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Abstract

Motivated by applications in electron microscopy, we study the situation where
a stationary and isotropic random field is observed on two parallel planes
with unknown distance. We propose an estimator for this distance. Under the
tractable, yet flexible class of Lévy-based random field models, we derive an
approximate variance of the estimator. The estimator and the approximate
variance perform well in two simulation studies.
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1 Introduction

Systematic sampling is a wide-spread technique in microscopy, stereology and in the
spatial sciences in general. In 3D, systematic sampling is often performed in two
steps. In a first step, a stack of equally spaced, parallel plane sections through the
spatial structure of interest is generated. In a second step, observations are usually
made at a regular lattice of grid points within each section, see e.g. [1, Chapter 7|.

Real sampling procedures may involve technically very challenging physical cut-
ting. An example is the generation of ultra thin sections for electron microscopy
where the intended distance h between neighbour sections is in the order of nanome-
ters. In such cases, the actual section distance may deviate from the intended dis-
tance.

In [9, 10], the effect of such errors on the variance of a Cavalieri type of estimator
has been studied. (For a short account of the Cavalieri estimator, see [1, Section 7.1].)
Here, the aim is to estimate an integral © = fR f(z) dz, using the estimator © =
h>, f(xy), where x;, = u+ kh € R, k € Z, is a systematic set of points. A simple
geometric example concerns the estimation of the volume of a bounded object in
R3 in which case f(z) may be the area of the intersection between the object and
a horizontal plane at height € R. Without errors, z; — xx_1 = h. In [9, 10], the



effect of errors in section positions is studied under different spatial point process
models for {zy}.

If the aim is to reconstruct the object rather than estimating quantitative prop-
erties of the object, it becomes important to know the actual realized distances
between neighbour sections. A concrete example of this situation may be found in
[8] where ultra thin electron microscopy sections are analysed.

In the present paper, we take up this problem. We study the situation where
a stationary and isotropic random field {X, : v € R3} is observed on two parallel
planes L; and Lo with unknown distance h. More specifically, we observe the random
field at a regular lattice of grid points {vy;} on L; and, similarly, at {ve;} on Ly where
||vii — vai|| = h for all 4, see the illustration in Figure 1. The idea is now to obtain
information about the correlation structure of the field, using the observed values
within sections. This information is then used in the estimation of the unknown
distance h between sections.

Figure 1: Illustration of the sampling of the random field on two parallel planes a distance
h apart.

This procedure has been applied with success in [8]. In the present paper, we
study the statistical properties of the resulting estimator of h. Under the tractable,
yet flexible class of Lévy-based random field models, we derive an approximate
variance of the estimator. We also examine the utility of the estimator and the
variance approximation in two simulation studies.

For an introduction to Lévy-based modelling, see e.g. [5]. In relation to variance
estimation, Lévy-based models have earlier been used in circular systematic sam-
pling ([4]). Lévy-based models have also been shown to be a useful modelling tool
for Cox point processes and growth, see [3| and [6].

The paper is organised as follows. First, we introduce the estimator and explore
some of its properties. Under the Lévy-based random field model, we then derive
an approximate variance of the estimator and study its performance in two simula-
tion studies. The derivation of the variance formula and some integral calculations



relating to one of the simulation studies are deferred to two appendices.

2 The estimator of section distance

Consider a stationary and isotropic random field {X, : v € R3}. Since the ran-
dom field is stationary and isotropic, the variogram E(X,, — X,,)? only depends on
||lv1 — vo|| and is thereby determined by 7 : [0, 00) — [0, 00), where

E(Xu, — Xu)? = 7(lor — vell) -

For a wide range of covariance models, v is strictly increasing. We will make this
assumption in the following.

Let L, and Ly be two parallel planes in R? with an unknown distance h. Assume
without loss of generality that

le{(l‘7y,0)|$,y€R}, LQZ{(5E7y,h)|ZL‘7y€R}

We furthermore assume that pairs of data points (X, Xu,,), ¢ = 1,...,n, are
observed where, for all ¢ = 1,...,n, vy; € Ly, vy; € Ly and the points are on the
form

V13 = ('r%yiao)u Vo = (371'7%7 h)u

see also Figure 1. The goal is to estimate h and to find an approximate expression
for the variance of the estimator.

Since
1 n
S=- E (X'Uu - X'Uzi)2

n <
=1

is an unbiased estimator of v(h), we propose to estimate h by
h=~"49). (2.1)

1

From a first-order Taylor expansion of v~ around (k) we find

1

e b+ (7 (v () (S =5 (h) = h + S (S W)
From this it is seen that
. , 1 B )
E(h — h)* ~ 7,(h)QE(S v(h))

SO

- 1
Var(h) ~ —— Var(9).

In most applications, the variogram ~ is unknown. In order to apply the estima-
tor (2.1), it is therefore needed to replace v in (2.1) by an estimate, based on the
available observations within sections. Since the distances between sample points
within sections are known, we can estimate v by fitting a parametric curve, induced



by one of the known covariance models, to the empirical variogram. For a recent
application of this procedure, see [5, Section 4].

Note that if h is large, then the observations on the two planes may be almost
uncorrelated, and it becomes difficult or impracticable to apply the estimator. More
specifically, let us suppose that

Cov(Xy,, Xy,) — 0,

as ||y — vg|| = oco. Then,
~v(h) — 2Var(X,),

as h — oo. If I is so large that y(h) ~ 2 Var(X,), then it may happen that S >
2Var(X,) and in such cases h does not exist.

3 Variance estimation under a Lévy—based model

3.1 The Lévy—based random field model

It is possible to find an explicit expression for v and Var(S) under a Lévy-based
random field model. Assume that Z is an independently scattered infinitely divisible
random measure on R?. Such a measure is called a Lévy basis, see [2] and references
therein for details. The measure Z thereby satisfies that, for B C R3, Z(B) has an
infinitely divisible distribution and, for By, B, C R? disjoint, Z(B;) and Z(Bs) are
independent.

We assume that Z is stationary and isotropic and that the field {X, : v € R?}
is given by

Xo= [ flu+wv)Z(du),
R3

where f is a kernel function, satisfying that f(v) = f(||v]]) and [z, f(v)dv < co.
These assumptions make the field {X, : v € R3} stationary and 1sotrop1(: and
furthermore, it is possible to compute cumulants and covariances for the field. Under
mild regularity conditions, we have

Cov(Xy,, Xy,) = Var(Z') [ flu+v1)f(u+vy)du

= Var(Z') f( )f(u+ v, —wvy)du
= Var(Z' )K(v1 —vg),

say, where Z’ is the associated spot variable, having the distribution of Z(B), when
B C R? has volume 1. Due to stationarity and isotropy, K (v) = K(||v||), say, and
the variogram is of the form

y(h) = 2 Var(Z')(K(0) — K(h)),  h>0. (3.1)

Furthermore, the n’th cumulant of X, can be expressed as

kn(Xy) = kn(Z") | flu+v)"du.

R3



In Table 1 below, the distributions and the first four cumulants of the spot variable
are listed for the gamma, the inverse Gaussian and the normal inverse Gaussian

bases. For more details, see |5, Section 5|.

Table 1: The spot variable and its cumulants for various Lévy bases.

Basis Gamma Inverse Gaussian Normal inverse Gaussian
Z(du) F(adu, A) IG(6 du, ) NIG(a, B, pdu, 6 du)

A Do, A) IG(4,7) NIG(a, B, p, )

k1(Z') o/ o/ o8/ (a® — 52)H?

Ka(Z)  ofX /" o /(a? — 212

k3(Z)  2a/N® 36/7° 30Ba%/(a? — B%)%/?

ka(Z') 6o/ 158 /7 36(a? +48%)a?/(a? — p3)7/?

3.2 The variance of S
In Appendix A, it is shown under the Lévy—based random field model that

Var n? Z K’4 p4 Ulwvlj) + 2Var(Z,)2p2</Uli7,U1j>2:| ’

i,7=1

where
p2 (v, v15) = /R3 (flu+v1) = fu+ ) (f(u+ viy) — flu+vy)) du,
pa(vis, v1j) = /R3 (f(u + 1) — flu+ U2i))2(f(u +viy) — flu+ UQJ'))2 du.

Below, we indicate how this result is derived.
First, notice that

Xvu - X'U2i - /R?’ [f(u + Uli) - f(u + U2i)} Z(du) )

¢t =1,...,n. For ease of notation, let us write
Yi=Xo, — Xy gi(u) = f(u+wvy) — fu+vy).
We find
Var(S) = E(5?) — (ES)?

= 3 Y EOPYY) - (B0

ij=1

(3.5)

These moments can be calculated, using a well-known result for the logarithm of
the Laplace transform of an integral with respect to a Lévy basis. The result holds



if E(eez/) < oo for some ¢ > 0. This condition is fulfilled for the three Lévy bases
listed in Table 1. Let for A;, Ay € R sufficiently close to 0 and i, 5 € {1,...,n}

K; (A1, Ag) = log B (eM¥HA2%) . (3.6)

Then, see e.g. [3, (10)],

Ki,j<)\17)\2) = / 10gE( (A1gi(w)+A2g;(u)Z )du (37)
R3

By differentiating (3.6) and (3.7) with respect to A; and Ay and equating the two
expressions at A\; = Ay = 0 with each other, we obtain the variance formula (3.2).
For the Gaussian kernel function

r€R?, (3.8)

with ¢ > 0, it is possible to calculate py and p4 explicitly, see Appendix B. We find

1 s —or s _1
p2(vii, v15) = TW«Q iz Vi 1J”2(1 e 40"2) (3.9)
and
1 o _3 1
pa(v15,v15) = W@"ﬁf'”h viz? (1 — 4o + 3e 210h2) ) (3.10)

These expressions for p, and p, may be inserted into (3.2) to get an explicit expres-
sion for the variance of S in the case of a Gaussian kernel function.

As we shall see in the next subsection, further simplifications may be obtained
by approximating the double sum in (3.2) by integrals.

3.3 Further approximations

Assume that the points vy; = (x;,¥;,0) in L; constitute a regular lattice of grid
points. Let A be the subset of R? spanned by the points (x;,%;), and assume that A
has area a. If the area of the fundamental region of the lattice is sufficiently small,
the formula for Var(S) can be approximated as follows

Var 2 Z /€4 p4 Ulljvlj) +2V&I‘<Z/)2p2(1)1i,1)1j)2]

i,j=1

1
~ ?//[54(2/),04(’01,712)+2\/31"(2/)202(”1,Uz)ﬂdvldvz-
AJA

If f(x) = 0 for ||z|| > d, where d is substantially smaller than the width of A, we
have the further approximation

1 ! !
Var(S) ~ E/,;/R? [54(2 )pa(v1,v2) 42 Var(Z )202(711,@2)2} dvido, .



Since both pa(v1,v9) and py(vy, v2) only depend on ||v; — va||, the inner integral does
not depend on v,. Hence, we have

Var(S) ~ %/RQ [ka(Z") pa(v,v0) + 2 Var(Z')?pa(v, vo)?]dv, (3.11)

where vy € A is a fixed point. By the same type of approximation argument, the
variance can also be approximated by

Var(S) ~ 2/{4[/14(?),04(@,1}0) + 2 Var(Z')? pa (v, v9)*] dv . (3.12)

3.4 Monte Carlo methods

If the integrals in (3.11) and (3.12) are too complicated to calculate, a solution
could be to estimate them by Monte Carlo methods. Assume for convenience that
A contains vy = (0,0), and define furthermore h = (0,0,h) and o = (vy,vs,0) for
v = (v1,v2) € A. Then,

[ pitwdo = [ [ (tat o)~ flut o b)) () - flu+ ) dude
A A JR3
and

[ .0 d”‘//Rg [ () = fu o) () = f+ )
fla+0)— f(a+v+h) (f(@) — fla+h)) dudadv.

It follows that [, ps(v,vo)dv can be estimated from the empirical mean of repeated
independent simulations of

(FU+V) = f(U+V +1)* (f(U) = f(U +h))?
g(U)h(V)

where U = (Uy, Uy, Us) and V = (V3, V3) are independent, U is simulated according
to some probability density g on R? and V is simulated according to some probability
density h on A. The value of [, p2(v,v0)*dv can be estimated similarly.



4 Simulation studies

4.1 Gaussian kernel function

Assume that f is the Gaussian kernel function (3.8), implying a Gaussian covariance.
Then, using (3.9) and (3.10), the approximation (3.11) becomes

Var(S) ~ %/R? [k4(Z") pa(v,v0) + 2 Var(Z')? pa(v, vg)?] dv

1 1, 3 —5-h? —2h?

= (M2 g (h + e = )
—l—2Var(Z’)21 ! (1—6410h2)2>~1/ e~ 27 T H3) Qo do
2 (2mo0)3 a Jre e

1 n L e
= ey () g (1 30 =2

+ Var(Z')*(1 — e_ih2)2> :

Furthermore, cf. (3.1) and Appendix B, we get with h = (0,0, h)

+(h) = 2Var(Z’)< 3 F(u)? du — [ R) du)

1 12
- n__ - o _Eh
=2 Var(Z') (Imo)i2 (1—e ),
from which we find
(h) = Var(Z')— Tt =i
T = (4ro)3/2 o

Combining these results, we find

- 1
Var(h) ~ ——— Var(S
() % s Var(S)
N 167703( ke(Z") 1
T ah? \Var(Z')? (2m0)3/?

(bt 3 =) + (7 = 1)%). (@)

In this example, we combine the Gaussian kernel function with a normal in-
verse Gaussian (NIG) Lévy basis for which the spot variable Z" is NIG(a, 3, i, 9)-
distributed. For such a Lévy basis,

ka(Z')  3(a*+457)

Var(Z')?  §a2\/a? — 32

see Table 1. In Figure 2, the resulting approximate variance (4.1) of h is plotted
as a function of h for a concrete choice of parameter values. The chosen values of
the parameters give a covariance structure similar to that obtained in a concrete
analysis presented in [5]. In Figure 2, the set A has been chosen such that the
effective support of the kernel function is much smaller than the width of A.

Note that the variance increases substantially as a function of h.

8
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Figure 2: A plot of the approximate expression for Var(h) as a function of h. The kernel
function is Gaussian with ¢ = 5. The parameters of the NIG distribution associated with
the Lévy basis are o = 0.6, 8 = 0.4, u = 2.4 and § = 2. Furthermore, A = [0, 100]2.

We have simulated from the model described above for four values of h: 0.2, 0.4,
1, 2. In each case, we made 1000 simulated values of h each based on simulation of
two parallel fields with distance h. From the simulated values of h we calculated the

~

empirical mean Eh and the empirical variance \//a\r(h). The results of this can be seen
in Table 2 together with the approximate variance Var(h), using the formula (4.1),
and estimates Var(iz) of the approximate variance, based on Monte Carlo simulation.
Figure 3 shows four jointly simulated parallel fields from the model such that the

last three fields are at distances 0.4, 1 and 2 from the first.

Table 2: For four values of h, Eh is the empirical mean of 1000 values of h simulated with a
Gaussian kernel function and a NIG Lévy basis. The empirical variance is denoted @(ﬁ)
Furthermore, Var(h) is the approximate variance, and %(ﬁ) is the Monte Carlo estimate
of the approximate variance. The parameters of the model are as specified in Figure 2.

h 0.2 0.4 1 2
Eh 0.1999647 0.3997637 1.001492 1.994434
Var(iz) 6.512-107° 2.638 - 1074 1.640 - 1073 7.692-1073

<

ar(fz) 6.298 - 107° 2.534-1074 1.652- 1073 7.703-1073
Var(fz) 6.313-107° 2.587-1074 1.675-1073 7.951-1073

It is seen from Table 2 that the bias of A is negligible. Furthermore, the variance
approximation (4.1) and its evaluation by Monte Carlo methods perform well.

4.2 Exponential kernel function

Now assume that f is an exponential kernel function

_ 9 ol
fla) = e
with o > 0. As e.g. shown in |5, Section 3|, this kernel function induces a 3rd order
autoregressive covariance function for the Lévy-based random field. For this kernel
function, expressions for p, and p4 in the variance approximations (3.11) and (3.12)
are not available. Accordingly, the approximate variances need to be evaluated, using
the Monte Carlo method. An example is shown in Table 3 for a NIG Lévy basis.

9
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Figure 3: Four jointly simulated parallel fields with NIG Lévy basis and a Gaussian kernel
function. The three last fields are at distance 0.4, 1 and 2 from the first. The parameters
of the model are as specified in Figure 2.
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Again, we have simulated 1000 values of h for the four choices of h: 0.2, 0.4, 1 and 2.

Table 3: For four values of h, Eh is the empirical mean of 1000 values of h simulated with
an exponential kernel function and a NIG Lévy basis. The empirical variance is denoted
Var(iL). Furthermore, Var(fb) is the Monte Carlo estimate of the approximate variance. The
parameter of the kernel function is ¢ = 0.56, while the parameters of the NIG distribution
are as in Figure 2.

h 0.2 0.4 1 2

Eh 0.200 0.400 0.998 1.996

Var(h) ~ 4.732-10°  1.813-107*  1.260-107®  7.352-1073

Var(h) — 4.736-107°  1.925-107*  1.358-107%  7.434-1073
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A Derivation of Var(95)

In this Appendix, we derive the variance formula (3.2) by differentiating (3.6) and
(3.7), and equating the two obtained expressions at A\; = Ay = 0 with each other.
Recall that

Y = Xo, — X, gi(u) = fu+wvy) — fu+vy).

It is easy to differentiate (3.7) with respect to A\; and Ay. Notice that
Kij(A1, A2) :/ log I (eM19i(n) 220,027y qy
R3

= /RS K (Agi(u) + Aag;(u)) du,

where K is the cumulant generating function of Z’. It follows that

8k+£

K (A, A
ONEONE i )

—wa(2) [ g, (A
)\12)\220 R3
where k¢ (Z') is the k’th cumulant of Z’.

In order to differentiate (3.6), we use the theory of joint cumulants, see [7, Sec-
tion 3.14 & Section 3.29]. Since E(Y;) = E(Y;) = 0, we get

82
(9)\% U()\1>)‘2) A= Ag—0 ( z)
a2
3)\15’)\2 Z:J()\17)\2) A =Ao=0 ( A ])
64
oo d)| = B(PYY) ~E(ERY) - 2EYY))°.

Combining these equations with (A.1), we find

B(Y?) = ra(2) | o du,
BV = ma(Z) [ ados(w? du+ w207 [

22 [ st a]

gi(u)? du} i

3

Inserting this into (3.5), we obtain (3.2).
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B Derivations for the Gaussian kernel function

In order to derive (3.9) and (3.10), we use that for v € R3

1

— L2
g fw)flu+v)du = G 1ol
and 1
’ R —
R3 f(U) f(u + U) du = 8(271’0‘)9/26 2 .
Furthermore, for vy, v, € R3 such that v; L vy, we have
1 ) f
/RS f<u>2f(u + vl)f(u + U1 + U2> d'u, = We%vllzé‘;”vQHQ
and
Ju) f(u+vr)f(u+ ) f(u+ v +vy) du = 1t (ealrel?)
* 8(2r )02

Using these expressions in (3.3) and (3.4) yield (3.9) and (3.10).
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