc∑
i=1

∑
p∈Pnt (m){

H
(
αni ,∆XSp + n−1/2R(n, p)

)
−H

(
αni , n

−1/2R(n, p)
)}

−
1Ωn(m)√

n

bntc∑
i=1

∑
p∈Pnt (m)

H(αni ,∆XSp)

=: θ(1)
n (H)− θ(2)

n (H) + θ(3)
n (H)− θ(4)

n (H).

In the general case we would have to use the decomposition given in (B.12) for the
last d− l arguments. We first show that we have

lim
m→∞

lim sup
n→∞

P(|θ(1)
n (H)| > η) = 0 for all η > 0.

We do this in two steps.

(i) Let φk be a function in C∞(R2) with 0 ≤ φk ≤ 1, φk ≡ 1 on [−k, k]2, and φk ≡
0 outside of [−2k, 2k]2. Also, let g̃ : R2 → R be defined by g̃(x, y) = |y|q1L(x, y)
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and set Hk = φkH and g̃k = φkg̃. Then we have

|θ(1)
n (Hk)|

=
∣∣∣1Ωn(m)√

n

bntc∑
i=1

|αni |p1
( bntc∑
j=1

g̃k(α
n
i ,∆

n
jX(m))−

∑
s≤ bntc

n

g̃k(α
n
i ,∆X(m)s)

)∣∣∣
≤
∣∣∣1Ωn(m)√

n

bntc∑
i=1

|αni |p1
( bntc∑
j=1

g̃k(0,∆
n
jX(m))−

∑
s≤ bntc

n

g̃k(0,∆X(m)s)
)∣∣∣

+
∣∣∣1Ωn(m)√

n

bntc∑
i=1

|αni |p1
( bntc∑
j=1

∫ αni

0
∂1g̃k(u,∆

n
jX(m))du

−
∑

s≤ bntc
n

∫ αni

0
∂1g̃k(u,∆X(m)s)du

)∣∣∣
≤
( 1

n

bntc∑
i=1

|αni |p1
)(√

n1Ωn(m)

∣∣∣ bntc∑
j=1

g̃k(0,∆
n
jX(m))−

∑
s≤ bntc

n

g̃k(0,∆X(m)s)
∣∣∣)

+
( 1

n

bntc∑
i=1

|αni |p1
)(
1Ωn(m)

∫ k

−k

√
n

×
∣∣∣ bntc∑
j=1

∂1g̃k(u,∆
n
jX(m))−

∑
s≤ bntc

n

∂1g̃k(u,∆X(m)s)
∣∣∣du),

which converges to zero in probability by Lemma B.3, if we first let n → ∞ and
then m→∞, since

1

n

bntc∑
i=1

|αni |p1

is bounded in probability by Burkholder inequality.

(ii) In this part we show

lim
k→∞

lim
m→∞

lim sup
n→∞

P(|θ(1)
n (H)− θ(1)

n (Hk)| > η) = 0 for all η > 0.

Observe that we automatically have |∆n
i X(m)| ≤ k for some k large enough. There-

fore,

|θ(1)
n (H)− θ(1)

n (Hk)|

=
∣∣∣1Ωn(m)√

n

bntc∑
i,j=1

(
H(αni ,∆

n
jX(m))−Hk(α

n
i ,∆

n
jX(m))

)∣∣∣
≤
1Ωn(m)√

n

bntc∑
i,j=1

1{|αni |>k}
∣∣∣H(αni ,∆

n
jX(m))−Hk(α

n
i ,∆

n
jX(m))

∣∣∣
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≤
1Ωn(m)√

n

bntc∑
i,j=1

1{|αni |>k}
∣∣∣H(αni ,∆

n
jX(m))

∣∣∣
≤
K1Ωn(m)√

n

bntc∑
i,j=1

1{|αni |>k}
∣∣(1 + |αni |p1)(∆n

jX(m))q1
∣∣

≤ K√
n

( bntc∑
i=1

1{|αni |>k}(1 + |αni |p1)
)(
1Ωn(m)

bntc∑
j=1

∣∣∆n
jX(m)

∣∣q1)

≤ K
( bntc∑
i=1

1{|αni |>k}
) 1

2
( 1

n

bntc∑
i=1

(1 + |αni |p1)2
) 1

2
(
1Ωn(m)

bntc∑
j=1

∣∣∆n
jX(m)

∣∣q1)
Now observe that we have

(
1Ωn(m)

bntc∑
j=1

∣∣∆n
jX(m)

∣∣q1) P−−→
∑
s≤t
|∆Xs|q1 ,

if we first let n→∞ and then m→∞. Further we have

E
[ 1

n

bntc∑
i=1

(1 + |αni |p1)2
]
≤ K

by Burkholder inequality and finally

P
(∣∣∣ bntc∑

i=1

1{|αni |>k}
∣∣∣ > η

)
≤ 1

η
E
( bntc∑
i=1

1{|αni |>k}
)
≤
bntc∑
i=1

E[|αni |2]

ηk2
≤ K

ηk2
→ 0,

as k →∞. For θ(2)
n (H) we have

|θ(2)
n (H)| ≤ 1√

n

bntc∑
i=1

∑
bntc
n
<s≤t

(1 + |αni |p1)|∆Xs|q1u(∆Xs)

≤
( 1

n

bntc∑
i=1

(1 + |αni |p1)
)(√

n
∑

bntc
n
<s≤t

|∆Xs|q1
)

P−−→ 0,

since the first factor is bounded in expectation and the second one converges in
probability to 0 (see (B.19)). For the second summand of θ(3)

n (H) we get

∣∣∣1Ωn(m)√
n

bntc∑
i=1

∑
p∈Pnt (m)

H
(
αni , n

−1/2R(n, p)
)∣∣∣

≤
( 1

n

bntc∑
i=1

(1 + |αni |p1)
)(
1Ωn(m)

∑
p∈Pnt (m)

∣∣∣R(n, p)q1

n
1
2

(q1−1)

∣∣∣) P−−→ 0
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as n → ∞ because the first factor is again bounded in expectation and since
(R(n, p))n∈N is bounded in probability and Pnt (m) finite almost surely. The re-
maining terms are θ(4)

n (H) and the first summand of θ(3)
n (H), for which we find by

the mean value theorem

1Ωn(m)√
n

bntc∑
i=1

∑
p∈Pnt (m)

{
H
(
αni ,∆XSp + n−1/2R(n, p)

)
−H(αni ,∆XSp)

}

=
1Ωn(m)

n

bntc∑
i=1

∑
p∈Pnt (m)

∂2H
(
αni ,∆XSp

)
R(n, p)

+
(1Ωn(m)

n

bntc∑
i=1

∑
p∈Pnt (m)

(
∂2H

(
αni ,∆XSp + ξni (p)

)
− ∂2H

(
αni ,∆XSp

))
R(n, p)

)
for some ξni (p) between 0 and R(n, p)/

√
n. The latter term converges to 0 in prob-

ability since we have |∂22H(x, y)| ≤ (1 + |x|q)(|y|q1 + |y|q1−1 + |y|q1−2)u(y) for some
q ≥ 0 by the growth assumptions on L. Therefore,

∣∣∣1Ωn(m)

n

bntc∑
i=1

∑
p∈Pnt (m)

(
∂2H

(
αni ,∆XSp + ξni (p)

)
− ∂2H

(
αni ,∆XSp

))
R(n, p)

∣∣∣
=
∣∣∣1Ωn(m)

n

bntc∑
i=1

∑
p∈Pnt (m)

∂22H
(
αni ,∆XSp + ξ̃ni (p)

)
ξni (p)R(n, p)

∣∣∣
≤
( 1

n

bntc∑
i=1

(1 + |αni |p1)
) ∑
p∈Pnt (m)

K
|R(n, p)|2√

n

P−−→ 0,

where ξ̃ni (p) is between 0 and R(n, p)/
√
n. The last inequality holds since the jumps

of X are bounded and |ξ̃ni (p)| ≤ |R(n, p)|/
√
n ≤ 2A. The convergence holds because

R(n, p) is bounded in probability and Pnt (m) is finite almost surely.
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