
www.csgb.dk

RESEARCH REPORT 2015

CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

I.T. Andersen and U. Hahn

Matérn thinned Cox processes

No. 08, June 2015



Matérn thinned Cox processes

I.T. Andersen1,2 and U. Hahn1

1Department of Mathematics, Aarhus University
2Stereological Research Laboratory, Department of Clinical Medicine, Aarhus University

Abstract

A new class of spatial point process models that combines short range repul-
sion with medium range clustering is introduced. The model is motivated by
patterns of centres of non-overlapping spherical cells in biological tissue which
tend to have a clustering behaviour. Such a combination of clustering and hard
core behaviour can be achieved by applying a dependent Matérn thinning to
a Cox process. An exact formula for the intensity of a Matérn thinned shot
noise Cox process is derived from the Palm distribution. For the more general
class of Matérn thinned Cox processes, formulae for the intensity and second-
order characteristics are established using the conditional Poisson assumption.
These formulae include more complicated integrals for which approximations
are suggested to simplify calculations. An example from pathology illustrates
the applicability of the models.

Keywords: Cox process, Dependent thinning, Matérn’s hard core process, pair
correlation function, Palm retention probability, point process

1 Introduction

The existing point process literature provides models for a variety of interactions
between points, of which the models that allow for simple statistical inference often
are those used in applications. Most models yield point patterns with either clus-
tering or hard core behaviour; however in practical applications, one may observe
both types of interaction on different scales simultaneously. One such example is the
pattern formed by centres of cells in cell clusters – the centres cannot come closer
than the diameter of the cells, but nevertheless they show clustering on a mid range
of spatial distance. This example has motivated the present study. In the litera-
ture, such cases are often modelled by Gibbs point processes with an appropriate
interaction function, as e.g. in Mattfeldt et al. (2006, 2007). While they have an intu-
itive physical interpretation through the interaction function, theoretical properties
and summary statistics of Gibbs models are accessible only by simulation. Another
modelling option is to start with a stationary hard core process and obtain a clus-
tered behaviour by independent thinning with probability according to a random
field. Second-order summary statistics of these so-called interrupted point processes

1



(Stoyan, 1979; Lavancier and Møller, 2015) can be obtained straightforwardly from
the properties of the hard core process and the random field. In particular if the
random field can take zero values, such as a Boolean model, this approach yields a
clustered appearance. However, the spatial arrangement of points inside the clusters
is influenced by “invisible” points outside the clusters that have been thinned from
the original homogeneous pattern, which, depending on the application, may seem
less natural from a physical point of view.

In the present paper, we introduce and investigate a new class of mathemati-
cally tractable point process models that combine clustering and hard core prop-
erty, namely by applying dependent Matérn type II thinning (Matérn, 1960, 1986)
to a clustered Cox process (Cox, 1955; Møller and Waagepetersen, 2004). In a nut-
shell, Matérn’s thinning algorithms remove points from an existing pattern that
have neighbours that are closer than a given hard core distance h. The thinning
condition can be interpreted as the condition that balls with diameter h attached to
the points may not overlap. In recent years, generalizations of Matérn’s hard core
models have appeared in the literature. These papers modify the thinning condi-
tion, by replacing the non overlapping balls with more general (random) convex sets
(Månsson and Rudemo, 2002; Kiderlen and Hörig, 2013), or by thinning according
to more general functions of the distance between points (Teichmann et al., 2013),
but they still are confined to thinning a homogeneous Poisson point process, as in
Matérn’s original work. To our knowledge, the Matérn thinning rules have not yet
been applied to other point process models. We focus on Cox point processes since
they are a very flexible class for clustered patterns, but the general framework of
Palm retention probabilities used for calculating first and second order intensities,
as derived in Section 3, can directly be applied to other point processes with known
Palm distribution.

The paper is organized as follows. In Section 2 we give a short theoretical overview
of the applied standard point process models, and we recall some of their properties.
In Section 3 we derive general expressions for Palm retention probabilities obtained
after a Matérn type II thinning procedure. These probabilities are important in the
analysis of Matérn thinned Cox processes, defined in Section 4. Sample realizations
and theoretical results with respect to Palm retention probabilities, first- and second-
order characteristics of the Matérn thinned Cox processes are also presented in
Section 4. Simple approximations are suggested in Section 5, for which the quality
is supported by simulations of two examples of Matérn thinned Cox processes, the
Matérn thinned Matérn cluster process (MCP) and the Matérn thinned Thomas
process (TP). The applicability of the new class of point processes is illustrated in
Section 6 by means of an example from pathology of patterns of megakaryocytes in
bone marrow. Finally, a short discussion is found in Section 7 and all the included
proofs are found in the Appendix.

2 Preliminaries

This section introduces the notation and basic properties of the point process models
considered in this paper. References for detailed description of the theory of point
processes include Stoyan et al. (1995); Illian et al. (2008); Møller and Waagepetersen
(2004).
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2.1 Spatial point processes

LetNlf denote the set of locally finite subsets of the d-dimensional Euclidean space Rd,
equipped with an appropriate σ-algebra Nlf. Then, a spatial point process X is a
random variable taking values in Nlf. Assume X has well-defined intensity function
ρ(·) and second-order product density ρ(2)(·, ·), such that the intensity measure α
and the second factorial moment measure α(2) are given by

α(B) = E
[∑

ξ∈X
1(ξ ∈ B)

]
=

∫

B

ρ(ξ) dξ,

α(2)(B1 ×B2) = E
[∑ 6=

ξ,η∈X
1(ξ ∈ B1, η ∈ B2)

]
=

∫

B1

∫

B2

ρ(2)(ξ, η) dξ dη,

for B, B1 and B2 in the Borel σ-algebra B on Rd. Here
∑6= denotes summation over

distinct pairs. The interaction between pairs of points can be described by the pair
correlation function

g(ξ, η) = ρ(2)(ξ, η)/(ρ(ξ)ρ(η)).

The process is said to be stationary if its distribution is translation invariant.
Stationarity implies that the intensity function is constant and that ρ(2)(ξ, η) =
ρ(2)(ξ − η). The process is said to be isotropic if its distribution is invariant with
respect to rotations around the origin. For stationary and isotropic point processes,
we have ρ(2)(ξ, η) = ρ(2)(‖ξ − η‖). In this case, the pair correlation function is effec-
tively a function on R, g(r) = ρ(2)(r)/ρ2, r ∈ R, and the function can be interpreted
as the mean number of points at distance r from a “typical” point in X, relative to
the mean number for a Poisson process. Here “typical” point is to be understood by
means of Palm distribution theory. For the reduced Palm distribution in a point ξ,
we will use the notation P!

ξ, which can be interpreted as the conditional distribution
of X\ξ given ξ ∈ X (Møller and Waagepetersen, 2004, p. 249).

2.2 Cox processes

Let {Λ(x)} be a non-negative random field, which is almost surely locally integrable
with respect to the Lebesgue measure. A point process X is by definition a Cox
process with driving field Λ, if conditionally on Λ, X is a Poisson process with
intensity function Λ (Cox, 1955; Møller and Waagepetersen, 2004). It follows from
the conditional behaviour of X, that the intensity function and the second-order
product density are given by

ρ(x) = E[Λ(x)] and ρ(2)(x, y) = E[Λ(x)Λ(y)]. (2.1)

Furthermore, the void probability for bounded B ∈ B is given by

P(X ∩B = ∅) = E
[
exp
(
−
∫

B

Λ(ξ) dξ
)]
, (2.2)
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and the generating functional GX(f) = E[
∏

ξ∈X f(ξ)] for a function f : Rd → [0, 1]
is

GX(f) = E
[
exp
(
−
∫

Rd
(1− f(ξ))Λ(ξ) dξ

)]
, (2.3)

cf. Møller and Waagepetersen (2004, p. 60). A Cox process is stationary and isotropic
if the driving field Λ is stationary and isotropic.

Shot noise Cox processes (SNCPs) are characterized by random intensity func-
tions of the form

Λ(ξ) =
∑

(c,γ)∈Φ

γk(c, ξ), (2.4)

where Φ is a Poisson process of cluster centres and cluster intensities on Rd×(0,∞)
with a locally finite diffuse intensity measure denoted by ζ, and k(c, ·) is a kernel, i.e.
a probability density function on Rd. See more details in Møller (2003). SNCPs can
be regarded as Poisson cluster processes, as X|Φ is distributed as the superposition
of independent Poisson processes X(c,γ), (c, γ) ∈ Φ, with intensity functions γk(c, ·).

Neyman-Scott processes (NSPs) (Neyman and Scott, 1958), which are also Cox
processes, can be regarded as a particular case of SNCPs with constant γ in (2.4).
In the stationary case, Λ takes the form

Λ(ξ) =
∑

c∈C
µk(ξ − c), (2.5)

where C is a stationary Poisson process on Rd with intensity κ > 0, say. The intensity
for a stationary NSP is ρ = µκ. Two examples of well-known stationary NSPs are
given below. These processes will be used throughout the paper to show how the
general formulas simplifies in concrete examples.

Example 1 (Matérn cluster process). A simple and popular NSP is the Matérn
cluster process (MCP) (Matérn, 1960, 1986), where the kernel

k(ξ) = 1(‖ξ‖ ≤ R)/|b(o,R)|

is the uniform density on a ball b(o,R) centered at the origin and of radius R > 0.
Here and in the following, |B| denotes the volume of a set B. Note that a MCP is
distributed as

⋃
c∈C Xc, where Xc|C is a stationary Poisson point process on b(c, R)

with mean number of points µ > 0, and where Xc, c ∈ C, are mutually independent
and independent of C.

Example 2 (Thomas process). The class of NSPs also includes Thomas processes
(TPs) (Thomas, 1949), where the kernel

k(ξ) = exp(−‖ξ‖2/2σ2)/(2πσ2)d/2

is the density for d independent normally distributed variables with mean 0 and
variance σ2 > 0. As for the MCP, the TP can be constructed as a Poisson cluster
process.

4



The reduced Palm distribution P!
ξ of a SNCP takes a particularly simple form, as

it is just the distribution of X superposed with an independent cluster containing ξ.
This turns out to be useful in the following sections. The result is restated below.
The proof may be found in Møller (2003, Proposition 2).

Proposition 1 (Reduced Palm distribution of SNCPs). Let X be a SNCP with
random intensity of the form (2.4). For ρ(ξ) > 0, let

Λξ(η) = γξk(cξ, η), η ∈ Rd,

where (cξ, γξ) is a random variable with distribution

P((cξ, γξ) ∈ D) =

∫
D
γk(c, ξ) dζ(c, γ)

ρ(ξ)
, for Borel sets D ⊆ Rd×(0,∞).

Let Xξ|(cξ, γξ) be a Poisson process with intensity function Λξ and let (cξ, γξ, Xξ) be
independent of (Φ, X). Then, for Lebesgue almost all ξ with ρ(ξ) > 0,

P!
ξ(F ) = P(X ∪Xξ ∈ F ), F ∈ Nlf.

2.3 Matérn’s hard core models

Matérn (1960, 1986) introduced three hard core models, obtained by dependent
thinning of a stationary Poisson process, according to a hard core distance h > 0.
These models are known as Matérn’s processes of types I, II and III. The most simple
model, based on Matérn type I thinning, solely depends on the point configuration
of the original process. All points with a neighbour closer than the distance h are
deleted, and this thinning rule results in the most sparse process. In contrast, the
most popular thinning algorithm, the Matérn type II thinning, depends also on
independent “arrival time” marks, which are attached to the points of the original
Poisson process. The hard core property is then achieved by removing points if there
are other points within a distance h with a smaller mark. Naturally, the intensity
of the type II model becomes higher than that for the type I model. To increase
the intensity further, Matérn proposed an iterative procedure, where a point is only
influenced by other points that have not already been deleted (type III model).
Due to the resulting long range dependence, closed forms for the summary statistics
of the type III model do not exist, and therefore we only consider Matérn type II
thinning in this paper.

3 Palm retention probabilities for Matérn type II
thinned processes

An important tool in analysing the Matérn thinned Cox processes is calculation of
Palm retention probabilities. They have the intuitive interpretation as the proba-
bility that a given point (or a pair of points) that is present in the original pattern
“survives” the thinning. In this section, we derive expressions for these probabilities,
valid for an arbitrary point process X.
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Let the mark attached to a point ξ ∈ X of the point process be denoted mξ.
The marks are assumed independent, continuously and identically distributed, and
independent of X. Without loss of generality, the marks will be assumed to be
uniformly distributed on [0, 1) (Stoyan and Stoyan, 1985). Let XM = {(ξ,mξ)|ξ ∈
X,mξ ∼ unif[0, 1)} denote the marked process. The Matérn type II thinned process
is then given by

MatII(XM ;h) := {ξ ∈ X | ∀(η,mη) ∈ XM , η 6= ξ : ‖ξ − η‖ > h ∨mη > mξ}. (3.1)

The ratio between the intensity function ρth of the thinned processXth = MatII(XM ;h)
and the intensity function ρ of the original process X can be interpreted as a reten-
tion probability

pret(ξ) := ρth(ξ)/ρ(ξ). (3.2)
The probability will be called the Palm retention probability, since it can be expressed
in terms of the reduced Palm distribution P!

(ξ,mξ)
for the marked process XM . In fact,

pret(ξ) =

∫ 1

0

pret(ξ,mξ) dmξ, (3.3)

where
pret(ξ,mξ) = P!

(ξ,mξ)
(F (ξ,mξ;h)), (3.4)

and F (ξ,mξ;h) is the set of marked point patterns xM , for which the point ξ with
mark mξ is retained in the thinned process,

F (ξ,mξ;h) := {xM | ∀(η,mη) ∈ xM : ‖ξ − η‖ > h ∨mη > mξ}.
A proof of (3.3) can be found in the Appendix.

Second- and higher-order Palm retention probabilities can be treated analogously.
Let ρ(2)

th and ρ(2) denote the second-order product density of Xth and X, respectively.
Then, the second-order retention probability is defined by

p
(2)
ret(ξ, η) := ρ

(2)
th (ξ, η)/ρ(2)(ξ, η). (3.5)

As in (3.3) and (3.4), we have

p
(2)
ret(ξ, η) =

∫ 1

0

∫ 1

0

p
(2)
ret((ξ,mξ)(η,mη)) dmξ dmη (3.6)

with

p
(2)
ret((ξ,mξ), (η,mη)) = 1(‖ξ − η‖ > h)P!

(ξ,mξ),(η,mη)(F (ξ,mξ;h) ∩ F (η,mη;h)).

(3.7)

Here, P!
(ξ,mξ)(η,mη) is the two-point reduced Palm distribution for XM (Hanisch, 1982,

p. 172). A proof of (3.6) can be found in the Appendix.
In cases where it is possible to calculate the retention probabilities, the intensity

and second-order product density of the thinned process can be obtained by mul-
tiplying the ones for the original process with the retention probabilities. If Xth is
obtained by thinning a stationary and isotropic point process X, Xth will likewise
be stationary and isotropic, and the intensity and second-order product density are
given by

ρth = pretρ and ρ
(2)
th (r) = p

(2)
ret(r)ρ

(2)(r). (3.8)
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4 Matérn thinned Cox processes

A Matérn (type II) thinned Cox process is defined as follows.

Definition 1. A Matérn thinned Cox process with parameters (Λ, h) is a point
process given by

MTCP(Λ, h) := {ξ ∈ X | ∀(η,mη) ∈ XM , η 6= ξ : ‖ξ − η‖ > h ∨mη > mξ}, (4.1)

where X is a Cox process with driving field Λ and XM = {(ξ,mξ) | ξ ∈ X,mξ ∼
unif[0, 1)} is the marked process with i.i.d. uniform marks.

Sample realizations of Matérn thinned MCPs and TPs in R2 are shown in Fig-
ure 1.

For Matérn thinned Cox processes, there exist (at least) two possible methods to
derive the intensity function and the second-order product density for the thinned
process. Either one can try to calculate the retention probabilities in (3.3) and (3.6)
directly, or one can use the standard approach for Cox processes, and first condition
on the random intensity function, and then calculate the retention probabilities given
the random intensity function. The first approach is in general more difficult, but
as we shall see in Theorem 2 below it is possible to find explicit expressions for the
first-order retention probability for Matérn thinned SNCPs. A proof of Theorem 2
can be found in the Appendix.

Theorem 2 (Retention probabilities of Matérn thinned SNCPs). The first-order
Palm retention probability (3.3) of MTCP(Λ, h) with shot noise driving field Λ spec-
ified by (2.4) is given by

pret(ξ) =

∫ 1

0

exp
(
−
∫

Rd×(0,∞)

pξ,m(c, γ) dζ(c, γ)
)

×
(∫

Rd×(0,∞)

γ(1− pξ,m(c, γ))
k(c, ξ)

ρ(ξ)
dζ(c, γ)

)
dm,

where

pξ,m(c, γ) = 1− exp
(
−m

∫

b(ξ,h)

γk(c, η) dη
)
.

From Theorem 2 we can easily derive the retention probabilities for Matérn
thinned NSPs.

Corollary 3 (Retention probabilities of Matérn thinned NSPs). The first-order
Palm retention probability (3.3) of MTCP(Λ, h) with Neyman-Scott driving field Λ
specified by (2.5) with µ, κ > 0 is given by

pret =

∫ 1

0

exp
(
−κ
∫

Rd
pm(c) dc

)(∫

Rd
(1− pm(c))k(−c) dc

)
dm,

where

pm(c) = 1− exp
(
−µm

∫

b(o,h)

k(η − c) dη
)
.
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Figure 1: Sample realizations of Matérn thinned MCPs (left) and Matérn thinned TPs
(right) in observation window W = [0, 1]2, with four choices of parameters, all with inten-
sities ρth ≈ 150 and κ = 25.
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Further simplifications are possible in the case of isotropy, which is illustrated in
Example 3 and 4 for the Matérn thinned MCPs and Matérn thinned TPs, respec-
tively.

Example 3 (Example 1, continued). For d = 2, the first-order Palm retention
probability of a Matérn thinned MCP reduces to

pret =

∫ 1

0

exp
(
−2πκ

∫ R+h

0

pm(r)r dr
)(

2/R2

∫ R

0

(1− pm(r))r dr
)

dm, (4.2)

where

pm(r) = pm(‖ξr‖) = 1− exp(−µm|b(o, h) ∩ b(ξr, R)|/(πR2)).

Example 4 (Example 2, continued). For d = 2, the first-order Palm retention
probability of a Matérn thinned TP reduces to

pret =

∫ 1

0

exp
(
−2πκ

∫ ∞

0

pm(r)r dr
)

×
(

1/σ2

∫ ∞

0

(1− pm(r)) exp(−r2/(2σ2))r dr
)

dm, (4.3)

where

pm(r) = 1− exp
(
−µm/(2πσ2)

×
∫ h

−h

∫ √h2−η22

−
√
h2−η22

exp(−(η2
1 + (η2 − r)2)/(2σ2)) dη1 dη2

)
.

For general Matérn thinned Cox processes the intensity function and the second-
order product density can be determined by conditioning on the random intensity
function.

Theorem 4 (Intensity function and second-order produkt density of Matérn thinned
Cox processes). Assume Λ is a driving field of a Cox process that almost surely fulfils

Λ(ξ) > 0 ⇒
∫

b(ξ,r)

Λ(η) dη > 0, for all r > 0, (4.4)

which can be regarded as the assumption, that the random intensity function almost
surely has no singularities.

Then for MTCP(Λ, h), the intensity function and second-order product density
are given by

ρth(ξ) = E
[
pret|Λ(ξ)Λ(ξ)

]
(4.5)

and

ρ
(2)
th (ξ, η) = E

[
p

(2)
ret|Λ(ξ, η)Λ(ξ)Λ(η)

]
(4.6)
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for ‖ξ − η‖ > h, otherwise 0, where for Λ(ξ) and Λ(η) > 0,

pret|Λ(ξ) =
1−exp(−Ωξ)

Ωξ
(4.7)

and

p
(2)
ret|Λ(ξ, η) =

1−exp(−Ωξ)

ΩξΩη\ξ
+ 1−exp(−Ωη)

ΩηΩξ\η
− 1−exp(−Ωξ∪η)

Ωξ∪η

(
1

Ωξ\η
+ 1

Ωη\ξ

)
, (4.8)

with Ω∗ =
∫
b∗

Λ(τ) dτ , and bξ = b(ξ, h), bξ\η = b(ξ, h)\b(η, h), and bξ∪η = b(ξ, h) ∪
b(η, h).

A proof of Theorem 4 may be found in the Appendix. If the original process
is an inhomogeneous Poisson process (corresponding to a Cox process case, where
Λ(ξ) = ρ(ξ) is deterministic), the retention probabilities reduce to

pret(ξ) =
1− exp(−ωξ)

ωξ
(4.9)

and

p
(2)
ret(ξ, η) =

1−exp(−ωξ)
ωξωη\ξ

+ 1−exp(−ωη)

ωηωξ\η
−
(

1−exp(−ωξ∪η)

ωξ∪η

)(
1

ωξ\η
+ 1

ωη\ξ

)
(4.10)

for ‖ξ− η‖ > h, otherwise 0, where ω∗ =
∫
b∗
ρ(ϑ) dϑ and bξ is defined in Theorem 4.

In the stationary and isotropic case (corresponding to the Matérn type II model),
the intensity is given by

ρth =
1− exp(−ρτh)

τh
, (4.11)

and the second-order product density is given by

ρ
(2)
th (r) =





0, r ≤ h,

2Γh(r)(1− exp(−ρτh))− 2τh(1− exp(−µΓh(r)))

τhΓh(r)(Γh(r)− τh)
, r > h,

(4.12)

where ρ is the intensity of the process before thinning, τh = |b(o, h)|, Γh(r) =
|b(o, h) ∪ b(ξr, h)|, ξr ∈ Rd with ‖ξr‖ = r. These formulas may also be found in e.g.
Matérn (1960) and Stoyan et al. (1995).

5 First- and second-order approximations

5.1 Derivation of approximations

The expected values in the expressions for ρth(ξ) and ρ(2)
th (ξ, η), given by Equations

(4.5) and (4.6) in Theorem 4, are in general hard to calculate explicitly. Therefore, it
can be useful to derive approximations. We will approximate the intensity function
and second-order product density of a Matérn thinned Cox process by

ρa(ξ) := E[pa|Λ(ξ)Λ(ξ)], (5.1)
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and
ρ(2)

a (ξ, η) := E[p
(2)
a|Λ(ξ, η)Λ(ξ)Λ(η)], (5.2)

for ‖ξ − η‖ > h, otherwise 0, where pa|Λ(ξ) and p(2)
a|Λ(ξ, η) are obtained by replacing

Ω∗ in the retention probabilities (4.7) and (4.8) with the following approximations

Ωξ =

∫

b(ξ,h)

Λ(ϑ)dϑ ≈ Λ(ξ)τh, (5.3)

Ωξ∪η =

∫

b(ξ,h)∪b(η,h)

Λ(ϑ)dϑ ≈ (Λ(ξ) + Λ(η))Γh(r)/2, (5.4)

Ωξ\η =

∫

b(ξ,h)\b(η,h)

Λ(ϑ)dϑ ≈ Λ(ξ)(Γh(r)− τh), (5.5)

where r = ‖ξ − η‖, τh = |b(o, h)|, Γh(r) = |b(o, h)∪ b(ξr, h)|, ξr ∈ Rd, with ‖ξr‖ = r.
Simple formulas for the approximated intensity function and second-order product
density can then be found.

Theorem 5 (First- and second-order approximations for Matérn thinned Cox pro-
cesses). The approximated intensity function and second-order product density of a
MTCP(Λ, h), defined by (5.1) and (5.2), are given by

ρa(ξ) = 1−E[exp(−Λ(ξ)τh)]
τh

(5.6)

and

ρ(2)
a (ξ, η) = Γh(r)(2−E[exp(−Λ(ξ)τh)]−E[exp(−Λ(η)τh)])−2τh(1−E[exp(−(Λ(ξ)+Λ(η))Γh(r)/2)])

τhΓh(r)(Γh(r)−τh)
(5.7)

for ‖ξ − η‖ = r > h, otherwise 0.

The proof of Theorem 5 may be found in the Appendix. From Theorem 5 we
can derive the approximated intensity function and second-order product density
for Matérn thinned SNCPs.

Corollary 6 (First- and second-order approximations for Matérn thinned SNCPs).
For SNCPs with driving field Λ given by (2.4), the expected values in Theorem 5 are
for ‖ξ − η‖ = r given by

E[exp(−Λ(ξ)τh)] = exp(−a(ξ)), (5.8)
E[exp(−(Λ(ξ) + Λ(η))Γh(r)/2)] = exp(−b(ξ, η)), (5.9)

where

a(ξ) =

∫

Rd×(0,∞)

(1− exp(−γk(c, ξ)τh)) dζ(c, γ),

b(ξ, η) =

∫

Rd×(0,∞)

(1− exp(−γ{k(c, ξ) + k(c, η)}Γh(r)/2)) dζ(c, γ).
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For stationary Matérn thinned NSPs with driving field Λ given by (2.5), a(ξ) and
b(ξ, η) reduce to

a = κ

∫

Rd
(1− exp(−µk(ϑ)τh)) dϑ,

b(ξ − η) = κ

∫

Rd
(1− exp(−µ{k(ξ − η + ϑ) + k(ϑ)}Γh(r)/2)) dϑ.

The formulas become particularly simple for stationary and isotropic Matérn
thinned NSPs, which is illustrated in Example 5 and 6 for Matérn thinned MCPs
and Matérn thinned TPs in the plane.

Example 5 (Example 1, continued). For d = 2, k(ξ) = 1(‖ξ‖ ≤ R)/(πR2) and
b(ξ − η) = b(‖ξ − η‖), say, a and b in Corollary 6 for Matérn thinned MCPs reduce
to

a = κπR2(1− exp(−µh2/R2)) and
b(r) = 2κ(1− exp(−µΓh(r)/(2πR

2)))(ΓR(r)− πR2)

+ κ(1− exp(−µΓh(r)/(πR
2)))(2πR2 − ΓR(r)).

Example 6 (Example 2, continued). For d = 2, k(ξ) = exp(−‖ξ‖2/(2σ2))/(2τσ)
and b(ξ−η) = b(‖ξ−η‖), say, a and b in Corollary 6 for Matérn thinned TPs reduce
to

a = 2πκ

∫ ∞

0

(1− exp[−µh2/(2σ2) exp(−r2/(2σ2))])r dr,

b(r) = κ

∫

R

∫

R
(1− exp(−µ{exp(−(ϑ2

1 + ϑ2
2)/(2σ2))+

exp(−(ϑ2
1 + (ϑ2 − r)2)/(2σ2))}Γh(r)/(4πσ2))) dϑ1 dϑ2.

Combining Theorem 5 and Corollary 6, the approximated intensity function and
the second-order product density for stationary and isotropic Matérn thinned NSPs
simplify to

ρa =
1− exp(−a)

τh
, (5.10)

and for r > h,

ρ(2)
a (r) =

2Γh(r)(1− exp(−a))− 2τh(1− exp(−b(r)))
τhΓh(r)(Γh(r)− τh)

. (5.11)

The approximated pair correlation function is defined by ga(ξ, η) := ρ
(2)
a (ξ, η)/(ρa(ξ)ρa(η)).

For stationary and isotropic Matérn thinned NSPs, we find

ga(r) =
ρ

(2)
a (r)

ρ2
a

=
2Γh(r)τh(1− exp(−a))− 2τ 2

h(1− exp(−b(r)))
Γh(r)(Γh(r)− τh)(1− exp(−a))2

. (5.12)
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5.2 Properties of the approximations in Matérn thinned
MCPs and Matérn thinned TPs.

In order to examine the quality of the approximations ρa and ga in (5.10) and (5.12),
Matérn thinned MCPs and Matérn thinned TPs have been considered in the plane
for different combinations of the parameters.

The approximated intensity ρa is compared to the theoretical intensity ρth =
pretρ, where pret is found from (4.2) in Example 3 for Matérn thinned MCPs and
(4.3) in Example 4 for Matérn thinned TPs (obtained by numerical integration). The
results are summarized in Figure 2, which shows the relative bias as a function of
the hard core distance h, relative to the cluster radius R, for the nine combinations
of parameters (κ, µ) indicated in the figure. For Matérn thinned MCPs, R is simply
the radius for which the kernel is positive, while for the Matérn thinned TPs, R is
determined such that

∫

R2

k(‖ξ‖)1(‖ξ‖ ≤ R) dξ ≈ 95%.

For Matérn thinned MCPs, ρa yields a negative, but relatively small bias, when
h is reasonable small compared to R. For Matérn thinned TPs, ρa approximates
ρth very well. To asses the quality of the approximation for the pair correlation
function (pcf), ga is compared to an estimated theoretical pcf obtained by averaging
500 empirical estimates from sample realizations. We consider four combinations of
parameter values for each of the two types of processes, Matérn thinned MCPs and
Matérn thinned TPs. See Figure 1 for parameter details and sample realizations.

For the simulated point patterns from each of the chosen combinations of pa-
rameters, non-parametric estimates ĝ(r) of the pcfs were found using the pcf.ppp
function from the spatstat package in R (Baddeley and Turner, 2005), with default
values of r, the Epanechnikov kernel, fixed kernel bandwidth parameter bw = h/

√
5,

translate for the choice of edge correction and divisor = d. Since the estimator
ĝ(r) is based on kernel smoothing, it is biased. In particular, it will assign values
ĝ(r) > 0 for r < h. One can show that ĝ(r) with the above choice of parameters is
a ratio unbiased estimator for the convolution of the true pair correlation function
with the kernel, see Fiksel (1988). We therefore consider the kernel smoothed version

g̃a(r) :=

∫
ga(s)k(r − s)ds (5.13)

when judging the quality of approximation by simulation.
In Figure 3, ga and g̃a are compared to estimated pcfs for Matérn thinned MCPs

(left) and Matérn thinned TPs (right). The grey areas mark pointwise central 95%-
regions. The black full drawn lines are the average estimated pcfs, and the red
stippled and full drawn lines represent ga and g̃a, respectively. The smooth versions
g̃a of ga are very similar to the average estimated pcfs in all cases considered, in
particular for the Matérn thinned MCPs.
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Figure 2: The relative bias of the approximated intensities of Matérn thinned MCPs (left)
and Matérn thinned TPs (right) from the theoretical intensities obtained by numerical in-
tegration. The bias is shown as a function of the hard core distance h, relative to the
cluster radius R. For Matérn thinned MCPs, R is simply the radius for which the kernel
is positive, while for Matérn thinned TPs, a comparable R is used. For details, see text.
In each sub-figure, nine different models are considered, corresponding to all the combina-
tions of three cluster intensities, κ = 10, 25 and 50 (unbroken, dashed and dotted lines,
respectively), and three mean number of points in a cluster before thinning, µ = 5, 15 and
25 (black, dark grey and light grey lines, respectively).
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Figure 3: For Matérn thinned MCPs (left) and Matérn thinned TPs (right) and each of
the parameter combinations (a)-(d) shown in Figure 1, estimates of the pcfs are shown
together with the approximated pcfs ga (red stippled lines). The estimates of the pcfs
are represented by the grey areas, which mark pointwise central 95%-regions, based on 500
simulations. The average pcfs, based on these simulations, are also shown (black full drawn
lines) as well as the smooth versions g̃a of ga (red full drawn lines).
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6 Applications

In this section, we consider point patterns describing the position of megakaryocytes
in bone marrow biopsy sections for a control group and three case groups with
hematopoietic stemcell disorders, essential thrombocythemia (ET), polycythemia
vera (PV) and primary myelofibrosis (PMF). The diseases result in an increased
number of megakaryocytes and different levels of clustering, which is used as di-
agnostic indicators in pathology. Pathologists determine the level of clustering (i.e.
no, “loose” and “dense” clustering) by a visual judgement following different vaguely
described rules, see e.g. Madelung et al. (2013); Vytrva et al. (2014) for further de-
tails. To the best of our knowledge, no precise quantitative measure for the degree
of clustering between megakaryocytes has been used in the existing literature within
the field of pathology and this is therefore the first time, point process theory has
been applied to measure the level of clustering in this application.

Megakaryocytes are large cells, which are easy to distinguish from other cells. See
Figure 4 for an illustrative example of megakaryocytes at high magnification. We
considered 1, 5, 3 and 4 biopsies for the control, ET, PMF and PV group, respec-
tively. One section per biopsy was scanned and divided into sub-sections, resulting
in 9, 13, 10 and 10 sub-sections, respectively. These were chosen as parts of the
sections, where the tissue was fairly regular and unbroken. For the case groups, the
sub-sections were of size 1540 µm× 1540 µm, but for the control group we chose
parts of different sizes to include enough cells for the point process analysis. In Fig-
ure 5, sub-section examples are shown for the four groups, where the tissue and
megakaryocytes have been outlined. The distinct clustering behaviour and low den-
sity in the pattern formed by the centres of the megakaryocyte profiles suggest that
Matérn thinned Cox processes are suitable models. In order to reveal differences
between the groups, we fitted Matérn thinned MCPs and Matérn thinned TPs to the
data. The hard core distance h is considered as a nuisance parameter. Considering
minimum point-to-point distances, we chose h = 25 µm. A preliminary investigation
showed that the results were not affected substantially by choosing other reasonable
values of h. To estimate the other model parameters, we applied the minimum con-
trast method in combination with the pcf (Diggle, 1983, Chapter 6). More concretely,
the estimated parameter vector θ̂ is found by a search algorithm as the minimizer
of the discrepancy measure

D(θ) =

∫ r2

r1

(ĝ(r)q − g(r; θ)q)2 dr

between the theoretical function g(·; θ) and its empirical non-parametric counter-
part ĝ, where r1, r2 and q are tuning parameters specified below. We estimated the
pair correlation functions for each group as average of pcfs estimated on the sub-
sections, using spatstat as described in Section 5.2. To avoid bias due to kernel
estimation, we replaced the theoretical pcf with the convoluted version g̃a given in
(5.13). The set of candidate parameters for the search of θ̂ was restricted to param-
eters that yield an approximated intensity ρa calculated from (5.10) to be equal to
the observed one.

The tuning parameters were set to r1 = 0, r2 = 200 µm, and q = 1. The value of
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Figure 4: A small part of a bone marrow biopsy section at high magnification. The bone
marrow consists mostly of blood forming cells, among them megakaryocytes, a few of which
have been outlined with red. On the section, huge white fat cells are also seen.

q can be used to add weight to the part of the functions most important for the anal-
ysis. The short range clustering seem to be of most importance in the pathological
application, thus we chose q = 1.

In Table 1 an overview of the fitted parameters are given for the Matérn thinned
MCP and Matérn thinned TP models. Besides the model parameters we also show
the usual non-parametric estimate for the intensity ρ̂th = #Cell/|W |, the estimate
for the mean number of cells in a cluster after thinning µ̂th = ρ̂th/κ̂ and the discrep-
ancy measure.

In Figure 6, we consider the four groups (top to bottom) and the fitted Matérn
thinned MCPs (left) and Matérn thinned TPs (right). The estimated pcf for each
group from the observed point patterns are shown as black full drawn lines. The
approximated pcfs ga for the Matérn thinned MCPs and Matérn thinned TPs with
fitted parameters are also shown, as well as the smooth versions g̃a (red stippled
and full drawn lines, respectively). The grey areas mark pointwise central 95%-
regions based on 500 simulations from the fitted Matérn thinned MCPs and Matérn
thinned TPs.

The fitted Matérn thinned MCPs and Matérn thinned TPs seem to capture
most of the behaviour of the pcfs from the observed point pattern, although we see
that the models slightly underestimate the level of clustering for short and large
range distances and slightly overestimate the level of clustering for medium range
distances. The Matérn thinned TPs result in slightly better fit, except for the PV
group, where the models are almost equally good (see the discrepancy measure in
Table 1).
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All groups indicate a clustering behaviour, but the control group can easily be
distinguished from the case groups due to the low intensity. The PMF group is the
most clustered group and seems to have a much higher mean number of cells per
cluster than the rest of the groups. The ET and PV group show similar behaviour
of the pcfs, with ET having slightly smaller clusters with fewer cells per cluster.

Table 1: Estimated parameters from fitting Matérn thinned MCPs and Matérn thinned
TPs to the observed point patterns using the estimated pcf for each group. Besides the
model parameters we also estimated the following quantities: the usual non-parametric
estimate for the intensity ρ̂th = #Cell/|W |, the estimate for the mean number of cells in
a cluster after thinning µ̂th = ρ̂th/κ̂ and the discrepancy measure.

Estimated parameters Groups and Matérn thinned models

Control ET PMF PV

MC T MC T MC T MC T

κ̂× 105 (per (µm)2) 3.95 3.44 2.59 2.57 1.48 1.48 2.38 2.39

R̂ or σ̂ (µm) 56.3 34.8 86.8 45.7 76.4 38.6 113 59.3
µ̂ 0.43 0.48 1.54 1.54 4.16 4.11 2.47 2.50
ρ̂th × 105 (per (µm)2) 1.58 1.58 3.62 3.62 4.74 4.74 5.25 5.25
µ̂th 0.40 0.46 1.40 1.41 3.21 3.21 2.21 2.20
Discrepancy measure 2.57 2.16 0.50 0.37 2.82 1.98 0.40 0.41
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Tissue images Binary images

control

ET

PMF

PV

Figure 5: Sub-section examples (1540 µm× 1540 µm) of the control, ET, PMF and PV
group. Tissue images and binary images are shown, where the tissue and cells have been
marked. The cells have been marked manually and they are represented by balls of radius
r = h/2 = 12.5 µm.
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Matérn thinned MCPs Matérn thinned TPs
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Figure 6: Group estimated pcfs from the observed point patterns are shown (black full
drawn lines) for the control, ET, PMF and PV group. The approximated pcfs as well as the
ones after smoothing (see details in the text) of the fitted models are shown (red stippled
and full drawn lines, respectively) for Matérn thinned MCPs (left) and Matérn thinned
TPs (right). The grey areas mark pointwise central 95%-regions based on 500 simulations
from the fitted models.
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7 Discussion

In the present paper, we have defined the new class of Matérn thinned Cox processes
and derived formulae for first- and second-order characteristics. Furthermore, we
have suggested approximations to simplify calculations. For Matérn thinned MCPs
and Matérn thinned TPs, the accuracy of the approximations were examined by
numerical integration (for the intensity) and by simulations (for the pair correla-
tion function), which indicates that the approximations capture most of the true
behaviour of the models. The approximations enable simple fitting of the models,
using e.g. the minimum contrast method, without the need of simulations. Model
fitting using both Matérn thinned MCPs and Matérn thinned TPs were performed in
a study of the pattern of megakaryocytes under different diseases. The models fitted
very well the observed behaviour of the estimated pcfs, resulting in a valid analysis
procedure to detect clustering of these cells, which is missing in the literature within
the field of pathology. As only a pilot study with few sections was available, a future
larger study must be performed to establish more robust conclusions for the groups
under considerations. The fitted Matérn thinned MCPs and Matérn thinned TPs are
very similar, and as numerical integration is only necessary for the approximations
of the more complicated Matérn thinned TPs, the Matérn thinned MCPs could very
well be preferred.

There are still some open questions regarding the approximations. It may be
possible to obtain results regarding upper bounds for the deviation between the
theoretical and approximated quantities. Furthermore, a thorough, future simulation
study of the Matérn thinned Cox processes is needed to investigate in detail for which
choices of parameters efficient estimation of the parameters is possible.
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A Proofs

Proof of (3.3). To show (3.3), letXMth denote the thinned marked process. Then,
the intensity measure of Xth is for B ∈ B given by

αXth(B) = αXMth(B × [0, 1)) = E
∑

(ξ,mξ)∈XM

h((ξ,mξ), XM\(ξ,mξ)),

where

h((ξ,mξ), XM\(ξ,mξ)) = 1(ξ ∈ B)1(XM\(ξ,mξ) ∈ F (ξ,mξ;h)).

Applying the Campbell-Mecke theorem (Møller and Waagepetersen, 2004, p. 249)
on the marked process XM and the function h((ξ,mξ), XM\(ξ,mξ)), we obtain

αth(B) =

∫

B

∫ 1

0

P!
(ξ,mξ)

(F (ξ,mξ;h)) dmξ ρ(ξ) dξ.

This equality holds for all B ∈ B, and therefore we have ρth(ξ) = pret(ξ)ρ(ξ) for
Lebesgue almost all ξ, where pret(ξ) is given by (3.3).

Proof of (3.6). To derive (3.6), we rewrite the second factorial moment measure
of the thinned process for B1, B2 ∈ B

α
(2)
th (B1 ×B2) = E

∑6=

(ξ,mξ),(η,mη)∈XM

h((ξ,mξ), (η,mη), XM\{(ξ,mξ), (η,mη)}),

where

h((ξ,mξ), (η,mη), XM\{(ξ,mξ), (η,mη)})
= 1((ξ, η) ∈ B1 ×B2)1(‖ξ − η‖ > h)1(XM\{(ξ,mξ), (η,mη)}
∈ F (ξ,mξ;h) ∩ F (η,mη;h)).

Using Hanisch (1982, (2.4) and (2.6)) with n = 2, we find

α
(2)
th (B1 ×B2)

=

∫

Rd

∫

Rd

∫ 1

0

∫ 1

0

E!
(ξ,mξ)(η,mη) h((ξ,mξ), (η,mη), XM)α

(2)
M (d(ξ,mξ), d(η,mη)).

Since α(2)
M (d(ξ,mξ), d(η,mη)) = ρ(2)(ξ, η) dmξ dmη dξ dη, we get (3.6).

Proof of Theorem 2. Recall that X =
⋃

(c,γ)∈Φ X(c,γ), where Φ is a Poisson pro-
cess and X(c,γ)|Φ are independent Poisson processes on Rd with intensity functions
γk(c, ·).

The marked process XM = {(ξ,mξ) | ξ ∈ X,mξ ∼ unif[0, 1)} can then similarly
be written as XM =

⋃
(c,γ)∈ΦX(c,γ)M , where X(c,γ)M = {(ξ,mξ) | ξ ∈ X(c,γ),mξ ∼

unif[0, 1)} and X(c,γ)M |Φ are independent Poisson processes on Rd×[0, 1) with inten-
sity functions h(c,γ)(ξ,m) = γk(c, ξ) for all (c, γ) ∈ Φ. Thus, XM is again a SNCP,
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and the retention probability can be obtained using Proposition 1 on the marked
SNCP XM .

Let XM(ξ,m) denote the random process specified in Proposition 1. Then by defi-
nition XM(ξ,m)|(cξ,m, γξ,m) is a Poisson process with intensity function Λξ,m(η, m̃) =
γξ,mk(cξ,m, η), the distribution of (cξ,m, γξ,m) is given by

P((cξ,m, γξ,m) ∈ D) =

∫
D
γk(c, ξ) dζ(c, γ)

ρ(ξ)
, for Borel sets D ⊆ Rd×(0,∞),

and (cξ,m, γξ,m, XM(ξ,m)) is independent of (Φ, XM). Next, we notice that

F (ξ,m;h) = {xM | xM ∩ (b(ξ, h)× [0,m]) = ∅}.

Using the simple description of the reduced Palm distribution in Proposition 1, we
obtain

pret(ξ,m) = P!
(ξ,m)(F (ξ,m;h))

= P(XM ∩ (b(ξ, h)× [0,m]) = ∅)P(XM(ξ,m) ∩ (b(ξ, h)× [0,m]) = ∅),

where the void probabilities are

P(XM ∩ (b(ξ, h)× [0,m]) = ∅) = exp
(
−
∫

Rd×(0,∞)

pξ,m(c, γ) dζ(c, γ)
)
, (A.1)

P(XM(ξ,m) ∩ (b(ξ, h)× [0,m]) = ∅) =

∫

Rd×(0,∞)

γ(1− pξ,m(c, γ))
k(c, ξ)

ρ(ξ)
dζ(c, γ),

(A.2)

with

pξ,m(c, γ) = 1− exp
(
−m

∫

b(ξ,h)

γk(c, η) dη
)
. (A.3)

The result in (A.1) follows by using that XM is a SNCP together with (2.2) and
(2.3) in the Poisson case. The result in (A.2) is derived using Proposition 1 as follows

P(XM(ξ,m) ∩ (b(ξ, h)× [0,m]) = ∅)
= EP(XM(ξ,m) ∩ (b(ξ, h)× [0,m]) = ∅|(cξ,m, γξ,m))

= E
[
exp
(
−m

∫

b(ξ,h)

γξ,mk(cξ,m, η) dη
)]

=

∫

Rd×(0,∞)

γ(1− pξ,m(c, γ))
k(c, ξ)

ρ(ξ)
dζ(c, γ).

Proof of Theorem 4. The intensity function and the second-order product den-
sity of Xth can be written as

ρth(ξ) = E
[
Λth(ξ)

]
,

ρ
(2)
th (ξ, η) = E

[
Λ

(2)
th (ξ, η)

]
,
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where Λth(ξ) and Λ
(2)
th (ξ, η) are the intensity function and second-order product

density function of Xth given Λ. Using (3.2) and (3.5), we get that

Λth(ξ) = pret|Λ(ξ)Λ(ξ),

Λ
(2)
th (ξ, η) = p

(2)
ret|Λ(ξ, η)Λ(ξ)Λ(η).

To find pret|Λ(ξ) and p
(2)
ret|Λ(ξ, η) it remains to derive the retention probabilities for

inhomogeneous Poisson processes.
Let P!

(ξ,mξ)|Λ be the reduced Palm distribution for the marked point process XM

given Λ. Using (3.3), we find

pret|Λ(ξ) =

∫ 1

0

P!
(ξ,mξ)|Λ(F (ξ,mξ;h)) dmξ. (A.4)

Since the conditional distribution of XM given Λ is inhomogeneous Poisson with
intensity function ΛM(ξ,mξ) = Λ(ξ), we can use the Slivnyak-Mecke theorem (Møller
and Waagepetersen, 2004, (3.7)), and get

P!
(ξ,mξ)|Λ(F (ξ,mξ;h)) = P(XM ∩ (b(ξ, h)× [0,mξ]) = ∅|Λ) = exp(−Ωξmξ).

Inserting in (A.4), we get (4.7).
Likewise, using (3.6), we find

p
(2)
ret(ξ, η) =

∫ 1

0

∫ 1

0

1(‖ξ − η‖ > h)P!
(ξ,mξ),(η,mη)|Λ(F (ξ,mξ;h) ∩ F (η,mη;h)) dmξ dmη,

where

P!
(ξ,mξ),(η,mη)|Λ(F (ξ,mξ;h) ∩ F (η,mη;h))

= P(XM ∩ (b(ξ, h)× [0,mξ]) = ∅, XM ∩ (b(η, h)× [0,mη]) = ∅|Λ)

= exp(−(Ωξ\ηmξ + Ωη\ξmη + Ωξ∩η(mξ ∨mη)),

for ‖ξ− η‖ > h, otherwise 0, for which (4.8) similarly appears from integration over
the marks.

Proof of Theorem 5. Let Λ(ξ), Λ(η) > 0, and ‖ξ − η‖ = r. Using the approxi-
mations (5.3)-(5.5), the approximated retention probabilities reduce to

pa|Λ(ξ) = 1−exp(−Λ(ξ)τh)
Λ(ξ)τh

and

p
(2)
a|Λ(ξ, η) = 1−exp(−Λ(ξ)τh)

Λ(ξ)τhΛ(η)(Γh(r)−τh)
+ 1−exp(−Λ(η)τh)

Λ(η)τhΛ(ξ)(Γh(r)−τh)

− 1−exp(−(Λ(ξ)+Λ(η))Γh(r)/2)
(Λ(ξ)+Λ(η))Γh(r)/2

(
1

Λ(ξ)(Γh(r)−τh)
+ 1

Λ(η)(Γh(r)−τh)

)
,

= Γh(r)(2−exp(−Λ(ξ)τh)−exp(−Λ(η)τh))−2τh(1−exp(−(Λ(ξ)+Λ(η))Γh(r)/2))
τhΓh(r)(Γh(r)−τh)Λ(ξ)Λ(η)

,

and therefore, using the definitions (5.1) and (5.2), we obtain the results in (5.6)
and (5.7).
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Proof of Corollary 6. We find

E[exp(−Λ(ξ)τh)] = E
[ ∏

(c,γ)∈Φ

exp(−γk(c, ξ)τh)
]

= exp(−a(ξ)),

where we at the last equality sign have used the form of the generating functional
for the Poisson process Φ, see Møller and Waagepetersen (2004, Proposition 3.3).
The formula (5.9) is proved in a similar fashion. The result for NSPs is obtained by
noting that a NSP is a special case of a SNCP with k(c, ξ) = k(ξ − c) and intensity
measure of cluster centres and cluster intensities dζ(c, γ) = dc dδµ(γ), where δµ is a
measure concentrated in the point µ with δµ({µ}) = κ.

25



References

Baddeley, A. and R. Turner (2005, 1). Spatstat: An R package for analyzing spatial point
patterns. Journal of Statistical Software 12 (6), 1–42.

Cox, D. R. (1955). Some statistical methods connected with series of events. Journal of
the Royal Statistical Society. B(17), 129–164.

Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns. Academic Press, London.

Fiksel, T. (1988). Edge-corrected density estimators for point processes. Statistics 19 (1),
67–75.

Hanisch, K.-H. (1982). On inversion formulae for n-fold Palm distributions of point pro-
cesses in LCS-spaces. Mathematische Nachrichten 106 (1), 171–179.

Illian, J., A. Penttinen, H. Stoyan, and D. Stoyan (2008). Statistical Analysis and Modelling
of Spatial Point Patterns, Volume 70. Wiley, Chichester.

Kiderlen, M. and M. Hörig (2013). MatérnŠs hard core models of types I and II with
arbitrary compact grains. CSGB Research Report 05. Submitted for journal publication.

Lavancier, F. and J. Møller (2015). Modelling aggregation on the large scale and regularity
on the small scale in spatial point pattern datasets. Available at arXiv:1505.07215 .
Submitted for journal publication.

Madelung, A. B., H. Bondo, I. Stamp, P. Loevgreen, S. L. Nielsen, A. Falensteen, H. Knud-
sen, M. Ehinger, R. Dahl-Sørensen, N. B. Mortensen, et al. (2013). World Health
Organization-defined classification of myeloproliferative neoplasms: Morphological re-
producibility and clinical correlations — the Danish experience. American Journal of
Hematology 88 (12), 1012–1016.

Månsson, M. and M. Rudemo (2002). Random patterns of nonoverlapping convex grains.
Advances in Applied Probability 34 (4), 718–738.

Matérn, B. (1960). Spatial variation. Stochastic models and their application to some
problems in forest surveys and other sampling investigations. Medd. Statens Skogs-
forskningsinstitut 49 (5), 1–144.

Matérn, B. (1986). Spatial Variation. Lecture Notes in Statistics 36, Springer-Verlag,
Berlin.

Mattfeldt, T., S. Eckel, F. Fleischer, and V. Schmidt (2006). Statistical analysis of re-
duced pair correlation functions of capillaries in the prostate gland. Journal of Mi-
croscopy 223 (2), 107–119.

Mattfeldt, T., S. Eckel, F. Fleischer, and V. Schmidt (2007). Statistical modelling of the
geometry of planar sections of prostatic capillaries on the basis of stationary Strauss
hard-core processes. Journal of Microscopy 228 (3), 272–281.

Møller, J. (2003). Shot noise Cox processes. Advances in Applied Probability 35, 614–640.

Møller, J. and R. P. Waagepetersen (2004). Statistical Inference and Simulation for Spatial
Point Processes. Chapman and Hall/CRC, Boca Raton, FL.

26



Neyman, J. and E. L. Scott (1958). Statistical approach to problems of cosmology. Journal
of the Royal Statistical Society. Series B 20, 1–43.

Stoyan, D. (1979). Interrupted point processes. Biometrical Journal 21 (7), 607–610.

Stoyan, D., W. S. Kendall, and J. Mecke (1995). Stochastic Geometry and Its Applications.
Wiley, Chichester, 2nd edition.

Stoyan, D. and H. Stoyan (1985). On one of Matérn’s hard-core point process models.
Mathematische Nachrichten 122 (1), 205–214.

Teichmann, J., F. Ballani, and K. G. van den Boogaart (2013). Generalizations of MatérnŠs
hard-core point processes. Spatial Statistics 3, 33–53.

Thomas, M. (1949). A generalization of Poisson’s binomial limit for use in ecology.
Biometrika 36, 18–25.

Vytrva, N., E. Stacher, P. Regitnig, W. Zinke-Cerwenka, S. Hojas, E. Hubmann, A. Por-
wit, M. Bjorkholm, G. Hoefler, and C. Beham-Schmid (2014). Megakaryocytic mor-
phology and clinical parameters in essential thrombocythemia, polycythemia vera, and
primary myelofibrosis with and without jak2 v617f. Archives of Pathology & Laboratory
Medicine 138 (9), 1203–1209.

27


