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Abstract

Let G be a simple Lie group of Hermitian type. Let K C G be a maximal compact
subgroup and let H C K be a Cartan subgroup. Then H is also a Cartan subgroup of G.
We denote their Lie algebras by fraktur script i.e. g,€ and h. Let A be a weight of h then
A can be decomposed into two parameters Ay and A such that Ag is a weight of [€,€] N b
and A € R. Let AT (g,h) be a positive system such that any positive non-compact root is
greater than any compact root, let A" be the set of positive non-compact roots. Then
set n =@, ca+0a where g, is the root space of « in gc.

Let v be a dominant integral weight and let L9 () be the unique simple quotient of
U(gc) @ectn F (7). Where F*c() is the finite dimensional highest-weight representation
of t¢ with highest-weight v. The set of (Ag, A) such that L9((Ag, A)) is unitarizable
has been classified, take A minimal such that L% ((0,)\)) is unitarizable. Then we call
L% ((0,A)) the minimal holomorphic representation of G and denote it by myn. This
representation integrates to a representation of G. There exists «, 5 such that

T™inlK = G o F¥ (o + np).

Let Z € Z (&) such that «(Z) < 0 for all @ € Af. Then Cypi, = Cone(Ad(G)Z) is a non-
trivial, Ad(G)-invariant, proper convex cone in g such that Cyin # {0}, g. Furthermore
CRiin # 0. Then there exists a semigroup I'g(Cwmin) such that G is a subgroup and
I'q(Cwmin) is homeomorphic to G x Cypin. Inside this semigroup there is an ideal I'q(Cyy;,,)
which is homeomorphic to G x CY;,,. The ideal I'q(Cyy;,,) has a complex manifold structure.
There exists a representation of I'q(Cyy;,,) which we will also denote by mypin such that:

1. For s € I'q(CYy;,,) the operator myin(s) is trace-class and the function s — tr myin(s)
is holomorphic.

2. There exists a sequence s, € I'a(Cyy,) such that s, converges to the identity
in 'q(Cypin). Furthermore the functions G 3 g — trmyin(gs,) converge to the
Harish-Chandra character of my, in the sense of distributions.

In this thesis we calculate tr myin (R Exp(iX)) for h € H and X € h N CYy;,. Then for
g = su(p, q),sp(n,R),s0"(2n) we use this to calculate the Harish-Chandra character of
TMin. Furthermore we also calculate the Harish-Chandra character of the odd part of the
metaplectic representation in this way. For g = s0(2,n) we get a reduced expression for
tr mvin (b Exp(iX)) which we use to conjecture a character formula for myg, in this case.

Dansk resumeé

Lad G veere en simpel Lie gruppe af Hermitisk type. Lad K C G vaere en maksiml
kompakt undergruppe og lad H C K veere en Cartanundergruppe. Sa er H ogsa en



Cartanundergruppe af G. Vi skriver Liealgebraer med frakturskrift(ogsa kaldet gotiske
bogstaver) sa g = Lie(G), ¢ = Lie(K), etc. Lad A veere en vaegt for h C € sa kan A
dekomponeres i to parametre Ag og A s& Ag er en veegt for [¢,¢]Nh C [¢ € og A € R.
Lad A™(g,b) vaere et positivt system som opfylder at enhver positiv ikke-kompakt rod er
storre end enhver kompakt rod. Lad A}l veere meengden af positive ikke-kompakte rgdder.
Sa lader vin= @ A+ 0a hvor g, er rodrummet i g¢ tilhgrende a.

Lad ~ veere en dominant heltallig veegt og lad L¥¢ () veere den entydige simple kvo-
tient af modulet ${(gc) ®¢cqn FC(7). Hvor Ftc(y) er den endeligt dimensionelle hg-
jesteveegtrepreesentation af €c med hgjeste veegt v. Maengden af par (Ag, A) sd LIC((Ag, A))
kan ggres til en uniteer repraesentation er tidligere blevet bestemt. Lad A\ veere mini-
mal saledes at L9((0,\)) kan ggres unitaer. Vi betegner L9 ((0, A)) med dette A som
den minimale holomorfe repraesentation og skriver myu,. S& giver myn anledning til en
repraesentation af G. Der findes a og 3 saledes at

TMin|K = Oreo F¥ (o + nf).

Lad Z € Z(¢) og veelg Z sa det opfylder a(Z) < 0 for alle « € A}, Seet Cypn =
Cone(Ad(G)Z) sa er Cypin en Ad(G)-invariant konveks kegle i g, som opfylder at Chin #
{0}, g. Ydermore da g er simpel er Cfy; # 0. Sa eksisterer der en semigruppe I'c (Cwin) s&
G er en undergruppe og I'q(Cwin) er homgomorf til G X Cypin. I denne semigruppe findes
et semigruppeideal I'g(Cyy;,,), som under den samme homgomorfi som fgr bliver sendt til
G x CYypiyy- Idealet I'g(CRyy,) er en kompleksmangfoldighed. Der findes en repreesentation
af ['q(CYy;,,) som vi ogsa kalder mypi, som opfylder

1. Lad s € I'q(Cyy;,,) s er operatoren myin(s) sporklasse og funktionen s +— tr myfin (s)
er holomorf.

2. Der findes en folge s, € I'q(CRpy,), s& sp konvergerer til identiteten i I'q(Cyyy,)-
Ydermere konvergerer funktionerne G 3 g +— trmyn(gs,) til Harish-Chandra
karakteren af my,. Denne konvergens er i distributionsforstand.

I denne afhandling beregner vi tr myiin (R Exp(iX)) nar h € Hog X € b N Oy, 1
tilfeeldene g = su(p, q),sp(n,R) og s0*(2n) bruger vi dette til at beregne en formel for
Harish-Chandra karakteren af my,. Vi beregner ogsa Harish-Chandra karakteren af den
ulige metaplektiske repraesentation med disse metoder. I tilfaeldet s0(2,2n) beregner vi et
reduceret udtryk for trmy,(h Exp(iX)) som vi bruger til at opstille en formodning om
Harish-Chandra karakteren.
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1 Introduction

The aim of this thesis is to calculate the Harish-Chandra characters for minimal represen-
tations of simple Lie groups of Hermitian type. In the thesis we introduce some general
results that we hope should be applicable to the calculation of characters of highest-weight
representations of Lie groups of Hermitian type. However they rely on an assumption of
continuous extension of the character on the Ol’'shanskii semigroup to the group. The
author is unaware of any results about when to expect such extensions and thus we rely on
case by case analysis to show that it holds for the character of the minimal representations
of sp(n,R), su(p,q) and s0*(2n). In general the structure of minimal representations is
exceptionally simple from our perspective and thus the natural test cases for our method.
However for the mentioned cases the Ol’shanskil semigroups also possess very explicit
descriptions and thus we can show the extension property directly. In conclusion we
get explicit formulas for the Harish-Chandra characters of minimal representations of
sp(n,R), su(p,q) and so*(2n).

1.1 Harish-Chandra characters

In the theory of representations of finite and compact Lie groups a central idea is the
notion of a character of a representation. Let m be a finite dimensional representation of
a group G on a complex vector space then the character x of 7 is the function xy : G — C
given by

x(g) = trm(g).

Characters of finite dimensional representations of finite or compact groups satisfy the
Schur orthogonality relations, which state that inequivalent irreducible representations
are orthogonal. Thus in principle the character contains all information necessary to
uniquely identify the isomorphism class of a representation. Let x1,... be a maximal set
of characters of pairwise inequivalent irreducible representations. Then we can determine
the decomposition of 7 into its irreducible constituents by considering (x, x;) for all j.

In the study of unitary representations of non-compact semisimple Lie groups we
would like to do something similar. However all non-trivial unitary representations of
non-compact semisimple Lie groups are infinite dimensional, and furthermore since 7(g)
is unitary it is not trace-class. Let 7 be an irreducible unitary representation of G a
semisimple Lie group. For f € C2°(G) that is f is a compactly supported smooth function
on G we can define 7 (f) by

w(f)w = /G f(g)m(g)v dg. (11)
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Then it turns out that m(f) is trace-class and in fact the mapping f — tra(f) is
a continuous linear functional on C2°(G) and we call this Schwartz distribution the
character of m, we denote it by ©. Harish-Chandra has shown that on the set of regular
elements G’ the character © is given by a real analytic function. In fact Harish-Chandra
showed that there exists a locally integrable function 6 : G — C on G such that

o(f) = /G 6(9) () dg

and 0|g is real analytic. When we say that we want to calculate the character of a
representation we usually mean that we want to calculate 8|g/. Furthermore if 7y, ..., m,
are irreducible unitary inequivalent representations then their characters ©1,...,0,
are linearly independent. Specifically the Harish-Chandra character determines the
equivalence class of an irreducible representation.

1.2 Minimal representations

Minimal representations have received much study in the last 30 years. They are interesting
from various different angles and for various different reasons. The most well-known and
well-studied minimal representation is the metaplectic representation also known as the
Segal-Shale-Weil representation or the oscillator representation. Much of its prominence
is due to the work of Howe with Howe dual pairs and the Howe correspondence. This has
inspired much work in finding realizations of minimal representations for other groups
and the study of their branching laws and the special functions arising in this theory.

Another reason to study minimal representations comes from the study of unipotent
representations and the orbit philosophy. In the Kirillov orbit method there is a correspon-
dence between irreducible unitary representations and coadjoint orbits. Kirillov showed
that this holds for nilpotent groups and it was extended to solvable groups. However
there is no such correspondence in general for simple Lie groups but it is still used as a
guiding philosophy in the attempt to classify the unitary dual of simple Lie groups. In
this sense the minimal representations should be the representations corresponding to the
minimal nilpotent orbit.

To be more explicit let G be a simple real Lie group and let g be its Lie algebra. Let
J C U(gc) be a two-sided ideal in the universal enveloping algebra of gc. Then by the
PBW theorem there exists a filtration of 4(gc) such that gr (gc) = S(gc) where S(gc)
is the symmetric algebra. Then grJ is an ideal in S(gc) and thus the zero set of gr J
defines a variety in gi.. We call this the associated variety of J and denote it by Ass(J).

Then Joseph|Jos76| has shown that if gc is not of type A there exists a unique
completely-prime ideal J C U(gc) such that Ass(J) = Oniin Where Oy, is the closure
of the minimal nilpotent orbit. That is the associated variety of J is the closure of the
minimal orbit in gg. This ideal is called the Joseph ideal. In type A, there exists a
C-parametrized family of ideals such that the associated variety is the closure of the
minimal orbit|BJ98, p. 7.5; [Bor77|.



1.3 Ol’shanskii semigroups

Let 7 be a unitary representation of G. Then to 7 corresponds a (g, K) module and thus
a U(gc) representation. We let Ann(w) C U(gc) denote the kernel of this representation.

Definition 1.2.1 (4.10 in [GS05]) Let 7 be a unitary irreducible representation of G.

e We call m weakly minimal if Ann(7) is completely prime and has Ass(Ann(w)) =
OMin-

e We call 7 minimal if Ann(n) is the Joseph ideal.

Since we restrict ourselves to simple Lie groups of Hermitian type there is an alternative
notion of minimal representations which is also interesting to us. Let £ C g be the Lie
algebra of a maximal compact subgroup of G. Let h C € be a Cartan subalgebra, then b is
also a Cartan sublagebra of g. Let A (gc, he) be the set of positive non-compact roots of
gc where the ordering is a good ordering in the sense that any positive non-compact root
is greater than any compact root. Then set n =@, A (ge,he) 9 where g, is the rootspace
of gc corresponding to the root a. A weight of h can be decomposed A = (Ag, \) such
that Ay is a weight of [¢, €] and A € R. Assume that Ay is dominant integral and let
F*c(A) denote the simple £c module with highest weight A. Let L9 (A) be the unique
simple quotient of 4(gc) Dy((ectn) F tc(A). Then Jakobsen and Enright, Howe and Wallach
determined the A such that L9¢(A) are unitarizable, the set of such A is usually called
the Wallach set. Then the minimal holomorphic representation mygy, is the representation
such that A = (0, ) is the element in the Wallach set with A minimal and Ag = 0. For all
g such that gc is not of type A the minimal holomorphic representation is minimal and
almost all minimal representations are either a minimal holomorphic representation or the
contragredient representation of a minimal holomorphic representation|MO14]. Observe
that myn is a lowest weight representation.

All minimal holomorphic representations have a pencil of K-types.

Proposition 1.2.2 Let G be a simple Lie group of Hermitian type and let K C G be a
mazximal compact subgroup. Let myi, be the minimal holomorphic representation. Then
TMin has a pencil of K-types that is there ewists weights «, 8 € b such that

——00

TMin|K = EBnZOFK(a +np).

Actually this seems to be the case for most minimal representations: It is at least the
case for the representations constructed in [HKM14].

1.3 Ol’shanskit semigroups

Let G be a simple Lie group of Hermitian type and let g = Lie(G) be its Lie algebra.
Kostant|Seg76| and Vinberg[Vin80| has shown that then there exist a non-trivial, proper
convex cone C' C g such that Ad(G)C = C. Furthermore since G is simple the interior of
C has to be non-empty. Then a special case of Lawsons theorem gives us a semigroup.
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Theorem 2.4.1 (Lawson’s theorem) Let G be a connected simple Lie group of Hermi-
tian type with a complexification G¢. Let C' C g be a non-trivial, closed, Ad(G)-invariant,
proper convex cone. Then I'q(C) := Gexp(iC) is a closed subsemigroup of G¢ such that

GxC—Tg(0) (9,X) — gexp(iX)
18 a homeomorphism.

This gives a complex manifold structure on G exp(iC?) since it is the interior of I'q(C).
As C is a convex cone it is contractible. Thus I'g(C') contracts to G. Then we see that
the coverings of I'g(C') exactly correspond to the coverings of G. Furthermore if A C G
is some discrete central subgroup in G then it acts properly on I'q(C) and thus we can
consider I'(C') /A which is homeomorphic to (G/A) x C. In this way for any connected
Lie group G with Lie algebra g we construct a semigroup I'¢ (C') which is homeomorphic
to G x C.

Ol’shanskii has shown that any highest-weight representation of a simple Lie group
of Hermitian type with a complexification extend to a representation of the interior
of the associated Ol’shanskil semigroup. This result can be generalized to all complex
open Ol’shanskil semigroups. Specifically all minimal holomorphic representations extend
to an open complex Ol’'shanskii semigroup. We will also denote these extensions by
TMin. Let s be an element in the interior of the Ol’shanskii semigroup then since myin
is irreducible there is a theorem which tells us that myun(s) is a trace-class operator.
Furthermore the function s +— trmyin(s) is a holomorphic function on the interior of the
Ol'shanskii semigroup. Let s, be a sequence in the open Ol’shanskii semigroup such
that lim,, o S, = € i.e. the identity. Then the Harish-Chandra character of mygy, is the
limit of the sequence of functions G 3 g — tr myvin(gsy,) in the sense of distributions.
Thus tr myin on the interior of the Ol’shanskii semigroup determines the Harish-Chandra
character of myn.

1.4 Results

The idea in the thesis is now to use the K-type decomposition of my, and Weyl’s character
formula to calculate the function tr myin | Exp(ipnc)- In fact we calculate the character
on the Ol’shanskii semigroup for any unitary irreducible highest-weight representation
with a pencil of K-types. We usually denote c;, = h N Cyp;, where CFy; is the minimal
non-trivial, open, Ad(G)-invariant, proper convex cone in g.

Proposition 2.6.3 Let G be a connected, simple Lie group of Hermitian type. Let w be
a unitary, irreducible, highest-weight representation of G with a pencil of K-types, with «
and 8 as in definition [2.6.1. Let h € H and X € ¢, then

€(W)Eu(atsy) s, (R) e P@H) =)

(1= Eus (M) PN cpp (1= & (R)e 7))’

trr(hExp(iX)) = >

weWy

(2.7)



1.4 Results

Then we exploit that the trace is conjugation invariant hence tr myyy, is a conjugation
invariant and holomorphic function for which we have a formula on Exp(h N C). Then by
analytic continuation this is enough to determine tr my, as a holomorphic function on
the entire open Ol’'shanskii semigroup. However we want to get more precise information
on how trmyy, looks away from the fundamental Cartan subgroup. We do this by
constructing curves in the Ol’shanskil semigroup connecting the various Cartan subgroups
to the fundamental Cartan subgroup. These curves are constructed such that along them
tr mypn 1S constant.

Proposition 2.8.9 Let G be a connected, simple Lie group of Hermitian type. Let
0 : I'q(CYu,) — C be a holomorphic, conjugation invariant function which extends
continuously to G'. Let S = {v1,...,vx} C A} be pairwise strongly orthogonal roots.
Assume that g € {s0(2,n),sp(n,R),su(p, q),s0*(2n)}.

Let ny,...,ng € Z, s1,...,s, € R\ {0} and X € by such that the element on the
left-hand side in eq. 1s reqular. Then

k
0(([ ] exp(nymiH],) exp(s;(E,, + E.,))) exp(X))

j=1
k
= lim 0((1_[ exp(n;miH, )Exp(|s;|H,, ))exp(X)Exp(siZ")). (2.15)
s—0+ 1 J J
=
Where Z' is an element in by independent of X,ni,...,ng,s1,...,s, but such that the

right hand side of eq. (2.15) is contained in I'q(Cy,) for s > 0 sufficiently small.

For g = sp(n,R),su(p,q),s0"(2n) the Ol’'shanskii semigroup can be realized as a
subsemigroup of the contractive operators with respect to some non-degenerate indefinite
Hermitian form. As done in [OIs95] we use this to show that for s an element in the
Ol'shanskil semigroup we can split the eigenvalues of s into two sets, those with norm
strictly greater than 1 and those with norm strictly less than 1. This allows us to define
holomorphic functions on the interior of the semigroup in terms of eigenvalues in one
of these sets and we can express the weights and the roots on the fundamental Cartan
subgroup in terms of these eigenvalues. In this way we can recognize the character as
a function of eigenvalues on the interior of the semigroup and use this to show that it
extends to the regular elements of G. Thus we show that the Harish-Chandra character
of myin is uniformly given in the sense of proposition [2.8.9

Proposition 1.4.1 For g = sp(n,R),su(p,q),s0*(2n) the Harish-Chandra character
associated to the minimal holomorphic representation myin 1S uniformly given in the sense
of proposition [2.8.9. Explicit formulas are given in theorems[3.4.11], [3.5.11) and [3.3.21]

In the case of s0(2,n) we have not been able to show the continuous extension of the
character formula, however based on the results in chapter [2] we propose an explicit
character formula for the minimal holomorphic representation of s0(2,2n).
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1.5 Structure of this thesis

In chapter 2] we introduce the theory and notation of Ol’shanskil semigroups necessary to
treat characters of holomorphic representations. Sections to are meant to quickly
set up the theory. As such they do not contain any essentially new results but are mostly
results from the literature quoted in the hope that they will ease the process for the
reader. A few of the results are proven because the author does not know any places in
the literature in which they occur in exactly the form we use them, but there should be
no surprises to a reader familiar with the field. The result farthest from anything which
the author has seen before is lemma [2.4.13| which is used to show that a product of sls
semigroup homomorphisms as in lemma [2.8.6] is holomorphic.

The rest of chapter [2]is concerned with applying this theory to our case. Most results in
these sections are new as far as the author is aware. Particularly the approach of realizing
a Cayley transform as a continuous curve along which conjugation invariant functions are
constant seems new. This is roughly what we do in section [2.7] and section

The calculation of a character of a representation with a pencil of K-types by summing
Weyl characters in a geometric series as we do in section [2.6] is not new. This is a
commonly used back-of-the-envelope type calculation. However using the Ol’shanskii
semigroup to get an absolutely convergent series and exploiting the character theory of
Ol’shanskil semigroups is as far as the author is aware new.

Chapter [3| treats the minimal holomorphic representations of the classical simple Lie
algebras of Hermitian type on a case by case basis. Except for the case s0(2,n) they all
follow the same pattern:

1. Introduce a realization of the group and Lie algebra. This can be found in any book
on non-compact simple Lie groups.

2. Use this to get a description of the minimal non-trivial Ad-invariant proper convex
cone. This can also be found along with much more detailed information about
such cones in [Pan81|.

3. Using this we can show that the Ol’shanskii semigroup consists of linear operators
which are contractive with respect to some Hermitian form. Hence they have no
eigenvalues of norm 1. This allows us to recognize functions on HExp(i(h N CYy;,.))
invariant under the compact Weyl group as functions on the interior of the semigroup
given in terms of eigenvalues. This is essentially what Ol’shanskii does in [Ols95].

4. Given the explicit expression for the character in proposition [2.6.3| as expressed in
terms of these eigenvalues we can see that the character actually extends continuously
to the regular elements of the Lie group.

5. Then finally we can apply proposition [2.8:9 to get explicit formulas for the Harish-
Chandra character on a maximal set of non-conjugate Cartan subgroups.

For s0(2,n) we are at the moment unable to show whether the character extends continu-
ously to the group. Hence we can not complete the above procedure in this case. We do



1.6 Deficiencies and outlook

however assume that this is the case and use this to conjecture a character formula for
the minimal holomorphic representation.

1.6 Deficiencies and outlook

e The most glaring deficiency of this thesis is the lack of a character formula for
the minimal representations of s0(2,n). With such a formula we could claim to
have found the characters of all minimal representations of the classical types.
The theory in chapter [2| does cover s0(2,n) but as can be seen in section and
section B.7] the methods that we use to show that the character function on the
Ol’'shanskil semigroup extends continuously to the regular elements of the Lie group
for su(p, q),sp(n,R) and s0*(2n) do not trivially apply in this case. This is possibly
related to the fact that realizing the Hermitian symmetric space associated to
SO(2,n) is also more complicated than the three other cases. As can be seen in
section [3.6.4] the major difficulty seems to be that the weight associated with the
$0(2) component of the compact Cartan algebra enters the character formula in a
significantly different way than the other weight basis vectors. So one way to prove
the continuous extension property might be to prove that the eigenvalue associated
with SO(2) globalizes to a holomorphic function on the open Ol’shanskii semigroup.

e The next natural step to consider would be the exceptional simple Lie algebras
of Hermitian type. In this case one should notice that in lemma [2.8.4] we have
not considered these cases, but if one could show this lemma, then the rest of
section [2.8.1] applies. However it seems natural to expect that the question of the
continuous extension of the character on the Ol’'shanskii semigroup only becomes
more complicated in the exceptional cases.

e Assuming that it is possible to prove something like lemma in the exceptional
cases, possibly a modified version like lemma [2.8.5] Then it would be interesting
to see if these lemmas could be formulated and proved in a uniform way without
resorting to case by case analysis in such a way that it is still possible to prove a
version of proposition [2.8.9]

e Overall the question of which characters on the Ol’shanskii semigroups extend
continuously to the regular elements of the Lie group seems to be an interesting
question. From our perspective it seems like it might easily be a very complicated
question since we seem to be asking for a characterization of which holomorphic
functions on a wedge that have a continuous extension to specific open dense subset
of the boundary. However we do seem to be in a more advantageous position since
we know that the character on the Lie group is a distributional limit of the character
on the Ol’'shanskii semigroup, furthermore we know that the character on the Lie
group is a real analytic function on the regular elements. Considering this setup it
shares certain similarities with the reflection principle of the Edge of the Wedge
theorem of holomorphic function theory in flat space.
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e In proposition 2.8:9 we show that if the character on the Ol’shanskil semigroup
extends continuously to the regular elements of G then it is uniformly given in the
same sense as the character formula in [Hec76|. However there are a lot of subtleties
related to connected components of the regular elements of Cartan subgroups,
especially when G is not complexifiable. It is not clear when the formulas in
proposition [2.8.9] are surjective on the Cartan subgroups. It would be interesting to
try and extend the proposition such that the surjectivity is guaranteed.

1.7 Notation

We try as much as possible to adhere to standard notation, but since notation tends to
differ slightly from author to author we have tried to include a comprehensive list of
notation below. For most of the notation we also try to introduce it during the main text.

|(ov1,...,00)] The degree of the tuple: Y " | a; for € N™,

B,(c) The open ball of radius r with center ¢: {v||v—¢| < r}.
CMin The minimal closed cone in g.

Cm The intersection of Cygin, and b.

) Half the sum of the positive roots: >, A+ c.

Ok Half the sum of the positive compact roots: % ZaeA,j .
A(g,h) The roots of b in gc.

e(w) The sign of the Weyl group element w: (—1)"®).

l(w) Length of the Weyl group element w.

e; The j’th standard weight vector.

€} The j’th standard basis vector.

G’ The regular elements of G.

Ng(X) The normalizer in G of the set X: {g € G|¢g.X C X}

N ={0,1,...}

Za(X) The centralizer of X in G: {g € G|Vz € X : g.x = z}.
W(G,b) The analytic Weyl group of § in G: Ng(h)/Za(h).

W (A) The algebraic Weyl group associated to the root system A.
w W(A).

Wk W(K,b).

X° The interior of X.

X The closure of X.



2 Characters on Ol’'shanskit semigroups

In the following chapter we will introduce some theory for Ol’'shanskii semigroups. Then we
use it to calculate the characters of minimal representations on the OlI’'shanskil semigroups
and show that if they extend continuously to the regular elements of the Lie groups
then the Harish-Chandra characters are uniformly given on all Cartan subgroups. The
central results are proposition and proposition Since we want to extend our
representations to Ol’shanskii semigroups we restrict ourselves to simple Lie groups of
Hermitian type and their highest-weight representations.

The idea of calculating Harish-Chandra characters by extending the representations
to the corresponding Ol’shanskil semigroups can be seen as a natural extension of the
ideas in |[Hec76]. In |Hec76| Hecht calculates the Harish-Chandra characters of the
analytic continuation of the holomorphic discrete series representations by extending the
representations to G x RyiZ where Z € Z(£). Then he shows that for 0 < ¢ < 1 the
extended representation 7(g) is a trace class operator and the Harish-Chandra character
of the original representation 7 is the distributional limit of trw; for ¢t — 17. Then he
shows trm; converges uniformly on compact sets for ¢ — 1~ hence the Harish-Chandra
character is the pointwise limit. He shows that the trace of m(g) can be computed by
computing the fixed points of the action of gexp(tiZ) on G¢/KcP™' and thus he can
calculate the Harish-Chandra character directly and show that it is uniformly given on all
Cartan subgroups. That is Hecht calculates the Harish-Chandra character of the entire
holomorphically induced module, whereas we are interested in minimal representations
which are irreducible submodules of some holomorphically induced module.

In this chapter we will exploit that by the semigroup theory developed in the 90s we
know that we can extend highest-weight representations to the entire semigroup. We
furthermore know that on the interior of the semigroup the image of the representation
is contained in the trace class operators and trm is a holomorphic function on the
interior of the semigroup. We exploit this information to construct curves in I'q(Cyy;,,)
between a fundamental Cartan subgroup of G and Cayley transforms of the fundamental
Cartan subgroup along which tr7 is constant. Thus indicating that if we know the
character on one Cartan subgroup(actually on the “Cartan semigroup” in the Ol’shanskif
semigroup) then we know it on all other Cartan subgroups. This is roughly the contents

of proposition 2.8.9]

2.1 Setup

Since non-trivial Ad(G)-invariant proper convex cones in simple Lie algebras exist if
and only if the Lie algebra is of Hermitian type we restrict ourselves to Lie groups of
Hermitian type.



2 Characters on Ol’'shanskii semigroups

We use G, K, H to denote Lie groups. Usually G denotes a connected non-compact
real simple Lie group of Hermitian type, K will denote a maximal compact subgroup of G
and H a Cartan subgroup of K. The subscript ¢ denotes the complexification of a vector
space thus also a Lie algebra. Often we will consider groups G such that they have a
complexification and then we will usually denotes this complexification by G¢. We will
also use fraktur script to denote Lie algebras so g := Lie(G) and g¢ its complexification.

Let g = £ @ p denote a Cartan decomposition of g with respect to €. Then since G is of
Hermitian type we know that H is also a Cartan subgroup of G|Kna0ll, page 504].

If o € b then we let g, denote the root space of a in gc, that is

gu 1= {X € g |VH € e - ad(H)(X) = a(H)X}.
Then we let A(g, h) denote the roots

A(g,b) :={a e b\ {0} [ga # 0}

Then gg = he and we get the decomposition

QC:hC@ @ Ja-

a€A(g,h)

Usually the Lie algebra g and the Cartan subalgebra h will be clear from context and we
will just write A = A(g, h) to denote the set of roots.

Since b is invariant under the Cartan involution(it is a subset of £), a root space is
either contained in €c or pc. We call the roots « such that g, C £c compact and the
ones such that g, C pc non-compact. We denote the set of compact roots Ay and the
non-compact roots A,

Ap:={a € Algs Ctc} Ay ={a € Alga Cpc}

and we get decompositions:

te=he P ga pe= P 0o

aEAk aEAn

Since g is of Hermitian we fix a good ordering. Thus we get a positive system AT =
A™(g,b) such that every compact root is smaller than every positive non-compact root.
We let Az and A" denote the positive compact and non-compact roots respectively. We
set

5220{ 5k:Za.

aEAT acAf

For a root o € A we let H, € hc denote the element such that a(H) = B(H,, H)
where B(,) is the Killing form. We let W(A) denote the algebraic Weyl group of the root
system A. Most of the time the root system will be clear from context and we will just
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2.2 Complex Lie groups

denote the algebraic Weyl group with W. Similarly we let W (G, b) denote the analytic
Weyl group associated to the Cartan subalgebra b of g that is

W(G,b) = Ng(b)/Zc(b).

We will only be working with Cartan subalgebras which are stable under the Cartan
involution hence

W(G,b) = Nk(b)/Zk(b).

For b C ¢ it follows that

thus we denote this Weyl group Wxk and also call it the compact Weyl group.

2.2 Complex Lie groups

The way we usually work with Ol’shanskii semigroups is by first considering G such that G
has simply-connected complexification G¢. Then the closed respectively open Ol’shanskii
semigroups are closed respectively open subsemigroups of G¢. Thus we introduce a few
technical results which will be useful when working with Ol’'shanskii semigroups.

Definition 2.2.1 Let G be a Lie group. We say that G has a complexification if there
exists a complex Lie group G¢ such that Lie(Gc) = Lie(G)¢ and G is a closed subgroup
of G(c.

We first note that connected complex groups are complexifications of the analytic sub-
groups associated to real forms of their Lie algebra.

Lemma 2.2.2 Let G¢ be a connected complex semisimple Lie group with Lie algebra gc
and assume that g C gc is a real subalgebra such that dimg g = dimc gc and g + ig = gc-
Then the analytic subgroup associated to g in Ge is a closed subgroup of Ge.

Proof. This follows from |[Kna02, corollary 7.6 and proposition 7.9]. ([

The following coordinates will be very useful later as coordinates on Ol’shanskii semigroups.

Proposition 2.2.3 Let G be a Lie group with complexification Ge.

There exists W C g such that W is an open convez neighborhood of 0 and ® : W x W —
Gc, ®(v,w) = exp(v)exp(iw) is a diffeomorphism onto an open neighborhood of the
identity. Furthermore ®~1(G) = W x {0}.

Proof. Since G is a Lie subgroup and gc = g @ ig it follows from |[Hel01, lemma 2.5]
that by taking W to be a small enough open neighborhood of 0 in g, we can ensure that
exp : W @ iW — Gg¢ is a diffeomorphism onto an open neighborhood V' C Gg¢ of the
identity and exp(W) = exp(W @ iW) N G. Then it follows from [Hel01, lemma 2.4] that
by taking a smaller W we can also make sure that ® is a diffeomorphism onto an open
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2 Characters on Ol’'shanskii semigroups

neighborhood of the identity. By taking W possibly even smaller we can assume that
(W, W) CV.

Assume that there exists X, Y € W such that exp(X) exp(iY') € G then exp(X)exp(iY) =
exp(Z) for Z € g but then exp(iY') = exp(—X)exp(Z) € G but we choose W such that
exp |waiw is a diffecomorphism onto its image and exp(iW) NG = {e}. Hence we get
that ¥ = 0.

Now take W’ C W such that W' is a convex open neighborhood of 0 in g. O

2.3 Ad(G)-invariant cones

The basis of the study of Ol’shanskii semigroups is the realization that certain simple
Lie algebras contain non-trivial Ad(G)-invariant proper convex cones. It was shown
independently by Kostant|Seg76| and Vinberg|Vin80|] that g contains such a cone if and
only if g is of Hermitian type. Furthermore Vinberg and Paneitz|Pan81; [Pan83| studied
the structure of such cones, they showed that there exists unique minimal and maximal
cones. We will not give an extensive introduction to the subject but will formulate some
results that we will use repeatedly in the thesis.

Proposition 2.3.1 Let G be a connected simple Lie group with K C G a mazimal
compact subgroup. Assume C C g is a non-trivial, closed, Ad(G)-invariant, proper convex
cone.

Then G is of Hermitian type and there exists non-zero Z € Z(%) such that Z € C.

Proof. [Vin80, Theorem 1| O

Proposition 2.3.2 Let G be a simple connected Lie group of Hermitian type, let K C G
denote a mazimal compact subgroup and let H C K be a mazimal torus, hence a Cartan
subgroup of G.

1. There exists a unique(up to multiplication by —1) minimal non-trivial, closed,
pointed, Ad(G)-invariant, proper convex cone Cyiin C ¢. Let Z be a non-zero
element of the center of € such that a(iZ) > 0 for all « € A} then

Cwin := Cone(Ad(G)Z) (2.1)

and it is minimal in the sense that for any other closed, Ad(G)-invariant, proper
convex cone C either Cyiin C C or —Cyin C C.

2. Recall At comes from a good ordering thus

Cm = Crnin N ={ Y (=i)taHa |V € Al oy >0} (2.2)

aeA}
3. There exists a unique(up to multiplication by —1) mazimal, non-trivial, closed,

Ad(G)-invariant, proper conver cone Chiax C g such that any other closed, Ad(G)-
invariant, proper convex cone C satisfies C' C Cyrax 07 C' C —Chrax-
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2.4 Ol’shanskii semigroups

4. There is a bijective correspondence between open(closed), Ad(G)-invariant, proper
convex cones and open(closed), Wk -invariant, proper convex cones in b given by

C—Cnh.
Moreover any orbit in Cyrax intersects by.
5. Let C C g be an Ad(G)-invariant convex cone then
c’nh=(Cnh)°. (2.3)

Proof. This is in large parts the contents of |[Pan83]. O

Corollary 2.3.3 Any X € Cyrax is weakly elliptic i.e. all eigenvalues of ad(X) are
purely imaginary.

Proof. There exists g € G such that Ad(g)X € b then the spectrum of ad(Ad(g)X)) is
purely imaginary but ad(Ad(g)X) = Ad(g) o ad(X) o Ad(g) . O

2.4 Ol’shanskit semigroups

We do not define and introduce Ol’'shanskii semigroups in the greatest generality possible,
rather we are only concerned with the case where G is a simple Lie group of Hermitian
type. The first step in the construction of Ol’shanskii semigroups is Lawsons theorem.
We include a special case:

Theorem 2.4.1 (Lawson’s theorem) Let G be a connected simple Lie group of Hermi-
tian type with a complexification Ge. Let C C g be a non-trivial, closed, Ad(G)-invariant,
proper convex cone. Then I'q(C) := Gexp(iC) is a closed subsemigroup of G¢ such that

GxC—Tg(0) (9, X) — gexp(iX)
18 a homeomorphism.

Proof. [Neec00, Theorem XI.1.10|. O

Then I'q(C) is a closed Ol’'shanskil semigroup associated to G. As can be seen from
theorem ['¢(C) contracts onto G since C' contracts to 0. Then it can be shown that
Lie semigroups has a covering theory very similar to Lie groups. Much information about
coverings of Lie semigroups can be found in [HN93, section 3.4] and [Nee92|.

Proposition 2.4.2 Let G and C be as in theorem . Let T be the universal covering

space of I'c(C).
Then I' has a semigroup structure such that the covering map is a semigroup homomor-
phism and the universal covering group G of G is a subgroup of I' such that

GxC—T (9,X) — gExp(iX)

is a homeomorphism. Here Exp is the lift of exp |;c to T such that Exp(0) is the identity
element.
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2 Characters on Ol’'shanskii semigroups

Proof. [HNO93, chapter 3. O

Let A C G be a discrete central subgroup of G. Then any connected Lie group with
Lie algebra g can be realized as G/A for some such A. We construct the associated
Ol’shanskil semigroup similarly.

Proposition 2.4.3 Let G, C and T be as in the previous proposition. Let A C G be a
discrete central subgroup.

Then A acts properly on T and S := f’/A 1s a Lie semigroup such that the quotient
mapping q : I - Sisa covering homomorphism and

(G/A)xC =S (9, X) = ga(Exp(iX))
18 a homeomorphism.

Proof. [HN93, Theorem 3.20]. O

Now we are finally ready to define a closed Ol’shanskii semigroup.

Definition 2.4.4 Let G be a connected simple Lie group of Hermitian type and C' C g a
closed, non-trivial, Ad(G)-invariant, proper convex cone. Let G be the universal covering
group of G and let A C G be a discrete central subgroup such that G = G /A. Then we
denote the quotient f/A from proposition by I'c(C) and call it the closed complex

Ol’shanskit semigroup associated to G and C.

Remark 2.4.5 We will usually let Exp : C' — I'q(C) denote the composition g o Exp
where Exp is the exponential function on I = La(C).

Most often we will however not work on the entire closed semigroup but only on the
interior of the semigroup.

Proposition 2.4.6 Let'(C) be a closed complex Ol’shanskii semigroup. Then G Exp(iC?)
is an open dense semigroup ideal and it has a complex manifold structure such that multi-
plication is holomorphic.

When G has a complezification, then G Exp(iC°) is the interior of GExp(iC) as a
subset of Ge.

Proof. [Nee00, Theorem XI.1.12]. O

Definition 2.4.7 Let G be a connected simple Lie group of Hermitian type and let
C C g be an open, non-trivial, Ad(G)-invariant, proper convex cone. Then we write

I'c(C) := GExp(iC) for the open semigroup ideal in I'q(C). We call I'¢(C) the open
complex Ol’shanskit semigroup associated to G and C.

Remark 2.4.8 We will generally abuse notation and for H a subgroup of G and W C C
let I'y(W) = HExp(iWW). We will mostly use this for H a Cartan subgroup of K and
W =Cnhor for W =CU({0}.
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2.4 Ol’shanskii semigroups

Lemma 2.4.9 Let I'c(C) be a closed complex Ol’shanskii semigroup. Let g € G and
X € C then
Exp(i Ad(9)X) = g Exp(iX)g~".

Proof. Let G be such that Lie G = Lie G and G has a simply-connected complexification
Ge. Then the lemma is clear since Exp = exp lgwic- Let I's(C) be the simply-connected
covering semigroup of I'q(C) and let a(t) = g Exp(itX)g~! and B(t) = Exp(it Ad(g)X)
fort € [0,1). If p: I's(C) — I'(C) is the covering homomorphism then poa = po 3 since
Ad(p(g)) = Ad(g) since p restricts to a covering homomorphism of the groups G — G.
But 5(0) = e = «(0) thus « and f are lifts of the same curve with the same initial point
hence they are equal and thus a(1) = 5(1).

In the general case we let ¢ : I's(C) = I'q(C') denote the covering homomorphism. Let
g € G and take § € ¢~ !(g) then

9Exp(iX)g~" = (g) Exp(iX)a(3) " = a(3Exp(iX)5 ")
— g(Fxp(i Ad(7) X)) = Exp(i Ad(3)X).
But again ¢ restricts to a group covering homomorphism and hence Ad(g) = Ad(g). O

Lemma 2.4.10 Let I'g(C) be an open complex Ol’shanskii semigroup. Let v € T'q(C)
then there exists a small open ball V' with center 0 in gc such that

[y VnNiC = T'g(C) f(X) = vExp(X)
extends to V' and these maps give a holomorphic atlas of I'q(C).

Proof. Note first of all that by analytic continuation since we know Exp on ¢C which is
an open subset of ig if such an extension exists it is unique.

Assume that G has a simply-connected complexification G¢ then I'g(C') is an open
subset of G¢ and the complex structure on the semigroup is the one inherited from Ge.
In this case Exp = exp and by taking V' small enough we can make sure that exp is a
biholomorphism. The set of maps X +— v exp(X) constitute a holomorphic atlas of G¢
thus also of I'q(C).

If G is the universal covering group of G then Exp is the lift of exp. Let p : La(C) —
I'¢(C) be the covering map and let 4/ = p(v). Then we use the V' C g¢ that we get
from before for 4/ and consider the map V' 3 X — 7/ exp(X) € I'q(C). Since V is
simply-connected there exists a lift f, of this map such that f,(0) = . Furthermore
since f, is a lift of a biholomorphism it must be a biholomorphism. Since V N C' is
simply-connected and for X € C we have p(f,(iX)) = 7" exp(iX) = p(yExp(iX)) we
must have f,(iX) = vyExp(iX).

In the general case let p : I'¢(C) — I'q(C) be a covering map and let 7 be such that
p(¥) = . Then by the previous there exists V' and f5 such that f5 is a biholomorphism.
Then we put f, = po f5. Since p is a covering map we know it is a local biholomorphism
hence f, must be a local biholomorphism. By making V' smaller we make sure that f, is
a biholomorphism. O
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2 Characters on Ol’'shanskii semigroups

Lemma 2.4.11 Let X1, X9 be path-connected, locally path-connected, simply-connected
topological spaces. Let for j =1,2: p; : Zj — Zj be a covering space and f;: X; = Z a
continuous map and fj X — Zj a lift of fj. Then p1 X pa is a covering map of Z1 X Za
and f1 X fo is a lift of fi X fo.

Lemma 2.4.12 Let I'q(C),I'u(D) be two closed complex Ol’shanskit semigroups. Let
7: G — H be a Lie group homomorphism such that dr(C) C D.
Then T extends to a homomorphism of Ol’shanskii semigroups f such that

f(gExp(iX)) = 7(g) Exp(idr(X)).

Proof. By Lawsons theorem if for g € G and X € C we let f be given by

f(gExp(iX)) = 7(g) Exp(idT (X))

then f is a well-defined continuous map. Thus we want to show that f is a homomorphism.
Let G be the connected simply-connected Lie group with Lie algebra g and let G’ be
some Lie group with Lie algebra g then we let pes denote a covering morphism G — G’
and also for semigroups.
Then f o pg is a continuous map from the simply-connected space I's(C) to I'n(D)
hence by lemma it lifts to the continuous map

(9 Exp(iX)) = 7(g) Exp(idr (X)).

Such that f sends the identity to the identity and 7 is the lift of 70 pg to Hie. the
unique group homomorphism between G and H such that d7 = dr.
We want to show that f is a homomorphism because then for s;,s9 € I c(C) if we have

$j € pa'(sj) we get

f(s182) = f(pc(31)pc(32)) = f(pa (5

= pu(f(31)f(32) = f(51)f (s2).

Let G and He be the simply-connected complex Lie groups with Lie algebras gc and h¢
respectively. Then dr integrates to a complex Lie group homomorphism g8 : G¢ — Hc
and for g € G and X € C C g we get

B(gexp(iX)) = B(g) exp(idr(X)).

Where 3(g) € H since dB(g) = dr(g) C b thus we see that B(Ta(C)) C I'y(D). Then
o p¢ is a continuous semigroup homomorphism from I's (C') to I'(D). So 3 o pg lifts

2)) = pu(f(5152))

to a semigroup homomorphism BN : Ta(C) — I'g(D). However f3 restricts to a group
homomorphism on G and dj|g = d7 hence §|g = 7 and we get

B(gExp(iX)) = B(g)B(Exp(iX)) = 7(g) Exp(idrX) = f(g Exp(iX)).

Which shows that f is a semigroup homomorphism hence that f is a semigroup homo-
morphism. O
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2.4 Ol’shanskii semigroups

Lemma 2.4.13 Continue the setup from lemma|2.4.19. If s € T'g(C°) then there exists
an open ball V C gc centered in 0 such that for X € V

f(s Exp(X)) = f(s) Exp(d7(X)).

Where Exp on the left hand side is the extension from lemma[2.4.10 and Exp on the right-
hand side is an extension to dr(V)U D by following exp |4-(vyup through the construction

of Tu(D).

Proof. If G and H have simply-connected complexifications then the lemma follows from
the fact that f is a restriction of a complex Lie group homomorphism.

Now assume that G and H are simply connected and let G and H be quotients with
simply-connected complexifications. Let f be the semigroup homomorphism between the
semigroups associated to G and H and let us abuse notation a bit and let p denote the
covering map in all cases. Then for X € V we get

p(f(s Exp(X))) = f(p(s Exp(X))) = f(p(s) exp(X)) = p(f (s)) exp(d (X))

where the second equality follows from the construction of the extension of Exp in
the proof of lemma We thus see that f(sExp(X)) is a lift of the map X
p(f(s))exp(dr(X)). Hence f(sExp(X)) = f(s) Exp(d7(X)) where Exp is an appropriate
extension of X — f(s) Exp(X) to d7(V)) U C since d7(V) U D star-shaped around 0 thus
simply-connected.

Now the general case follows by taking quotients of simply-connected case. ([

Lemma 2.4.14 Assume that G is a simple Lie group of Hermitian type and that G has
a complezification Ge. Let T'g(C) be an open complex Ol’shanskit semigroup.
Then T'c(C) N G is a connected open dense subset of I'g(C).

Proof. Consider the function D : G¢ x C — C given by

dim G—1
D(x,)) = detc((A + 1)I — Ad(z)) = A%+ 3" Dj(a)N.
j=0

Let n denote the complex rank of G¢ then D,, is a holomorphic function not identically
zero on Gg. Then since I'g(C) is an open subset of G¢ the function Dn\pG(C) is a
holomorphic non-zero function, and hence by [Kna02, lemma 7.96] the complement of the
zero set is open, connected and dense. Now an element x € Gg is regular if and only if
D, (z) #0. O

Lemma 2.4.15 Let I'q(C) be an open complex Ol’shanskit semigroup such that G has a
complexification Ge. Let f : T'g(C) — C be a continuous function such that f|Fg(C)ﬁG§C
18 holomorphic.

Then f is holomorphic.
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2 Characters on Ol’'shanskii semigroups

Proof. This follows from the Riemann removable singularities theorem in several variables
|[Kra01, theorem 7.3.3|. O

Lemma 2.4.16 Let I'q(C) be an open complex Ol’shanskit semigroup. Let X € C' then
there exists an open neighborhood V' of iX in gc such that Exp extends to V' and Exp s
holomorphic on V' and reqular at X .

Proof. Assume that G has a simply-connected complexification Ge. According to [Kna02|
proposition 1.110] for a complex Lie group exp is a holomorphic mapping. Furthermore
since I', (C) is an open subset of Ge and exp(iX) € [ (C) there exists an open convex
neighborhood V' of iX in gc¢ such that exp(V) C I'x(C). By corollary 1C consists
of weakly hyperbolic elements i.e. ad(iX) has real spectrum on gc¢. It then follows from
[HelO1, theorem 1.7] that exp is regular at iX.

Let T's(C) be the simply-connected open complex Ol'shanskii semigroup and let
p:T'a(C) = I'¢(C) be the covering morphism. Let f =exp|y : V — I'¢(C) then since
V is simply-connected there exists a lift f of f to I'«(C) such that f(iX) = E;&)@X)
Since C' and V' are convex ¢«C NV is convex and thus simply-connected and hence
f!vmc = Expl|ynic. Since iC' is an open subset of the real form ig of gc we get that fis
the unique holomorphic extension of E;p to a neighborhood of iX. Then f must also be
regular at ¢X since exp = p o Exp and dp is an isomorphism.

Then I'q(C) is a quotient of I's(C) such that ¢ : I'¢(C) — I'q(C) is a covering
morphism. By definition ¢ o Exvp = Exp hence we must have that q o f lvnic = Exp |vnic-
Furthermore ¢ is a local biholomorphism thus g o f is holomorphic. And since dq is an
isomorphism we get that ¢ o f is regular at iX. O

Lemma 2.4.17 Let I'c(C) be an open complex Ol’shanskii semigroup and let U C I'q(C)
be an open connected subset. Let f,g : U — C be holomorphic maps and assume that
there exists an open subset V. C C' such that Exp(iV)NU # ( and

f|Exp(iV)ﬂU = g’Exp(iV)ﬂU'

Then f=g.

Proof. Let X € V such that Exp(iX) € U. Let W be an open connected neighborhood
in gc of ¢X such that Exp extends to a holomorphic function onWW as in lemma [2.4.16
Then V NW is a open subset of the real form igN'W and f o Exp [;vaw = g o Exp |[ivnw.
Then analytic continuation implies that f o Exp = g o Exp on W. But Exp is regular at
iX hence Exp(W) is a neighborhood of Exp(iX) and hence f and g agree on an open
set, thus since U is connected analytic continuation implies that f = g. O

Proposition 2.4.18 Let I'g(C) be an open complex Ol’shanskii semigroup. Let H be a
Cartan subgroup of K a maximal compact subgroup of G. Let V. C I'q(C) be an open
connected subset such that V NExp(i(hNC)) # 0. Let f,g: V — C be G-conjugation
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2.5 Representation theory of Ol’shanskil semigroups

invam’anﬂ holomorphic maps that satisfy
VX ebhnC: f(Exp(iX)) = g(Exp(iX)).
Then f =g.

Proof. It follows from proposition that h N C' is a non-trivial, open, proper convex
cone in h. Let Y € hN C such that Exp(iY) € V then since Exp is continuous Exp~!(V)
is an open neighborhood of iY in iC but then W = h N (—i)Exp (V) must be a
neighborhood of Y. Thus there exists X € W such that X is regular since the regular
elements are dense. Consider ® : G x (h N C) — C such that

®(a, X) = Ad(a)X.
Then we get T, x): 9@ bh — g given by
Tox)(YV,Z) =Y, X]|+7Z =—ad(X)(Y) + Z. (2.4)

Now consider T'®(, x) : gc © hc — gc where we extend T'®(. x) complex linearly. Let
gc = be ® D, ealgc)y be the root space decomposition of ge. Since X is regular ad(X)
is non-zero on every root space; therefore the image contains every root space, and it is
clear from eq. that the image contains the complexified Cartan subalgebra. Hence
we conclude that the complexification of T'®, x is surjective.

Thus we conclude that dime Kerc T® . x) = dimc hc but the kernel of the complex-
ification of TP, x) is just Kerg TP, x) @& i Kerg T'®(, x), hence dimg Kerg TP, x) =
dimg Kerc T®(,, x). Then it follows by dimensional considerations that T®(g @ h) = g.

The image of ® thus contains a neighborhood N of X in C. Furthermore since
Exp(iX) € V we can by shrinking N assume that Exp(iN) C V. Now

f(Exp(i Ad(a) X)) = f(aExp(iX)a~') = f(Exp(iX))
= g(Exp(iX)) = g(Exp(i Ad(a)X)).

Thus foExp and go Exp agree on an open subset of ¢C. Then it follows from lemma [2.4.17]
that f and g must agree. O

2.5 Representation theory of Ol'shanskii semigroups

Let H be a Hilbert space then we give B(H) the Banach space structure coming from the
operator norm. Then if M is a complex manifold it makes sense to talk of holomorphic
functions between M and B(#) and by |[Rud91, p. 3.31] this is the same as weakly
holomorphic functions.

"Where by G-conjugation invariant we mean that if h € G, v € V such that hyh™' € V then
fhyh™) = f(7).
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2 Characters on Ol’'shanskii semigroups

Definition 2.5.1 Let I'q(C) be an open complex Ol’shanskil semigroup. A represen-
tation 7 of I'q(C) on a Hilbert space H is a holomorphic semigroup homomorphism
7m:T'g(C) — B(H) such that for g € G and X € C

m(Exp(iX)g ") = m(g Exp(iX))*.
Let 7 be a unitary representation of G then we say that 7 is an extension of 7 if
(g Exp(iX)) = 7(g)e"™)
and m(gh) = 7(g)m(h) for all g € G and h € I'q(C).

Note that the terminology in definition differs from the terminology in [Nee00).
What we call a representation of I'q(C') Neeb calls a holomorphic representation of a
complex involutive semigroup. But since these are the representations we get from unitary
highest-weight representations of simple Lie groups of Hermitian type and thus the only
ones we are interested in we leave out some adjectives.

Remark 2.5.2 Let G be a simple, connected Hermitian Lie group and let 7 be a unitary,
highest-weight or lowest-weight representation with respect to some positive system. Then
7 is also a highest-weight representation with respect to a positive system coming from a
good ordering, hence satisfying the conditions of proposition [2.5.3

Proof. Since G is of Hermitian type it is admissible in the sense of [Nee96| and then this
follows from |[Nee96, corollary 4.13]. O

Proposition 2.5.3 Let G be a simple, connected Lie group of Hermitian type and let
be a unitary, highest-weight representation with respect to the positive system AT. Then
7 extends to the open Ol’shanskii-semigroup I'c(Cyy,). Where Cyy,, is defined as in

proposition [2.3.2.

7 is wrreducible as a representation of G if and only if it is irreducible as a representation
of La(Cypy)-

Proof. This follows from [Nee0O, theorem XI.4.5]. O

Corollary 2.5.4 Consider the setup from proposition[2.5.5 but assume that 7 is a unitary
lowest-weight representation with respect to A*. Then 7 extends to the open Ol’shanskii
semigroup I'c(—Cfpn,)-

Proof. Since AT comes from a good ordering, we can assume that they are associated
to an ordered basis Z,€1,...,6,—1 € h where Z € Z(£). We consider the ordering
coming from —Z, €1,...,€,_1 and denote the associated positive system by & C A.
This corresponds to making all non-compact positive roots into negative roots, and vice
versa all negative non-compact roots become positive. But the ordering of the compact
roots stay as they are. Thus 7 is a highest-weight representation with respect to ® but

[0 — o
Min,® — = “YMin,A+" 0
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2.6 Pencil of K-types

Proposition 2.5.5 Let m be a unitary irreducible highest-weight representation of a
simple connected Lie group G of Hermitian type.

Then w(y) is trace class for all v € I'q(CYyy,,) and trom is a holomorphic map on the
open Semigroup.

Let s, € I'g(CYyy,) be a sequence such that limy, o0 sp, = 1 and |w(sy)| is bounded. Let
0,(g) = trm(gsy) for g € G. Then 0,, converges to the Harish-Chandra character of m in
the sense of distributions.

Proof. |[Nee00, Theorem XI.6.1] and [Nee00, proposition XI.6.7|. O

2.6 Pencil of K-types

Definition 2.6.1 Let 7 be a unitary representation of G. Take the decomposition into
K-types
Tk = @, cgNrT

Where we have identified K with the dominant, analytically integral weights in bg.
If there exists weights «, 8 such that n, = 0 for all 7 ¢ o + N and nq44 = 1 for all
k € N then we say that 7 has a pencil of K-types.

The terminology in deﬁnition was introduced by Vogan in [Vog81] where he also shows
that many minimal representations have a pencil of K-types. Given a representation with
a pencil of K-types an alluring idea is to look at the Weyl character formula for compact
groups, observe that the highest-weight of the K-type only enters in the numerator of the
fraction and hence if we sum the characters of the K-types we get a geometric series. This
way by a back-of-the-envelope calculation one can get a formula that we expect to be
related to the character of the minimal representations. The central observation in this
section is that by extending the representation to an open complex Ol’shanskii semigroup
this geometric series becomes absolutely convergent. Since the character on the open
semigroup is holomorphic it follows by proposition that this uniquely determines
the character. Thus the work left for later sections is to use this information to calculate
the Harish-Chandra character on the group.

Let H € K be a maximal torus in the connected compact group K. Then to an
analytically integral A,j—dominant weight A € h* we denote by &) : H — C the associated
character such that d§), = A\. Note that a highest-weight of an irreducible representation
of K is analytically integral and Az—dominant. First we need a slight reformulation of
Weyl’s character formula. Note that here we work only with a compact group K and thus
A and § are specified with respect to (¢, b).

Lemma 2.6.2 Let w be an irreducible representation of the compact connected group K.
Let H C K be a maximal torus and let m have highest weight A\. Let h € H and X € b

then |
S wew €W)Ewris)—s(h) WO+ =0X)

idm(X)y _
tr(ﬂ(h)e dm(X ) = HaeA+(E,h)(1 _ §,a(h)e—i°‘(x))

(2.5)
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2 Characters on Ol’'shanskii semigroups

Proof. Since K is compact ¢ is reductive and hence [¢, €] is semisimple. Thus from the
Weyl character formula for complex semisimple Lie algebras [Kna02, theorem 5.75| we
get that as formal characters

[T @ —e) Char(r) = Y e(w)e@0=2, (2.6)

acAt weWw

Specifically we know that dn(hc) is a commuting family of simultaneously diagonalizable
operators. From |Kna02, lemma 5.106] we know that all weights of 7 are analytically
integral hence it follows that they are imaginary. This implies that dn(X) is diagonalizable
with purely imaginary eigenvalues, hence it must be skew-Hermitian and thus idm(X) is
Hermitian. It follows from the spectral theorem that €'@™(X) is a well-defined operator
with eigenvalue e#*(X) on the weight space Ty

We know from the proof of the Weyl character formula for compact groups|Kna02,
theorem 5.113| that 7(k) is diagonalizable with eigenvalue £, (k) on weight space 7,,. Thus
we know that on each weight space 7, the action of 7(k)em™X) is given by fﬂ(k)ei“(x ).
We know from [Kna02, lemma 5.112] that all weights in eq. are analytically integral
and hence we can evaluate both sides on H x h and get eq. . O

Then we can apply the lemma to calculate the character on the Ol’shanskii semigroup. It
is worth noting that in most cases when 7 is a minimal representation the parameter « is
invariant under Wk.

Proposition 2.6.3 Let G be a connected, simple Lie group of Hermitian type. Let w be
a unitary, irreducible, highest-weight representation of G with a pencil of K-types, with «
and § as in definition [2.6.1. Let h € H and X € ¢, then

o t8)—84)(X)
(2.7)

. f(w)fu}(a+6k)—6k (h)€Z(w(
trr(hExp(tX)) = , A .
v p(iX)) weZWK (1- fwﬁ(h)ezwﬂ(x)) nyeAg(l - g—v(h)e_W(X))

Proof. Choose an orthonormal basis {v,} of 7 consisting of weight-vectors from each K-
type. Then since 7(Exp(iX)) is trace class for each X € 2, we know that 20 (e (X)y,, v,,)
is absolutely convergent. Thus it must also be absolutely convergent if we choose a subset

of the orthonormal basis, so choose {wy,} C {v,} such that 7(h)w, = 4yng(h)w,. Thus
we get

i(eidr(X)wm wy) = i pilatnB)(X) _ ia(X) i (eiﬂ(X))n
n=0 n=0 n=0

and this sum is absolutely convergent. Since 7 is unitary we know that a(X) is imaginary
and (o + 8)(X) is imaginary hence §(X) is imaginary. We conclude that i5(c%,) < 0.

Let 7, be the component of the K-type decomposition of 7w with highest-weight a + nf
and let V;, = {vg | vg € 7,}. Since m(h Exp(iX)) is trace-class the sum

o0

trm(hExp(iX)) = Y (m(hExp(iX))vn, vn)
n=0
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2.6 Pencil of K-types

converges absolutely. Thus we can rearrange it to be a sum over K-types and then a trace
for each K-type which we can compute using lemma [2.6.2

trm(h Exp(iX)) Z Z (hExp(iX))v,v)
n= O'UGVn

= Ztr hEXp 1X))|span(\/n )

> wewi EW)Ew(atnprs)—s s(h)eitwlatnf+6)=5)(X)
) Z H seat(en) (1= € (h)e 1)
_ Zn:() 3 wermn €(W)Eu(ainprs)—s(h)eiwEtnBo)=0)X)
[Tear (1 =& (h)e )
However we want to interchange the sum over K-types and the sum over Wy thus we check

that the sum in eq. (2.8) is absolutely convergent. First we see that since Wk.c, C 2,
we know iwf3(c2,) < 0. Thus we get

(2.8)

Z Z le(w gw(a—}—nﬁ-{-ék) 5k(h) ’(w(a+nﬁ+5k)—5k)(X)|
n=0weWgk
S I w00 A
n= OwGWK
— Z |€z(w (a+0k)— ’Z’elwﬁ

weWyg

Note that we get |€,5(h)e?PX)| < 1.

We know that o« and « 4+ [ are analytically integral, hence § must be analytically
integral and thus wg is analytically integral for all w € Wx. Furthermore let Dk denote
the compact Weyl denominator, i.e.

Dic(hExp(iX)) == [ (1= & (n)e 7).

yeAS
Now we can compute the trace
(b Eli)
N hEXp (iX)) > Z W)Ew(acta) -5 ()T (€ 5 () O0)

weWgk n=0
(h)et(wlatdk)=0k)(X)

o 1 Z < )gw a+dg)—0y,
~ Dx(hExp(iX)) o= 1 — &yp(h)etwh(X)

O
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2 Characters on Ol’'shanskii semigroups

Since tr is conjugation-invariant it follows from analytic continuation that proposition [2.6.3|
determines the character of the representation on the open Ol’shanskil semigroup and
thus also the Harish-Chandra character. However determining the behavior of a Harish-
Chandra character on one Cartan subgroup from the behavior on another Cartan subgroup
is a highly non-trivial task. For example the Harish-Chandra characters of the unitary
principal series representations of SL(2,R) are 0 on all regular elliptic elements. The rest
of this chapter we try to indicate why this should not happen for irreducible highest-weight
representations. Unfortunately we can not prove this but we do get a partial result that we
can apply in chapter [3| to some minimal representations to calculate their Harish-Chandra
characters. Our central idea is that we can realize a Cayley transform as a continuous
curve in the Ol'shanskii semigroup in such a way that the holomorphic character function
is constant along this curve. Thereby relating the behavior of the character on the various
Cartan subgroups.

2.7 SL(2,R) considerations

We realize SL(2,R) as the group of 2 by 2 real matrices of determinant 1 with sly the

Lie algebra of 2 by 2 real matrices of trace 0. We fix K = {(:j((g)) _c(ils?g?)) |0 € R}

a maximal compact subgroup of SL(2,R). Then ¢ =R <0 _1> is its Lie algebra. Let

1 0
0 -1
1 0
{—a}. According to proposition there are exactly two minimal open, non-trivial,
Ad(SL(2,R))-invariant, proper convex cones in sly. Then Cfj, C sla denotes the open,

a denote the root a(¢ ) = 2i¢, then we fix as positive root system AT =

convex, Ad(SL(2,R)) invariant cone containing (0

10 > See section |3.3.1| for details.

Corollary 2.7.1 There exists a unique holomorphic function A : Ty, r)(Cp,) — C
such that |A(g)] < 1 and X(g) is an eigenvalue of g. Furthermore A is invariant under
conjugation by SL(2,R).

Proof. Note that SL(2,R) = Sp(1,R), hence it follows from proposition that \ is a
well-defined holomorphic function.
The spectrum of a linear operator is invariant under conjugation hence A must be

conjugation-invariant since an element in SL(2,C) has at most one eigenvalue of norm
less than 1. O

Lemma 2.7.2 Consider A from corollary|2.7. 1)
A extends continuously to SL(2,R)’.

Proof. This follows from proposition [3.3.10) ([
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2.7 SL(2,R) considerations

2.7.1 A curve in T'spor)(CRin)
Consider the function ¢ : R>g x [—1,1] — SL(2,C) given by
6(5,) = cosh(s) + tsinh(s) —iv/1 — t2sinh(s)
* 7\ iv1 —{2sinh(s)  cosh(s) — tsinh(s)/ "

First of all observe that det(¢(s,t)) =1 so ¢ actually maps into SL(2,C). Then observe
that ¢ is continuous.

Lemma 2.7.3 For s >0, =1 <t <1 we have ¢(s,t) € I'spor)(Cypin)-
Furthermore for s >0, =1 <t <1 we get ¢(s,t) € Igr,2,r) ({0} U Cypyy)-

Proof. Put

r = sinh ™! (sinh(s)v/1 — #2) > 0

- cosh(s) + tsinh(s) S0

\/coshQ(s) — t2sinh?(s)

Then since r > 0 we get that exp(ir <(1) _01>) € I'sp,2,r) (Cypy) and hence

A = (4" et (TP (Y a) € Tsien (G

Calculating we get
o= (5 2 (2 ) (5 2

<a cosh(r) —isinh(r) > ‘ (2.9)

isinh(r) a~!cosh(r)
Now consider

cosh(r) = /1 + sinh(r)2 = \/1 + (sinh(s)\/@)2

= /1 + (1 —#2)sinh(s)2 = y/cosh(s)? — t2sinh(s)2. (2.10)

Furthermore we get

cosh(s)? — t? sinh(s)?
cosh(s) + tsinh(s)

Combining eq. (2.9), eq. (2.10) and eq. (2.11)) we get

_ [cosh(s) +tsinh(s) —iv1 — t?sinh(s)
Alr,a) = ( iv1 —t2sinh(s)  cosh(s) — tsinh(s))

= cosh(s) — tsinh(s). (2.11)

= ¢(s,1).
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2 Characters on Ol’'shanskii semigroups

This proves the first assertion.
The second assertion follows by observing that

6(0,1) = I € SL(2,R)
b(s,1) = <% 603> € SL(2, R)

-5 0

o(s,—1) = <e0 > € SL(2,R). O

65

Proposition 2.7.4 Fiz s > 0 then A(¢(s, -)) is constant on | —1,1[. Similarly A\(—¢(s,-))
is constant on | — 1,1].

Proof. Let x € SL(2,C) then x has the eigenvalues p and p~! and trx = g+ p~!. The
map
{zeClO<|z| <1}z 2z 427"
is injective. Thus for x € T'gp,or)(Cyy;,) We must get that A(z) can be expressed as a
function of trx.
We see that tr ¢(s,t) = 2cosh(s) thus constant in ¢ hence A\(¢(s,t)) must be constant
in t. Similarly tr —¢(s,t) = —2cosh(s) and thus constant in ¢. O

2.7.2 Lifts to SL(2,R)
Let é\f;(2,R) denote the universal covering group of SL(2,R) with covering morphism p.
Lemma 2.7.5 SL(2,R)' U Féi(z,R)(Cl(\)/Iin) is simply-connected.

Proof. Let v : 81 — SL(2,R) U

» SL(2,R)
homotopy h : ST x [0,1] = SL(2,R) UTg

(CRiin) be a closed curve. Then consider the

(2.R) (CRpy) given by

o) =Bt (] ')

Then h(-,1) is a curve in Féf(Q R)(C’f/ﬁn) but this an open simply-connected semigroup
hence h(-,1) is homotopic to the trivial curve. By transitivity this shows that v is
homotopic to a constant curve. O

We abuse notation a bit and also let p denote the covering morphism of semigroups:
Fﬁ(lﬂ{)(clt\)/ﬁn) — FSL(ZR)(Cf\J/ﬁn)-
Lemma 2.7.6 Let A\ be the function from lemma [2.7.3. There exists a continuous

logarithm of Ao p on SL(2,R) U Tt R)(Cf\)/ﬁn) such that

elog M9 = \(p(g))

log A(Expl(i <(1’ _01>)) S
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2.7 SL(2,R) considerations

Furthermore log A is holomorphic on Fﬁ(2,R)(CKAin) and invariant under conjugation by

elements of SL(2,R).

Proof. The existence follows since éi(?, R)' U Féi@ R)(CI(\J/Iin) is connected and simply-
connected. The holomorphicity comes from the fact that A is holomorphic on the open
semigroup. Let g € SL(2,R) and let « : [0, 1] — SL(2,R) be a continuous curve such that

a(0) is the identity and a(1) = g. Let h € Tsi R)(Cf\)/ﬁn) then

eloE AW — A(p(a(t)ha(t) ™)) = Alp(a(t)p(R)p(a(t) ™) = A(p(h).
Thus log A(a(t)ha(t)~!) must be constant in ¢ and hence log A is conjugation invariant.[]

Define the function v by
v:{z€C|Imz >0} xR — Féf(m)({o} U Ctin)
7(0,0) =e

sy =eso (VD (5 )

Note that there exists a unique function satisfying the given properties, since it is a
lift of a function from the simply-connected domain Cry> x R with (0,0) the identity

in Fﬁ(ZR)({O} UCY,)- We see that when Im(f) > 0 then v(6,t) € Fﬁ(Q,R)(C&m).

Furthermore we observe that when 6 ¢ 7Z then v(6,0) € §I:(2, R)" and when ¢ # 0 then
~v(mn,t) € SL(2,R)’.

Let ¢ denote the curve introduced in section and let ¢, : R< x [-1,1] —
Féi(zR)({O} U CRypy,) denote the lift of ¢ such that ¢9,(0,0) = v(2nm,0) and po bon = ¢.
Similarly let ¢o,_1 denote lift of —¢ such that p o gop_1 = —¢ and ¢o,_1(0,0) =
v((2n — 1), 0).

Lemma 2.7.7 ¢, is continuous and log X(¢,(s,t)) is constant in t. For s € R

én(‘8|70) = 7y(nm +i|s|,0)
n(|s],sgn(s)) = y(nm, s).

Proof. ¢, is a lift of a continuous function hence continuous. Proposition m gives
that A(p(dn(s,t))) = M(¢(s,t)) is constant in ¢. Hence log A(¢,(s,t)) is constant in ¢.

Observe that ¢(0,t) is constant in ¢, hence ¢,(0,%1) = ~(nm,0). Let s > 0 then
#(s,1) = p(v(2nm, s)) hence y(2nm,-) is a lift of ¢(-,1) and we thus get that v(2nmr, s)
qggn(s,l) since they agree for s = 0 and are lifts of the same curve. Let s <
then ¢(—s,—1) = p(v(2n,s)) and ¢, (0, —1) = ¢2,,(0,0) = (2n7,0) so v(2n, s)
¢on(—s,—1). Similar arguments apply to —¢ and ~((2n — 1)x, -).
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2 Characters on Ol’'shanskii semigroups

Proposition 2.7.8 Let 0 € Cryso U (R\ 7Z) then log A(v(6,0)) = 6.
Let t € R\ {0} then log A(y(nm,t)) = —|t| + inx.

Proof. First of all we observe that for § € Ciyso we have v(6,0) = Exp(0 <(1) _01))

Hence the map Ciynso 2 6 — ~v(6,0) is holomorphic. Furthermore we know that
p(7(0,0)) = exp(0 (? _01>) = (2?5((3)) _CzlsI(lg)> which has eigenvalues e**® hence if
Im# > 0 we know that |e??| < 1 and thus that A\(p(y(6,0))) = €.

Now consider the map f(#) = 6 which is a holomorphic map on C which satisfies
ef0 = X(p(7(6,0))) i.e. f is a holomorphic logarithm of A(p(y(-,0))) which satisfies
that —1 = f(¢). By the uniqueness of holomorphic logarithms we must have that
f(6) =log A(v(0,0)) for Imé > 0. Furthermore we know that log A extends continuously

to SL(2,R)’ so by taking a limit we get

log A(7(0re, 0)) = lim+ log A(7(Ore + i0im, 0)) = lim b — Oipy = 16ye.

Oimao eim%()""

This proves the first assertion.
Since ¢p (s, 1) is regular for s # 0 we get by continuity and lemma m that

log )\('y(mr, S)) = log)‘((lzn("slv Sgn(s))) = log)‘(én("slv 0))
= log A\(y(nm +1ils|,0)) = —|s| + nmi. O

Proposition 2.7.9 Let h : FS~L(2 R)(C'f/ﬁn) — C be a holomorphic, conjugation invariant
function.

Then h(g) = h(Exp(—ilog A(g) <(1) _01>)) and h o ¢n(s,t) is constant for s >0 and
-1<t<1

Proof. Let f(g) = h(Exp(—ilogA(g) <? _Ol> )) then it follows from proposition [2.7.8

-1
0
conjugation invariant. Then it follows from proposition that f = h and it follows
from lemma that f o ¢, (s,t) is constant in ¢. O

)) It follows from lemma [2.7.6 that f is

that f and h agree on Exp(iR ((1)

2.8 Characters on the Ol’shanskii semigroups
Lemma 2.8.1 Let I'q(C) be an open complex Ol’shanskit semigroup. Let w be an irre-

ducible representation of I'c(C).
Then for every X € C' we have that ||7(Exp((0,1}iX))|| is bounded.
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2.8 Characters on the Ol’shanskil semigroups

Proof. According to [Nee00, proposition XI.3.1] we have X € B(I.,) that is there
exists @ > 0 such that inf(I/r,,X) > —a. From |Nee00, proposition X.1.5] we get
|m(Bxp(iX))| = e~ ™UrcX) < e but this gives that ||7(Exp(itX))| < e for t > 0.
This gives that ||7(Exp(¢]0,1]X))]|| is bounded. O

Lemma 2.8.2 Let I'q(C) be an open complex Ol’shanskit semigroup. Let w be an irre-
ducible representation of T'g(C). Let O : I'c(C) — C be given by Ox(g) = tr(n(g)). Let
V C G be an open subset of G. Let f : V — C such that f: T'g(C)UV — C given by

~ Or(g) forgelg(C
Flg) =4 9 )
flg) forgeV
is continuous, where T'q(C) UV is given the subspace topology in T'c(C).
Then flvng = 0lvyng: where 6 is the analytic function on G’ associated to the Harish-
Chandra character of m.

Proof. Let X € C and consider s, = Exp(i1 X) then by lemma we have ||7(sp)||
is bounded. Then it follows from proposition that ©,(gsy,) converges to # in the
sense of distributions. Hence we want to show that ©(gs,) also converges to f in the
sense of distributions on V N G'.

We show that ©,(gs;,) converges uniformly on compact subsets of VNG’ to f. Let
A be a compact subset of VN G’. Let g € A then there exists a small neighborhood
U, in Tq(C) U (V NG') of g such that for y € U, we have |f(g) — f(y)| < 5. Observe
furthermore that for 2,y € U, we have |f(z) — f(y)| < e. By Lawson’s theorem we can
take U, smaller and assume that U, = V, Exp(iW, N (C U {0})) such that V;, C G is
an open neighborhood of g and W, C C an open neighborhood of 0. Now since A is
compact there exists ¢1, ..., g, such that A C Ui Vg, define W = N1 Wy, Then W is
an open neighborhood of 0 in C. Therefore there exists N such that for n > N we have
sp € Exp(ilV). But this gives that |f(y) — Ox(ys,)| < ¢ for all y € A.

Thus O (gsy,) converges uniformly on compact subsets of V' N G’ to f. Hence O, (gsy)
converges in the sense of distributions on VNG’ to f, but this implies that f|yng = 0lynar
almost everywhere. But since both § and f are continuous on V N G’ they agree. O

2.8.1 Cayley transforms

We quickly review the definition of Cayley transforms and their application to Cartan
subalgebras. Details can be found in |[Kna02, section VI.7] and [Sch75|. Let o € A}
and let E, € g, be a nonzero root vector of a. Then E, € g_, since « is imaginary.
Furthermore since « is non-compact we have 0 < B (EQ,E). We can normalize E, so
that B(E4, Ey) = # then let H' = [Ey, E,]. Then {iH!,FEy + Eq,i(Ey — Eg)} C g
span a subalgebra isomorphic to slo(R). We denote this subalgebra sly(«) C g and
its complexification by sly(a, C). We denote the associated Cayley transform by c, =

Ad(exp §(Eq — Ea)).
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2 Characters on Ol’'shanskii semigroups

Let a, 8 € A. We call « and 8 strongly orthogonal if 8 ¢ Ra and neither o + 8 nor
a — f3 are roots. Let , B € AT be strongly orthogonal roots; then sly(a, C) and sly(3, C)
commute. Specifically the associated Cayley transforms commute. Let S C A be a
set of pairwise strongly orthogonal roots. Then to .S we associate a Cayley transform
cs = [[,ecg Ca and define hs = gNcg(he). We define by = Npes Ker(a) = h N bhg such
that hs = bl 695?:1 R(Eq + E,) and h = by @?:1 RiH],. Every Cartan subalgebra of g is
conjugate to some fg.

Our first step is to show that each such sly(«) subalgebra gives us a homomorphism of
Ol’shanskil semigroups.

Lemma 2.8.3 Let G be a connected, simple Lie group of Hermitian type and let H C G
be a Cartan subgroup of a maximal compact subgroup, and let A+ (g, b) be a positive system
corresponding to a good ordering.

Let o € A} then there exists a semigroup homomorphism

fa: Fﬁ(Q,R)(CMin) — I'a(Cmin)

falexp(r <_01 (1)>+8<—01 (1]>+t<_01 _01>))

= exp(riH), + s(Eq + Eq) + ti(Eq — Eq))

fa (Expli(r <(1’ _01> +s <_01 (1)> +1 <_01 _01>)))
= Exp(i(r(—i)H!, + $(Eo 4+ Eq) + ti(Eq — Eq))).

Where in the last equality we assume that r,s,t € R are chosen such that the argument to
Exp(i-) is contained in Cyiin(sly). Furthermore let o, 3 € A} be strongly orthogonal then
the images of fo and fg commute.

Proof. According to [Kna02, page 391| the map df, : slo(C) — gc given below defines
an injective Lie algebra homomorphism

() 3 )=
ity (1) =
ity (2 ) =Ee

Furthermore df,(sl2(R)) C g thus since §I:(2, R) is simply-connected and connected it

induces a Lie group homomorphism fa : é\fJ(Q,R) — G. According to proposition
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2.8 Characters on the Ol’shanskil semigroups

—Z‘Hé € CMin thus

dfo(Cwin(sl2)) = dfa(Cone(Ad(SL(2,R)) (? _01>)) C Cone(Ad(fa(SL(2,R)))(—i)H?,)

C Cone(Ad(G)(—12)H.) C Cwmin(g)-

By lemma [2.4.12] this implies that df, induces a homomorphism f, of Ol’shanskii semi-
groups such that

fa(g EXp(’iX)) = fa(g) EXp(idfa(X)).

Let a, 8 € A,zj)e strongly orthogonal then the Lie subalgebras sls(c, (C)Vand sly(5,C)
commute. As SL(2,R) is connected if z € fo(SL(2,R)) and y € f3(SL(2,R)) then
r and y commute. Furthermore Ad(f(SL(2,RR)))s,(s,cy = I and vice versa. Thus

Exp(idfa(X))f3(b) = f3(b) Exp(idfa(X)) and hence

fa(aExp(iA)) fg(bExp(iB)) = fo(a) Exp(idfa(A))fs(b) Exp(idfs(B))
= fp(bExp(iB))fa(a Exp(id)). O

Thus to a set S of pairwise strongly orthogonal positive non-compact roots we now
get a commuting family of semigroup homomorphisms. However their image is in the
closed complex Ol’shanskil semigroup I'q(Cyin) but we mostly want to work on the
open semigroup I'q(CYy;,,). For example we only know that our representations extend
to I'q(CYy;,) and even if they do extend to the closed semigroup it is on the open
semigroup that we get trace class operators. So we want to push the image of a product
of such homomorphisms into the open semigroup. Doing this is at first glance trivial
since I'q(CYy;,,) is a semigroup ideal so we just multiply by some element from the open
semigroup. In many cases we can however do a lot better and instead multiply with an
element which commutes with the images of all the homomorphisms.

Lemma 2.8.4 Let g € {sp(n,R),su(p,q),s0(2,2n),s0(2,2n+1)}. Let b C g be a Cartan
subalgebra consisting of fixpoints of a Cartan involution. Let S = {v1,...,7} C A} (g,h)
be a set of pairwise strongly orthogonal non-compact positive roots.

Then there exists Z' € bly = ﬁle Ker(v;) such that for any s, s1,...,s, >0

sZ' + s1(—i)Hy, + - + sp(—i)H,, € cp,. (2.12)

Proof. We proceed by case by case analysis, the notation for roots in each case is
introduced in their respective structure sections in chapter [3] But the notation should
be consistent with most sources e.g. |Kna02, Appendix C|]. Note that the lemma is
formulated in terms of H, and not H/. This makes no difference since the lemma holds
for all positive scalars s, s1, ..., s and H], is just a positive scalar times H,.
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2 Characters on Ol’'shanskii semigroups

sp(n,R) In this case A} = {e; + e |1 < j,k < n} thus by possibly reordering the basis
of h we can assume that

S={ei+eze3+eq...,ey_1+ ey, 2ey1,2€9492,2€k}.

It follows from lemma that ¢, = {tj(—i)He, |t; > 0}. We set Z/ =
> i=2(+k)+1(—1)He, then it follows from lemma that Z' € ﬂle Ker(v;).
hen

k
sZ'+ > sj(—i)H,,
j=1

n

l k—1
= Z SJ'(_Z.)HB%‘A + Sj(_i)Hezj + Z Sj+l(_i)2Hej+2l + Z 5(_i)Hej
Jj=1 Jj=1 J=2(l+k)+1

and we see that all the basis vectors (—i) He, appear with a positive coefficient in
the above sum thus the sum is in ¢J,.

50(2,2n) We have A} = {eg te;|1 < j < n} and according to lemma & =
{3270 tj(—i)Hey [to > D77 _4[t|}. We can by acting by Wk assume that we are in
one of the three cases S; = {eg+e1}, S- = {eg —e1} or So =Sy US_. The cases
S4 and S_ are symmetric so we only consider S; and So. If S = {eg+ e1} we set
7" = (—i)Hey—e,- Then it follows from lemma that Z' € Ker(ep + e1) and

sZ' + 81(_i)Heo+e1 = (S + 51)(_1')Heo + (5 - Sl)(_i)Hel

and |s — s1| < s+ s1 and thus sZ’' + s1(—4)H,, € ¢J,. If S =52 we put Z’ =0 and
then the above calculation shows that eq. (2.12)) is satisfied.

50(2,2n + 1) We have A} = {ep +e;]1 < j < n}U{ep}. The minimal cone is given
as for $0(2,2n). Thus we only need to consider the new case S = {eg} but here
(—i)He, € ¢, so we can just put Z' = 0.

su(p,q) Werealize su(p, q) as in section|3.4.1f Then A} = {ej—e;|1 < j <p <k <p+q}
and lemma [3.4.4] gives

P ptq
& ={AWIVI<j<p+q:t;>0and > t;= Y t;}.
=1 j=p+l
We can by acting with an element from Wi ensure that S = {e] —ept1,..., €5 —

epik}. Let Z' = A(¢) such that ¢; = ¢pp;j =0forall 1 <j<kandfork<j<p
set ¢p; =1 and for k < j < g set ¢pqj = Z%i. Then Z' € h and (ej —ep1)(Z') =0
for 1 < j < k. Furthermore it follows from lemma and lemma [3.4.4] that

!
$Z + s1Hey—e, T+ Sk Hey—e,,;, € e,

for any s, s1,...,s > 0. O

32



2.8 Characters on the Ol’shanskil semigroups

In the case of s0*(2n) lemma is a bit more complicated. For n odd such a Z’ does
not exist for a maximally split Cartan subalgebra. To see this let n = 2k 4 1, let h be the
diagonal Cartan subalgebra and let S = {e; + ea,...,e,_1 + eg;}. For details on the
notation and realization see section [3.5.1] We see that

0
hIS = Q?ZI Ker(er*1+e2j) = {((g _¢> | ¢ = (Z17 TR, R2s TR2y - ey REy TRk Z)} (213)

So if we wanted Z’ € by to satisfy the same properties as in lemma then Z’ would
ip 0
0 —id
it follows from lemma that ¢; < 0 for all j. Combining this with eq. we get
that ¢; = 0 for 1 < j < 2k. Thus ¢ = (0,...,0,2) and then lemma implies that
z = 0. But (_i)HelJreQ +ooet (_Z.)He2k71+92k ¢ Crn-

have to be in ¢, (take the limit sq1,...,s, — 0). Let Z' = < > then since Z’ € ¢,

Lemma 2.8.5 Let n > 3 and let h C s0*(2n) be the diagonal Cartan subalgebra. Let
S =", %} CT{M, -} T AL be a set of pairwise strongly orthogonal positive
non-compact roots. Assume that n is even or that k < |5 ].

Then there exists Z' € by such that for any s, si,..., s, > 0 we have

sZ'+ s1(=i)Hy, + -+ + sp(—i)Hy, € cD,.

Proof. We can by the Weyl group action transform S such that it satisfies S = {e; +

€,...,e,_1 + ey} Let us first assume that k < |5 | then we can put Z' = (zgﬁ —Sgb)
such that ¢; =0 for 1 < j <2k and ¢; = —1 for 2k +1 < j < n. Then Z’ € b’y and since
n — 2k > 2 it follows from lemma that Z' € ¢,,. If we choose 1) such that

. . ) 0
sZ' + Sl(_Z)He1+e2 +eet Sk(_Z)Her—1+92k = < '¢ ) .

0 —iy
Then g1 = Yo = —sj for 1 < j <k and 9; = —s for 2k + 1 < j < n. It now follows
from lemma |3.5.5| that <Zép _2 1/’) € cy,. When n = 2k we see by the above calculation
that we can simply put Z’ = 0. O

Lemma 2.8.6 Let G be a connected, simple Lie group of Hermitian type and let S =
M, %} C AL be a set of pairwise strongly orthogonal roots. Assume that g and S

satisfy the assumptions in lemma or lemma m Let g1,...,9k € I’ﬁ@ R)(Cﬁin),
X € by and z € Cimso. Then

k
(1] £2(95)) exp(X) Exp(22') € Ta(Ciiin)- (2.14)
j=1
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2 Characters on Ol’'shanskii semigroups

Proof. For each j we write g; = hj Exp(iY;) such that h; € éi(Z,R) and Y; € Cyy,-
Then put h = (H] 1 fr;(hj)) exp(X) exp(Re(z)Z) € G. Since the images of the f,,
commute and commute w1th exp(h’y) we can write eq. - as

k
H fy; (Exp(iY5))) Exp(i Im(2) Z').

But I'q(Cyy;y,) is an ideal in I'q(Cwin) thus we can ignore h. Each element in Cy;, is
conjugate to an element in cp,. Thus we can write Y; = Ad(a;)Y] with Y] € ¢}, then

Exp(iY) = a; Exp(iY])a; ~1 and we can commute the f+;(a;)’s to the left into h and the
fy;(a; 1y’s to the right. Then using again that I'q(Cyy,) is an ideal we will ignore these.
Yj’ =5 ((1) _01) for some s; > 0 and we just have to show that

k
I @i (7)) Bxpm(:)i2) € FolCEr)

J=1

But then the formulas in lemma [2.8.3] gives

: (0 -1 | )
jl_[lfwj(Exp(th <1 0))EXP(Im(z)zZ) Exp(i( Z::

and the result follows from lemma [2.8.4] or lemma 2.8.5 O

We want to show that not only does the product of semigroup homomorphisms land in
I'c(CRpp), the product of homomorphisms becomes a holomorphic map. Thus we need a
version of lemma that is easy to relate to the complex structure coming from the
atlas from lemma

Lemma 2.8.7 Continue the notation and setup from lemma . Lety € FSL(2 C)(Cf\’/ﬁn)
then for a,b,c € C sufficiently close to 0

st () )45 (1) 45 (5 7)) = el Bxvlatty + 050 + ).

Proof. This follows from lemma 2.4.12] and lemma B.4.13 O

Lemma 2.8.8 Let the setup be as in lemma and let X € b then h : Fﬁ(ZR)(CI(\J/ﬁn)k X
Cim>0 = I'a(CRpy,) given by

k
h(pr,-- o %) = (] £, (05)) exp(X) Exp(22')

J=1

18 holomorphic.
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2.8 Characters on the Ol’shanskil semigroups

Proof. Let p; € Fﬁ(2,R)(CfAin) and let 7; : sl(2,C) — gc corresponding to the root ~;

such that it matches up with f,,. Note that 7; is complex linear. Then it follows from
lemma [2.8.7] that

h(pl EXp(Xl)a < Pk EXp(Xk)a z+ w)
k k
= (]] £+ (p3) exp(X) Exp(22")) Exp(wZ’ + ) 75(X;))
=1 =1

which is holomorphic in Xq,..., X, w by lemma [2.4.10] O

2.8.2 Uniformity of characters

Now we are ready to prove the main proposition of this chapter.

Proposition 2.8.9 Let G be a connected, simple Lie group of Hermitian type. Let
0 : I'c(CRu,) — C be a holomorphic, conjugation invariant function which extends
continuously to G'. Let S = {v1,...,vx} C A} be pairwise strongly orthogonal roots.
Assume that g € {s0(2,n),sp(n,R),su(p,q),s0*(2n)}.

Let ny,...,ng € Z, s1,...,5, € R\ {0} and X € by such that the element on the
left-hand side in eq. 1s reqular. Then

k
0(([] exp(nmiM},) exp(s;(By, + E,))) exp(X))

j=1
k
= lim (9((1_[ exp(n;miH, )Exp(|sj|H, ))exp(X)Exp(siZ")). (2.15)
s—0+ i1 J J
s
Where Z' is an element in by independent of X,ni,...,ng,s1,...,s, but such that the

right hand side of eq. (2.15) is contained in I'q(Cyy,) for s > 0 sufficiently small.

Proof. If g satisfies the assumptions in lemma or g =s0*(2n) and S satisfies the
assumptions of lemma then it follows from lemma that for any s > 0 the
argument on the right hand side of eq. is in I'q(Cgy,)- Thus we can actually apply
0 to it. However that the limit exists is not so clear, since we do not take a limit towards
G’. Rather we take the limit towards an element in I'g(Cyin)-

Let f,. denote the maps from lemma [2.8.3. Let v and <f~> denote the curves from

lemma Let h be as in lemma m Then 6o h is SAf4(2, R)¥ conjugation invariant
since the images of the f,, commute and 6 is G conjugation invariant. Then it follows from
proposition that @(h(¢n, (I51],11), - -, Gy (|Skl, th), 2)) is constant for all t1,. ..t €
(—1,1). Now for 0 <t < 1 let

0(t) = "(n, (Is1],5g0(s1)t), .., by (|56, sgn(sp)t), i(1 — 1)).
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2 Characters on Ol’'shanskii semigroups

Then it follows from lemma 2.8.3] that
k

limn(t) = (H exp(nijl’,j)exp(sj(E,,j + E,;)))exp(X) € G.

t—1

j=1

If this element is regular then since 6 extends continuously we have lim;_,; 0(n(t)) =
0(limy—1 n(t)). But we know from earlier that for all ¢t < 1

(9(77(t>) = e(h(énl (‘81’7 0)7 T énk(‘sklv 0)7 i(l - t)))
k
= 0([ T exp(mymit,) Exp(ls, |Hy,)) exp(X) Exp((1 = )iZ").
j=1
This finishes the proof in most cases.

In the case g = s0*(4k + 2) we need to be a bit more careful since as we saw in the
paragraph before lemma we cannot have a Z’ that satisfies all the properties of
lemma By an action of the compact Weyl group we can assume that v; = He,; | te,;-
ip 0
0 —ig
$1(—1)Hy, o, + -+ 5k(—i)Hg,, | yo,, + 52 € Cippp

Then we put Z' = < > with ¢; =0 for 1 < j <2k and ¢9,11 = —1. Then

for s < min(si,...,s;). By [Pan83| lemma 6] any element in Cg; (sl2) is conjugate to
an element in ¢, (slz) and thus for p1,...,px € Féf(2 ]R)(Cl(\)/[in) and for 0 < s sufficiently
small depending on p, ..., pr we get

!
(IT #;(pi)) Exp(isZ') € Ta(CRiin)-
j=1

Then by a proof identical to the ones for lemma [2.8.6] and lemma [2:8.8 we get that there
exists some open set V' satisfying

Féi(Q,R)(CI(\)din) xXRCVC Fﬁ(27R)(C§Ain)k X Crm>0
such that
k
h:V — Ta(Cumin) hpy,- - o 2) = (]| £, (ps)) exp(X) Exp(22)
j=1

is a well-defined continuous map such that on V' N (Fﬁ(z R)(Cf\’/ﬁn)k x C;>0) it lands in

I'c(CRpy) and is holomorphic. That is if we fix p1,..., py the map z — h(p1,...,pk, 2) is

defined for 0 < Im z < ¢ for some sufficiently small € depending on py, ..., pk.
It follows from the proof of lemma [2.7.3] and lemma [2.8.3] that

Fonl5:0) = iy ot 00,00 Bxplin(s.0) (] PhGen) ™)

= fu;(g(s,)) Exp(ir(s,t)(—i) Ad(f,, (h(s, 1)) H,,)
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where g, h : Ry x [-1,1] — SL(2,R) are continuous and r : Ry x [-1,1] — Rs is the
continuous function

r(s,t) = sinh~!(sinh(sv/1 — 12)).

Thus if we consider the map

(_]-a ]-)k X CIm>O = (tla O ,tk,Z) — h(d;n1(|81|atl)a .. 'aénk(|sk|7t/€)az)

it is defined for Im z < min(r(|s1|,t1),...,7(|sk|,tx)) and as before it is constant in t;.
Thus we put

a(t) = %sinhfl(sinh(minﬂsl], sV = 12)).

Then « is a continuous function « : [0,1] — R> such that a(¢) > 0 for ¢t <1 and a(1) =0
and we can define

77(t) = h(qgnl(’slh Sgn(sl)t)ﬂ s 7(;nk(’8k|? Sgn(sk)t)7 ia(t))

and finish the argument as previously. ([l

Corollary 2.8.10 Consider the setup from proposition [2.8.9 but assume instead that 0
is a function on I'q(—CYy,) then

k

9((H exp(njm'H,’jj) exp(s;(Ey, + E,,;))) exp(X))
j=1

k
= lim 49((1_[ exp(n;miH,, ) Exp(—|s;|H, )) exp(X)Exp(siZ’)).
s—0~ =1 J J

Proof. As we have noted earlier we can pass from CYy,, to —Cyy;, by making positive
non-compact roots into negative non-compact roots and vice versa, but keeping the
relative order of functionals which agree on Z(€). Thus if S C A} we will instead have to
consider —S and then the result follows by observing H' , = —HJ,. O
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3.1 Minimal holomorphic representations

Minimal holomorphic representations are unitary highest-weight representations of a
simple Lie group of Hermitian type corresponding to the minimal non-trivial parameter
in the Wallach set. They all have a pencil of K-types. Thus they are natural candidates
on which to attempt to apply the results of chapter Furthermore most minimal
representations of simple Lie groups of Hermitian type are minimal holomorphic or its
contragredient. For groups of tube type the odd part of the metaplectic representation
and its contragredient are the only minimal representations not arising in this way.

Let G be a real simple Lie group of Hermitian type with K the fixpoint group of a
Cartan involution and h C € a maximal torus. Let A" (gc) be a positive system coming
from a good ordering. Let p_ = ZaeA,t g—o denote the sum of negative non-compact
root-spaces. For a dominant integral weight A\ € b let F tc()\) denote the irreducible,
finite-dimensional representation of ¢ with highest-weight A\. We thus let L% (\) denote
the unique simple quotient of the associated module U(gc) ®ecan F(A) where p_ acts
by 0 on F*¢()). Let W denote the set of weights A such that L9 ()\) is a unitarizable
(g, K)-module. Then W is known as the Wallach set and was determined independently
by Jakobsen|Jak83| and Enright, Howe and Wallach|EHW83|. Let Z € Z(¥c) such that
a(Z) > 0 for a € A} and let ¢ € ih* such that ((Z) > 0 and (([¢,€]Nh) = 0. Then there
exists a smallest non-zero real number ¢ such that ¢ € W and this ¢ is positive.

Definition 3.1.1 Let g be a simple Lie algebra of Hermitian type and real rank greater
than 1. Then we call L9 (cC) the minimal holomorphic representation and we denote it

by TTMin -

Inspired by Howe’s study of the metaplectic representation the branching laws of minimal
holomorphic representations have been studied in many different cases |[Zha01; |Sep07b;
Sep07a; [Sek13; |PZ04; [MS10; BZ94; MO14]. Hilgert, Kobayashi and Méllers in [HKM14]
definition 2.29, theorem 2.30] characterize the minimal covering groups to which mygiy
integrates. For g = s0(2,2n),s0%(2n) or su(p,q) mvin integrates to the corresponding
classical group SO(2,2n),S0*(2n) and SU(p, q) respectively. In the cases s0(2,2n + 1)
and sp(n,R) one needs to consider an appropriate double covering group.

In the interest of applying the theory from chapter [2] we need the K-type decomposition
of the minimal holomorphic representations.

Lemma 3.1.2 Let G be a simple Lie group of Hermitian type and let K be the fixpoint
group of a Cartan involution. Assume that the holomorphic minimal representation T
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of g integrates to a representation of G. Then for a = ¢ and B the highest oot in A}
we have

oo
minlx = @D F¥ (o + np).
n=0

For the classical cases o and [ are given by the following list:

sp(n,R): Then a = %22:1 e; and = 2e.

. _ P q — NP —
su(p,q): Thena = ;30 1 ej— 52> 1 eprj =2 1€ and S =e; —epiq.

s0*(2n): Then a ="

j=1€j and B = e + es.

50(2,2n): Then a = (n —1)eg and 5 = ey + ey.

50(2,2n+1): Then o= (n — 1)eg and B = ey + e1.

Proof. [MO14, page 2, page 4| O

Lemma 3.1.3 Let the setup be as in lemma[3.1.9 and let Copin be the minimal cone as
i proposition . Then mvin extends to a holomorphic representation of I'q(—Cyy,)
and the character on the interior of the Ol’shanskit semigroup is determined by

e(W)Ew(atsy) -6, (h) e WOTIR) =)

trr(hExp(iX)) = > (1= &up()e PN T s (1= &s ()

weWk

Proof. my, is an irreducible lowest-weight representation of G then it follows from
corollary that it extends to I'q(—CYy;,,)- Then the character formula is exactly as in
eq. (2.7)) since myry, satisfies all the assumptions in proposition m O

Now the rest of the work is in attempting to show that the character on the Ol’shanskii
semigroup I'c(—C¥y;,) extends to G’ such that we can apply proposition We do
this for g = sp(n,R), su(p, g¢),s0%(2n) since in these cases we can realize the Ol’shanskil
semigroup as the semigroup of contractions with respect to some non-degenerate indefinite
Hermitian inner product. This was for example observed in [K()97, proposition 2.2].
Then we can show that there exists k,m such that every element v € I'q(—Cyy;,,) has

k eigenvalues Aj,..., A, such that [A\;| < 1 and m eigenvalues pi,..., t, such that
|ftm| > 1. Thus we can define holomorphic global functions on I'q(—CY;,,) in terms of
the eigenvalues A1, ..., A\ and u1, ...,y as long as these functions are invariant under

permutations of the A\; and permutations of the ;. But this turns out to exactly be the
symmetry Weyl group Wk = W(K, h) of G in these three cases. Thus the character on
the Ol’shanskif semigroup has the right symmetry properties and we can extend it to all
of F'a(—Cyin)-

Furthermore from the explicit formula of the character that we get from proposition [2.6.3]
we can actually show that it extends continuously to G’. The method of identifying
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G-conjugation invariant functions on I'q(—CYy;,) to with functions of eigenvalues to get
a global description was used by Ol’shanskil in |Ols95|. Unfortunately the author has
not been able to find a sufficiently general description of this method to avoid case by
case analysis. Therefore the sections to are largely similar and unless the reader
is extremely interested it is probably beneficial to just read the section on their favorite
group. The other cases are almost exact copies in their structure and only a few arguments
are different.

We should however note that in the case of sp(n,R) we consider not only the minimal
holomorphic representation which corresponds to the even part of the metaplectic repre-
sentation, but also the “other” minimal representation; the odd part of the metaplectic
representation. In this case we can furthermore simplify the formula in proposition [2.6.3]
quite a lot to arrive at the character formulas in [Tor80; Ada97].

For s0(2,n) the author is unfortunately not able to show that the character on the
Ol’shanskil semigroup extends to the regular elements. However we can show a simplifica-
tion of the general character formula in this case like for the metaplectic representation
and we include it here in the hope that it might be useful to someone.

3.2 Technicalities

We include a couple of well known results on finite groups and basic linear algebra. They
are included here for comprehensiveness since we use them in many of the following
calculations.

Lemma 3.2.1 Let G be a finite group, let V' be a representation of G. Assume that we
have v € V' and a subgroup H C G such that

Zh.v:()

heH

Zg.v = 0.

geG

then

Proof. Let g1 =e,...,gr be representatives of the left cosets G/H. Then G = Llé?:lng
and we can rearrange the sum

k

k
Zg.U:ZZgj.(h.v):Zg.O:O. O

geG j=1 heH j=1

Corollary 3.2.2 Let the setup be as in lemmal[3.2.1], assume that v,w € V such that

Zh.v = Zh.fw

heH heH
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3 Minimal Representations

then

Z g.v = Z g.w.

geG geG

Lemma 3.2.3 Let G be a finite group, let V' be a representation of G and assume that
V' is a vector space over a field not of characteristic 2. Assume we have g € G, v € V
such that g.v = —v then

Z sv=0.

seG

Proof.

2ZS.U:ZS.U+ZS.(Q.U):ZS.’U—ZS.U:O. O

seG seG seG seG seG

Lemma 3.2.4 Let V be a complex vector space of dimension n. Let (,) be a non-

degenerate C-bilinear form on V. Let g € GL(V) such that (gv,gw) = (v, w) for all

v,w € V. Let V.= @,\V) be the decomposition of V into generalized ez’genspaceaﬂ of g.
Then dim V) = dim V) -1.

Proof. Let x be an eigenvector of A and y an eigenvector of p with p # A~!, then

(z,y) = (92, 9y) = A, y).

Thus (x,) = 0, by induction we see that if (g—u)*y = 0 then (z,y) = 0 since gy = py+y'
where (g — p)*'y/ = 0. Thus

(,9) = Mz, y) + Mz, y') = Mz, y)

and the previous argument applies. By a further induction we see that if x, y are
generalized eigenvectors of eigenvalues A and u respectively, then (z,y) = 0.

Let x € V), with & # 0. Then since (,) is non-degenerate there exists y € V' such that
(x,y) #0. Let y = >_ u Yn be the decomposition of y into generalized eigenvectors such
that y, € V,,. Now for all u # A1 we have seen that (z,y,) = 0. Specifically we must
have that y -1 # 0 and thus Vy-1 # 0. This argument also shows that (,)v,ev, , is
non-degenerate. Thus (,) establishes an injective linear map V) — V", and Vy-1 — VY
and thus we must have

dim V)\ < dim V)\71 < V)\. O

Definition 3.2.5 Let (,) be a Hermitian form. We call an element g € GL(n, C) weakly
ezpansive with respect to (,) if (gv,gv) > (v,v) for all v € C?*. We call g strictly
expansive if (gv, gv) > (v,v). We similarly define weakly contractive if (gv, gv) < (v, v)
and strictly contractive if (gv, gv) < (v,v).

n the sense that Vi = U2, Ker((g — \M)*))
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Lemma 3.2.6 Let (,) be a non-degenerate Hermitian form. Let g € GL(n,C) be a
strictly contractive or strictly expansive linear automorphism and A an eigenvalue of g.

Then |A| # 1.
Proof. Let v be an eigenvector with eigenvalue A then
AP {0, 0) = (gv, gv) < (v,0).
Which implies that |A| # 1. O

Lemma 3.2.7 Let f: C""' — C[X] be the function
flag,...,ap) = Zanj.
=0

Let g : C" x C* — C"/S,, be the function which to a € C"! assigns the roots of f(a)
occurring with multiplicity. Give C"/S,, the quotient topology, then g is a continuous
function.

Proof. We let ¢ : C" — C"/S,, denote the quotient map. Let a € C" x C* and let V,
be an open neighborhood of g(a) in C"/S,,. Let A1,..., A, be the roots of f(a). Then
q (Va) is an open S,-invariant neighborhood of (A1, ..., ;). Thus there exists € > 0
such that if |p; — \j| < € for all j then g(p) € V. Then it follows from [Mar66, theorem
(1,4)] that there exists § > 0 such that if |b; — a;| < ¢ then g(b) € V. O

Lemma 3.2.8 Let f and g be given as in lemma[3.2.7 Let V be a connected non-empty
subset of C™ x C* and assume that there exists W1, ..., Wy open pairwise disjoint subsets
of C such that for all a € V all roots of f(a) are in U;‘?:le. Let b be some element in V
and let nj be the number of roots counted with multiplicity that f(b) has in Wj.

Then there exists continuous maps

g9i:V = W7 /Sy,
such that for any a € V' f(a) has exactly n; roots in W; and they are given by g;(a).

Proof. Let us for a € N*¥ have W = x ;?ZIWJ% . Note that the resemblance of the usual
multiindex notation can be deceptive since the Cartesian product is not commutative.
However for Z;?:l aj =n and any v € {1,...,k}" such that

#ilvi =i} = oy

Then
(<G TV, /S = WS,

We also see that W*/S,, is open since

q_l(Wa/Sn) = U"/ X?:l W’*{j)
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that is the inverse image under the quotient map is a union of open sets thus open.
Observe that for any a € V g(a) € (UQ?:le)"/Sn. Then by the observation in the first
paragraph we get

(U?:IWj)n/Sn = (Uve{l,...,k}" ><?=1 W’y]‘)/sn =u aeNF Wa/sn-

k
Zj:1 a;=n

Let a, 3 € N¥ be as above and assume that v € C™ such that g(v) € (W?/S,) N (W5/S,,).
Then reordering the entries of does not change ¢(v) and we can thus assume that

UZ{;llnH-l’ Lo, U {:1711 € Wj.

But since the W; are disjoint this implies that o = (.

We conclude that the W%/S,, give a covering of disjoint open connected subsets. Thus
since V' is connected it follows from lemma that g(V)) € W*/S,, for some a. This
implies that the g; are well-defined functions and then continuity follows by an argument
similar to the proof of lemma [3.2.7] O

Lemma 3.2.9 Let g be a real, semisimple Lie algebra and let h C g be a Cartan subalgebra.
Let S C A(g,b) be a set of pairwise strongly orthogonal roots. Such that either all roots in
S are non-compact imaginary, or all roots in S are real. Let cg be the associated Cayley
transform and let hg be the Cayley transformed Cartan subalgebra. Let o € A(g,bs) if
Hg . denotes the element in bhsc such that o« = B(Hg,-) then

HS,a = CS(HCEI(Q))
H,,S,a = Cs(H/,

Cgs l(a) )
Proof.

B(Hsa, H) = a(H) = (cg'(@))(cg  (H))
— B(Hcgl(a),cgl(H)) = Bles(H_1,)), H).

Where the last equality follows since the Killing form is invariant under inner automor-
phisms of gc and Cayley transforms are inner automorphisms of the complexified Lie
algebra. We see furthermore that

(HS@, HS@) = B(CS(Hcgl(a))7 CS(Hcgl(a)))
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3.3 sp(n,R)

3.3 sp(n,R)

The probably most well-studied example of a minimal representation is the metaplectic
representation myet of the metaplectic group Mp(n,R). We will not provide a compre-
hensive introduction to the study of the metaplectic representation, this can be found in
[Fol89, chapter 4]. We will simply review the necessary characteristics of the metaplectic
representation to calculate its character using the methods introduced previously.

Remark 3.3.1 Consider a function f : C — C we will abuse notation and write

£ :C" = Matyxn(C)
f(pr, .. on) = diag(f(¢1), -, f(dn))

where appropriate.

3.3.1 Some structure theory

First we will quickly introduce the notation for this section and review the basic structure
of Sp(n,R) and Mp(n,R). We give a symplectic structure on R?>" by considering

0 —I
= )
w(v,w) = (v, Jw) = Z'Un_l,_iwi — VWit

i=1
Sp(n,R) = {A € Mato,xon(R) |w(Av, Aw) = w(v,w)}.

Lemma 3.3.2 Sp(n,R) is a connected, simple Lie group of Hermitian type with maximal
compact subgroup K = U(n). A compact Cartan subalgebra of Sp(n,R) is given by

=) ) 1eemn

_ (cos(¢) —sin(e) n
H= {<sin(¢) cos(¢) > |6 €R"}

We get specifically that 71 (Sp(n,R)) = Z and hence Mp(n,R) is the unique double-
covering group of Sp(n,R). Let p : Mp(n,R) — Sp(n,R) then p~1(U(n)) is a mazimal
compact subgroup of Mp(n,R) and p~'(H) a compact Cartan subgroup.

Proof. |[Kna02, page 513], [Tor80, section I.1 and I.2], [Fol89, chapter 4]. O
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3 Minimal Representations

Lemma 3.3.3 Let e}, € hi be given by ek((g 0¢)) = i¢. Then for Sp(n,R) with

Cartan subgroup H we have
A= {j:ei j:ej,j:Qei\i;éj}
+:{eij:ej,2ei|i<j}
Ap={ei—ejli#j}
Ay ={ei—ejli<j}
A:Lr = {e,-+ej,2ei}

Wk = {all permutations of the e;} =S,

n

1
o = 2;(n+1—2i)ei

Proof. |Kna02, page 150, 155, 164]

Lemma 3.3.4 Let H,H' € hc C sp(n,C) then

B(H )8+n—1z% Je; (H')
and if
(o)
then ¢ = —im%k,
Proof. We calculate
B(H,H') = tr(ad(H) ad(H")) = Y a(H)a(H')
aEA
—SZeJ H')+2) (ej - e)(H)(ej + ep)(H')
i<k
= 8Zej( )+2) 2e(H ) + 2er(H)ey(H')
j=1 j<k

=8 ej(H)ej(H')+4> (n—j)ej(H)e
j=1 j=1

=(8+4(n—1))) _e;j(H)e;(H).
Jj=1
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3.3 sp(n,R)

Hence if we let He; € hc be such that e; = B(He,,-) and He, = <2) _0¢> then

e;(H) = B(He;, H) = (8+4(n—1)) Y _ ex(Ho, )ey(H).

k=1
But ey,...,e, are a basis of the dual of the Cartan subalgebra, specifically they are
linearly independent and thus we get i¢, = ex(He,) = Wln—l)(sj}k' This gives ¢ =
STA=T) Ok 0

The semigroup

Lemma 3.3.5 Let C\pin be the minimal cone according to the positive system defined in

lemma let ¢, = Chiin N b then

=5 ) 1oer o <0)

= (5 ) 1ecrviio;<0)

Proof. Many more details about the cone can be found [Pan81} section I1.6] but we
include a proof for completeness.

It follows from lemma and proposition that

i = —ispang, ({Fey s Haos) € (02((§ ) 10200 =1(§ ) low <01
Conversely let X = (35 _0¢> and ¢; <0 for all j. Then let a; = —Wdﬁj > 0 and
set Y = (—i) 3 7 ajHoe; and let ¢ € C" such that Y = (3 _Oq’Z}) then it follows from
lemma [3.3.4 that . .

Wy = (—i) ; akﬂiz;)_l)%j,k = ¢;.
Thus we get X =Y. But it follows from proposition that Y € ¢p,. O

In order to recognize the character in lemma as a global function we want some
prototype holomorphic functions on I's,, ) (cy,). Therefore we realize I's,(, v)(Cypy,) as
contractive elements of Sp(n,C) as done in for example |Ols95].

We extend w(,) to a complex bilinear form on C2*. We furthermore introduce the
indefinite Hermitian form given by Q(v, w) = —i(v, Jw) where (,) is the usual Hermitian
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3 Minimal Representations

form on C2*. Then

Qv, w) = —i Z Uppi Wi — VjWng
i—1

Sp(n, C) = {A € Matapx2,(C) |w(Av, Aw) = w(v,w)}
U(Q(,)) = {4 € Mata, x2,(C) | Q(Av, Aw) = Q(v, w)}.

Lemma 3.3.6 Q(,) is a non-degenerate, Hermitian form of signature (n,n) and

Sp(n,R) C U(£2(,)).

Proof. Consider the basis of C*" given by {%(é’J +i€j+n)}}—; then in this basis 2, ) is
just the standard Hermitian form of signature (n,n)

Q) + 1€)1n, € + i€j4n) = —2
Q€ — 1€j4n, €] — 1€j4n) = 2
Q€j — i€j4n, €; + 1€j4n) =0
Q€ £ i€j4n, € £ i€ltn) =0 for j # k.
Let g € Sp(n,R) then
Qgv, gw) = (—=i)(gv) T Tgw = (=i g7 Tgw = (=i} Jw = Q(v, w). O

Lemma 3.3.7 Let g € Usp(nr)(CRpy) then g is strictly expansive with respect to €, ).
The eigenvalues of g are Al,...,An,Afl,...,)\;l with (A1 < 1,...,| ] < 1.

Proof. It follows from Lawsons theorem that I'gp(,r)(Cyyn) = Sp(n, R) Exp(iCyy, ). To
see that all elements in the open complex Ol’shanskii semigroup are strictly expansive, it
is thus enough by lemma to observe that the elements of Exp(iCyy;,) are strictly
expansive. Furthermore observe that from lemma we have Exp(i Ad(g)X) =
gExp(iX)g~!. Then [Pan83| lemma 6] says that any orbit in Cg; intersects h and hence
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3.3 sp(n,R)

it is enough to consider X € ¢, = h N CYy,,,. Consider X = (2 _0¢> € cy, then

QExp(iX)v, Exp(iX)v) — Q(v, v)

)
- " ((:?52?3 i) 9) Gt )= (7 9)e
JH —2 cos(i¢) sm(zd)) sin?(i¢) —.cos%(igﬁ.) + 1> .
cos?(ip) — sin?(i¢) — 1 —2cos(i¢) sin(i¢)
— (i)t ( 2cos(z¢) sin(ig) 25i1‘12(igz.5) ' ) .
—25in?(i¢) —2cos(i¢) sin(i¢)

o (CReosopinble) | i) Y,
—2isinh?(¢) —2 cosh(¢) sinh(¢)

= ¥ —2cosh(¢;) sinh(;)(|0;[* + [vn45]°) — 2sinh?(¢;)2 Im (V50,4 5) > 0.
j=1

We get the last equality since ¢; < 0 we have sinh(¢;) < 0 and thus the first term in the
sum is positive, but then

|sinh?(¢;)2Tm(Tjv,15)| < cosh(¢;)[sinh(e;)|(|v;]* + [vn45]°)

gives that the sum is positive.

Let A be an eigenvalue of g € Sp(n, C) such that g is strictly expansive. Then it follows
from lemma [3.2.6] that [A| # 1. It then follows from lemma [3.2.4] that there are exactly n
eigenvalues such that |[A\| > 1 and n such that [A\| < 1. O

Proposition 3.3.8 Let f: (B1(0) \ {0})" — C be a continuous function such that for
any o € S, we have

f(za(l)a .. '7zo(n)) = f(zla e -’Zn)-

For each g € T'sp(nr) (CRpiy) PUt f(9) = F(0, -, An) where {); }i—1 are the eigenvalues
of g such that [\;| < 1.
Then f : Lspn,r) (Cys

) — C is a continuous function.

Proof. This follows from lemma [3.3.7 and lemma [3 O

Proposition 3.3.9 Let the setup be as in proposition [5.5.8 Assume f is holomorphic.
Then f is holomorphic on sy, r) (CRyiy)-

Proof. From lemma it is enough to check holomorphicity on the regular elements.
Let g € Tgp(n,r)(CRypin) and assume g € Sp(n,C)’. Then g must have all eigenvalues
distinct, since g is conjugate in Sp(n,C) to a regular element in the diagonal Cartan
subgroup. Then % det(g — A\)|a=x, # 0 for \; an eigenvalue of g since it has multiplicity 1
Then since det(g — A) is a holomorphic function on Sp(n, C) specifically on sy, m) (Cypin)
the holomorphic implicit function theorem|Hor90, theorem 2.1.2| gives that there exists
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a small neighborhood of g and holomorphic functions Ai(-),...,An(:) such that they
are the eigenvalues of norm less than 1. Then f in this neighborhood is just given by
F(A1(4), ..., An(+)) which is a composition of holomorphic functions hence holomorphic.O

Proposition 3.3.10 Let f be as in proposition[3.3.8 and assume that f extends contin-
uously to (B1(0) \ {0, +1})".
Then f extends continuously to Sp(n,R)’.

Proof. First of all observe that if there exists a continuous extension of f it is unique
since for each element in Sp(n, R)" there exists a sequence in I'gy(, g)(Cyyy,) converging
to it.

Let g € Sp(n,R)’ then g is a regular element of Sp(n,C). Hence it is conjugate to
a regular element in the diagonal Cartan subgroup. Thus e?®i(g) # 1 for all i which
shows g does not have eigenvalue +1 thus all eigenvalues must be distinct. Then by the
implicit function theorem applied to (g, \) — det(g — A) there exists a neighborhood
V,4 C Sp(n, C)" and continuous functions a1, . . ., ay, such that for all A € V; the eigenvalues
of h are a(h), a1(h)™L, ..., an(h), an(h)~t. We can furthermore take V, smaller so that
ai(Vy) Na;j(Vy) = 0 for i # j and a;(Vy) Naj(Vy)™! = 0 for all i,j. Furthermore
by proposition we can take V, smaller so that (v,w) — gexp(v)exp(iw) is a
diffeomorphism onto V;; where v, w € W for W C sp(n,R) a convex open neighborhood of 0.
By Lawsons theorem the map Sp(n, R) X Cyiin 2 (h, X) — hexp(iX) is a homeomorphism
onto the closed semigroup, hence we can take a potentially even smaller W such that
gexp(W) exp(iW) N Lgpn,r) (Cmin) = gexp(W) exp(iW N Chyin)-

Let v € Vg N Tgp(n,r) (Cfyin)’ and name the eigenvalue functions such that

laa (], -5 lem (V)] < 1

and let v = gexp(vy) exp(iwy). Assume that there exists p € V; and 1 <4 < n such that
lai(p)| > 1 and let p = gexp(v,) exp(iw,). Then we must have w,, w, € W N Cyy;,,. But
W and Cfy;,, are convex and thus their intersection is convex. Set h to be the curve from
v to p given by

h(t) = gexp(tv, + (1 — t)vy) exp(i(tw, + (1 — t)w,)).

Then h(t) € Isppr)(Cypyy,) for all ¢ and |a;(h(t))] is a continuous function into Ry
different from 1 such that |o;(h(0))] < 1 and |a;(h(1))] > 1 which is impossible by the
intermediate value theorem. This implies that |a;(I'sp(n,r) (Cip,))| < 1 for all i. By the
continuity of o; we get a;(g) € B1(0) \ {1}.

Furthermore we conclude that

f(y) = flea(y), - an(y)) for all v € Vg N Fgpnr) (CRiin)-

Thus set f(h) = f(ai(h),...,an(h)) for b € V, N (Sp(n, R)’ U Lspn,r) (Cipin))- This is a
composition of continuous functions hence f is continuous and thus a continuous extension

of f. O
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3.3.2 The metaplectic representation
Proposition 3.3.11 Let myey be the metaplectic representation of Mp(n,R). Then

1. T™Met 1S a unitary representation, and it decomposes into two irreducible subrepre-
sentations:
TMet = TMet,Even D TMet,Odd-

2. TMet,Even 0Nd T\et,0dd are highest-weight representations with respect to the positive
system given in lemma|3.3.5.

3. Let a= —% Yo, ei and = —ey then the K-type decompositions are given by:

——00
TMet|U(n) = @nZOVa+nﬁ
— 00
TMet,Even|U(n) = @nzovamzﬁ
——00
TMet,0dd [U(n) = @nZOVa+ﬁ+n2ﬁ-
Where V,, denotes the irreducible representation of U(n) with highest-weight p.

4. We can realize Vo ynpg as the space of homogeneous polynomials of degree n with the
action H given by

cos(¢p) —sin(¢) D) = e AT it .
(Gnior ot e Fle o e ). (33)

In this realization the set monomials are an orthonormal basis of Tyet -

Note that the square root is well-defined on Mp(n,R). Since topologically Sp(n,R) =
U(n) x R*. Then e"2 Xim1 9 g Just \/% on U(n). But det is a well-defined, non-
zero continuous function on U(n) hence taking its square root gives a double cover
of U(n), and since all double-coverings of U(n) are homeomorphic this must be a
mazimal compact subgroup p~*(U(n)) of Mp(n,R) and thus we get a well-defined,

continuous square oot there.

Proof. |Fol89, proposition 4.39, theorem 4.56]. O

Lemma 3.3.12 Tpfet, T™Met,Even @1d T\et,0dd €xtend to FMp(mR)(C’f/ﬁn),

Proof. Let X € ¢, with X = (2 _O¢> Then iej(X) = i’¢; = —¢; > 0. Thus

ia(c) > 0 for all @ € A} and hence Cf, is Al adapted in the sense of [Nee(0),
definition VIL.3.6, theorem XI.4.5|. Then since Tfet,Even and Tnet,0dd are highest-weight
representations with respect to this positive system it follows from proposition [3.3.1]]
and |[Nee00, theorem XI.4.5] that both Tfet Even and miet,0d4d €xtend to FMP(R,R)(CI(\)/[in)'
Thus Tyet extends to a representation of Iy r) (CRyipn)- O
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3.3.3 The character on the compact Cartan subgroup

Lemma 3.3.13 Let h € H and X € ¢}, and let

B e
0. (hExp(iX)) = 1‘2[7:11 Tt (e m™
Then
tr(myet (h Exp(iX))) = 6_ (h Exp(iX)) (3.4)
tr(mte ven (R EXD(iX))) = (0 (RExp(iX)) + 04 (RExp(iX)))  (35)
tr(mie 0aa(hBxp(iX))) = 3 (6 (WExp(iX)) — 64 (hExp(iX))).  (36)

We give two different proofs of this lemma, the first straightforward and using the orthonor-
mal basis of monomials. For the second proof we use the formula from proposition to
derive the formula in eq. . In both cases we observe that using proposition it
is enough to do the computation for h = e. This simplifies the computations significantly
in the second proof, since we can then ignore the question of whether the weights are
analytically integral while computing. Thus observe first that all the weights in the right-
hand side of eq. are analytically integral, hence the right-hand side is a well-defined
holomorphic function on I'y(c?, ).

Proof (Direct). For a € N" let fo(z) = 2% Let X € ¢, with X = <((; _0¢> It
follows from eq. (3.3) that

(et (%) fa) () = €73 251100 fo (7 W01z ez,

et (it 5)es £ ()

drvin(X) fo = —i 305 + )65
j=1

n
J=1

We know from proposition [3.3.11] that the monomials are an orthonormal basis hence
n
tr(efdmen(X)y = 03 =1 i Z H i — o~ 2y—1€i(X) 1 (3.7)

H?:l 1— e—iej(X) :

a€eN? j=1

The last equality follows since it is just a product of geometric series, and since ¢; < 0
for all j all the respective geometric series converge absolutely.
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An orthonormal basis of the even part of the metaplectic representation is given by all
the monomials of even degree. The monomials of odd degree give an orthonormal basis of
the odd part. Thus we are interested in the sums

a(z) = Z 2

aceN"
|| even

b(z) = Z 2

aeN"™
|| odd

for ||z|]] < 1, we know they are absolutely convergent since the multi-index geometric
series is absolutely convergent. Furthermore we see that a as a function in z is even and
bis odd and a(z) + b(z) = [];_; -~ Hence we must have

=1
1 1 1
b(z) = = -
(2) 2(11_[11—21 1+zl)
and applying this to eq. (3.7 proves the lemma. O

In order to simplify the notation a bit we suppress elements of h and for o € b, let e®
denote the function

e*:hec—C e?(X) = X,
The Weyl group acts on h¢ thus it also induces an action on functions on h¢, we observe

(w.ea)(X) _ ea(w—lX) _ ea(w_lX) _ e(w.a)(X) _ ew.a(X).

Lemma 3.3.14 Forn>1 and o, € C

> e(0)ei=1 (=) [T(a+geew)

gES, j=1

=Y okt Y 6(0)6"'@?:1(_j)ef_zf;é o). (3.8)
k=0

O'GSn
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Proof. We proceed by induction, observe that we get the equality for n = 1 simply by
expanding the product. Let n > 2 then

> e(0)ezi=1 (=)o) [T(e+ Bee=w)

TgES, j=1
= Z E(J)e j= 1( ])eo'(J> H le% —|—6€ J))
+ 8 Z i=1(=9)es(j) ~€o(n) H o+ Be W)
UESn Jj=1
—@Za” 1k gk N (o (=9)eo(s) go(Zjr (~d)ei=35 25 en—1-5)
gES,
+ 520‘"_1_k5k Z e(a)eo.(zyzl(—j)ej—zﬁgé en—1-j=en)
k=0 O'ESTL

The first equality is simply the expansion of the parenthesis in the j = n part of the
product. For the second equality we let S,,_1 C S, such that S,,_1 permutes eq,...,e,_1
then apply the induction hypothesis for S,_; and corollary to both terms. Then we
observe that in the first term on the right-hand side of the last equality; for £ > 1 all
expressions in the exponential are invariant under (n — 1;n) € S,,. Thus by lemma
they do not contribute. Then collecting the terms we get the right-hand side of eq. .D

Corollary 3.3.15 Forn>1 and o, € C

Z 6(0’)627; )eo(j) H a+ e W) =a"" 1 Z > 1(—1')%(]').

TgES), j=1 oES,

Proof. Let S,,_1 C S, such that S,_; acts on e1,...,e,_1 then we apply corollary [3.2.2]
and lemma and get

n—1
Z 6(0-)62?=1(7j)ecr(j) H(O‘ + Be~% )
oESH j=1

S
—

Zan 1k gh Z )& (Zi=1(=d)es S50 en-1-4)

=0 gES,

ol

We observe that for all terms with & > 1 the expression in the exponential is invariant
under (n — 1;n) thus by lemma they are zero. O
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3.3 sp(n,R)

Lemma 3.3.16

n—1
Z 6(0‘)6% Zyzl(nJrlin)e“(j) H(l — e_QeU(j>)
j=1

0€Sy,
15]
=Y o) (—1)kes (Efm (m1=20)e0() =4 501 eon-z-1) | (3.9)
TES, k=0
Proof. Let | = [§]| and m = [5] and let S,, act on ey,...,e, as permutations of
the elements e,,_1,e,_3,... and S; as permutations of the elements e,,e,_o,.... Then

S; X Sy, C Sy, and we can factor the right-hand side of eq. (3.9)

n—1
Z 6(0’)6% Z;’L:l(n+1_2j)e‘7(j) H(l — e_2e0(j))
7j=1

UESZ X S’"L

-1
:e% S (nt1)e+3h eaj 1 Z 6(0)62231 —2(1~j)eq(n—2j) H(l _ 6*290@—2]‘))
j=1

oES;

m
Z 6(0)62?:1 —2(m—j)es(n—(2j-1)) H(l _ 6—29(,(”_(2]-_1)))
j=1

cESm

—e3 Sr(nl)e+3_ eaj1 Z e(o)e Lh —2(1=5)e0 (n—2j)

oES;
m k
. (Z(_l)k Z 6(0)62?:1 —2(m—j)es(n_(2j-1))~2j=1 2ea(n(2j1)> )
k=0 TESm

The first equality is simply rewriting the sum into the product of two sums. For the

second equality we apply corollary to the sum over S; and lemma [3.3.14] to the sum
over S;,. The eq. (3.9)) follows by multiplying the two expressions together and applying

corollary [3:2.2] O
For the proof of eq. (3.6)) we need a slight modification of lemma |3.3.16
Lemma 3.3.17

n—1
Z 6(0‘)6% Z?:1(n+1—2j)ea(j)—ea(n) H(l _ e_Qea(j))
oES, j=1
1254
=Y o) Y (~1)rer (B mti2esn “2e0m A ot2n) (3.10)
0ESH k=0
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3 Minimal Representations

Proof.

Z e(a)e% > (nt1=25)eq () —€x(n) H rr<J)

€Sy
o 6(0’)6% 27:1(n+1—2j)eo(j €, (n) H 72900)
€Sy
2 n—2
_ Z 6(0)60.5(2?; (n+1-2j)e;—(n+1)en—1—(n+1)en) H (1- e,Qeg(j))'
€S, =1

To the first term on the right-hand side we let S,,_1 C S, such that S,,_; permutes
el,...,e,_1 then we can apply lemma to give the right hand side of eq. .
Thus we only need to argue that the second term is zero. But this follows by observing
that the exponential is invariant under the cycle (n — 1;n). O

Proof (Even part of lemma . We attempt to calculate the trace using propo-

sition 2.6.3] and the K-type decomposition, since this approach should generalize to other

representations where we do not necessarily know an explicit eigenbasis for the H-action.
Let X € ¢2, and «, § as in proposition then according to proposition [2.6.3]

tr(eidﬂklet,Even (X) ) f— Z

weWgk (1

6(w)ei(w(a+5k)*5k)(x)
— ei2wB(X)) HweAg(l — e~ (X))

223 1eJ( )
@O s (1= e ) [T (1 — 2 ())

3 e(o)elz Eim (12 (X H e2e (X)) | | (3.11)

oES, j=1

Where we have used that wa = « for all w € Wgk. Then we can apply lemma [3.3.16] to
the right-hand side. Let 0 < k < [§], let = denote equivalence modulo 2 and rewrite

n n—2k n
Y (n+1-2j)e —4Zen_ iy = (m+1-2j)ej+ > (n+1-2(+1)e;
st =1 j=n—2k+1
n=j+1
n
+ Z (n+1—2(j —1))e; S 2
j=n—2k+1 j=n—2k+1
n=j
(3.12)
put wi = (n;n—l)(n—Q'n—B)---(n—(2k—2);n—(2k—1)) then we get
n n n
> (n+1-2j)e —4Zen_ ey = (n+1=2e,y—2 Y ey (3.13)
Jj=1 j=1 j=n—2k+1
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3.3 sp(n,R)

We see that e(wy) = (—1)* hence by reordering terms we get

15]
Z €(0) 2 ( 1)k i5 (31 (n+1-2g)e () —4 351 o (n—(2j-1)) ) (X)
TgES,, k=0
& i (o i 2k—1
= e(o) e(wk)elg(z-:1(n+1_2y)e(,(wk(]-))(X)—zzj:() € (g (n—1) ) (X)
TgES), k=0
L5]
- Z €(o) 13 (X1 (n+1-25)e, () (X)—2 355 e ) ) (X)
o€Sy k=0
— % H(1 + efiej(X)) + H(l . efiej(X)) Z e(a)ei% S 1 (nt1-2))e, ;) (X) (3.14)
=t J=1 c€Sp

Where the last equality comes from two applications of lemma Then combining
eq. (3.11)) and eq. (3.14) we get

¢ CN[Tiy (1= e70) 4 T, (14 e )
[T 1 ()2

tl"('/TMet,Even (EXP(ZX))) =

_ %(6+(Exp(iX)) +0_(Exp(iX))). =

Proof (Odd part of lemma |3.3.13)). This follows by very similar computations as in
the proof of eq. (3.5)).
Let X € ¢,, a and  as in proposition |3.3.11] then it follows from proposition that

e—i% Z?:l e;(X)

ei5k(X) H’YGAz (1 — e_i'Y(X)) H?:l(l — eQiej(X))>

tr(met,0da (Exp(iX))) = (

n—1
Z 6(0)61% i1 (nt1=25)eq (5 (X) —ieg(n) (X) H(l — e (X)) | (3.15)
0ESH j=1

For 0 <k < [§] put wp=(n—1n—-2)(n—3;n—4)---(n—2k+1;n—2k). Then by a
calculation very similar to eq. (3.12)) and eq. (3.13) we get

n k n n
D (n+1-2j)ej—2en—4) enoj=D) (n+1-2es =2 ) euq)
j=1 j=1 j=1 j=n—2k
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3 Minimal Representations

Note that €(w;) = (—1)* and hence from lemma [3.3.17| and lemma [3.3.14] we get

n—1
Z 6(0’)62% 7:1(n+1_2j)ea(j)(X)_ied(n)(X) H(l _ e*iQEU(j)(X))
0ESH j=1

= Z e(o') e(wk)e’% (Zyzl("+1_2j)eo(wk(j))_2 Z;L:n—Qk ecr(wk(j)))(X)‘

0€S, k=0
= % H(l + e (X)) H(l — e~tei(X)) Z e(a)ei% Y1 (nH1=25)e,H(X)
Jj=1 Jj=1 oESy

Then we get eq. (3.4) simply by addition of eq. (3.5 and eq. (3.6).

3.3.4 The character function

Lemma 3.3.18 Let p : Inipn,r) (Cipin) = Tspn,r) (Cipin) denote the covering morphism.
For g € Dnip(n,r)(Cipin) let M(g), - .-, An(g) denote the eigenvalues of p(g) with |\;| < 1.

Then there exists a continuous function f on Mp(n,R)" U Cvip(n,R) (CSpin) such that for
9 € Dvip(n,r) (CRpin) and X € ¢y, it satisfies

HOSES | RYO)

j=1
f(Exp(iX)) = e~z Xi=105(X),

Furthermore f is holomorphic on Uyp(n ) (Cipy)-

Proof. Let h(z1,...,2,) = [[}_; #; then h is a holomorphic function invariant under S,

and according to propositions |3.3.9| and |3.3.10| h is a continuous function on Lsp(n,R) (CRiin)
holomorphic on the set of regular elements. Since 71 (I'sp(n,r)(Cyyin)) = Z the semigroup

has a unique double cover. Thus since A is a non-zero continuous function it must have a
continuous square root on the double cover 'y, r) (CRiin)- The square root is holomorphic
on the set of regular elements since h is. Let f denote the square root such that for
X € ¢, f(Exp(iX)) = e~2 /=19 (X)  We want to show that f extends continuously
to Mp(n,R)’. First of all observe that there can be at most one continuous extension
of f since for every element g € Mp(n,R)" we can find a sequence in Iy r) (CRpin)
converging to g. Choose a convex open neighborhood 0 € W C sp(n,R) such that

W x ({0} U (W N CRn)) 2 (X,Y) = gexp(X) Exp(iY)
is a homeomorphism and has image in Mp(n, R)" U Iy ) (CRyiy ) - Let

B = gexp(W)Exp(i({0} U (W N Cxpn)))
C=Bn FMp(n,]R) (Cl(\)/[in) = gexp(W) EXp(Z<W N CI(\)/[in))'
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3.3 sp(n,R)

Then B and C' are simply-connected. By proposition ho p is a continuous non-zero
function on B. Thus there exists a continuous function a on B such that a? = h o p we
can furthermore assume that o agrees with f on a single element of C'. But then a|c and
f|c are two continuous square roots of ho p which agree on a single point of C' hence they
must agree on all of C since C' is connected. Then « is a continuous extension of f. [

Proposition 3.3.19 Let p: Inipn,r) (Cipin) = Usp(n,r) (Cipin) denote the covering mor-
phism. For g € Unipnr)(Cxpin) let A1(g), .-, An(g) denote the eigenvalues of p(g) with
‘)\j’ < 1 then

[T=1 Ai(9)

tr(mvet(9)) = m (3.16)
H?:l Aj (9) 1 1

> Mo 1-nw Tl A)
H?=1 Aj (9) 1 1

> Mo i-Ne ol Ay

Furthermore tr ompet, tT OTMet, Even aNd tT 0TMet,0dd extend continuously to Mp(n, R)".

tr(T\et, Even(9)) = ) (3.17)

tr(TMet,0dd (9)) = ). (3.18)

Proof. Let f denote the function from lemma [3.3.18 Let

-
H?:1(1 + )

Then hy are holomorphic functions on (C\ {#1})" invariant under permutations. Thus
by propositions @, and we get continuous functions Ay on Sp(n,R)" U
L'sp(n,r) (Cipiy) Which are holomorphic on T, ®) (CYyi, ). Then it follows from lemma
that for X € ¢7,

hi(zl, N ,zn) =

tr(mvet (Exp(1X))) = B{((EET(I;((Z;?))
 f(Exp(iz)) 1 1
tr(TMet,Even(9)) = 2 (iz,_(Exp(iX)) * h (Exp(iX))
_ f(Exp(iz)) 1 _ !
tr(mMet,0dd(9)) = 5 hr_ (Exp(iX)) }~1+(Exp(iX)))'

Then since both the right- and left-hand sides are holomorphic functions on regular
elements it follows from proposition [2.4.18| that they agree on I'yip(nr)(Cypiyn)- (]

Let f, : C — C denote the function

_Jsinh(z) n even
fnl2) = {cosh(z) nodd
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3 Minimal Representations

Remark 3.3.20 [Tor80, section I.2] describes a maximal family of non-conjugate Cartan
subgroups of Sp(n,R) invariant under the Cartan involution. Let a,b,s;,t;,v;,u; as
in theorem and let g by the element of Mp corresponding to these. Then this
corresponds to the element in the parametrization of |Tor80| given by

m=a p=n—2a-—> n—2m-—p=>5
tj =85 Vi = vj cj = uj +1in;
i = tj.

Where the left hand side is the notation of [Tor80] and the right hand side is the one used
in theorem . Then |Tor80, proposition 1] says that this parametrization is surjective
for n # 2a. To see this observe first that the parametrization is surjective on Sp(n,R),
this is immediate from the explicit description in |[Tor80|. Then the only complication
will be Cartan subgroups H C Sp(n, R) such that p~!(H ). does not contain e_ where e_
is the element of p~1(egp) such that e_ # enp. That is the identity component of the
inverse image of H under the projection from Mp(n,R) to Sp(n,R) does not contain the
“negative” identity. Observe that in Mp(n,R) we have exp(2nj7riH§ej) =e_ thusif b >0
or n —2a — b > 0 we have that e_ is in the identity component. Thus the only case left is
n = 2a. But this is exactly why we consider the case separately in theorem where
we get the non-identity component by putting k = 1.

Theorem 3.3.21 Let Ovier, Oviet,Even and Onet,0aa denote the character functions of
the metaplectic representation, the even part and the odd part respectively. Let v =
OMet,Even — OMet,0dd denote the character of the virtual representation Tet,Even — TMet,0dd -

Let 0 <a < 3, 0<b<n such that

20 +b<n
Slatlv"'78a7ta7vl7'"1U’n—2a—b7u11'"7ub eR
NlyeooyNp €L

and

a
g = H eXp(Sj (Eezj_1+92]' + Eezj_1+ezj) + tjiHézjfl—%j)

j=1

b
H exp(njﬂ'iﬂéehﬂ) exp(u; (Ezezaﬂ- + E292a+j)) (3.19)
j=1
n—2a—>b

H exp(vjiH§92a+b+j)

j=1
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3.3 sp(n,R)

then
a b u
—(n—a _ \nj i\ —1
Onter(g) =27 H(Cosh(Sj) — cos(t;)) " - H(—@)”] [ fns (50)]
7j=1 j=1
n—2a—>b vs
L (_s\n—2a-b o231
(i) [T sn3)
o , (3.20)
¥(9) =2 (n=a) H(cosh(s]) + cos(t;)) H )" f14n, ( ')|_1
j=1 j=1
n—2a—b Vs
Yiy-1
H cos( 5 ).
7j=1
If n=2a, s1,t1,...,8q4,ta € R and k € Z and we set
g = eXp<2kﬂ—iH§el) H eXp(Sj<Eezj—1+e2j + Ee2j—1+e2]) + t ZH, 11— egj)
j=1
then .
Onier(9) = (—=1)*27 [ [ (cosh(s;) — cos(t;)) "
= (3.21)
b(g) = (—1)27 ] [ (cosh(s;) + cos(t;)) .
j=1

Proof. For ¢ € C" the eigenvalues of

0 —9¢ cos(¢) —sin(¢)
Sp(n, C)> 9o = exp( <¢ 0 )) = (sin(¢) cos(o)
are {e/?1 e71%1 . e¥n =%} and it follows from lemma that if Im ¢; < 0 for all

j we get gy € Tgp(nr)(Cfpipn)- Then |e7] > 1 and thus we can let A;j(gy) = e7"%. We
thus get from lemma [3.3.18] and proposition [3.3.19 that

-1 n n
0 _¢ o 6_15 ijl(bj _ luz) 7lz¢ .
9Met(exp(<¢ 0 ))) = W = (1_1162 i— e 27
= i

-1 n
0 —¢ e 2 2j=19i N U
d}(eXp(( >)) = 5 = (][ 2" +e72'%)

¢ 0 [Tjoy e 11

(3.22)

Note that the formula hold for all ¢ € Cf

also holds for ¢ € R™ such that exp( (2) O¢> is regular. Let S C Al be a set of

specifically by continuous extension it
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3 Minimal Representations

pairwise strongly orthogonal roots. Then possibly after acting by an element from the

compact Weyl group we can assume that S = {e;+es, ..., e_1+€9k,2€0k11,...,2€951}.
Consider H¢ 1o, = (35 _()¢> then it follows from lemma |3.3.4 that ¢; = —i(d;; £ 6 1).
Similarly if Hoe, = (g —O¢> then ¢p = —id; . Then eq. (3.20) follows from eq. (3.22

by applying proposition [2.8.9]
For eq. (3.21) note that Hj, = 1(H} i, + H}, _e,) and then eq. (3.21) follows from
eq. (3.22)) and proposition m O

Remark 3.3.22 A comparison of the formulas in theorem [3:3:21] with the literature gives

e The formula for fyre in theorem |3.3.21| agrees with the formula for #(¢_) in [Ada97,
proposition 4.7].

e The formula for fyje is the conjugation of the formula in |[Tor80l théoréme 2] for
the character of the metaplectic representation.

But the character function of a contragredient representation is just the complex conjugate
of the character function. Thus the above formula agrees with the litteratue and the only
disagreement is whether the metaplectic should be a highest-weight or a lowest-weight
representation in the positive system from lemma [3.3-3]

Theorem [3.3.21] specifies the characters of all minimal representations of sp(n,R): The
even part of the metaplectic representation, the odd part of the metaplectic and their
contragredients(by conjugation).

3.4 su(p,q)

3.4.1 Structure and realization

We fix a realization of SU(p, q) by

I, = diag(l, 1,..., 1) € Matg«k

I 0
Ipg = (63 _J > € Mat(p1g)x(p+a)
q
s(v,w) = v I, qw
S(v,w) = v I, yw

SU(p,q) = {A € SL(p+ ¢,C) |Vv,w € CPT7: S{Av, Aw) = S{v,w)}.
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3.4 su(p,q)

Let A : CPT9 — Mat (4 ¢)x (p+q)(C) be given by

—i¢1

_ ~idy
A() = o (3.23)

1Pptq

Proposition 3.4.1 Let K denote S(U(p) x U(q)) embedded as block-diagonal matrices
in SU(p, q) then K is a mazimal compact subgroup. Let

1601
109 ptq
b:{ . ’91,79p+q€R720]:0}

| =
iptq
e pt+q
H={ 61,...,0p4q R, 1 =[] ).

J=1

€i6p+q

Then H is a Cartan subgroup of SU(p,q) and a mazimal torus in S(U(p) x U(q)). Fur-

thermore SL(p + ¢, C) is a complezification of SU(p, q).
61
Let ej € b be given by e;( ) =06;. Then

Op+q

A={ej—er|l<j#k<n}

AT ={ej—ep|l <j<k<n}
Ap={ej—ep|l<j£k<porp+1<j£k<p+aq}
Af={ej—ep|1<j<k<porp+1<j<k<p+q}
Ay ={ej—ep|1<j<p<k<ptq}

Wk =28, x Sq4
1 & 1<
Ok=15D (+1-2)ej+ 5 (a+1—2j)epy;.
j=1 j=1

Remark 3.4.2 Wi acts on hg such that S, permutes ei,...,e, and S; permutes

€ptl,---,€ptq-

Proof. [Kna02, page 150, 155, 164, 513]. O
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3 Minimal Representations

Lemma 3.4.3 Let H,H' € hc C su(p,q)c then

p+q
B(H,H') =2(p+q) Y _ej(H)e;(H')
j=1

o1
and let = He;—e, € bc be the element such that e; — ey, = B(Hej_ek, )

Pp+q
then

&= St d) (815 — O1)-

Proof. We calculate

BHH')=2 ) (ej—ep)(H)(e;—ep)(H)

1<j<k<p+q
=2( Y ej(H)ej(H') +er(H)ep(H') — ej(H)er(H') — ex(H)e;(H'))
1<j<k<p+q
: ptq p+q
=20p+q—1)> ej(H)e;(H)—2> e;(H)( > ex(H)
Jj=1 Jj=1 1<k<p+q
k#j
p+q p+q
=2(p+q) Y _e;(H)ej(H') =2 e;(H)(D k=17 e (H"))
=1 =1
ZH—q Jp+q p+q

= 2(p+0) Y e (e, (H) =23 e)(H)(Y e ()

p+q
=2(p+q) ) _ej(H)ej(H').
j=1

Where the last equality comes since su(p, ¢)c = sl(p+ ¢, C) thus all matrices are trace-less
and E?zl e; = tr. Thus the last term is just a product of traces hence zero.

¢1
Let = He,—e;, € hc and assume that j, k < p+ g then
Pp+q
ptq prq—-1
e;(H)—er(H) = B(Ho, e, H) = 2(p+q) Y _ drei(H) = 2(p+q) Y (d1—bpig)er(H).

=1 =1

Since sl(p+ ¢, C) has rank p + ¢ the linear functionals ey, ..., e, 41 are linearly indepen-

dent. This implies that ¢; — ¢p1q = m(dl’j — d1,%). Furthermore since He, ¢, € bhc
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3.4 su(p,q)

we must have

ptq ptg-1
0= Z%’ = (P+Q)bp+q+ Z (G1—¢ptq) = (p+q)¢p+q+2(p+ ) (1-1) = (p+4a)Pp+q-
=1 =1

Which implies ¢4 = 0 and thus lemma [3.4.3] The assumption that j,k < p + ¢ is not
a restriction on the argument when p 4+ ¢ > 3 since we can simply reorder the vectors
el,...,€eprq to ensure that this is satisfied. Thus we only need to consider the case
P+ q = 2. Then we see

281(H) = el(H) — GQ(H) = B(Hm,QZ,H) = 4(d)1 — ¢2)81(H).
Which implies that ¢; — ¢ = % furthermore since He,—e, € hc wWe know ¢ + ¢2 = 0.

Thus —¢9 = ¢1 = i and ¢; = 2(p1+q) (0j,1 — d52). And the argument is symmetric for

He,—e,. O
Lemma 3.4.4 Let C\iin denote the minimal cone associated to the positive system in

proposition and let ¢, = Omin N b then

p q
em ={A@)IVI<j<p+q:¢;>0and Y ¢;j=> ¢pi;}
i=1

=1

p q
G ={AG)IVI<j<ptaq:d;>0and Y ¢; = dpis}.
=1

=1

Proof. More details about the invariant convex cones in su(p, ¢) can be found in |Pan81|
section III.8|.
Denote

p q
R={A(¢)|IV1<j<p+q:¢; >0and Z¢jzz¢p+j}
=1

j=1
and observe that by lemma [3.4.3] we have for 1 < j < pand p+ 1 < k < ¢ that
(—i)He, e, € R. Then proposition implies
Cm = (—1) spanRzo(A;L) C R.

Conversely let A(¢) =X € R. For 1 <j <pand 1<k < q define a;; inductively by

k-1 Jj—1
ajr = min(¢; — Z ajls Ptk — Z ak)-
=1 =1

It follows directly from the definition that

k J
> aji < ¢y > ik < Gpi
=1

=1
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3 Minimal Representations

This implies that for all j,k > 2 we have a; > 0 since it is the minimum of two non-
negative numbers. Furthermore by assumptiont we have ¢; > 0 and ¢, > 0 which
implies that a;; > 0 and a;x > 0. Thus a;; > 0 for all j, k. Assume that there exists

1 < 7 < p such that
q
Za]”l < (;5]‘.
=1

Then for all 1 < k < ¢ we must have

7—1
aj k= Gpyk — § ag .-
=1

This implies that ¢p4r = Y7, aik and thus

But this contradicts the assumption that X € R. Thus we must have > 7, a;; = ¢; for
all 7. With a symmetric argument we see that Zle ayj = ¢ptk. But then it follows from

lemma [3.4.3] that

q
X = Z Zaj,k(—i)2<p + Q)Hej—ek ISE R 0O
=1 k=1

e

The Semigroup
Lemma 3.4.5 Let g € U'sy(p,q)(—Cyyiy,) then g is strictly contractive with respect to S, ).

Proof. Asin the proof of lemma[3.3.7 we see that it is enough to prove strict expansiveness
for Exp(iX) for X € —c?,. It follows from lemma that X = A(—¢) such that all ¢;
are positive. Then

Exp(iX) = exp(iX) = diag(e™%,...,e % ePr1 .. ePr+a),

Then we calculate and see

p q
S{Exp(iX)0, Exp(iX)) = 30 e a2 — 3 ey
j=1 j=1

p q
2 2
< il =D vl
j=1 j=1

= S{(v,v). O
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Lemma 3.4.6 For g € I'sy(p,q)(—Cypyn) let A1,. .., Apiq e the eigenvalues of g counted
with multiplicity. Then they can be ordered such that |\;| <1 for 1 <j <p and |\;| > 1
forp+1<j<p+4q. Let f: (B1(0)\ {0})? x {z € C||z| > 1}? = C be a continuous
Sp X Sg-invariant function.

Then f g = f(M, .. Aprg) 15 a well-defined continuous map on the Ol’shanskit
Semigroup.

Proof. It follows from lemma and lemma that for all g € I'sy(p,q)(—Cfpi,) all
eigenvalues \ satisfy that |[A| # 1. Thus we can put Wy = B1(0) \ {0} and Wy = B;(0)°.
Furthermore we see that for X € —¢9, Exp(iX) is diagonal, hence we can read off the
eigenvalues from the diagonal and they are ordered such that |A\;| <1 for 1 < j < p and
IAjl >1forp+1<j<p+gq. Thatis Ai,...,\p € Wi and A\pi1,..., A\ppq € Wa. Then
it follows from lemma that this is true for the eigenvalues of all g € I'sy(p,q)(Cipin)-
Since f is S, x Sy-invariant it factors through quotienting out by S, x S, and then the
continuity of f follows from lemma . ([

Lemma 3.4.7 Let the assumptions be as in lemma|3.4.0 and assume that f is holomor-
phic. Then f is holomorphic on T'sy(p.q)(—Cfpin)-

Proof. Let g € Tsy(p,q)(—Ciin) NSL(p+¢, C) then since g € SL(p+¢, C)' it is conjugate
to a regular element in the diagonal Cartan subgroup. But all regular elements in the
diagonal Cartan subgroup of SL(p + ¢, C) have distint eigenvalues. Then the rest of the
argument follows from the holomorphic implicit function theorem as in proposition [3.3.9/]

We want to prove an extension proposition similar to proposition [3.3.10 however in the
formulation of proposition [3.3.10| we deliberately had stronger assumptions than we used
in the proof; since it was much easier to formulate and was satisfied by the character
functions in proposition The exact requirement should be that f should extend to
all tuples of eigenvalues of regular elements, but we are satisfied if we can show that the
character function in eq. satisfies it. So let

A={ze{weClo<|w| <1} x{weCl|z| >1}?|Vj #k: zj # 2z}
Then f extends if f extends to A.

Proposition 3.4.8 Let the setup be as in lemmal3.4.60 and assume that f extends con-
tinuously to A. Then f extends continuously to SU(p, q)’.

Proof. The argument is very similar to the argument in the proof of proposition [3.3.10
so it will not be as detailed.

Let g € SU(p, q)’ then g is regular when considered as an element of SL(p+ ¢, C). Thus
g is conjugate to a regular element of the diagonal Cartan subgroup. But on the diagonal
Cartan subgroup of SL(p + ¢,C) we have €%~ (g) = gmg,;,lg. Thus we get that any
product of one eigenvalue and the inverse of another eigenvalue is not equal to 1 and hence
all eigenvalues of g must be distinct. Let Aq,..., A\,14 be the eigenvalues of g then we get
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3 Minimal Representations

that (A1,...,A\p+q) € A. The idea is now to extend f by setting f(g) = f(AL,. .. s Aptq)-
It is however not clear in what way to order the eigenvalues.

As in the proof of proposition [3.3.10] we can find a small open convex neighborhood
of 0 in su(p, ¢) such that W 5 XY +— gexp(X)exp(iY) is a homeomorphism onto the
open neighborhood of g V; = gexp(W) exp(iW) and

gexp(W) exp(iW) N Psy(p,q) (Cmin) = g exp(W) exp(i(W N Chin)),

and there exists a1,...,apqq 1 Vg = C such that ay(h),..., aprq(h) are the eigenvalues
of h. Let y € V;, N FSU(p,q)(CMm) be some element, then we can reorder the functions
ai,...,0p1q such that |a;(y)| < 1for1 <j<pand|aj(y)]>1forp+1<j<p+gq.
we now want to show that for any other p € V; N T'gyp,q) (Cypy,) With the same ordering
we also get [a1(p)], . ., lap(p)] < 1 and aps1(P)l - apeq(p)] > 1.

Assume that there exists some p € V; N gy q)(Cyp,) and 1 < j < p such that
laj(p)| > 1. Let v = gexp(vy) exp(iwy) and p = gexp(v,) exp(iw,) then

h(t) = gexp((1 — t)vy + tv,) exp(i((1 — t)wy + tw)))

is a curve between vy and p such that t — |a;(h(t))| contradicts the intermediate value
theorem. This shows that on V, N FSU(nq)(Cf\’/ﬁn) with the previously desribed ordering

f = flai(+),...,« -)) and this function extends continuosly to SU(p, q)' N V. O
p+q g

3.4.2 The minimal representation

We are now in a position to show that the character of myyy, is uniform in the sense of
proposition To make the character formula more explicit we parametrize a maximal
set of non-conjugate Cartan subgroups.

Lemma 3.4.9 Let 0 < k < p < q and assume that k < q then f;, : (SV)F x RF x
(Shypta=k 5 SU(p, q) parametrizes a Cartan subgroup of SU(p,q).

o p

fk(wl...wktl...tk 2’1...Z+,2k,1): "

) ) s U1y s Uk ) s “p+q /B o

)
where

a = diag(wq cosh(ty), ..., wy cosh(ty))
B = diag(wy sinh(t1), ..., wg sinh(t))
v = diag(z1, .. Zp—k)
0 = diag(zp—k+41,-- > Zprqg—2k—1 (w% . wizl e zp+q_2k_1)71).

Fork=p=q welet fr : {£} x (SHF¥! x R¥ — SU(k, k) be given as below

fk(i)wlv"‘vwk—lvtla”'7tk): (g g)
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3.4 su(p,q)

where

z=(wy - wp_1)
a = diag(w; cosh(ty), ..., wi_q cosh(t_1),+z cosh(ty))
B = diag(wy sinh(ty), ..., wk_1 sinh(tx_1), £z sin(tg)).

Then fi parametrizes a mazimally split Cartan subgroup of SU(k, k).
Furthermore the collection of maps fo,..., f, parametrize a mazimal set of non-
conjugate Cartan subgroups of SU(p, q).

Remark 3.4.10 If we let S, = {e1 —epi1,...,e; — €,41} then fi parametrizes the
Cartan subgroup associated to hg,. Furthermore

0 0 . Y
Fe(er oo e by b, €01 et Prra-2ket)

k
= H eXp(tl(Ee]- —€ptj + m))
j=1
p+q—2k—1

k
'eXp(idiag(ela"'79k7¢17'"a¢pfk7017-"a9k7¢p7k+17"'7¢p+q72k717_229]’_ Z (Z)j))
i=1 i=1

For k = p = q the map f is given by

fk((_1>k> 6201, s >€i0k_17t1 s 7tk) =
k
eXP(Wkth/ep—ezp) H exp(ty (Eej —epi; T+ Pe; —epﬂ'))
j=1

k—1 k—1
cexp(idiag(f1, ..., 0p—1,— Y _0;,01,....0h_1,— Y _0;)).
j=1 j=1

Theorem 3.4.11 Let O\iin be the character function associated to myn. Let k < p <gq
and assume that k < q and let \,..., \prq € C and let

g:fk(wlw"awkatl)'"7t/€7217"'52p+q—2k;—1)
for1 <j <k
)\j :wj€7|tj|
>‘p+j :wje‘tj‘
for j < p—k in the first case and j < q— k — 1 in the second

)\k-Jrj = ZzZj
Ap+hti = Zp—k+j

_ 2 2 -1
Aptq = (WI -+ Wg21. .. Zpyg2k—1) -
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3 Minimal Representations

In the case k=p=quwelet 1 <j<k—-1

g = fk(:l:awla"'awk—lat17"'7t/€)
)\j = wje_‘m
Aptj = wje|tj|
A = :|:(w1 . wk,1)7267|t’“‘

)\p+k = :|:(U)1 - u)]f_l)ize‘tk|

Then the Harish-Chandra character of myin 1S given by

PN
=171
(Thicjerep 1= XA VT icjcneg L = Aoridlr)
D )\j*o"l(j) q J—w™(4)

Z e(o)e(w) [[j=1 X J=1"p+j . (3.24)

-1
(0,w)E€Sp xSy 1- )‘0(1))‘p+w(q)

OMin(9) =

Proof. Since myy, is a unitary irreducible lowest-weight representation it follows from
corollary that it extends to I'sy(q)(—Cipn)- Let g € HExp(—ic),) and let
A1y ..., Aptq be the eigenvalues of g ordered such that A;,..., A\, have norm strictly
less than 1 and A,41,. .., Ap4q have norm strictly greater than 1. Then it follows from

proposition that tr myin(g) is given by the formula in eq. (3.24)). Let a(A1,..., Aptq)
be the meromorphic function on CP™4 given by the expression on the right hand side

of eq. (3.24). Since a is a formula for the character on HExp(—ic,) and the analytic
Weyl group of b is isomorphic to S, x S, we get that a is invariant under this action. Let
b: CP*4 — C be given by

—1 -1
b(21, .., 2ptq) = ( H 1 —ziz )( H 1= 2p1jz, 0 p)-
1<j#k<p 1<j#k<q

Then b satisfies all the assumptions of proposition [3.4.8] Furthermore we see that ba
also satisfies the assumptions of proposition Let the function they induce on the
semigroup be denote by a hat " that is b and ab. Then we get that tr myn(s) = %b for
s € HExp(—ic?,) then by proposition this identity holds on all of T'sy(p,q)(—=Cipy)-
Then by writing out the expressions of ab and b we see that % is non-zero on the regular

elements of SU(p,q). Thus we get that trmyy, extends continuously to SU(p, q)" and
hence it satisfies the assumptions of corollary [2.8.10] which finishes the proof. O

3.5 s0*(2n)

Like the symplectic groups and the indefinite special unitary groups we can realize the
Ol’shanskil semigroups of SO*(2n) as contractive elements of SO(2n,C) with respect to
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3.5 50*(2n)

some indefinite hermitian form. And similarly this will allow us prove that the formula in
proposition extends continuously to SO*(2n)" so that we can apply proposition
Note that we only consider s0*(2n) for n > 3.

3.5.1 Structure and realization

We once again start with describing an explicit realization of s0*(2n) and SO*(2n). We
introduce some notation, note that J and w(,) are not as in section specifically they
here define a symmetric bilinear form

I, = diag(1,1,...,1) € Mat,,xp

I, 0
= (5 )

0 I,
7= (i 7)

S{v,w) =v Innw

w(v,w)

SU(n,n) = {A € SL(2n C) |Vv,w € C* : S(Av, Aw) = S{v,w)}

SO*(2n) = {A € SU(n,n) |Yv,w € C*" : w(Av, Aw) = w(v,w)}
)

SO(2n,C) = {A € SL(2n,C) | Vv, w € C*" : w(Av, Aw) = w(v,w)}.

Then as usual we define a parametrization of the Lie algebra of a maximal torus

A R" — Matgnxgn(C)

a0 = 5,

Lemma 3.5.1 Let K= U(n) be embedded diagonally by M (M 0 > Then K is a

0 M
maximal compact subgroup of SO*(2n). Let

h={A(¢)| o cR"}
it
H:{<0 eoz'(p) | ¢ € R"}

then b is a Cartan subalgebra of s0*(2n) and H is a maximal Torus in K and thus a
Cartan subgroup in SO*(2n). Furthermore SO(2n,C) is a complezification of SO*(2n).

Let ej € b be given by ej(<q5

0 = ¢;. Then a positive system coming from a good
0 —9¢ J
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3 Minimal Representations

ordering is

A={tejte,|l<jk<n}
t={ejLtep|l<j<k<n}
Ap={ej—er|1<jk<n}
Af ={ej—ex|1<j<k<n}
Ay ={ej+ep|1<jk<n}

Wk =S,
1 n
5p = 5Z(n —1—2j)e;
7=1
Remark 3.5.2 Wy acts as S, on b by permuting the basis eq,. .., ey,.

Lemma 3.5.3 Let H,H' € b C s0(2n,C) then

B(H,H') =4(n — 1) Zej Je;(H').

Proof. We calculate

B(H,H') = trad(H)ad(H') = Y o(H)a(H')
acA

= Y (e Ee)(H)(xe; £ ) (H))
1<j<k<n

= Y dej(H)ej(H') + dey(H)ex(H)

1<j<k<n

=4 (n—j)ej(H)e;(H')+4) (j—1)e;j(H)e;(H')
j=1 j=1

=4(n — 1)Zej(H e;(H
j=1

Lemma 3.5.4 Let He, € bhc such that ej = B(He;,-) and let ¢ € C such that He; =

(gé) _qu) then
1
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3.5 50*(2n)

Proof. This follows from lemma [3.5.3 since

e;(H) = B(He;, H) =4(n— 1) ey(He,)ex(H).
k=1

Since the ey € b are linearly independent we get

1
0 k- (]

or = ep(He,) = =1

Lemma 3.5.5 Let Cyin denote the minimal, non-trivial, closed, Ad-invariant, proper
convex cone in $0*(2n) associated to the positive system in lemma and let as usual
cm = N Cyvin then

cm = {A(@) V] : Y ¢ < ¢; <0}
W)

9 ={A(@) V] : ) ¢ < ¢ <0},

k=1
k#j

Proof. Let R = {A(¢)|Vj : Zkzl"(ﬁk < ¢j <0} then it follows from lemma (3.5.4] that
K

(—i)He; e, € R. Since R is convex and Ry R C R we get ¢;,, C R. Conversely let X € R
and ¢ € R" such that X = A(¢), we can reorder the entries and assume that

Yo <r<dp< <, <0 (3.25)
=2

Let k be such that ¢ < 0 and ¢341 = 0 and if there is no j such that ¢; = 0 then we
put k = n. We want to show by induction in k£ that X € ¢,,. First observe that k =1
gives 0 < ¢1 < 0 and thus a contradiction. If k = 2 we have ¢9 < ¢1 < 2 and thus

X = (=¢1)(=i)He, e, € Cm-

If k = 3 we have that (—i)He, tey, (—i)He, te; and (—i)He, e, are a basis of A(R3 x
{0}"3) and thus there exists unique elements b1 2,b13 and by 3 such that

X =bi2(—i)He e, +b1,3(—1)He ey + b23(—1)Heytes-
If b1 2 < 0 then by 3 = —¢1 — b1 2 and by 3 = —¢p — by 2 but then
$3 = —b13 —baz = d1 + P2+ 2b12 < P1 + ¢2.

Which contradicts that X € R, similarly for any other by 3 and bg 3.
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3 Minimal Representations

For k >4 we put Y = X — (—¢y)(—i)He,te, = A(¢) then ¢; = ¢; for j # 1,n and
thus

n n

Pr=01— 0> O b)) —n=> 1

j=2 j=2

¢2=¢2Z¢12¢1—¢k+¢322wj.

j=1

2
Thus whether ¥ < )9 or 19 < 11 we can reorder the entries in ¥ such that it satisfies
eq. (3.25). Thus Y € R and by induction Y € ¢, and hence X € c,,. O

Lemma 3.5.6 Let g € FSO*(Qn)(—Cf\’/ﬁn) then g is a strictly contractive operator with
respect to S, ).

Proof. As in the proof of lemma [3.3.7] it is enough to prove strict contractiveness for
Exp(iX) with X € —c?,. Let ¢ € R" such that X = A(¢) then

. e 0
Exp(iX) = < 0 e¢>
and ¢; > 0. Then

n
S(Exp(iX v, Exp(iX)v) = 3 e 2o = i funi[F < 3 [0 — o = S{v,0) 0
j=1 j=1

Lemma 3.5.7 Let g € I'sox(2n)(—Cyyyp) and let Ay, ... Ap, )\fl, oy AL be the eigenval-
ues of g counted with multiplicity. Then they can be ordered such that |Ai],...,|A\n| < 1.

Let f : {z € C|0 < |¢] < 1} — C be a continuous function invariant under per-
mutations. Then the map f Lso*(2n) (—C%pin) — C given by Frgm fO0 - ) is
continuous.

Proof. It follows from lemma and lemma that all eigenvalues of g have |A| # 1
and then it follows from lemma that if X is an eigenvalue of ¢ so is A™! with the
same algebraic multiplicity.

Then it follows from lemma that f is a well-defined, continuous function on

L'so*(2n) (—Ciin)- O

Lemma 3.5.8 Let f be as in lemmal|3.5.7 and assume furthermore that f is holomorphic.
Then f is holomorphic.

Proof. It is enough to check for g € I'so«(25)(—Cyyy,) such that g is a regular element of
SO(2n,C). But then g is conjugate to a regular element in the diagonal Cartan subgroup.
Let g = (S 201> for z € C". Then z; # zj and z; # % for i # j since g is regular.
So if A1,... A\, denote the eigenvalues with |[A| < 1 then \; # A; for all i # j. Thus we
conclude that all eigenvalues of g are distinct and holomorphicity of f follows as in the
proof of proposition [3.3.9 U
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We want to find a condition on f such that when it is satisfied we can show f extends
to SO*(2n)" however we want this condition to be tight enough that we can show it is
satisfied by the character for the minimal representation of SO*(2n) on I'sox(2n) (—Cypiy)-
To write this down explicitly we have to define a few extra sets

B={ze{weCl0<|w| <1}"|Vi#j:z #z andzi#zjl}
SO*(2n)g00d = {g € SO*(2n)" | det(g — 1) # 0 # det(g + 1)}.

That is SO*(21)g00a consists of all regular elements of SO*(2n) which do not have 1 or —1
as eigenvalues. We restrict to this smaller open set since all elements g € SO*(2n)g004 have
all eigenvalues distinct and we can argue as in proposition [3.3.10| and proposition [3.4.8

Proposition 3.5.9 Let f be as in lemma|3.5.7 and assume furthermore that f extends
continuously to B. Then f extends continuously to SO*(2n)g00d-

Proof. Once again the argument follows the same structure as proposition [3.3.10f and
proposition First of all observe that since SO*(2n) sits on the boundary of
I'so*(2n) (—Cfyiyn) the value at SO*(2n)" is uniquely given by f, thus the question of the
existence of a continuous extension is purely local.

Let g € SO"(2n)good then g is regular as an element of SO(2n,C) and hence it is
conjugate in SO(2n,C) to a regular element of the diagonal Cartan subgroup. This
g 291>. Then it follows from the
regularity of g that z; # 2, and z; # zk_l for j # k. Thus the only way that ¢ can have
an eigenvalue of multiplicity > 2 is if z; = z;l which implies that z; = £1. But for
g € SO*(2n)g00a We have excluded this possibility and then as usual it follows from the
implicit function theorem that there exists a small open neighborhood g € V- C SO(2n,C)
and continuousﬂ functions Aq, ..., A, such that the eigenvalues of h € V are given by
A1(R), .. s (), A1 (R) 7Y .o, A (k)7L By taking V small enough we can assume that
there exists W C s0*(2n) open convex neighborhood of 0 such that V' = gexp(W) exp(iW)
and VNTa(—Cfp,) = gexp(W) exp(iW N —C¥,)-

Let ho € V N T'sox(2n)(—CRypi,) be some fixed element, we can then assume that
[A1(ho)ls-- - [An(ho)|. We now want to show that flvargg. ., (—cg,) = f(AL--5An)

since this would then give a continuous extension of f to all of V, specifically to VNSO* (2n).
By the construction of f the only thing we have to show is that for any other h €
V N g0 (2n) (—CRpin) We have [A1(h)],..., [An(h)| < 1.

Thus assume that there exists h1 € ['sox(2n)(—Cyyi,) and j such that [A;(hq)] > 1. Let
hj = gexp(X;)exp(iY;) for j = 0,1 with X; € W and Y; € W N —C¥y;,,- Then since W
and —Cgy;,, are convex o(t) = gexp(tXo + (1 —t)X1) exp(i(tYo + (1 — t)Y7)) is a curve
between hg and hy inside V' N T'gox(2n)(—CRyy)- Then [Aj(a(t))] is a continuous function
from [0,1] to R such that |A\;j(a(0))| < 1 and |Aj(c(1))| > 1, thus by the intermediate
value theorem there exists ¢ such that [A\;(«(1))| = 1, but this contradicts lemma
and lemma B3.2.6 O

2They are even analytic.

implies that there exists z € C" such that g = <
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3.5.2 Minimal representation

According to lemma the K-type decomposition of the minimal holomorphic repre-
sentation is given by

) n
7TMin|K = @FK(Z €, + n(el + eg)).
n=0 j=1

Furthermore the minimal holomorphic representation is an irreducible lowest weight
representation with respect to AT thus we can apply the theory from chapter [2] to it.
However before we take a short detour to describe a family of non-conjugate Cartan
subgroups. We do this in order to attempt to simplify the expression in proposition [2.8.9

It follows from the usual theory of Cayley transforms and Cartan subgroups that we
can get every conjugacy class of Cartan subalgebra by Cayley transforming b using the
cayley transforma associated to a subset S C A}l of pairwise strongly orthogonal roots.
As we have seen in e.g. the proof of lemma [2.8:5] we can by the action of the Weyl group
Wk assume that S is of the form Sy = {e; + e,...,e9,_1 + €2 }. Thus we index the
Cartan subgroups by k.

Lemma 3.5.10 Let 0 < k < [2] and let f : R* x (S1)"~* — SO*(2n) be the map

o &)

f(tl,--.,tk,U}l,...UJk,Zl,--.’Zn,Qk): ﬁT Py 5

Where the block are given:

w1 COSh(tl )

wi ! cosh(t)
a=
wy, cosh(tx)
w;, ! cosh(ty)
w1 sinh(¢1)
—wy tsinh(ty)
8=
wy, sinh(tg)
—wy, ' sinh(t)
wy ! cosh(ty)
wy cosh(ty)
)=
w;. * cosh(ty,)

wy, cosh(ty)
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’Y:

Zn—2k

Then f(RF x (SH"=2k) is a Cartan subgroup of SO*(2n) and f is a group isomorphism
onto this Cartan subgroup. Furthermore

Ft1, ..ty €91 e 0F V1 et¥n-2k)
k

= H exp(tj(Eezj71+egj +Eegj,1+egj)+i¢1H¢/32j_1—e2j) eXp(A(07 s 307 ¢1» ceey @Z)n—Qk))-
j=1

Proof. In the following we will work both with the Cartan subalgebra h and the Cayley
transformed Cartan subalgebra bhg, = cg, (h) but H, will always denote the dual with
respect to the Killing form of o € h* in . To denote dual elements in hg, we write Hg, 4.

If we put Eer_1+92j = F2j_1n42j — Fojny2j—1 where E,; denotes the matrix with 0’s
everywhere except the entry (a,b) where it is 1, that is the a’th row and b’th column.
Then

[A(Qs)?Eerfl‘f‘er] = (¢2j—1 + ¢2j)Ee2j71+92j

Fey; 1tes; = Ent2j2j—1 — Ent2j-12;
[Bey;_1+es;> Peyj_11es;] = E2j-12j-1+ Faj2j — Enyoj1nt2j-1 — Ent2jni2j
oyt
- Her—l-i-ezj'

Thus Ee,;_, te,; is normalized as in section|2.8.1/and we see that Fe,; ,te,; = %(6) where
J

e is the identity element in R* x (S1)"~* furthermore we see that iHE, ey, = %(e)
- J

and A(ey4;) = g—i(e). We thus see that hg, = T, fR" that is we have a parametrization
of the Cayley transformation of the Lie algebra but we still need to show that the image
of f is the centralizer of the Lie algebra.

The image of f is the analytic subgroup corresponding bg,, according to [Kna02|
proposition 7.110] the associated Cartan subgroup is generated by the image of f
and exp(miHg ,) for a € A(s0*(2n),bg,) with « real. If we let a > 2k we have
Tféy = A(€a) € Ni_; Ker(egj—1 + €y;) and thus cg! (T'fé,) = Tfé,. 1 <j <k
we have T'fépq; = iHé2j7 . which is strongly orthogonal to all elements of Si thus

—eq;
1. . . - - EE—
cg, (iHe, | _e,) = iHg, | o, - 1< j <k wehave T'fe) = Ee,; ,te,; + Eey; i+
—1 o
thus cg (T'f€k+j) = He,, | tey,-
If we put oj = cg,(ej) and v = (t1,...,t%, S1,..., 8k, UL, ..., up_2;) then it follows

from the previous that

ti+is; ifl1<j<2kandj=21-1
aj(va): t; — 18 if 1 S] <2k andj:2l
Ty if 2k <jand j=2k+1
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Since all roots are of the form +o; &+ «; for [ # j we see that the only real roots are

agj—1 + ag; for 1 < j < k. That is the real roots are exactly cg, (S;) and it follows from
lemma [3.2.9 that

!

_ /
HSk7a2j71+012j = Csy, (H,

— / —
Cgkl(azj—1+azj)) = Csy (Hegj,lJregj) = Ee2j—1+e2j + Ee2j—1+e2j'

Thus to see that exp(TrngmazjilJran) is in the image of f it is enough to observe that

exp =
iy -1

Which is clearly in the image of f by setting ¢t; = 0 and w; = —1 and all other parameters

0. O
Theorem 3.5.11 Let 0 be the function on SO*(2n)" asssociated to the character of Tyin.-
Furthermore for 0 <k < [§] and t1,...,t € R and w1, ..., wg, 21,...,2p—2k € St set
wye Il if1<j<2kandj=2—1
Aj =S wi el if 1< 5 <2k and j =21 (3.26)
Zj—2k Zf 2k < j
g = f(tla 7tk7w1;" L WEy 21y - - 'aZ’rL—Qk)'

Then the character function is given by

1 .
(Hn 1)\] o= (9)
0(g) = ” L . (3.27)
H1<]<k<n )‘ ! Z ))‘0(2))

Proof. Since myn, is a lowest-weight representation with respect to AT it follows from
corollary that my, extends to FSO*(Qn)(—Cl‘\’/ﬁn). Now let X € —¢?, and let v =
Exp(iX) € T'so*(2n)(—Cfpin) and let A1, ..., A, be the eigenvalues of v such that |\;] < 1.
Let X = A(¢) then it follows from lemma that ¢j > 0 and e;(X) = i¢; and thus by
a reordering we can assume \; = e —® = ¢ (X) Then it follows from proposition m
that

—1 .
n elo )\] o7 (J4)
r) = (D) 3 G I A (329
j=1 o€Sn (1 )‘0'(1))‘0'(2 )H1§j<kSTL 1-— )\k)\j

From eq. it is not clear that f is invariant under permutations, nor that f does not
have singularities in {z € C|0 < |z| < 1}". The permutation invariance follows since tr =
is invariant under conjugations and the analytic Weyl group W (G, h¢) is isomorphic to
Sn and acts by permutation of the standard weight vectors e; thus by permuting the A;.
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3.6 s0(2,2n)

To see that f does not have singularities in the polydisc we introduce the function
a:(C\{0})" — C given by

a(z1y...,2n) = H 1—z2; "

1<j#k<n

This is a holomorphic function not identically zero which satisfies the assumptions
of lemma and proposition thus let a denote the associated function on
L's0*(2n) (—Cfpin)- Then the function atr 7 is a holomorphic function on I'sgx(2,) (—C¥jiy,)
which for v = Exp(iX) is given by

a(trr(y) = [ @-NA; H v )H)\l

1<j<k<n j=1 €S, o)A (2)

)\j*a_l(j)

=b(A1,. .y An)-

However it is clear that b does not have singularities when all \; satisfy |A;| < 1. Thus

we can apply proposition [3.5.9/to b and get l;, then tr 7|pxp(ico ) = %|Exp(icgn) and then it
follows from proposition [2.4.18| that this holds on the entire open Ol’shanskii semigroup.
Specifically we get that tr w satisfies the assumptions of proposition Let w; = '

and z; = ¥ then we get from proposition [2.8.9 and lemma [3.5.10| that
J g prop

o(9) :sli%l+9 HEXp — It He €2j-1+ez; +i¢jH'/32j—1—e2j)

(3.29)
. exp(A(O7 ceny 0uy 08, Up ok +18))).

If we let 7, denote the argument to € in the right-hand side of eq. (3.29) then we see that
if we let \j(s) be given by

we Ml if1<j<2andj=20—1
Aj(s) = wtem Ml if 1 < j <2k and j =21
ijgkefs if 2k <j

Then [A;(s)] < 1 and Ai(s),..., A, (s) are eigenvalues of ~,, furthermore we see that A;(s)
converges to eq. (3.26)). Thus the right hand side of eq. (3.29) is equal to the right hand

side of eq. (3.27)). O

3.6 s0(2,2n)

Though the minimal representation w4 for O(p,q) was constructed much later than
the metaplectic representation, in the last twenty years it has received much study. In
[BZ91] Binegar and Zierau constructs a minimal representation of SO.(p,q) for p + ¢
even and p + g greater than or equal to 6. This representation is in general irreducible
and not a highest weight representation, but for p = 2, ¢ = 2n it decomposes into
two irreducible highest weight representations. Their construction was generalized in
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3 Minimal Representations

[HT93| and [ZHI7] in different directions. In a series of papers [KQ03a; KO03b; KO03c]
Kobayashi and Orsted give different realisations of this representation for O(p, ¢) from
primarily and an analytic and geometric point of view, and investigate different properties
of the representation including branching laws. Kobayashi and Mano make further study
of the analytic properties of this representation including the unitary inversion operator
[KMO7; KM11].

We will not attempt to provide a complete construction of the minimal representation
of SO.(2,2n). Rather we will use that based on the theory of chapter [2f we need only to
know that a representation is an irreducible, unitary highest-weight representation and
its K-type decomposition to calculate its character.

3.6.1 Structure and realization

We introduce some notation and fix a realisation of SO(2n + 2,C) and SO.(2,2n). By
SO(2,2n) we denote the identity component of SO(2,2n).

I, = diag(l, 1,..., 1) € Maty«x

I 0
Ipq = <(§] —Iq> € Mat (1 4)x (p+9)

s(v,w) = UTIQ’Qn’LU
SO(p,q,C) = {A € SL(p + ¢,C) | Vv, w € CPT9 : s5(Av, Aw) = s(v,w)}
SO(p,q) = SO(p,q,C) NGL(p + ¢, R)

Remark 3.6.1 For any p,q € Z>o we get by the basis change

N g 1<j<p
! i€; p+1<j<p+gq

that SO(p, q,C) = SO(p + ¢,0,C).

Let A : C"*! — Mat(9,42)x(2n+2)(C) denote the map
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3.6 s0(2,2n)

Proposition 3.6.2 Let K denote SO(2) x SO(2n) embedded as block-diagonal matrices

in SO(2,2n) then K is a mazimal compact subgroup. Let

h={A(0,...,0,)60,...,0, € R}
cos(fy) —sin(fp)
sin(6p)  cos(fo)
: ’90,...,9n€R}.

H={ y
cos(6,) —sin(6y)
sin(6,) cos(6y)

Then H is a Cartan subgroup of SO(2,2n) and a mazimal torus in SO(2) x SO(2n)
Furthermore SO(2n + 2,C) is a complexification of SO.(2,2n).
Let ej € b be given by e;(A(0)) = i6;. Then
A={tejte,|0<j#k<n}
AT ={ejter|0<j<k<n}
Ak:{j:ejj:ekllgj;ékgn}
Al ={ejte;|1<j<k<n}
Al ={egte,|l <k<n}
Wk 228, x {£}"71

n

=Y (n—j)ej.

J=1

Remark 3.6.3 Wk acts on hi by permuting the e; for j > 1 and by changing an even
number of signs on the same basis vectors. If ¢ € {4-}"~! then written as a matrix that

acts on b in the basis eg, eq,..., e, it is

€n

with €; € {&1}. Thus ¢(0) = det(0) = [[}_; ¢; = 1 since it is an even sign change.

Proof. |Kna02, page 150, 155, 164, 513|.

Lemma 3.6.4 Let H,H' € hc C s0(2,2n)c then

B(H,H') =4n _e;(H)e;(H)
j=0
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and let He, = A(¢) then
b;j =

0k

Proof. The first equality follows from lemma since 50(2,2n)c is isomorphic to
s0(2(n +1),C). Let He, € bc denote the element such that e, = B(He,,-) and let
He, = A(¢) for ¢ € C"*1. Then

ex(H) = B(He,, H) = 4nzej(Hek)ej(H)
=0

which gives since the e, ..., e, are linearly independent that i¢; = e;(He,) = ﬁéj,k. O

Lemma 3.6.5 Let Cy\iin denote the minimal cone associated to the positive system in
proposition and let as usual ¢, = Cyin N G then

em = A{p € R g0 < = lgyl})

j=1

e =A{p €R™ 9o < =) |651}).

J=1

Proof. More details about the cone is contained |[Pan81, section II.12] but we include a
proof for completeness.

Let X € ¢, then it follows from proposition that X = (i) >0 ) ajHeyte; +
bjHey—e; for aj,bj > 0. Then

n n n
X = (=i)) ajHeqte; +bjHey—o; = —i(Y_ aj+bj)Hey — iy _(aj — bj)He,.
j=1 j=1 j=1

Let ¢ € C"™! such that A(¢) = X then it follows from lemma that

n

-1
¢ = In a; + bj
7j=1
1
¢ = 5 (b —aj).

This implies that —¢¢ > Z?:1|¢j|~
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3.6 s0(2,2n)

Conversely if —¢g > > 7, [¢;] then put

a1 = 4n((61) -+ 5(~d0— I6iD)

j=1
b= 4n((1)s + 5(~d0 — D_I6;D)
j=1

aj = 4n(¢;)-
bj = 4n(¢;)+-

Then we see that ay, b1, ..., an, b, > 0 and let ¢ € C**! such that

A(y) = (1) ZajHeo+ej + ijeo*ej € Cm-
j=1

Then it follows from our previous calculations that
1 n n
Yo =D a5 +b; = —(=go = D_I6il+ D_(#)- + (95)+) = do
J=1 j=1 j=1

L (b — ;) = (67)+ — (67)s = 5. 0

" 4n

Y;

3.6.2 Minimal representations

Proposition 3.6.6 Using notation from propositz’on for the roots of SO(p). For
p >3 and k > 0 we denote by H*(CP) the representation of SO(p) on spherical harmonics
of degree k. HF(CP) is an irreducible representation. For p # 4 the highest weight of
H*(CP) is key. For p =4 the highest weight of HF(CP) is k(e1 + e3).

Proof. |Vil68, section IX.2] shows that #*(CP) is an irreducible representation of SO(p).
[GWO09, theorem 5.6.11] gives the highest weights. O

For k € Z we let xj : SO(2) — C denote the character x( (zfiéz)) ;Z:Eé?)) .’

Proposition 3.6.7 Let w??" denote the representation of SO.(2,2n) constructed in

[BZ91] and let w??" = wi’% @ @w>™ denote the decomposition described in [BZ91,

proposition IV].
Then wi’% and w>

2 are irreducible unitary highest weight representations of SO¢(2,2n).

——00

@7 50(2)x50(2n) = @kZOXan = HF(C)

——00

@7 s0(2)x50(2n) = @kzoxf(kJrnfl) X HE(C).
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3 Minimal Representations

Proof. |BZ91|. O

Lemma 3.6.8 Let Cypin be the minimal cone in s0(2,2n) associated to the positive system

from proposition |3.6.4. Then wi% extends to a representation of I'so(2,2n)(—Cypiy,) and

@ extends to a representation of I'so(2,2n) (Cipin)-

Proof. @>*" is a highest-weight representation with respect to AT hence by proposi-

tion it extends to I'so(g,2n)(CRiy)- Similarly it follows from corollary that

wi’% extends to I'so2,2n) (—Cyin)- O

3.6.3 Combinatorics

2 2.2n

We intend to calculate the characters of w2 " and @w>"" using similar methods to the

second proof of lemma [3.3.13] In this case we will also need to rewrite some alternating
sums over the analytic Weyl group. In order to simplify the notation a bit we suppress
elements of h and for o € b let e* denote the function

Y:ihc—C e?(X) = ),
Sometimes it will be easier to use the notation (a1, ...,a,) = Z] 1 a;e; € be thus
(a1, man) _ S0 aje;
The Weyl group acts on h¢ thus it also induces an action on functions on hc we observe
(w.e")(X) = e*(w™X) = e T1X) = g(wa)(X) — e X).

We will show many of the results in this section by induction over thus let W,, denote the
analytic Weyl group W (SO(2n), H).

Lemma 3.6.9 Forn>1 and a,8 € C
n
Z e(w)ew J=1 TL J)ej H o +/8€w e] a +B€w(_ej))

_ (a2(n—k) + 62(n—k) o 5k,n)akﬁk Z e(w)ew‘(2?21 e;+3 71 (n—j)e;)
k=0 weWn,

+04an Z 6( ) w.(— en+ZJ 1eﬂ+2?:1(n_j)ej). (330)
weWn,

Proof. For n =1 we just get

D e(w)(® + B2+ afe” + ae” (7o)

weWn,
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for both sides of the equation.
For n > 2 we get

3.6 s0(2,2n)

Z e(w)ew-(z;}:l(n—j)ej) H(a‘i‘ﬂew'ej)(a—i-/@ew'(*ej))

weWn, j=1
n
= (a? + 5% Z e(w)e (n=7)e;) H o + e %) (o + et (7))
weWn, j=2
n
+O[B Z w 91+Z TL J)ej H O["_/Bewe] Oé—|—5€w( eJ))
weWnp Jj=2

n

+af > e(w)erCertEiatmde e TT(a + feer) (o + fe(~%))

weWn,

n—1

J=1

_ (Oé2 + /82) (a2(n—1—k) + ﬁQ(n—l—k) - 6k,n—1)ak6k

k=0 (3.31)
. ( Z 6( ) (Zk“eerZJ 1(”_j)ej)>
weW,
+ (a® + pHam gt Z 6(’w)ew'(*E"JFZ;;1 e t2jm(n=j)es) (3.32)
weWn,
n-1
+af Z(az(n—1—k) bR g ok g
k=0
) < Z €(w)ew-(Z§Ll ej+2?1(n—j)e]')>
weWs,
—i—aﬂan*lﬂn*l Z e(w)ew(—eﬁZ;‘;f e+ 71 (n—j)e;)
weW,
+a52 (TR g PR G )at
(3.33)
) < Z e(w)ew'(_e1+zf+2lev Z?l(”—j)eﬂ>
weWpy
+ afa" gl Z e(w)ew'(_e"_eﬁz?;?lej+2?:1(n_j)ej)- (3.34)

wEWn

The first equality is just expanding the factor with j = 1. Then we let W,,_y C W, such
that W,,_1 acts on eg, ..., e, and apply corollary and the induction hypothesis to
all terms. In eq. we observe that in all terms with k& > 1 the expression in the
exponential is invariant when we act by (1 2) hence by lemma they are all zero. For
eq. (3.33)) observe that for k£ = 0 the expression in the exponential is invariant under (1 2)
and for n > 3 and k > 2 it is invariant under (1 3) hence by lemma they are all zero.
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3 Minimal Representations

For k = 1 we apply (1 2) and reorder the sum to get
—a2ﬁ2(a2("_2) + l82(n—2—k))'

For n > 3 we see that in eq. (3.32) the expression in the exponential is invariant under
(1 2), for n = 2 the expression in the exponential is (1,—1) which is invariant under

( 01 _01> In both cases lemma [3.2.3[ gives that the sum is zero. In eq. (3.34)) with

n > 4 the expression in the exponential is invariant under (1 3) for n =3 it is (1,2, —1)

0 0 -1
hence it is invariant under [ 0 1 0 |. In both cases lemma |3.2.3| gives that the sum
-1 0 0

-1 0
and reorder the sum and add it to the k = 0 term from eq. (3.31) and the k¥ = 1 term

from eq. to get
(@ +8%)(@® + 8%) = 2a%8%) Y e(w)e” M = (ot + 8Y) Y e(w)e 0.
weWs weWs

For n = 3 we add the k = 0 term from eq. (3.31]) and the k = 1 term from eq. (3.33]) and
get,

. . - -1
is zero. For n = 2 the expression in the exponential is (0, —1) we thus act by < 0 )

(012 + 62)(a2(n—1) + 62(71—1)) _ OZQBQ(OZZ(n_2) + 62(71—2))
_ a2n + /82n + a252(n—1) + a2(n—1)/32 - a2B2(n—1) - a2(n—1)62 _ a2n + 5271'
Then collecting terms we get the right hand side of eq. (3.30)). O

Corollary 3.6.10 Forn >1 and o, € C

Z e(u))e J 1 TL ])eJ H a+I8€weJ Oé"‘ﬂew(ie]))

wEW, j=2

_ (a2(n71 + 52 (n—1) _ . 1) Z 6(w)€w'(2?:1(n_j)ej)-

wEWn

Proof. Observe first that statement is trivial for n = 1. The n > 2 case we argued in

the proof of lemma when rewriting egs. and (3.32). O

Corollary 3.6.11 Forn > 2 and o, 8 € C

n

Z e(w)ew,(—eﬁ-zyzl(n—j)ej) H(a _i_ﬁew.ej)(a_i_ﬁew.(,ej))

_(a2(n72)+52(n72))aﬁ Z e(w)ew.Z}Ll(n—j)ej_

wEWn
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3.6 s0(2,2n)

Proof. This is also argued during the proof of lemma [3.6.9] O

Corollary 3.6.12 Forn > 2 and o, € C

> e(w)e Z= D% o e o) T (o + Be ) (o + pe )
7j=2

’lUGWn
:a2n73(a _/82) Z e(w)ew.z:?:ﬂn—j)ej"
weWn

Proof. This follows from corollary |3.6.10| and corollary [3.6.11] since

a(a2n72 + 627172) . a62(a2n74 + 52n74)
— aQn—l + aﬁQn—Q _ a2n—3/32 _ QBQn—Q _ a2n—3(a2 _ 62) 0

3.6.4 The character
Lemma 3.6.13 Letn > 3 and X € ¢, then
e e —i(n+1)ep(X)

H;?Zl(l _ e—ileote;)(X )( Z(eo—ej)(X))

2.9m ‘ —i(n—1)ep(X) _
tr(wy ™ (Exp(—iX))) =

e—i(n—1)eo(X) _ p—i(n+1)eo(X)

T/, (1 — e (e0re) (X)) (1 — ¢—ifeo—e,)(X))

tr(ew?2" (Exp(iX))) =

Proof. Let us first consider i% Then it follows from proposition that in the
notation of proposition a=(n—1)ey and 5 = ey + e; using corollary 3.6.12| we get

tr wiQn (Exp(—iX))
e—i(n—1)eo(X)

_(H] (1= e~i(eote;) (X)) (1 — e—i(eo—ej)(X)))(ZwGWK e(w)e—i(w-5r)(X))
: Z [E(w)e—i(w.ak)(x)(l 4 emilw(—e)(X))

weWg

. H(l B efi(eo%»w.ej)(X))(l o efi(BO*w-ej)(X)))]
j=2
efi(nfl)eg(X)(l _ 672ieo(X))
T, (1 — e eore) () (1 — ¢ eore) (X))

And the calculation for w>*" follows similarly. O
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3 Minimal Representations
Lemma 3.6.14 Let n > 3 and consider the maps:

fo: (SH™ = 80.(2,2n)

7(wp)
fo(wo, cee wn) =
r(wy)
fi iR x (SH™ = SO.(2,2n)
a(t,wr)
fl(t,tU1,...,wn): T(w2)
r(wy)
f2 : {Zli} X ]RQ X (Sl)n—l . 806(2,271,)
+08(s,1)
fa(E, 8, t, w2, ... wy) = r(ws)
r(wn)

where

oty = (MO ) (G )

cosh(t) cos(¢) —cosh(t)sin(¢) sinh(¢)cos(¢p) — sinh(

_ [ cosh(t)sin(¢)  cosh(t)cos(¢)  sinh(t)sin(¢)  sinh(?)
sinh(¢) cos(¢) —sinh(¢)sin(¢) cosh(t)cos(¢) — cosh(t
sinh(¢)sin(¢)  sinh(t)cos(¢)  cosh(t)sin(¢)  cosh(t) cos(¢)
cosh(s) " sinh(s) "

cosh(t sinh(¢
Bls,t) = sinh(s) cosh(s)
sinh(¢) cosh(t)

Then fo, fi and fo parametrize a mazimal set of non-conjugate Cartan subgroups of

SOc(2,2n).

Proof. Let S C A} be a set of pairwise strongly orthogonal roots, for n > 3 there is up
to an action by Wi three possibilities: S =0, {ey — e1},{eo + e1,e9 — e1}. We want to
show that f; parametrizes the Cartan subgroup corresponding to he,—e, and fo the one

corresponding to hyejte,}-
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3.6 s0(2,2n)

First of all let

1 2
—1
1
Eeofel = 5 1 —3
1 1
0
1 —
1 - —1
Eeo+e1 - 5 1 —1
- —1
0
then
0 =
— 0
[EGO*EUEGO*el] = 0 — :Hc/eo—el
1 0
0
0 =
— 0
[Eeo+e17Eeo+el] = 0. i :Héo-i-er
—1
0

Hence we let cey+e, be the Cayley transforms defined from FEe +e,. Furthermore we see
that

of1 —_—

E(e) = Ee()*el + Ee()*el

df1 .

8711]1(6) = ZHéo-i—el

0 fa 1 I I
E(e) = §(E80761 + EeO*el + Eeo+61 + Eeo+el)
o,

1 - _
ot (6) = §(Eeo—91 + Eeo—el - Eeo+el - Ee0+el)

thus TfiR" ! = he, e, and T foR" 1 = Bieote}- Thus the fi and fa(+,-) parametrize
the analytic subgroups associated to the Cayley transformed Cartan subalgebras. Let
H,  denote the dual element to v € by _o, ¢ and Ha, similarly for v € h’feoim},@' Since
SO¢(2,2n) has a complexification; to see that f; and fo parametrize the Cartan subgroups,
it is enough by [Kna02, proposition 7.110] to check that exp(miH] ) and exp(wiHy ) are
in their respective images for all real roots ~.
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3 Minimal Representations

Now let aj = Cey—e,(€5) and B; = C(e+e,}(€;) be the Cayley transformed standard
weight vectors. We observe that for ¢ € R"~! we get A(0,0,¢) € Ker(ep), Ker(e;) hence
A(0,0,¢) is fixed by both Cayley transforms. Since ey — e; and ey + e are strongly
orthogonal we get that Hy o is fixed by Cey—e;. Thus if 5,2, é1,..., ¢, € R™ and we set

=(t,p1,...,¢n) and w = (s,t, d2, ..., dy) then we get
(o — ar)(T fiv) = (o — a1)(t(Feg—e; + Fey— e1) + ¢11H e0+61 + A(0,0,¢2,...,0n))
= (e0 — e1)(tHy e, + d1iHg e,) = 2t
(a0 + a1)(T frv) = (eo + e1)(tHe, e, + P1iH) 1e,) = 2id1
(Bo = B1)(T fow) = %(50 — B1)(8(Eeg—e;, + Eeg—e; + Eegter + Eegter)
+ t(Eeg—e; + Eey—e; — Eegter + Fegter) + A(0,0,¢2,...,én))

= 00— en)((s 4 D) Hly oy + (5~ ) Hlpre) = 5

2(s+t)

(Bo + B1)(Tf2w) = 5(e0 +ex)(s+ 1) Hyey + (5 — ) Hpy ) = 55— ).
Which gives
ao(T fiv) =t +id o1 (T frv) = —t +ign
a; (T fiv) = Z%
Bo(T fow) = BT o) = — 51

B;(T faw) = Z¢j-
Thus we see that the real roots are respectively {+(ay — a1)} and {5y £ f1}. We get
from lemma [3.2.9] that

/ _ / _ I
Heo —e,al—a2 — Cep—e; (Heo el> - EeO—el + Eeo—el
H{eg:l:el} al+a2 — C{eoie1}( eoiel) = Eeozl:el + Eeo:l:e1~

Then to see that exp(miH}, o, a1-a2) € f1(R x (S1)") and exp(mH{eoiel}aliﬂ) €
f2(—=,R% x (S1H)"~1) it is enough to see that

I
exp(miEey—e, + Fey—e,) = —1I = exp(miFeyte; + Fegte,)-
-1y
Which is also f1(0,—1,1,...,1) and fa(—,0,0,1,...,1). O

Remark 3.6.15 From the calculations and realizations in the proof of lemma [3.6.14] we
also get

f0(€i¢07 s 7ei¢n) = eXp(A(d)))
fi(t, e L. ,ei%) =exp(t(Fey—e, + Eeg—ey)) exp(A(P1, 1, P2, ..., dn))
Fal(=1)F,5,8,63, -, 6n) = 5D By + Fay-2)) D" (Fon res + Faven)
-exp(A(0,0,¢2, ..., 0n)) eXp(kWZHeO+el)
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Hypothesis 3.6.16 The holomorphic function tr wg’%(-) on I'so2,2n)(Cpi,) extends
continuously to SO(2,2n)".

Consequence 3.6.17 Assume that hypothesis is true. Let 0_ be the function
associated to the distribution character of " then

isin(¢o)

ipo idn ) —
IRl @) =TT con(n) — contdy) 339
; ; —isinh ]
O_(fu(t, 1, ... e%n)) =2nzsfnh(|(lf)' ;lffdjl)) (3.36)
1
' [T— cosh([t| + i1) — cos(e;)
oot iony) s+t s~ ) .

27 sinh(3|s + ¢|) sinh(3|s — ¢|)
1
[T}z cos(¢;) F cosh(5(|s +t| +[s —t]))

Proof. Consider the semigroup homomorphisms €% : HExp(ic?,) — C given by
e% (hExp(iX)) = &, (h)e' ™).

Then €% is a holomorphic function and thus by holomorphic continuation and lemma(3.6.13

we get

€0 —€0

e —e€

’I‘H (cg) — H?:l(eeo + e — 8 — e_e].)~

Then by applying hypothesis [3.6.16] lemma and remark [3.6.15 we get eq. (3.35]).
Noting that

tr w? 2n

)
) = —It\
)
)

e® (exp(|t|He,—e,
e (exp([t| He, —e,
e (exp(A(gbl, O1, 02, ..., dn)
e (exp(A(¢1, 91, P2, - - - Pn)

)
)
)
)

we get eq. - by applying proposition For eq. note

e® (exp(|0| eo+e1)) = €|b|
6 ( (‘b’ e0+e1)) e|b|
e (exp(miHy, 1o,)) = —1
e (exp(miHy, 1o,)) = —1
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3 Minimal Representations

Hypothesis 3.6.18 The holomorphic function tr wi’%(-) on I'so2,20) (—CFpi,) extends
continuously to SO(2,2n)".

Consequence 3.6.19 Assume that hypothesis s true. Let 04 be the function
. . . . 2.2n
associated to the distribution character of w?y™" then

o0 i)y —isin(¢p)
9+(f0(€ yeey € )) on—1 H;’L:l COS(¢0) — COS((Z)j)
o ionyy  isinh(|t] —ig1)
0+(f1(t,6 yeee,€ )) _2”s1nh(|t|)81n(¢1)

1
' [ 17—y cosh(|t| — i¢1) — cos(¢;)
(=1)"Lsinh(3(|s +t| + s — t]))
on sinh(%|s +t]) Sinh(%‘s —t|)
1

TTj cos(;) F cosh (3 (Js + ¢ + s — 1)

9+(f2(:l:7 87 t? ei¢27 et el(bn)) =

Proof. This follows almost exactly as consequence [3.6.17] except that the associated
Ol'shanskii semigroup is I'so, (2,2n) (—Cypi,) and hence we need to make a sign change as

in corollary 2.8.10] O

Remark 3.6.20 Note that 8, = —6#_ on the fundamental Cartan subgroup, hence
the representations defined by Binegar-Zierau and Kobayashi-Orsted are not elliptic
. .. . 2,2n 2,2n

representations for n > 3. But the minimal representations ™" and w} ™" are.

3.7 s0(2,2n+1)

3.7.1 Structure and realization

We use notation as in section [3.6.1] However in this case we let A denote the map

A €™ = Mat(an4.3)x (2n43) (C)
0 —6o
6 O
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3.7 50(2,2n + 1)

Proposition 3.7.1 Let K denote SO(2) x SO(2n+1) embedded as block-diagonal matrices
in SO¢(2,2n 4 1) then K is a maximal compact subgroup. Let

h= {(A(eo,,en)) |903---79n GR}
cos(fp) —sin(6p)
sin(fy)  cos(bp)
H={ ) e 6o, ..., 60, € RY.
sin(6,) cos(6y)
1

Then H is a Cartan subgroup of SO (2,2n+1) and a mazimal torus in SO(2) x SO(2n+1).
Furthermore SO(2n + 3,C) is a complexification of SO.(2,2n + 1).
Let ej € b be given by e;(A(0)) = i6;. Then
A={tejte,|0<j#k<n}U{xe;|0<j<n}
AT ={ej+er|0<j<k<n}u{e;|0<j<n}
Ap={Fe;jTey|1<j#Ek<n}U{xe;|1<j<n}
Af ={ejte;|1<j<k<n}u{ej|1<j<n}
AZ:{eoiek|1§k§n}U{eo}
Wk =S, x {£}"
n ' 1
O = Z(’I’L -7+ §)ek

J=1

Remark 3.7.2 Wy acts on h by permuting the e; for j > 1 and by sign changes on
the same basis vectors. If o € {£}" then written as a matrix that acts on b

€n

with ¢; € {£1}. Thus €(c0) = det(o) = [[j_, ¢; = £1 depending on whether it changes
an even or an odd number of signs.

Proof. |[Kna02, page 150, 155, 164, 513]. O

Lemma 3.7.3 Let H,H' € hc C s0(2,2n + 1)c then

B(H,H') = (4n+2)) _e;(H)e;(H)
=0
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3 Minimal Representations

and let He, = A(¢) then

= 5
91 = Jn g 20

Proof. We calculate

B(H,H') =trad(H)ad(H') = Y~ a(H)a(H')

aeA
= ) (e tep)(H)(te; ep)(H) + D (+e;)(H)(+e))(H')
0<j<k<n =0
= > dej(H)e;(H') +4ey(H)ex(H') +2> e;(H)e;(H)
0<j<k<n j=0
=4 (n—j)ej(H)e;(H')+4)  jej(H) +2Zea )e;(H')
j=0 j=0

(4n+2 Zej )e;(H).
Let A(¢) = He, € hc denote the element such that e = B(He,,-). Then

ex(H) = B(He,, H) = (4n+2) Y e;(He, )e;(H)
j=1

but eq,...,e, are linearly independent hence i¢; = e;(He,) = ﬁ%k. O

Lemma 3.7.4 Let Cyiin denote the minimal cone associated to the positive system in
proposition[3.7.1], and let as usual ¢y, = Criin N b then

= A({¢p e R"™ g0 < =D |osl})

j=1

= A({p € R" ™ g0 < = |1}

J=1

Proof. More details about the cone can be found in |[Pan81}, section I1.12].

Consider the notation as in the proof of lemma[3.6.5] We can identify the Cartan algebra
from proposition with the Cartan algebra from proposition by embedding it
as the upper left (2n + 2) x (2n + 2) block of a (2n + 3) x (2n + 3) matrix and zeros
elsewhere. Let H, € hc denote the element such that o = B(H,, -)50(27%“) and H, € he
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3.7 50(2,2n + 1)

such that o = B(H,, ") so(2,2n)- Lhen it follows from lemma and lemma that
I:Ia € RyogH,. Hence we conclude from lemma m that

A({¢ € Rn+1 ‘ ¢O S - Z’(Z)J’}) = (_Z) SpanRZ (Heo:tela cee :Heo:ten)'
7=1

But we also see that

Heo, = %(He0+el + Hep—ey) € A({6 € R [0 < = |41}).

j=1
Thus
A({¢ € R | o < Z‘Qb]‘} Span]R>0 (Hegs Hegters - - - Hegte,) = Cm
where the last equality follows from proposition [2.3.2 O

3.7.2 Combinatorics

Lemma 3.7.5 Letn > 1 and o, 5 € C then

Z e(w) w( Z;L 1(2(n—j)+1)e ) H a_'_ﬁew e] a_i_ﬁew.(fej))
weWn, j=1
2(n—k)

_Zakﬁk Z 1 a2nB=igi) N e(w)e Bim TR Gt (3 38)

weWn,

Proof. We prove this by induction, the basis case n = 1 is just expanding the product

37 e(w)e 2 (0 + B2 + afe S + afe (oY)
weWn,
= > ew)((a® - af + e i + afe o).

’wEWn

Where we applied a single sign change which has signature —1.
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3 Minimal Representations

Let p = %2?21(2(71 —j) + 1)e; then for n > 2 we expand

Z H Oz—{—ﬁ&we] Oz—|—ﬁ€w'(_ej))

weWn,

=(@*+5%) Y

weWn, i

+a6 Z w.(e1+p) H a_'_ﬁewej a—i—Bew( ej))

+af Z e(w)e?-(—erte) H o+ e %) (o + e (7e9))

wEWn

(o + Be™ %) (o + e (e4))

::]:

o

and consider each of the terms on the right hand side by itself, first applying lemma [3.2.1
and the induction hypothesis to the first term we get

(a® + 6?%) Z w)er P H (o + Be™ %) (o + Be(7e4))
wWEW, j=2
— 2(n—1—k)
S (@24 B S (—1)alRig) 3 u)en et (3.30)

j=0 weWy,

3
—

o

=0

In eq. (3.39) the terms with £ > 1 are zero by lemma since the expressions in the
exponentials are invariant under (1 2). Thus we get

(a® + %) Z Ha—i—ﬁeweﬂ (o + Bev(—e3))
weWn, :
2(n—1)
= (@ + %) D (—1)Ya?Digl)y N enr (3.40)
j:0 wEWn
This also proves corollary [3.7.6]
Then applying the induction hypothesis to the next term we get
a3 Z e(w)ew.(el—&-p) H(a_{_ﬁew.ej)(a _|_/86w.(—e]-))
weWn, j=2
n n—k
=Y kB (> (~ 1) a2 R gy 3 e(w)e? (Ei=1€ite)
k=1 j=0 weW,,

Which are most of the terms on the right hand side of eq. (3.38]). Applying the induction
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3.7 50(2,2n + 1)

hypothesis to the last term we get

n
afB Z E(w)ew-(—m-i—p H (a + Be®) Oé—i—ﬁew'(_ej))

weWy
2(n—k) k
—Za’“ﬁ’“ Do (~1aX0E) 37 ew)er et Ri et (3.41)
] 0 weWy,

Let us first consider n > 3 then for k > 3 the exponential on the right hand side of
eq. (3.41)is invariant under (1 3) hence zero. For k = 1 it is invariant under (1 2). Thus
for n > 3 we get

n

aB Y e(w)e et T (o + Beer)(a + fe()

weWy j=2
2(n—2)
= (Y (1P Y (e
j=0 weWpy

then combining this with eq. (3.40) and the following equation we are finished for n > 3

2(n—1) 2(n—2) 2n
(@8 3 (1Pt Vg0 Y (1t = 3 (e
=0 =0 =0

For n = 2 we get

aﬁz %% (0? + 8% + afe?e? + ¢ (7e2))
weW:
2 292 (1,3 2 32 i-H
=a’f Z e(w)e®(22) + o3 Z e(w)e® 272
weWs weWs

= —a?p? Z e(w)ew‘(%’%).

weWa

-1
Where we get the last equality since the second term is invariant under (_01 0 ) But

then we simply see that

4
(@® + B%)(a® —aB+ §%) = (aB)* = Y (~1)/a* 5

J=0

and when we gather terms with eq. (3.40) we are finished. O
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3 Minimal Representations

Corollary 3.7.6 Forn>1 and o, € C

Z E(U))ew'(Z?:l %(2”+1—2j)ej) H(a + Bew'ej)(a + Bew.(—ej))

weWn j=2
2(n—1)
=Y (- 1)i a2(n=1)=3gd) 3 e(w)e? (Ei=1 2(Gnt1=24)e;) (3 49
7=0 weWn,
Proof. This is proved during the proof of lemma [3.7.5) O

Corollary 3.7.7 Forn>2 and o, 8 € C

Z e(w)e" et i= 2 (nt1-2j)e;) H o + e %) (o + e (e9))

’wGWn

2(n—2)
= —af( Z (—1)i a2(=2=igi) Z e(w)e? (Eim1 3(@nt1=2i)e;) (3 43)
7=0 weW,
Proof. This is proved during the proof of lemma [3.7.5] O

Corollary 3.7.8 Letn > 2 and «, 8 € C then

Z e(w)e® (5= 13 (2l 200%3) (o 4 e (o) H (a4 Be ) (o + Be(7e))
=2

wEWn

_a2n72( B) Z ( )ew.(zn %(271-1—1 2])e3)

wEWn

Proof. Add the right-hand sides of eqs. (3.42)) and (3.43). Then the following calculation

gives the desired conclusion

2(7’1/—1) 2(n—2)
Z (_1)ja2(n71)fj+1ﬂj_ Z (_1)ja2(n72)fj+1ﬁj+2
J=0 j=0
2(n—1) 2(n—1)
— Z (_1)ja2n—1—jﬁj _ Z (_1>ja2n—1—j6j — a2l o228 O
7=0 j=1

Corollary 3.7.9 Letn > 2 and X € —c9, then
el(n_%)eO(X) — ez(n—&—%)eo(X)

[Tj= (1 — eilcote)(X))(1 — eileo=e;)(X))

tr(mvin (Exp(iX))) =

98



Bibliography

[Ada97|

[BJOS]

[Bor77]

IBZ91]

IBZ94]

[EHWS3]

[Fol89)

[GS05]

[GW09]

[Hec76]

Jeffrey Adams. “Character of the oscillator representation”. In: Israel J. Math.
98 (1997), pp. 229-252. 1SSN: 0021-2172. DOI: 10 . 1007 /BF02937336. URL:
http://dx.doi.org/10.1007/BF02937336.

Alexander Braverman and Anthony Joseph. “The minimal realization from
deformation theory”. In: J. Algebra 205.1 (1998), pp. 13-36. 1sSN: 0021-8693.
DOI: 10.1006/jabr.1997.7349. URL: http://dx.doi.org/10.1006/ jabr .
1997.7349.

Walter Borho. “Definition einer Dixmier-Abbildung fiir sl(n,C)”. In: Invent.
Math. 40.2 (1977), pp. 143-169. 1sSN: 0020-9910.

B. Binegar and R. Zierau. “Unitarization of a singular representation of
SO(p,q)”. In: Comm. Math. Phys. 138.2 (1991), pp. 245-258. 1ssN: 0010-3616.
URL: http://projecteuclid.org/euclid.cmp/1104202943.

B. Binegar and R. Zierau. “A singular representation of Eg”. In: Trans. Amer.
Math. Soc. 341.2 (1994), pp. 771-785. 1SSN: 0002-9947. DOI: 10.2307/2154582.
URL: http://dx.doi.org/10.2307/2154582.

Thomas Enright, Roger Howe, and Nolan Wallach. “A classification of unitary
highest weight modules”. In: Representation theory of reductive groups (Park
City, Utah, 1982). Vol. 40. Progr. Math. Birkh&user Boston, Boston, MA,
1983, pp. 97-143.

Gerald B. Folland. Harmonic analysis in phase space. Vol. 122. Annals of Math-
ematics Studies. Princeton, NJ: Princeton University Press, 1989, pp. x+4277.
1SBN: 0-691-08527-7; 0-691-08528-5.

Wee Teck Gan and Gordan Savin. “On minimal representations definitions
and properties”. In: Represent. Theory 9 (2005), 46-93 (electronic). ISSN:
1088-4165. por1: 110.1090/51088-4165-05-00191-3. URL: http://dx.doi.
org/10.1090/51088-4165-05-00191-3.

Roe Goodman and Nolan R. Wallach. Symmetry, representations, and invari-
ants. Vol. 255. Graduate Texts in Mathematics. Springer, Dordrecht, 2009,
pp- xx+716. 1SBN: 978-0-387-79851-6. DOI: [10.1007/978-0-387-79852-3.
URL: http://dx.doi.org/10.1007/978-0-387-79852-3.

Henryk Hecht. “The characters of some representations of Harish-Chandra”.
In: Math. Ann. 219.3 (1976), pp. 213-226. 1SSN: 0025-5831.

99


http://dx.doi.org/10.1007/BF02937336
http://dx.doi.org/10.1007/BF02937336
http://dx.doi.org/10.1006/jabr.1997.7349
http://dx.doi.org/10.1006/jabr.1997.7349
http://dx.doi.org/10.1006/jabr.1997.7349
http://projecteuclid.org/euclid.cmp/1104202943
http://dx.doi.org/10.2307/2154582
http://dx.doi.org/10.2307/2154582
http://dx.doi.org/10.1090/S1088-4165-05-00191-3
http://dx.doi.org/10.1090/S1088-4165-05-00191-3
http://dx.doi.org/10.1090/S1088-4165-05-00191-3
http://dx.doi.org/10.1007/978-0-387-79852-3
http://dx.doi.org/10.1007/978-0-387-79852-3

Bibliography

[HelO1]

[HKM14]

[HN93]

[Horoo)

[HT93]

[Jaks3]

[JosT76|

[KMO7]

[KM11]

100

Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces.
Vol. 34. Graduate Studies in Mathematics. Corrected reprint of the 1978
original. American Mathematical Society, Providence, RI, 2001, pp. xxvi+641.
ISBN: (0-8218-2848-7. DOI: [10.1090/gsm/034. URL: http://dx.doi.org/10,
1090/gsm/034.

Joachim Hilgert, Toshiyuki Kobayashi, and Jan Moéllers. “Minimal representa-
tions via Bessel operators”. In: J. Math. Soc. Japan 66.2 (2014), pp. 349-414.
ISSN: 0025-5645. DOI: 10.2969/jmsj/06620349. URL: http://dx.doi.org/
10.2969/jmsj/06620349.

Joachim Hilgert and Karl-Hermann Neeb. Lie semigroups and their applica-
tions. Vol. 1552. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993,
pp. xii+315. ISBN: 3-540-56954-5.

Lars Hormander. An introduction to complex analysis in several variables.
Third. Vol. 7. North-Holland Mathematical Library. North-Holland Publishing
Co., Amsterdam, 1990, pp. xii+254. 1SBN: 0-444-88446-7.

Roger E. Howe and Eng-Chye Tan. “Homogeneous functions on light cones:
the infinitesimal structure of some degenerate principal series representations”.
In: Bull. Amer. Math. Soc. (N.S.) 28.1 (1993), pp. 1-74. 1sSN: 0273-0979. DOL:
10.1090/S0273-0979-1993-00360-4. URL: http://dx.doi.org/10.1090/
S50273-0979-1993-00360-4.

Hans Plesner Jakobsen. “Hermitian symmetric spaces and their unitary highest
weight modules”. In: J. Funct. Anal. 52.3 (1983), pp. 385-412. 1ssN: 0022-1236.
DOI: [10.1016/0022-1236 (83)90076-9. URL: http://dx.doi.org/10.1016/
0022-1236(83)90076-9.

A. Joseph. “The minimal orbit in a simple Lie algebra and its associated
maximal ideal”. In: Ann. Sci. Ecole Norm. Sup. (4) 9.1 (1976), pp. 1-29. ISSN:
0012-9593.

Toshiyuki Kobayashi and Gen Mano. “The inversion formula and holomorphic
extension of the minimal representation of the conformal group”. In: Har-
monic analysis, group representations, automorphic forms and invariant theory.
Vol. 12. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. World Sci. Publ.,
Hackensack, NJ, 2007, pp. 151-208. por: [10.1142/9789812770790_0006. URL:
http://dx.doi.org/10.1142/9789812770790_0006.

Toshiyuki Kobayashi and Gen Mano. “The Schrédinger model for the minimal
representation of the indefinite orthogonal group O(p,q)”. In: Mem. Amer.
Math. Soc. 213.1000 (2011), pp. vi+132. 1SSN: 0065-9266. DOI: 10.1090/S0065-
9266-2011-00592-7. URL: http://dx.doi.org/10.1090/50065-9266-2011~
00592-7.


http://dx.doi.org/10.1090/gsm/034
http://dx.doi.org/10.1090/gsm/034
http://dx.doi.org/10.1090/gsm/034
http://dx.doi.org/10.2969/jmsj/06620349
http://dx.doi.org/10.2969/jmsj/06620349
http://dx.doi.org/10.2969/jmsj/06620349
http://dx.doi.org/10.1090/S0273-0979-1993-00360-4
http://dx.doi.org/10.1090/S0273-0979-1993-00360-4
http://dx.doi.org/10.1090/S0273-0979-1993-00360-4
http://dx.doi.org/10.1016/0022-1236(83)90076-9
http://dx.doi.org/10.1016/0022-1236(83)90076-9
http://dx.doi.org/10.1016/0022-1236(83)90076-9
http://dx.doi.org/10.1142/9789812770790_0006
http://dx.doi.org/10.1142/9789812770790_0006
http://dx.doi.org/10.1090/S0065-9266-2011-00592-7
http://dx.doi.org/10.1090/S0065-9266-2011-00592-7
http://dx.doi.org/10.1090/S0065-9266-2011-00592-7
http://dx.doi.org/10.1090/S0065-9266-2011-00592-7

Bibliography

[Kna01]  Anthony W. Knapp. Representation theory of semisimple groups. Princeton
Landmarks in Mathematics. An overview based on examples, Reprint of the
1986 original. Princeton, NJ: Princeton University Press, 2001, pp. xx+773.
ISBN: 0-691-09089-0.

[Kna02]  Anthony W. Knapp. Lie groups beyond an introduction. Second. Vol. 140.
Progress in Mathematics. Boston, MA: Birkh&user Boston Inc., 2002, pp. xviii+812.
ISBN: 0-8176-4259-5.

[K@03a]  Toshiyuki Kobayashi and Bent Orsted. “ Analysis on the minimal representation
of O(p, q). 1. Realization via conformal geometry”. In: Adv. Math. 180.2 (2003),
pp- 486-512. 1ssN: 0001-8708. DOI: |10.1016/S0001-8708(03)00012-4. URL:
http://dx.doi.org/10.1016/30001-8708(03)00012-4.

[KO03b]  Toshiyuki Kobayashi and Bent Orsted. “ Analysis on the minimal representation
of O(p, q). II. Branching laws”. In: Adv. Math. 180.2 (2003), pp. 513-550. ISSN:
0001-8708. DOI: |10.1016/S0001-8708(03) 00013-6. URL: http://dx.doi.
org/10.1016/S0001-8708(03)00013-6.

[K@03c|]  Toshiyuki Kobayashi and Bent Orsted. “ Analysis on the minimal representation
of O(p, q). III. Ultrahyperbolic equations on RP~54=1 Tn: Adv. Math. 180.2
(2003), pp. 551-595. 18SN: 0001-8708. DOL: 10 1016/50001-8708 (03) 00014-8.
URL: http://dx.doi.org/10.1016/S0001-8708(03)00014-8.

[KO97]| K. Koufany and B. @rsted. “Hardy spaces on two-sheeted covering semigroups”.
In: J. Lie Theory 7.2 (1997), pp. 245-267. 1SSN: 0949-5932.

[Kra01] Steven G. Krantz. Function theory of several complex variables. Reprint of
the 1992 edition. AMS Chelsea Publishing, Providence, RI, 2001, pp. xvi+564.
ISBN: 0-8218-2724-3.

[Mar66]  Morris Marden. Geometry of polynomials. Second edition. Mathematical
Surveys, No. 3. American Mathematical Society, Providence, R.I., 1966,
pp. xiii+243.

[MO14] J. Mollers and Y. Oshima. “Discrete branching laws for minimal holomorphic
representations”. In: ArXiv e-prints (Feb. 2014). arXiv: 1402.3351 [math.RT].

[MS10] Stéphane Merigon and Henrik Seppénen. “Branching laws for discrete Wallach
points”. In: J. Funct. Anal. 258.10 (2010), pp. 3241-3265. 1sSN: 0022-1236.
DOI: [10.1016/7 . jfa.2010.01.025. URL: http://dx.doi.org/10.1016/]!
j£a.2010.01.025.

[Nee00] Karl-Hermann Neeb. Holomorphy and convexity in Lie theory. Vol. 28. de
Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 2000,
pp- xxii+778. 1SBN: 3-11-015669-5. DOI: 110.1515/9783110808148. URL: http:
//dx.doi.org/10.1515/9783110808148.

[Nee92] Karl-Hermann Neeb. “On the fundamental group of a Lie semigroup”. In:
Glasgow Math. J. 34.3 (1992), pp. 379-394. 1sSN: 0017-0895. DOI: 10.1017/
S50017089500008983. URL: http://dx.doi.org/10.1017/50017089500008983.

101


http://dx.doi.org/10.1016/S0001-8708(03)00012-4
http://dx.doi.org/10.1016/S0001-8708(03)00012-4
http://dx.doi.org/10.1016/S0001-8708(03)00013-6
http://dx.doi.org/10.1016/S0001-8708(03)00013-6
http://dx.doi.org/10.1016/S0001-8708(03)00013-6
http://dx.doi.org/10.1016/S0001-8708(03)00014-8
http://dx.doi.org/10.1016/S0001-8708(03)00014-8
http://arxiv.org/abs/1402.3351
http://dx.doi.org/10.1016/j.jfa.2010.01.025
http://dx.doi.org/10.1016/j.jfa.2010.01.025
http://dx.doi.org/10.1016/j.jfa.2010.01.025
http://dx.doi.org/10.1515/9783110808148
http://dx.doi.org/10.1515/9783110808148
http://dx.doi.org/10.1515/9783110808148
http://dx.doi.org/10.1017/S0017089500008983
http://dx.doi.org/10.1017/S0017089500008983
http://dx.doi.org/10.1017/S0017089500008983

Bibliography

[Nee96|

[O1s95]

[Pan81]

[Pans3]

[PZ04]

[Rud91]

[Sch75]

[Seg76]

[Sek13]

[Sep07al

[Sep07h|

[Tor80]

102

Karl-Hermann Neeb. “Coherent states, holomorphic extensions, and highest
weight representations”. In: Pacific J. Math. 174.2 (1996), pp. 497-542. 1SSN:
0030-8730. URL: http://projecteuclid.org/euclid.pjm/1102365182.

Grigori Olshanski. “Cauchy-Szegd kernels for Hardy spaces on simple Lie
groups”. In: J. Lie Theory 5.2 (1995), pp. 241-273. 1sSN: 0949-5932.

Stephen M. Paneitz. “Invariant convex cones and causality in semisimple
Lie algebras and groups”. In: J. Funct. Anal. 43.3 (1981), pp. 313—-359. ISSN:
0022-1236. DOI: [10.1016/0022-1236(81) 90021 -5, URL: http://dx.doi.
org/10.1016/0022-1236(81)90021-5.

Stephen M. Paneitz. “Determination of invariant convex cones in simple
Lie algebras”. In: Ark. Mat. 21.2 (1983), pp. 217-228. 1sSN: 0004-2080. DOTI:
10.1007/BF02384311. URL: http://dx.doi.org/10.1007/BF02384311.

Lizhong Peng and Genkai Zhang. “Tensor products of holomorphic represen-
tations and bilinear differential operators”. In: J. Funct. Anal. 210.1 (2004),
pp. 171-192. 1ssN: 0022-1236. po1: 10.1016/j . jfa.2003 .09 .006. URL:
http://dx.doi.org/10.1016/5.jfa.2003.09.006.

Walter Rudin. Functional analysis. Second. International Series in Pure and
Applied Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424.
ISBN: 0-07-054236-8.

Wilfried Schmid. “On the characters of the discrete series. The Hermitian
symmetric case”. In: Invent. Math. 30.1 (1975), pp. 47-144. 1SsN: 0020-9910.

Irving Ezra Segal. Mathematical cosmology and extragalactic astronomy. Pure
and Applied Mathematics, Vol. 68. Academic Press |[Harcourt Brace Jo-
vanovich, Publishers|, New York-London, 1976, pp. ix+204.

Hideko Sekiguchi. “Branching rules of singular unitary representations with
respect to symmetric pairs (As,—1, Dy)”. In: Internat. J. Math. 24.4 (2013),
pp. 1350011, 25. 18sN: 0129-167X. DOI: [10.1142/S0129167X13500110. URL:
http://dx.doi.org/10.1142/50129167X13500110.

Henrik Seppénen. “Branching laws for minimal holomorphic representations”.
In: J. Funct. Anal. 251.1 (2007), pp. 174-209. 1sSN: 0022-1236. DOI: 10.1016/3 |
jfa.2007.04.004. URL: http://dx.doi.org/10.1016/5.jfa.2007.04.004.

Henrik Seppéanen. “Branching of some holomorphic representations of SO(2,n)”.
In: J. Lie Theory 17.1 (2007), pp. 191-227. 1SSN: 0949-5932.

Pierre Torasso. “Sur le caractére de la représentation de Shale-Weil de
Mp(n, R) et Sp(n, C)”. In: Math. Ann. 252.1 (1980), pp. 53-86. 1SSN: 0025-
5831. DOI: |10 . 1007 /BF01420212. URL: http://dx.doi.org/10. 1007/
BF01420212.


http://projecteuclid.org/euclid.pjm/1102365182
http://dx.doi.org/10.1016/0022-1236(81)90021-5
http://dx.doi.org/10.1016/0022-1236(81)90021-5
http://dx.doi.org/10.1016/0022-1236(81)90021-5
http://dx.doi.org/10.1007/BF02384311
http://dx.doi.org/10.1007/BF02384311
http://dx.doi.org/10.1016/j.jfa.2003.09.006
http://dx.doi.org/10.1016/j.jfa.2003.09.006
http://dx.doi.org/10.1142/S0129167X13500110
http://dx.doi.org/10.1142/S0129167X13500110
http://dx.doi.org/10.1016/j.jfa.2007.04.004
http://dx.doi.org/10.1016/j.jfa.2007.04.004
http://dx.doi.org/10.1016/j.jfa.2007.04.004
http://dx.doi.org/10.1007/BF01420212
http://dx.doi.org/10.1007/BF01420212
http://dx.doi.org/10.1007/BF01420212

[Vil68]

[Ving0)

[Vog81]

[ZH97]

[ZhaOl]

Bibliography

N. Ja. Vilenkin. Special functions and the theory of group representations.
Translated from the Russian by V. N. Singh. Translations of Mathematical
Monographs, Vol. 22. American Mathematical Society, Providence, R. I., 1968,
pp. x+613.

E. B. Vinberg. “Invariant convex cones and orderings in Lie groups”. In:
Funktsional. Anal. i Prilozhen. 14.1 (1980), pp. 1-13, 96. 1SsN: 0374-1990.

David A. Vogan Jr. “Singular unitary representations”. In: Noncommutative
harmonic analysis and Lie groups (Marseille, 1980). Vol. 880. Lecture Notes
in Math. Springer, Berlin-New York, 1981, pp. 506-535.

Chen-Bo Zhu and Jing-Song Huang. “On certain small representations of
indefinite orthogonal groups”. In: Represent. Theory 1 (1997), 190-206 (elec-
tronic). 1SSN: 1088-4165. DOI: 10 . 1090 /51088 - 4165 - 97 - 00031 - 9. URL:
http://dx.doi.org/10.1090/51088-4165-97-00031-9.

Genkai Zhang. “Tensor products of minimal holomorphic representations”.
In: Represent. Theory 5 (2001), 164-190 (electronic). 1SsN: 1088-4165. DOTI:
10.1090/51088-4165-01-00103-0l URL: http://dx.doi.org/10.1090/
S51088-4165-01-00103-0.

103


http://dx.doi.org/10.1090/S1088-4165-97-00031-9
http://dx.doi.org/10.1090/S1088-4165-97-00031-9
http://dx.doi.org/10.1090/S1088-4165-01-00103-0
http://dx.doi.org/10.1090/S1088-4165-01-00103-0
http://dx.doi.org/10.1090/S1088-4165-01-00103-0

	Introduction
	Harish-Chandra characters
	Minimal representations
	Ol'shanskiı semigroups
	Results
	Structure of this thesis
	Deficiencies and outlook
	Notation

	Characters on Ol'shanskiı semigroups
	Setup
	Complex Lie groups
	`39`42`"613A``45`47`"603AAd(G)-invariant cones
	Ol'shanskiı semigroups
	Representation theory of Ol'shanskiı semigroups
	Pencil of K-types
	(2, ) considerations
	A curve in [(2, )]
	Lifts to "0365(2, )

	Characters on the Ol'shanskiı semigroups
	Cayley transforms
	Uniformity of characters


	Minimal Representations
	Minimal holomorphic representations
	Technicalities
	(n, )
	Some structure theory
	The metaplectic representation
	The character on the compact Cartan subgroup
	The character function

	(p, q)
	Structure and realization
	The minimal representation

	*(2n)
	Structure and realization
	Minimal representation

	(2, 2n)
	Structure and realization
	Minimal representations
	Combinatorics
	The character

	(2, 2n+1)
	Structure and realization
	Combinatorics


	Bibliography

