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Abstract

We present two algorithms for reconstruction of the shape of convex bodies
in the two-dimensional Euclidean space. The first reconstruction algorithm re-
quires knowledge of the exact surface tensors of a convex body up to rank s
for some natural number s. The second algorithm uses harmonic intrinsic
volumes which are certain values of the surface tensors and allows for noisy
measurements. From a generalized version of Wirtinger’s inequality, we derive
stability results that are utilized to ensure consistency of both reconstruction
procedures. Consistency of the reconstruction procedure based on measure-
ments subject to noise is established under certain assumptions on the noise
variables.

Keywords: Convex body, shape, reconstruction algorithm, surface tensor, har-
monic intrinsic volume, generalized Wirtinger’s inequality

1 Introduction

The problem of determining and reconstructing an unknown geometric object from
indirect measurements is treated in a number of papers, see, e.g., Gardner (2006). In
Prince and Willsky (1990), a convex body is reconstructed from measurements of its
support function. Measurements of the brightness function are used in Gardner and
Milanfar (2003), and in Campi et al. (2012) it is shown that a convex body can be
uniquely determined up to translation from measurements of its lightness function.
Milanfar et al. (1995) developed a reconstruction algorithm for planar polygons
and quadrature domains from moments of the Lebesgue measure restricted to these
sets. In particular, they showed that a non-degenerate convex polygon in R2 with k
vertices is uniquely determined by its moments up to order 2k−3. The reconstruction
algorithm and the uniqueness result were generalized to convex polytopes in Rn in
Gravin et al. (2012).

In continuation of the work in this area, we discuss reconstruction of convex
bodies from a certain type of Minkowski tensors. In recent years, Minkowski tensors
have been studied intensively. On the applied side, Minkowski tensors have been
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established as robust and versatile descriptors of shape and morphology of spatial
patterns of physical systems, see e.g., Beisbart et al. (2002); Schröder-Turk et al.
(2010, 2013). The importance of Minkowski tensors is further indicated by Alesker’s
characterization theorem, see Alesker (1999), that states that products of Minkowski
tensors and powers of the metric tensor span the space of tensor-valued valuations
on convex bodies satisfying some natural conditions.

In the present work, we consider translation invariant Minkowski tensors, Φs
j(K)

of rank s, which are tensors derived from the j’th area measure Sj(K, ·) of a convex
bodyK ⊆ Rn, j = 0, . . . , n−1. For details, see Section 2. For a given j = 1, . . . , n−1,
the set {Φs

j(K) | s ∈ N0} of all Minkowski tensors determines K up to translation.
Calling the equivalence class of all translations of K the shape of K, we can say that
{Φs

j(K) | s ∈ N0} determines the shape of K. When only Minkowski tensors Φs
j(K),

s ≤ so up to a certain rank so are given, this is, in general, no longer true. We estab-
lish a stability result (Theorem 3.8) stating that the shapes of two convex bodies are
close to one another when the two convex bodies have coinciding Minkowski tensors
Φs

1(K) of rank s ≤ so. The proof uses a generalization of Wirtinger’s inequality
(Corollary 3.7), which is different from existing generalizations in the literature (e.g.
Cheng and Zhang (2009); Giova and Ricciardi (2010)) as it involves a higher order
spherical harmonic expansion. We also show (Theorem 3.1) that there always exists
a convex polytope P with the same surface tensors Φs

n−1 of rank s ≤ so as a given
convex body. The number of facets of P can be bounded by a polynomial of so of
degree n − 1. Using this result, we conclude (Corollary 3.2) that a convex body K
is a polytope if the shape of K is uniquely determined by a finite number of surface
tensors. In fact, the shape of a convex body K is uniquely determined by a finite
number of its surface tensors if and only if K is a polytope (Theorem 3.3).

For actual reconstructions, we restrict considerations to the planar case. We
consider two cases. Firstly, the case when the exact tensors are given, and secondly,
the case when certain values of the tensors are measured with noise. Algorithm
Surface Tensor in Section 4 allows to reconstruct an unknown convex body K0 in
R2 based on surface tensors Φs

1(K0) up to rank so. The output of the reconstruction
procedure is a polygon P with surface tensors identical to the surface tensors ofK0 up
to rank so. Theorem 3.1 yields the existence of a polygon with the described property.
Due to the bound on the number of facets of P and to the simple structure of surface
tensors of polygons, the reconstruction problem can be solved by first finding the
surface area measure of P using a least squares optimization, and then constructing
P with the help of Algorithm MinkData in Gardner (2006). The consistency of the
reconstruction procedure is established using the mentioned stability result.

Reconstruction algorithms for dimensions n ≥ 2 could be developed along the
same lines when surface tensors Φs

n−1(K0), s ≤ so are used as input. However, the
methods in this paper yield a stability result for Φs

1(K0), s ≤ so, and this is why we
only consider the case n = 2. The higher dimensional situation will be discussed in
future work.

Algorithm Harmonic Intrinsic Volumes LSQ reconstructs an unknown convex
body K0 based on measurements of harmonic intrinsic volumes up to degree so,
where the measurements are subject to noise. The harmonic intrinsic volumes of a
convex body in R2 are certain values of the surface tensors, and the harmonic intrin-
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sic volumes up to degree so determine the surface tensors up to rank so. The output
of the reconstruction is a polygon with surface tensors best fitting the measurements
of the harmonic intrinsic volumes of K0 in a least squares sense. As for the procedure
for reconstruction of convex bodies from exact surface tensors, this reconstruction
procedure is based on Theorem 3.1 and Algorithm MinkData. The consistency of
the reconstruction algorithm is established using the stability result and requires
that the variances of all measurements converge to zero sufficiently fast. It is the
structure of the stability result that suggests that we should consider reconstruction
based on harmonic intrinsic volumes when the measurements are subject to noise.

The paper is organized as follows: After introducing notations and preliminaries
in Section 2, we present the main theoretical results in Section 3 in Rn, n ≥ 2:
The existence of a polytope with finitely many surface tensors coinciding with those
of a given convex body, the uniqueness result for shapes of polytopes, the general-
ized Wirtinger’s inequality, and the derived stability result. In Section 4 Algorithm
Surface Tensor and its properties are discussed, and Section 5 is devoted to the
reconstruction from noisy measurements of harmonic intrinsic volumes.

2 Notation and preliminaries

We work in the n-dimensional Euclidean vector space Rn with inner product 〈·, ·〉
and induced norm |·|. As usual, Sn−1 is the unit sphere in Rn, and κn and ωn denote
the volume and the surface area of the unit ball Bn, respectively. The Borel σ-algebra
of a topological space X is denoted by B(X). Further, let λ denote the Lebesgue
measure on Rn. The set L2(Sn−1) of square integrable functions on Sn−1 with respect
to the spherical Lebesgue measure σ is equipped with the usual inner product 〈·, ·〉2
and the associated norm ‖ · ‖.

For a function F on the unit sphere Sn−1, we let F̌ denote the radial extension
of F to Rn \ {o}, that is,

F̌ (x) = F

(
x

|x|

)

for x ∈ Rn \ {o}. Let ∇S F denote the restriction of the gradient ∇F̌ of F̌ to Sn−1,
when the partial derivatives of F̌ exist. If further, F̌ has partial derivatives of second
order, the Laplace-Beltrami operator ∆S F of F is defined as the restriction of ∆ F̌
to Sn−1, where ∆ denotes the Laplace operator on functions on Rn.

In the proofs of Lemma 3.6 and Theorem 3.8, spherical harmonics are a key
ingredient. We use Groemer (1996) as a general reference on the theory of spherical
harmonics. A polynomial p on Rn is said to be harmonic if it is homogeneous and
∆ p = 0. A spherical harmonic of degree m is the restriction to Sn−1 of a harmonic
polynomial of degree m. Let Hn

m be the vector space of spherical harmonics of
degree m on Sn−1, and let N(n,m) denote the dimension of Hn

m. For m ∈ N0, let
Hm1, . . . , HmN(n,m) be an orthogonal basis for Hn

m. Then the condensed harmonic
expansion of a function F ∈ L2(Sn−1) is

∑∞
m=0 Fm, where Fm =

∑N(n,m)
j=1 αmjHmj

with
αmj =

〈F,Hmj〉2
‖Hmj‖2

.
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We write F ∼∑∞m=0 Fm, when
∑∞

n=0 Fm is the condensed harmonic expansion of F .
The condensed harmonic expansion of F is independent of the choice of bases of
spherical harmonic used to derive it. The spherical harmonics are eigenfunctions of
the Laplace-Beltrami operator as

∆SHm = −m(m+ n− 2)Hm

for Hm ∈ Hn
m. We let γm denote the absolute value of the eigenvalues of ∆S, that is

γm = m(m+ n− 2) for m ∈ N0.
As in Campi (1998), the Sobolev space Wα for α ≥ 0 is defined as the space of

square integrable functions F ∼∑∞m=0 Fm on the sphere, for which

∞∑

m=0

γαm‖Fm‖2 <∞.

By definition Wα ⊆ L2(Sn−1) for α ≥ 0, and W 0 = L2(Sn−1). For F ∈ Wα, the sum

∞∑

m=0

(γm)
α
2Fm

converges in the L2-sense. The limit is denoted by (−∆S)
α
2F , and thus

‖(−∆S)
α
2F‖2 =

∞∑

m=0

γαm‖Fm‖2. (2.1)

The notation is explained by the fact that

∆S F ∼ −
∞∑

m=0

γmFm

for any F ∼∑∞m=0 Fm that is twice continuously differentiable.
In the two-dimensional setting we have N(2, 0) = 1 and N(2,m) = 2 for m ∈ N,

and the spherical harmonic expansion is closely related to classical Fourier expansion.
We obtain an orthonormal sequence of spherical harmonics constituting a basis of
L2(S1) by letting H01(u1, u2) = (2π)−

1
2 ,

Hm1(u1, u2) = π−
1
2

bm
2
c∑

i=0

(−1)i
(
m

2i

)
um−2i1 u2i2 (2.2)

and

Hm2(u1, u2) = π−
1
2

bm−1
2
c∑

i=0

(−1)i
(

m

2i+ 1

)
um−2i−11 u2i+1

2 , (2.3)

for (u1, u2) ∈ S1 and m ∈ N, where bxc denote the integer part of x ∈ R. If
the polynomials in (2.2) and (2.3) are considered as polynomials on R2, then due to
homogeneity, the polynomials can be decomposed into linear factors. More precisely,

Hm1(u1, u2) = π−
1
2 (u1 − ζ1u2) · · · · · (u1 − ζmu2), (2.4)
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where

ζj =
cos( (2j−1)π

2m
)

sin( (2j−1)π
2m

)
for j = 1, . . . ,m.

The lines where Hm1 vanishes (and herewith ζj, j = 1, . . . ,m) are determined using
the fact that

Hm1(cos(ω), sin(ω)) =
√
π cos(mω)

for ω ∈ [0, 2π). Similarly, we can factorize Hm2. In this case, however, the factoriza-
tion depends on the parity of m. This is due to the fact that a term involving um1
does not appear in Hm2 and that the term involving um2 only appears, when m is
odd. We get that

Hm2(u1, u2) =

{
π−

1
2mu2 (u1 − λ1u2) · · · · (u1 − λm−1u2) if m is even

π−
1
2 (−1)

m−1
2 (u2 − ρ1u1) · · · · · (u2 − ρmu1) if m is odd,

(2.5)

where

λj =
cos( jπ

m
)

sin( jπ
m

)
for j = 1, . . . ,m− 1

and

ρj =
sin( (j−1)π

m
)

cos( (j−1)π
m

)
for j = 1, . . . ,m.

Here, we have used that

Hm2(cos(ω), sin(ω)) =
√
π sin(mω)

for ω ∈ [0, 2π) in order to determine the lines where Hm2 vanishes.
As general reference on convex geometry and Minkowski tensors, we use Schnei-

der (2014). Let Kn denote the set of convex bodies (that is, compact, convex, non-
empty sets) in Rn, and let Knn denote the set of convex bodies with non-empty
interior. We refer to convex polytopes and convex polygons by ‘polytopes’ and ‘poly-
gons’, and let Pnm denote the set of non-empty polytopes in Rn with at mostm facets,
m ∈ {n+ 1, n+ 2, . . . }. The support function (restricted to Sn−1) of a convex body
K is denoted by hK . The set of support functions {hK | K ∈ Kn, K ⊆ RBn} for
R > 0 is bounded in Wα for 0 < α < 3

2
, see (Kiderlen, 2008, Prop. 2.1). The set Kn

of convex bodies is equipped with the Hausdorff metric δ, which can be expressed
as the distance of support functions with respect to the supremum norm on Sn−1,
i.e.

δ(K,L) = sup
u∈Sn−1

|hK(u)− hL(u)|.

In addition to the Hausdorff metric, we use the L2-metric on Kn. The L2-distance
between two convex bodies K and L is defined as the L2-distance of their support
functions, i.e.

δ2(K,L) = ‖hK − hL‖.
The Hausdorff metric and the L2-metric are equivalent and related by inequalities,
see (Groemer, 1996, Prop. 2.3.1). This is used in Theorem 3.9 to transfer bounds

5



on the L2-distance to bounds on the Hausdorff distance between convex bodies
satisfying certain conditions.

In the present work, two convex bodies are said to have the same shape if and
only if they are translates. The position of a convex body has major influence on the
above described distances, and as a measure of difference in shape only, we consider
the translation invariant versions

δt(K,L) = inf
x∈Rn

δ(K,L+ x)

and
δt2(K,L) = inf

x∈Rn
δ2(K,L+ x).

If the support function hK of a convex bodyK has condensed harmonic expansion∑∞
m=0(hK)m, then (hK)1 = 〈s(K), ·〉, where s(K) is the Steiner point of K,

s(K) =
1

κn

∫

Sn−1

hK(u)uσ(du).

For convex bodies K and L, this implies that δt2(K,L) = δ2(K,L) if and only if K
and L have coinciding Steiner points, see (Groemer, 1996, Prop. 5.1.2).

Let Tp be the vector space of symmetric tensors of rank p over Rn, that is,
the space of symmetric multilinear functions of p variables in Rn. Due to linearity,
a tensor T ∈ Tp can be identified with the array {T (ei1 , . . . , eip)}ni1,...,ip=1, where
(e1, . . . , en) is the standard basis of Rn. We refer to the entries of the array as the
components of T . For symmetric tensors a ∈ Tp1 and b ∈ Tp2 , let ab ∈ Tp1+p2 denote
the symmetric tensor product of a and b. Identifying x ∈ Rn with the rank 1 tensor
z 7→ 〈z, x〉, we write xp ∈ Tp for the p-fold symmetric tensor product of x. The
metric tensor Q ∈ T2 is defined by Q(x, y) = 〈x, y〉 for x, y ∈ Rn.

Let p(K, x) be the metric projection of x ∈ Rn on a convex body K, and define
u(K, x) := x−p(K,x)

|x−p(K,x)| for x /∈ K. For ε > 0 and a Borel set A ∈ B(Rn × Sn−1), the
Lebesgue measure of the local parallel set

Mε(K,A) := {x ∈ (K + εBn) \K | (p(K, x), u(K, x)) ∈ A}

of K is a polynomial in ε ≥ 0, hence

λ(Mε(K,A)) =
n−1∑

k=0

εn−kκn−kΛk(K,A).

This local version of the Steiner formula defines the support measures Λ0(K, ·),
. . . ,Λn−1(K, ·) of a convex body K ∈ Kn. The intrinsic volumes of K appear as to-
tal masses of the support measures, Vj(K) = Λj(K,Rn×Sn−1) for 0 = 1, . . . , n− 1.
The area measures S0(K, ·), . . . , Sn−1(K, ·) of K are rescaled projections of the cor-
responding support measures on the second component. More explicitly, they are
given by (

n

j

)
Sj(K,ω) = nκn−jΛj(K,Rn × ω)
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for ω ∈ B(Sn−1) and j = 0, . . . , n − 1. The area measure of order n − 1 is called
the surface area measure, and for K ∈ Knn the surface area measure is the (n − 1)-
dimensional Hausdorff measure of the reverse spherical image of K. That is,

Sn−1(K,ω) = Hn−1(τ(K,ω)),

for ω ∈ B(Sn−1), where Hn−1 is the (n − 1)-dimensional Hausdorff measure, and
τ(K,ω) is the set of all boundary points of K at which there exists an outer normal
vector of K belonging to ω.

For a convex body K ∈ Kn, r, s ∈ N0, and j ∈ {0, 1, . . . , n − 1}, we define the
Minkowski tensors of K as

Φr,s
j (K) :=

ωn−j
r!s!ωn−j+s

∫

Rn×Sn−1

xrus Λj(K, d(x, u))

and supplement this definition by

Φr,0
n (K) :=

1

r!

∫

K

xr λ(dx).

The tensor functionals Φr,s
j and Φr,0

n are motion covariant valuations on Kn and
continuous with respect to the Hausdorff metric. In Hug et al. (2008) the tensor
functionals QmΦr,s

j with m, r, s ∈ N0 and either j ∈ {0, . . . , n− 1} or (j, s) = (n, 0)
are called the basic tensor valuations. Due to Alesker’s characterization theorem,
every motion covariant, continuous tensor-valued valuation is a linear combination
of the basic tensor valuations.

In the present work, we only consider translation invariant Minkowski tensors,
which are obtained by letting r = 0. We use the notation

Φs
j(K) = Φ0,s

j (K) =

(
n−1
j

)

s!ωn−j+s

∫

Sn−1

usSj(K, du)

for j ∈ {0, . . . , n − 1} and s ∈ N0. For s ∈ N0, the tensors Φs
n−1(K) derived from

the surface area measure of a convex body K are called surface tensors of K. For
later use, we mention that

Φ1
j(K) = 0 (2.6)

for j = 0, . . . , n− 1 and any K ∈ Kn, which is a special case of (Schneider, 2014, eq.
(5.30)). For so ∈ N0, j ∈ {0, . . . , n− 1} and K ∈ Kn, we let

Mso
j (K) = {L ∈ Kn | Φs

j(L) = Φs
j(K), 0 ≤ s ≤ so}.

As S0(K, ·) = σ independently of K ∈ Kn, we have triviallyMso
0 (K) = Kn. In the

following, we will only consider these classes for j = 1 and j = n− 1.

Remark 2.1. Let K ∈ Kn be given. By computing the trace of the tensor Φs
j(K),

j ∈ {0, . . . , n − 1}, s ≥ 2, the rank of the tensor is reduced by 2, and the tensor
n−j+s−2
2πs(s−1) Φs−2

j (K) is obtained. This follows from the identity

n∑

k=1

∫

Sn−1

ui1 · · ·uis−2 u
2
k Sj(K, du) =

∫

Sn−1

ui1 · · ·uis−2 Sj(K, du).
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Therefore, the tensors Φs
j(K) and Φs−1

j (K) determine all tensors Φs′
j (K) of rank

s′ ≤ s. More generally, the moments of order at most s of a measure µ on Sn−1 are
determined by the moments of µ of order s− 1 and s.

For s ∈ N0 and a convex body K in R2, we let φsj(K) denote the different
components of the surface tensor Φs

1(K) of rank s. That is,

φsj(K) =
1

s!ωs+1

∫

S1

uj1u
s−j
2 S1(K, du)

for j = 0, . . . , s. For so ∈ N, Remark 2.1 implies that it is sufficient to require
knowledge of the 2so + 1 components of Φso−1

1 (K) and Φso
1 (K) in a reconstruction

algorithm of shape based on surface tensors up to rank so as these components
determine the surface tensors Φ0

1(K), . . . ,Φso
1 (K). This will be used in Section 4.

Instead of using only values of the surface tensors of rank so − 1 and so for the
reconstruction, another option is to use the value of Φ0

1(K) and two values of each
surface tensor Φs

1(K) for 1 ≤ s ≤ so. That this information is equivalent to the
knowledge of Φs

1(K), 0 ≤ s ≤ so, can be seen as follows. Due to the factorization
into linear factors of the spherical harmonics in (2.4) and (2.5), there are vectors
(vis1)

s
i=1, (v

i
s2)

s
i=1 ⊆ (R2) for s ∈ N such that for j = 1, 2 is

ψsj(K) := Φs
1(K)(v1sj, . . . , v

s
sj) =

∫

S1

Hsj(u)S1(K, du), (2.7)

where (Hsj) is the orthonormal sequence of spherical harmonics given by (2.2)
and (2.3). Further, we have that

ψ01(K) :=

√
2

π
Φ0

1(K) =

∫

S1

H01(u)S1(K, du). (2.8)

Equations (2.7) and (2.8) show that ψsj(K) is a value of Φs
1(K) when s ≥ 1 and

that ψ01(K) is the value of Φ0
1(K) up to a known constant. Thus trivially, the

vector (ψ01(K), ψ11(K), ψ12(K), . . . , ψso1(K), ψso2(K)) is determined by (Φ0
1(K), . . . ,

Φso
1 (K)). The converse is also true, as polynomials on S1 of degree at most so are

linear combinations of the spherical harmonics of degree at most so (see (Groemer,
1996, Cor. 3.2.6)). It follows that the knowledge of the 2so+1 values ψ01(K), ψs1(K),
ψs2(K) for 1 ≤ s ≤ so is sufficient for a reconstruction algorithm based on surface
tensors up to rank so.

The described values (ψsj(K)) are moments of the surface area measure of K ∈
K2 with respect to an orthonormal sequence of spherical harmonics. In Hörrmann
(2014) such moments are called harmonic intrinsic volumes. In general, the harmonic
intrinsic volumes associated to a convex body K in Rn are defined as

ψjmk(K) =

∫

Sn−1

Hmk(u)Sj(K, du)

for j = 0, . . . , n−1, m ∈ N0 and k = 1, . . . , N(n,m). The harmonic intrinsic volume
ψjmk : Kn → R is positively homogeneous of degree m, and we, therefore, refer to
m as the degree of ψjmk. The harmonic intrinsic volumes depend on the choice of
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orthonormal bases for Hn
m for m ∈ N0. For n = 2, we use the bases given by (2.2)

and (2.3). We remark however that

N(n,m)∑

k=1

ψjmk(K)2 and
N(n,m)∑

k=1

ψjmk(K)ψjkm(M),

K,M ∈ Kn, do not depend on the chosen basis of Hn
m due to the addition theorem

for spherical harmonics (Groemer, 1996, Theorem 3.3.3). In particluar condition
(3.5) in Theorem 3.8 does not depend on the basis chosen.

As we mainly consider harmonic intrinsic volumes derived from the surface area
measure, we refer to those as harmonic intrinsic volumes. When referring to harmonic
intrinsic volumes derived from area measures of lower order, this is explicitly stated.
For n = 2 and j = 1, we write ψmk = ψ1mk. The notation is consistent with (2.7)
and (2.8).

As described above, the surface tensors and the harmonic intrinsic volumes of
a convex body K are closely related. For so ∈ N0, the surface tensors Φ0

n−1(K),
. . . ,Φso

n−1(K) are uniquely determined by ψ(n−1)mk(K) for m = 0, . . . , so and k =
1, . . . , N(n,m), see (Groemer, 1996, Cor. 3.2.6), and vice versa. Due to the nice
properties of spherical harmonics, the harmonic intrinsic volumes are beneficial in
the establishment of stability results for surface tensors.

3 Uniqueness and stability results

The components of the Minkowski tensors Φs
j(K), s ∈ N0 are coinciding with the

moments of Sj(K, ·) up to known constants. As Sn−1 is compact, an application
of Stone-Weiserstrass’s theorem implies that {Φs

j(K) | s ∈ N0} determine Sj(K, ·).
Hence, these tensors determine K ∈ Knn up to translation when 1 ≤ j ≤ n − 1 by
the Aleksandrov-Fenchel-Jessen theorem (Schneider, 2014, Thm. 8.1.1). Hence, the
shape (as defined in Section 2) of a convex body K ∈ Knn is uniquely determined
by {Φs

j(K) | s ∈ N0}. For n = 2, the tensors {Φs
1(K) | s ∈ N0} even determine the

shape of K when K is lower-dimensional.
In order to investigate how different the shape of two convex bodies with identical

surface tensors up to a certain rank can be, we discuss properties of the setsMso
1 (K)

andMso
n−1(K) for so ∈ N0 and K ∈ Kn. In Theorem 3.1, it is shown thatMso

n−1(K)
contains a polytope, and in Theorem 3.3 a uniqueness result is established stating
thatM2so

n−1 is the class of translates of K if K is a polytope with non-empty interior
and at most so facets. In Theorem 3.8, we show that for large so the set Mso

1 (K)
contains only translations of convex bodies close to K in Hausdorff distance.

In the following, we let ms denote the number of different components of the
tensors us−1 and us for s ∈ N and u ∈ Sn−1. Then

ms =

(
s+ n− 2

n− 1

)
+

(
s+ n− 1

n− 1

)
=
(
2 +

n− 1

s

)(s+ n− 2

n− 1

)
= O(sn−1)

for fixed n ∈ N as s → ∞. For instance, ms = 2s + 1 for n = 2, and ms = (s + 1)2

for n = 3. The number of different components of us−1 and us is identical to the
dimension of Hn

0 ⊕Hn
1 ⊕ · · · ⊕ Hn

s , that is, ms =
∑s

m=0N(n,m).

9



Theorem 3.1. Let K ∈ Kn and so ∈ N. Then there exists a P ∈ Pnmso , such that

Φs
n−1(K) = Φs

n−1(P ) (3.1)

for 0 ≤ s ≤ so.

The proof of Theorem 3.1 follows the lines of the proof of Lemma 6.9 in Campi
et al. (2012) (see also Skouborg (2012)). For the readers convenience, the proof of
Theorem 3.1 is included.

Proof. If the interior of K is empty, then is either Sn−1(K, ·) = 0 or Sn−1(K, ·) =
α(δu + δ−u) for some u ∈ Sn−1 and α > 0. In the first case, let P = {o}. In the
latter case, let P be a polytope contained in the orthogonal complement u⊥ of u
with surface area α.

We may from now on assume that K ∈ Knn. If so = 1, we let P be a polytope
with at most m1 = n + 1 facets with the same surface area as K. Then (3.1) is
satisfied due to (2.6). Now assume so ≥ 2. To prove the claim in this case, we
construct a Borel measure µ on Sn−1 with support containing at most mso points,
satisfying the assumptions of Minkowski’s existence theorem, see (Schneider, 2014,
Thm. 8.2.2), and such that µ has the same moments as Sn−1(K, ·) up to order so. Due
to homogeneity of the surface area measure (and herewith of the surface tensors),
we may assume that Sn−1(K,Sn−1) = 1.

Let f1, . . . , fmso denote the different components of the tensors uso−1 and uso .
For a Borel probability measure ν on Sn−1, let

Γ(ν) =

(∫

Sn−1

f1(u) ν(du), . . . ,

∫

Sn−1

fmso (u) ν(du)

)
.

Put
M :=

{
Γ(ν) | ν is a Borel probability measure on Sn−1

}

and
N :=

{
Γ(δu) | u ∈ Sn−1} = {(f1(u), . . . , fmso (u)) | u ∈ Sn−1

}
,

where δu denotes the Dirac measure at u ∈ Sn−1. As f1, . . . , fmso are continuous,
the set N is compact in Rmso , so the convex hull convN of N is compact and, in
particular, closed. The convex hull convN of N is the image of the set of Borel
probability measures on Sn−1 with finite support under Γ. Hence, M = convN
as every Borel probability measure on Sn−1 can be weakly approximated by such
measures, see e.g., (Bauer, 2001, Cor. 30.5). This implies that Γ(S(K, ·)) ∈ convN .
As Sn−1 is connected and f1, . . . , fmso are continuous, the set N is connected. Then a
version of Caratheodory’s theorem due to Fenchel (see Hanner and Rådström (1951)
and references given there) yields the existence of unit vectors v1, . . . , vmso ∈ Sn−1
and α1, . . . , αmso ≥ 0 with

∑mso
i=1 αj = 1 such that

Γ(S(K, ·)) =

mso∑

i=1

αiΓ(δvi) = Γ(µ), (3.2)
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where µ :=
∑mso

i=1 αiδvi is a probability measure with support containing at most
mso points. Remark 2.1, (2.6) and (3.2) yield that

∫

Sn−1

ui µ(du) =

∫

Sn−1

ui Sn−1(K, du) = 0

for i = 1, . . . , n, hence the centroid of µ is at the origin.
If the support of µ was concentrated on a great subsphere v⊥ ∩ Sn−1 of Sn−1 for

some v ∈ Sn−1, then
∫

Sn−1

〈u, v〉2Sn−1(K, du) =

∫

Sn−1

〈u, v〉2µ(du) = 0

by Remark 2.1 and (3.2) as so ≥ 2. This would imply that Sn−1(K, ·) is concentrated
on v⊥ ∩Sn−1, which is a contradiction as K has interior points. Hence, the measure
µ has full-dimensional support.

Herewith, µ satisfies the assumptions in Minkowski’s existence theorem, and
there is a polytope P with interior points such that Sn−1(P, ·) = µ. As the support
of Sn−1(P, ·) contains at most mso points, the polytope P has at most mso facets.
Due to (3.2) and Remark 2.1, the measures Sn−1(K, ·) and Sn−1(P, ·) have identical
moments up to order so, which ensures that equation (3.1) is satisfied.

Corollary 3.2. If K is determined up to translation among all convex bodies in Rn

by its surface tensors up to rank so then K ∈ Pnmso .
On the other hand, a polytope is determined up to translation by finitely many

surface tensors.

Theorem 3.3. Let m ≥ n+ 1 be a natural number. The shape of any P ∈ Pnm with
non-empty interior is uniquely determined in Kn by its surface tensors up to rank
2m. If n = 2 then the result holds for any P ∈ Pnm.

Proof. Let P ∈ Pnm be given. We may assume without loss of generality that P has
m facets. The surface area measure of P is of the form

Sn−1(P, ·) =
m∑

i=1

αiδui

with α1, . . . , αm > 0 and pairwise different u1, . . . , um ∈ Sn−1.
Let K ∈ Kn be a convex body such that Φs

n−1(K) = Φ0,s
n−1(P ) for all s ≤

2m. We first show that suppSn−1(K, ·) ⊆ {±u1, . . . ,±um}. Assume that w 6∈
{±u1, . . . ,±um}. Then there exists vj ∈ u⊥j \ w⊥, j = 1, . . . ,m. Hence, the polyno-
mial

q1(u) =
m∏

j=1

〈vj, u〉2,

u ∈ Sn−1, vanishes at ±u1, . . . ,±um but not at w. By assumption on coinciding
tensors and as q1 has degree 2m, we have

∫

Sn−1

q1(u)Sn−1(K, du) =

∫

Sn−1

q1(u)Sn−1(P, du) =
m∑

i=1

αiq1(ui) = 0.

11



As q1 ≥ 0, this shows that q1 is zero for Sn−1(K, ·)-almost all u. As q1 is continuous,

suppSn−1(K, ·) ⊆ {u ∈ Sn−1|q1(u) = 0} ⊆ Sn−1 \ {w}.

Hence w 6∈ suppSn−1(K, ·) and then suppSn−1(K, ·) ⊆ {±u1, . . . ,±um}. In partic-
ular, K is a polytope. Its surface area measure is of the form

Sn−1(K, ·) =
m∑

i=1

(
β+
i δui + β−i δ−ui

)

with β+
1 , β

−
1 , . . . , β

+
m, β

−
m ≥ 0, where we may assume β−i = 0 whenever −ui ∈

{u1, . . . , ui−1, ui+1, . . . , um}.
Consider now two cases. If −u1 6∈ {u2, . . . , um}, we can find vj ∈ u⊥j \ u⊥1 ,

j = 2, . . . ,m, and thus we have q2(u1) 6= 0 6= q3(u1) for

q2(u) =
m∏

j=2

〈vj, u〉2, q3(u) =
(m−1∏

j=2

〈vj, u〉2
)
〈vm, u〉.

By assumption on coinciding tensors, q2 gives the same value when integrated with
respect to Sn−1(K, ·) and Sn−1(P, ·). The same is true for q3. This gives

β+
1 + β−1 = α1, β+

1 − β−1 = α1,

so β+
1 = α1 and β−1 = 0. If −u1 ∈ {u2, . . . , um} we may without loss of generality

assume −u1 = u2 6∈ {±u3, . . . ,±um}. In this case, we have β−1 = β−2 = 0, and the
remaining two parameters β+

1 and β+
2 can be determined with arguments similar to

the ones above using

q2(u) =
m∏

j=3

〈vj, u〉2, q3(u) =
(m−1∏

j=3

〈vj, u〉2
)
〈vm, u〉.

These arguments can be applied to any index i showing that Sn−1(K, ·) = Sn−1(P, ·).
If P has non-empty interior or if n = 2, this implies that P and K are translates.

Theorem 3.4, below, is a version of Theorem 3.1 for centrally symmetric convex
bodies. If K ∈ Kn is centrally symmetric its surface area measure is even on Sn−1,
and hence Φs

n−1(K) = 0 for all odd s. This simplifies the arguments in the proof
of Theorem 3.1 as outlined in the following. Let so ∈ N be even. Let lso denote the
number of components of uso , that is,

lso =

(
so + n− 1

n− 1

)
.

In particular, lso = so+1 for n = 2. Let h1, . . . , hlso denote the different components
of uso . Following the proof of Theorem 3.1 with Γ, M and N replaced by

Γs(ν) =

(∫

Sn−1

h1(u)ν(du), . . . ,

∫

Sn−1

hlso (u)ν(du)

)
,
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Ms =
{

Γ(ν) | ν is a symmetric Borel probability measure on Sn−1
}
,

and
Ns =

{
1
2
(Γ(δu) + Γ(δ−u)) | u ∈ Sn−1

}
,

we obtain an even probability measure µs =
∑lso

j=1 αj(δuj + δ−uj) on Sn−1, such that

Γs(Sn−1(K, ·)) = Γs(µs). (3.3)

As µs and Sn−1(K, )̇ are even, equation (3.3) implies that Γ(µs) = Γ(Sn−1(K, ·))
with the notation from the proof of Theorem 3.1, and the result of Theorem 3.4
follows.

Theorem 3.4. Let K ∈ Kn be centrally symmetric and so ∈ N be even. Then there
exists an origin-symmetric polytope P ∈ Pn2lso , such that

Φs
n−1(K) = Φs

n−1(P )

for 0 ≤ s ≤ so.

Remark 3.5. For later use, we note that the polytope P and the convex body K
in Theorems 3.1 and 3.4 have identical harmonic intrinsic volumes up to degree so,
as they have identical surface tensors up to rank so.

The following lemma gives a generalized version of Wirtinger’s inequality, which
is used in Theorem 3.8 to establish stability estimates for harmonic intrinsic volumes
derived from the area measure of order 1.

Recall that F ∼∑∞m=0 Fm is the condensed harmonic expansion of F ∈ L2(Sn−1).

Lemma 3.6. Let n ≥ 2, s ∈ N and F ∼∑∞m=0 Fm ∈ Wα be given for some α > 0.
For γm = m(m+ n− 2) we have

‖F‖2 ≤ γ−αs ‖(−∆S)
α
2F‖2 +

s−1∑

m=0

(
1− (γmγ

−1
s )α

)
‖Fm‖2

with equality if and only if F ∈⊕s
m=0Hn

m.

Proof. It follows from (2.1) that

‖F‖2 =
s−1∑

m=0

‖Fm‖2 +
∞∑

m=s

γ−αm γαm ‖Fm‖2

≤
s−1∑

m=0

‖Fm‖2 + γ−αs

∞∑

m=s

γαm ‖Fm‖2

= γ−αs ‖(−∆S)
α
2F‖2 +

s−1∑

m=0

(1− (γmγ
−1
s )α)‖Fm‖2.

Equality holds in the above calculations if and only if F =
∑s

m=0 Fm.
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Lemma 3.6 immediately yields Corollary 3.7, where the second statement is a
generalized version of Wirtinger’s inequality.

Corollary 3.7 (Generalized Wirtinger’s inequality). Let n ≥ 2, s ∈ N and F ∼∑∞
m=0 Fm ∈ Wα be given for some α ≥ 0. Then

(i) ‖F‖2 ≤ γ−αs ‖(−∆S)
α
2F‖2 +

∑s−1
m=0 ‖Fm‖2

(ii) if F0 = · · · = Fs−1 = 0, then ‖F‖2 ≤ γ−αs ‖(−∆S)
α
2F‖2

Equality holds in (i) and/or (ii) if and only if F is a spherical harmonic of degree s.

If F is twice continuously differentiable, then F ∈ W 1 by (Groemer, 1996,
Cor. 3.2.12). Hence, Corollary 3.7 (ii) with α = 1 can be applied to F if F0 = · · · =
Fs−1 = 0. For s ∈ {1, 2}, this yields the usual versions of Wirtinger’s inequality of
functions on Sn−1, see, e.g., (Groemer, 1996, Thm. 5.4.1).

A convex body K ∈ Knn is said to be of class C2
+ if the boundary of K is a

regular submanifold of Rn of class C2 with positive Gauss curvature at each point.
If n ≥ 2 and K is of class C2

+, then the support function hK is twice continuously
differentiable (see (Schneider, 2014, Sec. 2.5)), and the area measure S1(K, ·) of order
1 has density

s1 = hK +
1

n− 1
∆S hK (3.4)

with respect to the spherical Lebesgue measure on Sn−1, see (Schneider, 2014, (2.56)
and (4.26)). This establishes a connection between the support function of K and
the harmonic intrinsic volumes of K derived from the area measure of order one. In
combination with the generalized version of Wirtinger’s inequality, this connection
can be used to show the stability results in Theorems 3.8 and 3.9.

Theorem 3.8. Let n ≥ 2, so ∈ N0 and ρ ≥ 0. Let K,L ∈ Kn such that K,L ⊆ RBn

for some R > 0. Assume that

1

(m ∨ 1)3−ε

N(n,m)∑

k=1

(
ψ1mk(K)− ψ1mk(L)

)2 ≤ ρ (3.5)

for m = 0, . . . , so and some ε > 0. Then

δt2(K,L)2 ≤ c1
(
(so + 1)(n+ so − 1)

)−α
+ ρM(n, ε) (3.6)

for 0 < α < 3
2
, where c1 = c1(α, n,R) is a constant depending only on n, α and R,

and M is a constant depending only on n and ε.

Proof. By (Schneider, 2014, Thm. 3.4.1 and subsequent remarks) there exists a
sequence (Kj)j∈N of convex bodies of class C2

+ converging to K in the Hausdorff
metric. For each j ∈ N, the support function hKj is twice continuously differentiable,
as Kj is of class C2

+. Then an application of Green’s formula (see, e.g., (Groemer,
1996, (1.2.7))), implies that

〈Hm,∆S hKj〉2 = 〈∆SHm, hKj〉2 = −γm〈Hm, hKj〉2
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for Hm ∈ Hn
m as spherical harmonics are eigenfunctions of the Laplace-Beltrami

operator. Thus, (3.4) yields that
∫

Sn−1

Hm(u)S1(Kj, du) = αnm〈Hm, hKj〉2 (3.7)

for Hm ∈ Hn
m, where αnm = 1−(n−1)−1γm. Note that αnm = 0 if and only if m = 1.

As S1(Kj, ·) converges weakly to S1(K, ·) (see (Schneider, 2014, Thm. 4.2.1)), and
hKj converges uniformly to hK , equation (3.7) implies that

∫

Sn−1

Hm(u)S1(K, du) = αn,m〈Hm, hK〉2. (3.8)

By the same arguments, equation (3.8) holds with K replaced by L.
Now let F = hK − hL + 〈x, ·〉, where x = s(L) − s(K). Then F1 = 0, and by

equation (3.8), inequality (3.5), and the fact that 〈x, ·〉 ∈ Hn
1 we obtain that

so∑

m=0

‖Fm‖2 =
so∑

m=0
m6=1

N(n,m)∑

k=1

(∫

Sn−1

Hmk(u)F (u)σ(du)

)2

=
so∑

m=0
m6=1

α−2nm

N(n,m)∑

k=1

(ψ1mk(K)− ψ1mk(L))2 ≤ ρM(n, ε),

where M(n, ε) =
∑∞

m=2
m3−ε
α2
n,m

+ 1 <∞. For 0 < α < 3
2
, we have that

‖(−∆S)
α
2F‖ ≤ ‖(−∆S)

α
2 hK−s(K)‖+ ‖(−∆S)

α
2 hL−s(L)‖ ≤ c1(α, n,R)

due to (Kiderlen, 2008, (2.12)). This implies that F ∈ Wα for 0 < α < 3
2
. Then

Corollary 3.7 (i) with s replaced by so + 1 can be applied to F , which yields that

‖F‖2 ≤
(
(so + 1)(so + n− 1)

)−α
c1(α, n,R) + ρM(n, ε)

for 0 < α < 3
2
. Then inequality (3.6) follows, since δt2(K,L)2 = ‖F‖2.

The result of Theorem 3.8 can be transferred to a stability result for the Minkowski
tensors Φs

1 (which are the surface tensors in the two-dimensional setting).

Theorem 3.9. Let n ≥ 2, so ∈ N0 and let K,L ∈ Kn such that K,L ⊆ RBn for
some R > 0. If Φs

1(K) = Φs
1(L) for s ∈ {so − 1 ∨ 0, so}, then

δt2(K,L) ≤ c1 s
−α
o (3.9)

and
δt(K,L) ≤ c2 s

− 2α
n+1

o (3.10)

for 0 < α < 3
2
, where c1 = c1(α, n,R) and c2 = c2(α, n,R) are constants depending

only on α, n and R.

Proof. Inequality (3.9) follows from Theorem 3.8, since equation (3.5) is satisfied
with ρ = 0, as Φs

1(K) = Φs
1(L) for 0 ≤ s ≤ so, see Remark 2.1. Inequality (3.9) in

combination with a known connection between the L2-distance and the Hausdorff
distance (see, (Groemer, 1996, Prop. 2.3.1)) yields inequality (3.10).
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4 Reconstruction of shape from surface tensors

We assume throughout this section that n = 2. In arbitrary dimension n, the sur-
face tensors determine the shape of a convex body with interior points. In the
two-dimensional case, however, the assumption on interior points is redundant, see
(Schneider, 2014, Thm. 8.3.6). In the attempt to reconstruct shape from surface ten-
sors in R2, it is therefore natural to consider K0 ∈ K2. We suppose that the convex
body K0 is unknown and that the surface tensors Φ0

1(K0), . . . ,Φ
so
1 (K0) are known for

some so ∈ N0. By Remark 2.1, this is equivalent to assuming that the components
φsj(K0) for j = 0, . . . , s of Φs

1(K0) are known for s = so − 1, so (If so = 0, only the
value of Φ0

1(K0) is assumed to be known).
Section 4.1 presents a reconstruction procedure of the shape of K0 based on

the components of the surface tensors of rank so − 1 and so. The output of the
reconstruction procedure is a polygon P , where the surface tensors of P are identical
to the surface tensors K0 up to rank so. In Section 4.2 we use results from Section 3
to show consistency of the reconstruction algorithm developed in Section 4.1.

As described in Section 2, the harmonic intrinsic volumes of K0 up to degree so
constitute a set of values of surface tensors that contains the same shape information
as the components of Φso−1

1 (K0) and Φso
1 (K0). It only requires minor adjustments of

the reconstruction algorithm to obtain an algorithm based on the harmonic intrinsic
volumes.

4.1 Reconstruction

Assume that so ≥ 1, and define Dso : K2 → [0,∞) as the sum of squared deviations
of the components of the surface tensors of K to the components of the surface
tensors of K0 of rank so − 1 and so. That is

Dso(K) =
so∑

s=so−1

s∑

j=0

(
φsj(K0)− φsj(K)

)2
.

By Remark 2.1, the surface tensors of a convex body K and the surface tensors of
K0 are identical up to rank so if and only if Dso(K) = 0. In order to reconstruct
the shape of K0 from the surface tensors, it therefore suffices to find a convex body
that minimizes Dso . Due to Theorem 3.1, there exists a P ∈ P2

2so+1 satisfying this
condition.

Let δu denote the Dirac measure at u ∈ S1, and let

M = {(α, u) ∈ R2so+1 × (S1)2so+1 | αi ≥ 0,
2so+1∑

i=1

αiui = o}.

Then the surface area measure of a P ∈ P2
2so+1 is of the form

S1(P, ·) =
2so+1∑

i=1

αiδui ,
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where (α, u) ∈ M . The vectors u1, . . . , u2so+1 are the facet normals of P , and
α1, . . . , α2so+1 are the corresponding facet lengths, see (Schneider, 2014, (4.24) and
(8.15)). Conversely, if a Borel measure ϕ on S1 is of the form

ϕ =
2so+1∑

i=1

αiδui

for some (α, u) ∈M , then by Minkowski’s existence theorem there is a P ∈ P2
2so+1,

such that ϕ is the surface area measure of P , see (Schneider, 2014, Thm. 8.2.1).
Notice that the assumption on the dimension of ϕ in Minkowski’s existence theorem
can be omitted as n = 2, see (Schneider, 2014, Thm. 8.3.1). The minimization
of Dso can now be reduced to its minimization on P2

2so+1, and hence to the finite
dimensional minimization problem

min
(α,u)∈M

so∑

s=so−1

s∑

i=0

(
φsj(K0)−

1

s!ωs+1

2so+1∑

i=1

αju
j
i1u

s−j
i2

)2
. (4.1)

This can solved numerically.
A solution to the minimization problem (4.1) is a vector (α, u) ∈ M, which de-

scribes the surface area measure of a polygon. The reconstruction of the polygon
from the surface area measure can be executed by means of Algorithm MinkData,
see (Gardner, 2006, Sec. A.4). For n = 2, the reconstruction algorithm is simple.
The vectors α1u1, . . . , α2so+1u2so+1 are sorted such that the polar angles are increas-
ing, and hereafter, the vectors are positioned successively such that they form the
boundary of a polygon P̃ with facets of length αj parallel to uj for j = 1, . . . , 2so+1.
The output polygon K̂so of the algorithm is P̃ rotated π

2
about the origin. Then K̂so

minimizes Dso , and it follows that the convex bodies K̂so and K0 have identical
surface tensors up to rank so.

If so = 0, let K̂so be the line segment [0, φ00(K0)e1], where e1 is the first standard
basis vector in R2. Then K̂so is a polygon with 1 facet, and Φ0

1(K0) = Φ0
1(K̂so).

The reconstruction algorithm can be summarized as follows.

Algorithm Surface Tensor

Input: A natural number so ∈ N0 and the components of the surface tensors Φso
1 (K0)

and Φso−1∨0
1 (K0) of an unknown convex body K0 ∈ K2.

Task: Construct a polygon K̂so in R2 with at most 2so + 1 facets such that K̂so and
K0 have identical surface tensors up to rank so.

Action: If so = 0, let K̂so be the line segment [0, φ00(K0)e1]. Otherwise,

Phase I: Find a vector (α, u) ∈M that minimizes

so∑

s=so−1

s∑

j=0

(
φsj(K0)−

1

s!ωs+1

2so+1∑

i=1

αiu
j
i1u

s−j
i2

)2
,

where φs0(K0), . . . , φss(K0) denote the components of Φs
1(K0).
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Phase II: The vector (α, u) describes a polygon K̂so in R2 with at most 2so+1
facets. Reconstruct K̂so from (α, u) using Algorithm MinkData.

It is worth mentioning that certain a priori information on K0 ∈ Kn can be
included in the reconstruction algorithm by modifying the set M in (4.1). We give
two examples.

Example 4.1. If K0 is known to be centrally symmetric, M can be replaced by
{

(α, u) ∈ R2so+2 × (S1)2so+2 | αj = α(so+1)+j ≥ 0, uj = −u(so+1)+j

}
,

due to Theorem 3.4. This ensures central symmetry of the output polygon K̂so of
the reconstruction algorithm.

Example 4.2. If K0 is known to be a polygon with at most m facets, M can be
replaced by

M̃ =
{

(α, u) ∈ Rm × (S1)m | αj ≥ 0,
m∑

j=1

αjuj = 0
}
.

The assumption on K0 implies that the optimization of (4.1) with M replaced by
M̃ still has a solution with objective function value zero. The uniqueness statement
in Theorem 3.3 even implies that the output K̂so of this modified Algorithm Surface
Tensor is unique and has the same shape as K0 if so ≥ 2m.

Remark 4.3. If K0 is a polygon with at most m ∈ N facets and known surface
tensors of rank 2m − 1 and 2m − 2, then an alternative reconstruction procedure
similar to methods for reconstruction of planar polygons from complex moments
described in Milanfar et al. (1995) and Golub et al. (1999) can be applied. We let
k ≤ m denote the number of facets of K0, let u1, . . . , uk denote the facet normals
and α1, . . . , αk denote the corresponding facet lengths. The facet normals are iden-
tified with complex numbers in the natural way (in particular, us denotes complex
multiplication and not tensor multiplication in this remark). For s = 0, . . . , 2m− 1,
we let

τs =
k∑

j=1

αju
s
j = s!ωs+1

s∑

j=0

(
s

j

)
is−jφsj(K0)

and define the Hankel matrix

H =




τ0 · · · τm−1
... . . . ...

τm−1 · · · τ2m−2


 .

As
H = V diag(α1, . . . , αk)V

>

where V is the Vandermonde matrix

V =




1 · · · 1
u1 · uk
...

...
u2m−11 · · · u2m−1k


 ∈ C2m×k,
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the rank of H is the number k of facets of K0. The facet normals and facet lengths
of K0 can be restored from H (or a submatrix of H, if k < m) using Prony’s
method, see Milanfar et al. (1995) or Hildebrand (1956). The shape of the polygon
K0 can then be reconstructed from the facet normals and facet lengths by means of
Algorithm MinkData. The facet normals and facet lengths can also be obtained by
solving the generalized eigenvalue problem Hx = λH1x where H1 is defined as H
but its entries start with τ1 and end with τ2m−1, see Golub et al. (1999).

4.2 Consistency of the reconstruction algorithm

Algorithm Surface Tensor described in Section 4.1 is consistent. This follows from
Theorem 4.4.
Theorem 4.4. Let K0 ∈ K2 and so ∈ N0. If Kso ∈ K2 and K0 have identical surface
tensors up to rank so then

δt(K0, Kso) = O(s−1+εo )

for any ε > 0. Hence, if Kso , so = 0, 1, 2, . . . , is a sequence of such bodies then the
shape of Kso converges to the shape of K0.
Proof. As K0 is compact, there is an R > 0 such that K0 ⊆ RB2. Let so ∈ N0, and
let x, y ∈ Kso . Then

|x− y| = V1([x, y]) ≤ V1(Kso) = V1(K0) ≤ πR

by monotonicity of the intrinsic volumes on K2, see, e.g., Schneider and Weil (2008).
It follows that there is a translate Kso + xso of Kso which is a subset of πRB2. For
each so ∈ N0, Theorem 3.9 with R replaced by πR can now be applied to K0 and
Kso + xso , and we obtain that

δt(K0, Kso) ≤ c2(α, 2, πR)(so + 1)−
2α
3

for 0 < α < 3
2
. This yields the result.

4.3 Examples of reconstructions

This section consists of two examples where Algorithm Surface Tensor is used to
reconstruct a polytope (see Figure 1) and a half disc (see Figure 2). For each two
of the convex bodies, the reconstruction is executed for so = 2, 4, 6. The minimiza-
tion (4.1) is performed by use of the procedure fmincon provided by MatLab. As
initial values for this procedure, we use regular polytopes with 2so + 1 facets. The
reconstructions are illustrated in Figure 3 and Figure 4.

The reconstructions with so = 2 and the corresponding underlying convex bodies
have identical surface tensors up to rank 2, so the reconstructions have, in particular,
the same boundary length as the corresponding underlying bodies. Further, the
reconstructions (in particular, the reconstruction of the polytope) seem to have the
same orientation and degree of anisotropy as the corresponding underlying convex
bodies. This is due to the influence of the surface tensor of rank 2. As expected, the
reconstructions with so = 4 are more accurate than the reconstructions with so = 2.
In the current two examples, the Algorithm Surface Tensor provides very precise
approximations of the polytope and the half disc already for so = 6.
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Figure 1: Polytope with six facets Figure 2: Half Disc

Figure 3: Reconstructions of polytope based on surface tensors up to rank so = 2, 4, 6.

Figure 4: Reconstructions of half disc based on surface tensors up to rank so = 2, 4, 6.
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5 Reconstruction of shape from measurements of
harmonic intrinsic volumes

In Section 4, the reconstruction of shape from surface tensors was treated. In this
section, we consider the problem of reconstructing shape from noisy measurements
of surface tensors. As in Section 4, we assume that n = 2. As described in Section 2,
the harmonic intrinsic volumes up to degree s contain the same shape information
of a convex body as all surface tensors up to rank s. When only noisy measurements
of the surface tensors are available, the structure of the stability result Theorem 3.8
proposes to use the harmonic intrinsic volumes for the reconstruction in order to
obtain consistency of the reconstruction algorithm.

Let so ∈ N0, and suppose that K0 ∈ K2 is an unknown convex body, where
measurements of the harmonic intrinsic volumes up to degree so are known. To
include noise, the measurements are assumed to be of the form

λsj(K0) = ψsj(K0) + εsj (5.1)

for j = 1, . . . , N(2, s) and s = 0, . . . , so, where (εsj) are independent random vari-
ables with zero mean and finite variance. In the following, let

ψs(K) = (ψ01(K), ψ11(K), ψ12(K), . . . , ψs2(K))

and similarly
λs(K) = (λ01(K), λ11(K), λ12(K), . . . , λs2(K))

for s ∈ N0 and K ∈ K2.
Section 5.1 presents a reconstruction algorithm for the shape of K0 based on the

measurements (5.1). The output of the reconstruction procedure is a polygon, which
fits the measurements (5.1) in a least squares sense. It is natural to consider least
squares estimation as this is equivalent to maximum likelihood estimation when the
noise terms (εsj) are independent, identically distributed normal random variables.
The consistency of the least squares estimator is discussed in Section 5.2.

5.1 Reconstruction

Assume that so ≥ 1, and define DH
so : K2 → [0,∞) as the sum of squared deviations

of the harmonic intrinsic volumes of a convex body K to the measurements (5.1).
That is

DH
so(K) =

so∑

s=0

ns∑

j=1

(
λsj(K0)− ψsj(K)

)2
= |λso(K0)− ψso(K)|2,

where ns = N(2, s) for s = 0, . . . , so, (n0 = 1 and ns = 2 for s ≥ 1). In order to
obtain a least squares estimator, the infimum ofDH

so has to be attained. In contrast to
the situation in Section 4.1, the convex body K0 does not necessarily minimize DH

so .
However, Lemma 5.1 ensures the existence a polygon that minimizes DH

so .
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Lemma 5.1. There exists a P ∈ P2
2so+1 such that

DH
so(P ) = inf

K∈K2
DH
so(K). (5.2)

Furthermore, if K ′, K ′′ ∈ K2 both are solutions of (5.2) then ψso(K
′) = ψso(K

′′),
i.e. K ′ and K ′′ have the same surface tensors of rank at most so.

Proof. LetMso = {ψso(K) | K ∈ K2} ⊆ R2so+1. Due to Minkowski linearity of the
area measure of order one, see (Schneider, 2014, eq. (8.23)),Mso is convex.

We first show that Mso is closed in R2so+1. Let (ψso(Kn))n∈N be a sequence in
Mso , such that ψso(Kn)→ ξ for some ξ ∈ R2so+1. For sufficiently large n we have

√
2

π
V1(Kn) = ψ01(Kn) ≤ |ξ1 − ψ01(Kn)|+ |ξ1|

≤ |ξ − ψso(Kn)|+ |ξ| ≤ 1 + |ξ|.

By monotonicity of the intrinsic volumes on K2 (see, e.g, Schneider and Weil (2008)),
we have

|x− y| = V1([x, y]) ≤ V1(Kn) ≤
√
π

2
(1 + |ξ|)

for x, y ∈ Kn. This implies that a translate of Kn is a subset of
√

π
2
(1 + |ξ|)B2 for

n sufficiently large. By continuity of K 7→ ψso(K) (with respect to the Hausdorff
metric), an application of Blaschke’s selection theorem (see, e.g., (Schneider, 2014,
Thm. 1.8.7)), yields the existence of a subsequence (nl)l∈N and a convex bodyK ∈ K2

satisfying ψso(Knl) → ψso(K) for l → ∞. Hence, ξ = ψso(K) ∈ Mso , so Mso is
closed. The optimization problem

inf
K∈K2

DH
so(K) = inf

ψ∈Mso

|λso(K0)− ψ|2

corresponds to finding the metric projection of λso(K0) to the non-empty closed
and convex set Mso . This metric projection ψso(K

′) ∈ Mso always exists and is
unique; see, e.g., (Schneider, 2014, Section 1.2). Note that K ′ ∈ K2 is not uniquely
determined here, but any two sets K ′, K ′′ ∈ K2 minimizing (5.2) must satisfy
ψso(K

′) = ψso(K
′′). By Theorem 3.1 (and Remark 3.5), this ensures the existence

of a polygon P with at most 2so + 1 facets satisfying (5.2).

Remark 5.2. It follows from Lemma 5.1 that the measurements (5.1) are the exact
harmonic intrinsic volumes of a convex body if and only if infK∈K2 DH

so(K) = 0.

By Lemma 5.1 and considerations similar to those in Section 4.1, the minimiza-
tion of DH

so can be reduced to the finite dimensional minimization problem

min
(α,u)∈M

so∑

s=0

ns∑

j=1

(
λsj(K0)−

2so+1∑

i=1

αiHsj(ui)
)2
, (5.3)

whereM is defined as in Section 4.1. This finite minimization problem can be solved
numerically. The solution to the minimization problem (5.3) is a vector (α, u) in M ,
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that describes the surface area measure of a polygon. As described in Section 4.1,
the MinkData Algorithm can be applied for the reconstruction of this polygon.

The least squares estimator K̂H
so of the shape of K0 is defined to be the out-

put polygon of this algorithm. Then K̂H
so minimizes DH

so , so the harmonic intrinsic
volumes of K̂H

so fit the measurements (5.1) in a least squares sense. For so = 0, the
estimator K̂H

so is defined as the line segment [0, λ00(K0)e1] if λ01(K0) ≥ 0. Otherwise,
K̂H
so is defined as the singleton {0}.
The reconstruction algorithm can be summarized as follows.

Algorithm Harmonic Intrinsic Volume LSQ

Input: A natural number so ∈ N0 and measurements λsj(K0), j = 0, . . . , N(2, s),
s = 0, . . . , so of the harmonic intrinsic volumes up to degree so of an unknown
convex body K0 ∈ K2.

Task: Construct a polygon K̂H
so in R2 with at most 2so + 1 facets such that the har-

monic intrinsic volumes of K̂H
so fit the measurements of the harmonic intrinsic

volumes of K0 in a least squares sense.

Action: If so = 0, let K̂H
so be the line segment (or singleton) [0, (λ01(K0) ∨ 0)e1].

Otherwise,

Phase I: Find a vector (α, u) ∈M that minimizes

so∑

s=0

ns∑

j=1

(
λsj(K0)−

2so+1∑

i=1

αiHsj(ui)
)2
.

Phase II: The vector (α, u) describes a polygon K̂H
so in R2 with at most 2so+1

facets. Reconstruct K̂H
so from (α, u) using the MinkData Algorithm.

As described in Examples 4.1 and 4.2, additional information on the unknown
convex body K0 can be included in the reconstruction algorithm by modifying the
set M in a suitable way.

5.2 Consistency of the least squares estimator

So far, we have oppressed the dependence of the noise term in the notation of DH
so .

In the following, for so ∈ N, we write

DH
so(K, x) = |ψso(K0) + x− ψso(K)|2

where K ∈ K2 and x ∈ R2so+1. Further, we let

Kso(x) = {K ∈ K2 | DH
so(K, x) = inf

L∈K2
DH
so(L, x)}.

If εso = (ε01, ε11, ε12, . . . , εso2) denotes the random vector of noise variables in the
measurements (5.1), then Ks0(εso) is the random set of solutions to the minimiza-
tion (5.3). Due to Lemma 5.1, the set Kso(εso) is non-empty for all so ∈ N. We can
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without loss of generality assume that the noise variables are defined on a complete
probability space.

In the following, we show that supK∈Kso (εso ) δ
t(K0, K) is measurable. To this end,

we use the notion of permissible sets, see (Pollard, 1984, App. C). For K ∈ K2 and
x ∈ R2so+1, define

f(K, x) = δt(K0, K)1{0}(g(K, x))

where g(K, x) = infL∈K2 DH
so(L, x) − DH

so(K, x), and let F = {f(K, ·) | K ∈ K2}.
Then

sup
K∈Kso (εso )

δt(K0, K) = sup
K∈K2

f(K, εso).

As DH
so is continuous in the first variable and is measurable as a function of two

variables, the mapping g is measurable as K2 is separable. As δt(K0, ·) is continuous,
this implies that f is measurable.

Let F2 denote the family of closed subsets of R2 equipped with the Fell topology,
see, e.g., (Schneider and Weil, 2008, Chapter 12.2). Then, F2 is compact and metriz-
able, and the set of convex bodies K2 is an analytic subset of F2 as K2 ∈ B(F2), see,
e.g., (Schneider and Weil, 2008, Thm. 12.2.1, the subsequent remark and Thm 2.4.2).
Further, the topology on the separable set K2 induced by the Fell topology and the
topology on K2 induced by the Hausdorff metric coincide, see, e.g, (Schneider and
Weil, 2008, Thm. 12.3.4), so the set F is permissible. Due to (Pollard, 1984, App. C,
p. 197), this implies that supK∈K2 f(K, εso) is measurable.

For so ∈ N, the noise variables ε01, ε11, . . . , εso2 are assumed to be independent
with zero mean and finite variance bounded by a constant σ2

so <∞.

Theorem 5.3. If σ2
so = O( 1

so1+ε
) for some ε > 0, then

sup
K∈Kso (εso )

δt(K0, K)→ 0

in probability as so →∞. If σ2
so = O( 1

so2+ε
), then the convergence is almost surely.

Proof. Let δ > 0, and let ρ < δ
2M
∧ 1 where M = M(2, 3) is defined in Theorem 3.8.

Let so ∈ N, K ∈ Kso(εso), and assume first that DH
so(K0, εso) <

ρ
8
. Then,

max
s=0,...,so

ns∑

j=1

(
ψsj(K0)− ψsj(K)

)2

≤ 4 max
s=0,...,so

ns∑

j=1

(
ε2sj +

(
λsj(K0)− ψsj(K)

)2)

≤ 8DH
so(K0, εso) < ρ.

In particular, (ψ01(K0)− ψ01(K))2 < ρ which implies that

V1(K) < π
2

+ V1(K0) =: R(K0).

By arguments similar to those in the proof of Theorem 4.4, this implies that there
are translates of K and K0 contained in RB2. As R is independent of so and K, we
obtain by Theorem 3.8 that

sup
K∈Kso (εso )

δt2(K0, K) ≤ c1(1, 2, R)(so + 1)−2 + ρM < δ
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for so sufficiently large. Due to the connection between the Hausdorff metric and
L2-metric, see, e.g., (Groemer, 1996, Prop. 2.3.1), we obtain

sup
K∈Kso (εso )

δt(K0, K) < (3Rδ2)
1
3 . (5.4)

As DH
so(K0, εso) =

∑so
s=0

∑ns
j=1 ε

2
sj, the assumption on the convergence rate, σ2

so =

O( 1
so1+ε

) for some ε > 0, implies that DH
so(K0, εso) convergences to zero in mean and

then in probability, when so increases. If σ2
so = O( 1

so2+ε
), then

∑∞
so=1 EDH

so(K0, εso) <

∞, which ensures that DH
so(K0) convergences to zero almost surely. In combination

with inequality (5.4), this yields the convergence results.

As K̂H
so ∈ Kso(εso) for so ∈ N, Theorem 5.3 yields consistency of Algorithm

Harmonic Intrinsic Volume LSQ.

5.3 Example on reconstruction from harmonic intrinsic
volumes

This section is an example where Algorithm Harmonic Intrinsic Volume LSQ is used
to reconstruct a half disc K0 from noisy measurements of the harmonic intrinsic vol-
umes. The reconstruction of the half disc is executed for so = 2, 4, . . . , 12. The noise
terms (εsj) are independent and normally distributed with zero mean. For the re-
construction based on harmonic intrinsic volumes up to degree so, the variance of
the noise terms is σ2

so = 1
so2.1

. Due to Theorem 5.3 this ensures that δt(K0, K̂so)→ 0
almost surely for so → ∞. The minimization (5.3) is carried out by use of the
procedure fmincon provided by MatLab. As initial values for the minimization pro-
cedure, we use regular polytopes with 2so+1 facets. The reconstructions are plotted
in Figure 5.

For the reconstruction based on exact surface tensors, the values of Dso(K0) and
Dso(K̂so) are always zero. This is not the case when the reconstruction is based on
measurements subject to noise. In Figure 6, the values of DH

so(K0) and DH
so(K̂

H
so) are

plotted for so = 2, 4, . . . , 12. As K̂H
so minimizes DH

so , the value of DH
so(K̂so) is smaller

than the value of DH
so(K0) for each so. As the variance of the noise terms converges

to zero sufficiently fast, the values of DH
so(K0) and hence also the values of DH

so(K̂
H
so)

tend to zero, when so increases.
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Figure 5: Reconstruction of a half disc based on measurements of harmonic intrinsic
volumes up to degree so = 2, 4, 6, 8, 10, 12. The noise variables are normally distributed
with zero mean and variance 1

s2.1o
.

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Figure 6: DH
so(K0) (‘o’) and DH

so(K̂
H
so) (‘+’) plotted for so = 2, 4, . . . , 12.
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