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Abstract

We present two algorithms for reconstruction of the shape of convex bodies
in the two-dimensional Euclidean space. The first reconstruction algorithm re-
quires knowledge of the exact surface tensors of a convex body up to rank s
for some natural number s. The second algorithm uses harmonic intrinsic
volumes which are certain values of the surface tensors and allows for noisy
measurements. From a generalized version of Wirtinger’s inequality, we derive
stability results that are utilized to ensure consistency of both reconstruction
procedures. Consistency of the reconstruction procedure based on measure-
ments subject to noise is established under certain assumptions on the noise
variables.

Keywords: Convex body, shape, reconstruction algorithm, surface tensor, har-
monic intrinsic volume, generalized Wirtinger’s inequality

1 Introduction

The problem of determining and reconstructing an unknown geometric object from
indirect measurements is treated in a number of papers, see, e.g., Gardner (2006). In
Prince and Willsky (1990), a convex body is reconstructed from measurements of its
support function. Measurements of the brightness function are used in Gardner and
Milanfar (2003), and in Campi et al. (2012) it is shown that a convex body can be
uniquely determined up to translation from measurements of its lightness function.
Milanfar et al. (1995) developed a reconstruction algorithm for planar polygons
and quadrature domains from moments of the Lebesgue measure restricted to these
sets. In particular, they showed that a non-degenerate convex polygon in R? with k
vertices is uniquely determined by its moments up to order 2k—3. The reconstruction
algorithm and the uniqueness result were generalized to convex polytopes in R™ in
Gravin et al. (2012).

In continuation of the work in this area, we discuss reconstruction of convex
bodies from a certain type of Minkowski tensors. In recent years, Minkowski tensors
have been studied intensively. On the applied side, Minkowski tensors have been
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established as robust and versatile descriptors of shape and morphology of spatial
patterns of physical systems, see e.g., Beisbart et al. (2002); Schroder-Turk et al.
(2010, 2013). The importance of Minkowski tensors is further indicated by Alesker’s
characterization theorem, see Alesker (1999), that states that products of Minkowski
tensors and powers of the metric tensor span the space of tensor-valued valuations
on convex bodies satisfying some natural conditions.

In the present work, we consider translation invariant Minkowski tensors, ®%(K)
of rank s, which are tensors derived from the j’'th area measure S;(K,-) of a convex
body K CR"™, j =0,...,n—1. For details, see Section 2. For a given j = 1,...,n—1,
the set {®5(K) | s € Ng} of all Minkowski tensors determines K up to translation.
Calling the equivalence class of all translations of K the shape of K, we can say that
{®5(K) | s € No} determines the shape of K. When only Minkowski tensors ®3(K),
s < s, up to a certain rank s, are given, this is, in general, no longer true. We estab-
lish a stability result (Theorem 3.8) stating that the shapes of two convex bodies are
close to one another when the two convex bodies have coinciding Minkowski tensors
®%(K) of rank s < s,. The proof uses a generalization of Wirtinger’s inequality
(Corollary 3.7), which is different from existing generalizations in the literature (e.g.
Cheng and Zhang (2009); Giova and Ricciardi (2010)) as it involves a higher order
spherical harmonic expansion. We also show (Theorem 3.1) that there always exists
a convex polytope P with the same surface tensors ®; ; of rank s < s, as a given
convex body. The number of facets of P can be bounded by a polynomial of s, of
degree n — 1. Using this result, we conclude (Corollary 3.2) that a convex body K
is a polytope if the shape of K is uniquely determined by a finite number of surface
tensors. In fact, the shape of a convex body K is uniquely determined by a finite
number of its surface tensors if and only if K is a polytope (Theorem 3.3).

For actual reconstructions, we restrict considerations to the planar case. We
consider two cases. Firstly, the case when the exact tensors are given, and secondly,
the case when certain values of the tensors are measured with noise. Algorithm
Surface Tensor in Section 4 allows to reconstruct an unknown convex body K in
R? based on surface tensors ®3(Ky) up to rank s,. The output of the reconstruction
procedure is a polygon P with surface tensors identical to the surface tensors of Ky up
to rank s,. Theorem 3.1 yields the existence of a polygon with the described property.
Due to the bound on the number of facets of P and to the simple structure of surface
tensors of polygons, the reconstruction problem can be solved by first finding the
surface area measure of P using a least squares optimization, and then constructing
P with the help of Algorithm MinkData in Gardner (2006). The consistency of the
reconstruction procedure is established using the mentioned stability result.

Reconstruction algorithms for dimensions n > 2 could be developed along the
same lines when surface tensors ®¢_,(Kj), s < s, are used as input. However, the
methods in this paper yield a stability result for ®3(Kj), s < s,, and this is why we
only consider the case n = 2. The higher dimensional situation will be discussed in
future work.

Algorithm Harmonic Intrinsic Volumes LS(@) reconstructs an unknown convex
body Ky based on measurements of harmonic intrinsic volumes up to degree s,,
where the measurements are subject to noise. The harmonic intrinsic volumes of a
convex body in R? are certain values of the surface tensors, and the harmonic intrin-



sic volumes up to degree s, determine the surface tensors up to rank s,. The output
of the reconstruction is a polygon with surface tensors best fitting the measurements
of the harmonic intrinsic volumes of Ky in a least squares sense. As for the procedure
for reconstruction of convex bodies from exact surface tensors, this reconstruction
procedure is based on Theorem 3.1 and Algorithm MinkData. The consistency of
the reconstruction algorithm is established using the stability result and requires
that the variances of all measurements converge to zero sufficiently fast. It is the
structure of the stability result that suggests that we should consider reconstruction
based on harmonic intrinsic volumes when the measurements are subject to noise.
The paper is organized as follows: After introducing notations and preliminaries
in Section 2, we present the main theoretical results in Section 3 in R", n > 2:
The existence of a polytope with finitely many surface tensors coinciding with those
of a given convex body, the uniqueness result for shapes of polytopes, the general-
ized Wirtinger’s inequality, and the derived stability result. In Section 4 Algorithm
Surface Tensor and its properties are discussed, and Section 5 is devoted to the
reconstruction from noisy measurements of harmonic intrinsic volumes.

2 Notation and preliminaries

We work in the n-dimensional Euclidean vector space R™ with inner product (-, )
and induced norm [-|. As usual, S"~! is the unit sphere in R", and &,, and w,, denote
the volume and the surface area of the unit ball B™, respectively. The Borel o-algebra
of a topological space X is denoted by B(X). Further, let A denote the Lebesgue
measure on R™. The set L?(S™"™1) of square integrable functions on S"~! with respect
to the spherical Lebesgue measure o is equipped with the usual inner product (-, ),
and the associated norm || - ||.

For a function F on the unit sphere S"', we let ' denote the radial extension

of F'to R™\ {o}, that is,
. x
|z]

for x € R"\ {0}. Let Vg I denote the restriction of the gradient VF of F to S" !,
when the partial derivatives of F' exist. If further, F' has partial derivatives of second
order, the Laplace-Beltrami operator Ag F of F is defined as the restriction of A F
to S !, where A denotes the Laplace operator on functions on R”.

In the proofs of Lemma 3.6 and Theorem 3.8, spherical harmonics are a key
ingredient. We use Groemer (1996) as a general reference on the theory of spherical
harmonics. A polynomial p on R” is said to be harmonic if it is homogeneous and
Ap = 0. A spherical harmonic of degree m is the restriction to S"~! of a harmonic
polynomial of degree m. Let H;' be the vector space of spherical harmonics of
degree m on S™7!, and let N(n,m) denote the dimension of H",. For m € Ny, let
Hyis ..o, HyoN@nm) be an orthogonal basis for H;,. Then the condensed harmonic
expansion of a function F' € L*(S"!) is > > F,,, where F,, = Z;V:(?m) i Hnj
with

s (F Hing)o
|| H o |2



We write F' ~ Y *_ F,,, when ) > | F,, is the condensed harmonic expansion of F.
The condensed harmonic expansion of F' is independent of the choice of bases of
spherical harmonic used to derive it. The spherical harmonics are eigenfunctions of
the Laplace-Beltrami operator as

AsH, =—-m(m+n—2)H,

for H,, € H'. We let v,, denote the absolute value of the eigenvalues of Ag, that is
Ym = m(m +n — 2) for m € Ny.

As in Campi (1998), the Sobolev space W for a > 0 is defined as the space of
square integrable functions F' ~ > F,, on the sphere, for which

D Al Enl? < oo
m=0
By definition We C L*(S"!) for « > 0, and W° = L2(S"™1). For F € W<, the sum

Z('Ym)%Fm

m=0

converges in the L2-sense. The limit is denoted by (— Ag)2 F, and thus

I(=2As)5 F||* = vaIIF 1. (2.1)

The notation is explained by the fact that

m=0

for any F'~ Y > F,, that is twice continuously differentiable.

In the two-dimensional setting we have N(2,0) = 1 and N(2,m) = 2 for m € N,
and the spherical harmonic expansion is closely related to classical Fourier expansion.
We obtain an orthonormal sequence of spherical harmonics constituting a basis of

L2(SY) by letting Hoq(uq, us) = (27)"2,

1 . m . .
Hyp(ui,ug) =772 » (=1) (22) ul" "y (2.2)
i=0
and
| 752 ] m
1 .

for (u1,up) € S' and m € N, where |x] denote the integer part of z € R. If
the polynomials in (2.2) and (2.3) are considered as polynomials on R?, then due to
homogeneity, the polynomials can be decomposed into linear factors. More precisely,

(Ul - Cluz) T (Ul - Cmu2)> (2-4)

4
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where

¢ cos(—(zjzjnl)ﬁ) for 7 — 1

= ——=n_ orj=1,...,m

7 sin(&Um

The lines where H,,; vanishes (and herewith (;, j = 1,...,m) are determined using

the fact that
H,pi(cos(w), sin(w)) = /7 cos(mw)

for w € [0, 27). Similarly, we can factorize H,,s. In this case, however, the factoriza-
tion depends on the parity of m. This is due to the fact that a term involving u7"
does not appear in H,,, and that the term involving u5’ only appears, when m is
odd. We get that

% U2 ( )\1U2) e (Ul — )\m,IU2> if m is even
HmQ(u17u2) = { 1 m A . (25>
m2(=1) 7 (2—P1U1)""'(u2—PmU1) if m is odd,
where
cos(L%)
Aj = - forj =1 -1
sin(2%)
and
B sin((ﬁml)”) e
Pi cos((j;nl)ﬂ) T

Here, we have used that

H,a(cos(w), sin(w)) = /7 sin(mw)

for w € [0,27) in order to determine the lines where H,,» vanishes.

As general reference on convex geometry and Minkowski tensors, we use Schnei-
der (2014). Let K™ denote the set of convex bodies (that is, compact, convex, non-
empty sets) in R™, and let K denote the set of convex bodies with non-empty
interior. We refer to convex polytopes and convex polygons by ‘polytopes’ and ‘poly-
gons’, and let P denote the set of non-empty polytopes in R” with at most m facets,
m € {n+1,n+2,...}. The support function (restricted to S"~!) of a convex body
K is denoted by hg. The set of support functions {hx | K € K", K C RB"} for
R > 0 is bounded in W for 0 < a < %, see (Kiderlen, 2008, Prop. 2.1). The set K"
of convex bodies is equipped with the Hausdorff metric §, which can be expressed
as the distance of support functions with respect to the supremum norm on S"!,
ie.

O(K,L)= sup |hx(u) = he(u)|.
uesSn—1

In addition to the Hausdorff metric, we use the L2-metric on K. The L*-distance
between two convex bodies K and L is defined as the L2-distance of their support
functions, i.e.

03(K, L) = [lhx — he].

The Hausdorff metric and the L2-metric are equivalent and related by inequalities,
see (Groemer, 1996, Prop. 2.3.1). This is used in Theorem 3.9 to transfer bounds
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on the L2-distance to bounds on the Hausdorff distance between convex bodies
satisfying certain conditions.

In the present work, two convex bodies are said to have the same shape if and
only if they are translates. The position of a convex body has major influence on the
above described distances, and as a measure of difference in shape only, we consider
the translation invariant versions

5t(K,L) = ian (K, L+ x)
rxeR"
and
OL(K, L) = ian 5o (K, L+ ).
rcR"”

If the support function Ay of a convex body K has condensed harmonic expansion
> o(hg)m, then (hg); = (s(K),-), where s(K) is the Steiner point of K,

m=0

S(K) = i/ e () wor(d).
Rp Jgn—1
For convex bodies K and L, this implies that d5(K, L) = §(K, L) if and only if K
and L have coinciding Steiner points, see (Groemer, 1996, Prop. 5.1.2).

Let TP be the vector space of symmetric tensors of rank p over R", that is,
the space of symmetric multilinear functions of p variables in R™. Due to linearity,
a tensor T € TP can be identified with the array {T'(e;,,...,e;)}},  ; 1, Where
(é1,...,€n) is the standard basis of R". We refer to the entries of the array as the
components of T. For symmetric tensors a € TP* and b € T?2, let ab € TP**?2 denote
the symmetric tensor product of a and b. Identifying x € R™ with the rank 1 tensor
z +— (z,x), we write 2P € T? for the p-fold symmetric tensor product of z. The
metric tensor Q € T? is defined by Q(z,y) = (x,y) for z,y € R™.

Let p(K,x) be the metric projection of x € R"™ on a convex body K, and define
u(K,x) = %K’gﬂg‘ for + ¢ K. For € > 0 and a Borel set A € B(R" x S"™1), the

T |z—p(K,x
Lebesgue measure of the local parallel set

M(K,A) ={x e (K+eB")\ K| (p(K,z),u(K,z)) € A}

of K is a polynomial in € > 0, hence

i
L

MMA(K,A) =Y € Fr, 1 Ap(K, A).
0

i

This local version of the Steiner formula defines the support measures Ag(XK, ),

.y Ny 1(K, ") of a convex body K € K". The intrinsic volumes of K appear as to-
tal masses of the support measures, V;(K) = A;(K,R" x S" 1) for0=1,...,n— 1.
The area measures Sy(K,-),...,S,—1(K,-) of K are rescaled projections of the cor-
responding support measures on the second component. More explicitly, they are
given by

(T,‘) Si(K,w) = kA (K, R x w)
J



for w € B(S"') and j = 0,...,n — 1. The area measure of order n — 1 is called
the surface area measure, and for K € K the surface area measure is the (n — 1)-
dimensional Hausdorff measure of the reverse spherical image of K. That is,

Sn1(K,w) = H" " (7(K,w)),

for w € B(S™ 1), where H"! is the (n — 1)-dimensional Hausdorff measure, and
7(K,w) is the set of all boundary points of K at which there exists an outer normal
vector of K belonging to w.

For a convex body K € K", r,;s € Ny, and j € {0,1,...,n — 1}, we define the
Minkowski tensors of K as

w i
P(K) = — "ut N (K, d
J ( ) T!S!wnfjJrs /Rnxsnl T u ]( ) (Z',U))
and supplement this definition by
1
PrUK) = —/ " Ndzx).
rl Jx

The tensor functionals ®7° and "0 are motion covariant valuations on K" and
continuous with respect to the Hausdorff metric. In Hug et al. (2008) the tensor
functionals Q™®%* with m,r, s € Ny and either j € {0,...,n — 1} or (j,s) = (n,0)
are called the basic tensor valuations. Due to Alesker’s characterization theorem,
every motion covariant, continuous tensor-valued valuation is a linear combination
of the basic tensor valuations.

In the present work, we only consider translation invariant Minkowski tensors,
which are obtained by letting » = 0. We use the notation

O5(K) = D)°(K) = )

slwy—jis

/ u®S; (K, du)
Sn—1

for j € {0,...,n — 1} and s € Ny. For s € Ny, the tensors ®¢_,(K) derived from
the surface area measure of a convex body K are called surface tensors of K. For
later use, we mention that

PHK) = (2.6)

j
for j =0,...,n—1and any K € K", which is a special case of (Schneider, 2014, eq.
(5.30)). For s, € Ny, 7 €{0,...,n—1} and K € K", we let

M (K) ={L e K" | ®(L) = ®;(K), 0 < 5 < s,}.

As Sy(K,-) = o independently of K € K", we have trivially M{°(K) = K™. In the
following, we will only consider these classes for j =1 and j =n — 1.

Remark 2.1. Let K € K" be given. By computing the trace of the tensor ®5(K),
j € {0,....,n—1}, s > 2, the rank of the tensor is reduced by 2, and the tensor

Z;SJ:; S__1)2 q)j-_2(K ) is obtained. This follows from the identity

n—1

Z/S Wiy -, up Si(K, du) = /s Wiy - U, Si(K du).
=1 n—1
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Therefore, the tensors ®3(K) and @j_l(K ) determine all tensors @j/(K ) of rank
s" < s. More generally, the moments of order at most s of a measure y on S"! are
determined by the moments of u of order s — 1 and s.

For s € Ny and a convex body K in R? we let ¢4;(K) denote the different
components of the surface tensor ®§(K) of rank s. That is,

1 o
¢si(K) = / wjuy 7S (K, du)
Sl

S!WS—H

for j = 0,...,s. For s, € N, Remark 2.1 implies that it is sufficient to require
knowledge of the 2s, 4 1 components of ®{°~'(K) and ®{°(K) in a reconstruction
algorithm of shape based on surface tensors up to rank s, as these components
determine the surface tensors ®9(K), ..., ®;°(K). This will be used in Section 4.

Instead of using only values of the surface tensors of rank s, — 1 and s, for the
reconstruction, another option is to use the value of ®?(K) and two values of each
surface tensor ®3(K) for 1 < s < s,. That this information is equivalent to the
knowledge of ®3(K), 0 < s < s,, can be seen as follows. Due to the factorization
into linear factors of the spherical harmonics in (2.4) and (2.5), there are vectors
(vi))i, (viy)i_; C (R?) for s € N such that for j = 1,2 is

0 K) = QN v05) = [ Ha) S1(5,du), 2.7

where (H,;) is the orthonormal sequence of spherical harmonics given by (2.2)
and (2.3). Further, we have that

Vo1 (K) := @@?(K) =/, Hoy (u) S1 (K, du). (2.8)
Equations (2.7) and (2.8) show that 1;(K) is a value of ®§(K) when s > 1 and
that 1, (K) is the value of ®(K) up to a known constant. Thus trivially, the
vector (lpgl(K), wn(K), lp12(K), R ,1/1801(K>, 1/1802(K)) is determined by (q)(l)(K), ey
®3°(K)). The converse is also true, as polynomials on S* of degree at most s, are
linear combinations of the spherical harmonics of degree at most s, (see (Groemer,
1996, Cor. 3.2.6)). It follows that the knowledge of the 2s,+1 values 11 (K), 151 (K),
Yso(K) for 1 < s < s, is sufficient for a reconstruction algorithm based on surface
tensors up to rank s,.

The described values (14;(K)) are moments of the surface area measure of K €
K? with respect to an orthonormal sequence of spherical harmonics. In Hérrmann
(2014) such moments are called harmonic intrinsic volumes. In general, the harmonic
intrinsic volumes associated to a convex body K in R™ are defined as

Yy (K) = /S  Hylu) S5(K. du)

forj=0,....,n—1,meNyand k= 1,..., N(n,m). The harmonic intrinsic volume
Yjmr: K" — R is positively homogeneous of degree m, and we, therefore, refer to
m as the degree of 1. The harmonic intrinsic volumes depend on the choice of
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orthonormal bases for H, for m € Ny. For n = 2, we use the bases given by (2.2)
and (2.3). We remark however that

N(n,m)

N(n,m)
D Cin(K)? and Y Wk (K)jm (M),
k=1 k=1

K, M € K", do not depend on the chosen basis of H;!, due to the addition theorem
for spherical harmonics (Groemer, 1996, Theorem 3.3.3). In particluar condition
(3.5) in Theorem 3.8 does not depend on the basis chosen.

As we mainly consider harmonic intrinsic volumes derived from the surface area
measure, we refer to those as harmonic intrinsic volumes. When referring to harmonic
intrinsic volumes derived from area measures of lower order, this is explicitly stated.
For n = 2 and j = 1, we write ¥,x = ¥1mi. The notation is consistent with (2.7)
and (2.8).

As described above, the surface tensors and the harmonic intrinsic volumes of
a convex body K are closely related. For s, € Ny, the surface tensors ®°_,(K),
.., Py | (K) are uniquely determined by 9(,—1)mi(K) for m = 0,...,s, and k =
1,...,N(n,m), see (Groemer, 1996, Cor. 3.2.6), and vice versa. Due to the nice
properties of spherical harmonics, the harmonic intrinsic volumes are beneficial in
the establishment of stability results for surface tensors.

3 Uniqueness and stability results

The components of the Minkowski tensors ®5(K), s € Ny are coinciding with the
moments of S;(K,-) up to known constants. As S™~! is compact, an application
of Stone-Weiserstrass’s theorem implies that {®5(K) | s € No} determine S;(, -).
Hence, these tensors determine K € K7 up to translation when 1 < 7 < n —1 by
the Aleksandrov-Fenchel-Jessen theorem (Schneider, 2014, Thm. 8.1.1). Hence, the
shape (as defined in Section 2) of a convex body K € K is uniquely determined
by {®3(K) | s € No}. For n = 2, the tensors {®(K) | s € Ny} even determine the
shape of K when K is lower-dimensional.

In order to investigate how different the shape of two convex bodies with identical
surface tensors up to a certain rank can be, we discuss properties of the sets M73°(K)
and MJ° | (K) for s, € Ny and K € K". In Theorem 3.1, it is shown that M} | (K)
contains a polytope, and in Theorem 3.3 a uniqueness result is established stating
that M?2%, is the class of translates of K if K is a polytope with non-empty interior
and at most s, facets. In Theorem 3.8, we show that for large s, the set Mi°(K)
contains only translations of convex bodies close to K in Hausdorff distance.

In the following, we let m, denote the number of different components of the
tensors u*~! and u® for s € N and u € S"'. Then

s+n—2 s+n—1 n—1(s+n—2
" (n—l )+(n—1 ) (+ s )( n—1 ) (")
for fixed n € N as s — oo. For instance, ms; = 2s 4+ 1 for n = 2, and m, = (s + 1)?

for n = 3. The number of different components of ©*~! and u® is identical to the
dimension of Hf @ H} & --- & H2, that is, my = >_> _, N(n,m).
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Theorem 3.1. Let K € K™ and s, € N. Then there exists a P € P" , such that

Py (K) = @5 _(P) (3.1)
for 0 < s <s,.

The proof of Theorem 3.1 follows the lines of the proof of Lemma 6.9 in Campi
et al. (2012) (see also Skouborg (2012)). For the readers convenience, the proof of
Theorem 3.1 is included.

Proof. 1f the interior of K is empty, then is either S, _(K,-) = 0 or S,_1(K,-) =
a(d, + 0_,) for some v € S ! and @ > 0. In the first case, let P = {o}. In the
latter case, let P be a polytope contained in the orthogonal complement u* of u
with surface area a.

We may from now on assume that K € K. If s, = 1, we let P be a polytope
with at most m; = n + 1 facets with the same surface area as K. Then (3.1) is
satisfied due to (2.6). Now assume s, > 2. To prove the claim in this case, we
construct a Borel measure p on S"~! with support containing at most m,, points,
satisfying the assumptions of Minkowski’s existence theorem, see (Schneider, 2014,
Thm. 8.2.2), and such that p has the same moments as S,,_1 (K, -) up to order s,. Due
to homogeneity of the surface area measure (and herewith of the surface tensors),
we may assume that S, (K, S"!) = 1.

Let fi,..., fm,, denote the different components of the tensors u®~
For a Borel probability measure v on S"!, let

Land w?.

Sn—1

['(v)= ( fi(uw) v(du),. .., S, (1) l/(du)).
Sn—1
Put
M := {I'(v) | v is a Borel probability measure on S" '}

and
N :={T(0,) |ue S} ={(fi(u), .-, fn,, (w) [w € S"'},

where ¢, denotes the Dirac measure at v € S"'. As fi,..., fm,, are continuous,
the set NV is compact in R™se, so the convex hull conv N of N is compact and, in
particular, closed. The convex hull conv N of N is the image of the set of Borel
probability measures on S™"! with finite support under I'. Hence, M = conv N
as every Borel probability measure on S™~! can be weakly approximated by such
measures, see e.g., (Bauer, 2001, Cor. 30.5). This implies that I'(S(K,-)) € conv N.
As S"1is connected and fi, .. ., Jm,, are continuous, the set NV is connected. Then a
version of Caratheodory’s theorem due to Fenchel (see Hanner and Radstrom (1951)
and references given there) yields the existence of unit vectors vy, ..., v,, € S"*
and aq, ..., 0y, > 0 with )" a; = 1 such that

Ms,

DS(K, ) = 3 ail(6) = T(p), (3.2)
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where p = > "¢ @;0,, is a probability measure with support containing at most
ms, points. Remark 2.1, (2.6) and (3.2) yield that

/ w; p(du) = / w; Sp1(K,du) =0
Sn—l Sn—l

for i = 1,...,n, hence the centroid of u is at the origin.
If the support of y was concentrated on a great subsphere v+ N S~ of S"~! for
some v € S" !, then

/Snl<u,v>25n_1(K, du) = /Sn1<u’v>2“(du) —0

by Remark 2.1 and (3.2) as s, > 2. This would imply that S, (K, -) is concentrated
on v N S" !, which is a contradiction as K has interior points. Hence, the measure
1 has full-dimensional support.

Herewith, p satisfies the assumptions in Minkowski’s existence theorem, and
there is a polytope P with interior points such that S,,_1(P,:) = u. As the support
of S,_1(P,-) contains at most mg, points, the polytope P has at most m;, facets.
Due to (3.2) and Remark 2.1, the measures S,,_1(K,-) and S,,_1(P,-) have identical
moments up to order s,, which ensures that equation (3.1) is satisfied. ]

Corollary 3.2. If K is determined up to translation among all convex bodies in R™
by its surface tensors up to rank s, then K € Py, -

On the other hand, a polytope is determined up to translation by finitely many
surface tensors.

Theorem 3.3. Let m > n+ 1 be a natural number. The shape of any P € P with
non-empty interior is uniquely determined in K" by its surface tensors up to rank
2m. If n = 2 then the result holds for any P € P).

Proof. Let P € P, be given. We may assume without loss of generality that P has
m facets. The surface area measure of P is of the form

m
= E Oéi(sui
i=1

with oy, ..., a, > 0 and pairwise different uy, ..., u,, € S* 1.

Let K € K" be a convex body such that ®_(K) = ®>° (P) for all s <
2m. We first show that suppS,_1(K,:) C {iul,.. j:um}. Assume that w ¢
{%u1,...,xuy}. Then there exists v; E uL \ wt, j =1,...,m. Hence, the polyno-

mial
m
= w0,
J=1

u € S™ !, vanishes at fu,,...,£u, but not at w. By assumption on coinciding
tensors and as ¢; has degree 2m, we have

/ q1(u)Sy—1 (K, du) :/ q1(u)Sy—1 (P, du) Z%Ch (us)
Sn—1 Sn—1
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As ¢; > 0, this shows that ¢ is zero for S,,_1 (K, -)-almost all u. As ¢; is continuous,
supp Sp1 (K, -) € {u € 8" g1 (u) = 0} € 571\ {w}.

Hence w & supp S,,—1(K, ) and then supp S, (K, ) C {£uy,...,+u,}. In partic-
ular, K is a polytope. Its surface area measure is of the form

m
Snfl(Kv ) = Z (Bjéuz + 6175*%)
i=1
with B{, By ,..., B85, 8, > 0, where we may assume (; = 0 whenever —u; €
{ula sy Uim1s Ui 1y - - 7um}-
Consider now two cases. If —uy & {us,...,uy}, we can find v; € uj \ ut,

j=2,...,m, and thus we have go(u1) # 0 # g3(uy) for

@(u) = f[<vj,u>2, as(w) = (nﬁ<vj,u>2)<vm,u>.

By assumption on coinciding tensors, ¢» gives the same value when integrated with
respect to S,_1(K,-) and S,,_1(P,-). The same is true for ¢3. This gives

B +Br =1, B =B =a,

so B = a; and B = 0. If —uy € {uy, ..., u,} we may without loss of generality
assume —u; = ug € {£ug,...,tu,}. In this case, we have g = 5, = 0, and the
remaining two parameters ;" and 85 can be determined with arguments similar to
the ones above using

2(u) = f[<vj7u>2, as(u) = (nﬁ<vﬁu>2)<vm,u>.

These arguments can be applied to any index i showing that S,,_1(K,-) = S,_1(P, -).
If P has non-empty interior or if n = 2, this implies that P and K are translates. [

Theorem 3.4, below, is a version of Theorem 3.1 for centrally symmetric convex
bodies. If K € K" is centrally symmetric its surface area measure is even on S"!,
and hence ® | (K) = 0 for all odd s. This simplifies the arguments in the proof
of Theorem 3.1 as outlined in the following. Let s, € N be even. Let /5, denote the
number of components of u*°, that is,

. So+n—1

o n—1 /)
In particular, [, = s,+1 for n = 2. Let hy, ..., hy, denote the different components
of u®. Following the proof of Theorem 3.1 with I', M and N replaced by

D) = (/S b (w)v(du), ... /S e, (u)y(du)> |

12



M, = {F(u) | v is a symmetric Borel probability measure on S"_l} ,

and
N, = {3(P(5.) +T(5-)) |u e 5"},

we obtain an even probability measure i, = Zé.‘;"l ;(0y, +0_y,) on S"!, such that
s (Sna (K -)) = T (). (3:3)

As py and S,_1(K,) are even, equation (3.3) implies that I'(;;) = D(S,_1(K,-))
with the notation from the proof of Theorem 3.1, and the result of Theorem 3.4
follows.

Theorem 3.4. Let K € K" be centrally symmetric and s, € N be even. Then there
exists an origin-symmetric polytope P € s, such that

(bfl—l(K) = (I)fz—l(P)
for 0 < s <s,.

Remark 3.5. For later use, we note that the polytope P and the convex body K
in Theorems 3.1 and 3.4 have identical harmonic intrinsic volumes up to degree s,,
as they have identical surface tensors up to rank s,.

The following lemma gives a generalized version of Wirtinger’s inequality, which
is used in Theorem 3.8 to establish stability estimates for harmonic intrinsic volumes
derived from the area measure of order 1.

Recall that F' ~ "> F,, is the condensed harmonic expansion of F' € L*(S"1).

Lemma 3.6. Letn > 2, se N and F ~ Y *_  F,, € W be given for some o > 0.
For vy, = m(m +n — 2) we have

s—1

IFI? <A 1= As) 2 FIP + ) (1= (s D) IEl?

m=0

with equality if and only if F € ] _,H.

Proof. Tt follows from (2.1) that
s—1 o0
IEIP = 1Eal® 4+ > v v 1 El
m=0 m=s

s—1 00
< NEP+ 7D v I Fal?
m=0 m=s

s—1
= = 26) 2RI+ ) (1= (s DI El .
m=0
Equality holds in the above calculations if and only if F' =" _ F,,. O]
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Lemma 3.6 immediately yields Corollary 3.7, where the second statement is a
generalized version of Wirtinger’s inequality.

Corollary 3.7 (Generalized Wirtinger’s inequality). Let n > 2, s € N and F ~
> o Fm € W be given for some o > 0. Then

() [FI? <70 (= As)2 FII* + 3002 1 Fl?
(it) if Fo =+ = Foy =0, then | FII> < 47%||(= As) 2 F|J?

Equality holds in (i) and/or (ii) if and only if F' is a spherical harmonic of degree s.

If F is twice continuously differentiable, then ' € W' by (Groemer, 1996,
Cor. 3.2.12). Hence, Corollary 3.7 (ii) with o = 1 can be applied to F if Fy = --- =
F,_1 = 0. For s € {1,2}, this yields the usual versions of Wirtinger’s inequality of
functions on S"7!, see, e.g., (Groemer, 1996, Thm. 5.4.1).

A convex body K € K7 is said to be of class C? if the boundary of K is a
regular submanifold of R” of class C? with positive Gauss curvature at each point.
If n > 2 and K is of class C%, then the support function hg is twice continuously
differentiable (see (Schneider, 2014, Sec. 2.5)), and the area measure S; (K, -) of order

1 has density

1
S1 = hK + m AS hK (34)

with respect to the spherical Lebesgue measure on S"~!, see (Schneider, 2014, (2.56)
and (4.26)). This establishes a connection between the support function of K and
the harmonic intrinsic volumes of K derived from the area measure of order one. In
combination with the generalized version of Wirtinger’s inequality, this connection
can be used to show the stability results in Theorems 3.8 and 3.9.

Theorem 3.8. Letn > 2,s,€ Ny and p > 0. Let K, L € K" such that K, L C RB"
for some R > 0. Assume that

1 N(n,m)
I Z (V1mi(K) — ¢1mk(L))2 <p (3.5)
k=1
form=20,...,s, and some € > 0. Then
S5(K,L)* < c1((so+ 1) (n+5,—1)) "+ pM(n,e) (3.6)

for0 < a< %, where ¢; = ¢1(a,n, R) is a constant depending only on n,« and R,

and M 1is a constant depending only on n and c.

Proof. By (Schneider, 2014, Thm. 3.4.1 and subsequent remarks) there exists a
sequence (Kj)jey of convex bodies of class C2 converging to K in the Hausdorff
metric. For each j € N, the support function A, is twice continuously differentiable,

as K is of class C3. Then an application of Green’s formula (see, e.g., (Groemer,
1996, (1.2.7))), implies that

<Hm7 AS th>2 = <AS Hm7 h’Kj>2 = _7m<HM7 h‘Kj>2
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for H,, € H], as spherical harmonics are eigenfunctions of the Laplace-Beltrami
operator. Thus, (3.4) yields that

Hm(u) Sl(Kj,dU) = Oénm<Hm7th>2 (37)
Sn—l
for H,, € H", where o, = 1—(n—1)"19,,. Note that a,,, = 0 if and only if m = 1.
As Si(Kj,-) converges weakly to S (K, -) (see (Schneider, 2014, Thm. 4.2.1)), and
hg, converges uniformly to hg, equation (3.7) implies that

Hm(u) Sl (K, du) = an,m<Hm7 hK>2 (38)
Sn—1
By the same arguments, equation (3.8) holds with K replaced by L.
Now let F' = hx — hy + (z,-), where z = s(L) — s(K). Then F; = 0, and by
equation (3.8), inequality (3.5), and the fact that (z,-) € H} we obtain that

LS S At o))

m=0 k=1
m

#

S

N(n,m)

= ZO . Z (V1 (K) — 1mi(L))? < p M(n, ),
m=0 k=1
m#1

where M(n,e) =32 ™" 41 <oco. For0<a< 2 we have that

m=2 O‘?L,m
1(=Ag) 2 Fll < [[(= As) 2 hic—s(ro) || + (= As) 2 hiry | < exa,n, R)

due to (Kiderlen, 2008, (2.12)). This implies that F € W* for 0 < a < 2. Then
Corollary 3.7 (i) with s replaced by s, + 1 can be applied to F', which yields that

IFI* < ((s0+ 1)(s0 + 1= 1)) “er(a,n, R) + pM(n,e)
for 0 < a < 3. Then inequality (3.6) follows, since 85(K, L)? = || F||*. O

The result of Theorem 3.8 can be transferred to a stability result for the Minkowski
tensors @3 (which are the surface tensors in the two-dimensional setting).

Theorem 3.9. Letn > 2, s, € Ny and let K, L € K" such that K,L C RB"™ for
some R > 0. If ®§(K) = ®5(L) for s € {so, — 1V 0,s,}, then

O (K, L) < e s, (3.9)

and
2

§' (K, L) < cyso " (3.10)

for0 < a < g, where ¢; = c¢1(a,n, R) and co = ca(a,n, R) are constants depending

only on a,n and R.

Proof. Inequality (3.9) follows from Theorem 3.8, since equation (3.5) is satisfied
with p =0, as ®j(K) = ®5(L) for 0 < s < s,, see Remark 2.1. Inequality (3.9) in
combination with a known connection between the L2-distance and the Hausdorff
distance (see, (Groemer, 1996, Prop. 2.3.1)) yields inequality (3.10). O
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4 Reconstruction of shape from surface tensors

We assume throughout this section that n = 2. In arbitrary dimension n, the sur-
face tensors determine the shape of a convex body with interior points. In the
two-dimensional case, however, the assumption on interior points is redundant, see
(Schneider, 2014, Thm. 8.3.6). In the attempt to reconstruct shape from surface ten-
sors in R?, it is therefore natural to consider K, € K?. We suppose that the convex
body Kj is unknown and that the surface tensors ®J(Ky), ..., ®3°(K,) are known for
some s, € Ny. By Remark 2.1, this is equivalent to assuming that the components
¢sj(Kp) for j =0,...,s of ®5(Ky) are known for s = s, — 1, s, (If s, =0, only the
value of ®Y(K,) is assumed to be known).

Section 4.1 presents a reconstruction procedure of the shape of Ky based on
the components of the surface tensors of rank s, — 1 and s,. The output of the
reconstruction procedure is a polygon P, where the surface tensors of P are identical
to the surface tensors Ky up to rank s,. In Section 4.2 we use results from Section 3
to show consistency of the reconstruction algorithm developed in Section 4.1.

As described in Section 2, the harmonic intrinsic volumes of K up to degree s,
constitute a set of values of surface tensors that contains the same shape information
as the components of ®°~!(K,) and ®5°(Kj). It only requires minor adjustments of
the reconstruction algorithm to obtain an algorithm based on the harmonic intrinsic
volumes.

4.1 Reconstruction

Assume that s, > 1, and define D, : K? — [0,00) as the sum of squared deviations
of the components of the surface tensors of K to the components of the surface
tensors of Ky of rank s, — 1 and s,. That is

D, (K) = Z > (6s(Ko) — 655(K))”.

s=so—1 j=0

By Remark 2.1, the surface tensors of a convex body K and the surface tensors of
Ky are identical up to rank s, if and only if D, (K) = 0. In order to reconstruct
the shape of K| from the surface tensors, it therefore suffices to find a convex body
that minimizes D,,. Due to Theorem 3.1, there exists a P € P3, ., satisfying this
condition.

Let §, denote the Dirac measure at u € S!, and let

2s0o+1
M = {(o,u) € R*F1 x (ST |y >0, Y aju; = o},

i=1
Then the surface area measure of a P € Pj, ., is of the form

2s5,+1

Si(P) = by,

=1
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where (a,u) € M. The vectors uq,...,uss, 11 are the facet normals of P, and
aq,. .., 09 11 are the corresponding facet lengths, see (Schneider, 2014, (4.24) and
(8.15)). Conversely, if a Borel measure ¢ on S! is of the form

2s0+1

Y= Z Oéi(sui

=1

for some (v, u) € M, then by Minkowski’s existence theorem there is a P € P3, .,
such that ¢ is the surface area measure of P, see (Schneider, 2014, Thm. 8.2.1).
Notice that the assumption on the dimension of ¢ in Minkowski’s existence theorem
can be omitted as n = 2, see (Schneider, 2014, Thm. 8.3.1). The minimization
of Dy, can now be reduced to its minimization on Pj, ., and hence to the finite
dimensional minimization problem

2s0+1
min si(Ko) o Z‘ Uy ) . 4.1
(a,u)eM %:_1;(¢] 0 S'(JJ s+1 zz:; J T ( )

This can solved numerically.

A solution to the minimization problem (4.1) is a vector (a,u) € M, which de-
scribes the surface area measure of a polygon. The reconstruction of the polygon
from the surface area measure can be executed by means of Algorithm MinkData,
see (Gardner, 2006, Sec. A.4). For n = 2, the reconstruction algorithm is simple.
The vectors ajuy, . .., Qgs, +1Uss,+1 are sorted such that the polar angles are increas-
ing, and hereafter, the vectors are positioned successively such that they form the
boundary of a polygon P with facets of length «; parallel to u; for j =1,. 230+ 1.
The output polygon K of the algorithm is P rotated 7 about the origin. Then Ks
minimizes D, , and it follows that the convex bodles KSO and Ky have identical
surface tensors up to rank s,.

If s, =0, let KSO be the line segment [0, oo (Kp)e1], where e; is the first standard
basis vector in R2. Then K, is a polygon with 1 facet, and ®9(K,) = ®(K,, ).

The reconstruction algorithm can be summarized as follows.

Algorithm Surface Tensor

Input: A natural number s, € Ny and the components of the surface tensors ®7°(Kj)
and @3 O(K;) of an unknown convex body K, € 2.

Task: Construct a polygon f(so in R? with at most 2s, + 1 facets such that A s, and
Ky have identical surface tensors up to rank s,.

Action: If s, = 0, let KSO be the line segment [0, ¢go(Kp)e1]. Otherwise,
Phase I: Find a vector (o, u) € M that minimizes

2so+1

Z Z<¢Sﬁ Ko) - S'w+1 ZZ1 gy > )

s=so,—1 j=0

where ¢4 (Ky), ..., ¢ss(Ko) denote the components of @5 (Kj).
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Phase II: The vector (a, u) describes a polygon KSO in R? with at most 2s,+ 1
facets. Reconstruct K, from (o, u) using Algorithm MinkData.

It is worth mentioning that certain a priori information on K, € K" can be
included in the reconstruction algorithm by modifying the set M in (4.1). We give
two examples.

Example 4.1. If K is known to be centrally symmetric, M can be replaced by
{(a,u) € R*™2 x (SH)* | aj = (o445 2 0, w5 = —U(s,11)45 )

due to Theorem 3.4. This ensures central symmetry of the output polygon Kso of
the reconstruction algorithm.

Example 4.2. If K; is known to be a polygon with at most m facets, M can be
replaced by

M = {(a,u) e R™ x (S")™ | a; > O,Zajuj =0}.
j=1

The assumption on Ky implies that the optimization of (4.1) with M replaced by
M still has a solution with objective function value zero. The uniqueness statement
in Theorem 3.3 even implies that the output KSO of this modified Algorithm Surface
Tensor is unique and has the same shape as Kj if s, > 2m.

Remark 4.3. If Kj is a polygon with at most m € N facets and known surface
tensors of rank 2m — 1 and 2m — 2, then an alternative reconstruction procedure
similar to methods for reconstruction of planar polygons from complex moments
described in Milanfar et al. (1995) and Golub et al. (1999) can be applied. We let

k < m denote the number of facets of Ky, let uq,...,u, denote the facet normals
and aq, ..., a, denote the corresponding facet lengths. The facet normals are iden-
tified with complex numbers in the natural way (in particular, u* denotes complex
multiplication and not tensor multiplication in this remark). For s =0,...,2m — 1,
we let
k s s .
Tg = Z OéjUj- = S!ws+1 Z ( > i87]¢sj(K0)
j=1 i—o0
and define the Hankel matrix
70 Tm—1
H =
Tm—1 " T2m-2

As
H = Vdiag(ay,...,a)V '

where V' is the Vandermonde matrix

Uy U,
V — . c (C2m><k’
2m—1 2m—1
uy T Uy



the rank of H is the number k of facets of K. The facet normals and facet lengths
of Ky can be restored from H (or a submatrix of H, if & < m) using Prony’s
method, see Milanfar et al. (1995) or Hildebrand (1956). The shape of the polygon
Ky can then be reconstructed from the facet normals and facet lengths by means of
Algorithm MinkData. The facet normals and facet lengths can also be obtained by
solving the generalized eigenvalue problem Hx = AH;x where H; is defined as H
but its entries start with 71 and end with 75,,_1, see Golub et al. (1999).

4.2 Consistency of the reconstruction algorithm

Algorithm Surface Tensor described in Section 4.1 is consistent. This follows from
Theorem 4.4.

Theorem 4.4. Let Ky € K? and s, € Ny. If K,, € K? and Ky have identical surface
tensors up to rank s, then

6 (Ko, K,) = O(s; 1)

o

for any € > 0. Hence, if Ks,,s, = 0,1,2,..., is a sequence of such bodies then the
shape of K, converges to the shape of Kj.

Proof. As K, is compact, there is an R > 0 such that K, C RB?. Let s, € Ny, and
let z,y € K,,. Then

|z =yl = Villz,y]) < VA(KS,) = Vi(Ko) < 7R

by monotonicity of the intrinsic volumes on K2, see, e.g., Schneider and Weil (2008).
It follows that there is a translate K, + z,, of K, which is a subset of TRB2. For
each s, € Ny, Theorem 3.9 with R replaced by mR can now be applied to K, and
K, + x5, and we obtain that

(Ko, Ky,) < es(, 2,7R) (s, + 1) %

for 0 < a < % This yields the result. m

o

4.3 Examples of reconstructions

This section consists of two examples where Algorithm Surface Tensor is used to
reconstruct a polytope (see Figure 1) and a half disc (see Figure 2). For each two
of the convex bodies, the reconstruction is executed for s, = 2,4, 6. The minimiza-
tion (4.1) is performed by use of the procedure fmincon provided by MatLab. As
initial values for this procedure, we use regular polytopes with 2s, + 1 facets. The
reconstructions are illustrated in Figure 3 and Figure 4.

The reconstructions with s, = 2 and the corresponding underlying convex bodies
have identical surface tensors up to rank 2, so the reconstructions have, in particular,
the same boundary length as the corresponding underlying bodies. Further, the
reconstructions (in particular, the reconstruction of the polytope) seem to have the
same orientation and degree of anisotropy as the corresponding underlying convex
bodies. This is due to the influence of the surface tensor of rank 2. As expected, the
reconstructions with s, = 4 are more accurate than the reconstructions with s, = 2.
In the current two examples, the Algorithm Surface Tensor provides very precise
approximations of the polytope and the half disc already for s, = 6.
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0 0 ‘

-z
2 0 2 % 0 2
Figure 1: Polytope with six facets Figure 2: Half Disc
2 2 2
0 0 0
2 -2 2
-2 0 2 2 0 2 2 0 2

Figure 3: Reconstructions of polytope based on surface tensors up to rank s, = 2,4, 6.

% 0 2 2 0 2 ) 0 2

Figure 4: Reconstructions of half disc based on surface tensors up to rank s, = 2,4, 6.
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5 Reconstruction of shape from measurements of
harmonic intrinsic volumes

In Section 4, the reconstruction of shape from surface tensors was treated. In this
section, we consider the problem of reconstructing shape from noisy measurements
of surface tensors. As in Section 4, we assume that n = 2. As described in Section 2,
the harmonic intrinsic volumes up to degree s contain the same shape information
of a convex body as all surface tensors up to rank s. When only noisy measurements
of the surface tensors are available, the structure of the stability result Theorem 3.8
proposes to use the harmonic intrinsic volumes for the reconstruction in order to
obtain consistency of the reconstruction algorithm.

Let s, € Ny, and suppose that Ky € K? is an unknown convex body, where
measurements of the harmonic intrinsic volumes up to degree s, are known. To
include noise, the measurements are assumed to be of the form

Asi(Ko) = ¥sj(Ko) + €5 (5.1)

for j=1,...,N(2,s) and s = 0,...,s,, where (es;) are independent random vari-
ables with zero mean and finite variance. In the following, let

%(K) = (¢01(K)a¢11(K)a¢12(K)a R 7¢52(K))

and similarly

As(K) = (Ao (), A1 (), Aiz(K), -+, Asa(K))

for s € Ny and K € K2

Section 5.1 presents a reconstruction algorithm for the shape of Ky based on the
measurements (5.1). The output of the reconstruction procedure is a polygon, which
fits the measurements (5.1) in a least squares sense. It is natural to consider least
squares estimation as this is equivalent to maximum likelihood estimation when the
noise terms (e5;) are independent, identically distributed normal random variables.
The consistency of the least squares estimator is discussed in Section 5.2.

5.1 Reconstruction

Assume that s, > 1, and define D : K? — [0, 00) as the sum of squared deviations
of the harmonic intrinsic volumes of a convex body K to the measurements (5.1).
That is

So Ns

DI(K) =373 (A (o) — v (K))* = |As, (Ko) — s, (K[,

s=0 j=1

where ng = N(2,s) for s = 0,...,5,, (np =1 and ng = 2 for s > 1). In order to
obtain a least squares estimator, the infimum of Dg has to be attained. In contrast to
the situation in Section 4.1, the convex body K, does not necessarily minimize Dfo .
However, Lemma 5.1 ensures the existence a polygon that minimizes Dg :
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Lemma 5.1. There exists a P € Pj, | such that

DI(P)= inf DI(K). 5.2
“(P) = inf, DII(K) (52)
Furthermore, if K', K" € K? both are solutions of (5.2) then v, (K') = v, (K"),
i.e. K" and K" have the same surface tensors of rank at most s,.

Proof. Let M, = {¢,(K) | K € K*} C R****!. Due to Minkowski linearity of the
area measure of order one, see (Schneider, 2014, eq. (8.23)), M, is convex.

We first show that M, is closed in R#*T!. Let (1, (K,))nen be a sequence in
M, , such that ¥, (K,) — £ for some £ € R* L. For sufficiently large n we have

\/gvl(Kn) = Yo1(Kn) < & — Vo1 ()] + [&1]

By monotonicity of the intrinsic volumes on K? (see, e.g, Schneider and Weil (2008)),
we have

2=yl = Vil o) < Vi(Ky) < @1 el

for 2,y € K,. This implies that a translate of K, is a subset of /7 (1 + |£])B? for
n sufficiently large. By continuity of K — 1) (K) (with respect to the Hausdorff
metric), an application of Blaschke’s selection theorem (see, e.g., (Schneider, 2014,
Thm. 1.8.7)), yields the existence of a subsequence (n;);ey and a convex body K € K2
satisfying v, (K,,) — s, (K) for | — oo. Hence, £ = 9, (K) € M,,, so M, is
closed. The optimization problem

: H ~ 2

Jnf D,,(K)= wenﬂljSOMso(Ko) — ¢
corresponds to finding the metric projection of A, (Kp) to the non-empty closed
and convex set M, . This metric projection ¢, (K') € M, always exists and is
unique; see, e.g., (Schneider, 2014, Section 1.2). Note that K’ € K? is not uniquely
determined here, but any two sets K', K” € K? minimizing (5.2) must satisfy
Vs, (K') = 1, (K”). By Theorem 3.1 (and Remark 3.5), this ensures the existence
of a polygon P with at most 2s, + 1 facets satisfying (5.2). O

Remark 5.2. It follows from Lemma 5.1 that the measurements (5.1) are the exact
harmonic intrinsic volumes of a convex body if and only if inf ex2 D (K) = 0.

By Lemma 5.1 and considerations similar to those in Section 4.1, the minimiza-
tion of Dg can be reduced to the finite dimensional minimization problem

So Mg 250+1 9
min 33" (Asj(Ko) -y aiHSj(ui)> , (5.3)
s i=1

where M is defined as in Section 4.1. This finite minimization problem can be solved
numerically. The solution to the minimization problem (5.3) is a vector (o, u) in M,
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that describes the surface area measure of a polygon. As described in Section 4.1,
the MinkData Algorithm can be applied for the reconstruction of this polygon.

The least squares estimator K A of the shape of K is defined to be the out-
put polygon of this algorithm. Then K T minimizes Df , so the harmonic intrinsic
volumes of K H fit the measurements (5. 1) in a least squares sense. For s, = 0, the
estimator K’ s is defined as the line segment [0, Ago(Ko)eq] if A1 (Ko) > 0. Otherwise,
KH is defined as the singleton {0}.

“The reconstruction algorithm can be summarized as follows.

Algorithm Harmonic Intrinsic Volume LSQ

Input: A natural number s, € Ny and measurements \;(Ky), 7 = 0,...,N(2,s),
s=0,...,s, of the harmonic intrinsic volumes up to degree s, of an unknown
convex body K, € K2.

Task: Construct a polygon K in R? with at most 2s,+ 1 facets such that the har-
monic intrinsic volumes of K H fit the measurements of the harmonic intrinsic
volumes of K in a least squares sense.

Action: If s, = 0, let Kg be the line segment (or singleton) [0, (A1 (&Ko) V 0)eq].
Otherwise,

Phase I: Find a vector (o, u) € M that minimizes

2s0o+1

Zo (syKO Zaz sguz>'

s=0 j=1

Phase II: The vector («, u) describes a polygon KH in R? with at most 2s,+1
facets. Reconstruct K H from (v, u) using the “MinkData Algorithm.

As described in Examples 4.1 and 4.2, additional information on the unknown
convex body Ky can be included in the reconstruction algorithm by modifying the
set M in a suitable way.

5.2 Consistency of the least squares estimator

So far, we have oppressed the dependence of the noise term in the notation of Dg )
In the following, for s, € N, we write

DJ(K,x) = [, (Ko) + x — by, (K)[*
where K € K? and x € R*°™!. Further, we let

K, (z) = {K € K* | DI(K,z) = Llnlg DI(L,x)}.
c 2

If €5, = (€01, €11, €12, - -,€s,2) denotes the random vector of noise variables in the
measurements (5.1), then K (e, ) is the random set of solutions to the minimiza-
tion (5.3). Due to Lemma 5.1, the set K, (€5,) is non-empty for all s, € N. We can
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without loss of generality assume that the noise variables are defined on a complete
probability space.

In the following, we show that supxex, (. ) §'( Ky, K) is measurable. To this end,
we use the notion of permissible sets, see (Pollard, 1984, App. C). For K € K? and
x € R?%*1 define

(K, z) = 5t(K0a K) 1{0}(9(K7 z))

where ¢(K,z) = infre2 DI(L,z) — DY (K, z), and let F = {f(K,-) | K € K*}.
Then
sup 0" (Ko, K) = sup f(K,e,).
KeKs, (€s,) Kek?
As Dg is continuous in the first variable and is measurable as a function of two
variables, the mapping ¢ is measurable as K2 is separable. As 6'( Ky, -) is continuous,
this implies that f is measurable.

Let F, denote the family of closed subsets of R? equipped with the Fell topology,
see, e.g., (Schneider and Weil, 2008, Chapter 12.2). Then, F; is compact and metriz-
able, and the set of convex bodies K? is an analytic subset of F, as K? € B(F), see,
e.g., (Schneider and Weil, 2008, Thm. 12.2.1, the subsequent remark and Thm 2.4.2).
Further, the topology on the separable set K? induced by the Fell topology and the
topology on K? induced by the Hausdorff metric coincide, see, e.g, (Schneider and
Weil, 2008, Thm. 12.3.4), so the set F is permissible. Due to (Pollard, 1984, App. C,
p. 197), this implies that supgcx: f(K,€s,) is measurable.

For s, € N, the noise variables €y, €11, .. .,€5,2 are assumed to be independent

with zero mean and finite variance bounded by a constant 02 < oo.

Theorem 5.3. If 02 = O(i5=) for some e > 0, then

sup 0" (Ko, K)— 0
KeKs, (€so)
in probability as s, — oo. If Ugo = (9(502%), then the convergence is almost surely.

Proof. Let § > 0, and let p < 2- A1 where M = M (2,3) is defined in Theorem 3.8.
Let s, € N, K € K,,(e,,), and assume first that DI (Ko, e,,) < £. Then,

< 8D (Ko, e,,) < p.
In particular, (o1 (Kp) — 101(K))? < p which implies that
Vi(K) < & + Vi(Ko) = R(Ky).

By arguments similar to those in the proof of Theorem 4.4, this implies that there
are translates of K and K, contained in RB?. As R is independent of s, and K, we
obtain by Theorem 3.8 that

sup  05(Ko, K) <ei(1,2,R) (s, +1) 72+ pM < §
KeKs, (esy)
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for s, sufficiently large. Due to the connection between the Hausdorff metric and
Lo-metric, see, e.g., (Groemer, 1996, Prop. 2.3.1), we obtain

sup  0'(Ko, K) < (3R82)3. (5.4)
KEKSO(GSO)
As Dg(KO, €s,) = Z?:o ?il egj, the assumption on the convergence rate, ago =

0(801%) for some ¢ > 0, implies that D (Ky, €,,) convergences to zero in mean and
then in probability, when s, increases. If 02 = O(;35z), then 3> E DI (K, ¢,,) <
0o, which ensures that D (K) convergences to zero almost surely. In combination
with inequality (5.4), this yields the convergence results. O

As K T e K,,(es,) for s, € N, Theorem 5.3 yields consistency of Algorithm
Harmonic Intrinsic Volume LSQ.

5.3 Example on reconstruction from harmonic intrinsic
volumes

This section is an example where Algorithm Harmonic Intrinsic Volume LS(Q) is used
to reconstruct a half disc Ky from noisy measurements of the harmonic intrinsic vol-
umes. The reconstruction of the half disc is executed for s, = 2,4, ...,12. The noise
terms (e5;) are independent and normally distributed with zero mean. For the re-
construction based on harmonic intrinsic volumes up to degree s,, the variance of
the noise terms is crgo = Soél. Due to Theorem 5.3 this ensures that 6*( Ky, KSD) —0
almost surely for s, — o0o. The minimization (5.3) is carried out by use of the
procedure fmincon provided by MatLab. As initial values for the minimization pro-
cedure, we use regular polytopes with 2s,+ 1 facets. The reconstructions are plotted
in Figure 5.

For the reconstruction based on exact surface tensors, the values of D;, (Kj) and
D,,(K,,) are always zero. This is not the case when the reconstruction is based on
measurements subject to noise. In Figure 6, the values of D (K;) and DX (K!) are
plotted for s, = 2,4,...,12. As Kﬁ minimizes D, the value of Dg(f(so) is smaller
than the value of D (Kj) for each s,. As the variance of the noise terms converges
to zero sufficiently fast, the values of D (Kj) and hence also the values of D (K )

tend to zero, when s, increases.
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Figure 5: Reconstruction of a half disc based on measurements of harmonic intrinsic
volumes up to degree s, = 2,4,6,8,10,12. The noise variables are normally distributed
with zero mean and variance 32%
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Figure 6: D (K;) (‘0’) and Dg(f(g) (‘+7) plotted for s, = 2,4,...,12.
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