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Abstract

This paper reviews useful results related to Palm distributions of
spatial point processes and provides a new result regarding the char-
acterization of Palm distributions for the class of log Gaussian Cox
processes. This result is used to study functional summary statistics
for a log Gaussian Cox process.
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1 Introduction

Palm distributions [see e.g. Møller and Waagepetersen, 2003, Daley and Vere-
Jones, 2008] are, at least among many applied statisticians and among most
students, considered one of the more difficult topics in the field of spatial point
processes. This is partly due to the general definition of Palm distributions
which relies on measure theoretical results. In Section 2, in the context of
finite point processes, we initially give an alternative very explicit definition
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of Palm distributions in terms of their density functions. Section 2 further re-
views Palm distributions in the general case as well as other concepts needed
in the remaining part of the paper which deals with Palm distributions for
Cox point processes and in particular log Gaussian Cox processes [Møller
et al., 1998].

Section 3 establishes a characterization of Cox processes in terms of ‘lo-
cally integrable joint intensities’, and under mild regularity conditions Sec-
tion 4 verifies a surprisingly simple characterization of the reduced Palm dis-
tribution for a log Gaussian Cox process: the reduced Palm distribution is
itself a log Gaussian Cox process that only differs from the original log Gaus-
sian Cox process in its intensity function. Section 5 applies this to study
certain functional summary statistics (so-called F , G, and J-functions) for
stationary log Gaussian Cox processes: We establish some new theoretical
results, consider how to calculate F , G, and J using Laplace approximations,
and discuss an application. Finally, Section 6 concludes the paper.

2 Palm distributions and prerequisites

Our general setting is as follows. We view a point process as a random locally
finite subset X of a Borel set S ⊆ Rd; for measure theoretical details, see e.g.
Møller and Waagepetersen [2003] or Daley and Vere-Jones [2003]. Denoting
XB = X ∩ B the restriction of X to a set B ⊆ S, local finiteness of X
means that XB is finite almost surely (a.s.) whenever B is bounded. We
denote N the state space consisting of the locally finite subsets (or point
configurations) of S. We use the generic notation h for an arbitrary non-
negative measurable function defined on N , Sn, or Sn ×N for n = 1, 2, . . ..
Furthermore, B0 is the family of all bounded Borel subsets of S. Finally,
recall that the void probabilities P(XK = ∅), K ⊆ S compact, uniquely
determine the distribution of X.

Section 2.1 considers the case where S is bounded and N hence is all
finite subsets of S, while Section 2.2 deals with the general case where S is
arbitrary (i.e. including the case S = Rd).

2.1 The finite case

Throughout this section we assume that S is bounded or just that S has
finite Lebesgue measure |S|; let Z be a unit rate Poisson process on S with
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distribution Π; and assume the distribution of X is absolutely continuous
with respect to Π with density f . Thus,

Eh(X) = E{f(Z)h(Z)} (1)

for any non-negative measurable function h on N . Notice that for any event
F ⊆ N , denoting 1(·) the indicator function and ∅ the empty point configu-
ration,

P(X ∈ F )

=
∞∑

n=0

exp(−|S|)
n!

∫

S

· · ·
∫

S

1({x1, . . . , xn} ∈ F )f({x1, . . . , xn}) dx1 · · · dxn

(2)

where the term for n = 0 is exp(−|S|)1(∅ ∈ F ). Therefore we shall con-
sider probability statements in terms of exp(−|S|)f(·). For example, the
probability that X = ∅ is exp(−|S|)f(∅) while for n ≥ 1,

exp(−|S|)f({x1, . . . , xn}) dx1 · · · dxn

is the probability that X consists of precisely n points with one point in each
of n infinitesimally small sets B1, . . . , Bn around x1, . . . , xn with volumes
dx1, . . . dxn, respectively. Loosely speaking this event is ‘X = {x1, . . . , xn}’.
Suppose f is hereditary, i.e. f({x1, . . . , xn}) > 0 whenever f({x0, x1, . . . , xn}) >
0 and the points x0, x1, . . . , xn ∈ S are pairwise distinct. We can then define
the so-called nth order Papangelou conditional intensity by

λ(n)(x1, . . . , xn,x) = f(x ∪ {x1, . . . , xn})/f(x) (3)

for pairwise distinct x1, . . . , xn ∈ S and x ∈ N \{x1, . . . , xn}, setting 0/0 = 0.
By the previous interpretation of f , λ(n)(x1, . . . , xn,x) dx1 · · · dxn can be
considered as the conditional probability of observing one point in each of the
abovementioned infinitesimally small sets Bi conditional on that X outside
∪ni=1Bi agrees with x.

For n = 1, 2, . . ., we define the nth order joint intensity function ρ(n) for
X by

ρ(n)(x1, . . . , xn) = Ef(Z ∪ {x1, . . . , xn}) (4)

if x1, . . . , xn ∈ S are pairwise distinct, and set ρ(n)(x1, . . . , xn) = 0 other-
wise. Assuming f is hereditary, ρ(n)(x1, . . . , xn) = Eλ(n)(x1, . . . , xn,X) and
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by the interpretation of λ(n) it follows that ρ(n)(x1, . . . , xn) dx1 · · · dxn can
be viewed as the probability that X has a point in each of n infinitesimally
small sets around x1, . . . , xn with volumes dx1, . . . dxn, respectively. Loosely
speaking, this event is ‘x1, . . . , xn ∈ X’. Particularly, ρ = ρ(1) is the usual
intensity function.

For reasons which soon will be clear, we assume that the mean value in
(4) is finite and

∫

S

· · ·
∫

S

ρ(n)(x1, . . . , xn) dx1 · · · dxn <∞. (5)

Combining (1) and (4) with either (2) or the extended Slivnyak-Mecke for-
mula for the Poisson process [Møller and Waagepetersen, 2003, Theorem 3.3],
it is straightforwardly seen that

E

6=∑

x1,...,xn∈X
h(x1, . . . , xn) =

∫

S

· · ·
∫

S

h(x1, . . . , xn)ρ(n)(x1, . . . , xn) dx1 . . . dxn

(6)
for any non-negative measurable function h on Sn, where 6= over the sum-
mation sign means that x1, . . . , xn are pairwise distinct. Denoting N the
number of points in X, the left hand side in (6) with h = 1 is seen to be the
factorial moment E{N(N − 1) · · · (N − n + 1)}, which by (5) is assumed to
be finite.

Suppose x1, . . . , xn ∈ S are pairwise distinct and ρ(n)(x1, . . . , xn) > 0.
Then we define the reduced Palm distribution of X given points at x1, . . . , xn
as the distribution P!

x1,...,xn
for the point process X!

x1,...,xn
with density

fx1,...,xn(x) =
f(x ∪ {x1, . . . , xn})
ρ(n)(x1, . . . , xn)

, x ∈ N , x ∩ {x1, . . . , xn} = ∅, (7)

with respect to Π. By the previous infinitesimal interpretations of f and
ρ(n) we can view exp(−|S|)fx1,...,xn(x) as the ‘joint probability’ that X equals
the union x ∪ {x1, . . . , xn} divided by the ‘probability’ that x1, . . . , xn ∈
X. Thus P!

x1,...,xn
has an interpretation as the conditional distribution of

X \ {x1, . . . , xn} given that x1, . . . , xn ∈ X. Conversely,

exp(−|S|)f({x1, . . . , xn}) = ρ(n)(x1, . . . , xn)P
(
X!
{x1,...,xn} = ∅

)
(8)

provides a factorization into the ‘probability’ of observing {x1, . . . , xn} times
the conditional probability of not observing further points. Finally, if
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x1, . . . , xn ∈ S are not pairwise distinct or ρ(n)(x1, . . . , xn) = 0, the choice of
X!
x1,...,xn

and its distribution P!
x1,...,xn

is not of any importance for the results
in this paper, but for simplicity and specificity we then set X!

x1,...,xn
= ∅.

Some remarks are in order:

(a) The (non-reduced) Palm distribution of X given points at x1, . . . , xn is
simply the distribution of the union of X!

x1,...,xn
and {x1, . . . , xn}.

(b) We obtain immediately from (4) and (7) that for any x1, . . . , xn ∈ S
and m = 1, 2, . . ., X!

x1,...,xn
has mth order joint intensity function

ρ(m)
x1,...,xn

(u1, . . . , um) =

{
ρ(m+n)(x1,...,xn,u1,...,um)

ρ(n)(x1,...,xn)
if ρ(n)(x1, . . . , xn) > 0

0 otherwise

(9)
for pairwise distinct u1, . . . , um ∈ S \ {x1, . . . , xn}.

(c) Also we easily obtain that

E

6=∑

x1,...,xn∈X
h(x1, . . . , xn,X \ {x1, . . . , xn})

=

∫

S

· · ·
∫

S

E!
x1,...,xn

h(x1, . . . , xn,X)ρ(n)(x1, . . . , xn) dx1 · · · dxn (10)

for any non-negative measurable function h on Sn×N , where E!
x1,...,xn

denotes expectation with respect to P!
x1,...,xn

. Assuming f is hereditary
and rewriting the expectation in the right hand side of (10) in terms of

fx1,...,xn(x) = f(x)λ(n)(x1, . . . , xn,x)/ρ(n)(x1, . . . , xn)

the finite point process case of the celebrated Georgii-Nguyen-Zessin
formula is obtained [Georgii, 1976, Nguyen and Zessin, 1979].

2.2 The general case

The concepts and results in the previous section extend to the general case
where S is any Borel subset of Rd. However, if |S| = ∞, the unit rate
Poisson process on S will be infinite and we can not in general assume that
X is absolutely continuous with respect to the distribution of this process.
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Thus we do not longer have the direct definitions (4) and (7) of ρ(n) and
X!
x1,...,xn

in terms of density functions.
In fact (6) is usually taken as the definition of the nth order joint intensity

ρ(n) for X, provided there exists such a non-negative measurable function.
Technically speaking, viewing the left hand side in (6) as an integral

∫
h dα(n),

where α(n) is called the nth order factorial moment measure on Sn, ρ(n) is
assumed to be a density for α(n) with respect to Lebesgue measure on Sn.
Here, α(n) is required to be a locally finite measure, i.e.∫

B

· · ·
∫

B

ρ(n)(x1, . . . , xn) dx1 · · · dxn <∞ for all B ∈ B0. (11)

Thereby (10) can be used as the definition of the reduced Palm distributions.
Their existence follows by viewing the left hand side in (10) as defining a
measure C ! (the so-called nth order reduced Campbell measure) on Sn ×N
and noticing that for events F ⊆ N , C !(· ×F ) is absolutely continuous with
respect to α(n) [see e.g. Møller and Waagepetersen, 2003].

We observe the following:

(e) Clearly ρ(n)(x1, . . . , xn) and P!
x1,...,xn

are then only uniquely determined
up to a Lebesgue nullset of Sn. For ease of exposition, we shall usually
ignore such nullsets.

(f) We have that ρ(n)(x1, . . . , xn) and P!
x1,...,xn

are invariant under permuta-

tions of the points x1, . . . , xn. Moreover,
(
X!
x1,...,xm

)!

xm+1,...,xn
= X!

x1,...,xn

if 0 < m < n.

(g) In order to specify the reduced Palm distribution by (10) it is in fact
enough to consider functions h of the form

h(x1, . . . , xn,X) = 1[xi ∈ Bi, i = 1, . . . , n,X ∩K = ∅]
for sets B1, . . . , Bn ∈ B0 and compact sets K ⊆ S. From this it follows
that X!

x1,...,xn
∩ B and (X ∩ B)!

x1,...,xn
have the same distribution if

B ∈ B0.

(h) Suppose that X is stationary, i.e. its distribution is invariant under
translations in Rd and so S = Rd (unless X = ∅ which is not a case of
our interest). Then, for any x ∈ Rd and if o denotes the origin in Rd,
X !
x and {x+ y : y ∈ X !

o} are identically distributed. The reduced Palm
distribution P !

o is often considered as the ‘conditional distribution for
the further points in X given a typical point of X’.
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3 Cox processes

Let Λ be a nonnegative random field such that Λ is locally integrable a.s.,
that is, for any B ∈ B0, the integral

∫
B

Λ(x) dx exists and is finite a.s. In
the sequel, X is assumed to be a Cox process driven by a random intensity
function Λ = {Λ(x) : x ∈ S}, that is, conditional on Λ, X is a Poisson
process with intensity function Λ. This ensures that for any bounded Borel
set B ⊆ S, XB is absolutely continuous with respect to the unit rate Poisson
process on B, and we denote its density fB. By Fubini’s theorem, for any
n = 1, 2, . . . and pairwise distinct points x1, . . . , xn ∈ B,

fB({x1, . . . , xn}) = exp(|B|)E
[

exp

{
−
∫

B

Λ(x) dx

} n∏

i=1

Λ(xi)

]
. (12)

Also we assume that Λ has moments of any order n = 1, 2, . . .. Then the
joint intensities are finite and given by

ρ(n)(x1, . . . , xn) = E

{
n∏

i=1

Λ(xi)

}
(13)

for any n = 1, 2, . . . and pairwise distinct x1, . . . , xn ∈ S. In addition (11)
is assumed. The following lemma is used in Section 4 and is verified in
Appendix A.

Lemma 1. Let X be a Cox process satisfying the conditions above. Then,
for any n = 1, 2, . . ., pairwise distinct x1, . . . , xn ∈ S, and non-negative
measurable function h on Sn ×N ,

ρ(n)(x1, . . . , xn)E
{
h
(
x1, . . . , xn,X

!
x1,...,xn

)}
= E

{
h(x1, . . . , xn,X)

n∏

i=1

Λ(xi)

}
.

(14)
In particular, if ρ(n)(x1, . . . , xn) > 0, the void probabilities of X!

x1,...,xn
are

given by

P(X!
x1,...,xn

∩K = ∅) = E

[
n∏

i=1

Λ(xi) exp

{
−
∫

K

Λ(u) du

}
/ρ(n)(x1, . . . , xn)

]

(15)
for compact K ⊆ S.
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A natural question is when the distribution of the Cox process X and
hence also those of the associated reduced Palm processes X!

x1,...,xn
are uniquely

determined by the joint intensities. A sufficient condition is the existence of
a number a = a(B) > 1 for each set B ∈ B0 such that

E

[
exp

{
a

∫

B

Λ(u) du

}]
<∞. (16)

This together with (17) below were established in Macchi [1975, Theorem 8 (ii)]
for one-dimensional Cox processes; for the proof there are no changes induced
by higher dimension, and so we have the following proposition where (18)
follows by combining (8) with (17).

Proposition 1. Suppose the Cox process X satisfies (16). Then, for any
B ∈ B0 and pairwise distinct x1, . . . , xn ∈ B,

exp(−|B|)fB({x1, . . . , xn})

=
∞∑

m=0

(−1)m

m!

∫

B

· · ·
∫

B

ρ(n+m)(x1, . . . , xn, u1, . . . , um) du1 · · · dum. (17)

In particular, the void probability of X!
x1,...,xn

is

P
(
X!
x1,...,xn

∩K = ∅
)

=
∞∑

m=0

(−1)m

m!

∫

K

· · ·
∫

K

ρ(m)
x1,...,xn

(u1, . . . , um) du1 · · · dum (18)

for compact K ⊆ S.

Proposition 1 has been applied for Cox permanental point processes,
which can be defined in terms of their joint intensities being certain perma-
nents of a covariance function, see Macchi [1975] and McCullagh and Møller
[2006].

4 Reduced Palm distributions for log Gaus-

sian Cox processes

Henceforth, let Λ(x) = exp{Y (x)} where Y = {Y (x) : x ∈ S} is a Gaussian
process with mean function µ and covariance function c so that Λ is locally
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integrable a.s. Simple conditions ensuring this are discussed later in connec-
tion to our main result (Theorem 1 below). In the sequel, we let X be the Cox
process driven by the random intensity function Λ(x) = exp{Y (x)}. Then X
is a log Gaussian Cox process (LGCP) (introduced by Coles and Jones [1991]
in astronomy and independently by Møller et al. [1998] in statistics).

For x, y ∈ S, we define the so-called pair correlation function by

g(x, y) =

{
ρ(2)(x, y)/{ρ(x)ρ(y)} if x 6= y
exp{c(x, x)} if x = y

taking 0/0 = 0 in the case x 6= y. By Møller et al. [1998, Theorem 1],

ρ(x) = exp{µ(x) + c(x, x)/2} and g(x, y) = exp{c(x, y)} (19)

and for pairwise distinct x1, . . . , xn ∈ S,

ρ(n)(x1, . . . , xn) =

{
n∏

i=1

ρ(xi)

}{ ∏

1≤i<j≤n
g(xi, xj)

}
(20)

is strictly positive. Finally, we assume that (11) is satisfied; this is e.g. the
case if c is continuous and µ restricted to any B ∈ B0 is bounded from above,
cf. (19)-(20).

For the LGCP restricted to B ∈ B0, the density fB as given by (12)
is not expressible on closed form. Combining (8) and (20) shows that fB
has some similarity to the density for a pairwise interaction point process
with first and second order interaction functions given by ρ and g. How-
ever, while a pairwise interaction point process has a normalizing constant
given by its probability for having no points in B, according to (8), fB for
a LGCP involves the void probability for X!

x1,...,xn
which in general depends

on {x1, . . . , xn}.
For x, x1, . . . , xn ∈ S, define

µx1,...,xn(x) = µ(x) +
n∑

i=1

c(xi, x).

Combining (9) and (19)-(20), for pairwise distinct x1, . . . , xm+n ∈ S with
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m > 0 and n > 0,

ρ(m)
x1,...,xn

(x1+n, . . . , xm+n)

=

[
m+n∏

i=n+1

{
ρ(xi)

n∏

j=1

g(xi, xj)

}]{ ∏

1+n≤i<j≤m+n

g(xi, xj)

}

=
m+n∏

i=n+1

exp {µx1,...,xn(xi) + c(xi, xi)} (21)

and hence we obtain the following result.

Proposition 2. For the LGCP X and any pairwise distinct x1, . . . , xn ∈
S, X!

x1,...,xn
has m’th order intensity (21) which agrees with the m’th order

intensity function for a LGCP with mean function µx1,...,xn and covariance
function c for the underlying Gaussian process.

Proposition 2 indicates that also X!
x1,...,xn

could be a LGCP. However, we
have not been successful in verifying Macchi’s condition (16) in Proposition 1,
which seems too strong to hold for any of the covariance function models we
have considered, including when c is constant (then X is a mixed Poisson
process) or weaker cases of correlation, e.g. if c is a stationary exponential
covariance function. The case where c is constant is closely related to the
log normal distribution which is not uniquely determined by its moments
[Heyde, 1963].

Accordingly we use instead Lemma 1 when establishing our main result,
namely that X!

x1,...,xn
is a LGCP, at least under mild regularity conditions:

Consider a stationary zero-mean unit-variance Gaussian process Z defined
on Rd with a correlation function Cov{Z(x), Z(y)} = r(x − y) satisfying
certain regularity conditions in Møller et al. [1998] so that Z is almost surely
continuous. Let σ(·) ≥ 0 and µ(·) be continuous functions on S \ C where
|C| = 0. For x ∈ S, define Y0(x) = σ(x)Z(x) and Y (x) = Y0(x)+µ(x). Then
Y has mean function µ and a covariance function of the form

c(x, y) = σ(x)σ(y)r(x− y), x, y ∈ S.

Thereby, Y is continuous on S \ C a.s., and so Λ is locally integrable a.s.
Moreover, assume that r is strictly positive definite. If r is continuous and
integrable on Rd, strictly positive definiteness is equivalent to that the Fourier
transform of r is non-negative and not identically zero.
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Theorem 1. Under the regularity conditions above for the LGCP X driven
by Λ = exp(Y), there exists a Lebesgue nullset B ⊂ Rd such that for any
pairwise distinct x1, . . . , xn ∈ S \ B, X!

x1,...,xn
is a LGCP where the under-

lying Gaussian process has mean function µx1,...,xn and the same covariance
function c(x, y) = σ(x)σ(y)r(x− y) as Y.

Theorem 1 is verified in Appendix A, where B ⊇ C. That such nullsets
may appear is no surprise, cf. (e) in Section 2.2. The regularity conditions
used in Theorem 1 are commonly imposed in the literature on LGCPs, where
indeed further restrictions are often used: frequently Y is often assumed to
be continuous a.s., but our nullset C allows ‘stepwise discontinuities’; and X
is second order intensity reweighted stationary [Baddeley et al., 2000] if and
only if σ(·) is constant, but we allow σ(·) to be any non-negative continuous
function.

Often we consider a non-negative covariance function c or equivalently
g ≥ 1, which is interpreted as ‘attractiveness of the LGCP at all ranges’. Even
more can be said when Theorem 1 applies: If Yx1,...,xn denotes the Gaussian
field associated with X!

x1,...,xn
, then a coupling between X and X!

x1,...,xn
is

obtained by taking Yx1,...,xn(x) = Y (x) +
∑n

i=1 c(x, xi). In particular, if c ≥ 0
and we are given pairwise distinct points x1, . . . , xn from X, we can consider
X \ {x1, . . . , xn} as being included in X!

{x1,...,xn}. This property clearly shows

the attractiveness of the LGCP if c ≥ 0 (equivalently g ≥ 1).

5 Functional summary statistics for station-

ary log Gaussian Cox processes

In the remainder, we let S = Rd and assume that X is a stationary LGCP
satisfying the regularity conditions for Theorem 1. By (19)-(20), stationarity
of the LGCP is equivalent to stationarity of the underlying Gaussian process.
It implies that the intensity ρ is constant and the pair correlation function
g(x, y) = g0(x−y) is translation invariant, where g0(x) = exp{c0(x)}, c0(x) =
c(o, x), and x, y ∈ Rd.

Denote B(o, r) the ball in Rd of radius r > 0 and centered at the origin
o. Then apart from g0 and the related Ripley’s K-function given by

K(r) =

∫

B(o,r)

g0(x) dx,
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popular tools for exploratory purposes as well as model fitting and model
checking are the following functional summary statistics: The empty space
function

F (r) = P {X ∩B(o, r) 6= ∅} ,
the nearest-neighbour distribution function

G(r) = P
{
X!
o ∩B(o, r) 6= ∅

}
,

and the J-function

J(r) =
1−G(r)

1− F (r)
,

with the convention a/0 = 0 for any a ≥ 0, see e.g. Møller and Waagepetersen
[2003].

Section 5.1 establishes some new results for these theoretical functions
and Section 5.2 discusses how they can be calculated using a Laplace ap-
proximation. Section 5.3 illustrates this calculation and Section 5.4 discusses
an application for a real dataset.

5.1 New formulae

By conditioning on Y, we see that the empty space function for X is given
by

1− F (r) = E

(
exp

[
−
∫

B(o,r)

exp{Y (x)} dx

])
. (22)

Using the Slivnyak-Mecke formula, Møller et al. [1998] showed that

1−G(r) =
1

ρ
E

(
exp

[
Y (o)−

∫

B(o,r)

exp{Y (x)} dx

])
. (23)

Since the nearest-neighbour distribution function for X is the same as the
empty space function for X!

o, which is a LGCP with underlying Gaussian
process Yo(x) = Y (x) + c0(x), and since g0(x) = exp{c0(x)}, we obtain an
alternative expression

1−G(r) = E

(
exp

[
−
∫

B(o,r)

g0(x) exp{Y (x)} dx

])
. (24)
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Therefore, we also obtain a new expression for the J-function,

J(r) =
E
(

exp
[
−
∫
B(o,r)

g0(x) exp{Y (x)} dx
])

E
(

exp
[
−
∫
B(o,r)

exp{Y (x)} dx
]) . (25)

Van Lieshout [2011] established for a general stationary point process the
approximation J(r)−1 ≈ −ρ{K(r)−πr2}, where πr2 is Ripley’s K-function
for a stationary Poisson process, and it is therefore not so surprising that
often empirical J and K-functions lead to the same practical interpretations.
In particular, if for our LGCP c0 ≥ 0, i.e. g0 ≥ 1, then we haveK(r)−πr2 ≥ 0,
and so we expect that J(r) ≤ 1. Indeed Van Lieshout [2011] verified this in
the case of a stationary LGCP with g0 ≥ 1. This result immediately follows
by the new expression (25).

5.2 Laplace approximation

In this section we discuss Laplace approximation of 1 − G(r) (the approxi-
mation of 1 − F (r) is similar). The notation introduced is also used in the
proof of Theorem 1 in the Appendix. For ∆ > 0 define the grid of quadrature
points G(∆) = {(∆i1, . . . ,∆id) | i1, . . . , id ∈ Z}. Further let for v ∈ G(∆),
A∆
v = [v1 −∆/2, v1 + ∆/2[× · · · × [vd −∆/2, vd + ∆/2[ be the grid cell asso-

ciated with v. For any non-negative Borel function ` : Rd → R, we use the
approximation

∫

B(o,r)

exp{Y (x)}`(x) dx ≈
∑

v∈G(∆)∩B(o,r)

wv`(v) exp{Y (v)} (26)

where the quadrature weight wv = |A∆
v ∩B(o, r)|.

Denote by M and Σ the mean vector and the covariance matrix of the
normally distributed vector {Y (v)}v∈G(∆). Then the approximation (26) gives

1−G(r) ≈
∫

exp{h(y)} dy (27)

where y is the vector (yv)v∈G(∆)∩B(o,r) of length m = #{G(∆) ∩B(o, r)} and

h(y) = −
∑

v

wvg0(v) exp(yv)−
1

2
(y −M)>Σ−1(y −M)− 1

2
log{(2π)m|Σ|}.
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The gradient vector for h is

∇h(y) = −d(y)− Σ−1(y −M) (28)

where d(y) = {wvg0(v) exp(yv)}v∈G(∆)∩B(o,r), and the negated Hessian matrix
for h is

H(y) = D(y) + Σ−1

where D(y) = diag{d(y)v, v ∈ G(∆) ∩ B(o, r)} and I is the m ×m identity
matrix. Since H(y) is a positive definite matrix, h has a unique maximum ŷ
which can be found using Newton-Raphson iterations

y(l+1) = y(l) +H−1{y(l)}∇h{y(l)}. (29)

Now, the logarithm of the Laplace approximation of the right hand side in
(27) (see e.g. Stigler [1986]) equals

log{1−G(r)} ≈ −
∑

v∈G(∆)∩B(o,r)

wvg0(v) exp(ŷv)+
1

2
(ŷ−M)>d(ŷ)−1

2
log |D(ŷ)Σ+I|.

(30)
For the computation of Σ−1(y−M) in (28) we solve LL>z = y−M where

L is the Cholesky factor of Σ. In the same way, considering the QR decom-
position of the matrix D(y)Σ + I, the computation of H−(1){y(l)}∇h{y(l)}
in (29) is done by first solving Q{y(l)}R{y(l)}z̃ = ∇h{y(l)} and second by
evaluating Σz̃. Finally, |D(ŷ)Σ + I| = |R(ŷ)|.

5.3 Numerical illustration

To illustrate the Laplace approximations of the G- and J-functions (Sec-
tion 5.2) we consider three planar stationary LGCPs with intensity ρ = 50
and spherical covariance function with variance σ2 = 4 and scale parameters
α = 0.1, 0.2, 0.3, respectively. We evaluate the approximations of G(r) and
J(r) at r ∈ R, where R is a regular grid of 50 values between 0.01 and
0.25. For r ∈ R, we define the grid G(∆r) with ∆r = 2r/q where q is a
fixed integer. Such a choice implies that #{G(∆r)∩ [−r, r]2} = q2 and so we
have at least q2π/4 quadrature points in B(o, r). For a given q we denote
by Gq, Fq, and Jq the corresponding Laplace approximations of G, F , and
J . Figure 1 shows the resulting curves with q = 16. To appreciate how
far these Cox processes deviate from the Poisson case (which would corre-
spond to σ2 = 0), we also plot the G-function in the Poisson case, namely
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1 − G(r) = exp(−ρπr2). To study the role of q, we report in Table 1 the
maximal differences maxr∈R |G16(r)−Gq(r)| and maxr∈R |J16(r)− Jq(r)| for
q = 4, 8, 12. As expected, each difference is decreasing with q and is already
very small for q = 12 (less than 4×10−3 except for the J-function and α = 1).
This justifies our choice q = 16 in Figure 1.

The Laplace approximation of the G-function could also be derived using
the classical formula (23). To check the agreement of the numerical approx-
imations of equations (23) and (24), we computed in Table 2 the maximal
difference between the two approximations of the G- and J-functions. In
agreement with the theoretical developments, the difference does not exceed
4× 10−4 when q = 16.
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Figure 1: Laplace approximations of the G- (left) and J-functions (right) for
three planar stationary LGCPs with intensity ρ = 50 and a spherical covari-
ance function with variance σ2 = 4 and scale parameters α = 0.1, 0.2, 0.3,
respectively.
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maxr∈R |H16 −Hq|, H = G, J
q = 4 q = 8 q = 12

α = 0.1, G 59.9 8.4 2.1
J 505.9 96.1 20.5

α = 0.2, G 14.3 1.6 0.5
J 109.0 13.8 3.5

α = 0.3, G 4.2 0.5 0.1
J 22.1 3.1 0.3

Table 1: Maximal differences between the Laplace approximations Gq and
G16 and Fq and F16 with q = 4, 8, 12 for the same three LGCPs as in Figure 1.
Results are multiplied by 103.

q = 4 q = 8 q = 12 q = 16
α = 0.1, G 3.8 8.4 4.4 3.2

J 15 8.5 6.1 3.9
α = 0.2, G 4.7 3.1 3.9 1.5

J 4.7 3.1 2.1 1.7
α = 0.3, G 0.1 1.9 1.4 1.1

J 0.2 2.0 1.5 1.3

Table 2: Maximal differences between the Laplace approximations of the
G- and J-functions for the same three LGCPs as in Figure 1 and derived
from (23) or (24) using q = 4, 8, 12, 16. Results are multiplied by 104.

5.4 Scots pine saplings dataset

The left panel in Figure 2 shows the locations of 126 Scots pine saplings in
a 10 by 10 metre square. The dataset is included in the R package spatstat

as finpines, and it has previously been analyzed by Penttinen et al. [1992],
Stoyan and Stoyan [1994], and Møller et al. [1998]. The two first papers fitted
a Matérn cluster process using the K-function (or its equivalent L-function)
both for parameter estimation and model checking, while the third paper
considered a LGCP with exponential covariance function and used the pair
correlation function for parameter estimation and the F and G-functions for
model checking. Møller et al. [1998] concluded that both models provide a
reasonable fit although when also including a third-order functional summary
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statistic (i.e. one based on X!
o,x) the LGCP model showed a better fit. Below

we supplement this analysis by using the J-function and the approximation
established in the previous section.

We fitted both models by minimum contrast estimation (method kppm

in spatstat) which compares a non-parametric estimate of the K-function
with its theoretical value. When approximating the J-function for the LGCP,
we used the value q = 12 (no improvements were noticed with higher values
of q). For the exact expression of the J-function for the Matérn cluster
process we refer to Møller and Waagepetersen [2003]. The right panel in
Figure 2 shows the theoretical J-functions for the two fitted models together
with a non-parametric estimate of the J-function, considering 50 distances
(r-values) on a regular grid between 0 and 0.9 metre. Clearly the fitted
LGCP provides a better fit than the fitted Matérn cluster process. Indeed the
maximal difference between the non-parametric estimate and the theoretical
J-function equals 0.43 for the Matérn cluster model and 0.20 for the LGCP
model.
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Figure 2: Left panel: Locations of 126 Scots pine saplings in a 10 by 10
metre square. Right panel: Non-parametric estimate of the J-function (solid
curve) and fitted J-functions for the Matérn cluster process (dashed curve)
and the LGCP with exponential covariance function (dotted curve).
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6 Concluding remarks

This paper has provided a description of Palm distribution intended for
a mathematically less inclined audience. Reduced Palm distributions are
known for some models of spatial point processes: A Poisson process is char-
acterized by the fact that its distribution agrees with its reduced Palm distri-
bution; the reduced Palm distribution of a Gibbs point process is absolutely
continuous with respect to its distribution, with density equal to its Papan-
gelou conditional intensity (this is equivalent to the Georgii-Nguyen-Zessin
formula discussed in (d), Section 2.1); and the Palm distributions for in-
finitely divisible point processes such as Poisson cluster processes are also
known [see e.g. Daley and Vere-Jones, 2008, Chiu et al., 2013, and the refer-
ences therein]. We established a further result: Under mild regularity con-
ditions, the reduced Palm distributions for a LGCP are again LGCPs with
the same pair correlation function. This was used to derive new results for
the G and J-functions. Furthermore, we considered a Laplace approximation
for the calculation of F , G, and J-functions, which was used to supplement
previous analyses of the Scots pine saplings dataset modelled by a LGCP or
a Matérn cluster process.

We expect that our results for the reduced Palm distributions for a LGCP
can be exploited further regarding third-order and higher order functional
summary statistics (one such characteristic was briefly mentioned in Sec-
tion 5.4), parameter estimation procedures, model checking, etc. For exam-
ple, for any point process, the pair correlation function (when it exists) is
invariant under independent thinning; could this property be exploited in
connection to LGCPs where we know how the pair correlation function is
related to those of the reduced Palm distributions? A fundamental ques-
tion is if the reduced Palm distributions for any LGCP are LGCPs; e.g. it
is essential in our proof of Theorem 1 that we work with a strictly positive
definite covariance function, but is this condition really needed? We leave
these and other open questions for future work.
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A Proofs

Proof of Lemma 1: By conditioning on Λ, the right hand side of (10) becomes

EE

{ ∑

x1,...,xn∈X
h(x1, . . . , xn,X \ {x1, . . . , xn})|Λ

}

= EE

{∫

S

· · ·
∫

S

h(x1, . . . , xn,X)
n∏

i=1

Λ(xi) dx1 · · · dxn|Λ
}

(31)

=

∫

S

· · ·
∫

S

E

{
h(x1, . . . , xn,X)

n∏

i=1

Λ(xi)

}
dx1 · · · dxn. (32)

Here, in (31) we use that X given Λ is a Poisson process and apply the
extended Slivnyak-Mecke theorem [Møller and Waagepetersen, 2003], and in
(32) we use Fubini’s theorem. Combining (10) and (32), we deduce (14).
Finally (15) follows from (14) with h(x1, . . . , xn,x) = 1[x ∩K = ∅].

Proof of Theorem 1: By (15) and (19)-(20) we just have to show the existence
of a Lebesgue nullset B ⊆ S such that for any compact K ⊆ S and pairwise
distinct points x1, . . . , xn ∈ S \B,

E exp

[
n∑

i=1

Yo(xi)−
n∑

i,j=1

c(xi, xj)/2−
∫

K

exp {µ(u) + Yo(u)} du

]

=E exp

[
−
∫

K

exp {Yo(u) + µx1,...,xn(u)} du

]
. (33)

For ∆ > 0 define the grid G(∆) with associated grid cells A∆
v , v ∈ G(∆)

as in Section 5.2. In the following we let ∆ = k−1 for integer k ≥ 1. For
u ∈ S, let gk(u) be the grid point in G(k−1) closest to u, discarding the
Lebesgue nullset Ck of those u ∈ S where there is not a unique such grid
point. Further, let C0 = C and B = ∪∞k=0Ck. Then B has Lebesgue measure
zero, and we let vki = gk(xi), i = 1, . . . , n. Furthermore, for v ∈ G(k−1) we let
wkv = |K ∩ Ak−1

v |. Then by Waagepetersen [2004, Lemma 1] and dominated
convergence, the left and right hand sides of (33) are equal to the limits as
k →∞ of respectively

E exp




n∑

i=1

Yo(v
k
i )−

n∑

i,j=1

c(vki , v
k
j )/2−

∑

v∈G(k−1)

wkv exp{Yo(v) + µ(v)}


 (34)
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and

E exp


−

∑

v∈G(k−1)

wkv exp

{
Yo(v) + µ(v) +

n∑

i=1

c(v, vki )

}
 . (35)

Let Hk = {vk1 , . . . , vkn} (a set of cardinality n for all sufficiently large k)
and order the elements in the set Ik = (G(k−1) ∩K) ∪Hk when considering
the Gaussian vector Yk

o = {Yo(v)}v∈Ik with mean vector Mk = {µ(v)}v∈Ik
and covariance matrix Σk = {c(u, v)}u,v∈Ik . Then (34) and (35) can be
rewritten as multivariate integrals involving the Gaussian density of Yk

o at
each realization y = (yv)v∈Ik (see also Section 5.2). Considering (35), making
a shift of coordinates from y to z = {yv +

∑n
i=1 c(v, v

k
i )}v∈Ik = y+

∑n
i=1 Σk,vki

where Σk,vki
denotes the column in Σk corresponding to index vki , we notice

that the exponent for (35) becomes

−
∑

v∈G(k−1)

wkv exp

{
yv + µ(v) +

n∑

i=1

c(v, vki )

}
− 1

2
yTΣ−1

k y

=
n∑

i=1

zvki −
1

2

n∑

i,j=1

c(vki , v
k
j )−

∑

v∈G(k−1)

wkv exp{zv + µ(v)} − 1

2
zTΣ−1

k z

which agrees with the exponent in (34). Thereby the proof is completed.
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