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Abstract

In this short note, Monte Carlo tests of goodness of fit for data of the form
X(t), t ∈ I are considered, that reject the null hypothesis if X(t) leaves an
acceptance region bounded by an upper and lower curve for some t in I. A
construction of the acceptance region is proposed that complies to a given
target level of rejection, and yields exact p-values. The construction is based
on pointwise quantiles, estimated from simulated realizations of X(t) under
the null hypothesis.

Keywords: Cdf transform, functional data, multiple testing, multivariate data,
simulation based tests.

1 Introduction

A simultaneous envelope test is a significance test of hypotheses about multivariate
data or processes X(t), t ∈ I. It rejects the hypothesis if the observation leaves an
acceptance region A(t) at some point t ∈ I. The acceptance region is bounded by a
lower and an upper critical curve Xlow(t) and Xupp(t), which allows for an immediate
graphical interpretation. Such graphical tests are popular in practical applications, in
particular in the context of goodness of fit tests for spatial pattern, where the spatial
information is summarized by some function which is estimated from the observed
pattern. The distribution of the estimated functions X(t) is typically unknown,
and therefore one has to resort to Monte Carlo methods and simulate from the
hypothesized distribution. It has been unclear for a long time how to construct
the acceptance region such that a given rejection rate α is met, therefore pointwise
(1 − α)-quantile envelopes have been plotted and occasionally been misinterpreted
as tests to the level α, see Loosmore and Ford (2006); Baddeley et al. (2014).

Only recently, a series of papers emerged that successfully tackle this problem
(Grabarnik et al., 2011; Myllymäki et al., 2013a,b, 2015). The solution given in
Myllymäki et al. (2013b) allows to construct envelopes with a rejection rate that
comes arbitrarily close to the target level α, depending on the number of simulations.
The global rank envelope proposed in that paper is accompanied with an interval
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for the corresponding Monte Carlo p-value. In the examples from goodness of fit
tests for point processes discussed there, about 2500 simulated curves are needed
to keep the interval reasonably short. In Myllymäki et al. (2015), this solution was
supplemented with a non graphical rank count test to the level α, which always
returns p-values within the p-interval of the envelope test.

In the present short note, I develop an alternative, closely related construction
for envelopes. It is as exact as the rank count test, if the distribution of the X(t)
is at least partly continuous in the tails. Since it combines exactness with graph-
ical representation, it can replace the global rank envelope when a large number
of simulations is not feasible. This note is meant as an addendum to Myllymäki
et al. (2015), where other constructions of envelopes known from the literature are
thoroughly discussed and compared with the global rank envelope.

2 Monte Carlo goodness of fit tests seen as
permutation tests

A goodness of fit test is a test for the hypothesis that the observation x1 is a
realization of a random variable distributed as X0, that is, a hypothesis of the form
H0 : X1 ∼ X0. Its Monte Carlo version compares the observation x1 with realizations
of i.i.d. variables X2, . . . , Xn, simulated from the model. The hypothesis can then
be replaced by the equivalent hypothesis H ′0 : “X1, X2, . . . , Xn are i.i.d.”. The Monte
Carlo tests dealt with in the following are essentially tests for the hypothesis H∗0
that the n random variables X1, . . . , Xn are exchangeable, that is, the distribution
of the sample X := (X1, . . . , Xn) is permutation invariant. Since it is known that
X2, . . . , Xn are i.i.d., the exchangeability hypothesis H∗0 is here equivalent to H ′0
and thus to H0.

Under the null hypothesis H∗0 , all permutations π(X) = (Xπ(1), . . . , Xπ(n)) are
equally likely, given the unordered sample X̆ := {X1, . . . , Xn}. This fact is exploited
in the test, which is based on a statistic T (X) = T (X1, X2, . . . , Xn). The original
value T (X) is compared with the values T (π(X)) obtained on the permuted samples.
Without loss of generality, assume that a small value of T indicates an extreme
observation and casts doubt on the null hypothesis. A general permutation test to
the level α rejects the hypothesis if T (X) ≤ T(α), where T(α) is a lower α-quantile of
the values T (π(X)) for all permutations π ∈ S, S = Perm({1, . . . , n}), fulfilling

1
cardS

∑

π∈S
1
(
T (π(X)) < T(α)

)
< α ≤ 1

cardS

∑

π∈S
1
(
T (π(X)) ≤ T(α)

)
.

It can be found as

T(α) = max
{
t ∈ T :

∑

π∈S
1(T (π(X)) ≤ t) ≤ α cardS

}
, T =

{
T (π(X)) : π ∈ S

}
.

In Monte Carlo goodness of fit tests, the variables X2, . . . , Xn are i.i.d., therefore
only statistics T are used that do not depend on the sequence of the variables
X2, . . . , Xn. It is thus sufficient to consider a set S̃ = {π1, . . . , πn} of permutations
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that only affect the first element, viz.

πi(X) = (Xi, X1, . . . , Xi−1, Xi+1, . . . , Xn).

A Monte Carlo goodness of fit test to the level α has the form

ϕα(X) = 1(T (X) ≤ T(α)), (2.1)

where

T(α) = max
{
t ∈ {T1, . . . , Tn} :

n∑

i=1

1(Ti ≤ t) ≤ αn
}
, Ti = T (πi(X)). (2.2)

Let T[1] ≤ T[2] ≤ · · · ≤ T[n] denote the ordered set of values T1, . . . , Tn. Then
T(α) = T[bαnc] if and only if T[bαnc] < T[bαnc+1]. Otherwise, i.e. if T[bαnc] = T[bαnc+1], it
is T(α) < T[bαnc]. Consequently, the test (2.1) has rejection rate, given X̆,

E[ϕα(X) | X̆]

{
= bαnc/n, T[bαnc] < T[bαnc+1],

< bαnc/n, T[bαnc] = T[bαnc+1].
(2.3)

To the significance test ϕα corresponds a Monte Carlo p-value given by

p(X) =
1

n

n∑

i=1

1(Ti ≤ T1). (2.4)

It follows from the definition of the critical value T(α) in (2.2), that

T1 ≤ T(α) ⇐⇒ p(X) ≤ α. (2.5)

Hence, the test
ϕα(X) = 1(p(X) ≤ α) (2.6)

is exact if and only if αn ∈ N and upper ties with the critical value do not occur,
i.e.

Eϕα(X) = α ⇐⇒ αn ∈ N and Prob(T[bαnc] = T[bαnc+1]) = 0. (2.7)

Otherwise, the test ϕ is conservative. In order to avoid these ties, the test statistic
should be preferably chosen such that T (πi(X)) 6= T (πj(X)) for i 6= j whenever X̆
only contains unique values.

3 Envelope tests

Consider now data of the form X(t), where t ∈ I is a continuous argument in the
case of functional data or an index in the case of multivariate data. A test

ϕenv+(X) = 1
(
X(t) /∈ [X

(α)
low(t), X(α)

upp(t)] for some t ∈ I
)

(3.1)

shall be called an inclusive envelope test, since the bounding curves are included in
the acceptance region, whereas

ϕenv−(X) = 1
(
X(t) /∈ (X

(α)
low(t), X(α)

upp(t)) for some t ∈ I
)

(3.2)
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will be denoted an exclusive envelope test.
For a Monte Carlo envelope test of goodness of fit of the hypothesis X1 ∼ X0, the

bounding curves X(α)
low(t) and X(α)

upp(t) are calculated from X = (X1, . . . , Xn), where
X2(t), . . . , Xn(t) ∼ X0(t) are i.i.d. simulated curves. To the Monte Carlo goodness
of fit test (2.1) using a test statistic T corresponds an inclusive envelope, if

T (X) ≤ T(α) ⇐⇒ ∃t ∈ I : X1(t) < X
(α)
low(t) or X1(t) > X(α)

upp(t), (3.3)

and an exclusive envelope correspondingly if

T (X) ≤ T(α) ⇐⇒ ∃t ∈ I : X1(t) ≤ X
(α)
low(t) or X1(t) ≥ X(α)

upp(t). (3.4)

Remark 3.1. Although the an envelope test fulfilling (3.3) or (3.4) rejects if the
observation leaves the acceptance region on either side, it is essentially a one sided
test through the test statistic T , and it is not controlled how many of the rejections
are due to the observation exceeding the upper envelope or going below the lower
envelope.

Myllymäki et al.’s (2013b) global rank test

The global rank test compares observed and simulated curves by pointwise upward
and downward ranks. Let R�

i (t) denote the rank of Xi(t) among X1(t), . . . , Xn(t),
starting with rank 1 for the smallest value, and R�

i (t) the corresponding downward
rank. In the case of ties, mid or maximal ranks are used. From these ranks, the
pointwise extreme rank

R�i (t) = min(R�
i (t), R

�
i (t))

is calculated that measures how “extreme” Xi(t) is within the sampleX1(t), . . . , Xn(t).
The overall test statistic is then

Ri = min
t∈I

R�i (t).

The pointwise ranks R�i (t) cannot take other values than 1, 2, . . . , dn/2e. Conse-
quently, the distribution of Ri is also concentrated on these values, and ties occur
with probability one. To account for the ties, an interval (p−, p+] is reported instead
of a single p-value, with

p− =
1

n

n∑

i=1

1(Ri < R1) and p+ =
1

n

n∑

i=1

1(Ri ≤ R1).

The corresponding tests

ϕlib(X) = 1(p− ≤ α) and ϕcons(X) = 1(p+ ≤ α)

are liberal and conservative, respectively. Note that p+ is equal to the conservative
Monte Carlo p-value given in (2.4), and thus ϕcons is equal to the test ϕα given
in (2.6). Myllymäki et al. (2013b) describe the construction of an envelope that
matches this p-interval. They determine a critical rank kα ∈ N that fulfils

n∑

i=1

1(Ri < kα) ≤ αn <
n∑

i=1

1(Ri < kα + 1)
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and let
X

(α)
low(t) = X(t)[�kα] and X(α)

upp(t) = X(t)[�kα],

where X(t)[�k] is the k-th smallest and X(t)[�k] is the k-th largest value among
X1(t), . . . , Xn(t). The authors show that

• the inclusive envelope test is equivalent to the conservative test based on p+,
i.e., ϕenv+(X1) = ϕcons(X) for all X,

• X1 stays inside the exclusive envelope if and only if p− > α,

• X1(t) coincides with the bounding curves but does not exit the envelope if and
only if p− ≤ α < p+.

4 Envelope test based on cdf transforms

The global rank test always yields more or less wide p-intervals, as a result of ties
in the test statistic R. These ties are due to the fact that the pointwise ranks that
constitute R only allow for a small set of possible values. Ties can be avoided by
replacing the pointwise ranks with pointwise estimated cdf transforms as described
in the following.

Instead of the upward pointwise rank R�
i (t), we use an empirical cdf transform

U�
i (t) = F �(Xi(t)), and the downward rank is replaced by the value U�

i (t) of an
empirical survival function F �. The functions F � and F � are bijective empirical
versions of the cdf or survival function of the random variable X0(t), and map the
support of X0 onto [0, 1]. They have the form F (.;x1, . . . , xn), based on realizations
x1, . . . , xn of X0(t), and are required to fulfil

y ∈ {x1, . . . , xn} =⇒ F �(y;x1, . . . , xn) =
1

n+ 1

n∑

i=1

1(xi ≤ y) and

F �(y;x1, . . . , xn) =
1

n+ 1

n∑

i=1

1(xi ≥ y). (4.1)

The corresponding inverse functions are denoted F �−1 and F �−1. How such functions
can be constructed is explained later.

Similar as with the pointwise upward and downward ranks in the rank based
envelope test, a pointwise transform U�i (t) is calculated for each of the curves Xi(t),
i = 1, . . . , n, with

U�i (t) = min(U�
i (t), U�

i (t)). (4.2)

In order to avoid ties, the empirical functions used to calculate U�i are based on the
remaining curves, that is

U�
i (t) = F �(Xi(t);X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)) (4.3)

and
U�
i (t) = F �(Xi(t);X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)). (4.4)
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The smallest pointwise value

Ui = inf
t∈I

U�i (t) (4.5)

can be seen as a measure of how extreme the curve Xi appears among X1, . . . , Xn.
Since F � and F � are strictly monotone, ties in the Ui can only occur where there are
pointwise ties in the original data. This event has zero probability if the distribution
of the Xi(t) is absolutely continuous in all t. This is not always the case in applica-
tions — for example, estimates of the K-function used in point process testing take
the value 0 for small argument t with positive probability. The property (4.1) of F �

and F � however ensures that in these cases, the corresponding U�i (t) are relatively
large and thus unlikely to contribute to Ui and in particular to the critical bound
U(α) which is determined as explained in Section 2. Since ties between the U[bαnc]
are virtually impossible, it is U[bαnc] < U[bαnc+1] with probability one or close to one,
and according to (2.7), the corresponding test ϕα is (close to) exact.

Corresponding envelope

The bounding curves of a (1− α)-envelope are obtained as the “empirical pointwise
quantiles”

Xlow(t) = F �−1(U(α);X2(t), . . . , Xn(t)),

and
Xupp(t) = F �−1(U(α);X2(t), . . . , Xn(t)). (4.6)

Proposition 4.1. The exclusive envelope test ϕenv− using bounding curves given by
(4.6) is equivalent to the Monte Carlo significance test ϕα using test statistic U .

Proof. We need to show that (3.4) is fulfilled. By (4.5), U1 ≤ U(α) ⇐⇒ U�1 (t) ≤
U(α) for some t ∈ I, that is, as U�1 (t) = min(U�

1 (t), U�
1 (t)), either U�

1 (t) ≤ U(α) or
U�
1 (t) ≤ U(α). Since the functions F �−1 and F �−1 are bijective,

U�
1 (t) ≤ U(α) ⇐⇒ F �−1(U�

1 (t)) ≥ F �−1(U(α)) ⇐⇒ X1(t) ≥ Xupp(t)

and
U�
1 (t) ≤ U(α) ⇐⇒ F �−1(U�

1 (t)) ≤ F �−1(U(α)) ⇐⇒ X1(t) ≤ Xlow(t),

that is,
U1 ≤ U(α) ⇐⇒ ∃t ∈ I : X1(t) /∈ (Xlow(t), Xupp(t)).

Here, we wrote short F (.) = F (.;X2(t), . . . , Xn(t)).

Construction of the functions F � and F �

By symmetry, it is enough to consider the empirical cdf, F �. Assuming a fixed set
x1, . . . , xn of data, write short F �(y) for F �(y;x1, . . . , xn). Without loss of generality,
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let the set be ordered, x1 ≤ x2 ≤ · · · ≤ xn. The requirement (4.1) yields the
restriction

F �(y) =
1

n+ 1

n∑

i=1

1(xi ≥ y), y ∈ {x1, . . . , xn}. (4.7)

Between these values, F � is obtained by linear interpolation,

F �(y) =
(xi+1 − y)F �(xi) + (y − xi)F �(xi+1)

xi+1 − xi
, xi < y < xi+1. (4.8)

F �(y) needs to be explained on the whole assumed support S. The upper tail is not
relevant for the construction of the tests (and nor so is lower tail of F �). To find the
lower tail, we distinguish between bounded and unbounded support. If S is bounded
below, the lower tail is simply found by interpolation,

F �(y) =
(x1 − y)

x1 − x0
F �(x1), y < x1, x0 = min(S). (4.9)

If the support is not bounded below, F � has to be extended by a strictly monotone
increasing function with F �(y)→ 0 for y → −∞. When the form of the tail distri-
bution is known from the model X0(t), this information can be used. Otherwise a
practical solution is to attach a suitable exponential tail,

F �(y) = F �(x1) exp(−λ(x1 − y)), (4.10)

where it is natural to set the parameter λ such that F � is differentiable in x1.
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