
www.csgb.dk

RESEARCH REPORT 2017

CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

Markus Kiderlen and Jan Rataj

Dilation volumes of sets of finite perimeter

No. 08, September 2017



Dilation volumes of sets of finite perimeter

Markus Kiderlen1 and Jan Rataj2

1Department of Mathematics, Aarhus University, Denmark
2Faculty of Mathematics and Physics, Charles University, Czech Republic

Abstract

This paper analyzes the first order behavior (that is, the right sided deriva-
tive) of the volume of the dilation A⊕ tQ as t converges to zero. Here A and
Q are subsets of n-dimensional Euclidean space, A has finite perimeter and
Q is finite. If Q consists of two points only, x and x + u, say, this derivative
coincides up to sign with the directional derivative of the covariogram of A in
direction u. By known results for the covariogram, this derivative can there-
fore be expressed by the cosine transform of the surface area measure of A. We
extend this result to finite sets Q and use it to determine the derivative of the
contact distribution function with finite structuring element of a stationary
random set at zero. The proofs are based on approximation of the charac-
teristic function of A by smooth functions of bounded variation and showing
corresponding formulas for them.

Keywords: bounded variation; contact distribution function; dilation volume;
directional variation; sets of finite perimeter; stationary random set; surface
area measure

1 Introduction

Assume that A ⊂ Rn has regular boundary in the sense that the (n−1)-dimensional
Hausdorff measure of its boundary, Hn−1(∂A), is finite and that for Hn−1 almost
all a ∈ ∂A, there exists a unique outer unit normal vector νA(a) ∈ Sn−1. This is
the case e.g. if A is a topologically regular convex or polyconvex set, n-dimensional
compact Lipschitz manifold with boundary or a “full-dimensional UPR set” ([18]).
Then, the surface area measure of A is defined naturally as

Sn−1(A; · ) = Hn−1{a ∈ ∂A : νA(a) ∈ · }.

The surface area measure is an important quantity in stochastic geometry and its
estimation is a frequent task. Various integral formulas are used in this context. It
is well-known that the intersection density of ∂A with lines of direction u ∈ Sn−1 is

∫

Sn−1

|u · v|Sn−1(A; dv),
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and that these integrals (called cosine transform) determine only the symmetrized
form of the surface area measure, Sn−1(A; · ) + Sn−1(−A; · ). The cosine transform
appears also in the directional derivative of the covariogram of A,

C(A, y) = λn(A ∩ (A+ y)), y ∈ Rn,

(λn is Lebesgue-measure in Rn), as

lim
r→0+

C(A, ru)− C(A, 0)

r
= −1

2

∫

Sn−1

|u · v|Sn−1(A; dv), (1.1)

when u ∈ Sn−1 and A has finite volume. This was shown by Matheron [15] for convex
bodies and extended considerably by Galerne [10].

Note that the covariogram can be expressed by means of dilation volumes with
two-point test sets, namely

C(A, y) = 2λn(A)− λn(A⊕ {0, y}).

A natural extension is to consider the dilation volume λn(A ⊕ Q) for a general
compact test set Q ⊂ Rn. Generalizing (1.1), we have

lim
r→0+

λn(A⊕ rQ)− λn(A)

r
=

∫

Sn−1

h(Q, v)Sn−1(A; dv), (1.2)

where h(Q, · ) is the support function of conv Q. This was shown in [13, Corol-
lary 2] under the assumption that A is a compact gentle set. Besides a technical
regularity condition this means that for Hn−1-almost all points a ∈ ∂A there are
non-degenerate osculating balls containing a, one completely contained in A and
the other in the closure of AC . While the right hand side of (1.1) (known for all u)
determines only the symmetrized form of the surface area measure, the right hand
side of (1.2) determines Sn−1(A; · ) itself, when the integrals are known for all sets Q
that are congruent to a fixed triangle having at least one angle that is an irrational
multiple of π. This was shown by Schneider [20]; see also [21, p. 283 and (5.1.18)]. In
particular, for the determination of Sn−1(A; · ) it is enough to know the right hand
side of (1.2) for all three-point test sets Q; cf. [18] for a related result.

Although the class of gentle sets is reasonably large (it contains for instance
all topologically regular polyconvex sets) this condition for the derivation of (1.2)
seems to be rather artificial and its purpose is to make the proofs work. A different
approach is based on the theory of sets with finite perimeter which are, by definition,
sets A ⊂ Rn whose indicator function 1A has distributional derivative representable
as a Radon measure D1A. (In other words, 1A has bounded variation.) The notion
of sets with finite perimeter goes back to Caccioppoli [3] and De Giorgi [5, 6, 7].
We note that (poly)convex sets, compact UPR-sets as well as compact gentle sets,
or compact Lipschitz domains are sets of finite perimeter, simply as any set whose
boundary has finite Hn−1-measure has also finite perimeter.

In the following we describe, how the notion of surface area measure can be
extended to sets of finite perimeter. The essential boundary ∂∗A of a set A is the set
of points in Rn that are neither Lebesgue density points of A nor of its complement.

2



If A is a set of finite perimeter, then the variation (scalar) measure |D1A| can be
written as a restriction of the (n − 1)-dimensional Hausdorff measure Hn−1 in the
form

|D1A| = Hn−1x(∂∗A), (1.3)

[2, (3.63)], and the perimeter P (A) = |D1A|(Rn) equals Hn−1(∂∗A). In the case
where A has Lipschitz boundary, we have ∂A = ∂∗A and P (A) coincides with the
usual surface area of A.

For a general set A with finite perimeter, the distributional derivative D1A can
be decomposed as

D1A = ∆1A
|D1A|;

see (2.4), below. The density ∆1A
is an Sn−1-valued function defined Hn−1-almost

everywhere on ∂∗A and can be interpreted as a generalized inner unit normal vector
field to A. (In fact there exists a subset of ∂∗A of full Hn−1 measure called reduced
boundary and a representative νA of −∆1A defined there such that the half-space
{y : y · νA(a) ≤ 0} coincides with the approximate tangent cone of A at a for any a
from the reduced boundary, see [2, §3.5].) Thus, it is natural to define the generalized
surface area measure of a set A with finite perimeter as

S∗n−1(A; · ) = Hn−1{a ∈ ∂∗A : −∆1A
(a) ∈ · }. (1.4)

Clearly, S∗n−1(A; · ) coincides with Sn−1(A; · ) if A has Lipschitz boundary.
Sets with finite perimeter have already appeared in the context of stochastic

geometry. Villa [23] considered the (outer) Minkowski content and the spherical
contact distribution function of inhomogeneous Boolean models with grains that
have finite perimeter. The second author considered in [19] random sets of finite
perimeter and established, among other things, a Crofton formula for these. Galerne
and Lachièze-Rey [11] developed a theory of random measurable (not necessarily
closed) sets and discussed the covariogram realizability problem in this framework.
Their paper is based on an earlier one by Galerne [10], who showed an extension of
the formula (1.1) for sets with finite volume and finite perimeter, namely

lim
r→0+

C(A, ru)− C(A, 0)

r
= −1

2

∫

Sn−1

|u · v|S∗n−1(A; dv), (1.5)

and applied it to random sets.
Our main result is an analogous extension of (1.2) for the case of finite sets Q:

Theorem 1.1. Assume that A ⊂ Rn has finite perimeter. If ∅ 6= Q ⊂ Rn is finite
then

lim
r→0+

λn((A⊕ rQ) \ A)

r
=

∫
h(Q, v)+ S∗n−1(A; dv). (1.6)

If, in addition, A has bounded volume then also

lim
r→0+

λn(A⊕ rQ)− λn(A)

r
=

∫
h(Q, v)S∗n−1(A; dv). (1.7)

We show in Example 4.3 that the result is no longer true if we allow Q to be
infinite, even if Q is countable and compact.
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The case when Q is an n-dimensional convex body was considered by Chambolle
et al. [4]. They showed that (1.7) is true whenever it holds for Q = B(0, 1) (which,
however, need not be true). They also proved the convergence in (1.7) in a weaker
sense (Γ-convergence) for any n-dimensional convex body Q. Related results for
special sets A can be found in [14].

Extending or complementing corresponding results in [23] and [10], we conclude
with an application of Theorem 1.1 for the contact distribution of stationary random
sets. Recall that for a stationary random closed set Z ⊂ Rn (in the sense of Math-
eron; see, e.g. [22]) with volume fraction p = Pr(0 ∈ Z), the contact distribution
function of Z with compact structuring element Q ⊂ Rn is defined by

HQ(r) = Pr(Z ∩ rQ 6= ∅ | 0 6∈ Z), r ≥ 0.

We will derive a formula for the one-sided derivative of HQ at zero when Q is finite.
The framework of sets with finite perimeter seems to be particularly well-suited for
this problem, as the result does not require any of the usual integrability assump-
tions. In addition, it even holds for the more general class of random measurable
sets (RAMS) introduced in [11].

A RAMS is a random element from the space of Lebesgue measurable subsets
of Rn modulo differences of Lebesgue measure zero, with topology induced by the
L1

loc convergence of the indicator functions. This setting includes random closed sets
in the sense of Matheron as a special case. The definitions of the volume fraction
p and the contact distribution function HQ can be extended to stationary RAMS
Z ⊂ Rn; see Section 5. We use the notion of specific perimeter P (Z) of Z given as
the (constant) density of the variation measure |D1Z | with respect to λn (cf. [10]
where the notion ‘specific variation’ is used, or [19]), and oriented rose of directions
R∗ given as the distribution of the outer normal −∆1Z

(z) at a typical point z ∈ ∂∗Z
in case P (Z) <∞; see Section 5 for exact definitions.

Theorem 1.2. Let Q 6= ∅ be finite. If Z is a stationary RAMS, then the right sided
derivative H ′Q(0+) of HQ at 0 satisfies

(1− p)H ′Q(0+) = P (Z)

∫

Sn−1

h(−Q, v)+R∗(dv) (1.8)

when P (Z) <∞. If P (Z) is infinite, and conv(Q ∪ {0}) has interior points,

(1− p)H ′Q(0+) =∞.

If Z is stationary and isotropic, and P (Z) ∈ [0,∞], then

(1− p)H ′Q(0+) = 1
2
b(conv(Q ∪ {0}))P (Z) (1.9)

where b( · ) is the mean width.

We would like to stress that the methods of proofs are different from the classi-
cal approaches in stochastic geometry when dealing with sets with finite perimeter.
Namely, we use typically approximations of characteristic functions by smooth func-
tions of bounded variation, show related formulas for them, and apply continuity
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arguments to obtain the desired results. This means that we have to define func-
tionals to be dealt with not only for sets but also for functions.

The paper is organized as follows. In Section 2 we recall the usual and directional
variation of a function f , discuss basic properties, and define sets of finite perimeter.
The notion of the variation V Q(f) of f with respect to a compact set Q is introduced
and discussed in Section 3. This is a special case of anisotropic variation with respect
to a Finsler metric, see [1]. In particular, V −Q(1A) coincides with the right hand
side of (1.7) when 0 ∈ Q. Section 4 is devoted to the proof of the main result,
Theorem 1.1. While one equality (Proposition 4.2) is obtained by standard methods
(similarly as the same inequality for n-dimensinal convex bodies in [4]), the other
inequality (Corollary 4.6) is more difficult. The above mentioned application to
random sets and the proof of Theorem 1.2 is described in Section 5.

2 Preliminaries

We present here some definitions and properties of functions of bounded variation
and sets with finite perimeter. As reference we use mostly the book [2].

Let Ω be a nonempty open subset of Rn and 0 6= u ∈ Rn. We write L1
loc(Ω) for the

space of all functions on Ω that are locally Lebesgue-integrable. The distributional
directional derivative of a function f ∈ L1

loc(Ω) in direction u is the linear functional

Duf : φ 7→ −
∫

Ω

∂φ

∂u
(x)f(x) dx, φ ∈ C∞c (Ω). (2.1)

Here ∂φ
∂u

(x) is the classical directional derivative of a smooth function, dx denotes the
integration w.r.t. Lebesgue measure and C∞c (Ω) stands for the space of infinitely dif-
ferentiable functions on Ω with compact support. We define the directional variation
of f ∈ L1

loc(Ω) in the direction u ∈ Sn−1 as

Vu(f,Ω) := sup {Duf(φ) : φ ∈ C∞c (Ω), ‖φ‖∞ ≤ 1} .

If the last expression is finite and f ∈ L1(Ω), we say that f has finite directional
variation (in Ω and) in direction u. We denote by BVu(Ω) the space of all such
functions. Note that, by the Riesz representation theorem, f ∈ BVu(Ω) if and only
if the distributional directional derivative Duf can be represented as a finite Radon
measure on Ω. In this case we have Vu(f,Ω) = |Duf |(Ω), where |µ| denotes the
variation measure of the (real- or vector-valued) Radon measure µ given by

|µ|(A) = sup
{ ∞∑

h=1

|µ(Eh)| : (E1, E2, . . .) forms a Borel partition of A
}

for any Borel set A ⊂ Ω.
The variation of a function f ∈ L1

loc(Ω) is defined as

V (f,Ω) := sup

{∫

Ω

f(x) divϕ(x) dx : ϕ ∈ C∞c (Ω,Rn), ‖|ϕ|‖∞ ≤ 1

}
.
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Here, C∞c (Ω,Rn) is the vector space of Rn-valued infinitely differentiable func-
tions on Ω with compact support, and ‖|ϕ|‖∞ is the L∞-norm of the Euclidean norm
|ϕ| =

√
ϕ2

1 + · · ·+ ϕ2
n of ϕ = (ϕ1, . . . , ϕn). If V (f,Ω) is finite and f ∈ L1(Ω), we

say that f has bounded variation in Ω. The vector space of all functions of bounded
variation is denoted by BV(Ω). Functions f ∈ L1

loc(Ω) with bounded variation in
any relatively compact open subset of Ω are said to have locally bounded variation
in Ω. We have f ∈ BV(Ω) if and only if f ∈ BVu(Ω) for all u ∈ Sn−1 and then,

V (f,Ω) = (2κn−1)−1

∫

Sn−1

Vu(f,Ω)Hn−1(du), (2.2)

cf. [10]. Here and in the following Hk denotes the k-dimensional Hausdorff measure
in Rn, and κk is the k-dimensional volume of the Euclidean unit ball in Rk.

If f ∈ BV(Ω) then there exists a finite Rn-valued Radon measure Df on Ω such
that Df(A) · u = Duf(A) for all Borel-sets A ⊂ Ω, and u 6= 0; Df represents the
distributional derivative of f , cf. [2, §3.1]. The variation of f is the total variation
of Df :

V (f,Ω) = |Df |(Ω). (2.3)

Let
Df = ∆f |Df | (2.4)

be the polar decomposition of Df , i.e., ∆f ∈ L1(Ω, |Df |) taking values in Sn−1 is
the Radon-Nikodým density of Df w.r.t. |Df | (cf. [2, Corollary 1.29]). Note that if
f ∈ BV(Ω) and u 6= 0 then Vu(f,Ω) can be written in the form

Vu(f,Ω) =

∫

Ω

|u ·∆f (x)| |Df |(dx).

Note also that if f ∈ C1(Ω) ∩ BV(Ω) then Df(dx) = ∇f(x) dx, |Df |(dx) =
|∇f(x)| dx, and

∆f (x) :=

{ ∇f(x)
|∇f(x)| , ∇f(x) 6= 0,

0, otherwise,

is a version of ∆f , where ∇f(x) denotes the gradient of f at x.
Let (fj) be a sequence of functions in BV(Ω) and let f ∈ BV(Ω). Following [2,

3.14], we say that (fj) converges strictly to f if fj → f in L1(Ω) and, additionally,
V (fj,Ω) → V (f,Ω). As a basic example, consider any function f ∈ BV(Ω) and
a sequence of C∞ mollifiers ρj (i.e., ρj(y) = jnρ(jy) with a nonnegative function
ρ ∈ C∞c fulfilling

∫
Rn ρdx = 1). Then, the convolutions f ∗ ρj (mollifications of f)

belong to C∞(Ω′) and f∗ρj → f strictly in a slightly “shrunk” open set Ω′ = {x ∈ Ω :
dist(x, ∂Ω) > ε} (cf. [2, §2.1, 3.1]). That the set Ω has to be replaced by a smaller
one can be avoided by mollifying fϕh, where (ϕh) is a smooth partition of unity
in Ω relative to a locally finite covering (Ωh) with open, relative compact sets. The
corresponding result can be found in [24, Theorem 5.3.3] and implies the third
statement in the following collection of well-known basic properties of the variation.

6



Proposition 2.1 (Basic properties of the variation).
(a) For f ∈ BV(Ω) ∩ C1(Ω),

V (f,Ω) =

∫

Ω

|∇f |dx.

(b) If fj → f in L1(Ω) then V (f,Ω) ≤ lim infj→∞ V (fj,Ω).

(c) For f ∈ BV(Ω), there is a sequence of functions (fj) in C∞(Ω) ∩ BV(Ω)
converging strictly to f .

The following lemma states that the positive and negative parts of Duf , u 6= 0,
have the same total mass when f ∈ BV(Ω) and Ω = Rn. This is not necessarily true
when Ω 6= Rn. For instance, f(x) = x on Ω = (0, 1) satisfies (D1f)+(Ω) = 1, but
(D1f)−(Ω) = 0.

Lemma 2.2. For f ∈ BV we have Df(Rn) = 0. In particular,

Duf(Rn) =

∫

Rn

(u ·∆f (x)) |Df |(dx) = 0 (2.5)

for all u 6= 0.

Proof. Fix f ∈ BV and put φm = 1B(0,m) ∗ ρ, where 0 ≤ ρ ∈ C∞ is a mollifier with
support in B(0, 1). Clearly, ∇φm is zero outside the annulus Rm = B(0,m + 1) \
B(0,m− 1), and ‖∂φm

∂xi
‖∞ < κn‖|∇ρ|‖∞, so

∣∣∣∣
∫

Rn

φm(Df)i(dx)

∣∣∣∣ =

∣∣∣∣−
∫

Rn

∂φm
∂xi

f(x)dx

∣∣∣∣ ≤ κn‖|∇ρ|‖∞
∫

Rm

|f |dx.

for all i ∈ {1, . . . , n}. As f ∈ L1, the right hand side converges to 0. The left hand
side converges to

∣∣∫
Rn(Df)i(dx)

∣∣, as φm is an increasing sequence with pointwise
limit 1, and (Df)i is a finite Radon measure. We conclude Df(Rn) = 0 and

∫

Rn

(u ·∆f (x)) |Df |(dx) = u ·
∫

Rn

Df(dx) = 0,

as claimed.

We shall work with the following generalization of directional variations. Let L be
a linear subspace of Rn of dimension k ∈ {1, . . . , n}. If C∞c (Ω, L) denotes the vector
space of all functions in C∞c (Ω,Rn) with values in L, we may define the L-variation
in Ω of f ∈ L1

loc(Ω) as

VL(f,Ω) := sup

{∫

Ω

f(x)
k∑

i=1

∂(ϕ · ui)
∂ui

(x) dx : ϕ ∈ C∞c (Ω, L), ‖|ϕ|‖∞ ≤ 1

}
,

where {u1, . . . , uk} is an orthonormal basis of L. This definition does not depend on
the choice of the orthonormal basis.

Clearly, when f ∈ L1(Ω), VL(f,Ω) < ∞ if and only if Vu(f,Ω) < ∞ for all unit
vectors u ∈ L, and in this case, we say that f has finite directional variation in L,
writing f ∈ BVL(Ω). We have VRn(f,Ω) = V (f,Ω), and Vspan{u}(f,Ω) = Vu(f,Ω)
when u ∈ Sn−1. If L ⊆ L′ are two subspaces then VL(f,Ω) ≤ VL′(f,Ω).

7



Proposition 2.3 (Basic properties of the directional variation). The following as-
sertions hold for a linear subspace {0} 6= L ⊂ Rn.

(a) For f ∈ BV(Ω) we have

VL(f,Ω) = |pL(Df)|(Ω) =

∫

Ω

|pL∆f (x)| |Df |(dx), (2.6)

where pL denotes the orthogonal projection on L. If, in addition, f ∈ C1(Ω),

VL(f,Ω) =

∫

Ω

|pL∇f |dx.

(b) If fj → f in L1(Ω) then VL(f,Ω) ≤ lim infj→∞ VL(fj,Ω).

(c) If (fj) is a sequence converging strictly to f ∈ BV(Ω), then VL(fj,Ω) →
VL(f,Ω) as j →∞.

Proof. The first two statements generalize slightly [2, Proposition 3.6] and we can
skip the proof as it is quite obvious. To show (c) let (fj) be a sequence converging
strictly to f ∈ BV(Ω). By [2, Proposition 3.13] the measures Dfj converge weakly
to Df in Ω and their total variations converge to |Df |(Ω). The claim now follows
from a special case of the Reshetnyak continuity theorem, Lemma 2.4, below, which
is quoted here from the literature for easy reference.

Lemma 2.4 ([2, Proposition 2.39]). Let µ0, µ1, . . . be finite vector-valued Radon
measures on an open set Ω ⊂ Rn, such that µj converges weakly to µ0 in Ω and
|µj|(Ω)→ |µ0|(Ω) as j →∞. Then

∫

Ω

h(gj(x)) d|µj|(x)→
∫

Ω

h(g0(x)) d|µ0|(x), j →∞,

for every continuous and bounded function h : Ω → R, where gj is the Radon-
Nikodým density of µj with respect to |µj|.

The perimeter of a measurable set A ⊆ Rn in an open set Ω is defined as

P (A,Ω) = V (1A,Ω).

If the last quantity is finite, we say that A has finite perimeter in Ω. Sets A with
P (A,Rn) < ∞ are simply called sets of finite perimeter. This class is closed un-
der set complement operation: a Borel set A has finite perimeter if and only if its
complement has finite perimeter. In all the above notions, we skip from now on the
argument Ω if Ω = Rn. If A has finite volume, 1A is in L1(Rn) and thus A has finite
perimeter if and only if 1A ∈ BV.

If the perimeter of a set A is finite, it is the variation of D(1A) on Ω. This
variation measure can in turn be expressed by means of the (n − 1)-dimensional
Hausdorff measure. To do so, let the reduced boundary FA be the set of all points
x ∈ Ω in the support of |D(1A)| such that the limit

νA(x) = − lim
ρ→0+

D(1A)(B(0, ρ))

|D(1A)|(B(0, ρ))
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exists in Rn and is a unit vector. Here and in the following, B(x, ρ) denotes the Eu-
clidean ball with radius ρ ≥ 0 centered at x ∈ Rn. The negative sign in this definition
is included here, so that the function νA : FA→ Sn−1 can be interpreted as gener-
alized outer normal to A. By the Besicovitch derivation theorem [2, Theorem 2.22],
|D(1A)| is concentrated on FA, and D(1A) = −νA|D(1A)|. A comparison with the
polar decomposition (2.4) yields −νA(x) = ∆1A

(x) for |D(1A)|-almost every x. De
Giorgi has shown that FA is countably (n−1)-rectifiable and |D(1A)| = Hn−1xFA,
see, for instance [2, Theorem 3.59].

If A ⊂ Rn has finite perimeter and u ∈ Rn, let Fu+A, Fu−A denote the set of all
points x ∈ FA such that νA(x) · u is positive or negative, respectively. When u 6= 0,
these sets are connected to the positive and negative parts of the measure Du1A as
follows:

(Du1A)+(B) =

∫

B∩Fu−A
|u · νA(x)|Hn−1(dx),

(Du1A)−(B) =

∫

B∩Fu+A

|u · νA(x)|Hn−1(dx), (2.7)

where B is any bounded Borel subset of Rn.
It is sometimes convenient to replace FA with larger sets, that are easier to

handle. Let ∂∗A = Rn \ (A0 ∪ A1) be the essential boundary of A, where

At :=
{
x ∈ Rn : lim

r→0+

λn(A ∩B(x, r))

λn(B(x, r))
= t
}

(2.8)

is the set of all points with Lebesgue density t ∈ [0, 1]. Then we have FA ⊂ ∂∗A
([2, Theorem 3.61]). If A is a set of finite perimeter in Ω, it can be shown that
Hn−1(Ω ∩ ∂∗A \ FA) = 0, see [2, Theorem 3.61], and thus we have

|D(1A)| = Hn−1xFA = Hn−1x∂∗A (2.9)

on Ω, and, in particular,

P (A,Ω) = Hn−1(FA ∩ Ω) = Hn−1(∂∗A ∩ Ω). (2.10)

When Ω = Rn, the generalized surface area measure of A, as defined in the intro-
duction, can therefore also be written as

S∗n−1(A; · ) = Hn−1 ({a ∈ FA : νA(a) ∈ · }) . (2.11)

Remark 2.5. As functions with bounded variation, sets with finite perimeter are
considered not as individual sets in Rn, but as equivalence classes 1A ∈ L1. Thus,
two sets with finite perimeter are considered as identical if the Lebesgue measure of
their symmetric difference vanishes.

3 The variation with respect to a compact set

The support function h(Q, · ) of a non-empty compact set Q in Rn is defined as the
(usual) support function of its convex hull convQ. Explicitly, we have

h(Q, u) = max{u · x : x ∈ Q}, u ∈ Sn−1.
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If x+ = max{x, 0} denotes the positive part of x ∈ R, h(Q ∪ {0}, · ) = h(Q, · )+.
Properties and applications of the support function of convex sets can be found
in [21]. We only mention here that the mean width b(K) of a non-empty compact
convex set K ⊂ Rn can be defined using its support function:

b(K) =
2

nκn

∫

Sn−1

h(K, u)du.

For an open set Ω ⊂ Rn and f ∈ BV(Ω) with polar decomposition (2.4), we define
a functional

V Q(f,Ω) =

∫

Ω

h(Q,∆f (x))+ |Df |(dx)

and call it the variation of f with respect to Q in Ω. As V Q(f,Ω) = V conv(Q∪{0})(f,Ω),
this variation depends on Q only through the convex hull of Q∪ {0}. We follow our
usual convention and write V Q(f) = V Q(f,Rn). If this definition is applied to the
indicator function of a set A ⊂ Rn of finite perimeter with Ω = Rn, (2.9) and (2.11)
give

V Q(1A) =

∫

Sn−1

h(−Q ∪ {0}, u)S∗n−1(A; du). (3.1)

If A is a convex body, V Q(1A) = nV (−Q ∪ {0}, A, . . . , A) is a mixed volume, so
V Q(1A) generalizes certain mixed volumes to sets of finite perimeter. If convQ is
symmetric w.r.t. the origin then V Q(f) is a special case of the generalized (anisotropic)
variation defined in [1]. Indeed, we have V Q(f) = |Df |φ(Rn) with Finsler metric
φ(x, v) = hQ∪{0}(v), x ∈ Rn, v ∈ Rn \ {0}, in the sense of [1, Definition 3.1].

Let BL = B(0, 1) ∩ L be the unit ball in L. One motivation to call V Q(f) a
“variation” comes from the fact that

V BL(f,Ω) = VL(f,Ω), (3.2)

which follows directly from the definitions as h(BL, · ) = |pL|. In particular, we have
V {−u,u}(f,Ω) = Vu(f,Ω) whenever u ∈ Sn−1. Another motivation is that averaging
Q-variations gives the usual variation, that is,

∫

SO(n)

V ϑQ(f,Ω) dϑ = cQ V (f,Ω).

where cQ = (1/2)b (conv(Q ∪ {0})). This follows directly from the definitions and an
application of Fubini’s theorem. We now summarize connections and basic inequal-
ities between the variation with respect to Q and the L-variations when Ω = Rn.

Lemma 3.1 (Ordinary variation and variation with respect to Q). Let f ∈ BV and
a non-empty compact set Q ⊂ Rn be given. Then the following statements hold.

(a) For u ∈ Sn−1 we have
2V {u}(f) = Vu(f).

(b) V Q(f) ≥ sVL(f), where L = spanQ and s is the relative inradius of conv(Q∪{0})
in L (i.e., s is the maximum radius of a ball in L contained in Q).

10



(c) V Q(f) ≤ RVL(f) ≤RV (f), where R denotes the circumradius of conv(Q∪{0}),
that is the radius of the unique smallest ball containing this set.

Proof. The claim in (a) follows from the definitions of Vu(f) and V Q(f), in com-
bination with (2.5). To verify (b), let BL(y, s) be a ball in L included in K :=
conv({0} ∪Q). From the basic properties of support functions we get for u ∈ Sn−1

(h(Q, u))+ = h(K, u) = h(K, pLu)

≥ h(B(y, s), pLu) = y · pLu+ s|pL(u)| = y · u+ s|pL(u)|.

Setting u = ∆f (x) and integrating w.r.t. |Df |, equations (2.5) and (2.6) imply

V Q(f) ≥ sVL(f),

as required. The proof of assertion (c) is analogous.

For a non-empty compact set Q ⊂ Rn we define the Q-variation measure |µ|Q of
the Rn-valued Radon measure µ on the open set Ω ⊂ Rk by

|µ|Q(A) = sup
{ ∞∑

h=0

h(Q, µ(Eh))
+ : (E1, E2, . . .) forms a partition of A

}

for any Borel set A ⊂ Ω. Using the subadditivity of the support function, it is easy
to show that |µ|Q is a positive Radon measure; one can for instance adapt the proof
of [2, Theorem 1.6] and observe that Q ⊂ B(0, r) implies |µ|Q ≤ |µ|B(0,r) = r|µ|
to prove finiteness on compact sets. The identity (3.2) shows that the following
Proposition contains Proposition 2.3 as special case.

Proposition 3.2 (Basic properties of the variation with respect to Q).
Let Q ⊂ Rn be non-empty and compact.

(a) For f ∈ BV(Ω) we have V Q(f,Ω) = |Df |Q(Ω). If, in addition, f ∈ C1(Ω),
then

V Q(f,Ω) =

∫

Ω

h (Q,∇f(x))+ dx. (3.3)

(b) Assume that Ω = Rn or that the origin is a relative interior point of convQ.
If fj → f in L1(Ω) then V Q(f,Ω) ≤ lim infj→∞ V Q(fj,Ω).

(c) If (fj) is a sequence converging strictly to f ∈ BV(Ω), then V Q(fj,Ω) →
V Q(f,Ω) as j →∞.

Proof. In order to prove that V Q(f,Ω) = |Df |Q(Ω) in (a), it is enough to show that
if an Rn-valued finite measure µ has density g with respect to a positive measure ν,
then |µ|Q has density h(Q, g( · ))+ with respect to ν, and apply this to µ = Df ,
ν = |Df |. With this notation, and exploiting that we may assume 0 ∈ Q, we have
to prove

|µ|Q(B) =

∫

B

h(Q, g(x)) ν(dx) (3.4)

11



for all measurable sets B. The inequality |µ|Q(B) ≤
∫
B
h(Q, g)dν follows from the

convexity, positive homogeneity and continuity of h(Q, · ). To show the reverse
inequality let ε > 0 and choose a dense sequence (zh) in convQ. Define

σ(x) = min{h ∈ N : zh · g(x) ≥ (1− ε)h(Q, g(x))},

and the level sets Bh = σ−1(h) ∩B, that form a partition of B. Then

(1− ε)
∫

B

h(Q, g)dν =
∑

h

∫

Bh

(1− ε)h(Q, g)dν ≤
∑

h

∫

Bh

zh · g(x)dν

=
∑

h

zh · µ(Bh) ≤
∑

h

h(Q, µ(Bh)) ≤ |µ|Q(B),

yielding (3.4). If f is also in C1(Ω), Df has Lebesgue-density ∇f and (3.4) with
µ = Df , g = ∇f and Lebesgue measure ν yields the second claim in (a).

Let us show (b). We may assume that lim infj V
Q(fj,Ω) < ∞, and pass to a

subsequence (again denoted by (fj)) for which limj→∞ V Q(fj,Ω) < ∞ exists. Set
L := spanQ. Except the trivial case Q = {0}, we always have dimL ≥ 1. If Ω = Rn

let s > 0 be the inradius of conv({0} ∪Q) in L. Then,

VL(fj,Ω) ≤ 1

s
V Q(fj,Ω) (3.5)

due to Lemma 3.1.(b). If the origin is a relative interior point of convQ, there is
s > 0 such that sBL ⊂ convQ and hence V Q(fj,Ω) ≥ V sBL(fj,Ω) = sV BL(fj,Ω) =
sVL(fj,Ω), implying again (3.5). In either case, the sequence VL(fj,Ω) is bounded.
Hence, by Proposition 2.3.(a), µj := pL(Dfj), j = 1, 2, 3, . . ., are L-valued finite
vector measures. We can show exactly as in the proof of [2, Proposition 3.13] that
µj → µ = pL(Df) weakly* (we use the relative weak* compactness of (µj) and
verify that any cumulative point of (µj) must agree with pL(Df)). Note that the
measures µj, and µ have polar decompositions (2.4)

dµj =
pL∆fj

|pL∆fj |
d|µj|, µ =

pL∆f

|pL∆f |
d|µ|,

and we can write

V Q(f,Ω) =

∫

Ω

h

(
conv({0} ∪Q),

pL∆f

|pL∆f |

)
d|µ|,

and analogously with fj and µj. Since the support function h(conv({0} ∪Q), · ) is
continuous and positively 1-homogeneous, we may apply the Reshetnyak lower semi-
continuity theorem [2, Theorem 2.38] and we obtain V Q(f,Ω) ≤ lim infj V

Q(fj,Ω),
as requested.

Assertion (c) follows directly from Lemma 2.4 with h = h(conv({0}∪Q), · ).

Remark 3.3. If convQ is symmetric w.r.t. the origin then assertion (b) of Propo-
sition 3.2 follows from [1, Theorem 5.1].
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4 Dilation volumes

Let A ⊕ Q = {a + q : a ∈ A, q ∈ Q} be the Minkowski sum of the sets A and Q
in Rn. For measurable A and compact Q 6= ∅ we are interested in the volume

λn((A⊕Q) \ A) =

∫

Rn

(
max
u∈Q

1A+u(x)− 1A(x)
)+
dx,

and therefore define more generally the functional

G(Q, f) =

∫

Rn

(
sup
u∈Q

f(x− u)− f(x)
)+
dx (4.1)

for any measurable function f on Rn. Note that the family {f( · − u) : u ∈ Q} is
a permissible class, and thus, supu∈Q f( · − u) is Lebesgue-measurable; see e.g. [17,
Appendix C] for a short summary or [8, Section III] for details. By definition,

G(Q,1A) = λn((A⊕Q) \ A). (4.2)

Note that the mapping f 7→ G(Q, f) may depend in general on the particular
representation f and, hence, cannot be considered as a mapping on L1. When Q is
at most countable, independence of the representative is straightforward.

Lemma 4.1 (Properties of G(Q, · ) for countable Q). If the compact set Q 6= ∅ is at
most countable then the mapping G(Q, · ) is well-defined and lower semi-continuous
on L1. Moreover, if fj = f ∗ρj is a mollification of f ∈ L1 with non-negative ρ, then

G(Q, fj) ≤ G(Q, f) (4.3)

and thus G(Q, fj)→ G(Q, f), as j →∞.

Proof. For integrable f , let fQ(x) = supu∈Q f(x− u). If g is another representative
of the L1-equivalence class of f , then f = g outside a set N of Lebesgue measure
zero. Then, fQ = gQ outside the set N ⊕Q, the latter being a Lebesgue-null set as
Q is at most countable. Hence G(Q, · ) is well-defined on L1.

To show the semi-continuity, let (fj) be a sequence that converges to f in L1.
This implies that (fj) converges in measure and if we consider a subsequence of
(fj) such that the limit inferior (of (G(Q, fj))) becomes an ordinary limit, there
is a sub-subsequence (fj′) that converges outside a Lebesgue-null set N . As Q is
at most countable, M = N ⊕ (Q ∪ {0}) is a Lebesgue-null set, and we have that
limj→∞ fj′(x − u) = f(x − u) for all u ∈ Q ∪ {0} and x 6∈ M . Fatou’s lemma and
the lower semi-continuity of the supremum operation now yield

lim inf
j→∞

G(Q, fj) ≥
∫

Rn

lim inf
j→∞

sup
u∈Q∪{0}

(fj′(x− u)− fj′(x)) dx

≥
∫

Rn\M
sup

u∈Q∪{0}
lim inf
j→∞

(fj′(x− u)− fj′(x)) dx

=

∫

Rn\M
sup

u∈Q∪{0}
(f(x− u)− f(x)) dx

= G(Q, f).
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It remains to prove (4.3). We may assume without loss of generality that 0 ∈ Q, as
G(Q, f) = G(Q ∪ {0}, f). Then, the positive part can be dropped in the definition
of G(Q, f). We have

G(Q, fj) = ‖ sup
u∈Q

(fj( · − u)− fj)‖1

= ‖ sup
u∈Q

[(f( · − u)− f) ∗ ρj] ‖1

≤
∥∥∥∥
[
sup
u∈Q

(f( · − u)− f)

]
∗ ρj

∥∥∥∥
1

= ‖ sup
u∈Q

(f( · − u)− f)‖1

= G(Q, f).

We have used the inequality

sup
u∈Q

[gu ∗ h] ≤ [sup
u∈Q

gu] ∗ h

valid for any integrable functions h ≥ 0 and gu, u ∈ Q.

Proposition 4.2. If f ∈ C1 ∩ BV , Q ⊂ Rn is non-empty and compact, and r > 0
then

lim inf
r→0+

1
r
G(rQ, f) ≥ V −Q(f). (4.4)

If Q is in addition at most countable, (4.4) holds for any f ∈ BV.

Proof. Assume first that f ∈ C1 ∩ BV. Using the function

gx(r) = max
u∈Q

f(x− ru)− f(x), r ≥ 0,

we may write
1
r
G(rQ, f) =

∫

Rn

(
1
r
gx(r)

)+
dx. (4.5)

Fix x ∈ Rn. As f is Lipschitz in a neighborhood of x with Lipschitz constantMx, say,
gx is Lipschitz in a neighborhood V of 0 with constant bounded by Mx maxu∈Q |u|.
Hence gx is differentiable almost everywhere in V , this derivative is essentially
bounded uniformly in V , and

gx(r) = gx(0) +

∫ r

0

g′x(s)ds = r

∫ 1

0

g′x(rs)ds.

Inserting this into (4.5), and using the fact that g′x(rs) coincides almost everywhere
with the right sided derivative g′x(rs+), this gives

1
r
G(rQ, f) =

∫

Rn

(∫ 1

0

g′x(rs+)ds

)+

dx. (4.6)

To determine the limit inferior we first fix x ∈ Rn. For every r > 0 there is some
vr ∈ Q with

gx(r) = f(x− rvr)− f(x).
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Thus, for all u ∈ Q, f(x − ru)−f(x) ≤ f(x − rvr)−f(x) and division with r and
taking the limit r → 0+ yields

(−∇f(x)) · u ≤ (−∇f(x)) · v,

for all u ∈ Q, where v ∈ Q is any accumulation point of a subsequence of (vr).
Hence,

h(Q,−∇f(x)) = (−∇f(x)) · v. (4.7)

A lower bound for g′x(r+) is now obtained from

g′x(r+) = lim
s→0+

1
s
(gx(r + s)− gx(r))

≥ 1
s

lim
s→0+

(
(f(x− (r + s)vr)− f(x))− (f(x− rvr)− f(x))

)

≥ (−∇f(x− rvr)) · vr.

Considering a subsequence of (vr) such that the limit inferior becomes a limit and
is converging to some v ∈ Q, we can take the limit and get from (4.7) that

lim inf
r→0+

g′x(r+) ≥ (−∇f(x)) · v = h(Q,−∇f(x)).

As g′x(r+) is essentially bounded by Mx maxu∈Q |u| in V , dominated convergence
implies

lim inf
r→0+

∫ 1

0

g′x(rs+) ds ≥ h(Q,−∇f(x)).

This can be used in (4.6), after applying Fatou’s lemma, to obtain

lim inf
r→0+

1
r
G(rQ, f) ≥ V −Q(f).

This yields the assertion for continuously differentiable f .
Let now f be a general function of bounded variation, and let fj = f ∗ ρj be

smooth mollifications of f with mollifiers ρj ≥ 0 (cf. Section 2). Let Q be non-empty
and at most countable. Then inequality (4.4) holds for all fj and by Lemma 4.1 and
Proposition 3.2.(b) also for f . This completes the proof.

The arguments in the proof of [10, Proposition 11] show that

lim
r→0+

1
r
G(rQ, f) = V −Q(f)

when Q = {u}, u 6= 0, which is a version of (1.5) for BV functions f . One might
thus expect that the limit inferior in (4.4) is indeed an ordinary limit, and equality
holds, for at most countable sets Q. However, when Q is infinite, this need not be
true. In the following we give a counterexample where f is the indicator function of
a compact set of finite perimeter. This example is adapted from the known example
of a set of positive reach with infinite outer Minkowski content, see e.g. [2, pp. 109f].
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Example 4.3. Let n ≥ 2. For every m ∈ N define the open annulus

Rm = int

(
B

(
0,

1

m

) ∖
B

(
0,

1

m+ 1

))
,

and choose a finite set Am ⊂ Rm with

Rm ⊂ Am ⊕B(0, (2mm)−1).

Let (rm) be a sequence of positive numbers and set A = {0}∪⋃∞m=1 (Am ⊕B(0, rm)).
The sequence (rm) can be chosen in such a way that

Hn−1(∂A) ≤
∞∑

m=1

(#Am)Hn−1(∂B(0, 1))rn−1
m <∞,

(here we use the assumption n ≥ 2), Am ⊕B(0, rm) ⊂ Rm, and

λn(Am) ≤
∞∑

m=1

(#Am)λ(B(0, 1))rnm <
λn(Rm)

2
(4.8)

for all m ∈ N. In particular, A is a compact set of finite perimeter. In a similar way,
choose finite sets Qm ⊂ B(0, 1/m) with Qm ⊕ B(0, rm) ⊃ B(0, 1/m) for all m ∈ N,
and set Q = {0}∪⋃∞m=1 Qm. Then Q is a compact countable subset of the unit ball.
For 0 < r < 1/2 let m be such that 2−m < r ≤ 2−m+1. Then

(A⊕ rQ) \ A ⊃ [(A⊕ rQ) \ A] ∩Rm

⊃
[(
Am ⊕B(0, rm)⊕ rQ

)
∩Rm

]
\ Am

⊃
[(
Am ⊕ r(Q⊕B(0, rm))

)
∩Rm

]
\ Am

⊃
[(
Am ⊕B(0, (2mm)−1)

)
∩Rm

]
\ Am

= Rm \ Am.

It follows from (4.2) and (4.8) that there is a constant c > 0 with

1
r
G(rQ,1A) ≥ λn(Rm)

2r
≥ c

(log2
1
r
)−(n+1)

r
→∞,

as r → 0+. In particular, 1
r
G(rQ,1A) does not converge to V −Q(1A) ≤ Hn−1(∂A) <

∞ (we use here Lemma 3.1(c)).

We will show now that the desired convergence result is true when f is the
indicator of a set of finite perimeter and Q is finite. This requires some auxiliary
lemmas. We recall the notation Fu+A, Fu−A introduced in Section 2.

Lemma 4.4. Let 0 6= u ∈ Rn and r > 0 be given.

(i) If f ∈ BV and U ⊂ Rn is open then
∫

U

(f(x)− f(x+ ru))+ dx ≤ rV {−u}(f, U ⊕ (0, ru)).
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(ii) If A ⊂ Rn has finite perimeter then

λn ({x ∈ A : x+ ru 6∈ A, [x, x+ ru] ∩ Fu+A = ∅}) = 0.

(iii) If A is as in (ii) and 0 < s < 1 then

λn ({x ∈ A : x+ sru 6∈ A, x+ ru ∈ A}) = o(r), r → 0.

Proof. In fact, (i) is a local and signed version of [10, Proposition 11] and we proceed
with a similar proof. If f belongs to C1(U ⊕ (0, ru)) ∩ BV(U ⊕ (0, ru)) then

f(x)− f(x+ ru) =

∫ 1

0

r

(
−∂f
∂u

(x+ tru)

)
dt ≤

∫ 1

0

r

(
∂f

∂u
(x+ tru)

)−
dt

for all x ∈ U , and, applying Fubini’s theorem and (3.3), we get
∫

U

(f(x)− f(x− ru))+ dx

≤
∫ 1

0

r

∫

U

(
∂f

∂u
(x+ tru)

)−
dx dt ≤ rV {−u}(f, U ⊕ (0, ru)).

The case f ∈ BV can be shown by strict approximation: By Proposition 2.1.(c)
there is a sequence fj in C∞(U ⊕ (0, ru)) ∩ BV(U ⊕ (0, ru)) converging strictly
to f on U ⊕ (0, ru). Now, (i) holds with f replaced by fj, and taking the limit
j → ∞ it also holds for f due to Proposition 3.2.(c) and since fj L1−→ f implies
(fj( · )− fj( · + ru))+ L1−→ (f( · )− f( · + ru))+.

We will show (ii) by contradiction, i.e., assume that λn(Z) > 0, where

Z := (A \ (A− ru)) \ (Fu+A⊕ [0,−ru]).

Note that, in particular, (Du1A)−(Z ⊕ [0, ru]) = 0 (cf. (2.7)). Since the mea-
sure (Du1A)− is outer regular, we can find an open set V ⊃ Z ⊕ [0, ru] such
that (Du1A)−(V ) < r−1λn(Z). Let, further, U ⊃ Z be an open set such that
U ⊕ [0, ru] ⊂ V (we can set U = V 	 [0, ru], where 	 is the Minkowski subtraction,
and use [21, (3.15)]). Then, applying (i) with f = 1A, we obtain

λn(Z) ≤ λn((A \ (A− ru)) ∩ U) =

∫

U

(1A(x)− 1A(x+ ru))+ dx

≤ rV {−u}(1A, U ⊕ [0, ru])

= r(Du1A)−(U ⊕ [0,−ru])

≤ r(Du1A)−(V ) < λn(Z),

a contradiction completing the proof of (ii).
In order to prove (iii), we apply (ii) and get

λn ({x ∈ A : x+ sru 6∈ A, x+ ru ∈ A}) ≤ λn({z : #([x, x+ ru] ∩ FA) ≥ 2}).

The last measure is of order o(r) since FA isHn−1-rectifiable (see, e.g., [18, Lemma 1]),
and the proof is finished.
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Let now a setA ⊂ Rn of finite perimeter and a finite setQ = {u0 = 0, u1, . . . , uk} ⊂
Rn be given. To any x ∈ FA we assign the (unique) smallest number 0 ≤ i(x) ≤ k
for which νA(x) · ui(x) = maxj νA(x) · uj, and we consider the partition

FA =
⋃

i

∂iA

with ∂iA := {x ∈ FA : i(x) = i}, i = 0, . . . , k. Note that ∂iA ⊂ Fui+A, i = 1, . . . , k,
by definition. Denoting further

AQ,r :=
k⋃

i=0

(∂iA⊕ [0, rui]),

we have, using Fubini’s theorem and the area formula for the orthogonal projection
of Ai onto u⊥i (see [2, Theorem 2.91]),

λn(AQ,r) ≤
k∑

i=0

rHn−1(pu⊥i (∂iA))|ui| =
k∑

i=0

r

∫

∂iA

|ui · νA(x)|Hn−1(dx)

= r

∫

FA
max
i

(ui · νA(x))Hn−1(dx)

= rV −Q(1A). (4.9)

Lemma 4.5. Let A ⊂ Rn have finite perimeter and let 0 ∈ Q ⊂ Rn be finite. Then
we have

λn

((
(A⊕ rQ) \ A

)
\ AQ,r

)
= o(r), r → 0.

Proof. First, we shall show that it is sufficient to consider sets Q = {0, u1, . . . , uk}
such that for all 1 ≤ i < j ≤ k, the vectors ui, uj are either linearly independent, or
linearly dependent, but pointing in opposite directions. To see this, consider a larger
set Q′ = Q ∪ {suk} with some 0 < s < 1. We have clearly AQ′,r = AQ,r, r > 0, and

λn
(
(A⊕ rQ′) \ (A⊕ rQ)

)
≤ λn

(
(A+ sruk) \ (A⊕ {0, ruk})

)

≤ λn({z : z 6∈ A, z + sruk ∈ A, z + ruk 6∈ A}),

and the last expression is of order o(r) by Lemma 4.4.(iii) applied to the complement
of A.

Any point z ∈ ((A⊕rQ)\A)\AQ,r has the following properties: z 6∈ A, z−rui ∈ A
for some 1 ≤ i ≤ k and [z − ruj, z] ∩ ∂jA = ∅ for all 1 ≤ j ≤ k. By Lemma 4.4.(ii),
λn-almost all such points z have the additional property that there exists a point
x ∈ [z−rui, z]∩Fui+A and, clearly, this x must belong to ∂jA for some j 6= i, j ≥ 1.
Hence,

λn

((
(A⊕ rQ) \ A

)
\ AQ,r

)
≤
∑

j 6=i
λn(V r

ij)

with
V r
ij := {z : [z − rui, z] ∩ Fij 6= ∅, [z − ruj, z] ∩ Fij = ∅},

where
Fij := ∂jA ∩ Fui+A.
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It is thus enough to show that λn(V r
ij) = o(r) for any 1 ≤ i 6= j ≤ k.

Note that if uj = −sui for some s > 0 then Fij = ∅ (indeed, in this case
ui · νA(x) > 0 implies uj · νA(x) < 0 < ui · νA(x)). Thus, we can assume in the sequel
that ui, uj are linearly independent.

Applying the Fubini’s theorem and the generalized area formula [9, §3.2.22] with
the orthogonal projection pu⊥i |Fij (note that Fij ⊂ FA is countably (n−1)-rectifiable
and its Jacobian Jn−1(pu⊥i |Fij) is at most 1), we get

λn(V r
ij) = λn

(
V r
ij ∩ (Fij ⊕ [0, rui])

)

=

∫

u⊥i

λ1

(
V r
ij ∩ (Fij ⊕ [0, rui]) ∩

(
y + span(ui)

))
λn−1(dy)

≤
∫

u⊥i

∑

x∈Fij∩(y+span(ui))

λ1(V r
ij ∩ [x, rui])λn−1(dy)

=

∫

Fij

Jn−1(pu⊥i | Fij)(x)λ1(V r
ij ∩ [x, x+ rui])Hn−1(dx)

≤
∫

Fij

λ1(V r
ij ∩ [x, x+ rui])Hn−1(dx).

Hence we have
r−1λn(V r

ij) ≤
∫

Fij

ϕr(x)Hn−1(dx),

where
ϕr(x) := r−1λ1(V r

ij ∩ [x, x+ rui]), x ∈ Fij.
We will show that

lim
r→0

ϕr = 0 Hn−1 − a.e. on Fij. (4.10)

Applying then the Lebesgue dominated convergence theorem (note that |ϕr(x)| ≤
|ui| for any x) we obtain λn(V r

ij) = o(r), proving the lemma.
We will verify (4.10). Since Fij is countably (n− 1)-rectifiable, the approximate

tangent cone Tann−1(Fij, x) is a hyperplane at Hn−1-a.a. x ∈ Fij by [9, §3.2.19], and
we thus get Tann−1(Fij, x) = νA(x)⊥ at Hn−1-a.a. x ∈ Fij by [2, Theorem 3.59].
(Concerning rectifiability, we use the terminology from [2] which is slightly different
from [9].)

Denote L := span(ui, uj). We apply the generalized co-area formula [9, §3.2.22]
to the mapping f := pL⊥ |Fij : Fij → L⊥. We get that f−1{z} = Fij ∩ (z + L) is
countably 1-rectifiable forHn−2-a.a. z ∈ L⊥ and, thus, forH1-a.a. x ∈ Fij∩(z+L) =
Fij ∩ (x+L), the one-dimensional Lebesgue density Θ1(Fij ∩ (x+L), x) = 1 (cf. [9,
§3.2.19]) and

Tan1(Fij ∩ (x+ L), x) = νA(x)⊥ ∩ L. (4.11)

Let N denote the set of all x ∈ Fij for which (4.11) is not true. We have H1(N ∩
f−1{z}) = 0 for Hn−2-a.a. z ∈ L⊥, hence, again by the co-area formula,

∫

N

Jn−2f(x)Hn−1(dx) =

∫

L⊥
H1(N ∩ f−1{z})Hn−2(dz) = 0.
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As Jn−2f(x) 6= 0 for x ∈ Fij (recall that both νA(x) · ui and νA(x) · uj are positive
if x ∈ Fij), we have Hn−1(N) = 0, hence, (4.11) is true for Hn−1-a.a. x ∈ Fij.

Fix now a point x ∈ Fij for which (4.11) holds, set

q :=
νA(x) · ui
νA(x) · uj

∈ (0, 1],

w := ui − quj ∈ νA(x)⊥ ∩ L,

and choose an ε > 0. Note that small positive multiples of the vector w lie in the
open triangle

C := {tui − suj : 0 <
s

q + ε
< t < 1}

and, consequently, also
Θ1(Fij ∩ (x+ rC), x) = 1

2

for any r > 0. If π denotes the projection from x+L onto x+ span(ui) along uj, we
get as a consequence that

Θ1(π(Fij ∩ (x+ rC)), x) = 1
2
.

On the other hand, if z = x+tui ∈ V r
ij for some 0 < t < r

q+ε
then z 6∈ π(Fij∩(x+rC))

and, consequently,

λ1(V r
ij ∩ [x, x+ rui]) ≤

(
r − r

q + ε

)+

+ λ1 ([x, x+ rui] \ π(Fij ∩ (x+ rC)))

≤ εr + o(r).

Since ε > 0 can be arbitrarily small, we obtain (4.10) and the proof is finished.

Corollary 4.6. Let A ⊂ Rn have finite perimeter and let ∅ 6= Q ⊂ Rn be finite.
Then

lim sup
r→0+

1
r
G(rQ,1A) ≤ V −Q(1A).

Proof. As both sides of the stated equality remain unchanged when Q is replaced
by Q ∪ {0} we may assume that 0 ∈ Q. The claim then follows from (4.9) and
Lemma 4.5.

Proposition 4.2 and Corollary 4.6 yield already our main result:

Proposition 4.7. Assume that A ⊂ Rn has finite perimeter. If ∅ 6= Q ⊂ Rn is finite
then

lim
r→0+

r−1G(rQ,1A) = V −Q(1A).

Proof of Theorem 1.1. The first statement, (1.6), follows directly from Proposition 4.7
in combination with (4.2) and (3.1). If 0 ∈ Q and λn(A) <∞ then (1.7) holds as it
then coincides with (1.6). It is thus enough to show that the two sides of (1.7) do
not change, when Q is replaced by a translation Q − x with x ∈ Q. This is trivial
for the left hand side and follows, using (2.5), also for the right hand side. Hence
(1.7) also holds without the additional restriction 0 ∈ Q.
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5 An application: Contact distributions of
stationary random sets

In this section we apply the geometric results to random sets; see the book [22] for
details on random closed sets, and [11] for random measurable sets in Rn. Galerne
and Lachièze-Rey [10, 11] define the mean covariogram of a random measurable set
and discusses its properties. With the results of the previous section, similar relations
for the mean generalized dilation volume with a finite structuring element could be
established. We will not do so here, but instead present an approximation of the
contact distribution function of a random set at zero, as the contact distribution
function is an important summary statistics in applications.

We recall the notion of a random measurable set in Rn. LetM denote the space of
all Lebesgue measurable subsets of Rn modulo set differences of Lebesgue measure
zero, equiped with the topology of L1

loc convergence of the indicator functions. If
B(M) denotes the corresponding Borel σ-algebra, (M,B(M)) is a standard Borel
space, and a random measurable set (RAMS) is a measurable mapping

Z : (Ω,Σ,Pr)→ (M,B(M))

from a probability space Ω. (As remarked in [11, Remark 1], the random sets of finite
perimeter from [19] are just random measurable sets with finite specific perimeter.)
We restrict attention to stationary random measurable sets Z in Rn (that is, random
measurable sets with translation-invariant distribution).

If Z is a stationary random closed set with volume fraction p = Pr[0 ∈ Z] < 1,
its contact distribution function (sometimes called hit distribution function) with a
compact structuring element Q ⊂ Rn is defined by

HQ(r) = Pr(Z ∩ rQ 6= ∅ | 0 6∈ Z), r ≥ 0. (5.1)

If p = 1, we set HQ(r) = 1. For convex Q with 0 ∈ Q and p < 1, HQ( · ) coincides
with the function

H̃Q(r) = Pr(dQ(Z) ≤ r | 0 6∈ Z),

where dQ(Z) = min{t ≥ 0 : Z ∩ tQ 6= ∅}. In general we have

H̃Q(r) = HstarQ(r),

where starQ =
⋃
y∈Q[0, y] is the star-hull of Q with respect to 0.

Notice that (5.1) does not give sense if Z is a stationary RAMS since [0 ∈ Z] or
[Z∩rQ 6= ∅] are not events (measurable subsets of Ω) any more. (Indeed, one cannot
determine whether 0 belogs to Z(ω) since Z(ω) is given only up to measure zero.)
Nevertheless, under stationarity, and for finite Q, we can give a meaning to (5.1) as
follows. We consider the shift randomization Z̃ of Z defined on the larger probability
space Ω̃ := Ω× [0, 1]n with P̃r := Pr⊗(λn|[0,1]n) and Σ̃ being the completion of the
product σ-algebra Σ⊗ B(Rn) as follows:

Z̃(ω, x) := Z(ω)− x, (ω, x) ∈ Ω̃.
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By stationarity, we get the equality in distribution, Z̃ d
= Z. In Lemma 5.1 below,

we show that [0 ∈ Z̃] and [Z̃ ∩ rQ 6= ∅] are random events, and we can define the
volume fraction of Z as p := P̃r[0 ∈ Z̃] and the contact distribution function HQ(r)

of Z using (5.1), where P̃r, Z̃ are used instead of Pr, Z. This contact distribution
function satisfies

HQ(r) = 1− 1− Eλn ((Z ⊕ (−rQ ∪ {0})) ∩ [0, 1]n)

1− Eλn(Z ∩ [0, 1]n)
,

r ≥ 0, which is a known representation of HQ when Z is a RACS; cf. [22, p. 44].

Lemma 5.1. Let Z be a stationary RAMS in Rn and Z̃ its shift randomization.
Then [x ∈ Z̃] is a random event (i.e., a measurable subset of Ω̃) for any x ∈ Rn. If
Q ⊂ Rn is at most countable then [Z̃ ∩Q 6= ∅] is also a random event.

Proof. According to [11, Proposition 1], Z admits a measurable graph representative,
i.e., a subset Y ⊂ Ω × Rn measurable w.r.t. Σ ⊗ B(Rn) such that for a.a. ω ∈ Ω,
λn(Z(ω)∆Yω) = 0, where Yω := {x ∈ Rn : (ω, x) ∈ Y }. Then we have by Fubini’s
theorem

P̃r
(

[0 ∈ Z̃]∆
(
Y ∩ (Ω× [0, 1]n)

))
=

∫

Ω

λn ((Z(ω)∆Yω) ∩ [0, 1]n) Pr(dω) = 0.

Since Y is product-measurable and Σ̃ is complete, also [0 ∈ Z̃] is in Σ̃. When x ∈ Rn

is given, Z − x is a RAMS, and thus [x ∈ Z̃] = [0 ∈ Z̃ − x] = [0 ∈ Z̃ − x] is
measurable. The second assertion now follows from this and the fact that

[Z̃ ∩Q = ∅] =
⋂

u∈Q
[u 6∈ Z̃],

and the proof is finished.

Let Z be a stationary RAMS. If Z has a.s. locally finite perimeter (i.e. P (Z,Ω) <
∞ almost surely for all bounded open sets Ω), its derivative, the random Rn-
valued Radon measure D1Z exists, and inherits stationarity from Z. Hence, |D1Z |
is a stationary nonnegative Radon measure, and there is P (Z) ∈ [0,∞] such that
E|D1Z | = P (Z)λn. The constant P (Z) is called the specific perimeter of Z (see
[10, 19]) and we extend it by P (Z) := ∞ to those Z which do not almost surely
have locally bounded variation. By definition, for any open Ω ⊂ Rn the random
variable P (Z,Ω) is an unbiased estimator of P (Z)λn(Ω). The specific perimeter can
also be obtained as usual by an averaging process over increasing windows.

Lemma 5.2. Let Z be a stationary RAMS. Then

P (Z) = lim
r→∞

EP (Z ∩ rW )

λn(rW )
, (5.2)

where W ⊂ Rn is a compact convex set with positive volume.
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Proof. Due to stationarity, we may assume 0 ∈ intW . For Ω = r(intW ), we have

(∂∗Z) ∩ Ω ⊂ ∂∗(Z ∩ rW ) ⊂ [(∂∗Z) ∩ Ω] ∪ r∂W.

Applying the (n− 1)st Hausdorff-measure, and taking expectations, yields

EHn−1(∂∗Z ∩ Ω) ≤ EP (Z ∩ rW ) ≤ EHn−1(∂∗Z ∩ Ω) + rn−1Hn−1(∂W ). (5.3)

If Z has a.s. locally finite perimeter, a comparison with the definition of P (Z) yields
(5.2). Otherwise, there is some open bounded set Ω̃ such that Hn−1(∂∗Z ∩ Ω̃) =∞
with positive probability. Then the expectation on the left hand side of (5.3) is
infinite for all sufficiently large r, and the limit in (5.2) equals infinity, as required.

If Z is a stationary RAMS with P (Z) < ∞, then, for almost all realizations
of Z, the generalized inner normal ∆1Z

(z) is defined for Hn−1-almost all z ∈ ∂∗Z.
Consider the random measure on Rn × Sn−1 given by

Ψ(B × U) = Hn−1{z ∈ ∂∗Z ∩B : −∆1Z
(z) ∈ U},

B × U ∈ B(Rn × Sn−1); cf. [19, Proposition 4.2]. Since Ψ is stationary in the first
component and with finite intensity, its intensity measure can be disintegrated as

EΨ(B × U) = P (Z)λn(B)R∗(U)

with a Borel probability measure R∗ on Sn−1. If P (Z) > 0 then R∗ is uniquely
determined and it is called oriented rose of directions of Z (cf. [19]). Note that this
notion is in general different from the usual oriented rose of directions R, which
is defined under regularity conditions on Z such that there is an outer normal at
Hn−1-almost all points in ∂Z. Both notions coincide if Hn−1(∂Z \ ∂∗Z) = 0, for
instance when Z is a topologically regular element of the extended convex ring, like
in the case of a Boolean model Z of full-dimensional convex particles.

We are now ready to prove our second main result.

Proof of Theorem 1.2. If p = 1 then Z = Rn almost surely, P (Z) = 0, and (1.8)
holds. For p < 1 observe that

(1− p)H ′Q(0+) = lim
t→∞

(tnκn)−1 lim
r→0+

r−1,Eλn(Mr,t)

with the set Mr,t = [(Z ⊕ (−rQ)) \ Z] ∩ B(0, t). We may assume Q ⊂ B(0, 1), and
abbreviate Zs = Z ∩B(0, s), s ≥ 0. For t > 1, r ∈ (0, 1) and Rr,t being the annulus
B(0, t− 1 + r) \B(0, t− 1), we have

[Zt−1 ⊕ (−rQ)] \ Zt−1 ⊂Mr,t ∪Rr,t

and
Mr,t ⊂ [Zt+1 ⊕ (−rQ)] \ Zt+1

Due to
lim
t→∞

(tnκn)−1 lim
r→0+

r−1λn(Rr,t) = 0,

23



limt→∞ tn/(t± 1)n = 1, and λn ([Zt ⊕ (−rQ)] \ Zt) = G(−rQ,1Zt) we have

(1− p)H ′Q(0+) = lim
t→∞

(tnκn)−1 lim
r→0+

r−1EG(−rQ,1Zt). (5.4)

Assume that P (Z) <∞. Then (4.1), Lemma 4.4.(i) and Lemma 3.1.(c) imply

r−1G(−rQ,1Zt) ≤
∑

0 6=u∈Q
V {u}(1Zt) ≤ (#Q)V (1Zt),

which gives the uniformly integrable upper bound (#Q)P (Z ∩B(0, t)). This allows
us to use Lebesgue’s dominated convergence theorem for the limit r → 0+ when t
is fixed. Hence, Proposition 4.7 gives

lim
r→0+

r−1EG(−rQ,1Zt) = EV Q(1Zt). (5.5)

As
(∂∗Z) ∩ intB(0, t) ⊂ ∂∗Zt ⊂ [(∂∗Z) ∩ intB(0, t)] ∪ tSn−1,

limt→∞(tnκn)−1Hn−1(tSn−1) = 0, 0 ≤ h(−Q, · )+ ≤ 1, the definition of V Q( · ) and
(2.9) yield

lim
t→∞

(tnκn)−1EV Q(1Zt)

= lim
t→∞

(tnκn)−1E
∫

(∂∗Z)∩intB(0,t)

h(Q,∆1Zt
(x))+Hn−1(dx).

As ∆1Z is locally defined according to [2, p. 154], we have ∆1Zt
(x) = ∆1Z

(x) for
Hn−1-almost every x ∈ (∂∗Z) ∩ intB(0, t), so

lim
t→∞

(tnκn)−1EV Q(1Zt) = lim
t→∞

(tnκn)−1E
∫

intB(0,t)×Sn−1

h(−Q, v)+ Ψ(d(x, v))

= P (Z)

∫

Sn−1

h(−Q, v)+R∗(dv).

The combination of this with (5.5) and (5.4) completes the proof in the case P (Z) <∞.
Consider the case where P (Z) =∞. Approximating 1Zt by mollifications fj ∈ C1

c

with non-negative ρ, inequality (4.3), Proposition 4.2 and Lemma 3.1.(b) give

lim inf
r→0+

r−1G(−rQ,1Zt) ≥ lim inf
r→0+

r−1G(−rQ, fj) ≥ V Q(fj) ≥ sV (fj),

where s > 0 is the inradius of conv(Q ∪ {0}); note that the latter set has interior
points by assumption. Proposition 2.3.(c) now implies

lim inf
r→0+

r−1G(−rQ,1Zt) ≥ sV (1Zt),

and insertion into (5.4) and using Lebesgue’s dominated convergence theorem gives

(1− p)H ′Q(0+) ≥ lim
t→∞

s
EP (Z ∩B(0, t))

tnκn
= sP (Z) =∞, (5.6)
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due to Lemma 5.2.
Now let Z be isotropic. If P (Z) = 0, the claim is trivial. If 0 < P (Z) < ∞,

the measure R∗ is the uniform distribution on Sn−1 and the definition of the mean
width gives the required relation. If P (Z) =∞, equation (1.9) holds for Q = {0}, so
we may assume that there is an u0 ∈ Sn−1 and a number s > 0 such that su0 ∈ Q.
Then (5.4), G(−rQ, · ) ≥ sG(r{−u0}, · ), Proposition 4.7 and Lemma 3.2.(a) yield

(1− p)H ′Q(0+) ≥ s

2
lim
t→∞

(tnκn)−1EVu0(1Zt).

As Z is isotropic, EVu0(1Zt) = EVu(1Zt) for all u ∈ Sn−1, and (2.2) gives

(1− p)H ′Q(0+) ≥ lim
t→∞

s(2nκn)−1

∫

Sn−1

EVu(1Zt−1)

tnκn
Hn−1(du) =

sκn−1

nκn
P (Z) =∞.

Thus, assertion (1.9) is shown and the proof is complete.

Note that the only assumption on the random set Z in Theorem 1.2 is sta-
tionarity. The use of the bounded variation concept allows us to avoid any kind
of integrability condition, which is usually present in similar results. For instance,
(1.8) was shown in [13] for “gentle” random sets and compact Q. A variant of (1.8)
for non-stationary Z, where HQ( · ) also depends on the position of (the compact,
convex set) Q and on the outer normal of the contact point, was shown in [12] for a
grain model with compact convex grains. A related result is given in [23, Theorem
4.1], where the derivative of the spherical contact distribution function of certain
non-stationary Boolean models Z is determined for 0 ≤ r ≤ R, where R is the reach
of the typical grain of Z. Under appropriate assumptions, even the (right sided)
second derivative at zero is given there. All three named papers rely on the (local)
finiteness of certain measures associated to Z. The price to pay for the generality
of Theorem 1.2 are the severe restrictions on the structuring element Q. However,
(1.8) cannot hold for general compact Q, as the example of a stationary hyperplane
process together with Q = B(0, 1) shows.
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