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Resumé

Denne afhandling er opdelt i to dele. I den fgrste del introduceres leeseren forst
til groupoider, den fulde groupoid C*-algebra og definitionen af KMS vaegte
pa C*-algebraer. Derefter praesenteres og bevises en udvidelse af Neshveyev’s
klassiske Saetning fra [20] til KMS veegte pa groupoid C*-algebraer. Ligesom den
klassiske Szetning af Neshveyev deler vores udvidelse beskrivelsen af KMS vasgte
op i beskrivelsen af visse quasi-invariante mal pa enhedsrummet af groupoiden
og visse malelige legemer af tilstande. Vi viser, at disse quasi-invariante mal er
extremale, praecist nar de er ergodiske, og for en stor klasse af groupoider viser vi
desmere, at de malelige legemer af sportilstande kan beskrives som tilstande pa
en tilhgrende gruppe C*-algebra.

Del to af athandlingen er en samling af artikler, hvortil forfatteren har bidraget,
og den skal betragtes som den primeere del af denne afhandling. I [A] og [13]
pabegyndes et studie af KMS vaegtene for generaliserede gauge-virkninger pa graf
C*—algebraer. I [A] beskrives alle disse, nar grafen er endelig. I [3] opnér vi en
delvis beskrivelse for Cayley-grafer for grupper, og vi viser, at beskrivelsen er
fuldsteendig, nar gruppen er nilpotent. I artikel [(] og [D] gives der en fuldstaendig
beskrivelse af KMS tilstandene for gauge-virkningen pa bade Toeplitz og Cuntz-
Krieger algebraen for alle endelige grafer af hgjere rank. Afslutningsvis beskaeftiger
vios i [I}] med at beskrive, hvordan der for en stor klasse af groupoider geelder, at
KMS veegte givet ved mal pa enhedsrummet kun kan forekomme for 1-parameter
grupper givet ved kontinuerte groupoid homomorfier.



Abstract

This dissertation consists of two parts. In the first part the reader is introduced
to groupoids, the full groupoid C* algebra and the definition of KMS weights
on C*-algebras. We then present and prove an extension of a classical theorem
of Neshveyev [20] to KMS weights on groupoid C*-algebras. As in the original
theorem in [20] this extended version splits the description of KMS weights
into the description of certain quasi-invariant measures on the unit space of
the groupoid and certain measurable fields of states. We show that these quasi-
invariant measures are extremal if and only if they are ergodic, and for a large
class of groupoid C*-algebras we prove that the measurable fields of states can be
described by states on an associated group C*-algebra.

The second part of this dissertation is a collection of papers which the author
has made contributions to, and this part is to be considered the main contribution
of this dissertation. In [A] and [B] we investigate KMS weights for generalised
gauge-actions on the C*—algebra of directed graphs. In [A] we give a complete
description when the graph is finite. In [3] we obtain a partial description for the
graphs arising as Cayley graphs for groups, and we prove that this description is
complete when the group is nilpotent. In article [C'] and [D] we give a complete
description of the KMS states for the gauge-action on both the Toeplitz and the
Cuntz-Krieger algebras for all finite higher-rank graphs. Finally we describe in
[] how for a large class of groupoids KMS weights given by measures on the
unit space can only occur for 1-parameter groups that are given by continuous
groupoid homomorphism.
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Introduction

This dissertation is divided into two parts. Part II is a collection of articles
that the author has made contributions to. In Part I we give a general
introduction to the study of KMS weights on groupoid C*-algebras, and
we give an overview of the main results obtained in the articles in Part II.
Although Part I is merely an introduction to the subject, it also contains
some new ideas and proofs. These are included to make the introduction as
general as possible. The new work presented in Part I was done during the
last few months of the authors Ph.D., so it is not as polished as the ideas
presented in Part II, and the authors contributions to the articles in Part 11
are to be considered the main results of this dissertation.

When speaking of a KMS state, there are always two underlying objects
involved: The C*-algebra A the state is defined on, and a continuous
l-parameter group {o;}ier on A. The pair (A, {a:}ier) is called a C*-
dynamical system over R and a state w on A is called a S-KMS state for a
when:

w(aa;g(b)) = w(ba) (1.1)

for all a,b in a norm dense, a-invariant x-subalgebra of the entire analytic
elements for a.. The formula (1.1) is often called the KMS condition, and it
was originally considered in quantum statistical mechanics. One approach
to building a model of a system in quantum statistical mechanics is to
describe the observables of the system by a C*-algebra A. The dynamics of
the system, which is how the observables changes over time, can then be
modelled by a 1-parameter group {a;}scg. In this theoretical picture one
can interpret the set of 5-KMS states for « as the set of equilibrium states
at inverse temperature 3 for the system modelled by (A, ). This theoretical
connection to physics was originally the reason why some mathematicians
became interested in KMS states, yet over time the subject has also become
very relevant for mathematicians like the author, who has little interest in
(and knowledge about) the possible applications in physics. This is first and
foremost due to the emergence of Tomita-Takesaki theory which associates
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a canonical continuous 1-parameter group to any normal faithful state on a
von Neumann algebra, and this 1-parameter group can best be described
as the unique 1-parameter group that makes the state a —1 KMS state
on the algebra. This relation was an essential ingredient in the work of
Connes and Haagerup that classify the hyperfinite type III factors, and it
is therefore evident that the KMS condition has been a keen subject for
operator-algebraist to ponder about, and it validates that KMS states are
a natural class of objects to study. Over the years this had lead to the
discovery of several deep relations between KMS states on C*-algebras and
different fields of mathematics. A prominent relation is the one between
number theory and KMS states on C*-algebras that has been established
by work of Boost and Connes, which has lead to a flurry of activity in the
study of KMS states on C*-algebras. Another prominent relation, which is
perhaps the most relevant one for the subjects studied in this dissertation,
is the discovery that KMS states on C*-algebras can be related to the study
of dynamical systems. If none of the above sound reasons for studying KMS
states can spark the readers enthusiasm, then the author can provide one
last motivation: The theory of KMS states is both rich and beautiful, and
faced with the task of describing KMS states one often gets exposed to
elegant ideas and problems from many different fields of mathematics. No
doubt this makes the study of KMS states a challenging task, but since the
results are often thought-provoking and deep it also makes it an extremely
rewarding task.

A natural class of C*-algebras to study KMS states on is the class of étale
groupoid C*-algebras, by which we mean the family of C*-algebras that can
be realised as the C*-algebra of a locally compact second countable Hausdorff
étale groupoid. Most if not all C*-algebras where a study of KMS states has
been instigated can be described, priori of a priori, as an étale groupoid C*-
algebra, so the class is general enough to encompass most known examples.
On the other hand, étale groupoid C*-algebras have enough structure that
it is possible to prove general and interesting results about KMS states
that are valid for all étale groupoid C*-algebras and a very large class of
continuous 1-parameter groups. The continuous 1-parameter groups we have
in mind here are the ones arising from a continuous groupoid homomorphism
from the underlying groupoid to the reals (which is sometimes referred to
as a 1-cocycle), and we will throughout call the family of these 1-parameter
groups diagonal. Since the C*-algebras we consider are not necessarily unital,
we will instead of KMS states study their generalisation called KMS weights.
This sets up the scope of this dissertation: We are going to study KMS
weights for diagonal continuous 1-parameter groups on étale groupoid C*-
algebras, and we are going to provide a lot of concrete descriptions of KMS
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weights on C*-dynamical systems arising from both directed graphs and
higher-rank graphs.

The theory of groupoid C*-algebras was pioneered by Jean Renault in
his dissertation [26], which also contains the first great general insight into
the structure of KMS weights on étale groupoid C*-algebras. To describe
this result, let G be an étale groupoid with unitspace G and let C*(G) be
its full C*-algebra. For a continuous groupoid homomorphism ¢ : G — R
we then obtain a diagonal continuous 1-parameter group a¢ on C*(G). The
insight in [26] is that any quasi-invariant regular Borel measure on G(©) with
Radon-Nikodym derivative e=7¢ will give rise to a KMS weight on C*(G)".
Furthermore Renault proved that for principal étale groupoids this becomes
a bijective correspondence, and hence the study of KMS weights reduces
to a study of measures on G(®. This result builds a bridge between KMS
weights and the field of dynamical systems, and it often greatly reduces the
problem of describing the KMS weights. There is however a lot of interesting
groupoids that are not principal, for example the ones associated to graphs
and higher-rank graphs, and in the non-principal case the map between
measures and KMS weights fails to be a bijection. There is a very nice
description of KMS states on general étale groupoid C*-algebras which
are not principal, and this description was established in [20]. The insight
obtained in [20] is that in the non-principal case there is a bijection between
[-KMS states for a® on C*(G) and pairs (11, {¢s }.eg ) consisting of a quasi-
invariant Borel probability measure on G with Radon-Nikodym derivative
e~P¢ and a p-measurable field of states {¢;},cq0 -

We use this description of the KMS states as the starting point of our
exposition. In chapter 2 we give an introduction to topological groupoids
and the full groupoid C*-algebra, focusing especially on the results and
terminology we will need in the subsequent chapters. In chapter 3 we will
briefly review some theory on continuous 1-parameter groups, KMS weights
and their extension to the von Neumann algebra of their GNS representation.
In chapter 4 we will extend Neshveyev’s description of KMS states to a
description of KMS weights, and we will then prove how this theorem
regarding weights follows from the original theorem in [20]. Neshveyev’s
theorem translates the study of KMS weights into the study of two other
objects, the quasi-invariant regular Borel measures and the measurable fields
of states. This decomposition sets the theme for the next two chapters.

In chapter 5 we will study the quasi-invariant regular Borel measures.
We will do this by proving that the extremal measures are exactly the

Tn the terminology of this dissertation this is not entirely true, since we define a
weight differently than in [20].
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ergodic measures. Chapter 6 contains our investigation of measurable fields
of states. Unlike in the other chapters, we have to restrict our analysis to
a particular class of étale groupoids. This class contains the groupoids of
higher-rank graphs and directed graphs. For this class of groupoids we will
obtain a description of the measurable fields of states that is much in the
spirit of the one obtained for traces on crossed products by abelian groups
in Corollary 2.4 in [20], but which encompasses many more cases.

This dissertation contains an introduction to groupoid C*-algebras and
KMS weights, but its introduction to the theory of directed graphs and
higher-rank graphs is fairly superficial. For more background on higher-rank

graphs we refer to [24, 25, 18] and for their groupoid picture we refer to
Appendix B in [10] and [8, 37, 18]. For more background on directed graphs
we refer to [35, 19, 1] and for information on their groupoid picture we refer
to [19, 22] and section 5 in [A]. There is a natural way of identifying the

higher-rank graphs of rank 1 with the directed graphs, but in this dissertation
we will keep the two terminologies separate. This is so because when we
associate a C*-algebra to a higher-rank graph we follow the standard higher-
rank graph convention of letting a partial isometry S, corresponding to an
edge e have source projection S;S. equal to the projection py ), while for
directed graphs we follow the usual® convention of setting S*S. = py(c).

In accordance with the rules of the Graduate School of Science and
Technology (GSST) at Aarhus University chapter 7 contains a summary
of the papers contained in Part II and relates them to current trends
within the field. The papers have been divided into three themes. The first
theme is the description of the KMS states for generalised gauge actions on
directed graphs, where a description has been obtained for finite graphs [A]
in collaboration with Klaus Thomsen, and a partial description has been
obtained for infinite graphs structured as a Cayley graph [13] in collaboration
with Klaus Thomsen. The authors contributions to [A, B] are proportional.
The second theme concerns the description of the KMS states for the gauge-
actions on the Toeplitz and Cuntz-Krieger algebra of a finite higher-rank
graph and is a summary of the papers [/, D]. The last paper [[] is an
investigation of the relationship between KMS weights given by measures
on the unit space of the groupoids and diagonal actions. This paper is
written jointly with Klaus Thomsen, and the authors contributions to this
paper is proportional as well. In accordance with the GSST rules, parts of
this dissertation were also used in the progress report for the qualifying
examination.

2This convention is at least usual in the northern hemisphere, but some papers, e.g.
[12, 15], use the higher-rank graph convention for directed graphs
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Groupoid C*-algebras

In this chapter we will introduce groupoids and the full C*-algebra of a
groupoid and we will collect a few results from the literature, which we will
use in the chapters to come. We will follow [26] for consistency.

2.1 Topological groupoids

Definition 2.1.1. A groupoid is a set G with an inverse map G > g —
g~' € G and a partially defined product map G* > (g, h) — gh € G defined
on a set G2 C G x G, that satisfies the following relations:

1. (¢t =gforall g €G.

2. 1f (g, 1), (h, f) € G* then (gh, f), (9, hf) € G* and (gh)f = g(hf).
3. (g7, 9) € G forall g € G, and g~'(gh) = h for (g,h) € G2

4. (9,97Y) € G for all g € G and (hg)g~! = h for (h,g) € G2.

We call g — ¢g~'g the source map and denote it by s and g — gg~! the
range map and denote it by r. We denote the image of these two maps by
GO The set G2 is called the set of composable pairs.

Groupoids are a generalisation of groups where the requirement that there
is a fully defined product has been relaxed. One can prove that two elements
g,h in a groupoid G can be composed into gh exactly when s(g) = r(h).
Since there is not a fully defined product there can not be a unit as for
groups, but since gs(g) = g and r(g)g = g the elements in G act as units
where composition makes sense, which is why G(© is called the unit space.

We follow the standard conventions in the literature on groupoids and
set G, = s (), G* = r~'(z) and G := G, N G” whenever z € G The set
G? is called the isotropy group at x € G, and it is in fact a group with
unit x when it inherits the groupoid operations from G.

10
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Definition 2.1.2. A topological groupoid is a groupoid G with a topology
such that:

e The inverse map G > g — g~ ! € G is continuous.

e The product map G2 > (g,h) — gh € G is continuous when G? has
the relative product topology from G x G.

To make sure that the topology on a topological groupoid is well behaved
we follow [20] and always assume that it is locally compact, Hausdorff and
second countable. With these restrictions on the topology one can use the
continuity of the groupoid operations to prove:

Lemma 2.1.3. Let G be a topological groupoid with a locally compact second
countable Hausdorff topology. Then the inverse map G > g — g ' €G isa
homeomorphism, G© is closed in G and r,s : G — G are continuous maps.

For the scope of this dissertation we will require that the topology satisfies
one more thing, namely that the groupoid is étale.

Definition 2.1.4. Let G be a topological groupoid. We call G a locally
compact second countable Hausdorff étale groupoid when the topology is
locally compact, second countable and Hausdorff and the maps r,s : G — G
are local homeomorphisms.

Assumption 2.1.5. From this point and onwards all groupoids are locally
compact second countable Hausdorff étale groupoids.

We remind the reader that r is a local homeomorphism when for every
g € G there is an open neighbourhood U of g with r(U) open and r|y :
U — r(U) a homeomorphism when U and r(U) are equipped with the
relative topology from G. If W is open with (W) and s(W) open and
rlw : W — r(W) and sy : W — s(IW) are homeomorphisms we call W
a bisection. For many of our arguments we will need to choose sufficiently
small bisections. To ease notation throughout we introduce the following:

Notation 2.1.6. We call a subset W of G a small bisection if W is an open
bisection with compact closure and there exists another open bisection U
with W CW CU.

We can now prove the following regarding the topology on our groupoids:

Lemma 2.1.7. Let G be a locally compact second countable Hausdorff étale
groupoid. Then:

1. GO s a clopen subset of G.
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2. GO and G are o-compact

3. There exists a countable basis for the topology on G consisting of small
bisections.

4. v and s maps Borel sets to Borel sets.

Proof. Since r : G — G is a local homeomorphism with image GO we get
1. 2 follows since G is locally compact and second countable, and 3 follows
since G is second countable and since an open subset of a bisection is a
bisection. If {W,};en is a countable basis of small bisections and B is Borel,
we have:

r(B)=Jr(BNW))
i=1
Since (B NW;) is Borel this proves 4. O

We will need one more fact about étale groupoids for our exposition.

Lemma 2.1.8. Let G be a locally compact second countable Hausdorff étale
groupoid and let V- C GO be open. The reduction:

Gly={9€G : r(g9) €V and s(g) € V}

is an open subgroupoid of G and it is a locally compact second countable
Hausdorff étale groupoid in the relative topology.

Proof. Checking that G|y is a subgroupoid of G is straightforward. For
g € G|y we can use that G is étale and V is open to find an open bisection
W of g with (W) CV and s(W) C V. Hence g € W C G|y, so G|y is an
open subset of G. Knowing this, it is straightforward to prove that G|y is a
topological groupoid in the relative topology, and that it is locally compact
second countable and Hausdorff. Since the open set W is a bisection in G|y,
it follows that G|y is also étale. O

2.2 Groupoid C*-algebras

We will fix a locally compact second countable Hausdorff étale groupoid
G throughout this section, and we will describe how to introduce the full
groupoid C*-algebra C*(G) of G. The first step in this construction is to
consider the set C.(G) of continuous compactly supported complex functions,
ie.

Ce(G) :={f:G — C| f is continuous and supp(f) is compact}
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C.(G) is a complex vector space under point wise addition and scalar
multiplication, and one of the great benefits of working with C.(G) is that
one can often use the compactness of the support of an element f € C.(G)
to write it as the finite sum of functions in C.(G) with well behaved support.
As a key example of this, one can obtain the following Lemma by using 3 in
Lemma 2.1.7 and a partition of unity.

Lemma 2.2.1. Let f € C.(G). There exists n € N and small bisections
{Wi}iy such that f = >, fi where f; € C.(G) satisfies supp(f;) € W; for
each 1.

To build a C*-algebra that uses the groupoid features of G we need to
define an involution and a product of elements that incorporate the groupoid
operations. For fi, fo € C.(G) we define the product f; * fs by:

(fixf2)(g) = D filh)fa(h™'g) forallgeg. (2.1)

hegr(9)

To define the involution of an element f € C.(G) we set:

f"(9)=flg™!) forallgeg. (2.2)

Proposition 2.2.2. For every f1, fa € Ce(G) we have fi % fo € Co(G) and
I € C.(G). With this product and involution C.(G) becomes a *-algebra.

The next step in constructing C*(G) is to define a norm on C.(G), and
since we will construct the full C*-algebra we will do this by taking the
supremum of the norm under all bounded representations. To do this, let us
introduce what we mean by a representation:

Definition 2.2.3. Let H be a Hilbert space and let B(H) denote the
bounded operators on H. A representation w of C.(G) on H is a *-homomorphism
7 : C.(G) — B(H) which is continuous when C.(G) has the inductive limit
topology and B(H) has the weak operator topology and which is non-
degenerate, i.e. span{n(f)¢ | f € C.(G), £ € H} is dense in H.

We define the I-norm on C.(G) via the formula:

7l =max{ sup S U@, sp SU@If (23
zeG(0) gege zeG® geg,

A s-homomorphism 7 : C.(G) — B(H) on a Hilbert space H is then

bounded when ||7(f)| < ||f]|; for all f € C.(G). Any non-degenerate -

homomorphism bounded in the /-norm is continuous in the inductive limit

topology and hence is a representation. One of the important contributions

of [26] is that the converse is also true, i.e.:
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Theorem 2.2.4. ||-||; is a norm on C.(G) that defines a topology coarser
than the inductive limit topology on C.(G), and every representation of C.(G)
on a separable Hilbert space is automatically bounded in the norm ||-||r.

Proof. The content of this theorem corresponds to Corollary 11.1.22 and (7)
in Proposition I1.1.4 in [26]. Since we are working with étale groupoids these
statements can be proved without the heavy machinery of the Disintegration
Theorem, see f.x. Lemma 3.2.3 in [27]. O

C.f. Proposition II.1.11 in [26] we can now define a C*-norm on C.(G)
by setting:

| £l :==sup{||7(f)| | 7 is a bounded representation of C.(G)}  (2.4)
for all f € C.(9).

Definition 2.2.5. The full C*-algebra of G is the C*-algebra C*(G) obtained
by completing C.(G) in the full norm defined in (2.4).

Properties of C*(G)

To get a understanding of the full norm on C.(G), let us first relate it to the
natural occurring sup-norm |||/« on C.(G):

Lemma 2.2.6. Let f € C.(G), then || flle < ||fl for all f € C(G) and we
have equality when f is supported on an open bisection.

Proof. The first statement follows from Proposition II1.4.1 in [26]. If f is
supported in a bisection, then by definition of the I-norm in (2.3) we have
IfIl7 < || flloo, sO by definition of the full norm || f|| < || f|lco- O

For functions fi, fo € C.(G®) it follows from (2.1) and (2.2) that:

fi* fo(w) = fi(x) - fol2)

and fi(z) = f(z), i.e. the product and involution of C.(G) on C.(G")
reduces to the natural point wise product and involution, so since G is a
bisection Lemma 2.2.6 will imply:

Lemma 2.2.7. Completing C.(G) in the full norm gives Cy(G), so
Co(G) C C*(G). The restriction map:

Ce(G) 3 [ = flgo € Ce(6) (2.5)

extends to a conditional expectation P : C*(G) — Co(GY).
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Proof. Since || f|loo = ||| for f € C.(G?) the first statement follows. Since
| flgo oo < || flloo < || f]] the map in (2.5) is a linear contraction, and hence
it extends to a linear contraction P : C*(G) — Cy(G). Since P(a) = a
for a € Cy(G®) then P is a contractive projection, and by Tomiyama’s
theorem, see e.g. Theorem 1.5.10 in [3], it is a conditional expectation. [

The following Lemma follows straightforward from standard calculations
and the definition of the full norm.

Lemma 2.2.8. IfH is an open subgroupoid of G the map ¢ : Co(H) — C.(G)
defined by extending functions by 0 is an injective x-homomorphism that
extends to a x-homomorphism ¢ : C*(H) — C*(G).

Finally let us recall that there is a natural way to construct C*-dynamical
systems on C*(G), see Definition 2.7.1 in [2] for a definition of a C*-dynamical
systems.

Definition 2.2.9. Let G be a locally compact second countable Hausdorff
étale groupoid and let GG be a locally compact group. A map ¢ : G — G is
called a continuous groupoid homomorphism! if it is continuous and satisfies

O(g) =2(g)" and ®(gh) = (g)(h)
for all g, h € G with s(g) = r(h).

When & is a continuous groupoid homomorphism into a locally compact
abelian group A there is a canonical way to construct a C*-dynamical system
(C*(G), A, o) where A denotes the Pontryagin dual group of A.

Proposition 2.2.10 (Proposition I1.5.1 in [26]). Let A be a locally compact

abelian group and ® : G — A be a continuous groupoid homomorphism.
Then:

1. For each é € A and f € C.(G) we set:

ag(f)(g) == &(®(9)f(g) forallgeG (2.6)

Equation (2.6) defines an automorphism o on C.(G).

2. ag extends to an automorphism on C*(G) that fives Co(G©) point
wise.

3. (C*(G), A, ) is a C*-dynamical system.

n the literature these are also called (continuous) 1-cocycles



16 Chapter 2. Groupoid C*-algebras

More on representations of C.(G)

Representations of C.(G) have the very nice property that they can be
extended to a slightly bigger algebra b.(G). This fact will be crucial to this
exposition, since the algebra b.(G), unlike C.(G), always contains a lot of
projections. Let us formalise this:

Proposition 2.2.11. Let b.(G) denote the set of bounded Borel functions
from G to C with compact support. Defining a product and involution using
the same formulas (2.1) and (2.2) as for C.(G), b.(G) becomes a x-algebra.

We say that a sequence {f,}22, C b.(G) converges to f € b.(G) if
lim, fn(g9) = f(g) for all g € G and there exists h € b.(G) with |f| < h and
| fn] < h for all n. With this notion of convergence we can define what we
mean by a representation of b.(G):

Definition 2.2.12. Let H be a Hilbert space. A representation L of b.(G)
on H is a x-homomorphism L : b.(G) — B(H) which is non-degenerate and
satisfies that if f,, — f in b.(G) then L(f,) converges in the weak operator

topology to L(f).

Lemma 2.2.13 (Lemma I1.1.17 in [20]). Any representation 7 of C.(G) on
a Hilbert space H extends to a representation L of b.(G) on H.
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KMS weights on C*-algebras

In this chapter we will introduce KMS weights. First we will summarise a
few facts concerning continuous 1-parameter groups, then we will turn to the
definition of a KMS weight on a C*-algebra. Our main source of information
on these subjects are [16] and [17].

3.1 On continuous 1-parameter groups

Definition 3.1.1. Let A be a C*-algebra. We call a a continuous 1-
parameter group when (A, R, «) is a C*-dynamical system, i.e. when « :
R — Aut(A) satisfies:

o oy s = oy and g = Id 4 for every s,t € R.
e The mapping R 5t — a4(a) € A is norm-continuous for all a € A.

FExample 3.1.2. Assume G is a locally compact second countable Hausdorff
étale groupoid and ¢ : G — R is a continuous groupoid homomorphism. By
Proposition 2.2.10 then ¢ gives rise to a continuous 1-parameter group which
we will denote by a“. We will call these continuous 1-parameter groups
diagonal.

We will extend a continuous 1-parameter group « from a map on R to a
map on C. To do this let z € C, then we let S(z) denote the set of complex
numbers with imaginary part between 0 and Im(z), i.e. if Im(z) > 0 then:

S(z) ={y € C : Im(y) € [0,Im(2)]}

and if Im(z) < 0 then S(z) is defined by requiring Im(y) € [Im(z),0]. We
let S(2)° denote the interior of S(z).

Definition 3.1.3. Let z € C and let a be a continuous 1-parameter group
on a C*-algebra A. Define D(a,) to be the a € A such that:

e There exists a continuous function f : S(z) — A that is analytic on
S(2)° and satisfies f(t) = ay(a) for all t € R.

17
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and for such an a define o, (a) = f(2).

Remark 3.1.4. When saying f is analytic in z € C we mean that:

fz+h) = f(2)
h

exists in norm for h — 0. Remark that:

e We have in fact defined an extension in the sense that using the
definition on a z € R gives back the original continuous 1-parameter
group «.

e D(a,) is a linear subspace of A and «, is linear on D(a,).

We call an element a € A analytic for a if there exists an analytic
function f: C — A with f(t) = ay(a) for all £ € R, and it then follows that
a € D(a,) for each z € C. To argue that D(«,) is dense it suffices to argue
that the analytic elements are dense.

Lemma 3.1.5. Let a be a continuous 1-parameter group on a C*-algebra

A. For each a € A and n € N define:

a(n) := \/Z/Rozt(a)e_”t2 dt

Then a(n) is analytic for a, |la(n)|| < |la|| and ||a(n) —al| — 0 for n — co.
Proof. See e.g. the proof of Proposition 2.5.22 in [2]. O
That we can find a core for «, is going to be crucial.

Lemma 3.1.6. Let a be a continuous 1-parameter group on a C*-algebra
A and z € C. Assume that B is a dense linear subspace of A and b(n) € B
for allb € B and n € N. Then B is a core for .

Proof. As in the proof of 3 in Proposition 6.1 in [30]. O

Regarding diagonal continuous 1-parameter groups on C*(G) we can now
conclude the following:

Proposition 3.1.7. Let G be a locally compact second countable Hausdorff
étale groupoid and let ¢ : G — R be a continuous groupoid homomorphism.
Then C.(G) is a core for D(as) for any z € C.
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Proof. For any f € C.(G) supported in a small bisection W we have:

fo) =2 [as(ne ar (31

By Lemma 3.1.6 and Lemma 2.2.1 it follows that C.(G) is a core if we
can prove that f(n) € C.(G). The expression in (3.1) can be approximated
in norm by elements on the form >3, A\;af (f) with m € N, \; € C and
t; € R. By definition of a® each of (f) has support in W, so 3372, Mg (f)
has support in W. Hence it suffices to prove that if {f,}nen € C.(G) is a
sequence with || f, —al| — 0 for some a € C*(G) and supp(f,,) C W for each
n, then a € C.(G). For such a sequence Lemma 2.2.6 implies that f,, is cauchy
in the norm |[|-||o, so there is a function f € Cy(G) with || f, — fllec — O.
Letting U be an open bisection such that W C U, then supp(f) C W C U,
implying that f € C.(G) and ||f,, — fllc = ||fn — f]| for each n by another
use of Lemma 2.2.6. In conclusion a = f € C.(G). O

3.2 KMS weights

For a C*-algebra A we let A, denote the convex cone of positive elements of
A. A weight on A is a map ¢ : Ay — [0, 00 such that ¥(a+0b) = ¥(a)+1(b)
and ¥ (Aa) = \p(a) for all a,b € A and A > 0. We call a weight :

o densely defined if {a € A, : (a) < oo} is dense in A, .
e lower semi-continuous if {a € Ay : ¥(a) < A} is closed for all A > 0.
e proper if it is non-zero, densely defined and lower semi-continuous.

For any proper weight ¢ we define a left ideal Ny, := {a € A : ¢(a*a) < oo}
and we set M := {a € Ay | ¥(a) < oo}. Setting:

My :=span{a™b : a,b e Ny}

then M, = span /\/l:pr and it is a dense *-subalgebra of A. There is a unique
linear extension M,, — C of ) on My N A} which we also denote by .

Originally the theory of KMS weights on C*-algebras goes back to
Combes [5], but we will follow [17] and [16] for our information on KMS
weights.

Definition 3.2.1. Let A be a C*-algebra, a : R — Aut(A) a continuous
1-parameter group and let 5 € R. We call a weight ¥ on A a S-KMS weight
for v if it is a proper weight satisfying:
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1. Ypoa, =1 forall t € R.

2. For every a € D(a_g;/2) we have
Y(a*a) = P(a_gi2(a)a_gi2(a)’).

We call ¢ a -KMS state for a if sup{¢)(a) : 0 <a <1} =1.

The KMS weights for « defined in [16, 17] are exactly the —1 KMS
weights for a in Definition 3.2.1. For g # 0 we can translate the results of
[16, 17] into our setting by noticing that in Definition 3.2.1 a weight is a
B-KMS weight for {a; }+er if and only if it is a —1 KMS weight for {a_g }er.
For 8 = 0 we can translate the results by using that a 0-KMS weight for «
is precisely a —1 KMS weight for {Id 4};cr invariant under .

With this in mind it follows from Proposition 1.11 in [17] that for 5 # 0
condition 2. could equivalently have been exchanged with condition 2'.:

2. For every a,b € Ny N ./\/;Z there is a continuous and bounded function
F : S(i8) — C holomorphic on S(i/3)° satisfying:

F(t) = ¢lacu(b)) ,  F(t+if) = P(au(b)a)

Comparing this with the [7] it follows that our definition of a KMS weight
agrees with the one in [5] up to a change in orientation.

Remark 3.2.2. By Proposition 5.3.3 and Proposition 5.3.7 in [2] the notion
of a -KMS state when 3 # 0 given in Definition 3.2.1 is identical to the
classical one given in equation (1.1) in the introduction. The 0-KMS states
for o defined by (1.1) are exactly the tracial state, while 0-KMS states for
a in Definition 3.2.1 are tracial states invariant under «. The invariance
under « has been chosen in this exposition to ensure that the definition is in
accordance with the definition of a KMS state in [20]. In general there is no
consistency in the literature on which definition on 0-KMS states to work
with, and the author honours this tradition by being inconsistent himself,
ie. in [A, B, () D] 0-KMS states are tracial states while in [F] they are
invariant tracial states.

To get a better idea of how the notion of KMS weights in Definition 3.2.1
and the notion of KMS states in (1.1) are related, let us present Lemma 3.1
in [F]:

Lemma 3.2.3 (Lemma 3.1 in [I]). Let A be a C*-algebra and o a continuous
L-parameter group of automorphisms on A and v a KMS weight for . Let
p € A be a projection in the fized point algebra of a. Then ¢ (p) < oco.
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When A contains a unit /4 this Lemma implies that ¢(14) < oo for any
KMS weight v, and it follows that the KMS weights on A are just positive
scalars of KMS states, and hence in the unital case it suffices to describe the
KMS states. For non-unital C*-algebras the KMS weights will in general
not be scalars of KMS states, and for many non-unital C*-algebras the
structure of KMS states is poor compared to the structure of KMS weights.
Therefore the key argument for studying weights is to ensure that intriguing
information regarding the C*-dynamical system is reflected by the set of
KMS weights.

Most textbooks that introduce the notion of a weight will inform the
reader that the abstraction of studying weights instead of states on a C*-
algebra can be compared to, or is indeed the non-commutative version of,
the abstraction that takes place when one study general measures instead
of probability measures on a measure space. As we shall see later on, c.f.
Theorem 4.2.1, this point of view is strikingly correct when studying KMS
weights on groupoid C*-algebras, and it is worth remembering as another
argument for studying KMS weights instead of KMS states.

3.3 The GNS construction

A KMS states for a C*-dynamical system can be extended to a KMS state
for a W*-dynamical system using the GNS construction, c.f. Corollary 5.3.4
in [2]. A similar extension can be done for KMS weights, as we will see in
the following.

Definition 3.3.1. Let ¢ be a proper weight on a C*-algebra A. A GNS
construction for v is a triple (Hy,my, Ay) where Hy is a Hilbertspace,
Ay : Ny — Hy is a linear map with dense image such that:

(Ayp(a),Ayp(D)) = (b*a)  for all a,b € Ny

and 7y : A — B(H,) is a representation with my(a)Ay(b) = Ay(ad) for all
a€ Aand be N,.

In a similar way that it is done for states one can prove that a GNS
construction for weights exists and is unique up to unitary transformations.
To extend a KMS weight via a GNS representation let us recall that a
strongly continuous 1-parameter group « on a von Neumann algebra M is
a 1-parameter group in Definition 3.1.1 with the exception that the map
R 5t — «a4(a) should be continuous in the o-weak topology instead of in
the norm-topology, or equivalently in the strong or weak operator topology
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c.f. 7.4.2 in [23], and similarly one can extend « by defining a linear map «,
on D(a,) for every z € C. We call a weight ¢ on a von Neumann algebra
M semi-finite when {a € M, : ¢(a) < oo} is o-weak dense i M, and we
call ¢ normal when {a € M, : ¢(a) < A} is o-weak closed for all A > 0.

Theorem 3.3.2. Let ¢ be a B-KMS weight for a continuous 1-parameter
group « on o C*-algebra A and let (Hy, 7y, Ay) be a GNS-construction for
V. Then

1. 7y : A— B(Hy) is non-degenerate.

2. There exists a normal semi-finite weight U on my(A)" such that ¢ =
77[) o} 7T¢.

3. There exists a strongly continuous 1-parameter group & on 7T¢~(.A)” that
is implemented by unitaries such that myoay = &y omy and Yoy =P
forallt € R.

4. Y(a*a) = P(a_ip/2(a)d_ig/2(a)*) for all elements a € D(G_;p/2).

Proof of Theorem 3.3.2. The first statement is contained in Proposition
1.7 in [17]. The second statement is Definition 2.10 in [17] and the third
is Corollary 2.20 in [17]. When § = —1 the last statement follows from
combining the conclusion after Proposition 2.22 in [17] with Proposition
2.7 in [L7]. For B # 0 the conclusion then follows from scaling the action,
and for § = 0 it follows by noticing again that since v is a —1 weight for
{Td 4 }ser then ¥(a*a) = ¢ (aa*) for all a € my(A)”, which is the same as the
statement for dy. O



747

Neshveyev’s Theorem

In this chapter we will present Neshveyev’s theorem on KMS states for
diagonal actions on the C*-algebras of locally compact second countable
Hausdorff étale groupoids. Before getting to the theorem we will summarise
some facts about measure theory and quasi-invariant measures, which albeit
being fairly fundamental, has found its way into this dissertation to provide
a rigorous background. Instead of presenting Neshveyev’s original theorem
we will present a generalisation to weights, and we will prove that this
generalisation follows from the original theorem.

4.1 Background

Measure theory

We will throughout use [1] as our source on measure theory. A measure
space is a triple (X, X, u) where X is a set, 3 is a o-algebra on X and p is a
measure on (X, X). In this dissertation all measures will be non-negative. If
X is a topological space the Borel o-algebra is the o-algebra generated by
the open sets, and we will denote this B(X). If i is a measure on (X, B(X))
we call 1 a Borel measure. A Borel measure 1 on a locally compact Hausdorff
space X is regular when it is non-negative and satisfies:

e i(K) < oo for all compact sets K C X.
o u(E)=inf{u(V) : ECV, Visopen} for all Borel sets E.

o u(E)=sup{u(K) : K CE, K is compact} for all open sets E and
all Borel sets £ with u(F) < oo.

The locally compact Hausdorff spaces X we encounter in this dissertation
are going to be second countable, and in that case most Borel measures are
going to be regular as explained in the following Lemma.

Lemma 4.1.1. Let X be a locally compact second countable Hausdorff space
and let p be a Borel measure on X. If n(K) < oo for all compact sets K

23
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in X then p is reqular. Furthermore any regular Borel measure p on X
satisfies:
w(E) =sup{u(K) : K CE, K is compact}

for all Borel sets E.

Proof. Since X is o-compact this follows from Proposition 7.2.3 and Propo-
sition 7.2.6 in [1]. O

A measure space (X, X, ) is called complete if Y C Z C X and Z € &
with p(Z) = 0 implies that Y € 3. A regular Borel measure p on a locally
compact Hausdorff space X is not necessarily complete, but there is a
canonical way to complete it. Consider the set B(X), consisting of subsets

B C X satisfying that there are A,C' € B(X) with A C B C C' and:
p(C\A) =0

It can then be proven that setting 7i(B) := u(C) = u(A) gives a well defined
measure with (X, B(X),, i) complete, B(X) C B(X), and fi agreeing with
p on Borel sets, see e.g. Proposition 1.5.1 in [1]. A function f: X — C
is called Borel when it is (B(X), B(C))-measurable, and if p is a Borel
measure on a locally compact Hausdorff space X we say that f: X — Cis
p-measurable if it is (B(X),, B(C)) -measurable.

Lemma 4.1.2. Let X be a locally compact Hausdorff space and i a Borel
measure on X. If f : X — C is p-measurable then there exists a Borel
function f': X — C and a N € B(X) such that u(N) =0 and f(z) = f'(x)
forallz € X\ N.

Proof. When f : X — C is y-measurable then Re(f),Im(f) : X — R are
(B(X),, B(R)) measurable, so the Lemma follows from Proposition 2.2.3 in
[4]. O

Quasi-invariant measures and fields of states

To state Neshveyev’s theorem we will introduce the notion of p-measurable
fields of states and quasi-invariant measures. First let us introduce pu-
measurable fields.

Definition 4.1.3. Let G be a locally compact second countable Hausdorff
étale groupoid, and let 1 be a regular Borel measure on G(°). For each
z € GO we let u,, g € G denote the canonical unitary generators of C*(G?).
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We call a collection {¢,},cg0 a p-measurable field of states if each ¢, is a
state on C*(G¥) and the function:

GO 52— > fl9)p.luy) (4.1)

geGE

is p-measurable for each f € C.(G).
We identify two p-measurable fields {¢,},cq0 and {¢}},cq0 when

. = @, for pra.e. .

Remark 4.1.4. The function in (4.1) has support in r(supp(f)), which is
compact since r is continuous. There is a n > 1 such that supp(f) is contained
in n bisections, and hence > cgx f(9)pz(uy) has at most n non-zero terms,

implying that:
> f(9)ea(uy)

gege

<0l flleo

so the function in (4.1) is also bounded.

To introduce quasi-invariant measures let G be a locally compact second
countable Hausdorff étale groupoid, and let i1 be a regular Borel measure on
G© . Arguing as in the above remark Riesz representation theorem implies
that there exist unique regular Borel measures pu, and ps on G with:

L rde=[ > o) [ du= [ S H(9) du)

ng 9€Gx
for all f € C.(G).

Definition 4.1.5. Let G be a locally compact second countable Hausdorff
étale groupoid, let ¢ : G — R be a continuous groupoid homomorphism
and 3 € R. Let u be a regular Borel measure on G. We call u quasi-
invariant with Radon-Nikodym cocycle e=5¢ if 1, and j, are equivalent and

dp, /dps = e P,

Although this is the standard definition of quasi-invariant measures with
Radon-Nikodym cocycle e, we will give other characterisations of these
measures which are easier to work with.

Proposition 4.1.6. Let G be a locally compact second countable Hausdorff
étale groupoid, let ¢ : G — R be a continuous groupoid homomorphism and
B €R. If i is a reqular Borel measure on G\, the following are equivalent:

1. p is quasi-invariant with Radon-Nikodym cocycle e=P¢,
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2. For all small bisections W C G we have:
p(sW) = [ WD dy(a)

where vy is the inverse of ry : W — r(W).

3. Whenever B € B(G) is contained in some small bisection W :
ps(B) = [ WD du).
r(B)

Proof. Let W be a small bisection and let 1 be a regular Borel measure on
G, There exists a sequence {f,}nen € Co(G) such that 0 < f, <1 and f,
point wise increases to 1y, and then it follows that z — > <5 fn(g) is an
increasing sequence of Borel functions converging point wise to 14y). This
implies:

peW) = tim [ o dp=1im [ S £ul9) dpla) = n(s(W)

gegz

Defining f/(g) = f.(9)e’*¥ and using monotone convergence for f’ gives:

[ #0du.(g) = tim /g £1(9)dp,(g) = lim /g o 2 falg)du(a)

geg®

_ Be(ry ()
= e’ \'w du(x
L (@)
Any open subset U C W is a small bisection, so the two Borel measures:
BW)> B = pus(B) , B(W)>B— u(s(B))

on W agree on open sets. Since W is a small bisection they are finite, so
by Lemma 4.1.1 they agree on all Borel sets B contained in W. A similar
argument gives that:

/ 59y, (g) = / W @) ()
B r(B)

for all Borel sets B C W.
1 = 2. Assume that p is quasi-invariant with Radon-Nikodym cocycle
e ?¢ and let W C G be a small bisection. Since dpu,/du, = ¢ we get:

u(s(W)) = wW) = | ™Dy (g) = [ € i)
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2 = 3. Let B’ be a Borel set with B’ C W for some small bisection W.
The two finite Borel measures on W given by:

B(W) > B - u(s(B)) , B(W)3B— / (B) PR @) gy ()

agree on open sets by assumption, so by regularity they agree on B’.

3 = 1. Let B € B(G), then by 3 in Lemma 2.1.7 we can write B as
a countable disjoint union | |; B; with each B; Borel and contained in a
small bisection. Fix ¢ and suppose B; C W for a small bisection W, the
observation in the beginning of the proof then implies that:

115(Bi) = pu(s(By)) = / (B_)emav @) du(z) = /B Py ().

Since g — €7°9) is a strictly positive function this proves 3 = 1. [

Lemma 4.1.7. Let G be a locally compact second countable Hausdorff étale
groupoid, let ¢ : G — R be a continuous groupoid homomorphism and 5 € R.
If N C GO is a Borel set, then

s(rH(N) =r(sH(N))

and this set is Borel. If p is quasi-invariant with Radon-Nikodym cocycle

e P and u(N) = 0 then u(s(r=*(N))) = 0.

Proof. Consider g € G with r(g) € N, then s(¢7') = r(g9) € N and
r(g7') = s(g), proving that s(r~'(N)) C r(s~}(N)). The other inclusion
follows in the same way. Choose a basis {W;}:2, of small bisections as in
Lemma 2.1.7, then we have:

oo

U rW (N Nr(Wy)))

Since s o 7y} is a homeomorphism from r(W;) to s(W;) this proves that the
set is Borel. If ;1(IN) = 0 Proposition 4.1.6 implies:

pld (VW) = [ R dua) = 0

which proves u(s(r=*(N))) = 0. O
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4.2 Neshveyev’s Theorem

We now have the necessary background to state Neshveyev’s Theorem for
weights:

Theorem 4.2.1 (Neshveyev). Let G be a locally compact second countable
Hausdorff étale groupoid, let ¢ : G — R be a continuous groupoid homomor-
phism and let 5 € R.

There is a bijective correspondence between the B-KMS weights for a¢
on C*(G) and the pairs (@, {Yz}rego ), where p is a non-zero reqular Borel
measure on GO and {p, },egw is a p-measurable field of states ¢, on C*(G?)
such that:

1. 1 is quasi-invariant with Radon-Nikodym cocycle e=5¢.
2. 0u(tg) = @rn)(Ungn—1) for p-a.e. x € GO and all g € G* and h € G,.
3. pu(uy) =0 for p-a.e. v € G and all g € G*\ ¢c71(0).

The B-KMS weight ¢ corresponding to the pair (i, {¢s},cg0 ) has the prop-
erty that C.(G) C My, and it is the unique B-KMS weight satisfying:

W) = [, 3 F@)eulus) dula) (4.2

gegs
for all f € C.(G).

Remark 4.2.2. By choosing an approximation of the identity {f,}>2, C
C.(G©) one can prove that 1 is a state if and only if 4(G®) = 1. Hence we
get a bijection between KMS states and the pairs (i, {¢z }reg© ), where p is
a regular Borel probability measure on G(® and {@s}rego is a p-measurable
field of states satisfying 1.-3. This is the content of the original theorem by
Neshveyev presented in [20)].

Before we give a proof of Theorem 4.2.1 we will prove a Proposition of
independent interest.

Proposition 4.2.3. Let G be a locally compact second countable Hausdorff
étale groupoid and let ¢ : G — R be a continuous groupoid homomorphism
and B € R. Let 1) be a -KMS weight for o and let (Hy, my, Ay) be its GNS
triple, with 1) the extension of 1 to mu(C*(G))" and &° the extension of af
as in Theorem 3.3.2. Then we have:

1. Restricting my to C.(G) gives a bounded representation of C.(G) on
Hy as in Definition 2.2.5.
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2. Let Ly be the extension of my|c. gy to be(G), then for any compact set
K C GO we have Ly(1k) € my(C*(G))" and:

(Ly(lx)) < 00

Proof. Since my(C.(G)) is norm-dense in 7, (C*(G)) it follows that my|c(g)
is a non-degenerate *-homomorphism. Since 7, is bounded then ||7,(f)|] <
| fIl < [If]lz, so my|c.(g) is bounded in the I-norm, and Theorem 2.2.4 then
implies that it is a representation.

To prove 2 notice that 1x is a projection in b.(G), and by the shrink-
ing Lemma and second countability we can find a sequence of functions
{fn} € C(GY) with f,, — 1 in b.(G). Lemma 2.2.13 and Definition 2.2.12
implies that Ly(f,) — Ly(1x) in the weak operator topology, so Ly (1) €
Ty (C*(G))". Since &f is implemented by unitaries it is weak operator con-
tinuous, so for any ¢ € R and £, n € Hy:

(5L (11))E,m) = T (G Lyl fu)E, 1) = Tim (@5 (g ()€, 7)
So Ly(1k) is a projection in the fixed point algebra of a°.
Let f € C.(G©) satisfy that f(z) = 1 forx € K and 0 < f < 1.

Since 1 is proper and f € C*(G), there is a sequence of positive elements
{AF}2, C C*(G)4 such that 1(A*) < oo for each k and ||A* — f|| — 0 for

k — oo. Setting:
Ak — ﬁ/ c Ak —nt? dt
() = /= [ ai(ah)e

then A¥(n) is analytic for a° for each n, k, A¥(n) — A¥ for n — oo in norm
and by e.g. Lemma 2.12 in [10] then:

Y((A%(n)?) < [[AR(n)[[(A"(n)) < oo

Since
h}gn liern(Ak(n))Q = f?

there is an analytic element A € C*(G), for o with ¥(A?) < oo such that
|A% — f?|| < 1/2. By definition of the product in b.(G), 1x = 1x * f? * 1x,

Lo (L) A%) L (L) = Ly (L)l

= ||Ly(1x) (m(A?) = Ly () Ly(Lie) e,
< |l (A%) = 7 (D)l < 1A% — 2] < 1/2
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where || - ||s(zr,) is the operator norm on B(H,). Spectral theory now implies
that Ly (1x)my(A%)Ly(1x) > (1/2)Ly(1k). Since A is analytic for a¢ there
is an analytic function F' : C — C*(G) with F(t) = af(A) for all ¢ € R.
Defining G : C — 7, (C*(G))" by G(z) = my(F(2))Ly(1k) then G is analytic

in norm and:
G(t) = my(af(A) Ly(1k) = af(my(A)Ly(1k))  VEER,

In conclusion 7y (A)Ly(1k), and by a similar argument m,(A), is analytic
for a¢ and hence:

O(Ly(1k)) < 20(Ly(Lie)my (A7) Ly (1))
= 21/;<d6—16/2(7r¢(*’4))Ldl(lK)dc—iﬁ/Z(ﬂdJ(A))*)
< (G5 (mp (A)) A 52(m(A))")
= 2 (my (A%)) = 29(A%) < o0
which proves 2. O

We can now prove Theorem 4.2.1. This proof have a predecessor in
Theorem 3.2 in [E].

Proof of Theorem 4.2.1. Since this proof is quite long we have divided it
into four steps.

Step 1: Associating a pair (u, {p}) to a weight v

Let ¥ be a S-KMS weight for a¢, and borrow the notation used in Propo-
sition 4.2.3. Using Lemma 2.1.7 we can find a countable sequence {V;}2,
of open sets in G(© with compact closure K, := V;, such that K; C V;,4 for
each ¢ and:

g — Jv;
i=1

Since Ly(1k, ;) < Ly(1y;,) < Ly(1k,) it follows from Proposition 4.2.3 that
Ly(1v,) < Ly(ly,) < --- is a sequence of projections with ¢ (Ly(1y;)) < oo
for each ¢, and by approximating 1y, by an increasing sequence of functions
in C.(G) it follows that Ly(1y,) € mu(C*(G))". So Ly(1y;) converges to a
projection P € m,(C*(G))" in the strong topology and by definition of P
then Pry(f) = my(f) for all f € C.(G), implying since my|c,(g) is non-
degenerate that P = Ip(,). Since {Ly(1y;)}52; is a bounded sequence it
converges to Ip(,) in the o-weak topology, so since w(IB(Hw)) > (0 and v is
normal we can then assume that:

0 < P(Ly(ly,)) < 0o for each i.
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For f € C.(G) we can use compactness to find a i such that:

r(supp(f)) C Vi and s(supp(f)) C V;

By definition of the product in b.(G) we have f = 1y, * f % 1y;. Considering f
as an element of the C*-algebra C*(G) there exists a; € C*(G); and A\; € C
for j =1,2,3,4 with f = Z?Zl Ajaj. Since:

(L (Lv)mp(a;) Ly(1y,)) < [lmy(az) [ (Ly(1y,)) < oo

and:

Ty (f) = Ly(Lv)my () Ly (1) = D Ay Ly (v )my(a;) Ly(1v;)

Jj=1

we get that |(f)] = |[(my(f))| < oo, proving that C.(G) C My. In
particular 1 is a positive linear functional on C.(G®), so by the Riesz
Representation Theorem there is a unique regular Borel measure y on G
such that:

U(f) = [, f@) dn(a)  for all f € C.(G")

By Lemma 2.1.8 we have an open subgroupoid G,, := G|y, and by Lemma 2.2.8
inclusion gives a *-homomorphism ¢,, : C*(G,) — C*(G) for each n € N. For
each n € N we want to define a function w,, on C*(G,) by:

wa(a) = p(Va) ™' (tn(a))

Since 9(Ly(1y,)) < 0o then u(V,) > 0. Choosing f € C.(G®) with f =1
on K, we get f *u,(a) = t,(a) for all a € C*(G,,), and hence (1,(a)) =
U(fin(a)f) < oo for all a € C*(G, )+, proving that w, is a positive linear
functional. Using e.g. Proposition 2.3.11 in [2] the definition of p implies
that w, is a state. Since ¢, = c|g, is a continuous groupoid homomorphism
on G, and ¢, o a“ = a‘o,, we get that w, is a S-KMS state for a“» on
C*(G,). Using Theorem 4.2.1 for states, we get a regular Borel probability
measure (i, on V, = Q,(lo) and a p,-measurable field of states {¢”} ey, such
that:

an) fin is quasi-invariant on G, with Radon-Nikodym cocycle e=#¢n.
bn) i (ug) = @ (Ungn-1) for py-a.e. x €V, and all g € G7, h € (Gy).-

cn) ¢2(uy) =0 for py-a.e. x €'V, and all g € G¥\ ¢, *(0)
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and that for f € C.(G,) we have:

(Vo)™ / 9)Px ug) dpin ()

n gegac
For every function f € C.(V,,) we have:

V)™ [ F@) du@) = p(V) ™ [ () (@) du(x) = (V) (e (f)

- G
- / ©) dpn(@

So uly, = u(Vy)in, which implies that w, = pu(Vog1)/w(Va) sy, . Any
small bisection W satisfies W C G, for all sufficiently large n, so by Propo-

sition 4.1.6 p satisfies (1) since p, satisfies a,) for each n. For f € C.(G,)
we have:

| X F(9)e ) dian(e) = p(Va) (0 ()
n gegz
”“ 5L X H)e () dpna (2
n+1 gegx
= / Z F (@)@ 1) dyun ()

n gege
Since u(N) =0 for N C V,, iff p,(N) = 0 then {¢©"™'},cv., satisfies b,) and
Cn), SO injectivity of the map in Theorem 1.3 in [20] implies that ¢! = "

for p,-almost all z € V,,. Let N,, CV,, be a Borel set with u,(N,) =0 and
et =" for x € V,, \ N,,, and set N = s(r~*(U,, N,,)). Then N is Borel
and u(N) =0 by Lemma 4.1.7. Let Tr, be the canonical trace on C*(G¥)

and set:
{gog if x €V, \ N for some n
P =

Tr, ifxeN
This is well defined by choice of N, and it is straightforward to check that ¢,
satisfies (2) and (3). Since any f € C.(G) satisfies supp(f) C G, for large n

then {p,} is pu-measurable since each {7} is p,-measurable. For f € C.(G)
there exists a n such that f = ¢,(f|g,), and hence:

U(f) = bln(Fle)) = n(Va) [ 3 Fla)@ilug) dius(a)
" gege
= g(>gegz 9)px(ug) du(z)

which proves that to any KMS weight ¢ corresponds a pair (1, {¢s}.eg)-
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Step 2: Every pair (p, {¢s}eego) gives rise to a KMS weight

Assume now (11, {¢; }oeg ) satisfies (1) — (3), then every x € GO gives rise
to a state 1, on C*(G) such that:

Ualf) = D F(9)ea(uy)

9€G%

for all f € C.(G), c.f. the proof of Theorem 1.1 in [20]. Since x — 1, (f) is
p-measurable, so is © — 1, (a) for all a € C*(G). For a > 0 we can define:

U@ = [ ela) dp(a)

Then ¢ is a non-zero weight on C*(G). Fatou’s lemma implies that 1 is
lower semi-continuous and for f € C.(G) then ¢, (f) = 0 for = ¢ s(supp(f)),
so:

WO < [ (D] du(z) < | Flln(s(supp(f))) < o0

G
In conclusion ¢ is a proper weight with C.(G) C M. Choose a sequence
{V,.}52, as in step 1, since p is regular we can assume 0 < p(V,) < oo for all
n. Then (u(V,) ', {¢s teev,) gives a S-KMS state w,, on C*(G,,) for a" by
Theorem 1.3 in [20]. For any f € C.(G), there is a n such that f = ¢,(f|g,),
and we get:

) = [ 3 (% Pla)ea(uy) due)

9€G%
= (Vi) [, 3 (£ Dladealu) du(V2) ) o)

= 1(Va)wn((flg,)"(flg.)) = p(Va)wn(aZis 5 (flg.) g5 (flg.)")

So we have proved that 1 satisfies the KMS condition on C.(G), yet to prove
that it is a KMS weight we need to prove this equality for all a € D(Ozc_w /2).
Ce(G) is a core for a4, by Proposition 3.1.7, so for a € D(ac,,) we
can find a sequence { fy }men C Cc(G) such that f,, — a and a5 5(fm) —
a,5/5(a) in norm. Now choose a sequence of functions {g,}72; C C.(GO)
with the property that g,(z) = 1 for z € V,, and supp(g,) C V.41 for all n
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and with 0 < g, < 1. Then {g, }nen is an approximation of the identity on
C*(G) and since af(g,) = gy for all £, we get that:

@Z)(glf;ggfmgl) = 7vb((gnfmgl)*(g7ufmgl)) = ¢(gnaiiﬂ/2(.fm)ngOéc_i/B/Q(fm)*gn)

By definition of ¥ the functions C*(G) > * — ¥ (gixg;) and C*(G) 5 z —
¥ (gnrgy) are continuous, so letting m — oo we get:

V(910" gngnagr) = ¢<9nac—w/2(a)9l2ac—w/2(a)*gn) (4.3)

Since ¥, (gnfgn) = Vu(f)gn(x)? for f € C.(G) the same holds for all
be C*(G) by continuity and:

v ¢x(aiiﬁ/2(a)g?aiiﬁ/2(a)*)d:u(x) < @Z)(gnac_wﬂ(a)glzac_wﬂ(a)*gn)

IN

¢ac(ac—iﬁ/Q(a)ngac—iﬁ/Z(a)*)d:u(x)

Vn+1

so we have:

Q/)(gnac_wﬂ(a)gfozc_w/g(a)*gn) — w(ac—z‘/}/Q(a)ngO‘c—i,B/Q(a)*) for n — oco.

Considering (4.3) for n — oo and using lower semi-continuity we get:

Y(gia*ag) = ¢(ac—w/2 (a)gfoz‘iwﬂ(a)*).

When [ — oo a similar argument to the one just given implies that:

Y(a*a) = ¢(aiiﬁ/2(a)0‘ii5/z(a)*)-

To see that 1 o a® = 1 fix t € R. By condition (3) we get that ¢, (af(f)) =
. (f) for f € C.(G) and almost all x, hence by continuity of ¢, we have
), = 1, 0 af for p-a.e. x, proving ¥ o af = 1h. So the formula (4.2) defines a
B-KMS weight ¢ for af.

Step 3: The formula (4.2) defines a unique $-KMS weight.

This follows if we can prove 1 constructed in step 2 is the only S-KMS
weight for o satisfying (4.2), so let ¢’ be a S-KMS weight for a¢ that
agrees with ¢ on C.(G). Let {g,}2, C C.(G) be the approximation of
the identity defined in step 2. For each n the maps C*(G) 3 a — ¥ (gnagn)
and C*(G) 3 a — ¢'(gnag,) are continuous and they agree on C.(G), so
they agree on all elements. Choose a € C.(G)., for each x € G(©) we have

w2<gna9n) = gn(x)wa(a) SO:

U (g009,) = Wlo09) = [ ve(@)gu(2)? du()
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Since ' (gnag,) < ¥(a) for each n lower semi-continuity implies ¢'(a) <
¥(a). Assume now that a € C.(G), satisfies 1(a) < 0o, then we also have
Y'(a) < oo and hence for any n we have y/agn, gnv/a € Ny NN and
Vagn, gnv/a € Ny NN If f =0 we then have:

V(vVagiva) = ¥(gaagn) = V' (gnagn) = ' (Vagiv/a)

Since v/ag?+/a increases to a lower semi-continuity implies that 1 (a) = 1'(a).
To prove the same is true when § # 0 we can assume 3 > 0 by symmetry. By
definition there exist bounded and continuous functions F, F’ : S(if) — C
analytic on S(i3)? satisfying:

F(t) = ¢(9n\/504§(\/5)9n) ) F(t + ZB) = w(&f(\/a)gngn\/a)

and:

F/(t) = ¢,<gn\/aazf(\/a>gn) ) F,(t +1iB) = W(Oéf(\/a)gngn\/a)

The function F' — F’ is then 0 on R and analytic on S(i3)°, so the edge of
the wedge theorem, see e.g. Proposition 5.3.6 in [2], implies that F' — F” is 0
on S(i3)°, and hence by continuity F(i3) = F'(i3), i.e

2/1/ ( \/agngn \/a) =1 ( \/agngn \/a>

Since this is true for all n we get ¥(a) = ¢/(a). It now follows that ¢ = ¢/
by Corollary 1.15 in [17].

Step 4: The map is a bijection.

By step 2 and step 3 the map is well defined, and by step 1 it is surjective. So
we only need to prove that it is injective. For this assume that (i, {¢s},cq0)
and (1, {¢, } seg ) represent the same S-KMS weight for a¢ via the formula
(4.2). Riesz Representation Theorem implies immediately that p = '
Choose a sequence { f,, }22, C C.(G) where each f,, is supported in a bisection,
and such that for each g € G there is a n with f,,(g) = 1. For any f € C.(G)

and k € C.(G") we get by definition:

/Q(O) x) Y [(9)ea(uy) du(z) = /g() ) > fl9)¢h(ug) du(z)

geGE geGE

From this it follows that:

Z fn( g)¥Pax ug Z fn ‘Px ug

gege geGe

for p-a.e. € G and all n. This implies that ¢, = ¢/, for u-a.e. . m
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Neshveyev’s theorem allows us to divide the study of KMS weights into
two different questions - one regarding measures on G(°) and one regarding
measurable fields of states on the C*-algebras of the isotropy groups. We
will focus on these two questions in the two chapters to come. For clarity let
us make a remark that was also made in [20].

Remark 4.2.4. Condition 3 in Theorem 4.2.1 is automatically satisfied when
B # 0, since a quasi-invariant measure p with Radon-Nikodym cocycle e~#¢
will automatically be concentrated on the x € G with G= C ¢=1(0). The
set:

M={geG : ¢(g)>0and r(g9) =s(9)}

is Borel since ¢, r and s are continuous. Since s maps Borel sets to Borel
sets by Lemma 2.1.7, we have that:

{z€g® : gi g (0)} = s(M)
is Borel. To prove that p(s(M)) = 0 it follows from Lemma 2.1.7 that
it suffices to show that p(s(M N W)) = 0 for any small bisection W.
Proposition 4.1.6 now implies that:

MAW)) = / Be(ry (@) g
plsMnw)) = [ D du(a)

By choice of M the function 7(M NW) 3> x — c(ry; (x)) is positive and

r(MNW)=s(MNW), so when 5 # 0 this can only be the case when
p(s(M NWw)) =0.

Corollary 4.2.5. Let G be a locally compact second countable Hausdorff
étale groupoid, let ¢ : G — R be a continuous groupoid homomorphism and
let € R. If ¢ is a B-KMS weight for of given by (i, {¢Ys}rego) then
Y =1 o P if and only if o, = Try for p-a.e. v € GO,

Proof. Theorem 4.2.1 implies that if two KMS weights agree on C.(G) then
they are equal, but if ¢ o P = 1) then v agrees with the KMS weight given
by (i, {Trz},eg@ ), proving one direction. Assume now that 1 is given by
(p, {Trys }pego) and consider a € C*(G). Clearly ¥(f) = ¥(P(f)) for all
f € CuG). Let {fm}_; C C(GO), be an approximation of the identify
with 0 < f,,, < fiy1 < 1 for all m and assume that {h,}2>, C C.(G) is a
sequence with h,, = a € C*(G). Then:

U(fma”afm) = Bm o (frhy b frm) = B O (fo P(hyhn) fm) = (fmP(a*a) fm)
By definition of :

b(a*a) = Hm(fua*af) = m(fu P(a*a) f) = ¥(P(a*a))
proving the corollary. O
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Ergodicity

In this chapter we will first prove that the extremal quasi-invariant measures
with Radon-Nikodym cocycle e~#¢ exactly are the ones that are ergodic. This
result has a predecessor in Theorem 4.15 in [30]. After having established this,
we will analyse the relationship between extremal measures and extremal
weights.

5.1 Ergodicity

Definition 5.1.1. Let G be a locally compact second countable Hausdorff
étale groupoid. For ¢ : G — R a continuous groupoid homomorphism and
f € R we let A(S,c) denote the set of non-negative regular Borel measures
on G that are quasi-invariant with Radon-Nikodym cocycle e=#¢.

Remark 5.1.2. Notice that the zero-measure is an element of A(f3, ¢), yet it
does not give rise to any weights by Theorem 4.2.1. Also notice that A(f, ¢)
is a convex set and by Lemma 2.1.7 every measure in A(f, ¢) is o-finite.

Before proving that the extremal measures in A(f,c) are the ergodic
measures in A(S, ¢), let us define what we mean by extremal and ergodic.

Definition 5.1.3. We call a measure u € A(f,c) extremal when any
w1, po € A(B, ) with = py + po satisfies pq, po € Ryp:={Ap : A > 0}.

Definition 5.1.4. Following [26] we call a set B C G(*) invariant if for all
g € G, r(g) € Bifand only if s(g) € B, or equivalently if

B=r(s"YB)) or B=s(r(B))

We say that a Borel measure p on G is ergodic if for all invariant Borel
sets B we either have u(B) = 0 or u(B¢) = 0.

Remark 5.1.5. Notice that if B is invariant then B¢ = G\ B is also
invariant.

37
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The aim of this section is to prove the following Theorem, which links
ergodicity with being extremal:

Theorem 5.1.6. A measure in A(B, ¢) is extremal if and only if it is ergodic.

Before proving Theorem 5.1.6 we will prove the following Proposition
which is of independent interest.

Proposition 5.1.7. Let G be a locally compact second countable Hausdorff
étale groupoid, let ¢ : G — R be a continuous groupoid homomorphism and
g eR. If u€ A(B,c) and B is an invariant Borel set, then the restriction
pup of i to B is again an element of A(S,c).

Proof. Let W be a small bisection in G. Since B is invariant we get that:
s(W)N B = s(ry (r(W) N B))

Since u € A(B, ¢) we can use Proposition 4.1.6 to see that:
pa(s(W)) = ul(s(rg (W) N B)) = [ M0 dpu(a)

(W)NB
= [ O dpuy(a)
(W)

Since pp is Borel and finite on compact sets it is regular, so since W was an
arbitrary small bisection Proposition 4.1.6 implies that ug € A(8,¢). O

Proof of Theorem 5.1.6. If ;n = 0 it is both extremal and ergodic, so we
can assume g # 0. Let 4 be extremal and B C G invariant and Borel
with p(B) > 0, then B is invariant and Borel as well and p = up + pigc.
Proposition 5.1.7 then implies that yup = Ap, and evaluating in B gives
A > 0. Since A\u(BY) = up(B®) = 0 we then get u(BY) = 0, proving that p
is ergodic.

Assume now that p is ergodic. Let w1, g € A(B,¢) \ {0} satisfy that:

M= 1+ o

Since G is o-compact both 1,1, and 15 are o-finite and clearly iy and i, are
absolutely continuous with respect to p. Using the Radon-Nikodym theorem,
see e.g. Theorem 4.2.2 in [4], we then get Borel functions f; : G© — [0, oo,
1 = 1,2, such that:

wi(B) = [ filx) dp(x)

for all Borel sets B C G. Since 1 = 1 + p12 we have that fi(z) + fo(z) = 1
for p-a.e. x. If fi is constant p-almost everywhere it follows that p; and ps
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are scalar multiples of u, completing the proof, so assume for contradiction
this is not the case. Since f; is not constant p-almost everywhere, we can
use that the function [0,1] > k — u(f;*([0,k[)) is non-decreasing and
lower semi-continuous to find a k €]0, 1[ such that u(f;*([0,%[)) > 0 and
p(fi (k. 1])) > 0.

Choose a Borel set By C f; ([0, k[) such that u(By) €]0, co[. Lemma 4.1.7
implies that B = s(r~!(By)) is Borel and invariant, and since By C B we
have u(B) > u(By) > 0, so ergodicity of p implies u(B¢) = 0. Since
pw(fit(k, 1)) > 0 and fi(x) + fo(x) = 1 for p-a.e. v we must have that:

p(fy (0,1 = K[)) > 0.

So we can choose Cy C f5'([0,1 — k[) with u(Cp) €]0,00[, and setting
C = s(r~1(Cp)) this is again an invariant Borel set with p(C) = 0.

Claim: p({z € B| fi(z) > k}) =0and u({z € C | fo(x) > 1 —k}) = 0.

If this claim is true the Proposition follows: Notice that (B¢ UCY) = 0,
and that for p-a.e. v € BN C we have fi(z) < k and fo(x) <1 — k. Since
fi(z) + fa(x) = 1 for p-a.e. z this implies that fi(xz) = k for almost all
x € BNC, ie. fi(zr) =k almost everywhere, contradicting that f; was not
constant. In conclusion pq, us € Ry p, proving that p is extremal.

To prove the claim fix an i € {1,2}, it suffices to prove that if D C
£71([0,1]) for some [ € [0, 1] with u(D) €]0, oo[ then

u({z € s (D)) | filx) > 1}) = 0.

Assume for a contradiction that this is not true, and let {W;}52, be a
countable basis of small bisections, then:

[_'j (D Ar(T))).

Since p(s(W;)) < oo for each j, there must then be some j such that:

0 < u({z € s(riy,(DNr(W;))) = filw) > 1}) < oo

Set H={x € S(TW (Dnr(W;))) « filx) > 1}, then:

_ /H fi(x) dp(z) > lu(H)
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on the other hand, since r(sﬁé(H)) C D C f7([0,1]) we get:

) =g (s (D)) = [ 00 dint)
T SW

J

<1 / e ) ey = 1y (s (s (H)) ) = u(H)
W;

a contradiction. Hence the claim is true, which proves that ergodic measures
are extremal. O

For the last part of our analysis of A(, ¢) we conclude what the above
theorem says when G(© is compact. For this, define for any f € C.(G©),:

M) = {ne B )= [ f du=1}

When G© is compact (which is equivalent to C*(G) being unital) it is
sufficient to describe the KMS states, and in this case we are therefore only
interested in the set Agw (B, ¢) := Alg(o) (B, ¢) of Borel probability measures

with Radon-Nikodym cocycle e=#¢. Notice for the statement of the next
result that we use the notation 0K for any convex set K to denote the set of
extreme points, i.e. the elements = € K satisfying that z = Azy + (1 — A)xzy
implies x; = 25 = x for any A €]0, 1] and z1, 2, € K.

Corollary 5.1.8. Let G be a locally compact second countable Hausdorff
étale groupoid and let ¢ : G — R be a continuous groupoid homomorphism

and B € R. Assume f € C.(G), satisfies u(f) > 0 for all u € A(B,¢)\{0}.
Then A¢(B,c) is a convex set, and:

OA¢(B,c) ={p e Asy(B,c) : pis ergodic}
Proof. For this it suffices to notice that with the assumption on f:

OA¢(B,c) ={p € As(B,c) : pis extremal in A(S,c)}

5.2 Extremal KMS weights

It is possible to define an extremal KMS weight in a similar fashion as
extremality was defined for measures. In this section we will briefly analyse
the relationship between extremal measures and extremal weights. Let us
first introduce some notation.
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Definition 5.2.1. Let G be a locally compact second countable Hausdorff
étale groupoid. For ¢ : G — R a continuous groupoid homomorphism and
B € R we let W(f, c) denote the set of S-KMS weights for o including the
zero weight.

Our reason for including 0 in W(3,¢) is that the zero measure was
included in the definition of A(f, ).

Definition 5.2.2. We call v € W(S,¢) extremal if v = 1y + 1 with
1,19 € W(S, ¢) implies that 11,1y € R 1.

Notice that this definition is weaker than the definition of extremal
weights in e.g. [33, 30], but the two definitions coincide when every ¢ €
W(B, c) satisfies 1) = 1) o P. It is still unclear if they always coincide.

For each p € A(B,c) let W(B,¢),, denote the set of KMS weights w
that restricts to the integral over y on G, or in different terms the KMS
weights that in Theorem 4.2.1 are given by a pair (4, {¢s },eg ) for some
p-measurable field of states {¢;},eq0-

Lemma 5.2.3. Let G be a locally compact second countable Hausdorff étale
groupoid and let ¢ : G — R be a continuous groupoid homomorphism and
B eR. Let p € W(B,c) be given by the pair (i, {os}pego) with p € A(B, ).
Then 1 is extremal in W(5,c) if and only if p is extremal in A(S3,c) and
¥ € AW(B,0),).

Proof. The statement is trivial if ¢ = 0, so assume ¥ # 0. Assume ¥ is
extremal in W(f3, ¢) and p = p1 + pie. Since p nullsets must be py and po
nullsets {¢,},cgo is both p- and py-measurable, and by Theorem 4.2.1
(p1, {¢s }oeg) and (po, {¢s}rego) represent elements 11, ¢, € W(B,c).
The map 11 + 15 is lower semi-continuous (since ¥); and v, are), it is densely
defined since C.(G) C My, N My, and it is straightforward to check that it
is a KMS weight. Since 11 + ¢, agrees with 1) on C.(G) then 1) = 11 + 1o,
and hence 1; = A\ for some A > 0. In particular this implies that pu; = Apu,
50 1, 2 € Ryp. If b = tyhy + (1 — t)1po with ¢ €]0, 1] and 91,92 € W(B,¢),
then ti); = M for some A > 0. Since 9, and v agrees on C.(G®) then
t = A, giving 1); = 1. This proves one direction.

For the other direction assume p is extremal in A(S,c) and ¢ €
OW(B,¢c),) and ¥ = 1y + o with 91,100 € W(S,¢) \ {0}. Letting 1
and 15 be the measures associated to 11,1, then evaluating in C.(G®)
gives p = p1 + o, so there is ty,t; > 0 with py = typu and py = top. This
implies ¢ +ty = 1, so since 7 "9y, t5 s € W(B,¢),, then ¢ = 7'y = 5 s,
proving the other direction. O
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With the results on quasi-invariant measures obtained in last chapter we
are now ready to study the measurable fields of states. Unfortunately we
can not say anything clever about the measurable fields of states for general
locally compact second countable Hausdorff étale groupoids. However we
can do a thorough analysis for a large class of groupoids, the ones that are
injectively graded by an abelian group.

6.1 Measurable fields of states

Let us first define what we mean by an injectively graded groupoid.

Definition 6.1.1. Let G be a discrete countable group and G a locally
compact second countable Hausdorff étale groupoid. We say that G is
injectively graded by G if there is a continuous groupoid homomorphism
® : G — G satistying:

ker(®) NGy = {z} for all z € G©

Remark 6.1.2. Restricting ® to GZ gives an injective group homomorphism
from G¥ into G. In [(] we consider groupoids that satisfy Definition 6.1.1 for
an abelian group and that furthermore has compact unit space, and we refer
to them as groupoids admitting an abelian valued homomorphism. Since
writing [C] the author has been introduced to the notion of graded groupoids:
A groupoid is graded by a discrete group G if there exists a continuous
groupoid homomorphism ® : G — G. Due to this the terminology injectively
graded seems more appropriate, and we will use this term in Part I of this
dissertation.

FEzample 6.1.3. Let (A, d) be a compactly aligned topological k-graph for
some k € N. We will refer to [37] for the definition of this and for the results
we summarise in the following. Using (A, d) one can define a space of paths
X and for each m € N¥ a map 0™ on {x € X, | d(x) > m} and obtain a

42
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groupoid:

gA = {(x7may) € Xp X Zk X Xp | Elpvq € Nk with p < d(-fl?),
q <d(y), p—q=mand o”(z) = 0(y)}

with composition (x,m,y)(y,n,z) = (z,m +n, z). We can equip G, with a
topology such that the homomorphism Gy > (x,m,y) — m € ZF becomes
continuous and G, is a locally compact second countable Hausdorff étale
groupoid, and hence G, is injectively graded by Z*. So the groupoid for the
Toeplitz algebra of a compactly aligned topological k-graph is injectively
graded by ZF. Since the groupoid for the Cuntz-Krieger algebra for a com-
pactly aligned topological k-graph is a reduction of G,, it is also injectively
graded by Z*. This provides us with a lot of examples, see e.g. the ones
listed in Example 7.1 in [37], and most importantly for this dissertation it
implies that the groupoids of the Cuntz-Krieger and the Toeplitz algebra
of a finitely aligned higher-rank graph are injectively graded by an abelian

group.
Theorem 6.1.4 below is a generalisation of Theorem 5.2 in [C], which
contains a similar result but only for unital groupoid C*-algebras. However,

the technique for proving Theorem 5.2 in [(] is completely different and a
lot more complicated than the one used in Theorem 6.1.4 below.

Theorem 6.1.4. Let G be a locally compact second countable Hausdorff
étale groupoid injectively graded by a discrete countable abelian group A via
amap ® : G — A. Assume p € A(S,c) \ {0} is ergodic. The following is
then true:

1. The subset:
X(0):={zx g : oG =C}

is Borel and invariant for each subgroup C' C A.

2. There exists a unique subgroup B of A with u(X(B)°) = 0.

3. Forxz € X(B) let ®, : C*(G¥) — C*(B) be the isomorphism induced
by the restriction of ®. If {¢s},cq is a p-measurable field of states
satisfying

0u(tg) = Prn) (Ungn—1) for p-a.e. z € G and all g € GF and h € G,

then there exists a state ¢ on C*(B) such that p o ®, = ¢, for p-a.e.
z € X(B).
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Proof. For each a € A the set X(a) := {x € GO : a € ®(G¥)} can be

realised as:
X(a)=r({g €@ '({a}) : r(g) =s(9)})

Since @ is continuous Lemma 2.1.7 implies X (a) is a Borel set. For any
subgroup D C A we have:

X(D)= (N X@)n( N X(@°) (6.1)

deD ac€A\D
which is Borel. If h € Q;j and g € G then:
O(h~'gh) = ®(h™)P(g)®(h) = (g).

Since h='Grh = GY this implies ®(G7) = ®(GY), proving 1.

Using the same argument as above, we see that X (a) is also an invariant
set for each a € A, so since p is ergodic then either p(X(a)) = 0 or
(X (a)®) = 0. Since X (a) N X (b) C X(ab) and X (a) = X(a™t) we get that:

B={acA : u(X(@)C)=0}

is a subgroup of A, and by comparing with (6.1) we see that u(X(B)¢) = 0.
If (X (C)¢) = 0 for some subgroup C of A then u(X(B)¢ U X(C)%) =0,
so since p # 0 we must have u(X(B) N X(C)) > 0, but X(B)NX(C) =10

when C' # B. So B is unique, proving 2.

For 3 let N; be a Borel set with p(N;) = 0 such that ¢,(uy) =
@) (ungn-1) for all z € GO\ Ny and all g € G¥ and h € G,. For each
a € A we can realise the Borel function 1g-1¢,) as the point wise limit of
functions in C.(G), implying that the map:

GO 52— > lo-1(a)(9)puluy)

9egs

is p-measurable. Using Lemma 4.1.2 we find a Borel set N, such that
p(N,) = 0 and:

G952 = Iy (@) D lo-1ay(9)pu(uy)

9€G%
is Borel. Set
N = s(r‘l(Nl Uy Na>)
a€A

which is then a Borel set with u(N) = 0. Set ¢!, = ¢, for x ¢ N and
¢! = Tr, for x € N, where Tr, denotes the canonical trace on C*(G?). Since
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N is invariant {¢)},cg0) satisfies the criterion in 3 for all z € G, and for

any f € C.(G):

Ygegr F(9)pe(ug) itz ¢ N

G954 — Z f(g)%;(“g) = {f(ac) ifreN

gege

is pu-measurable. Notice that the function:

GO sy — > Lo (9)¢, (ug)

gegy
is Borel for every a € A. Let E denote the weak® compact set of states on
C*(B) and let Tr € E denote the canonical tracial state on C*(B). We can
now define a map F : G — E by:

GO 54 By ol od !t if x € X(B)
Tr if v ¢ X(B)

The sets:
{p€E : |p(up) —w(up)| <e} forweFE, e>0andbe B

is a subbasis for the weak* topology on E. It follows from this that F' is
Borel if x — F(z)(uy) is Borel for each b € B, however:

X(B)3x— D lo-1y(9)¢(ug) = ¢o(D5 (us)).

gegz

So x — F(z)(up) is the restriction of two Borel functions to two disjoint
Borel sets, and hence it is Borel. In conclusion F' : G — E is Borel.

Assume M C F is Borel and x € F~1(M) and h € GY. If = ¢ X(B) then
y ¢ X(B)and F(y) =Tr=F(z) € M,soy € F7'(M). If z € X(B) then
y € X(B) and for b € B we pick g € GF with ®(g) = b to get:

F(z)(u) = @, (ug) = @ (ungn-1) = F(y)(w).

It follows from this that F(y) = F(z), so y € F~'(M). So F~'(M) is an
invariant Borel set for any Borel set M in E. Since C*(B) is separable and
unital the weak™ topology on E is metrizable for some metric d. So for each
n € N we can use that E is compact to cover it by finitely many disjoint Borel
sets My, ..., My, with diameter at most 1/n. The sets F~1(M;),i = 1,...,k,
is then a disjoint partition of G(°) into invariant Borel sets, hence there is
a unique i with u(F~1(M;)¢) = 0. Denote this M; by S,,, and find such a
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set S, for each n € N. So {5,,}°°, is a sequence of Borel sets where S, has
diameter at most 1/n and satisfies u(F~1(S,)¢) = 0 for each n. Set:

S = ﬂ Sh
n=1
it then follows that:
p(F~1(59)) = M( U Fﬁl(Sn)C) =0
n=1

implying in particular since p # 0 that S # (). However by choice of the
diameter on S, then S can at most contain one point, i.e. S = {¢} for some
¢ € E. For all x € F~1(S) N X(B) we now have:

p=F(x) =g, 00, = ¢, =pod,
Since ¢, = ¢!, for p-a.e.  and:
W(F1(8) N X (B))) = u(F~1(S%) UX(B)®) = 0

the Theorem now follows. OJ

6.2 Symmetries of the KMS simplex

We will now use Theorem 6.1.4 to describe the KMS weights on the groupoid
C*-algebra of a groupoid injectively graded by a discrete countable abelian
group. Notice that Theorem 6.2.1 only works for § # 0 by remark 4.2.4.

Theorem 6.2.1. Let G be a locally compact second countable Hausdorff
étale groupoid that is injectively graded by an abelian countable discrete
group A via a map ® : G — A. Let B € R\ {0}, ¢: G — R be a continuous
groupoid homomorphism and pu € A(f3,c¢) \ {0} be ergodic. Denote by B the
subgroup of A associated to p given by (2) in Theorem 6.1.4. There exists
an affine bijection from the state-space on C*(B) to W(B,c),, that maps a
state @ into the 3-KMS weight w, given by:

wol) = [ 2 F@)elua) dutx)  forall f € CG)  (62)

9€93
Proof. Assume ¢ is a state on C*(B), we claim that:

_Jpod, forxe X(B)
v Tr, for x ¢ X(B)
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is a p-measurable field of states satisfying the conditions in Theorem 4.2.1.
For any f € C.(G) and = € X(B) we have:

2: f( 9)Pz ug 2: f u@@

gege gegGe

so, using e.g. Lemma 2.2.1, it follows that {¢;},cg is a p-measurable field
of states. For x € X(B), g € G and h € G, we have r(h) € X(B), so

Pr(h) (Uhghfl) = SO(Ucp(hgh*l)) = SO(U<1>(9)) = SO:c(Ug)

Since u(X(B)Y) = 0 remark 4.2.4 implies that the formula (6.2) defines a
KMS weight, and hence the map ¢ — w, is well defined. It is surjective
by 3 in Theorem 6.1.4. For injectivity notice that if w, = w,, for some states
©,v on C*(B) then ¢ o &, = 1) o @, for p-almost all x € X(B), so since
®, is an isomorphism this implies that ¢ = 1. We leave it to the reader to
check that the map ¢ — w,, is affine. O]

Remark 6.2.2. Since B is a discrete abelian group then C*(B) ~ C(B), so
the state-space of C*(B) is homeomorphic to the space of regular Borel prob-
ability measures on the Pontryagin dual B of B. Notice that Theorem 6.2.1
also gives a description of the proper tracial weights on C*(G) by taking the
groupoid homomorphism ¢ to be the zero function.

Corollary 6.2.3. In the setting of Theorem 0.2.1 there is a bijection between
pairs (u,§) and extremal KMS weights ¢ in W(B,c) \ {0}, where (u,§)
consists of an ergodic measure u € A(f,c) \ {0} and a character € € B
where B C A is the subgroup correspondmg to p via Theorem 6.1.4. The
extremal weight v,,¢ corresponding to (u,§) is given as:

vuslh) = [ 2 J@E@() due)  forall [ECLG)  (63)

gegx

Proof. The extremal state on C*(B) are the elements of B under the map
up, — &(b) for b € B and £ € B. Hence the Corollary follows from combining
Theorem 6.2.1, Theorem 5.1.6 and Lemma 5.2.3. ]

The set of S-KMS states for some continuous 1-parameter group « on
a unital C*-algebra is a simplex, implying that any KMS state can be
decomposed as extremal KMS states. In the light of Corollary 6.2.3 it would
be very interesting if one could obtain a similar decomposition for weights.
The author is currently working on answering this question, and likewise
looking into the question of decomposing measures in A(f3, ¢) into ergodic
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ones. Since this is still work in progress, and since there is a restriction on
the length of a dissertation, we will not pursue it further here, but only state
the following Corollary which gives a unique decomposition in a setting
which suffices for the results obtained in [, D] in Part II.

Corollary 6.2.4. In the setting of Theorem 6.2.1 assume that G©) is com-
pact and Ago) (B, c) has finitely many extremal points {p;}7_, with corre-
sponding subgroups {B;}_,. Assume there exists disjoint Borel sets {X;}!,
in GO with p;(X;) = 1 for each i. Then the set of 3-KMS states is a Bauer
simplex and any B-KMS state w for o is given uniquely as:

ZA [y 2 Fadoiluae) dp@)  for all f € C(G) (6.4

geQ“

where \; > 0 for each i, > 1 \; = 1 and ¢; is a unique state on C*(B;)
when \; # 0. This correspondence is a bijection.

Proof. Let A denote the set of 3-KMS states for a¢, since G is compact
C*(G) is unital and A is a simplex, c.f. Theorem 5.3.30 in [2]. Assume that
& — & in B; and f € C.(G) with supp(f) € ®~'(b) for some b € B, then
by (6.3):

Vsl = [ Y F@6(0(0) dule) = 600) [ S fo) dula)

gEgz gegz

which clearly converges to ¢, ¢(f). Since B, is compact it follows from this
that the map F; : B, — A given by F;(§) = 9, ¢ is a homeomorphism from
B; onto its image F;(B;) in A, which is then compact. Since

0A = || Fi(B)
i=1
it follows that OA is a closed set in A, and hence A is a Bauer simplex. Any
KMS state is now given by a unique probability measure m on 0A, but this
measure can be decomposed as > ; \;m; where \; > 0 and > N =1 and
each m; is a probability measure supported on F; ( ;). Since F (B )~ B,
each m; defines a state ¢; on C*(B;), giving the existence statement. Clearly
(6.4) defines a KMS state w for any family {\; }l ! and {¢;}" ;. If w is also

given by {\}", and {}}", evaluating in C.(G?) gives 3°; Nips = 35 Ny,
so evaluating in X gives \; = \; for each j. Now:

0= whf)=lhf) = 3N [ | x) 3 1) ovotg) o) dis(2)

l gegx
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for all h € C.(G?) and f € C.(G). For any j find K C X; with u;(K) > 0,
letting h,, — 1k then gives:

o_A/ e 2 T sluaie) = & (uage) dig(a)

9gege
for any f € C.(G), which must imply that ¢; = ¢} when A; > 0. O

Theorem 6.2.1 was proved in [(] for states when the groupoid C*-algebra
was unital. The technique in [('] was to use the C*-dynamical system
(C*(G), A, ) defined in Proposition 2.2.10 by ® to prove that there where
symmetries in the KMS simplex (explaining the name of this chapter) and
using this to derive the theorem. We will not pursue this further since it is
explained in [('], but we will remark the following useful fact, which is a
generalisation of Lemma 3.1 in [C].

Proposition 6.2.5. Let G be a locally compact second countable Hausdorff
étale groupoid that is injectively graded by an abelian countable discrete group
A via a map ® : G — A and let (C*(G), A,~) be the C*-dynamical system
defined by ®. Assume ¢ : G — R is a continuous groupoid homomorphism

and B € R. If v € W(B,c) then 1 is invariant under ~ if and only if
v =1olP.

Proof. Since v¢(P(a)) = P(v¢(a)) = P(a) for all € € A and a € C*(G)
the equation ¢ = ¢ o P implies that v is invariant under . Assume 1 is
invariant under v and that v is given by the pair (p, {¢s},eg ). For any
a € A\ {e} we can pick £ € A such that £%(a) # 1. For any z € G the
map u, — ug§?(®(g)) defines an automorphism ~f. of C*(G7), and it is
straightforward to check that defining ¢ = ¢, o7& then {¢}},cq0 is a
p-measurable field satisfying 2 and 3 of Theorem 4.2.1, and since:

a “ P 2 (ug) dp( / a(ug) du(x
(e ( /g(o) egT (D(9))pa(uy) du(z g“gegr 9)¥3(ug) du()

there is a p-null set N, C G with ¢, o Ve = p for all z ¢ N?. Since A is
countable then ¢, o yf. = ¢, for p-a.e z and all a € A\ {ep} and hence for

g € G2\ {z} then p,(u,) = ¢.(uy)£®9 (®(g)), implying that ¢, (u,) = 0. In
conclusion ¢, = Tr, for p-a.e. z, so ¥ =1 o P by Corollary 4.2.5. O



777

KMS weights on graph C*-algebras

In this chapter we will review the main results of the articles from Part
II. These results are the main contribution of this dissertation, and we
will present them as follows: First we will review article [A] and [B] that
concern KMS states on directed graphs. We will then turn to our results on
higher-rank graphs, reviewing article [('] and [D]. After this we will review
the results of [I]. The article [I] is not concerned with describing KMS
weights for specific C*-algebras and 1-parameter groups but instead with a
more philosophical result concerning the connection between KMS weights
arising from measures on the unit space and 1-parameter groups given by
continuous groupoid homomorphisms.

Let us introduce some notation for this chapter. If S is a finite set, we
let Mg(IF) denote the set of matrices over S with entries in IF, and for any
subset D C S and any matrix M € Mg(F) we let MP € Mp(F) denote
the restriction of M from S x S to D x D. For any matrix M € Mg(F) we
denote by p(M) the spectral radius of M.

7.1 KMS weights on the Cuntz-Krieger
algebra of directed graphs

In this section we will first give a brief introduction to directed graphs, then
we will give a summary of our results in [A] and then we will give a summary
of our results in [13].

Directed graphs

A directed graph G = (V, E,r,s) consists of a countable set of vertexes
V', a countable set of edges F and maps r,s : £ — V called the range
and the source map. If v € V satisfies s7'(v) = @) we call v a sink, and if
|s71(v)| = oo we call v an infinite emitter. We say our graph is row-finite
if there is no infinite emitters, and call it finite if V and E are finite. A
finite path 0 of length n in G is a concatenation § = e; - - - e, of elements

90
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e; € E with r(e;) = s(e;j41) for each i, and we define s(0) = s(e;) and
r(0) = r(ey). For a graph G we can introduce the graph C*-algebra C*(G)
as the universal C*-algebra generated by a family {S. : e € E'} of partial
isometries with mutually orthogonal ranges and a family {p, : v € V'} of
mutually orthogonal projections subject to the conditions:

o SIS, =pre foralle € E.
o 5.S; < psey forall e € E.
® Do = Yees 1) SeS; for all v € V with 0 < s (v)] < oc.

For any finite path d = e; ---e, we set S5 := S¢S, - - S¢,. When originally
introduced for row-finite graphs without sinks in [19] graph C*-algebras
were defined as the C*-algebra of an étale groupoid constructed using the
graph, and it was then proven that this C*-algebra was universal with the
properties above. For general graphs this is also true [22], i.e. there is a
locally compact second countable Hausdorff étale groupoid G associated
to G such that C*(G) ~ C*(G). We will not introduce the groupoid and
its topology here and refer to section 5 in [A] for an introduction to it,
but we will note that, as in Example 6.1.3, one can define a continuous
groupoid homomorphism ® : G — Z that makes G injectively graded. The
C*-dynamical system (C*(G), T,~) constructed by ® via Proposition 2.2.10
is the gauge-action, i.e. the action guaranteed by universality satisfying
7.(Se) = 2S. and 7, (p,) = p, foralle € E, v € V and z € T.

Generalised gauge-actions on finite graphs

In this section we will summarize our results from [A]. The study of KMS
weights on C*-algebras that can be realised as the graph C*-algebra of a
directed graph goes back to work of Olesen and Pedersen [21] and Enomoto,
Fujii and Watatani [7]', and during the last 40 years several contributions
have been made to the subject. The inspiration for our analysis in [A] was
recent work, both recent results in [12, 15] and more general results on the
structure of KMS states on graphs and groupoids by Klaus Thomsen in
(29, 31, 32, 33]. In [12, 15] the KMS states on the graph C*-algebra of a
general finite graph were described for the 1-parameter group defined via
the map R 3 ¢ — ~.i:. We extend this result in [A].

For any function F': E — R we can use the universal property of C*(G)
to obtain a continuous 1-parameter group af such that al’(p,) = p, for all
v € V and of'(S.) = e*'(©S, for all e € F, and in the groupoid picture

IThis work was done in the setting of Cuntz-Krieger algebras
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this 1-parameter group can also be described via a continuous groupoid
homomorphism cg (see e.g. section 5 in [A] again). We call such an action
a generalised gauge-action, and the main objective of [A] is to describe the
KMS states for such actions on the graph C*-algebras of finite graphs.

Our general approach to describing the S-KMS states for af” on C*(G)
for a graph G = (V, E,r, s) is a recurrent theme in this dissertation, and it
roughly consists of the following three steps:

1. We first describe an affine bijection between the gauge-invariant KMS
1%

states and certain vectors in [0, co[".
2. We then describe certain subsets of the graph G that can be used to
construct such vectors, and we argue that the vectors we construct are
exactly the extremal vectors. This implies that we have a description of

all these vectors, and hence we have a description of the gauge-invariant
KMS states.

3. Finally we describe the non gauge-invariant KMS states.

To describe the non gauge-invariant KMS states in [A] we use results from
[29], but we would like to emphasise that the theory in chapter 6 has been
developed to be used in the third step. When we have a description of
the gauge-invariant KMS states Proposition 6.2.5 implies that we have a
complete description of the quasi-invariant measures with Radon-Nikodym
cocycle e#¢* and hence we can obtain a description of the non-gauge
invariant KMS states using the ideas from chapter 6.

To describe the vectors corresponding to the gauge-invariant KMS states

define for each § € R a matrix A(f) = (A(S)vw) over V by:
A(B)v,w - Z 6_6F(e)

e€s~L(v)Nr—1(w)

We call a vector ¢ € [0,00[" almost A(B)-harmonic if (A(B8)), = 1, for
all v € V that is not a sink, and we say a vector has unit 1-norm when

Z’UEV |¢U| =1

Lemma 7.1.1 (Lemma 2.1 in [A], [31]). Let G = (V,E,r,s) be a finite
directed graph and $ € R. There is an affine bijection v — wy between
almost A(B)-harmonic vectors of unit 1-norm and gauge-invariant 5-KMS
states for o . The state wy, is given by:

wy(SuSy) = 5u,veiﬁF(u)wT(u)

for all finite paths u,v.
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To describe the subsets of V' that give rise to the extremal almost A(f)-
harmonic vectors we need to describe the non-circular KMS components,
the circular KMS-components and the KMS sinks. To do this we define a
relation < on V' by:

v <w <= there exists a finite path p with s(u) = v, r(p) =w

We write v ~ w if v < w and w < v, and we call an equivalence class C' in
~ a component if it is not on the form C' = {v} with r~!(v) N s~ 1(v) = 0.
We define the closure S for any S C V as:

S:={veV |v<wfor some w € S}

A finite path p that is not a vertex is a loop if r(u) = s(u), and a component
C'is a circular component if it only contains one loop. Extending F' to any
finite path p = pq ... p, via:

Fp) = FQu) + -+ Fua)

it follows from Lemma 4.2 and Lemma 4.3 in [A] that if a component C'
satisfies F'(11) > 0 for every loop u contained in C', or F'(1) < 0 for every loop
p in C, then there is a unique number Sc € R, such that p(A(3c)¢) = 1,
where A(S¢)¢ is the restriction of A(8¢) to C. Knowing this we can make
the following definitions.

Definition 7.1.2. Let C be a non-circular component. We say that C' is a:

o KMS component of positive type if it satisfies F'(1) > 0 for all loops
1 contained in C' and B¢ < B¢ for all components C’ contained in

c\C.

o KMS component of negative type if it satisfies F'(u) < 0 for all loops
p contained in C' and B¢ > B¢ for all components C’ contained in

c\C.

For a 5 € R\ {0} we let C(B) be the set of non-circular positive and negative
KMS-components C' such that fo = 5.

Definition 7.1.3. For a circular component D, we say that D is a:

o KMS component of positive type when F(v) = 0 for the loop v in D,
and F'(p) > 0 for all loops pin D\ D.

o KMS component of negative type when F(v) = 0 for the loop v in D,
and F(u) < 0 for all loops pin D\ D.



54 Chapter 7. KMS weights on graph C*-algebras

To each circular KMS-component D we associate an interval Ip. If D is a
positive (or negative) circular KMS component with no loops in D \ D, we
set Ip =R. If D is a positive circular KMS component with components in
D\ D, we set Ip = |p, 00| where

Bp = max{fBp | D' is a component in D\ D}

and if D is a negative circular KMS component with components in D \ D,
we set Ip = |—o0, fp[ where

Bp =min{Bp | D' is a component in D\ D}

For a f € R\ {0} we let Z() be the set of circular positive and negative
KMS components D such that g € Ip.

Definition 7.1.4. We say that a sink s € V is a
o KMS sink of positive type when F(u) > 0 for every loop u in {s}.
o KMS sink of negative type when F(u) < 0 for every loop p in {s}.

We associate to each KMS sink s an interval I, as well. I@ contains
no components, we set Iy = R. If s is of positive type and {s} contains a
component we set I, = ][, oo[ where:

B, = max{fBcs | C" is a component in {s}}

and if s is of negative type and @ contains a component we set [, = |—00, 4|
where: -
Bs = min{fBc | C" is a component in {s}}

For each f € R\ {0} we let S(3) be the set of KMS sinks s such that € .

When /5 # 0 it turns out that the elements of S(5), Z(5) and C(5) give
rise to the extremal almost A(f)-harmonic vectors, c.f. Theorem 4.10 in [A],
and hence we have completed the second step, i.e. we have described the
gauge-invariant KMS states. Adding the non-gauge invariant KMS states
does not require the theory developed in Theorem 6.2.1 because there are
only countably many units with non-trivial isotropy in the groupoid G with
C*(G) ~ C*(@G), and hence we can describe the non gauge-invariant states
by results in [29]. It turns out that the circular KMS components are the only
ones giving rise to non-gauge invariant KMS states. For a fixed 5 € R\ {0}
we associate to each C' € C(f3) the unique S-KMS state ¢ obtained by
combining Lemma 4.5, Lemma 3.4 and Lemma 2.1 in [A], we associate to
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each s € §() the unique S-KMS state ¢, obtained by combining Lemma 4.9,
Lemma 3.2 and Lemma 2.1 in [A], and we associate to each D € Z(f) and
Borel probability measure mp on T the unique S-KMS state wp® described
in section 5 in [A].

Theorem 7.1.5 (Theorem 5.2 in [A]). For a f € R\ {0}, define C(B), Z(5)
and S(B) as above.

For every 3-KMS state ¢ for o there are numbers ac € [0,1], C € C(8),
as € [0,1], s € §(B) and ap € [0,1], D € Z(B) and Borel probability
measures mp, D € Z(f), on T, such that:

ZQC+Z(YS+ Z ap =1

cec(B) seS(B) DeZz(B)

and:
o= Y, acpc+ Y, aps+ Y, apwp®
CeC(pB) S€S(B) Dez(B)
where the numbers ac, as and ap and the measures mp where ap > 0 are
uniquely determined by .

In [A] we use the convention that the 0-KMS states are tracial states,
and we use a different approach to describe these, c.f. section 5.1 in [A].

Generalised gauge-actions on Cayley graphs

In this section we will summarize our results from [B]. The results in [A] do
not imply that we in full understand the KMS states for diagonal actions on
graph C*-algebras of directed graphs. First and foremost there are a lot of
1-parameter groups that can not be described as a generalised gauge-action,
and we have no description of the KMS states for these actions, see e.g.
[28] for results in this direction. Furthermore the results in [A] only cover
finite graphs, and in general we have no description of the KMS weights
of these actions on infinite graphs. In the special cases where we do have
concrete descriptions the structure of the set of KMS weights is surprisingly
rich [31, 30], and these results indicate that a description for all graphs is
currently out of reach. In [B] we give an answer to the problem when the
infinite graph is the Cayley graph of a nilpotent group and the generalised
gauge-action is sufficiently nice. We will now introduce these Cayley graphs
and generalised gauge-actions.

Consider a group G and a finite set Y in G with |Y'| > 2 such that Y
generates G as a semi-group. One can then define a directed graph I'(G,Y)
by considering G as the set of vertexes and drawing an edge from g € G to
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h € G exactly when g7 'h € Y, and with our assumption on Y it follows that
C*(I'(G,Y)) is a simple C*-algebra. Letting eg € G denote the unit then pe,
is a full projection in C*(I'(G,Y)), and this implies that the KMS weights
on C*(I'(G,Y)) are in a natural correspondence with the KMS states on
Peo C*(I'(G,Y))pey, ¢.f Theorem 2.4 in [31]. To introduce the 1-parameter
group let F' :' Y — R be a function. If e is the edge from ¢ to h we set
F(e) = F(g~'h), so setting 7/ (S,) = eF(©)S, we get a 1-parameter group
v that leaves p.,C*(I'(G,Y))pe, globally invariant. The aim in [B] is to
give a description of the KMS states for (p.,C*(T'(G,Y))pey, 7).

First we identify p.,C*(I'(G, Y))pe, with a C*-subalgebra of the Cuntz-
algebra Ojy|. We identify O}y with Oy, i.e. we assume the Cuntz-algebra
is generated by isometries V,, y € Y. For t = (t1,...,t,) € Y™ we set
t =tity---t, € G and let V; € Oy be the isometry V;,V,,---V;, , and use
the convention Y° = ), ) = eg and Vj = 1 € Oy. It then turns out that:

Oy (G) = span{V;V;! | T = u}

is a C*-subalgebra of Oy . Using the universal properties of Oy we can define
a 1-parameter group o’ on Oy satisfying of (V,) = e (y)‘@, and of then
leaves Oy (G) globally invariant.

Proposition 7.1.6 (Proposition 2.2 in [B]). There is a *-isomorphism
71 P C*(T(G,Y))pe, — Oy (GQ) such that mo~yf = al om for allt € R.

This Proposition implies that it suffices to describe the KMS states of
(Oy(G), al). The C*-subalgebra:

span{ ViV, | te Jy"}

generates a copy of C'(YY) inside Oy (G), and there is a conditional expec-
tation P : Oy (G) — C(Y'N) with:

VW ooift =
PV =3
0 ift#u
We now proceed as in [A], but in this case all KMS states for o on Oy (G)

are gauge-invariant, so we can now formulate a bijective correspondence
between KMS states, certain measures on Y™ and certain vectors. To describe
this correspondence define for each t = (t1,...,t,) € Y™ the cylinder:

tyt = ()2, € Y | ti=vy;, 1 <n}

then the measures and vectors in question are the following:
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Definition 7.1.7 (Definition 3.2 and Lemma 3.3 in [13]). We call a Borel
probability measure m on Y a 8-KMS measure for a” when:

POty YNy = ST Wm(uy™)
whenever t,u € J,, Y satisfy that £ = 7.
Definition 7.1.8. A vector (or function) ¢ : G — [0,00[ is called -

harmonic when
Z eiﬁF(y)Qﬂgy = 1y
yey

for all g € G and normalized when 1), = 1
We then get:
Theorem 7.1.9 (Section 3 in [A]). Let B € R. The formula:

w(a) = /Y P(a)dm  YaeOy(G)

defines an affine bijection between the 3-KMS states w for o and the 3-KMS

measures m for ot .

The formula:

m(tYY) = e AP0y telJy"

defines an affine bijection between the 3-KMS measures m for o and the
normalised [-harmonic vectors.

Equipping these three sets with suitable topologies we can conclude from
this theorem that there are affine homeomorphism between the following
three sets:

e The 3-KMS states on Oy (G) for of".

e The 3-KMS measures on YN for af'

e The normalised 3-harmonic vectors on G for af'.
For general groups we can not describe any of these sets. However, we
can describe a subset of them. Therefore we will in the following restrict
attention to the set A of abelian normalised S-harmonic vectors on G, i.e.
normalised S-harmonic vectors ¢ satisfying:

Ungk = Ungg  for all h,g, k € G.
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A is a closed convex subset of the normalised S-harmonic vectors on GG, and in
general it is a proper subset. We call the states and measures corresponding
to A under our affine bijection abelian as well. We will in the following
give a description of the abelian normalised S-harmonic vectors, and by
Theorem 4.1 in [BB] we are able to conclude that all normalised S-harmonic
vectors v are abelian when G is nilpotent, so for a large class of groups we
will describe all 5-KMS states. We obtain the following description of the
extremal points of A.

Lemma 7.1.10 (Lemma 4.2 and Lemma 4.3 in [B]). An element ¢ € A is
extremal in A if and only if there is a homomorphism ¢ : G — R such that:

g = ecl9) Vg e G

An abelian B-KMS measure is extremal in the set of abelian 3-KMS measures
if and only if it is a Bernoulli measure, i.e. there is a probability vector
p:Y —[0,1] with 3 ,cy p(y) = 1 such that
m(tY") =[[p(t;) foranyn andt = (t1, -+ ,t,) €Y"
i=1

We can now describe the abelian 5-KMS states for a’. Any extremal
abelian f-harmonic vector is given by a homomorphism ¢ on G. Since:

c(ghg*h™") =0 forall g,h € G

we must have [G, G| C ker(c), where [G, G] is the commutator subgroup of
G. This explains the main idea in obtaining the next results:

Proposition 7.1.11 (Proposition 4.6 in [B]). When the abelianisation
G/|G, G| of G is trivial or a finite group there is an abelian B-KMS state

for of if and only if:
Z e PFW) — 1

yey

and in that case it is unique.

Theorem 7.1.12 (Theorem 4.13 in [B]). Assume the abelianisation G /|G, G]
of G has rank n > 1 and that F(y) > 0 for ally € Y. It follows that there
is a By > 0 such that:

e There are no abelian (-KMS states for af when 3 < B.

o There is a unique abelian By-KMS states for of".
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e For 8 > By the simplex of abelian 3-KMS states for of is affinely
homeomorphic to the simplex of Borel probability measures on the
(n —1) sphere S™1.

As pointed out, this describes all KMS states for o/ when G is nilpotent.
In light of the third conclusion in Theorem 7.1.12 it is relevant to ask if we
can conclude anything about the KMS,, states. If w,, is a 5,-KMS state for
each n, and {3,}°2, is a sequence with 3, — oo and w,, converge to some
state w in the weak® topology then we call w a KMS,, state [0]. If each w,,
can be chosen abelian then we call w an abelian KMS,, state.

Theorem 7.1.13 (Corollary 5.4 in [B]). Assume G/|G,G] has rankn > 1
and F(y) > 0 for all y € Y. The abelian KMS,, states for of on Oy (G)
constitute a compact conver set affinely homeomorphic to the set of Borel
probability measures on the (n — 1) sphere S™ 1.

For G nilpotent, this theorem describes the entire set of KMS,, states.

7.2 KMS weights on the C*-algebras of
finite higher-rank graphs

In this section we will first give an introduction to higher-rank graphs, and
then we will give a summary of our results in [, D].

Higher-rank graphs

Let N be the natural numbers including 0 and for k£ > 1 write ey, ..., e; for
the canonical generators of N*. A higher-rank graph of rank k > 1 is a pair
(A, d) consisting of a countable small category A and a functor d : A — N*
that has the unique factorisation property, i.e. if d(A\) = n + m there exist
unique p,n € A with d(u) = n, d(n) = m and A = un. The category A is
equipped with a range map r and source map s, and any two morphisms
A, p € A can be composed to Ap exactly when s(A\) = r(u). Notice that
this is the opposite convention than the one used when composing paths in
directed graphs. For n € N¥ we write A" := d~*(n) and identify the objects
of the category with A°. We write:

vA={ eA|r(N)=v} , Av={ eA]|s(\)=v}

and for any n € N¥ we set vA™ = vA N A", A" = A" N Av and vA"w =
vA™ N A"w for any v, w € A°. The vertex matrices Ay, ..., A € Myo(N) of



60 Chapter 7. KMS weights on graph C*-algebras

A are the matrices with entries A;(v,w) = [vA%w]| for v,w € A°. We will
only consider finite k-graphs, i.e. we always assume that A” is finite for all
n € N*. For any paths \, u € A we define:

AR, A) = {(r,m) € AX A = pr = An, d(pk) = d(p) Vv d(N)}.

where V denotes the point wise maximum. For v € A® we denote by v.FE(A)
the collection of finite sets £ C vA satisfying that for any pu € vA there is a
A € E with A™™(p, \) # 0.

The Toeplitz C*-algebra TC*(A) of a finite higher-rank graph A is
then the universal C*-algebra generated by a family of partial isometries
{Sx: X € A} subject to the conditions:

1. {p, := S, :v € A’} are mutually orthogonal projections.
2. When A, p € A with s(A\) = r(p) we have Sy, = S\S,,.
3. S5SN = Y (emeamin(un) OxSy for all p, A € A,

The Cuntz-Krieger algebra C*(A) is the universal C*-algebra generated by
a family of partial isometries {Sy : A € A} satisfying 1.-3. above and:

I (o — S\S5) =0 for all v € A” and E € vFE(A)

AEE

c.f. [8]. There is then an ideal J in 7C*(A) such that TC*(A)/J ~ C*(A).

Higher-rank graphs for finite graphs without sources”® were introduced in
[18]* as a generalisation of directed graphs, and their Cuntz-Krieger C*-
algebras were introduced both as a universal C*-algebra and as the C*-
algebra of a locally compact second countable Hausdorff étale groupoid.
Analogous to directed graphs, the definitions was extended to finite graphs
with sources and these were also described as groupoid C*-algebras [%], so
as for directed graphs we can consider C*(A) and 7C*(A) as universal C*-
algebras introduced above or we can consider them as the full C*-algebras
of locally compact second countable Hausdorff étale groupoids. For the
definitions of these groupoids we refer to [8, 37], and remark only that
if we denote by Ga the groupoid with C*(Gy) ~ TC*(A) then there is a
continuous groupoid homomorphism ® : Gy — Z* that makes G5 injectively
graded and satisfies that the C*-dynamical system (7 C*(A), T*,~) arising

2This means vA™ # @ for all v € A and n € N*.
3Instead of considering finite graphs they consider row-finite graphs, falling beyond
the scope of this dissertation.
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from ® is once again the gauge-action, i.e. the action on 7C*(A) guaranteed
by setting:

k
7.(Sy) = 29N g, = (]‘[ z;i(A)i) Sy forall z € TFand A € A

i=1

For any r € R¥ we can compose the map R > ¢ — (ef™ eitr2 ... ¢itrv) ¢ T*
with the gauge-action v to obtain a continuous l-parameter group o’.
Equivalently the map ¢, : Z¥ 3 z — r - z € R is a homomorphism and
letting ¢, := ¢, o ® the continuous 1-parameter group a” is the same as
the one a“ obtained by using Proposition 2.2.10 on ¢,, c.f. appendix B in
[10]. This 1-parameter group factor through a l-parameter group on the
Cuntz-Krieger algebra.

KMS states on higher-rank graphs

We will now describe the main results from [C', D]. The aim of [C, D] is
to describe the KMS states for the actions o” with r € R* on TC*(A)
and C*(A). When an investigation of the KMS states for these actions on
the Toeplitz and Cuntz-Krieger algebra of a higher-rank graph was started
in [13] the analysis was carried out using the universal picture of these
C*-algebras. This was also the dominant picture in the subsequent work on
the subject that appeared in the following years, cf [13, 14, 10, 11, 9]. In this
body of work the KMS states for the Cuntz-Krieger algebra of a strongly
connected graph® were successfully described [14], but unlike for directed
graphs [12, 15] it was only possible to give a description of the KMS states
for finite higher-rank graphs when numerous restrictions were imposed on
the graph and the 1-parameter groups [J)].

In [C] and [D] the problem of describing the KMS states is attacked
using the theory developed in chapter 6, and this approach gives a complete
description of all the KMS states for all the 1-parameter groups " for the
Toeplitz and Cuntz-Krieger algebras of all finite higher-rank graphs. Our
general approach is completely similar to the one used for directed graphs.
First we find a bijection between gauge-invariant KMS states and certain
vectors over A°, then we get a complete description of these vectors by
analysing certain components in the graph, and as the last step we describe
the subgroups of Z* corresponding to the extremal vectors, giving us a
complete description of the KMS states by e.g. Corollary 6.2.4. The first part
of [(] deals with the development of Theorem 5.2 in [(], which has been
generalised in our chapter 6, and the second part deals with the description

4A graph is strongly connected if vAw # () for all v,w € A°
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of KMS states on the Cuntz-Krieger algebra of a finite higher-rank graph
without sources, which has been generalised in [D]. Therefore the results
of [(] play only a minor role in the following presentation, yet it should
be emphasised that the results of [(] are absolutely essential for the work
carried out in [D].

The gauge-invariant KMS states
First let us describe the vectors corresponding to gauge-invariant states.

Definition 7.2.1. Let A be a finite k-graph with vertex matrices Ay, ..., Ag,
let r € R* and let 3 € R. Let 150 € Mpo(R) be the identity matrix. We say
a vector ¢ € [0, 00[*” is sub-invariant for the family {7 A;}5_| if:

[1(1ao — e Prid)p >0 for each subset I C {1,...,k}.

iel
Proposition 7.2.2 (Lemma 4.1 and Proposition 4.3 in [D]). Let A be a
finite k-graph and let r € R* and B € R. The map:

w = {w(po) boeno

s an affine bijection between the set of gauge-invariant B-KMS states for o
on TC*(A) and the set of sub-invariant vectors for the family {e=""i A;}5_,
of unit 1-norm.

For any finite k-graph A with vertex matrices Ay, ..., Ay and groupoid
Ga, and any 3 € R and r € R* Proposition 7.2.2 and Proposition 6.2.5
implies that we have affine bijections between:

e The set of sub-invariant vectors for the family {e=#"A;}%_, of unit
I-norm.

e The set of quasi-invariant probability measures on ggo) with Radon-
Nikodym cocycle e=#¢,

e The set of gauge-invariant S-KMS states on T C*(A) for a'.

To study these convex sets further we will analyse certain faces. For
this consider the following linear algebraic result concerning sub-invariant
vectors:

Proposition 7.2.3 (Proposition 3.2 in [D]). Let A be a finite k-graph,
let B € R, rcRFandlet ) € [O,oo[AO be sub-invariant for the family
{e=Pri A}F . For each I C {1,... k} there exists a vector h! that is sub-
invariant for the family {e="" A;}¥_, such that:
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1. e i A;RT = kI foralli e .
2. limy, o0 (e A;)"h =0 for j € {1,...,k}\ I.
8 = icq,. b

Furthermore this decomposition is unique in the sense that there is only one
family of sub-invariant vectors satisfying 1.-3.

It follows that the convex set of sub-invariant vectors for the family
{e=Pri A;}k_| of unit 1-norm has a face for each I C {1,..., k} consisting of
vectors hy satisfying 1 and 2 in Proposition 7.2.3 above. Proposition 7.2.3
implies that it suffices to describe this face for each I, and it turns out
that the vectors in these faces arise from certain subsets of the graph. To
describe these sets we need to introduce different equivalences on A°. For
each I C {1,...,k} we define a relation <; on A° by:

v<;w <= 3IX € Awithr(\) =v, s(A\) =w and d(\); =0 for j ¢ I.
for v,w € A°. We can then define an equivalence relation on A° by:
v~rw <= v <;wand w<;wv
We furthermore define the I-closure S of a set S C A° by:
S ={weA | elSw<; v}

-----

Aq, ..., A, and some S C A° we set:

p(A%) = (p(AF), p(AD), ... p(AF)) € R

Definition 7.2.4. Let A be a finite k-graph, r € R¥, 3 € R and let I C
{1,...,k}. An equivalence class C' for ~; is called a (I, 3, r)-subharmonic
component, if it satisfies:

1. All equivalence classes D in ~; with D # C and D C C' satisfies:
p(AP)r < p(A)r
2. p(AY) = efrifori € I.

3. p(AJé)<eB”ﬂ' forjeJ:={1,...,k}\ I
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We can use these components to complete our description of the gauge-
invariant KMS states as follows:

Theorem 7.2.5 (Proposition 5.4, Definition 5.5 and Proposition 5.8 in [D]).
Let A be a finite k-graph, r € R* and 3 € R, and let TUJ = {1,...,k} be a
partition. For any (I, 3,r)-subharmonic component C" we can associate a
canonical vector y©. If ¢ € [0, c>o[AO is a sub-invariant vector for the family
{e7PriA}r | and e PriAp = o for i € I and lim, (e PP A" = 0
for j € J, then there exist a unique collection of (I, [3,r)-subharmonic
components C and numbers tc > 0, C € C, such that:

v="> tey”.

cec

This theorem implies that we completely understand the face of the
convex set of sub-invariant vectors v for the family {e=?"i 4;}%_ that satisfies
e i App =) for i € I and lim,,_,oo(e7? A;)™p = 0 for j € J. So combining
Theorem 7.2.5, Proposition 7.2.3 and Proposition 7.2.2 give enough insight
into the set of gauge-invariant KMS states to prove:

Theorem 7.2.6 (Theorem 5.9 in [D]). Let A be a finite k-graph, r € R*
and B € R. For I C{1,...,k} let CI(B) be the set of (I, B,r)-subharmonic
components and set:
eB)= U clB).
IC{1,...,k}

There is an affine bijective correspondence between functions f : C.(5) —
[0, 1] with Y cee, ) f(C) = 1 and the gauge-invariant 3-KMS states for a”
on TC*(A). A KMS state w corresponding to a function f is given by:

wW(SxSp) = e My

where:

b= > f(C)y°.

CeCr(B)

Adding the non gauge-invariant KMS states

If A is a finite k-graph, 7 € R¥ and 3 € R we can interpret Theorem 7.2.6 as
a description of the quasi-invariant measures with Radon-Nikodym cocycle
e~Peri.e. we have a bijective correspondence between extremal measures
and components C where C' € CI(3) for some I C {1,...,k}. Let m¢ denote
the ergodic probability measure on Q/(\O) corresponding to the component
C e Cl(p) fora I C {1,...,k}, we then associate a subgroup of Z* to C



7.3. Diagonality of actions and KMS weights 65

we denote by Per;(C). If I = () we set Per;(C) = {0}. If I # () we will not
explain how to define Per;(C) but refer the reader to Section 6 in [D]. We
will however remark that defining:

CAC:={AeA|r()\),s(A\) e Candd\);=0forj¢I}

then this set can be considered a strongly connected |I|-graph in a natural
way, and Per;(C') will be isomorphic to the periodicity group of the |I]-graph
CA;C as it was originally defined in [11]. The group Per;(C') then turns out
to be the group corresponding to the measure m¢ as in Theorem 6.1.4, and
this gives the following complete description of the KMS states on 7C*(A):

Theorem 7.2.7 (Theorem 6.3 in [D]). Let A be a finite k-graph and fix
r € R¥ and B € R\ {0}. There is a bijection between pairs (C,€), where

C € CL(B) for some I C{1,... k} and & lies in the dual PZI(\C) of Perr(C),
to the set of extremal -KMS states for o on TC*(A):

(C,8) = weye

where:

woeN) = [ 30 flg)E(@(9)) dmelx)  for all f € CulGy).

(Pers(€)) jegs

The next natural question to ask is which KMS states factor through a
KMS state of the Cuntz-Krieger algebra C*(A) of A? It turns out that this
can be described using only the properties of the component C' giving rise
to the extremal KMS state.

Corollary 7.2.8 (Corollary 6.8 in [D]). In the setting of Theorem 7.2.7 a
state wp ¢ for a D € CH(B) and & € Per;(D) factors through a state of C*(A)
if and only of D C o’ for a component C' in ~j satisfying:

CA% = [JoA =0 Vje{l,... k}\I
velC

7.3 Diagonality of actions and KMS
weights

The results in this dissertation are only concerned with 1-parameter groups
arising from some continuous groupoid homomorphisms ¢ on the groupoid
G, and for these we have seen that the quasi-invariant measures with Radon-
Nikodym cocycle e #¢ give rise to 3-KMS weights. The last result we will
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introduce is from [F], written jointly with Klaus Thomsen, and it is a result
that ties the existence of KMS weights given by measures on the unit space
to 1-parameter groups given by continuous groupoid homomorphisms.

The results in [] are for the reduced C*-algebra C*(G) of a locally
compact second countable Hausdorff étale groupoid. We will not give a
thorough introduction to this C*-algebra here, but only remark that it is
also defined as the completion of C,(G), and that any continuous groupoid
homomorphism ¢ : G — R gives rise to a continuous 1-parameter group
af, and we denote such 1-parameter groups as diagonal as well. As for the
full groupoid C*-algebra Cy(G?) embeds as a sub-C*-algebra in C*(G) and
there is a conditional expectation P : C*(G) — Co(G?). We call a weight w
on C*(G) diagonal when w = w o P. The main result in [I] is that these two
concepts are closely related. Due to Theorem 4.2.1 we can present the result
for more general groupoids than it was done in [E]:

Theorem 7.3.1 (An extension of Theorem 2.1 in [E]). Let G be a locally
compact second countable Hausdorff étale groupoid satisfying that for at least
one © € GO the isotropy group GT is trivial and that G is minimal in the
sense that s(r~'(y)) is dense in GO for ally € G©).

Let {a;}ier be a continuous 1-parameter group on CF(G) and assume
that there is a By-KMS weight for a for some By # 0. Then the following
are equivalent:

1. There is a 1 # 0 and a diagonal $1-KMS weight for a.

2. Whenever $ # 0 and there is a -KMS weight for «, there is also a
diagonal B-KMS weight for «.

3. oy(f) = f forallt € R and all f € Cy(GD).
4. « is diagonal.

Proof. Theorem 2.1 in [I)] has the extra requirement that G is totally
disconnected, but for the proof of this theorem we only use this when

invoking Corollary 3.4 in [F]. Since Theorem 3.2 in [F] is generalised in
Theorem 4.2.1 Corollary 3.4 remains true without the assumption that G©
is totally disconnected, which proves the Theorem. O]

Notice that under the assumption that there is an element in the unit
space with trivial isotropy, minimality of G is equivalent to simplicity of
C*(G), c.f Corollary 2.18 in [34], so the C*-algebras in the theorem are all
simple.
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1. Introduction

In a recent paper by an Huef, Laca, Raeburn and Sims, [6], the authors describe an algorithm by which
it is possible to determine all the KMS states of the gauge action on the C*-algebra of a finite graph.
Their results cover also the gauge action on the Toeplitz extension of the algebra and extend the result
of Enomoto, Fujii and Watatani, [4], which deals with strongly connected graphs. Almost simultaneously
with this work, Carlsen and Larsen obtained an abstract description of the KMS states for some of the
generalized gauge actions on the C*-algebra of a finite graph as well as its Toeplitz extension. Their work
builds on and extends methods and results obtained by Exel and Laca in [5] and brings our knowledge
about the KMS states of the actions they consider to the point where the work on the gauge action begins
in [6]. It is the purpose of the present paper to take the steps from the abstract to the concrete which were
taken by an Huef, Laca, Raeburn and Sims, but now for all the generalized gauge actions.

The point of departure for our work are results of the second author from [14] from which it follows that
the relevant results of Carlsen and Larsen from [3] remain valid for all generalized gauge actions, provided
attention is restricted to the KMS states that are gauge invariant; a condition which is automatically
satisfied for the actions considered by Carlsen and Larsen. What we do first is to develop the approach
from [6] to make it applicable to generalized gauge actions. In this way we obtain a description of the gauge
invariant KMS states for all generalized gauge actions. The main input for this is a generalization of the
Perron—Frobenius theory for positive matrices which was obtained by Victory, [16]. See also [11]. The theory

* Corresponding author.
E-mail address: matkt@math.au.dk (K. Thomsen).

http://dx.doi.org/10.1016/j.jmaa.2015.08.060
0022-247X/© 2015 Elsevier Inc. All rights reserved.

70



Paper A. Finite digraphs and KMS states 71

handles arbitrary finite non-negative matrices and can also be used to simplify some of the steps in [6]. We
give here a new proof of the relevant results from [16] and [11] by using ideas from [6].

In order to identify the KMS states that are not gauge invariant we use results by Neshveyev, [8], in
a form presented in [12]. By combining the result with our study of the gauge invariant KMS states we
obtain in Theorem 5.2 our main result which describes the 8-KMS states for all 8 € R\{0} and for an
arbitrary generalized gauge action on the C*-algebra of a finite graph. As with the gauge action, [6], it is
a sub-collection of the components and the sinks in the graph that parametrize the extremal KMS states,
although in general some of the components, corresponding to a loop without exits, may contribute a family
of extremal KMS states parametrized by a circle. Which components and sinks play a role depends very
much on the action, as we illustrate by examples.

It is intrinsic to our approach that the case 8 = 0, where the KMS states are the trace states, must be
handled separately as we do in Section 5.1. For completeness we describe also in a final section the ground
states for the same actions. While there are no ground states for the gauge action unless the graph has
sinks, this is no longer the case for generalized gauge actions and even for strongly connected graphs their
structure can be very rich.

2. Preparations

Let G be a finite directed graph with vertex set V and edge set E. The maps r,s : E — V associate to
an edge e € F its source vertex s(e) € V and range vertex r(e) € V. Thus the set of edges emitted from a
vertex v is the set s~ (v) while r~!(v) is the set of edges terminating at v. A sink in G is a vertex v that
does not emit an edge, i.e. s~1(v) = 0.

Formulated in terms of generators and relations the C*-algebra C*(G) of G is the universal C*-algebra
generated by a set Se, e € E, of partial isometries and a set P,, v € V, of mutually orthogonal projections
such that

1) S:Se = Pr(e) Ve € E, and

2) P, = Z SeS: for every vertex v € V' which is not a sink. (2.1)
e€s—1(v)

A finite path g in G is an element u = ejes---e, € E™ for some n € N such that r(e;) = s(ej+1),
i=1,2,--- ,n— 1. For such a path we set

Sy =S¢, Sey - Se, Se..

The number || = n is the length of the path. We consider a vertex v as a path v of length 0, and set
S, = P, in this case. Let P;(G) denote the set of finite paths in G. Then

A= Span{S,S;: u,ve PG)} (2.2)
is a dense x-subalgebra of C*(G).
Let F : E — R be a function. The universal property of C*(G) guarantees the existence of a one-parameter
group of’, t € R, on C*(G) such that
o (P)=P,YweV, and of (S,) =TS, vec E.

For 3 € R a 3-KMS state for of is a state ¢ on C*(G) such that

p(ab) = ¢ (bajz(a))
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for all a,b € A, cf. Definition 5.3.1 in [2]. When F' is constant 1 the automorphism group {a%} is the
so-called gauge action and we study first the gauge invariant KMS states for o, i.e. the KMS states ¢
for of with the additional property that ¢ o af = ¢ for all ¢t € R. For this purpose we use the following
description of the gauge invariant KMS states. It was obtained by Carlsen and Larsen in [3] when F is

F

strictly positive (in which case all KMS states for o' are gauge-invariant). The general case follows from

Theorem 2.8 in [14].
Let B be a non-negative matrix over V with the property that B, > 0 iff there is an edge in G from v
to w. A vector ¥ € [0,00)" is almost harmonic for B (or almost B-harmonic) when

> Buuwthw = o (2.3)

weV

for every vertex v € V' which is not a sink, and normalized when ) . 1, = 1. When the identity (2.3)
holds for all v € V' we say that ¢ is harmonic for B (or B-harmonic). Thus an almost B-harmonic vector 1)
is B-harmonic if and only if 15 = 0 for every sink s € V. For § € R, consider the matrix A(8) = (A(8)vw)
over V defined such that

A(B)Uw = Z e_BF(E)a

ecvEw
where vEw = s71(v) Nr~1(w). For a finite path u = ejez- - €, in G, set
F(p) = F(e1) + F(ez2) + -+ + F(en).

Lemma 2.1. (See [3,14].) For every normalized A(B)-almost harmonic vector 1 there is a unique gauge
invariant B-KMS state wy, for ol such that

wy (SuSy) = 0ue AWy, (2.4)

for every pair ji, v of finite paths in G. Furthermore, every gauge invariant 3-KMS state for of arises from
a normalized A(fB)-almost harmonic vector in this way.

By Lemma 2.1 the study of the gauge invariant KMS states becomes a study of normalized almost
harmonic vectors for the family A(8), 5 € R, of non-negative matrices over V.

3. Almost harmonic vectors for a non-negative matrix

Let B be a non-negative matrix over V with the property that B, > 0 iff there is an edge in G from v
to w. We seek to obtain a description of the B-almost harmonic vectors.
We shall need the following well-known lemma, cf. e.g. 6.43 in [17].

Lemma 3.1 (Riesz decomposition). Let 1 = (,)pey € [0,00[" be a non-negative vector such that

> Buwthw < ¢y

weV

for allv € V. It follows that there are unique non-negative vectors h, k € |0, oo[V such that h is B-harmonic
and

by =hy+ Y Bk (3.1)

weV n=0
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for all v € V. The vector k is given by

kv = % - Z vawwa
weV
while
hy = lim Y Bp, .

We say that a sink s € V' is B-summable when
o0
Z By, < o0
n=0

for all v € V. For such a sink we define a vector ¢* € [0,0)" by

¢s _ znoozo B’lT)LS )
! ZwEV 27010:0 B'gzs

Lemma 3.2. ¢° in an extremal normalized B-almost harmonic vector.

Proof. The only assertion which may not be straightforward to verify is that ¢° is extremal in the set
of normalized B-almost harmonic vectors. To show this, consider a B-almost harmonic vector ¢ with the
property that ¢ < ¢®. Since
Zzo:m BZJLS
o0
Zwe\/ ano Bgs

as m — oo, it follows that the harmonic part from the Riesz decomposition of ¢ is zero. Thus

Yo=Y Bl

weV n=0

Biuwpw < By <

— 0 (3.2)

where k, = ¢, — ZwEV Bywpw. Note that k, = 0 when v is not a sink since ¢ is B-almost harmonic, and
that ks = @s for every sink s’. Note also that ¢2, = 0 for every sink s’ in G other than s. Since ¢ < ¢° it
follows that the same is true for ¢. Hence

0o
Pov = ZBZLG@G = td)'zsn
n=0

where
o0
T 3D W
weV n=0
By combining Lemma 3.1 and Lemma 3.2 we obtain the following
Proposition 3.3. Let ¢ be a normalized B-almost harmonic vector. There are a unique (possibly empty) set S

of summable sinks in G, unique positive numbers ts € 10,1], s € S, and a unique B-harmonic vector h such
that

V=ht )t

sES
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We turn to a study of the B-harmonic vectors. For any pair of subsets £, D C V we let B®'? denote the
E x D-matrix obtained by restricting B to E x D, and we set B¥ = BF:F for any subset £ C V.

Write v ~» w between two vertexes v, w when there is a finite path gy = e; - - - e, in G such that s(e;) = v
and r(e,) = w, and v ~ w when v ~ w and w ~» v. Then ~ is an equivalence relation since we consider a
vertex v as a finite path (of length 0) from v to v. A component C' in G is an equivalence class in V/ ~ such
that B¢ # 0. For any collection F of vertexes in G we define the closure of F' to be the set of vertexes that
‘talk’ to an element of F, i.e. v € F if and only if there is a vertex w € F such that v ~» w. In contrast the
hereditary closure of a set F' consists of the vertexes w € V such that v ~» w for some v € F'. The hereditary
closure will be denoted by F.

In the following we denote the spectral radius of a finite matrix A by p(A). A component C' in G is
B-harmonic when

a) p(BY) =1and
b) p (35\0) <1if O\C # 0.

This definition, as well as the proof of the following lemma, is inspired by Theorem 4.3 in [6].

Lemma 3.4. Let C be a B-harmonic component in G. There is a unique normalized B-harmonic vector ¢C
such that B€¢C|c = ¢%|c and ¢§ #0 < veC.

Proof. Existence: Since p (BC) =1 it follows from Perron—Frobenius theory that there is a strictly positive
vector ¢ € [0,00)¢ such that B€z¢ = 2. Since p (Ba\c) < 1, the matrix 1°\¢ — BO\C s invertible and
we set

¢C = (16\0 _ Bé\c)f1 Bo\c.c,0 | ,C

)

which is a strictly positive vector in [0, 00)¢. For any pair of vertexes v, w € C\C,
1 _
lim sup (B;”w) n<p (BC\C) <1,
n

and hence

(15\0 B B@\c)*l _ i (Bé\c)”.

n=0

Using this and that no vertex in C' talks to a vertex in C'\C, we find that
Bé(bc _ gO\c (16\0 _ Bé\c)_1 Bo\C.C, 0 | BO\C.O,C | BO,C

_ gC\c Z <Bé\c)” BO\C.C,C | gO\C.CLC | .C

n=0

M

<B€\c)"36\c,cwc 1 BgO\C.OLC 4 O

3
Il
-

(Bé\c)"Bé\c,cxc 1 4C

I
1M

Q

(3.3)
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Set ¢§ = 0 when v ¢ C and normalize the resulting vector in [0,00)V. It follows from (3.3) that ¢¢ is
B-harmonic. Since ¢%|¢ is multiple of ¢ by construction, it follows that B¢ ¢%|c = ¢%|c.

Uniqueness: If 1 is a normalized B-harmonic vector such that B¢)|c = ¢|c and ¥, # 0 < v € C, it
follows from Perron-Frobenius theory that there is a A > 0 such that 1, = ¢S Vv € C. Then ¢ — \¢® is

vector supported in C'\C such that Ba\c(w — X¢%) =1 — \¢©. Since p (Bé\c) < 1, it follows first that
1 = M@ and then that 1) = ¢ because both vectors are normalized. 0O

The following theorem is equivalent to the Frobenius—Victory theorem stated as Theorem 2.7 in [11].

Theorem 3.5. Let ¢ € [0,1]V be a normalized B-harmonic vector. There is a unique collection C of B-har-
monic components in G and positive numbers tc € ]0,1], C € C, such that

b= tcoC. (3.4)

cecC

Proof. Set W ={veV: ¢, >0}. Let v € W. Since B}, ¢, <1, for all n, it follows that

VU

limsup (B}, )% <1.
Hence

w : 1
p (B") = sup limsup (By,)" < 1.
veW n

On the other hand, the fact that B" 4|y = 9|y implies that p (BW) > 1, and we conclude that
p(BY) =1. (3.5)
Since
p(BY) =supp(B),

where we take the supremum over the components of G' contained in W, the collection C’ of components C
from G such that C C W and p(B¢) = 1 is not empty. Order the elements of C’ such that C' < C’ when the
elements in C talk to the elements of C’. Let C be the minimal elements of C’ with respect to this order.
Let D € C. We claim that D is a B-harmonic component, i.e. we assert that

p (BE\D> < 1.

Since D C W it follows from (3.5) that p (Bﬁ\D> < 1.1Ifp (BB\D) = 1, there must be one of G’s

components, say D’, contained in D\D such that p (BD/) = 1. But then D’ € C’, D' # D and D' < D,
contradicting the minimality of D. Hence D is B-harmonic as claimed, and we conclude that C consists of
B-harmonic components.

Let D € C. Then BP4|p < v|p so it follows from Perron—Frobenius theory that there is tp > 0 such
that ¢|p = tp?|p. Since ¥|p and ¥ |p are strictly positive, ¢p is positive too. Set

n=v—>Y top”.

DecC
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We claim that 7 = 0. To show this, set K = (Jc. D, and note that n|x = 0. Let H be the hereditary closure
of K,i.e. H= K. Consider a D € C. When v € (H\K)N D, there is a path from (some element of) D' C K
to v and a path from v to (some element of) D. Note that D’ # D since otherwise v would have to be an
element of D C K. But D’ # D is impossible since D is minimal for the order on C’. Hence (H\K)ND = {J,
showing that 1/)D|H\K = 0. It follows that n|m\x = Y\ K, and hence that 5|y > 0. Let w € H. There is
an | € N and v € K such that B, # 0. Since B'n = n we find that 0 =n, = >,y Blunu > Bl,nw >0,
implying that 7, = 0. Hence n|g = 0. Now note that

p (BW\H) <1 (3.6)

since all components D in W with p (BD ) =1 are contained in H. Since

(BW\HT])U = Z BuwT]w = Z vanw =M

weW\H weV

for all v € W\ H, it follows from (3.6) that 7|y g = 0. Thus 7 = 0 as claimed and (3.4) follows.
To prove the uniqueness part of the statement let D be a collection of B-harmonic components in G and
sc, C' € D, positive numbers such that

= sco”.

CeD

Then W = Ugee € = Ugep C, so when C € D there is a C’ € C such that C' N C” # 0. It follows that
€ C 7 and that either C" = C or C' C C7\C". However, p(BC) = 1 while p (BW\C’) <1, and it follows
therefore that C' = C’. In this way we conclude that D = C. Since the preceding argument shows that
CNC"= 0 when C and C’ are distinct elements from C, we find that

sco%|c = vlc =tcoc,
and hence that s =tc forall C € C. O

Corollary 3.6. The normalized B-harmonic vectors constitute a finite dimensional simplex whose set of
extreme points 1is

{QSC : C' a B-harmonic component in G} .
Combining Theorem 3.5 with Proposition 3.3 we obtain the following

Corollary 3.7. The set of normalized B-almost harmonic vectors constitutes a finite dimensional simplex
whose set of extreme points is

{QSC : C a B-harmonic component in G} U{¢® : s a B-summable sink in G} .
4. Gauge invariant KMS states

It follows from Lemma 2.1 and Corollary 3.7 that the gauge invariant 8-KMS states for af" are deter-
mined by the A(S)-harmonic components and the A(S)-summable sinks. In this section we complete the
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description of the gauge invariant KMS states for 8 # 0 by finding the A(S)-harmonic components and the
A(B)-summable sinks for each 8 € R\{0}.}

4.1. A(B)-harmonic components

A loop in G is a finite path p = ejes - - e, (of positive length, i.e. n > 1) such that s(e;) = r(e,,). If a
component C only contains a single loop, we call it circular.

Lemma 4.1. Let C C V be a component. The function

R > 8 p(AB))
is log-convex and continuous.

Proof. Since C' is a component there is a loop in C, of length p, say. Let v be a vertex on this loop. It
follows that log p (A(ﬂ)c) > ]l) log (A(B)C)Zv, showing that the logarithm of the function we consider takes
finite values for all . Its continuity follows therefore from its log-convexity which is established as follows.
Let v e C and 8,8 € R, t € [0,1]. For each n € N let vE™v denote the set of paths of length n from v back
to itself. Then

(A(t5+(1—t)5')c):v= Z o~ (tB+(1=t)8")F (1) _ Z (e—mm)t(e—m(m)

pneEvE™Y peEvE™Y

1-t

Then Hélder’s inequality shows that

n

(A5 + (1 -08)°)", < (@) ((ae)s)

It follows that

p(A(tB + (1 - 1)8)°) =timsup (A8 + (1 - 1B)°)], ) '

n

is dominated by the product

which is what we needed to prove. 0O
Lemma 4.2. Let C be a component in G which is not circular.

i) If F(u) > 0 for all loops pu in C, there is a unique By € R such that p(A(By)¢) = 1. This By is positive

and p (A(B)Y) < 1 if and only if B > Bo.

ii) If F(p) < 0 for all loops pu in C, there is a unique By € R such that p(A(Bo)C) = 1. This By is negative
and p (A(B)C) <1 if and only if B < Pp.

iii) In all other cases, i.e. if F(u) = 0 for some loop in C or there are loops i, pe in C such that
F(p1) <0< F(us), it follows that p (A(B)Y) > 1 for all B € R.

1 We could have handled the case 8 = 0 here also, but it does simplify things a little when 8 # 0, and we will have to consider
the 8 = 0 case separately for other reasons anyway.
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Proof. Some of the following arguments have appeared in [14]. i): We claim that 3 — p(A(8)°) is strictly
decreasing. To see this, set

a=min{F(u): pisaloop in C of length |u| < #C}.

Consider 3’ < 8 and a loop p in C of length n. Then = pypg - - - fhn, where each p; is a loop in C of length
< #C, and
e B F(1) o BF (1) — He(ﬂfﬁ’)F(M) > em(B=B"a > ogc(B-F)a
J
Summing over all loops of length n starting and ending at the same vertex v in C, it follows first that

(A(B)9)0, = e#e e (4(8)°)"

vv?

and then that

1
p(A(3)°) =timsup ((A(B))7,) " = o (A(B)) e7e @00 > p (4(5)°).
This proves the claim. Note that A(0)¢ is the adjacency matrix of the subgraph H of G whose vertex set
is C. This is a finite strongly connected graph and it is well-known, and easy to show, that p(A(0)¢) > 1
because H by assumption consists of more than a single loop. In view of Lemma 4.1 it suffices now to show
that limg_, p(A(B)Y) = 0. To this end note that any path in H of length > #C must visit at least one
vertex twice. It follows that for any path p € Py(H) of length n with 7(u) = s(u) there is a finite collection

{viva, - ony C{pe Pr(H) : 1< |p| <#C, s(p) = r(p)}

such that N > # and

N
F(u) =Y Flv) > Na> =
j=1 #
Let 8 >0 and v € C. Then
A = Y e PTI < A0 #
MGUE"'U

Hence

p(A(B)) =timsup ((AB)7);,)" < p (AO)) ™5
Since a > 0, it follows that limg_, p(A(8)¢) = 0.

The proof of ii) is analogous to that of i).

iii): Assume first that F'(u) = 0 for some loop in C. Since we assume that C' is not circular, there is a
path v such that |v| = m|u| for some m € N, s(v) = r(v) = s(u) and v is not the composition of m copies
of p. It follows that, with v = s(u),

(A(ﬂ)c)nm\lﬂ > ((A(ﬂ)C)mW\)n > (e—ﬁmF(/_L) + e—ﬁF(u))n _ (1 +e—ﬂF(u))n

vU - VU
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for all n € N, showing that

p (A(B)°) = (1 +e—6F(V))ﬁ o,

for all 8 € R. Assume then that there are loops p1, o in C such that F(u1) < 0 < F(us2). We may assume
that py and ps start at the same vertex v, if necessary after a modification of u; or uo. Then

(A(5)0>”|“1”“2‘ > max {efﬁn\ule(m)7 e*ﬂnlm\F(Mz)}

VU -
for all n € N, proving that

F(pa)

p(A(B)) = max{eiﬁ il e P sl } >1

for all § # 0. This completes the proof because p (A(O)C) > 1 since C' is not circular. O

Lemma 4.3. Let C be a circular component consisting of the vertezes in the loop u. Then

for all B € R.
Proof. Left to the reader. O

Let C be a component. It follows from Lemma 4.2 and Lemma 4.3 that when F(u) > 0 for every loop
in C, or F(u) <0 for every loop in C, there is a unique number Sc € R such that

p(A(Bc)C) =1.

Definition 4.4. A non-circular component C in G is a KMS component of positive type when

i) F(u) > 0 for every loop p in C, and
ii) Bor < Be for every component C’ in C\C, if any.

Similarly, a non-circular component C' in G is a KMS component of negative type when

i) F(u) < 0 for every loop  in C, and
ii) Bc < Ber for every component C’ in C\C, if any.

Lemma 4.5.

i) Let B > 0. A non-circular component C is A(B)-harmonic if and only if C is a KMS component of
positive type and Bc = 3.

ii) Let 8 < 0. A non-circular component C is A(B)-harmonic if and only if C is a KMS component of
negative type and Bc = f.

Proof. The proofs of the two cases are identical and we consider here only case i): By definition, C' is
A(B)-harmonic if and only if p (A(8)¢) = 1 and p (A(ﬂ)é\c) < 1. In view of Lemma 4.2 the first con-
dition is equivalent to F'(u) being strictly positive for every loop p in C and that o = (. Note that
p (A(,Bc)é\c) = 0 when C\C is non-empty, but does not contain any components, while
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p (A(ﬁc)é\c) = max {p <A(BC)C/> : C" a component in 6\0}

otherwise. In view of i) in Lemma 4.2 and Lemma 4.3 this shows that the second condition,

p(A(Bo)7\) <1,
holds if and only if F'() > 0 for every loop p in C\C and B¢ < B¢ for every component in C\C. 0O
We consider then the circular components.
Definition 4.6. A circular component C' in G is a KMS component of positive type when

i) F(v) = 0 for the loop v in C,
ii) F(u) > 0 for all loops p in C'\ C, if any.

Similarly, a circular component C' in G is a KMS component of negative type when

i) F(v) =0 for the loop v in C, and
ii) F(p) <0 for all loops p in C\ C, if any.

Unlike non-circular components, a circular component C' can be a KMS component of both positive and
negative types. This occurs when there are no loops in C\C.

Let C be a circular component. Assume that C' is a KMS component of positive type. If there are no
components in C\C, it follows p (A(ﬁ)é\c) =0 for all 8 € R and we set I = R in this case. Otherwise,

set I = ]Bc, oo[, where
Bc =max {Bcr : C’ a component in C\C'} .

Assume then that C is a KMS component of negative type. If there are no components in C\C, we set
I = R. Otherwise, set Ic = |]—00, B[, where

Bc =min {Bcr : C" a component in C\C'} .
In analogy with Lemma 4.5 we have the following.

Lemma 4.7.

i) Let 8> 0. A circular component C is A(8)-harmonic if and only if C is a KMS component of positive
type and B € Ic.

ii) Let 8 < 0. A circular component C is A(B)-harmonic if and only if C is a KMS component of negative
type and B € Ic.

Proof. Basically the same as for Lemma 4.5. O

4.2. A(B)-summable sinks

Definition 4.8. A sink s in G is a KMS sink of positive type when F(u) > 0 for every loop p in @, if any,
and a KMS sink of negative type when F(u) < 0 for every loop p in {s}, if any.
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When there are no loops in @ we set Iy = R. When s is a KMS sink of positive type with components
in {s}, we set Iy = |85, oo[ where

Bs = max {50/ : C' a component in @} .

Similarly, when s is a KMS sink of negative type with components in {s}, we set I, = ]—o0, B[ where
Bs = min {50/ : C’ a component in E} )

Lemma 4.9.

i) Let 8> 0. A sink s in G is A(B)-summable if and only if s is a KMS sink of positive type and € I;.
ii) Let B < 0. A sink s in G is A(B)-summable if and only if s is a KMS sink of negative type and 8 € I;.

Proof. Left to the reader. O
4.8. The gauge invariant 3-KMS states, 5 # 0

For g € R\{0}, let C(5) be the set of non-circular KMS components C' such that Sc = 8, and Z(5) the
set of circular KMS components D such that g € Ip. Let S(8) be the set of KMS sinks s with 5 € I,. We
can then summarize our findings with regard to the gauge invariant KMS states as follows.

Theorem 4.10. Let 3 € R\{0}. For every gauge invariant 3-KMS state o for of there are unique functions
f:C(B)—=1[0,1], g: Z(B) = [0,1] and h : S(B) — [0, 1] such that > - f(C)+ >, 9(D) +> . h(s) =1 and

SD(SMS;) = 5M,V67ﬁF(M)¢r(,u)

for all finite paths p, v, where ¢ € [0,00)V is the vector

b= > O+ D gDl + > h(s)gs.

cec(B) DeZ(B) s€S(B)

5. Including the KMS states that are not gauge invariant

To handle KMS states that are not gauge invariant we draw on the results of Neshveyev, [8]. For this it
is necessary to introduce the groupoid picture of C*(G).

Originally graph C*-algebras were introduced using groupoids, [7], but only for row-finite graphs without
sinks. For general graphs the realization as a groupoid C*-algebra was obtained by A. Paterson in [9]. To
describe the groupoid for a general graph, possibly infinite but countable, let P;(G) and P(G) denote the
set of finite and infinite paths in G, respectively. The range and source maps, r and s on edges, extend in
the natural way to Py(G); the source map also to P(G). A vertex v € V will be considered as a finite path
of length 0 and we set r(v) = s(v) = v when v is considered as an element of Pf(G). Let Vo be the set of
vertexes v that are either sinks, or infinite emitters in the sense that s~!(v) is infinite. The unit space Qg
of G is the union Qg = P(G) U Q(G), where

Q(G) ={p e Ps(G): r(p) € Voo}

is the set of finite paths that terminate at a vertex in V.. In particular, V,, C Q(G) because vertexes are
considered to be finite paths of length 0. For any p € P;(G), let |p| denote the length of p. When |p| > 1,
set
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Z(p) ={q€Qc: lgl > Ipl, ¢s =pi, i =1,2,---,[pl},

and
Z(v) ={q€Qc: s(q) = v}
when v € V. When v € P;(G) and F is a finite subset of Pr(G), set
2e) = 200\ [ U 20| (5.1)
pEF

The sets Zp(v) form a basis of compact and open subsets for a locally compact Hausdorff topology on
Q¢.? When p € Py(G) and © € Qg, we can define the concatenation px € Q¢ in the obvious way when
r(p) = s(x). The groupoid G consists of the elements in Q¢ X Z x Qg of the form

(/J,CL', |/1’| - IMI|7M/x)7

for some x € Q¢ and some p, ' € Py(G). The product in G is defined by

(e, || = ||, ') (vy, [v] = V'], 0'y) = (pe, |ul + v = '] = V], v"y),

when p/x = vy, and the involution by (ux, |u| — |p'], w'z) =t = (W'z, |p'| — ||, pz). To describe the topology
on G, let Zp(p) and Zp:(p') be two sets of the form (5.1) with r(u) = r(¢). The topology we shall consider
has as a basis the sets of the form

{(uae, lul = W], p'x) + px € Zp(p), p'e € Zp (')} (5.2)

With this topology G becomes an étale second countable locally compact Hausdorff groupoid and we can
consider the reduced C*-algebra C(G) as in [10]. As shown by Paterson in [9] there is an isomorphism
C*(G) — C}(G) which sends S, to 1., where 1. is the characteristic function of the compact and open set

{(ex,1,r(e)x): z € g} C G,
and P, to 1,, where 1, is the characteristic function of the compact and open set
{(vz,0,vz) : x€Qg} C G.

In the following we use the identification C*(G) = C}(G) and identify ¢ with the unit space of G via the
embedding Qg > x — (z,0,x). In this way we get a canonical embedding C(Qg) C C*(G) and there is a
conditional expectation P : C*(G) — C(Q¢) defined such that

P(f)(l’) = f(I,O,LE)

when f € C.(G), cf. [10]. This conditional expectation can be used to characterize the gauge invariant KMS
states because it follows from Theorem 2.2 in [13] that a KMS state for a!" is gauge invariant if and only if
it factorizes through P.

2 Since we here deal with finite graphs where there are no infinite emitters, the topology has as an alternative basis the sets Z(v),
corresponding to Zg(v) with F = (.



Paper A. Finite digraphs and KMS states 83

To describe the automorphism group o in the groupoid picture we define a continuous homomorphism
cr:G— Rby

cr(uz, |u| — ||, v'z) = F(u) — F(u').
The automorphism group o on C*(G) is then defined such that

af (f)(7) = e r D f(v)

when f € C.(G), cf. [10].

Thanks to this picture of C*(G) and of’, and because we consider finite graphs in this paper, we can
draw on the results of Neshveyev, [8], to obtain a decomposition of the KMS states into those that are
gauge invariant and those that are not. Since the groupoid G has the additional properties required in
Section 2 of [12] we can use the description obtained in Theorem 2.4 of [12] when 8 # 0. Of the S-KMS
states considered in Theorem 2.4 in [12], it is only those of the form w which may not factor through P.
Here O is an orbit in Q¢ under the canonical action of the groupoid G on its unit space, and O must be
consistent and S-summable for wg to be defined. Furthermore, the formula for wg, shows that it is only if
the points in O have non-trivial isotropy group in G that w@ does not factor through P.

Note that the isotropy group GF C G of an element = € {2 is trivial unless x is an infinite path in G
which is pre-period. Its orbit under G is then the orbit of an infinite periodic path. We may therefore assume
that there is a loop ¢ in G such that © = 6 € P(G). Then

Gy ={(z,kp,z): ke,

where p is the period of §°°. We may assume that p = |4| and find then that cp(z, kp, x) = kF(6). It follows
that the G-orbit Gz is consistent in the sense used in [12] if and only if F'(6) = 0. If the component of G
containing § contains a second loop, there will be another loop §’ in G starting and ending at the same
vertex as 0. Then

Xy =0"8'0%, neN,
are distinct elements in Gz, and when we use the notation from [12], we have that
lo(zn) = e FO),

This shows that

Z lm(z)ﬁ =0

z€Gx

for all 5 € R, and we conclude therefore that Gz is not S-summable for any 5 € R. It follows that the only
G-orbits of elements with non-trivial isotropy groups which can be both consistent and S-summable in the
sense of [12], are the G-orbits of a periodic infinite path lying in a circular component consisting of a loop &
with F(§) = 0. On the other hand, for such an infinite path 2 the corresponding G-orbit will be S-summable
if and only if

Z e PP < oo, (5.3)
neE}s(x)

where Efs(z) denotes the set of finite paths p in G that terminate at s(z) € V and do not contain §. Note
that (5.3) will hold if and only if C' is a circular KMS component with 5 € I. In this case the 5-KMS state
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wg is defined for every state ¢ on C* (G¥), but it will only be extremal when ¢ is a pure state. By using
the identification C*(G%) = C(T) this means that the extremal S-KMS states occurring in Theorem 2.4 in
[12] that are not gauge invariant arise from a number A € T, considered as a pure state on C(T), and a
component C of zero type with 3 € Ic. We will denote this extremal 8-KMS state by w(. The formula for
this state, as it was given in [12], becomes

-1
wp = Do ) T > Ne PPUf (pa kp, pia) (5-4)

vEE; s(x) k€Z peEss(x)

when f € C.(G). A general state ¢ on C(T) is given by integration against a Borel probability measure p
on T and the corresponding S-KMS state wg, from [12], which we in the present setting will denote by wf,
is then given as an integral

wtla) = [ wd(a) duly. (5.5)

T

The conclusions we need here can then be summarized in the following way.

Lemma 5.1. Let 8 € R\{0}. For every 3-KMS state ¢ for of there is a Borel probability measure v on
Q¢, Borel probability measures up, D € Z(B), on T and numbers t and tp, D € Z(8), in [0,1] such that
t+ ZDEZ(ﬁ) tp =1 and

ola) =t / P(a) dv+ > tpwiP(a). (5.6)

Qc DeZ(B)

The numbers t and tp are uniquely determined by ¢, as are the Borel probability measures up with tp > 0.

The measure v in Lemma 5.1 has certain properties which reflect that ¢ is a KMS state, and they can
be found in [12], but what matters here is only that

ar— /P(a) dv

Qqa

is B-KMS state which is gauge invariant. It is therefore a convex combination of the states ¢, s, @p given
by the formula (2.4) when the vector ¥ occurring there is substituted by the A(8)-almost harmonic vectors
¢C, C € C(B), ¢*, s € S(B), and ¢, D € Z(B), respectively. Note that the state pp corresponding to a
component D € Z(f) is the same as the state w}} from (5.5) when m is the normalized Lebesgue measure
on T. We can therefore now use Theorem 2.4 in [12] and combine Lemma 5.1 with Theorem 4.10 to obtain
the following description of the 5-KMS states when [ # 0.

Theorem 5.2. For § € R\{0},

o let C(B) be the set of non-circular KMS components C in G with o = 5,
o let S(B) be the set of KMS sinks s in G with § € I, and
e let Z(B) be the set of circular KMS components D with 8 € Ip.

For every B-KMS state ¢ for o there are numbers ac € [0,1], C € C(B), as € [0,1], s € S(B), and
ap € [0,1], D € Z(B), and Borel probability measures up, D € Z(8), on T, such that )"~ ac + > as +
Y.pap =1, and
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Z acyc + Z Qsps + Z apwi

cec(B) seS(B) DeZ(B)

The numbers ac, ag, ap are uniquely determined by , as are the Borel probability measures up for the
components D € Z(f3) with ap > 0.

5.1. Trace states

We need a different approach when § = 0. Since the 0-KMS states are the trace states of C*(G) we must
determine these.

Let Z(0) denote the set of circular components C in G with the property that C\C does not contain any
components, and similarly S(0) the set of sinks s in G such that {s}\{s} does not contain a component.
For every C' € Z(0) the set V\C is hereditary and saturated, and there is a surjective *-homomorphism
7o @ O*(G) — C*(C), where C is considered as a directed graph with vertex set C' C V and the edge
set {e € E: s(e),r(e) € C}, cf. Theorem 4.1 in [1]. Similarly, when s € S(0) there is also a surjective
s-homomorphism 75 : C*(G) — C*({s}), where {s} is considered as a directed graph with vertex set

{5} CV and the edge set {e € E: s(e),r(e) € @}
When s € §(0) we let n, be the number of paths in G terminating at s. When C' € Z(0) we choose a
vertex vo € C' and set

ne =#{p € Pr(G): r(n) =vc, s(u:) # ve, for i < |ul},
where the condition that s(u;) # ve is negligible when |u| = 0.
Theorem 5.3. For every s € S(0),
C*({s}) = My, (C),
and for every C € Z(0),
C*(C) ~ M, (C(T)), C € 2(0).

For every trace state w on C*(G) there are unique numbers as € [0,1] and ac € [0,1], and trace states ws
on C*({s}) and we on C*(C), s € §(0), C € Z(0), such that

ZO‘S Zacfl

$€S(0) CeZ(0

and

E gWg O g + E QoWwWo O O

$€5(0) Ccez(0)
For the proof of Theorem 5.3 set
N=V\| | Ccu U {5}
CeZz(0) se€S(0)

Then N is hereditary and saturated, and the set {P, : v € N} generates an ideal Iy in C*(G) such that
C*(@)/In ~ C*(G) where G is the graph with vertex set



86 Paper A. Finite digraphs and KMS states
V= U Ccu s}
Ccez(0) s€5(0)
and edge set £ = {e € E: r(e) ¢ N}, cf. Theorem 4.1 in [1].
Lemma 5.4. Let w be a trace state on C*(G). Then w(Iy) = 0.

Proof. It suffices to show that w(P,) = 0 when v € N. To this end consider a loop p in G with vertexes
V1,...,Upn,v1. The Cuntz—Krieger relations (2.1) imply:

wPy)=w( Y 88 = Y w(SiS)= > w(Pr) =w(Py)

ecs—1(v1) ecs—1(v1) e€s—1(v1)
= Z OJ(Pr(e)) Zw(Py,) = 2w(h,) = Z C‘}(Pr(e)) = w(Py,).
e€s1(v2) e€s—1(vy,)

Hence we must have equality everywhere, which implies that w(P,()) = 0 if e € s7'(v;) for some 4, but
e ¢ p. It follows from this that w(P,) = 0 when

wEUé\ U o4

cec C'ez(0)

where C is the set of components. Hence if s is a sink in G it follows that w(P;) = 0 unless s € §(0). Consider
a vertex v € N. If v is sink, w(P,) = 0 and we are done. Otherwise, if w(P,) > 0, the Cuntz—Krieger relations
(2.1) imply that there is an edge e; € s(v) such that w(P,(,)) > 0. Then r(e;) cannot be a sink and
we can find an edge e such that s(ez) = 7(e1) and w(P,(,)) > 0. We can continue this construction of
edges e; indefinitely so there are i < i’ such that s(e;) = r(e;/), and the path e;e; 41 - - e, is contained in a
component C. Since w(P,(,)) > 0 this component must be circular and without components in C\C, which
contradicts that v € N. It follows that w(P,) =0. O

For each C' € Z(0), fix a vertex vc € C, and set v, = s for s € S(0). For all v € V and a € Z(0) U S(0),
we define:

Ny ={pePrG) | s(u)=v, r(n) =va , s(u:) # va for i <|pu|}

where the condition that s(u;) # v, is negligible when || = 0. We define N* = |, Ny for a € Z(0)US(0).

Lemma 5.5.

(@)= ( P Mpno(©) 0 ( @ Myne(C(T)

s€S(0) CeZ(0)

Proof. For a € Z(0) US(0), let eq 8, o, f € N be the standard matrix units in Mya(C) ~ Myna(C). For
v E f/, set

A S S

a€Z(0)US(0) aENY

Then P,, v € V, are mutually orthogonal projections. For each f € E such that s(f) ¢ {v,: a € Z(0) U
S(0)}, set
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Sp= X D Craa

a€Z(0)US(0) @EN 4

If s(f) € {vy: a€ Z(0) US(0)}, then s(f) = ve for some C € Z(0), and we let € denote the unique
shortest path in G with s(u€) = r(f) and r (uc) = vo. We define an element

S'f € C (T, Myc(C))

such that

57(2) = zewo e

It is straightforward to verify that P,, v € V, and S ¢ [ € E, is a Cuntz—Krieger family, i.e. they satisfy
(2.1) relative to G. Since

PoSe (@ Mpn-(©) e ( @ Myne(C(T)

s€8(0) CeZz(0)

for all v € V and all f € E, the universal property of C*(G) gives us a canonical *-homomorphism

G
- ( D Myn-(C ) ( D M#NC(C('JI‘))).

s€S(0) CeZz(0)

To show that this is an isomorphism, note first that it is surjective because the target algebra is generated
as a C*-algebra by P,, v € V, and S¢, f € E. For the injectivity we shall appeal to the gauge-invariant
uniqueness theorem, Theorem 2.1 in [1]. For an a € §(0) U Z(0), define for each w € T the unitary:

— E w‘ale%a
aEN®

For s € §(0) we define an automorphism 97, on My n=(C) by 5 (A) = U3 AUZ, and for C € Z(0) we define
an automorphism on M yo(C(T)) by %S (f)(z) = US f(w#C2)US . It is straightforward to check that:

Tow— = (@Pe)o( P v5)

s€S Ccez(0)

is an action, and that we for f € E and v € V have:
ww(sf):wsf ww(pv):p

for all w € T. It follows therefore from Theorem 2.1 in [1] that the homomorphism under consideration is
injective. O

Proof of Theorem 5.3. Consider C' € Z(0) and let C*(G) — Myyc(C(T)) be the surjective *-homomor-
phism obtained by composing the quotient map C*(G) — C*(G) with the projection C*(G) — Myne (C(T))
obtained from Lemma 5.5. The kernel of this *-homomorphism is the same as the kernel of 7o : C*(G) —
C*(C), namely the ideal generated by

{P,: v¢ C}.

It follows that C*(C) ~ Myye(C(T)). In the same way we see that C*({s}) ~ Mgy (C) when s € S(0).

The statements regarding a trace state w follow from Lemma 5.4 and Lemma 5.5. O
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6. Ground states

To describe the ground states we use again the groupoid picture described in Section 5 in order to adapt
the approach from Section 5 in [15] to the present setting. The fixed point algebra of af is the C*-algebra
of the open sub-groupoid

F={(uz, |p| = ||, W'z) s 2 €Qq, F(p)=F(u')}
of G. The conditional expectation
Q:CH(G) = CX(F)
extending the restriction map C.(G) — C.(F) can be described as a limit:

R

Q(a) = lim —/af(a) dt, (6.1)

cf. the proof of Theorem 2.2 in [14].
When z € Qg, 2z € P¢(G), write 2 C 2 when 1 < |z| and z|;; |- = 2z or |2| = 0 and z = s(z). An element
x € Qg has minimal F-weight when the following holds:

2,2 € Pt(G), zCux r(z)=r(z) = F()>F(z).

We denote the set of elements in Q¢ with minimal F-weight by Min(F, G). Then Min(F, G) is closed in Q¢
and F-invariant in the sense that

(x,k,y) € F, x € Min(F,G) = y € Min(F,G).
It follows that the reduction F|yiin(r,q) of F to Min(F, G), defined by
Fluineay = {(pz, |p] — W), 'z) : x € Qa, F(u) = F(), pz € Min(F,G)},
is a locally compact étale groupoid. Furthermore, there is a surjective x-homomorphism
R:CH(F)—C: (]:|Min(p’g))

extending the restriction map Co(F) — Ce (Flumin(r,c))- Now the proof of Theorem 5.3 in [15] can be
repeated almost ad verbatim to yield the following.

Theorem 6.1. The map w — wo RoQ is an affine homeomorphism from the state space of C} (}'|Mm(p,g))
onto the ground states of a* .

The structure of the C*-algebra C}: (.7-" I Min( Fﬁc)) varies a lot with the choice of F'. When F' is constant
zero, it is equal to C*(G), and when F is strictly positive it is isomorphic to C", where n is the number
of sinks in G. If G consists of three edges, ¢;, and a vertex v with r(e;) = s(e;) = v, i = 1,2,3, and if
F(e1) = F(ez) = 0 while F(e3) = 1, we find that C*(G) is the Cuntz-algebra O3 while C} (F|uin(r,c)) is a
copy of Os.

Which of the ground states are weak™ limits, for 8 — oo, of 3-KMS states, can be decided by combining
Theorem 6.1 with Theorem 5.2. It follows, for instance, that they all are when F' = 1, while none of them
are in the last mentioned example.
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7. An example

Consider the following graph G. The two sinks are s; and sy and there are four components labeled C
through Cy. In order to define various functions on the edge set we have labeled four edges a, b, ¢ and d.

C

] ]
a b d
S1 52
o< ° ,C.l >

< > Q<€ >0

CQ C¥3 C’4

Consider first the gauge action where F(e) =1 for all edges e. The two sinks are both KMS sinks in this

case; with intervals I;, = R and I, = } Iogz,oo[. Of the components it is only Cy and C4 that are KMS
components, both of positive type and with o, = fe, = 1052. There are three extremal S-KMS states
when = 1052, coming from s;, Cy and Cy, one when § < 10527 coming from s;, and two when 5 > %,

coming from s; and so. This ‘KMS spectrum’ away from 0 can be described by the following figure.

51

o 52

Cy

° Cy

Cs

o Cy
log(2),2 R

KMS spectrum (B # 0) for the gauge action on C*(G).

To define a different generalized gauge action, let E be the set of edges in G, and set Fj(e) = 1 when
e € E\{a,b, c} while Fy(a) = F;(b) = —2 and F}(c) = 0. If we describe the KMS-spectrum for the action af?
by a diagram as was done for the gauge action, the picture becomes the following. The red line® describes
the contribution from the circular KMS component C5 and hence each point on it represents a family of
extremal KMS states parametrized by a circle.

S1

i

Cy

—log(2) log(2)/2 R
KMS spectrum (B # 0) for the generalized gauge action o' on C*(G).

Finally we consider F, defined such that F5(e) = 1 when e € E\{a,d}, F>(a) = —1 and F3(d) = —3. For
the generalized gauge action af? we find the following KMS spectrum.

3 For interpretation of the references to color in the text, the reader is referred to the web version of this article.
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S1

Ch
Cy
Cs
° Cy

A

—log(4) R
KMS spectrum (B # 0) for the generalized gauge action o> on C*(G).

The structure of the ground states varies also for the three actions. For the gauge action there are
two extremal ground states coming from the sinks, while for the actions a* and of? there are infinitely
many. Concerning o the sinks still contribute two, but the infinite path ¢> has minimal F;-weight and
contributes a family of extremal ground states naturally parametrized by a circle. The sink s; is the only
sink which gives rise to an extremal ground state for the action 2, but now the loop of period 2 beginning
with the edge a is an element of Min(F», G) and gives rise to a family of extremal ground states naturally
parametrized by a circle.

The 0-KMS states are of course the same for all three actions. They are the trace states on the algebra,
and by using Theorem 5.3 we see that they can be identified with the trace states on My(C) @ M3(C(T)),
where the sink s; is responsible for the first summand and the component C; for the second.
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models which arise by considering generalized gauge actions on the C*-algebra of a
Cayley graph. From previous work involving infinite graphs it has become clear that the
study of KMS states and weights for generalized gauge actions on the C*-algebra of a
infinite graph is closely related to the theory of denumerable Markov chains and random
walks, and that results from these fields can provide solutions to some of the questions
motivated by the physical interpretations. In many cases, however, these questions turn
into problems that are notoriously very difficult, and only little help is offered by the
results from other fields of mathematics. This is intriguing because the results in [15] show
that infinite graphs offer a richness in the structure of KMS states and weights which
can not be realized with finite graphs and which is only paralleled by the constructions
made by Bratteli, Elliott and Kishimoto in the 80’s, cf. [2]. Furthermore, several of the
issues that arise from the operator algebra setting and its interpretation as a model in
quantum statistical mechanics have not, or only very marginally been considered from
the point of view of Markov chains or random walks and they call for new ideas.

In this paper we set up the general framework for the study of KMS states of gen-
eralized gauge actions on the graph C*-algebra of a Cayley graph, or more precisely
the restriction of these actions to the corner of the algebra obtained by considering the
neutral element of the group as a distinguished vertex. These states are in one-to-one
correspondence with the vectors that are normalized and harmonic for a matrix over
the group which depends on the inverse temperature 5. For fixed § one can in this way
translate the problem of finding the -KMS states to one which deals with a stochastic
matrix and hence with a random walk on the group. This opens up the possibility of
exploiting the substantial existing literature on harmonic functions for random walks on
groups in the study of KMS states on associated graph C*-algebras. However, the depen-
dence on the inverse temperature 3 presents issues for which there are no analogues in
the random walk setting, for example the question about the behavior of the equilibrium
states as the temperature goes to zero which we study in detail in the present work.

For abelian and more generally nilpotent groups there are results which describe
the harmonic vectors of all non-negative matrices over the group that are consistent
with the Cayley graph and where the passage to a stochastic matrix is therefore not
necessary. This allows us to give a complete description of the KMS and KMS,, states
for the generalized gauge actions with a potential function defined from a strictly positive
function on the set of generators when the graph in question is the Cayley graph of a
nilpotent group. The structure depends almost entirely on the abelianization of the group
and from the methods we employ it becomes clear that a similar structure is present for
arbitrary groups. To make this clear, and because it shows that our results have bearing
for all finitely generated groups, we introduce abelian KMS and KMS, states in the
general setting. They are the KMS and KMS,, states that arise from the harmonic
vectors that factor through the abelianization of the group. We show that when the
abelianization of the group is finite there is a unique abelian KMS state, and when the
rank of the abelianization is n > 1 there is a critical inverse temperature Sy > 0 such
that there are no abelian 8-KMS states when 8 < [y, a unique abelian Syp-KMS state
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and for 8 > [y the simplex of abelian 8-KMS states is affinely homeomorphic to the
Bauer simplex of Borel probability measures on the (n — 1)-sphere. Based on this we
determine the abelian KMS,, states; the ground states in the quantum statistical model
that are limits of abelian S-KMS states when (3 tends to infinity, [5]. The result is that
they also form a Choquet simplex affinely homeomorphic to the Bauer simplex of Borel
probability measures on the (n — 1)-sphere. This may be expected given the description
of the abelian S-KMS states, but one should bear in mind that it is a priori not even
clear that the KMS,, states constitute a convex set and it is also not clear, in view of
the massive collapse at the critical value £y, that collapsing does not occur at infinity.
The proof that the (n — 1)-sphere ‘survives to infinity’ occupies almost half of the paper
and involves a great deal of finite dimensional convex geometry.

In a final section we consider two examples; the Heisenberg group and the infinite
dihedral group. In both examples we consider a canonical set of generators and the
gauge action on the resulting graph C*-algebras. Since the Heisenberg group is nilpotent
we easily find all KMS and KMS., states by using our general results. For the infinite
dihedral group, which is not nilpotent, we need to do a bit more work and find that
there is only one abelian KMS state and a richer collection of general KMS states. This
illustrates that for groups that are not nilpotent the structure of KMS states and KMS.,
states is more complicated, and the abelian states will only give a (small) part of the
picture. For general finitely generated groups, the complete picture is presently way out
of reach.

While this work is the first to study KMS states and ground states for actions on
the C*-algebra of Cayley graphs, KMS,, states have been investigated in other cases,
for example in [3,11,12], following their introduction by Connes and Marcolli in [5]. In
many cases the set of all ground states as they are usually defined, e.g. in [1], constitute
a much larger set. This is also the case in our setting, where the set of ground states can
be identified with the state space of a sub-quotient of the algebra, cf. [16].

2. Generalized gauge actions on a pointed Cayley graph

Given a group G and a finite set Y of generators of G there is a natural way of
defining a directed graph I' = T'(G,Y’) whose vertexes are the elements of G and with
an edge (or arrow) from g € G to h € G iff g='h € Y. This is the Cayley graph and
it provides the main tool for the geometric study of discrete finitely generated groups.
Since the introduction of C*-algebras from directed graphs, [10], the Cayley graphs
have provided a way of associating to a finitely generated discrete group a C*-algebra
C*(T") very different from the full or reduced group C*-algebra usually considered in
relation to discrete groups. The algebra is the universal C*-algebra generated by a set
Vi(g,s), g € G, s €Y, of partial isometries such that

0 hen h t # s,
V(h,1)"V(g,s) = { when g ort £ s (2.1)
ZyEY Vigy,y)V(gy,y)* when h=gandt=s.
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For g € G we let P, denote the projection

Py =Y Vigy,n)V(gy,y)".

yeyY

When G is infinite the graph I" is also infinite and the C*-algebra C*(I") is not unital.
But the neutral element ey of G defines the canonical unital corner P, C*(I")P,, stably
isomorphic to C*(I"), and in this paper we will focus attention to this corner of C*(I").

We emphasize that the only condition on Y is that it generates G as a semi-group, i.e.
every element of G is a product of elements from Y. For various reasons it is convenient
to exclude the case where Y only contains one element. G is a finite cyclic group when
this happens, a case we do not exclude when Y contains at least two elements. Thus we
make the following standing assumption:

Assumption 2.1. It is assumed that Y C G is a finite set containing at least two elements
and that it generates G as a semi-group.

Under this assumption C*(I") and the corner P, ,C*(T") P, are simple C*-algebras by
Corollary 6.8 of [10].

Let F': Y — R be a function. The universal property of C*(I") guarantees the existence
of a continuous one-parameter group of automorphisms /", ¢ € R, on C*(T") defined such
that

W (V(g,s) =TV (g,s).

Note that v keeps the corner P.,C*(I')P,, globally invariant and therefore defines a
continuous one-parameter group of automorphisms, still denoted by v/, on P.,C*(T) P., .

We aim now to identify P, ,C*(I')P., as a C*-subalgebra of the Cuntz-algebra O,
where n = #Y, cf. [6]. To simplify notation, set

Oy = Ouy.

Let R,,g € G, be the right-regular representation of G on [*(G) and V,,s € Y, the
canonical isometries generating Oy . Let 1, € B(I?(G)) be the orthogonal projection onto
the subspace of I2(G) spanned by the characteristic function of g € G. The elements

V(g,s) =151 Rs ® Vs

in B(I?(G)) ® Oy satisfy the relations (2.1) and hence they generate a copy of C*(T").
For t = (t1,te, -+ ,tn) € Y™, set t = t1to---t, € G, and let V; € Oy be the isometry
Vi=Vi, Vi, Vi,

n

Set YO =0 and 0 = ey, Vp =1 € Oy. The elements
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1n Ry 51 ® VLV (2.2)

where t € Y™, w € Y™, n,m € NU {0}, h € G, span a *-subalgebra of B(I*(G)) ® Oy,

and since

le, @ VV,)  when h=¢epand t =71
(Leg ® (1R 51 @ ViV (L, ©1) =9 7 ’
0, otherwise,

it follows that the elements V;V, with ¢ = U span a *-subalgebra of Oy whose closure,
which we denote by Oy (G), is a copy of P.,C*(I') P,.
To formulate what the action v looks like in this picture, set F'()) = 0 and

n

Plw) = 3 F(w)

j=1

when w = (wy,ws, -+ ,w,) € Y". It follows from the universal property of Oy that
there is a one-parameter group o’ of automorphisms on Oy such that

af (VVy) = e"F =y, v

for all w,u € |J.—, Y™ Note that o’ leaves Oy (G) globally invariant and defines a
one-parameter group of automorphisms on Oy (G).
We summarize the preceding considerations with the following

Proposition 2.2. Let Oy (G) be the closed span in Oy of the elements V,,V,* with w = .

There is a *-isomorphism m : P,,C*(I')P,, — Oy (G) such that oy = af on for all

teR.
3. KMS measures and harmonic vectors
3.1. KMS states and KMS measures

Let B € R. A state w on Oy (G) is a B-KMS state for of when there is a dense

af-invariant *-subalgebra A of Oy (G) consisting of analytic elements for o such that

w(ab) = w (bafé(a)) (3.1)

for all a,b € A, cf. [1]. By Proposition 5.3.7 in [1] this condition is independent of A, and
since the elements V;V,* with ¢ = U span a *-subalgebra of Oy (G) consisting of analytic
elements for af” it follows that w is a 8-KMS state if and only if

w (‘/;51 le ‘/;‘/2‘/’;2) = GIB(F(Ul)iF(tl))w (‘/t V* V;lvqjl) (32)

27 Uz

when t1,t,u1,us € oo Y™ and t; = w5, i = 1,2.
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It is well-known that the elements V,V;*,t € UZOZO Y™, generate a copy of C (YN)
inside Oy (G) and that there is a conditional expectation E : Oy — C (YY) with the
property that

EWV,) = (3.3)

ViV whent=u
0 otherwise.

Lemma 3.1. Let 3 € R and let w be a B-KMS state for o on Oy (G). There is a unique
Borel probability measure m on YN such that

w(a) = /E(a) dm (3.4)

for all a € Oy (G).

Proof. The conclusion can be obtained by combining Proposition 5.6 in [4] with Theo-
rem 2.2 in [15], but in the present setting there is a much shorter proof: Let [ € (J7—, Y™
be an element such that [ = eg. Since Y contains more than one element by assumption,
there is an element I’ € (Jo, Y™ with I’ = ey such that [ and I’ have different first
entries. Then V;V* +V; V7 <1 and hence w (V;V}*) +w (Vi»V}F) < 1. The KMS condition
(3.2) shows that

w (Vi) = w (Viafy (Vi) = e Ow (i) = e 70 > 0,

implying that e #F®) = o (V,V;*) < 1. Consider then general elements ¢,u € |J,—_, Y™
with ¢ = @ such that ¢ # u. It follows from the KMS-condition (3.2) that

w(ViVy) = w(MVEViVy) = w(ViV, ViV,

In particular, w(V;V,*) = 0 if V)V, = 0. If V,V} is not zero, there is an element | €
U2, Y™ with [ = eg such that u = ¢l or t = ul. Then

WiV = w (afy (Vi) = PP Dw(v,v),

where the sign depends on which of the two cases we are in. From the above we know
that e#F() £ 1 and conclude therefore that w(V;V,*) = 0 when ¢ # u. This shows that
w = w o E and the statement in the lemma follows then from the Riesz representation
theorem. O

Definition 3.2. A Borel probability measure m on Y is a 3-KMS measure for af” when
the state w defined by (3.4) is a S-KMS state for af’.
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When t = (t1,ts,--- ,t,) € Y™ we denote in the following by tY™ the cylinder set
tYN ={(y)2, €Y yi=t;, i=1,2,-- ,n},
and we set QYN = YN,
Lemma 3.3. A Borel probability measure m on Y~ is a f-KMS measure if and only if
PO (tYN) = PFWy (uY™) (3.5)
whenever t,u € | J,—, Y™ satisfy that T = u.

Proof. Let w be the state of Oy (G) defined by (3.4). Let t1,u1,t2,us € |J,, Y™ such that
t; =g, 1 = 1,2. Using the relations satisfied by the isometries V; and (3.3) we find

(VU2VJ2) if t9 = w2z and ug = t1x for some x € UZOZO Yyn,
w (Vi Vi Vi, Vi) = w (Vi, Vi) if ug = tox and ty = uox for some z € | J,—, Y™,

0 in all other cases,

while

o (VaVialfy (G, ) = o000 P00 (V, Ve Vi)

to u
eB(F(u1)=F(t1)),, (Vu1Vu1> if t1 = ugz and uy = tox for some z € (Jo_, Y™,
= { BF(u)=F(t1)), (VtthQ) if up = t1x and to = uqx, for some x € UZOZO Yyn,

0 in all other cases.

The two expressions agree for all choices of t1,u;,t2 and ug if and only if (3.5) holds for
all t,u € |Jo—, Y™ with # = u. Since the elements V;V," are analytic elements for o it
follows that w is a 3-KMS state for af" if and only if (3.5) holds for all t,u € |J;—, Y
witht=u. O

Corollary 3.4. The formula (3.4) gives an affine homeomorphism between the [-KMS
measures on Y and the B-KMS states for o .

In terms of the canonical generators from Proposition 2.2 the S-KMS state w corre-
sponding to a S-KMS measure m is given by the formula

AR m (tYN) when t = u
w ) =
' 0 otherwise.
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3.2. KMS measures and harmonic vectors

A vector (or function) ¢ : G — [0, 00) will be called 3-harmonic when

D e POy =, (3.6)

seY

for all g € G, and normalized when 1., = 1.

Lemma 3.5. Let v be a normalized B-harmonic vector. There is a unique 3-KMS measure
m on YN such that

m (tYN) = e APy, (3.7)
forallt e U, _, Y
Proof. It is standard to construct from 1) a Borel probability measure on YN such that

(3.7) holds. For example one can apply Theorem 1.12 in [17] with the stochastic matrix
p over G defined such that

plg, h) = 1p, te PFE Py,

when ¢g7'h € Y and p(g,h) = 0 otherwise, and with the initial distribution given by
the Dirac measure supported on ey. The resulting measure is clearly unique and it is a
B-KMS measure by Lemma 3.3. O

As a converse to Lemma 3.5, note that a -KMS measure m defines a vector ¢ : G —
[0,00) such that

Py = P Om (1YN) (3.8)

for any choice of ¢t € |J,—, Y™ with t = ¢, and it is straightforward to check that 1 is
B-harmonic. Therefore

Proposition 3.6. The formula (5.7) establishes a bijection between the S-KMS measures
on YN and the normalized B-harmonic vectors.

In conclusion, there are affine homeomorphisms between

e the S-KMS states for af,
e the 3-KMS measures on Y, and
e the normalized S-harmonic vectors on G,
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given by (3.4) and (3.7), respectively. As a consequence there are bijections between the
extremal S-KMS states, the extremal S-KMS measures and the extremal normalized
[B-harmonic vectors.

4. The abelian KMS states
We say that a normalized S-harmonic vector v is abelian when

Yhgk = Yhkg

for all h,g,k € G. The abelian elements constitute a closed convex subset in the set of
normalized f-harmonic vectors and we denote this set by A. A KMS state for of is
abelian when the associated normalized S-harmonic vector is abelian. Before we proceed
with an investigation of abelian KMS states we point out that all KMS states are abelian
when G is nilpotent. This follows from the Krein—Milman theorem and the following
result of Margulis, cf. [14], first proved for abelian groups by Doob, Snell and Williamson,

7.

Theorem 4.1. (Margulis) Assume that G is nilpotent. A normalized extremal [3-harmonic
vector ¢ : G — [0,00) is multiplicative: g, = Pgiby, for all g,h € G.

Lemma 4.2. An element ¥ € A is extremal in A if and only if there is there is a
homomorphism ¢ : G — R such that

Y, =eW VYged. (4.1)

Proof. Assume first that 1 is extremal in A. Since 9 is abelian and S-harmonic,

Wy = Z 6—ﬂF(S)¢Sg - Z e_BF(S)wa;, (4.2)

seY seY

where ¢° : G — [0, 00) is defined by ¢ = Y5 1ibsg. Note that Do oy e BEE) )y = ape, =1
and that 1° is a normalized S-harmonic vector. Furthermore, ¢° is abelian since % is.
Since ® is extremal by assumption it follows therefore from (4.2) that ¢° = 1 for all
s € Y. That is, ¢,y = sty for all s € Y and all g € G. Since Y generates G as a
semigroup it follows that ¢, = ¥p1), for all h,g € G. Set ¢(g) = log,.

Conversely assume that there is a homomorphism ¢ : G — R such that (4.1) holds.
Consider an element ¢ € A and a t > 0 such that t¢, < 1), for all g € G. We must show
that ¢ = 1. To this end we use Choquet theory to write

by = / ¢ du(€)
OA



100 Paper B. Equilibrium and ground states from Cayley graphs

where v is a Borel probability measure on the set A of extreme points in A, cf. e.g.
Proposition 4.1.3 and Theorem 4.1.11 in [1]. When & € 0A\{¢} there is a k € G such
that /1 > 1, and hence also an open neighborhood U of £ in A such that & /¢, > 1
for all ¢ € U. From the first part of the proof we know that the elements of A are
multiplicative and the same is true for ¢ by assumption. Hence

. 1 -1 _ . / —1\" _
Tim ¢l ()™ = lim (& (0n) ") =00
for all ¢’ € U. But t¢ < 1) by assumption, so we must have that

/ e (nr) ™ dv(€) < (Wr) ™ / e (€)= (Ynr) ™ ppp <71
U OA

for all n € N and we conclude therefore that v(U) = 0. Since { € OA\{¢} was arbitrary
it follows first that v (0A\{¥}) = 0, and then that ¢ =¢. O

A Borel measure m on YN is abelian when m (tltgthN) =m (tltthYN) for all
t1,t2,t3 € U, Y. Clearly, a 5-KMS measure is abelian if and only if the corresponding
B-harmonic vector is.

A Borel probability measure m on YN is Bernoulli when there is map, sometimes
called a probability vector, p : Y — [0,1] with >° -y p(y) = 1 such that m is the
corresponding infinite product measure on YV, i.e.

n

m (YY) =[] n(t:)

i=1
when ¢t = (¢;), € Y™,

Lemma 4.3. An abelian -KMS measure is extremal in the set of abelian -KMS measures
if and only if it is a Bernoulli measure.

Proof. Consider an abelian S-KMS measure m and let i be the corresponding
B-harmonic vector. If m is extremal in the set of abelian S-KMS measures v is ex-
tremal in A and by Lemma 4.2 there is a ¢ € Hom(G, R) such that 1, = e°9) for all g.
The condition } e BFG) ) = 1po, = 1 implies that

$ eelFG) 1,

seY

Set p(s) = e“®)=BF() For t = (t1,ta,--- ,t,) € Y™ we find that

n

m (tYN) — H e_BF(ti)wt1t2“~tn — H e BE(t:)+c(ti) — Hp(ti)7
1=1

=1 i=1
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showing that m is the Bernoulli measure on YN defined from p. This proves one of the
implications, and to prove the reverse assume that m is a 5-KMS measure which happens
to be Bernoulli. Let ¢ be the S-harmonic vector corresponding to m. Then ) is clearly
abelian. When ¢,u € |J,, Y™ we find from (3.7) that

Vi = s = PFOHF@) gy (N
— PF(t) BF(u) (tYN) m (uYN) = Yy

Thus g — 14 is multiplicative and hence of the form (4.1) for some ¢ € Hom(G, R). It
follows from Lemma 4.2 that 1 is extremal, and hence also that m is. O

Set
Q(B) = {c € Hom(G,R): Y _ e =AF() = 1}
seY

Equip RY with the product topology and Q(3) C R with the relative topology. Then
Q(p3) is a compact subset of R%. Given an element ¢ € Q(f3) we denote by b, the Bernoulli
measure on Y defined from the probability vector p(y) = ec®)=FF W),

Lemma 4.4. The map ¢ — b. is a homeomorphism from Q(B) onto the set of extreme
points of the abelian $-KMS measures equipped with the weak*-topology.

Proof. b, is a S-KMS measure by Lemma 3.5. It follows from Lemma 4.3 and its proof
that {b.: c € Q(B)} is the set of extreme points in the set of abelian S-KMS measures.
Since the map ¢ — b, is continuous it suffices to show that is it also injective; a fact
which follows immediately from the observation that

() = PP ()p, (SYN)
forallseY. O

Theorem 4.5. There is an affine homeomorphism v — w, from the Borel probability
measures v on Q(B) onto the abelian B-KMS states for af such that

//E ) db, dv(c) (4.3)

Q(B) YN

for a € Oy (G).

Proof. Given a Borel probability measure v on Q(f) we can define a Borel probability
measure m on YN such that
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m(B) = / be(B) dv(c)

Q(B)

for every Borel subset B C YN, It is clear that m is an abelian 8-KMS measure since all
be, ¢ € Q(B) are, and it follows from Lemma 4.4 and Choquet theory that we obtain all
abelian f-KMS measures m on YN this way. Set

= /E(a) dm
ar

and note that (4.3) holds. Hence the map under consideration is surjective onto the
abelian 3-KMS states for a’. To see that it is also injective assume that v and v/ are
Borel probability measures on Q(3) such that the corresponding states defined by (4.3)

//fdbdu //fdbdu

Q(B) YN Q(B) YN

are the same. Then

forall f € C (YN). Taking f to be the characteristic function of tY™ we find that

/Hec(t dv/( /He ) du(c)

Q) " Q) "’

for all t € Y™ and all n. This shows that integration with respect to v and v/ give the
same functional on the algebra of functions on Q(/3) generated by the maps Q(8) > ¢ —
e(®) s € Y. This algebra is dense in C(Q(f)) by the Stone-Weierstrass theorem and it
follows therefore that v =v/. O

4.1. A closer look at Q(3)

First the case where the abelianization of GG is finite:

Proposition 4.6. When the abelianization G/[G,G] of G is trivial or a finite group there
is an abelian B-KMS measure if and only if

D e =1, (4.4)

seY

When it exists, the abelian [-KMS measure is unique and it is the Bernoulli measure
corresponding to the probability vector p(s) = e BE(s),

Proof. This follows directly from Theorem 4.5 since Hom(G,R) = {0} when G/[G, G| is
finite. O
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Corollary 4.7. Assume that G is nilpotent and that the abelianization G/|G,G] of G is
trivial or a finite group. There is a B-KMS measure if and only if

D e =1, (4.5)

seY

When it exists, the 3-KMS measure is unique and it is the Bernoulli measure corre-
sponding to the probability vector ps = e PF().

Note that the one-parameter group o is the restriction to Oy (G) of an action on Oy-.
Any KMS state for the action on Oy will restrict to a KMS state for af". It follows from
work of Exel and Laca, [8], at least when F is strictly positive, that the action on Oy
has exactly one KMS state. The abelian KMS state in Proposition 4.6 is the restriction
to Oy (G) of that state.

Consider now the case where the rank of G/[G,G] is positive, say n > 1. Then
Hom(G,R) ~ R™ and we choose n linearly independent elements ¢, € Hom(G,R), i =
1,2,--- ,n. For each s € Y, set

cs = (c1(s),¢5(s), -+, ¢ (s)) €R™.
Then
Q(B) ~ {UGR” : Zexp(u-cs—BF(s)) = 1} (4.6)
s€Y

when we let - denote the canonical inner product in R”.

Lemma 4.8. There is a unique vector u(3) € R™ such that

S exp(urco—BF(s) > 3 exp(u(B) -, — FF(s)) (47)

seY seY

for all w € R™"\{u(B)}. The vector u(B) is determined by the condition that

Z csexp (u(B) - cs — BF(s)) = 0. (4.8)

seY

Proof. The function R" > u+ > e PF(s)gucs g strictly convex since the exponential
function is. It has therefore at most one local minimum, which is necessarily a global
minimum. It follows that the global minimum, if it exists, occurs at the unique u(g3) € R”
where the gradient is 0, i.e. the vector u(f3) for which (4.8) holds. It suffices therefore to
show that

lim Z exp (u-cs — fF(s)) = oo. (4.9)

flu]l—o0
S
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To establish (4.9) it suffices to show that for each v € R", ||v|]| = 1, there is an s € Y
such that v-cs > 0. Assume for a contradiction that ||v|| =1 and v-cs <O forall s €Y.
Define ¢ : G — R™ such that ¢(g) = (¢} (g9),c5(g),- -+ ,ch,(g)). Since v - ¢s < 0 it follows

rn

that v - c(g) < 0 for all g € G, and hence also —v-c(g) =v-c(g7) <O0forall g € G.
This implies v1¢] + vach + - - - + vy, = 0, contradicting the choice of the ¢)’s. O

In view of Lemma 4.8 and (4.6) we must distinguish between the following three cases:

411 ESEY G_BF(S)eu(ﬁ)'Cs > 1
Then Q(8) = 0.

4.1.2. % oy e PE@euB)es =1

Then Q(B) = {wo}, where up € Hom(G,R) is determined by the condition that
uo(s) = u(B) - cs s € Y. The corresponding S-KMS measure is the Bernoulli measure on
YN defined by the probability vector p, = e #F(5)gu(B)-cs

118,y e PFOu®res < 1
Then Q(S) is homeomorphic to the (n — 1)-sphere

sl = {veR": |v]|=1}.
This follows from

Lemma 4.9. Assume that ) _ e PFG)euB)es < 1. For everyv € S"~! there is a unique
positive number tg(v) such that

u(B) +ts(v)v € Q(B)
and the map S™' 3 v u(B) + tg(v)v is a homeomorphism from S™~! onto Q(B).

Proof. Let v € R™ be a unit vector. The function f, : R — R given by

Folt) =Y exp((w(B) +tv) - cs — BF(s)) = Y e PFEeul@resetves

seY seY

has a unique local minimum when ¢ = 0 where f,(0) < 1. It follows from (4.9) that
lim;, 1o fu(t) = 00. There are therefore unique real numbers t_,t, € R with t_ < 0 <
ty such that f,(t_) = f,(t+) = 1. Set tg(v) = t4 and note that f](tg(v)) > 0. It follows
therefore from the implicit function theorem that tg(v) is a differentiable, in particular
continuous function of v. As a consequence also the map

S" 13w = w(B) + ta(v)v € Q(B)
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is continuous. It is easy to see that it is injective. To prove surjectivity let u € Q(f).
Then u # u() and we set

/ U= u(ﬁ) n—1
V= ———— e S"T
lu = u(B)]
Observe that tg(v') = |Ju — u(/3)]| since this is a positive number and

S exp ((u(B) + u— u(B)[[v)) - s — BE(s) = 3 e PFOevee =1,

seY seY

It follows that u(8) + tg(v')v' =w. O

The abelian B-KMS measure on YN corresponding to the vector v € S™ ! is the
Bernoulli measure given by the probability vector p, where

p(s) = exp ((u(B) +tp(v)v) - ¢s = BF(s)).
Assumption 4.10. Assume now that F(s) > 0 for all s € Y.

Lemma 4.11. For each u € R™ there exists a unique number $(u) € Ry such that

Z e—ﬁ(u)F(s)eu-cs -1
seY

The function R™ 3 u — f(u) € Ry is continuous.

Proof. Let u € R™ and set

o) = 3 e FOguee,

seY

As shown in the proof of Lemma 4.8 there must be some s’ € Y such that u - ¢y > 0.
It follows that g(0) > e“ ¢’ > 1. Since F' > 0, the function g is strictly decreasing with
limit 0 at infinity so there is a unique number S(u) € ]0,00[ such that g(8(u)) = 1.
Continuity of the function u — B(u) follows from the implicit function theorem. O

We shall need the following observation regarding the function (u):
Lemma 4.12. Let {u,,} C R™. Then B(up,) — oo if and only if ||um,|| — oo.

Proof. Set L = max {||¢cs||: s € Y}. Then

1 — Z e_ﬁ(u'm,)F(s)eu'rn'cs S Z e_B(u’"L)F(S)e”u’"LHL7
seY seY
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showing that 5(un,) — o0 = ||um| — oco. Assume then that ||u,,| — oo and for a
contradiction also that f(u,,) - oco. After passage to a subsequence we can assume that
B(tm) is bounded by some K and that t,,/|um,| — v for some v € S*~!. As shown in
the proof of Lemma 4.8 there is a s’ € Y such that v - ¢y > 0. Hence we get that

_ ' U
1> e KFE) exp <Hum”HU—mH 'Cs/) — 00,
m

a contradiction. O

Theorem 4.13. Assume that the abelianization G/|G,G] has rankn > 1 and that F(s) > 0
for all s € Y. It follows that there is a By > 0 such that

e there are no abelian B-KMS states for af’ when 5 < Bo,

e there is a unique abelian Byo-KMS state for of', and

o for all B > By the simplex of abelian B-KMS states for o is affinely homeomorphic
to the simplex of Borel probability measures on the (n — 1) sphere S™~1.

Proof. First observe that the function 5 — u(f) defined by Lemma 4.8 is continuous.
Indeed, assume that 3, — ( in R and for a contradiction also that w (5,) - u(8). It
follows from (4.9) that we can pass to a subsequence to arrange that u(5,) — v # u(f).
Then

li —BnF(s) ju(Bn)cs — —BF(s) v-cs —BF(s) u(B)-cs
Jim Z e e Z e eV > Z e e )
seY seY se€Y

where the last inequality follows from (4.7). It follows that for all large n,

Z e_ﬁnF(s)eu(Bn)'Cs > Z e_BnF(S)eu(ﬂ)'Cs’
seY seY

in conflict with the definition of u(g3,).
It follows from Lemma 4.11 that there is 8 > 0 such that ZSEY e BE(s)gulB)es < 1,
Set

5() = inf {B cR: Z e*,BF(s)eu(ﬁ)-cs < 1} .

seY

By continuity we must have that ) _, e PoF(s)eulBo)es = 1. Note that By > 0 since
Y osey e#(Bo)es > 1 For B < By we are in Case 4.1.1 and there are no -KMS states
since Q(B) = (). When S = By we are in Case 4.1.2 and there is a unique 3o-KMS state
because Q(f) contains exactly one element. Finally, when 5 > o, it follows from (4.7)
that
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S e BEOeudren < 37 B ulbores < 3 —oF(s)gulbares — 1
se€Y seY seY

This means that we are in Case 4.1.3 when 8 > 5. O

Corollary 4.14. Assume that G is nilpotent, that the abelianization G/|G,G] has rank
n > 1 and that F(s) > 0 for all s € Y. It follows that there is a By > 0 such that

e there are no 3-KMS states for o when 5 < By,

e there is a unique Bo-KMS state for of , and

o for all B > By the simplex of B-KMS states for o is affinely homeomorphic to the
simplex of Borel probability measures on the (n — 1) sphere S™"~1.

5. The abelian KMS, states

Following [5] we say that a state w on Oy (G) is a KMS., state when there is a
sequence {5,} C R and for each n a 3,-KMS state w,, such that lim,,_, 8, = oo and
lim,, oo wy, = w in the weak™-topology. When the w,,’s can be chosen as abelian ,,-KMS
states we say that w is an abelian KMS, state. It follows from Proposition 4.6 that there
are no abelian KMS,, states when the abelianization of G is finite. We retain therefore
here the assumption that the rank n of G/[G,G] is at least 1. Furthermore, we assume
also that F' is strictly positive and we denote by 5y the least inverse temperature g8 for
which there are any abelian 5-KMS states, cf. Theorem 4.13.

Let Ay denote the simplex

seY

Ay:{pe[o,l]yz Zpszl}-

For 8 > By, set

Ng = {(e_BF(S)e“'CS) U € Q(ﬁ)} C Ay.

Let N denote the limit set of Nz as 5 — o0; i.e.
Ne= (] U Ns
n>Bo Bzn

Lemma 5.1. Let p € No.. For all ¢ > 0 there exists a B. > 0 such that for each § > B
there is a 2P € Ng with |xf — ps‘ <eVseY.

Proof. By assumption there are sequences {u,} and {f8,} with u, € Q(5,) such that
Bp — 00 and lim,_,o e PrF(S)euncs — p_for all s € Y. By choosing a subsequence, if
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necessary, we can assume that 3, < f,41 for all n. Set § = ¢/#Y and choose N € N
such that

e BnF @) gunes _p | < Vs€Y (5.1)

when n > N. We claim that 8. = Sy will do the job, so assume that § > Sn. There is
an n > N such that 8 € [8,, Bn+1]- Since the function [0,1] 3 X — B((1 — N)uy + Atupg1)
is continuous and S(u,) = By, B(tunt+1) = Bny1 by Lemma 4.11, it follows that there is a
A € [0,1] such that 8 = 8 ((1 — Nuy + Aupy1). By convexity of the exponential function
we have that

Z e LA=2)Bn4ABn 1] [(1=Nun+Auni1]-cs

seY
S (1 _ )\) Z e_Bneun'Cs + )\ Z e_ﬁn-‘rl eun-‘rl'cs =1.

s€Y seY

It follows that

ﬁ = B ((1 - A)un + Aun—i—l) < (1 - A)Bn + )\ﬁn—l—h
and hence
= BE(s) + (1 = Nun + Aupy1) - ¢

= (L= A) (=BnF(s) + un - cs) + A(=Bns1F(s) + tnt1 - s)
> min {_ﬁnF(S) + up - Cs, _ﬁn+1F(S) + Uny1 - Cs} .

Therefore (5.1) implies that
e AFE) ((A=NuntAunti)es > oy 5
for all s € Y. On the other hand, if there was a § € Y such that
e PF () o((I=Nun+Aupt1)-cs ps+ 0 (#Y),
it would follow that

1= 3 e PO Numthunie 5 poy s (H#Y) + Y (pa—0) 2> po=1,

sEY seY\{5} s€Y

which is absurd. Hence, for all s € Y,
ps — 6 < e BE(8) ((AI=Nun+Auni1)-cs < ps + 5(#}/)‘

Thus
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B — (e—ﬁF@e((l—A)un+Aun+1>~cs)
seY

is an element of Ng such that |ps — x'f| <eforallseY. O
Proposition 5.2. Assume that G /|G, G] is not finite and assume that F is strictly positive.
The abelian KMS., states constitute a compact convex set affinely homeomorphic to the

simplex of Borel probability measures on No,. The abelian KMS., state w on Oy (G)
corresponding to a Borel probability measure v on Ny, is given by

w(a) = / / E(a) dn, dv(p) (5.2)

for all a € Oy (G), where n, is the Bernoulli measure defined by p € Noo.

Proof. Let 8 > By. Since the map u (e‘ﬁF(S)e“'CS)Sey
Q(B) onto Ng it follows from Theorem 4.5 that every abelian -KMS state wg is given

is a homeomorphism from

by a Borel probability measure v on Ng such that

(@)= [ [ Bla) dn, dvip)

NB YN

for all @ € Oy (G). Let {w, } be a sequence of (3,-KMS states such that lim,,_, o 5, = 00
and lim,, ., w, = w in the weak™® topology. Let v,, be the Borel probability measure on
Np,, corresponding to wy,. Extend v, to a Borel probability measure v, on Ay such that

Vn(B) = v, (BN Ng, )

and let v be a weak* condensation point of {1/, } in the set of Borel probability measures
on Ay. Then v is concentrated on N, and (5.2) holds. This shows that the map from
Borel probability measures on Ny, to states on Oy (G) given by (5.2) hits every abelian
KMS,, state. The proof that the map is injective is identical with the proof of injectivity
in Theorem 4.5.

It remains to show that for an arbitrary Borel probability measure v on N, the state
w on Oy (G) defined by (5.2) is a KMS, state. Since the set of KMS, states is closed for
the weak™ topology it suffices to show this for a weak* dense subset of Borel probability
measures on N, e.g. for the set of convex combinations of Dirac measures. For this set
the claim follows straightforwardly from Lemma 5.1. O

It remains to prove the following

Theorem 5.3. The set No, C Ay is homeomorphic to the (n — 1)-sphere S"71.
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The proof of Theorem 5.3 will occupy the next section, but we record here the following
corollaries.

Corollary 5.4. Assume that the abelianization G/[G, G| has rankn > 1 and that F(s) > 0
for all s € Y. The set of abelian KMS,, states for af' on Oy (G) is a compact convex
set affinely homeomorphic to the set of Borel probability measures on the (n — 1)-sphere.

Corollary 5.5. Let G be a nilpotent group whose abelianization G /|G, G| has rank n > 1
and assume that F(s) > 0 for all s € Y. The set of KMSy, states for af' on Oy (G) is
a compact conver set affinely homeomorphic to the set of Borel probability measures on
the (n — 1)-sphere.

6. Proof of Theorem 5.3

By definition Ng C Ay is the image of the map

Q(B) > u— (e—ﬁ“s)e"'%) € Ay,

seY

and N is the set of elements ¢ € Ay for which there exist sequences {5,,} C R and
{um} € R™ such that u,, € Q(By,) for all m, B8, — oo and

(e_BmF(S)e“m'CS) —t form — oco.
SeEY

6.1. Partitioning of S*~! by polyhedral cones

For any non-empty subset Z C Y we define M (Z) to be the set

Cs Cz

M(Z):{UER”: v-<m—m

>§0 VseY\Z Vze 7,

v (g~ ) =0 v e 2}

Notice that these sets are convexr polyhedral cones. In the following ‘polyhedral cone’

will always mean a cone of this form. We refer to [9] and [13] for the facts we need on
such cones and which we state in the following. A face of some M (Z) is a subset T' of
M(Z) obtained by changing some of the inequalities in the definition into equalities,
i.e. a face of M(Z) is a set of the form M(Z') with Z C Z'. Equivalently a convex
subset T is a face of M(Z) if for any two distinct points x,y € M(Z) the implication
(x,y)NT #0 = [z,y] € T holds, where (x,y) is the open line segment from z to y
and [z,y] is the closed line segment from x to y. Each face of M(Z) is again a convex
polyhedral cone, and a face of a face is a face. The intersection of two polyhedral cones
M(Z) and M (Z') is again a polyhedral cone, equal to M (ZUZ'). In particular, for every
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polyhedral cone M (Z) there is a unique subset Z’ C Y, which we call mazimal with the
property that M(Z) = M(Z') and M(Z) = M(Z") = Z" C Z'. For all Z CY we let
F(M(Z)) be the set of faces in M (Z), which is a finite set. A proper face of M (Z) is a
face T' of M(Z) with T # M (Z); we denote the set of these by Fo(M(Z)). We define the
dimension of a polyhedral cone M (Z) to be dim(M(Z)— M (Z)), i.e. the dimension of the
smallest subspace of R™ containing M (Z), and we call something a k-face if it is a face
of dimension k. A facet of M(Z) is then a face of M(Z) of dimension dim(M(Z)) — 1.
It is well-known that any proper face of a polyhedral cone M(Z) is contained in a facet
of M(Z).

A polyhedral cone M(Z) is strongly convezr, meaning that M (Z) N (—M(Z)) = {0}.
To see this, take a v € M(Z)N (=M (Z)) and a z € Z. Then v satisfies:

Cs Cz
v-(m—m>:0 VseY
However if v - ¢, > 0 this would imply that v -¢s > 0 for all s € Y which can not be
true unless v = 0, cf. the proof of Lemma 4.8, and likewise v - ¢, < 0 would imply that
v-cg <0 for all s € Y which also implies v = 0.

When we use the expression Int(M(Z)) we mean the topological interior of M(Z) in
the subspace M (Z) — M(Z) with the relative topology. For each of our polyhedral cones
M (Z) of dimension at least 1 we define an element c¢(M(Z)) € Int(M(Z)) N S™~! which
we call the center of M(Z) as follows: Say M (Z) has q 1-faces T1,...,T,. Since M(Z)
is strongly convex we can then write M(Z) = {rivi +--- +rquy : r; > 0} where each
v; is the unique v; € T; N S™~ 1, by (13) of Section 1.2 in [9]. We set

1y
o(M(2)) = TSy
Ig 22i=1 il
and then ¢(M(Z)) € Int(M(Z)), cf. [9].
Lemma 6.1. Let M (Z) be a polyhedral cone with Z chosen mazimal. The following holds:

(1) If T € F(M(Z)) and T = M(Z') with Z' chosen maximal, then Z C Z' and
M(Z) =T if and only if Z = Z'.
(2) For each z € Z,

Z{UGRn: v-<%—%><ovseY\Z, v-(%—%>:ovsez}

= M(Z)\ U

TeFo(M(2))



112 Paper B. Equilibrium and ground states from Cayley graphs

Proof. (1): Since M(Z') C M(Z) we have that M(Z') = M(Z')NM(Z) = M(ZUZ"), so
ZUz'" C Z' by maximality, and hence Z C Z'. That Z = Z' <= M(Z) = M(Z’) follows
directly from the way we defined M and the fact that Z and Z’ both are maximal. (2):
The second equality is (7) in section 1.2 of [9] and the first follows from the maximality
of Z. O

Set bd(M(Z)) = M(Z) \ Int(M(Z)).
Lemma 6.2. Let M(Z) be at least 2-dimensional. Fiz v € Int(M(Z)) N S™ 1. For every

w e (M(Z)NnS" 1)\ {v} there exists a unique pair (\,u) where X\ € ]0,1] and u €
bd(M(Z)) N S™~ 1 such that

(I —=XNv+
w =
(1= X)v+ Aul|
Proof. We may assume that Z is maximal. Consider the subspace W := span{v,w}.

Note that w # —v since M(Z)N (=M (Z)) = {0}. Hence dim(W') = 2. Since W N M (Z)
is a closed convex cone in W and —v ¢ W N M(Z), the circle arch in W starting in v
and continuing through w must reach the boundary of M(Z) N W at some u with an
angle to v less than 7 and

(I =Xv+ Au

=S ESY (6.1)

w =

for some A € ]0, 1]. Since u lies in the boundary of M (Z)NW it can be approximated by
elements from M (Z)°NW and hence u € bd(M(Z)). To establish the uniqueness part,
assume (6.1) holds with (\,u) replaced by the pair (X, u’) € ]0,1] x bd(M(Z)) N S™~1.
Fix a z € Z. It follows from (1) in Lemma 6.1 that there is a subset Z; C Y such that
u€ M(Zy) and Z C Z;. We can assume that

-x) (-
[EESYIE T R [V

o =

Consider an element s € Z; \ Z and set ¢ := ¢5/F(s) — ¢, /F(z). Then

A\u 0eoavt N/
TS EE A=y x|

0=gq-

But ¢-v < 0since s ¢ Z and ¢- N'u' < 0 since v’ € M(Z), and hence o = 0. This implies
that
Y , N

T R U S

u .

Since u,u’ € S"~! and a = 0 it follows first that ||(1 — A)v + dul| = [[(1 — X)v + N/||
and A = )\, and then also that w =u/. O
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We denote the u of Lemma 6.2 by P(w) and the A by A,. We suppress the v in the
notation because it will always be ¢(M(Z)) in the following.

Lemma 6.3. The maps w — P(w) and w +— A\, are continuous from (M (Z)NS" 1)\ {v}
to S"~1 and [0, 1] respectively.

Proof. Assume that {w,,} C (M(Z) N S 1)\ {v} converges to a w in this set. If
Aw,, = Aw of P(w,,) - P(w) then by compactness of [0,1] and S"~! we can take a
subsequence {wp, } of {wy,} such that Ay, — A and P(wy,,;) — u, with either A # A,
or u # P(w). Since lim; w,,, = w we then have:

(1 = Aw)v + ApP(w) — w = lim i _
11 = Aw)v + A P(w)]] e (= A, v+ A, Plwm )L 111 = Ao+ Aul|

(1 = A, )V + Ay, Pwin,) (1—=Xv+Au

The uniqueness part of Lemma 6.2 implies that A = A\, and v = P(w), giving us the
desired contradiction. O

6.2. Constructing a homeomorphism H : S*~! — N

For each [ € {1,...,n} we define the [-skeleton as the union of all sets M (Z) N S"~*
with M(Z) a l'-dimensional polyhedral cone for some 1 <[’ < [. The skeletons will be
used to give a recursive definition of H, but we need some preparations for this.

Lemma 6.4. The n-skeleton is all of S"~ 1.

Proof. Let v € S® ! and choose s € Y such that v+ — <o

oy S v % for all y € Y. Then
ve M({s}). O

Definition 6.5. We say a sequence {vg}reny € R"™ is associated with a t € No, when
B(vg) — oo and

(G—B(vk)F(s)+vk-c$> St
seY

for £ — oo.

Lemma 6.6. Assume {uy}ren s associated with t € No, and that ui, € M(Z) for all n.
Then

(1) t;/F(s) < ti/F(z) Vze ZVseY, and
(2) t, #0 and ¢/ P& = t;/F(y) forall z,y € Z.
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Proof. Since uy € M(Z) it follows that wy, - #S) < wuy - % and hence that

F(s)
F(2)

—B(ug)F(s) +up - cs < (—B(uk)F(2) + u - ¢z)

for all kK when s € Y and z € Z. This shows that (1) holds. (2) follows from (1). O

Lemma 6.7. Let t,t € Ay. If there are y,y' € Y such that t, # 0, t,, # 0 and

QIFG) p/EGs)

/T )

Vs €Y,

then t = t.

L / F(s)
Proof. Note that ¢4 = t?]j,(s)/F(y ) (t;/F(s)/t?l/F(y)) and hence

F (s
r) F(s) t;/F(s) (s) i
Z (ty ) AF() = Z ts=1= Z ts
Y

seY s€EY s€Y
o [ A/F)\ )
= Z fl/F(yl) F(s) ts (6 2)
v /P ' '
seY Yy

Since the function

JL/F()\ )

F(s) | 25

]O,oo[Ba:HZa: (tl/F(y)>
s€Y Y

is strictly increasing it follows from (6.2) that t?l/ PO - f;,/ PO which yields the conclu-

sion. O

Lemma 6.8. Assume M (Z) is at least 1-dimensional and that Z C'Y is maximal. There
is a unique element t € Ny, satisfying the following two conditions:

(1) ts #0 if and only if s € Z, and
(2) t;l/F(sl) = tgF(SQ) for all s1,s5 € Z.

Furthermore, lim, _,o, e " AU0FE)+rvcs — ¢ for all s € Y when v € Int(M(Z)).

Proof. Let v € Int(M(Z)). Then v # 0 and lim, ,o S(rv) = oo by Lemma 4.12.
Since Ay is compact there is a subsequence {r;v};en and an element ¢ € N, such
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that {r;v};en is associated with ¢. It follows as in the proof of Lemma 5.1 that
lim, o e PUIF()troes — ¢ for all s € Y. To prove (1) notice that rv € M(Z)
and hence t, # 0 for z € Z by Lemma 6.6. Assume then that ¢; # 0 for a s € Y, and
assume for contradiction that s ¢ Z. Fix a y € Z. It follows from (2) of Lemma 6.1
that

V- Cs V- ey

F(s) ~ Fly)

(6.3)

Since ts # 0 and lim, o (—=8(rv)F(s) + v - ¢5) = log(ts), it follows that lim,_, ., B(rv)/
r =v-cs/F(s). It follows then from (6.3) that is a L > 0 such that 5(rv)/r < v-¢,/F(y)
for all » > L. But this means that

e—ﬁ(rv)F(y)Jrrv-cy > 17

when r > L, contradicting the definition of 5(rv), cf. Lemma 4.11. Hence (1) holds, and
(2) follows from Lemma 6.6. For uniqueness, consider an element ¢' € Ay for which (1)
and (2) hold. Let z € Z and note that

1=t =t =3 IO SNy re/re),

seY seZ se€eZ se€Z

Since the function ]0,00[>  — > ., 2F()/FW) is strictly increasing it follows that
t, =t/, and hence that t =¢t'. O

6.2.1. H on the 1-skeleton

Let M(Z) be a 1-dimensional polyhedral cone with Z chosen maximal. Then M (Z)N
S7=1 consists only of one point z. We define H(z) = t, where t € N, is the unique
element obtained from Lemma 6.8 using M (Z).

6.2.2. H on the k-skeleton

H will be defined inductively and the basic idea is illustrated by the picture below. Ev-
erything inside the figure represents the intersection between S? and some 3-dimensional
polyhedral cone M(Z). The green dots (For interpretation of the references to color in
this article, the reader is referred to the web version of this article.) are the 1-dimensional
faces intersected with S2, the blue lines (containing the green dots) are the 2-dimensional
faces intersected with S2. Assuming that we have defined H on the 2-skeleton, we have
defined H on the blue lines and the green dots. As a step to define H on the 3-skeleton
we first define H on ¢(M(Z)) which lies in the interior Int(M (Z)), and hence is not in
the 2-skeleton. Then for any v # ¢(M(Z)), we define H on v depending on P(v) and
how close it lies to the center ¢(M(Z)). We measure the distance to ¢(M(Z)) by using
the unique decomposition obtained in Lemma 6.2.
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For the procedure to work we have to impose conditions at each step. We say that H
satisfies the induction conditions on the l-skeleton if H is defined on the [-skeleton and
has the following properties.

(1) H is continuous on the [-skeleton.

(2) If x € M(Z) N S" ! with dim(M(Z)) < I, then there is a sequence {v,,} C M(Z)
associated with H(x).

(3) For x in the l-skeleton, let y € Y satisfy that H(x);/F(s) < H(x)?l/F(y) Vs € Y. Then
x € Int(M(Z)) where

Z={seY : H(m)i/F(S) = ]—[(;U);/l"(y)}7
and Z is maximal for M (Z).

Lemma 6.9. Assume H satisfy the induction condition on the l-skeleton. Let x € M(Z)
with dim(M(Z)) < | and Z chosen mazximal. Then H(m)i/F(z) > H(m);/F(S) for all
seY and z € Z. In particular H(x), # 0 for z € Z.

Proof. Combine induction condition (2) with Lemma 6.6. O

Notice that H satisfies the induction conditions on the 1-skeleton. For the induction
step, assume that we have defined H on the (k — 1)-skeleton for some k > 1 and that H
satisfies the induction conditions on the (k — 1)-skeleton.

Now we will define H on the k-skeleton. So let M (Z) be a polyhedral cone of dimension
k and let Z be chosen maximal. An element v € Int(M(Z)) does not lie in the k —
l-skeleton by (2) of Lemma 6.1, while a v € bd(M(Z)) N S"~! does, so we want to
define H on Int(M(Z))NS™~L. Since M (Z) is a strongly convex polyhedral cone we can
consider ¢(M(Z)) € Int(M(Z)) N S"~1, and set H(c(M(Z))) = t where t is the unique
element arising from Lemma 6.8 using M (Z).
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Lemma 6.10. For any v € (S"~' N M(Z)) \{c(M(Z))} write

where X\ € 10,1] and P(v) € bd(M(Z)) are unique, cf. Lemma 6.2. There is a unique
t € Ny such that

oY) . c
t1/F(s) = ti/ﬂﬂ% exp <—log()\)c(M(Z)) : (F(Ss) - F(Zz))) (6.4)

forall z € Z and s € Y. Furthermore, the following hold:

(1) For any {vn} associated with H(P(v)) and any subsequence of {v,, —log(A)c(M(Z))}
associated to some t' € N4, we have that t =t'.

(2) ti/F(Z) > ti/F(s) foralls €Y and all z € Z.

(3) There is a sequence {w,,} C M(Z) associated with t.

(4) Assume that v € Int(M(Z)) and let z € Z. Then {s €Y : YEE) - ti/F(Z)} =Z.

Proof. It follows from (2) of the induction conditions that there is a sequence {vy,}
which is associated with H(P(v)). By considering a sub-sequence we can assume that
{vm — log(AN)e(M(Z))} is associated with some ¢ € N,. Choose Z' maximal such that
P(v) € M(Z") with dim(M(Z')) < k — 1. Then Z C Z' and Lemma 6.9 implies that
H(P(v)), # 0 for all z € Z. Hence

= lim <e—5<vm>F(s)+vm~cs> VEE) (e—@(um)F<z)+vm.cz> ~1/F(2)

i Cs Cz

= limex = =

m CPA\" A\ F(s) T F(z)

forall z € Z, s € Y. Set wy, = vy, — log(\)e(M(Z)), and note that

(e—ﬂ<wm>F(s>+wm~cs>”F(S) (e—ﬁ(wm)p(z>+wm.cz)‘”F(Z)

= exp <— log(A)e(M(Z)) - (FC(Z) - FZ))) exp <vm ' <Fc(ss) a FC(ZZ)>>

for all s € Y and z € Z. Considering the limit m — oo in the last equation for a
s €Y with t; # 0 and a z € Z, we see that t, # 0 for z € Z. Hence for all s € Y,
z € Z we get (6.4) by combining the two equations, proving the existence of ¢. The
uniqueness follows from Lemma 6.7 since (6.4) implies that ¢, # 0 for all z € Z. To
establish the additional properties, notice that (1) follows from the above. (3) follows
from (1) and the definition of w, since we can choose v,, € M(Z), and (2) follows
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from (3) and Lemma 6.6. The inclusion “2” in (4) follows from (2). For the opposite
inclusion in (4), observe that ¢(M(Z)) - (¢s/F(s) — ¢./F(2)) < 0 for s ¢ Z by (2) of
Lemma 6.1. Furthermore, log(\) < 0 since v € Int(M(Z)) and it follows from Lemma 6.9
that H(P(v));/F(s) < H(P(v))i/F(z). Hence (6.4) shows that ti/F(s)/ti/F(z) # 1 for
s¢ Z. O

For v € (S" 'NInt(M(2))) \{c(M(Z))} we set H(v) = t, where ¢ € Ny is the
element determined by Lemma 6.10.

Lemma 6.11. H is continuous on M(Z) N S™~ 1.

Proof. Let {z,,} be a sequence such that lim,, z,, = x in M(Z) N S"~!. To prove
lim,, o0 H(xy) = H(z), consider a subsequence {m;} such that lim; . H(z,,,) = u
in No. It suffices to show that u = H(x). Assume first that  # ¢(M(Z)). By using
Lemma 6.3 it follows that

where A = lim; ;00 Az, , and from (6.4) by using the continuity of H on the (k —
1)-skeleton, that

1/F(s)

JFG) P HL@)ST . s e
: S i (P ()T p (-2 (575~ 75))

for all s € Y and all z € Z. Hence v = H(z) by uniqueness in Lemma 6.10. Assume
then that z = ¢(M(Z)). We may then assume that z,,, # ¢(M(Z)) for all i, and (2)
in Lemma 6.10 then implies that ut/F®) > w2/ for all s € ¥ and all 2 € Z. Hence
uil/F(sl) = u;Z{F(SQ) when s1,s0 € Z. Let s € Y\Z. To conclude from Lemma 6.8 that
u= H(c(M(Z))) we need only show that us; = 0. Let z € Z. Then

H(zm )WFE) 1/F®)

K3

lim =
i—00 H(ﬂﬁmi)i/F(z) ui/F(Z)

while

H ((P(rn )"
H ((P(z,))) )"~

z

for all ¢ by Lemma 6.9. Furthermore, as observed in the proof of Lemma 6.10, ¢(M(Z)) -
(cs/F(s) —c./F(2)) <0 since s ¢ Z. Since lim; ;00 A, = 0 it follows that

i exp ((~1og(0, e((2)) - (5 = 55 ) ) =0
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Therefore, by inserting z,,, for v in (6.4) and taking the limit ¢ — oo, it follows that
us = 0 as desired. O

We now have a continuous function H : S""' N M (Z) — N for every k-dimensional
polyhedral cone M (Z). If M(Z) and M(Z') are two distinct k-dimensional polyhedral
cones such that M(Z) N M(Z') N S"~1 # 0, the elements of M(Z) N M(Z') n S"~1
will lie in the (k — 1)-skeleton and hence the two H-functions, one arising from M (Z)
and the other from M (Z'), will agree on M(Z) N M(Z') N S™~1. In this way we have a
well-defined function H defined on the k-skeleton. H satisfies the induction condition (1)
by Lemma 6.11, (2) by (3) in Lemma 6.10 and (3) by (4) and (2) in Lemma 6.10. Since
the n-skeleton is all of S"~! by Lemma 6.4, it follows that we have defined a continuous
map H : "~ ! = N.

6.2.3. H is a homeomorphism
It remains to show that H is injective and surjective.

Lemma 6.12. H : S~ ! — N, is injective.

Proof. Note first that it follows from Lemma 6.8 that H is injective on the 1-skeleton.
Assume then that H is injective on the (k — 1)-skeleton, k < n. Let 1, z2 be elements
in the k-skeleton such that H(x;) = H(x2). Choose y € Y such that H(xl);/F(s) <
H(:Cl)?l/F(y) for all s € Y. Set

Zy = {S €Y : H(z)VF® = H(xl);/F(y)}_

It follows from the induction condition (3) that z1,x9 € Int(M(Zy)) and that Zj is
maximal for M (Zy). If dim(M (Zp)) < k it follows from the induction hypothesis that
x1 = T2 so we assume that dim(M(Zy)) = k. If z; # c¢(M(Zp)) it follows from (6.4)
that there is an s ¢ Z; such that H(z;)s # 0. Indeed, P(z;) € M(Z') with Zy C Z’
and by (3) from the induction conditions H(P(z;))s # 0 when s € Z’. It follows from
(6.4) that H(z;)s # 0 when s € Z'\ Zy. Therefore, if H(x1)s = 0 for all s ¢ Z; it follows
that 1 = 22 = ¢(M(Zp)). We may therefore assume that z; # c(M(Zy)), i = 1,2.
Note that there is a face M(Z!) C M(Zy) such that Zy C Z! and P(x;) € M(Z)).

Then Zy C Z] N Z} and in particular, y € Z1 N Z). By symmetry we may assume that
Ay < Ag,. It follows then from (6.4) that

H(P(1))s/ " e ooy \)  H(P()YT®
(6.5)

for all s € Y. Consider an element so € Z4\ Zy. Since y € 77,
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1/F S2
H(P(@))," "
1/F -
H(P(z1))y/ "
and since sy € Z),
H(P(e2))y" "
1/F :
H(P(w2))y "

Furthermore, it follows from (2) in Lemma 6.1 that ¢(M(Zy)) - <% — %) < 0, and
(6.5) therefore implies that A;, = A.,. It follows then first from (6.5) and Lemma 6.7
that H(P(x1)) = H(P(x2)), and then by the induction hypothesis that P(z1) = P(z2).

Hence 1 = 25. O
To prove that H is surjective we use the following

Definition 6.13. Let M(Z) be a polyhedral cone. We say that H is surjective on M(Z)
if for every t € N associated to a sequence {vy}men € M(Z), there is some x €
S"=1' N M(Z) with H(x) =t. We then say H is surjective on the k-skeleton when it is
surjective on all polyhedral cones of dimension < k.

Lemma 6.14. H is surjective on the 1-skeleton.

Proof. Let Z C Y satisfy that M(Z) is 1-dimensional. Then S"~'NM(Z) = {v}. Assume
that some ¢t € N, has an associated sequence {vy, }men € M(Z). Then v, /||vm| = v
for all m and hence v,,, = ||v;||v. It follows then from Lemma 6.8 that ¢t = H(v). O

Lemma 6.15. Let k > 1. If H is surjective on the (k— 1) skeleton, it is also surjective on
the k-skeleton.

Proof. Let M(Z) be a k-dimensional polyhedral cone with Z maximal. Consider an
element t € N, with a sequence {v,,} C M(Z) associated to t. If v, /||vm|| = ¢(M(Z))
for infinitely many m it follows from Lemma 6.8 as in the proof of Lemma 6.14 that
t =H(c(M(Z))). By passing to a subsequence we may therefore assume that vy, /||vp, || #
c¢(M(Z)) for all m. Since M(Z) has a boundary consisting of a finite set of facets,
we can by possibly going to a subsequence assume that there is some Z' 2 Z with
M(Z') a facet of M(Z), and P(vn/[|vml]) € M(Z’) for all n. Set A, = Ay, /|jv,.| and
am = P(vp/||vm||)- Then

Um (1 =Xn)e(M(2)) + Amam
[[vml (1 = Am)e(M(2)) + Apaml| '

Setting
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[0l

11 = Am)e(M(2)) + Amam||

dm =

we have that

We divide the proof into two cases.

Case 1: Assume {qm(1 — A\ b s bounded. Passing to a subsequence we can then
assume that there is a ¢ > 0 with lim,, ¢,,(1 — A\;,) = ¢. Note that A,, — 1 since
¢m — 00. We can therefore assume that ¢, A\mam is associated with a £ € N.. Since
GmAm@m € M(Z') for all n, there is some x € M(Z') N S"~! with H(x) = ¢ by our
induction hypothesis. Set A := exp (—¢) and consider

(1—=XNe(M(Z2)) + Ax .
I(1 = A)e(M(2)) + Az|

u =

M(Z)nsS" .

Then P(u) = x and by (1) of Lemma 6.10 H(u) is associated with some subsequence of
Wi := mAm@m, + qc(M(Z)) € M(Z). Fix z € Z. For any s € Y we have that

5 (O + ) = s (B () 4o e2) = o (s = 1225
e <Fc<ss> - F<z>> Fgmil = Am)e(M(2)) <Fc(ss> - F(z)> (6.:6)
and
Fis) (=B(wm)F(s) + wpn - ¢5) = Féz) (=B(wm)F(2) + W - €:) = wp, <FC(S o ))
=anbnn (55~ 77 + 00 (55 73 67)

for all m. Note that ¢, # 0 # H(u), by Lemma 6.6. Since ¢,,(1 — A\) — ¢ it follows
from (6.6) and (6.7) that

t;/F(S) H(u);/F(S)

= VseY. 6.8

Then Lemma 6.7 implies that H(u) = ¢.
Case 2: Assume {qm(1—Am) }m is unbounded. Passing to a subsequence we can assume
that this sequence diverges to +oo. Fix z € Z and let s ¢ Z. Then

(i) <0 o (5 r) <

and hence
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1 1
5 (BEF(S) + 00 = = (B0 ) + o)
ot (5 = 37 ) 02000 (55~ 77 ) = -
(6.9)
1/F(z)

Since t, # 0 it follows from (6.9) that ¢, = 0. It follows from Lemma 6.6 that ¢; =
ti/ F(s) when s € Z and we can therefore now conclude from Lemma 6.8 that ¢ =
H(c(M(Z)). O

Since the n-skeleton is all of S™~1 it follows from Lemma 6.14 and Lemma 6.15 that
H: S ! — N, is surjective, completing the proof of Theorem 5.3.

7. Two examples
7.1. The Heisenberg group

The Heisenberg group Hjs is the subgroup of Sl3(Z) of matrices of the form

1 a c
(0 1 b) . (7.1)
0 0 1

It is wellknown that Hj is nilpotent and finitely generated. The canonical set Y of 6
generators consists of the elements

1 £1 0 10 0 1 0 +1
0 1 0),{0 1 £1)and [0 1 0 |.
0 0 1 00 1 00 1

We consider the gauge action on Oy (Hs), i.e. we set F(y) = 1 for all y € Y. There
is a homomorphism Hz — Z?2 sending the matrix (7.1) to (a,b) and the kernel of this
homomorphism is the commutator group in Hs. It follows that Hom(Hs, R) is spanned

1 a c 1 a c
A0 1 b)=aandcy [0 1 b )] =0
0 0 1 0 0 1

It is then straightforward to apply the results of the previous sections to deduce the

by ¢} and ¢, where

following.

e There are no 8-KMS states for the gauge action on Oy (Hs) when 5 < log6.
e There is a unique log 6-KMS state for the gauge action on Oy (Hgs).
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e When § > log6 the simplex of S-KMS states for the gauge action on Oy (Hgs) is
affinely homeomorphic to the simplex of Borel probability measures on the circle S*.

e The set of KMS,, states for the gauge action on Oy (Hs) is a convex set affinely
homeomorphic to the simplex of Borel probability measures on the circle S*.

7.2. The infinite dihedral group

The infinite dihedral group Do is generated by two elements a, b where b = 1, bab =
a~t. With Y = {a, b} the Cayley graph I' (D, Y) is the following graph.

g

We consider the gauge action on Oy (Do), i.e. we set F(a) = F(b) = 1. When
Y : Dy — R is a vector, set

Yan = Xy, and Yanp = Ypn, n € Z. (7.2)
Then 1 is a S-harmonic vector iff

a) fEnZU,ynZO,
b) e’x, = xp11 + Yn, and
¢) € yn =xn + Yn_1

for all n € Z. Note that b) and c) are equivalent to b’) and ¢’), where
D) €’y = Tpg1 + Tno1
and

) Yn+1 = Tp.

The positive solutions to b’) are exactly the S-harmonic functions on Z when we choose
Y ={-1,1} and F(—1) = F(1) = 1 and can be found using the results from Section 4.
In the notation used in that section, and with ¢} € Hom(Z,R) the identity map, we see
that the u(53) of Lemma 4.8 is the solution to the equation e“(#)=F — ¢=u(F)=8 = j.e.
u(f) = 0. We are in Case 4.1.1 when e*#) =8 4 e=%(8)=F = 2¢=F > 1, i.e. when 3 < log?2,
in Case 4.1.2 when 8 = log2 and in Case 4.1.3 when [ > log2. When 8 = log2, Q(5)
contains only the zero homomorphism which means that x, = 1 for all n € Z and hence
also y, = 1 for all n € Z according to c¢’). The corresponding log 2-KMS measure on
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{a,b}" is the Bernoulli measure corresponding to the probability measure mg on {a,b}
such that mo({a}) = mo({b}) = 1/2. When S > log 2,

QB) = {ceR: e“+e =€} ={—c(B),c(B)},

C

where ¢(8) > 0 is the positive solution to e + e~¢ = €. It follows therefore from

Theorem 4.5 and ¢’) that the set of S-harmonic vectors on D, are parametrized by the
interval [0, 1] such that 0 < ¢ < 1 corresponds to the solution

zy = tefP" (1 —t)e By = tec(P)(n—=1) | (1- t)e—c(ﬁ)(n—l) (7.3)

for all n € Z. It follows that for § > log2 the simplex of normalized 5-KMS states is
affinely homeomorphic to [0,1]. By Proposition 4.6 the only abelian KMS state is the
log 2-KMS measure.

It is not difficult to identify the set of KMS,, states as a convex set with two ex-
treme points; limits of the two extreme S-KMS states as 8 — co. The Borel probability
measures on Y = {a,b}" corresponding to the extreme KMS,, states are the Dirac
measures at a™ € {a,b}" and ba> € {a,b}"; the two geodesic paths emitted from eq in
the graph above.
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SYMMETRIES OF THE KMS SIMPLEX

JOHANNES CHRISTENSEN

ABSTRACT. A continuous groupoid homomorphism ¢ on a locally compact second
countable Hausdorft étale groupoid G gives rise to a C*-dynamical system in which
every B-KMS state can be associated to a e~ #“-quasi-invariant measure . on G(©).
Letting A, denote the set of KMS states associated to such a p, we will prove
that A, is a simplex for a large class of groupoids, and we will show that there is
an abelian group that acts transitively and freely on the extremal points of A,,.
This group can be described using the support of u, so our theory of symmetries
can be used to obtain a description of all KMS states by describing the e=#¢-
quasi-invariant measures. To illustrate this we will describe the KMS states for
the Cuntz-Krieger algebras of all finite higher rank graphs without sources and a
large class of continuous one-parameter groups.

1. INTRODUCTION

In recent years there has been a great deal of interest in describing KMS states
for C*-dynamical systems and many articles have been written about the subject.
Often the C*-dynamical systems investigated are given as a pair consisting of a
groupoid C*-algebra and a continuous one-parameter group arising from a continu-
ous groupoid homomorphism. This is also the case for the articles about KMS states
on C*-algebras of higher rank graphs that have appeared the last several years, e.g.
[aHKR1], [aHKR2|, [aHLRS1] and [aHLRS2]. In [aHLRS2] the authors come to
the conclusion that the simplex of KMS states for the C*-dynamical systems they
consider is ”"highly symmetric” in the sense that there is an abelian group that acts
transitively and freely on the extremal points of the simplex. Inspired by this, the
main purpose of this article is to investigate such symmetries using the groupoid
picture of these C*-algebras. We will do this by proving that the simplex of KMS
states is symmetric for a large class of groupoid C*-algebras and one-parameter
groups given by continuous groupoid homomorphisms.

We will consider locally compact second countable Hausdorff étale groupoids G
that admits a continuous homomorphism ® : G — A where A is some countable
discrete abelian group, and that satisfies that ker(®) N G* = {x} for all z € G©.
Building on work of Renault, Neshveyev has described a bijection between the -
KMS states for one-parameter groups arising from a continuous groupoid homomor-
phism ¢ : G — R, and pairs consisting of a e~#°-quasi-invariant probability measure
pon G© and a specific kind of p-measurable field. Our main theorem describes
how each e™#“-quasi-invariant probability measure u gives rise to a simplex A, of
KMS states associated to p, and how there for each p is a subgroup B of A with
the dual B of B acting transitively and freely on the extremal points of A,. When
there is only one e #°-quasi-invariant probability measure p on G then A, is the
set of KMS states, and then our theorem implies that B acts transitively and freely
on the extremal points of the simplex of KMS states.

125
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The subgroup B whose dual acts on the extreme points of A, has a very concrete
description involving the support of the measure p. This opens up the possibility
of using these symmetries to describe the simplex of KMS states in cases where our
methods so far have fallen short. When working with topological graphs of rank
higher than 1 it seldom happens that the preferred method used for determining the
KMS simplex is by using the description given by Neshveyev, because, even though
there are often tools for describing the relevant measures, the p-measurable fields are
difficult to describe. However using our theory of symmetries it becomes redundant
to describe the p-measurable fields, and then one can determine all the extremal
KMS states by determining the e~#“-quasi-invariant probability measures. We be-
lieve that this makes our main theorem a useful tool for giving concrete descriptions
of KMS states on the groupoids under consideration. To illustrate this point, we
will use the theorem to describe the KMS states for all Cuntz-Krieger algebras of
finite higher rank k-graphs without sources and all continuous one-parameter groups
obtained by taking a r € R* and mapping R into T* by t — (e, ... e*) and
composing with the gauge-action.

Acknowledgement. The bulk of this work was done while visiting Astrid an Huef
and lain Raeburn at the University of Otago for a longer period of time, and the
author is immensely grateful for the enlightening discussions and for the great hos-
pitality shown to him by the entire O.A. group. This stay was primarily financed
by the grant 6161-00012B Eliteforsk legat. The author also thanks Jean Renault for
sharing insight that led to an improvement of Definition 2.1, and lastly the author
thanks Klaus Thomsen for supervision.

2. NOTATION AND SETTING

2.1. C*-dynamical systems. A C*-dynamical system is a triple (A, «, G) where
A is a C*-algebra, G is a locally compact group and « is a strongly continuous
representation of G in Aut(A). To ease notation we will denote the systems where
G = R as (A, «), in which case we call & = {a;}er a continuous one-parameter
group. For a C*-dynamical system (A, {o}er) and a 5 € R, a -KMS state for «
or a a-KMSp state is a state w on A satisfying:

w(zy) = wlyais(r))

for all elements z, y in a norm dense, a-invariant x-algebra of entire analytic elements
of a, c.f. Definition 5.3.1 in [BR]. The definition is independent of choice of norm
dense, a-invariant x-algebra of entire analytic elements. When there can be no
confusion to which C*-dynamical system and 8 € R we work with, we will denote
the set of KMS states by A. This is a simplex for unital C*-algebras, and hence we
can consider extremal KMS states, the set of which we will denote by JA. In general
when dealing with a compact and convex set C' in a locally convex topological vector
space, we will use dC' to denote the extremal points of C.

2.2. Groupoid C*-algebras. Let G be a locally compact second countable Haus-
dorff étale groupoid with unit space G and range and source maps r,s : G — G,
Since G is étale r and s are local homeomorphisms, and we call an open set W C G
a bisection when r(W) and s(W) are open and the maps 7|y : W — (W) and
slw : W — s(W) are homeomorphisms. For z € G© we set G, := s~'(z) and
gv .= r‘l(x). The isotropy group at x is then the set G, N G* which we denote by
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Gr. Let C.(G) denote the space of compactly supported continuous functions on G.
We can make this space into a %-algebra by defining a product:

(hxf)9)= > hhf(DTg) Vgeg

hegr(@)

and an involution by f*(g) = f(g~!) for all ¢ € G. When completing C.(G) in the
full norm, see Definition 1.12 in chapter II of [Re], we obtain the full groupoid C*-
algebra C*(G). Since G is second countable it follows that C*(G) is separable. The
full norm has the property that the map C,(G) — C.(G®) which restricts functions
to G extends to a conditional expectation P : C*(G) — Co(G®).

Taking a continuous groupoid homomorphism ¢ : ¢ — R, i.e. a continuous
function ¢ : G — R with ¢(gh) = c(g) + ¢(h) when s(g) = r(h), we can define an
automorphism of of C.(G) for all t € R by setting:

ai(f)(g) =" f(g)  VgeG
The map of then extends to an automorphism of C*(G), and {af},cr becomes a
continuous one-parameter group. For the C*-dynamical system (C*(G), {af }ier) the
x-algebra C.(G) is norm-dense, a‘-invariant and consists of entire analytic elements
for ¢, so it is sufficient to check the KMS condition on elements in C.(G).

2.3. Neshveyevs Theorem. In Theorem 1.3 in [N] Neshveyev provides a useful
description of KMS states which we will outline in the following. For a continuous
groupoid homomorphism ¢ : G — R on a locally compact second countable Hausdorff
étale groupoid G, we say that a finite Borel measure o on G is e=#°-quasi-invariant
for some g € R\ {0}, if for every open bisection W of G we have:

MMW»=AMJWMWWM>

where 7, is the inverse of iy : W — 7(W). In the terminology used in [N] these
measures are called quasi-invariant with Radon-Nikodym cocycle e™#¢. We will
need the following observation about these measures: If i is a e~#“-quasi-invariant
measure on G and E C G is an invariant Borel set, i.e. r(s™Y(E)) = E =
s(r~Y(E)), then the Borel measure ug given by pup(B) := u(E N B) is a e #*-quasi-
invariant measure. For a proof of this we refer the reader to the proof of Lemma 2.2
in [Th].

Let o be a e Pe_quasi-invariant measure. We say that a collection {s%}xeg(m
consisting for each x € G© of a state ¢, on C*(G%) is a p-measurable field if for
each f € C.(G) the function:

GO 52— Y fg)ealuy)
S

is p-measurable, where u,, g € GZ, denotes the canonical unitary generators of
C*(GZ). We do not distinguish between p-measurable fields which agree for pu-a.e.
z € GO, For any 3 € R\ {0} Neshveyevs Theorem establishes a bijection between
the 8-KMS states for a® on C*(G) and the pairs (u1, {¢s},eg) consisting of a e=7¢-
quasi-invariant Borel probability measure p on G and a p-measurable field of states
{2} sego satisfying:

0o (tg) = @riny(Ungn-1)  for p-ae v € G and all g € G and h € G, (2.1)
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The KMS state w corresponding to (jt, {¢s},eg©) satisfies:

()= [ 3 flaentu) dutw) ¥ € CG)

9€G%

2.4. Duality of abelian groups. For any locally compact abelian group A we
let A denote the dual of A, which is the set of continuous characters £ : A — T.
Setting (£,&)(a) = &1(a)éy(a) and € (a) = £(a) for a € A defines a composition and
inversion on A making it a group with the constant function 1 as the unit. Using
the compact-open topology A becomes a locally compact abelian group. In this
article we will consider abelian groups A that are discrete and countable, and then
the compact-open topology on A is the topology of pointwise convergence, and Ais
compact with /t}lls topology. For any locally compact abelian group A we have the

identification (A\) ~ A, and for any closed subgroup H of A, defining the annihilator
H* as:

L—f¢ecA|&h)y=1forall he H}
we also have that (H1)! = H, c.f. Lemma 2.1.3 in [Ru]. When there can be no
confusion about which group A we work with, we denote its unit by ey.

2.5. Groupoids admitting an abelian valued homomorphism. We will through-
out this paper consider the following groupoids.

Definition 2.1. We say that a groupoid G admits an abelian valued homomorphism
D:G — A, if G is alocally compact second countable Hausdroff étale groupoid with
compact unitspace GO, A is some countable discrete abelian group and ® : G — A
is a continuous homomorphism satisfying that ker(®) N G* = {x} for all x € G

Remark 2.2. For the rest of this paper all groupoids G will satisfy Definition 2.1 for
some discrete countable abelian group A and continuous homomorphism ® : G — A.

It follows from Proposition 5.1 in chapter II in [Re] that for a groupoid G that
satisfies Definition 2.1, there is an automorphism W, € Aut(C*(G)) for every € € A
satisfying:

Ve(f)(g) =E(@(9))f(9) Ygeg (2.2)
whenever f € C,(G). Letting U : ¢ — W, then (C*(G), ¥, A) is a C*-dynamical
system. When there can be no doubt about which group A we consider, we will
often denote this action as the gauge-action.

Ezample 2.3. Let (A, d) be a compactly aligned topological k-graph for some k € N,
see e.g. [Yeend]. Using (A,d) one can define a space of paths X, and for each
m € NF a map 0™ on {x € X, | d(x) > m} and thereby obtain a groupoid:

Ga = {(z,m,y) € Xy x ZF x X | Ip,q € N* with p < d(x),
q<d(y), p—q=mand o”(v) = 0(y)}

with composition (z,m,y)(y,n,z) = (z,m + n, z), c.f. Definition 3.4 in [Yeend].
Using Proposition 3.6 and Theorem 3.16 in [Yeend] we can equip Gy with a topology
such that the homomorphism G, > (x,m,y) — m € ZF becomes continuous and
G satisfies Definition 2.1 when X, is compact. So the groupoid for the Toeplitz
algebra of a compactly aligned topological k-graph with compact unitspace satisfies
Definition 2.1. Since the groupoid for the Cuntz-Krieger algebra for a compactly
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aligned topological k-graph is a reduction of GG, it also satisfies Definiton 2.1 when
it has a compact unitspace. This provides us with a lot of examples, see e.g. the ones
listed in Example 7.1 in [Yeend] where the unitspace is compact. Most importantly
for the content of this article, it implies that all groupoids of Cuntz-Krieger algebras
of finite higher rank graphs without sources satisfy the criterion.

Example 2.4. Let X be a compact second countable Hausdorff space and A a count-
able abelian group, and denote by End(X) the semigroup of surjective local home-
omorphisms from X to X. Let P be a subsemigroup of A cointaining the unit eq
of A with PP~! = P7'P = A, and let 6 be a right action of P on X in the sense
that 6 : P — End(X) satisfies 6., = idx and 0,,,,, = 6,,,0,(= 0,,0,,) for all n,m € P.
Proposition 3.1 in [ER] then informs us that:

G = {(x,g,y) EXXxAxX|3In,meP, g=nm, Gn(x):9m(y)}

is a groupoid with composition (z,a,y)(y,b,2) = (x,ab, z). In Proposition 3.2 in
[ER] the authors define a topology that makes G a locally compact étale groupoid
which is second countable and Hausdorff since X is. The topology furthermore
makes the homomorphism G > (z,a,y) — a € A continuous, so since G ~ X is
compact G satisfies Definition 2.1.

3. THE ONE-POINT THEOREM

For this section we fix a groupoid G with an abelian valued homomorphism @ :
G — A as in Definition 2.1. The purpose of this section is to show how there is an
interplay between the gauge-action and the KMS states.

Lemma 3.1. Let ¢ : G — R be a continuous groupoid homomorphism and 5 € R.
Assume that w is a a®-KMSg state on C*(G) satisfying w o Ve = w for all £ € A.
Then w =wo P.

Proof. Since ®~!({a}) is open for each a € A we can partition G into the open sets
d1({a}), a € A\ {eo}, G and &' ({ep}) \ G). Using a partition of unity and
linearity and continuity of w and w o P it follows that it is enough to prove that
w(f) = w(P(f)) for f € C.(G) supported in any of the above three kinds of sets.
Suppose first that supp(f) € ®~({a}) for a a # ey. It follows that P(f) = 0. Let
m denote the normalised Haar-measure on A, the invariance of w under ¥ implies
that:

wuw=Aw@Aﬂwm&wiéwﬂa@mmazwuyéa@mmazo

If supp(f) € G© then P(f) = f and w(f) = w(P(f)). For the last case notice
that if g € @ ({eg}) \ G then 7(g) = s(g) would imply that g € ker(®) N Q:((;),
contradicting that g ¢ GO Since G is étale it follows by linearity that we can
assume supp(f) is contained in an open set U with r(U) N s(U) = 0. Since G is
compact we can pick h € C,(G) with h = 1 on r(U) and supp(h) C s(U)C. It
follows using the definition of the product in C.(G) that f = hf and fh = 0, so
using that w is a a®~KMSg state and h is fixed by o we get:

w(f) = wlhf) = w(fh) =0

which proves the Lemma. O
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3.1. The one-point theorem. The purpose of the following theorem is to use the
gauge-action to gain some control over the size of the set of extremal KMS states.

Theorem 3.2. Let ¢: G — R be a continuous groupoid homomorphism, 5 € R and
w be an extremal B-KMS state for a® on C*(G). Then for any extremal o-KMSs

state ¥ satisfying that o P =wo P there is a £ € A with ¢ =wo We.

Proof. First we will argue that if some 1 is a f-KMS state for a® then ¢ o W, is also
a B-KMS state for a° for all € € A. Equation (2.2) implies that ¥¢(C.(G)) C C.(G)
and that af o Ve = U0 af for any t € R and £ € A. So for f,g € C -(G) we get:

o We(fg) = (Ve(f)Ve(g)) = ¥(Welg)ais(Ve(f)))
= P(We(9)e(ais(f))) = ¢ o Velgais(f))

and since YoV, is clearly a state it is a 3-KMS state for a“. That poW, is an extremal

a’-KMSg state for any extremal S-KMS state 1 and & € A is straightforward to
check using that W, has inverse W,-1. Now assume for contradiction that there is an
extremal S-KMS state for af, say v, with ¢ o P = w o P which is not on the form
wo W, for any £ € A. Tt follows first that:

{wowe|ged)
is a set of extremal 5-KMS states for o, and then that:

{bole|€cAyn{wol, |ne A} =10

since if 1) o ¥¢ = w o ¥, for some &, 7 € A, then ¢ = wo VU, ¢-1, contradicting our
choice of 1. Denoting the S-KMS states for a° by A, we can define two functions
from A to A:

Fl(g) :wolllf Fg(f):wo\lfﬁ

Since W is strongly continuous, F; and Fy are continuous when A has the weak*-
topology, so since A is compact Fl(A) C 0A and FQ(A) C O0A are two disjoint
compact sets. Define two measures:

vi=mo F* , vy =mo Fy*

where m is the normalised Haar-measure on 121, then v; and vy become Borel prob-
ability measures on A supported on disjoint sets, and hence vy, # 5. Since A
is metrizable Choquet theory informs us, c.f. Theorem 4.1.11 in [BR], that since
11 (0A) = 1 = 15(0A) both measures are maximal. So since A is a simplex they
have two different barycenters wy # ws € A. For all x € C*(G),-:

() = /A ev,(7)din (7) = /A e, (w 0 Ue)dm(€) = /A w o Ue()dm(€)

Notice that setting w'(y) = [;w o We(y)dm(E) for y € C*(G) defines a a*-KMSg
state that is invariant under W, and hence w'(y) = w'(P(y)). However ¥ fixes C(G")
pointwise and hence w'(y) = w'(P(y)) = w(P(y)). So wi(x) = wo P(x), and likewise
wa(x) =1 o P(x), contradicting that w o P =1 o P but w; # ws. O
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4. EXTREMAL KMS STATES

In this section we again let G be a groupoid with an abelian valued homomorphism
® : G — A asin Definition 2.1. To use Theorem 3.2 we need to obtain some extremal
KMS state. The purpose of this section is to use Neshveyevs Theorem to obtain one
extremal KMS state, and then use Theorem 3.2 to obtain the rest. To ease notation
we will identify regular finite Borel measures on G() with positive linear functionals

on C(G©).

Lemma 4.1. Fiz a continuous groupoid homomorphismec: G — R and a 8 € R\{0}.
Let A be the set of e~ Pe_quasi-invariant probability measures on GO, and for any
p€ A let A, be the set of a®-KMSy states w on C*(G) with w|cgo)y = p. Then:

(1) A is a compact convez set.

(2) A, is a compact convex set for any p € A.

(3) A B-KMS state w for a° is extremal in the simplex of a®-KMSg states A if

and only if p := w|cgo)y € OA and w € OA,.

Proof. That A is convex is straightforward to see. To see that it is closed, let
{ttn}nen € A be a sequence such that g, — g in the weak® topology. Then
wn(7) == [0 P(x)dpy, defines a sequence of B-KMS states that converges in the
weak® topology, i.e. w, — w for some B-KMS state w. It then follows that
w|cgoy) = 1, so that p € A. We leave the verification of (2) to the reader.

For (3), assume that w € A and let y = w|c o). By Theorem 1.3 in [N], w
is given by a pair (u, {¢s}.ego) where {¢,},co0 is a p-measurable field of states
satisfying (2.1). Assume g1 = Ay +(1—\)pug for some gy, g € A and \ €]0, 1[. Then
{¢s}rego is also - and pro-measurable and satisfies (2.1) for pq and po, and then
(11, {2 }aego) and (o, {¢s}yego ) represent two KMS states wy and ws, satisfying:

wlf) = [ 3 Flahouls) dute) = denlf) + (1 = Nsa(1)
G(0) 90z
for all f € C.(G). Since w € OA this implies w = w; = wy, and hence p = p1 = po,
proving that p € 0A, and since A, is contained in A, we get that w € 9A,. The
other implication in (3) is straightforward. O

Using Lemma 4.1 we can now find an extremal KMS state for (C*(G), a®).

Proposition 4.2. Let ¢ : G — R be a continuous groupoid homomorphism, [ €
R\ {0} and assume that p is a e~"°-quasi-invariant probability measure. Then for
any & € A there is a -KMS state we for a given by:

wl) = [ 3 fla)e(@(o) duto

9€9g
for all f € C.(G). For the function 1 € A the state wy is an extremal point in AV

Proof. To prove the first claim it is enough to find a p-measurable field of states
{2} sego satisfying (2.1) such that ¢, (u,) = £(P(g)) for all g € G¥ and all z € G©.
To do this fix a £ € A and define a *-homomorphism He : C*(A) — C by specifying
that He(u,) = £(a) for all unitary generators u, and a € A. In particular we have
that He is a state on C*(A). The condition that ker(®) N GF = {z} implies that
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® : G* — A is an injective group homomorphism for each € G which gives us
an injective unital *-homomorphism ¢, : C*(G%) — C*(A) satisfying t,(ug) = ua(g)
for all g € G%. For each x € G we define a state 1, := H¢ o1, on C*(G) and claim
that {1, },eg0 is a p-measurable field of states. It suffices to prove that

GO 32— > flg)ta(uy)
9€9%
is p-measurable for f € Ce(G) with supp(f) € W € W C U C & '({a}) where
W is open, W is compact, U is an open bisection and a € A. The set N := {g €
W | s(g) =r(g)} is compact in G, so 7(N) is closed in G(©). However

GONP(N) 32— Y f(9)a(uy) =0

IS

while for x € r(N) we have:

Y F@alug) = Y f(9)E(®(9)) = flry} (@)é(a)

gege gege

So since r(N) 3 & — f(ro}(x))é(a) is continuous {1, },egw) is a p-measurable field.
For any x € G© and all g € G% and h € G, we have 1, (upgn-1) = £(P(hgh™')) =
Vg(ug), 50 {13},cq0 satisfies (2.1). To prove w; is extremal assume that w; =
Ao+ (1 =N with ', ¢ € A,,. Now letting {9} },cq0, {ZZJx}zeg(o) be p-measurable
fields corresponding to respectively ¢’ and @, then:

Al =AU+ =05 = [ 3 Fe0, + (1= ) ) d(e)

9eGE

Using the uniqueness result of Neshveyev we get that Ay + (1 — )\)&w = 1), for
p-almost all z in GO, However 1, = H; o ¢, is multiplicative on an abelian C*-
algebra, giving that it is a pure-state by Corollary 2.3.21 in [BR]. So ¢/ and Uy
has to be equal to v, for p-almost all z, and hence ¢ = w; = ¢’ which proves the
proposition. Il

5. SYMMETRIES OF THE KMS SIMPLEX

We now combine the results from the last two sections to obtain a description
of the extremal points of the simplex of S-KMS states for 5 # 0. Throughout
this section we again consider a groupoid G with an abelian valued homomorphism
® : G — A as in Definition 2.1.

Theorem 5.1. Let ¢ : G — R be a continuous groupoid homomorphism and 3 €
R\ {0}. Then any extremal 3-KMS state w for a¢ is on the form:

wlf) = [ 3 Ho)(@le)) dul)  ¥f € CQ) (6.1
eClert
where p € OA and € € A. Conversely any state on this form is extremal.

Proof. Let w be given by the pair (x, {¢z},eg) as in Theorem 1.3 in [N], then
1 € OA by Lemma 4.1. Constructing wy using p as in Proposition 4.2 then w; is
extremal in A,, and Theorem 3.2 then implies that w = w; o ¥, for some &. Since



Paper C. Symmetries of the KMS simplex 133

wy 0 P is equal to we from Proposition 4.2 this proves the formula. Conversely the
state in (5.1) equals wy o W¢ and hence it is extremal by Proposition 4.2. O

We will say that an extremal KMS state w is given by a pair (i1,€) € A x A,
when w can be written as in (5.1). The representation of the extremal KMS state
is not necessarily unique: If a state is given by a pair (u,€) and a pair (¢/,&’) then
clearly p = ', but we might not have £ = . In the following Theorem we will
address this issue.

Theorem 5.2. Let ¢ : G — R be a continuous groupoid homomorphism and 3 €
R\ {0}. Let p € OA and let w be the extremal B-KMS state for a¢ given by the pair
(p,1). Then:
N={¢€cA|wo¥;=w}
is a closed subgroup in A. Consider the subgroup:
B:=Nt={acA|&a)=1foralé € N} CA
Then the following is true:
(1) For any subgroup C C A the set

X(C)={z€g? | o(g") =C}

1s a Borel set in Q(O), and:

PO =9, e

{1 ifC =B

(2) A, is a simplex and B ~ A/N acts transitively and freely on 0A,. This
gives rise to a homeomorphism:

B |/ [ 3 roewi) duw)| <on, (52)

9€G%

Proof. Checking that N is a closed subgroup is straightforward. To prove (1), we
first claim that X(a) := {z € G© | a € ®(G¥)} is a Borel set in G for all a € A.
Since A is countable {g € ®~'({a}) | r(g) = s(g)} is closed in G, so since G is second
countable and étale this implies that r({g € ®~1({a}) | r(9) = s(9)}) = X(a) is
Borel. Clearly X (a) is an invariant set, so if u(X (a)) €]0, 1[ then X (a)“ would be an
invariant Borel set with u(X (a)¢) €0, 1], which would imply that z could be written
as a convex combination of two elements in A. However p € A, so (X (a)) = 0 or
w(X(a)) =1. If w(X(a)) =1 and p(X (b)) = 1 then u(X(a) N X(b)) = 1, so since
X(a)N X(b) C X(ab) and X (a) = X(a™") we have that:

Di={a€A|p(X(a) =1}

is a subgroup of A. For any subgroup C of A we can write:

X(C) = (ﬂ X(C)) VU x@

ceC acA\C

and hence X (C') is Borel. From this equality it also follows that (X (D)) = 1. Since
X(D)NX(C) = 0 for subgroups C # D, this implies u(X(C)) = 0 when C # D.
By definition of N we have, using the notation of the proof of Proposition 4.2, that
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¢ € N if and only if Hy o, = H¢ o, for y almost all z € G| so if and only if
D C Ker(¢). However D C Ker(€) if and only if £ € D+, so combined we get that
D+ = N, and hence D = (D*)* = Nt = B.

To prove (2) notice first that the map that sends ¢BL € A/B* to olp € B is
an isomorphism by Theorem 2.1.2 in [Ru], so since N = B this proves A/N ~ B.
Since p is extremal in A it follows by Theorem 5.1 that every ¢ € 0A,, is on the
form w o W, for some £ € A, so by definition of N we can define a transitive and free
action of A/N on dA,, by:

A/N x9N, 3 (EN, ) — o U, € DA,

So the map in (5.2) is a bijection, and since functions f € C.(G) supported in some
set 71 ({a}), a € A, spans C.(G) it follows that the map is continuous, and hence a
homeomorphism since B is compact. To see that A, is a simplex, let p1; and o be two
different maximal regular Borel probability measures on Au and assume for contra-
diction that they have the same barycenter. Then [ A, Y(z)dp (v) = | A, (@) dpa( )
for all x € C*(G). Since A is metrizable p; and py are supported on 0A,,

we consider them as measures on B. It follows from Stone-Weierstrass that the
span of {ev, | b € B} is a dense subalgebra of C(B), so there exist a b € B with
S5 €0)dpn (&) # fB b)dus(€). Since G is sigma-compact and ®~1({b}) is clopen,
there is an increasing sequence of positive functions f,, € C.(G) that converges point-
wise to 1g-1((}), and hence the functions z — 3 _c. f,(g) increases pointwise to a
function f’ with f' =1 on X(B). Using monotone convergence there is a f € C.(G)
with supp(f) € @' ({b}) and w(f) = fX(B) > gegs f(9) du(z) # 0, and hence for

1 = 1,2 we have:

[ ) = [ twnte) =) | e

a contradiction. Hence A, is a simplex. O

Observation 5.3. This Lemma should be compared with Proposition 11.5 in [aHLRS2].
In [aHLRS2] the authors analyse the KMS states on the Cuntz-Krieger algebras of
finite strongly connected higher-rank graphs, which are C*-algebras of groupoids

satisfying Definition 2.1, see section 6.3 below or section 12 in [aHLRS2|. Letting

¢ be the continuous groupoid homomorphism giving rise to what the authors call

the preferred dynamics, Lemma 12.1 in [aHLRS2] implies that there is exactly one

e~ “l-quasi-invariant measure and that the subgroup B described in Theorem 5.2 is

the subgroup Per(A), see Proposition 5.2 in [aHLRS2] for the definition of Per(A).

Then (2) in our Theorem 5.2 becomes Proposition 11.5 in [aHLRS2].

Theorem 1.3 in [N] is very useful for giving a concrete description of the KMS
states when either the groupoids involved only have countably many points in the
unitspace with non-trivial isotropy, or when it is possible to prove that all KMS
states factors through the conditional expectation P. To illustrate how Theorem 5.2
can be used in more complex cases, we will now use it to analyse the KMS states
for Cuntz-Krieger C*-algebras of finite higher-rank graphs without sources, where
neither of the two classical approaches suffices.
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6. BACKGROUND ON HIGHER-RANK GRAPHS

6.1. The Cuntz-Krieger C*-algebras of higher-rank graphs. For £ € N we
always denote the standard basis for N¥ by {ej,es,..., e}, and for n,m € NF we
write n < m if n; < m,; for alli = 1,2,...,k, and n V m for the vector in N* with
(nVm); = max{n;, m;} for all 7. A higher-rank graph of rank k& € N is a pair (A, d)
consisting of a countable small category A and a functor d : A — N* which satisfies
the factorisation property: for every A € A and every decomposition d(\) =n + m,
n,m € NF_ there exists unique p,v € A with d(u) = n, d(v) = m and A = uv. For
all n € N* we write A" := d~}({n}) and we identify the objects of A with A° C A
and call these vertices. Elements of A are referred to as paths, and we use the range
and source maps 7,s : A — A to make sense of the start s(\) and the end r())
of paths A in A. For 0 <[ < n < m and A € A™ we denote by \0,[) € Al
A(I,n) € A" and A(n,m) € A™ ™™ the unique paths with A = X(0, )A(I, n)\(n, m).
We often abbreviate and write A for a higher-rank graph of rank & and simply call
it a k-graph. For any X,Y C A we write XY for the set:

XY ={pA | pe X, AeY and s(p) =r(N\)}

and we use variations on this theme to define sets throughout the next sections. We
say that a k-graph A is finite if A" is finite for all n € N* and without sources if
vA™ # () for all n € N¥ and v € A”. We can define a relation on A° by defining
v < w if vAw # 0, i.e. if there is a path starting in w and ending in v. This gives an
equivalence relation ~ on A° by defining v ~ w if v < w and w < v. We call these
equivalence classes components, and more specifically we call a component C' trivial
if CAC' = {v} for some v € A° and non-trivial if this is not the case. The relation
< descends to a partial order on the set of components, i.e. C < D if CAD # 0.
For sets V' C A% we define the closure of V to be V = {w € A° | wAV # (0} and the
hereditary closure to be V= {w € A’ | VAw # 0}. For any set S that is closed,
hereditary closed or a component we can define a new higher-rank graph (Ag, d)
where Ag = SAS. A graph is called strongly connected if vAw # 0 for all v,w € A°,
and we notice that (A¢g,d) is a strongly connected graph for all components C' of
A°.

For a finite k-graph A we can define the A x A vertex matrices A, ..., A; with
entries A;(v, w) = |[vA%w|. The factorisation property implies that these commute,
and defining A" =[], A for each n € N* one can prove that A™(v, w) = [vA"w].

Definition 6.1. Let A be a finite k-graph without sources. A Cuntz-Krieger A-family
is a set of partial isometries {ty | A € A} in a C*-algebra satisfying:

(CK1) {t, | v € A%} is a set of mutually orthogonal projections.

(CK2) taty =ty for all \,v € A with r(y) = s(\).

(CK3) t5tx =ty for all X € A.

(CK4) t, = > sconn talh for allv € A° and n € NF.

We let C*(A) denote the C*-algebra generated by a universal Cuntz-Krieger A-family.

To ease notation we define the projection p, := t, for all v € A°, and we remind
the reader that C*(A) = span{t,t; | A,y € A, s(\) = s(7)} and that the universal
property of C*(A) guarantees a strongly continuous action v : T — Aut(C*(A)) by
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specifying that:

k
p(ty) = 2ty =[]Vt vzeTh, waeA (6.1)
i=1
By setting:
AN ) = {(0,v) € A x A | A§ = yv and d(N\) = d(\) Vd(v)}
for any A,y € A, we furthermore have the equality:

Bty = > st (6.2)

(Br)eAmin(x,y)

6.2. KMS states on Cuntz-Krieger algebras of higher-rank graphs. Let A
be a finite k-graph without sources. For any r € R* we can define a map R > ¢t —
(etr1) ... e'") € T*. Composing this map with the action v from (6.1) yields a
continuous one-parameter group {a; }ier satisfying:

k k

a;(t)\t;) = H(eitﬁ)d(/\)z H(eiim)d(wlt,\t: — eitr'(d(k)*d(’ﬂ)tkﬁ/

=1 =1
for all A,y € A. We are interested in determining the S-KMS states for all § € R
and all C*-dynamical systems (C*(A),a”) where r € R¥, and for this it suffices to
check the KMS condition on pairs of elements on the form ¢5¢7 with A,y € A.

6.3. The path groupoid for a finite higher-rank graph without sources. For
a finite k-graph A without sources we can realise C*(A) as a groupoid C*-algebra.
To do this, we first need to introduce the infinite path space A* of A. The standard
example of a k-graph (2 is constructed by considering morphisms:

Qe :={(n,m) € N* x N¥ | n <m}

and objects ) := N* and then defining s(n,m) = m, r(n,m) =n, d(n,m) =m—n
and (n,m)(m,q) = (n,q). An infinite path in the k-graph A is then a functor
x : 4 — A that intertwines the degree maps, and we denote the set of infinite paths
in A by A*. Defining for each A € A aset Z(\) = {x € A* | z(0,d(\)) = A} we get a
basis {Z(A\)}rea of compact and open sets, making A> a second countable compact
Hausdorff space. For each p € N*¥ we can define a continuous map o? : A — A™ by
setting o®(z) to be the infinite path o?(z)(n, m) = x(n+p, m+p) for all (n,m) € Q,
and for any p,¢ € N¥ and z € A we then have that o?(04(x)) = oP(z) =
o?(oP(z)). Setting r(z) = x((0,0)) for z € A* we can compose A € A and z € A*
when r(z) = s(\) to get a new infinite path Az € A>°. Using A we can now obtain
the path groupoid by defining:

G={(z,m—n,y) € A xZ" x A* | m,n € N* and 0™ (z) = 0" (y)}
one can check that this is in fact a groupoid when defining composition as:
('I.) a? y) (y7 b7 Z) = (x7 a + b7 Z)

and inversion by (z,a,y)* = (y, —a, r) and we then obtain range and source maps
satisfying r(x,a,y) = (x,0,2) and s(z,a,y) = (y,0,y). The groupoid G becomes a
locally compact second countable Hausdorff étale groupoid when we consider a basis

{Z(\y) | A,y € A, s(A) = s(y)} where:
Z(A\7) = {(x,d(N) = d(7),2) €G |z € Z(\), z € Z(7), o'V (z) = 0?7 (2)}
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We can therefore consider the groupoid C*-algebra C*(G), and it follows from Corol-
lary 3.5 in [KP] that C*(A) ~ C*(G) under an isomorphism that maps £\t to 15 ).
Since G ~ A> we will identify the two spaces C'((A>) and C(G®). The action in-
troduced in (6.1) is then the same as the gauge-action introduced in equation (2.2),
and the continuous one-parameter group {a} }cg obtained using a vector r € R is
the same as the one obtained by considering the continuous groupoid homomorphism
¢ 1 G — R given by ¢.(x,n,y) :=1-n.

7. HARMONIC VECTORS AND KMS STATES

In this section we start our analysis of the KMS states by describing the gauge-
invariant states.

Definition 7.1. Let A be a finite k-graph without sources, 3 € R and r € R*. If
¥ € [0,00[ is a vector of unit 1-norm, i.e. > el =1, and 4 satisfies that:

Ay =€y foralli=1,2,... k
we call Y a B-harmonic vector for o.

Lemma 7.2. Let A be a finite k-graph without sources, 3 € R and r € R*. Let w
be a B-KMS state for o”, then the vector:

{w(po) }oeno
is a B-harmonic vector for .

Proof. Set ¢, = w(py) for all w € A°, then clearly v, € [0,00[*" is of unit 1-norm.
Using (CK4) we have for each i € {1,2,...,k} and v € A° that:

Yo =wpe) = D wltaty) = > w(tiajs(ta) = Y e Nw(tty)

A€vA©i A€vA©s AevAsi
=Y D wlpe) =Y Ao w)e = (A,
wEAO AEvALiw weAO
proving the Lemma. D

Inspired by Proposition 8.1 in [aHLRS2] we will now associate a measure to a
[-harmonic vector.

Proposition 7.3. Let A be a finite k-graph without sources, f € R and r € R*.
Let v be a [-harmonic vector for o, then there exists a unique Borel probability
measure My, on A satisfying:

My(Z(\) = e PNy YA EA
Proof. For all m,n € N¥ with m < n we define 7, , : A" = A™ by 7, ,(A) = (0, m).

Since A is without sources the maps m,,, are surjective. Giving A" the discrete
topology for each n € N¥_ it follows that (A™, m,,,,) is an inverse system of compact
topological spaces and continuous surjective maps, and hence we get a topological
space Hm(A™, 7y, ). It is straightforward to check that

A® >z — {z(0,m)}ent € N (A", 7 )
is a homeomorphism. For each m € N¥ we now define a measure M,, on A™ by:

My (S) = e 7™ “4hyy  for S CA™

AeS
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For m <n and A € A™ we have:

Mn(ﬂ,;ln({/\})) = Z ws(u) = e o Z 77/15(01)

vETmn ({A}) acs(A)An—m
= ey AT (s(A), w)vh = €T ATTY) 00 = €M
weEAO
= M, ({A})

Combining this calculation with Lemma 5.2 in [aHKR2] gives us a regular Borel
measure My on A such that:

My(Z(N) = Mu({A}) = ey = 7
for A € A™. Since v is of unit 1-norm M, is a probability measure, and M, is clearly

unique. [l

For each M, we define a state wy on C*(A) by:
wy(a) :/ P(a) dM,

Theorem 7.4. Assume A is a finite k-graph without sources, 3 € R and r € R¥.
The map 1 — wy s an affine bijection from the B-harmonic vectors for o to the
gauge-invariant B-KMS states for .

Proof. Let 1 be a -harmonic vector for " and let My, be the corresponding Borel
probability measure on A*®. Since the gauge-action fixes C'(A*) it follows that wy,
is a gauge-invariant state. We will now argue that it is a S-KMS state for ", so let
Ay, 0,6 € A with s(\) = s(y) and s(d) = s(e) with d(0) > d(v) and d(e) > d(A).
Using equation (6.2) we have that:

wp(balitst?) = > wyltagtl,) = > e M
(n,v)€AMIn(v,5) (n,v)EAMIN(7,8), An=ev
On the other hand:

ww(tét:a%(t)\t:)) — e BrdN)—d) Z Ww(téntj;-,—)
(k,7)EA™IN (¢ X)

— o= Ar(dN)—=d()) Z efﬁr'd(w)ws(ﬂ
(k,7)EAMIN (e, N), Sk="T

= ) e IO
(k,7)EAMIN (¢ X)), Sk="T
Now we claim that (n,v) — (v,n) is a bijection from {(n,v) € A™"(v,d) | A\p =
ev}t to {(k,7) € A™"(e,\) | 6k = y7}. To see this, notice that by assumption
d(v) vV d(0) = d(6) and d(e) V d(X) = d(e), so d(v) = 0 and:
d(An) =d(ev) = d(e) + d(v) = d(e) = d(e) V d(N)
So (v,m) € A™"(¢, \) and by choice dv = yn, proving that the map is well defined. It

is straightforward to check that it has an inverse given by (k,7) — (7, k) and hence
it is a bijection. This implies that:

wy(tatitst?) = Z e Prdomy o — Z e=BrdOn)

(n,v)eAmIn(y,8), In=ev (k,7)EA™IN(e,X), Sr=T
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This proves that wy, satisfies the 5-KMS condition for such pairs #,t7, ¢5t;. For such
a pair not necessarily satisfying d(6) > d(v) and d(e) > d(\), taking a large n and
using (C'K4) yield:

wpltatitsty) = Y waltatitants,) = D wyllsutl,afs(taty)) = waltstiais(taty))
ves(S)A" vES(F)A™
proving that w,, is a S-KMS state for o”.
S0 ¢ — wy, is well-defined. For injectivity, notice that:

wy(po) = My(Z(v)) = ¢y
by definition of M. To prove that it is surjective, take a gauge-invariant -KMS
state for o, say w. It follows from Lemma 7.2 that setting v, = w(p,) then ¢ is a
B-harmonic vector for o”. It follows from Lemma 3.1 that w = w o P, so w is given
by a Borel probability measure M on A*. Since w is a KMS state we have:

M(Z(N) = w(taty) = e V() = e Ny = My (Z(N))
proving that w, = w, and hence surjectivity. O

7.1. Decomposition of Harmonic vectors. To describe the gauge-invariant KMS
states Theorem 7.4 informs us that it is sufficient to analyse the set of harmonic vec-
tors, which we will do in the following. It turns out, much like in the case for
1-graphs, that the set of harmonic vectors is a finite simplex, and that the extremal
points in this simplex arise from certain components in the graph, see e.g. [aHLRS1]
or [CT] for the 1-graph case (but be aware that [CT] uses a different convention for
traversing paths). The technique used in [aHLRS1| required that the vertex set
was ordered such that the vertex matrix was block upper diagonal, this is however
difficult to do for graphs of rank k£ > 1, since one has to juggle numerous vertex
matrices at once, c.f. Section 3 of [aHKR1]. To overcome this problem we define
a new matrix Ap that incorporates all the vertex matrices as follows: Let F be a

finite sequence {aj, as, ..., a,} of elements in N*\ {0} and set:
L R s
neFr j=1

Our reason for considering F' as a sequence is that we allow for the same vector to
occur multiple times in F. We call such a set F well chosen if for all v,w € A°,
Ap(v,w) > 0 if and only if vAlw # () for some I € N¥\ {0}. Since A"(v,w) = [vA"w|
it follows that there always exist a well chosen set, and if F' is well chosen and
S = {by,...b,} is a finite sequence in N¥\ {0}, then FUS = {ay,...,am,b1,...,b,}
is a well chosen set as well. Similarly to the strongly connected graph case it turns
out that there is a connection between eigenvectors for Ar and eigenvectors for the
vertex matrices A;, i = 1,...,k, c.f. Proposition 3.1 in [aHLRS2]. Given a k-graph
A, a A° x A° matrix B and S, R C A° we will write B®* for the matrix B restricted
to the rows R and columns S, and when we in the following write A?S we specifically
mean (Ap)®9. Set BS := B%%. For vectors z we will denote the restriction to a set
S by zls.

Definition 7.5. Let F' be a well chosen set for a finite k-graph A without sources.
We say that a non-trivial component C' is F-harmonic if either C'\ C' = or:

Pp(AG) > p(AT\)
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We call a component C positive if p(AY) > 0 for all i € {1,2,... k}.

Notice for the following Lemma that if C' is a non-trivial component and F' is well
chosen, then A% is a strictly positive integer matrix, and hence p(A%) > 0.

Lemma 7.6. Let F' be a well chosen set for a finite k-graph A without sources, and
let C' be a F-harmonic component. Then there exists a unique vector =& € [0, co[’
of unit 1-norm that satisfies:

(1) Apag = p(AR)ag

(2) (%), =0 forv ¢ C.
This vector will furthermore satisfy that (%), > 0 for allv € C and that 2%|c = cx
where ¢ > 0 and x is the unimodular Perron-Frobenious eigenvector for A%.
Proof. AS is strictly positive, so there exists a unique vector z €]0, oo[¢ with unit
I-norm such that Afz = p(Af)x. If O\ C # 0 it follows by choice of C' that the
matrix p(Ag)*lAg\C has spectral radius strictly less than 1. So:

— = -1 > = n
(199 = p(a9) 1 AD) = 3 (p(af) AL
n=0

We define a vector ¢ € [0,00[¢ as follows; If C'\ C = 0 we set ¢ = z and if
C\ C # 0 we set:

— — —1 —
_1 4C\C 1 40\C,C
love = (199 = (A TATC) T (AT ATz o =0
By definition of F, Ag\c’c is a matrix with strictly positive entries, so 2§ > 0 for

allv e C. Ifv e C and w € C\ C then vAw = (). So A?E\C = 0, and this implies
that (Agxc) lc = ASx = p(A%)2%|c and:

(452) lone = 4773 (AR AT) (o(AR) AP+ AT
n=0
oy N -1 40\ 0\ C\—1 4C\C.C c \—1 4C\C.C
= p(AD) Y (p(A5) ALY (p(AD) AT + p(AF) (p(AD) AT ) 2
n=0

= P(Ag)ffc\a\c
Expand z¢ to a vector 2% € [0, 00[*” by setting (%), = 0 when v ¢ C' and 2%|5 to

be the normalisation of 2¢. Since A/;O\GE = 0 it then follows that:

Apafy = p(AR)zf

which proves existence.
To prove uniqueness, assume y € [0, 00[* is of unit 1-norm and satisfies (1) and

(2). Then by (2) and since Ag’é\c = 0 we have:
(Ary) o= ARle)  (AZGIR) ) lo = AZGl)

Combined this implies that p(A9)(y|lc) = (Ary)lc = A%(y|c), and hence y|c =
\z%|o for some A € [0, 00[. If C'\ C = 0 it follows that y = x% since they both have

[
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unit 1-norm, so assume C'\ C # 0. Now y — Az% is a vector supported on C'\ C
satisfying:
Ap(y — M%) = p(AR)(y — Az)
but: _
PAD Y = Aef)lene = (Ar(y = 2f) oo = A7 “(y = M)l

since p(AE\C) < p(A%) this implies that y = Az%, and since they both have unit

I-norm we must have that y = z¢. U

Lemma 7.7. Let F' be a well chosen set for a finite k-graph A without sources, and
let C' be a F-harmonic component. The vector x5 from Lemma 7.6 satisfies:

Airy = p(AD)af
fori=1,... k.
Proof. Since AZ{\O\U,U =0 and z%| ane = 0 we have that:

(Azl‘g) ‘AO\@ == 0
Now it follows that:
Ap(AixG) = Ai(Apag) = p(AF)(Airh)

Since A;z% € [0, 00[*" Lemma 7.6 implies that A28 = \z$ for some \; € [0, oo] for
each 7, and hence:

Nirfle = (Aixf) lo = A7 («Flc)
Since 2| is strictly positive we can conclude from Lemma 3.2 in [aHLRS2] that
i = p(AY). By definition of \; this proves the Lemma. O

Combining Lemma 7.7 and Lemma 7.6 it follows that a positive F-harmonic
component C' gives rise to a f-harmonic vector for a”, %, when r is defined by:

- % (In(p(A9)). In(p(AS)). ... In(p(Af))

We will now prove that all S-harmonic vectors for o" can be decomposed as convex
combinations of such vectors. To do this we will need the following technical Lemma.
Notice that it deals with graphs that might have sources, which will prove important
in its utilization.

Lemma 7.8. Let A be a finite k-graph for some k € N, and let B € Myo([0, 00[) be
a matriz satisfying that for all v,w € A° then B(v,w) > 0 if and only if there exists
an € NF\ {0} with vA™w # 0. Then:
c
p(B) = oma p(B”)
Proof. We will prove this by arranging the vertices of A° such that B appears in a
block upper triangular form with the block matrices consisting of the matrices B¢
with C' € A%/ ~. This will prove the assertion in the Lemma, since the determinant
of a block upper triangular matrix is the product of the determinants of the blocks.
To do this we define a directed 1-graph |A| = (V, E,r,s) by setting V = AY
E = A" U---UA®% and letting s and r be the restriction of the source and range
map on A. Let E* denote the finite paths in |A|. Then using the factorisation
property of d it follows that for all v,w € V we have vE*w #  if and only if
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vAw # ). So defining a relation on V by v < w if vE*w # () we get exactly the same
relation on V = A° as defined in Section 6.1. Now we order the vertex set for the
directed graph |A| as it was done in Section 2.3 of [aHLRS1], giving us a numbering
of the vertices V' = {v1,vs,..., vy} satisfying that if v; < v; then either i < j or
v; ~ vj, and that vertices in the same component are grouped together. For this
order on A° it follows that B has the desired form. O

The following proposition and its proof is inspired by Lemma 3.5 in [CT].

Proposition 7.9. Let A be a finite k-graph without sources and let ¢ € |0, oo[A0 be
a B-harmonic vector for o” for somer € R* and 3 € R. Let I be well chosen. Then
there exists a unique collection C of F-harmonic components and positive numbers

tc €]0,1] , C € C, such that:
Y= Ztc%cm

cec
Furthermore each C' € C is positive with C' £ C” for C' € C\ {C}, and each C € C
satisfies:

. ;an(pmg)), o (p(AD))

and that v$ is a B-harmonic vector for o’ .

Proof. We will first prove that such a decomposition exists. Since ¢ is S-harmonic
for a” we know that A;1) = ePmiap for all i = 1,2,..., k. This implies that:

App =AM ="y

ner nel
Let K :=3%, _p€”™™ then K > 0 and we let
B:= K 'Ap € Mpo([0,0)

B is then a non-negative matrix with the property that B, ,, > 0 if and only if there
is a non-trivial path from w to v, and:

Bip =1

Set W := {v € A° | ¢, > 0}. We claim W is closed, i.e. W = W. To see this, let
A € vAw for some w € W and v # w, then B, ,, > 0 and hence:

0 < Bywthw < (BY)y =ty =>veW
For any v, w € W we have B 1, < (B")), < 1y, so setting
L := max{y,/ty, | v,w e W} >0
we get that B’ < L for all n € N and v,w € W. Using the properties of B and W

we get that (B’W)fiw =By, forall v,w e W, so [|(BY)"||p < |[W|- L foralln € N
where ||-||r denotes the Frobenius norm. By Gelfands Formula:

p(B") = lim | (BY)"|#" < 1
n—oo

Since By = v we get that |y = (BY)|lw = BY (¢|w), and hence p(BY) = 1.
Using Lemma 7.8 on the graph Ay, we get:

p(B") = max p(BY)
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where max is taking over the components C in Ay,. Let C' be the collection of
components C' in W with p(B¢) = 1, and let C be the minimal elements of C’ with
respect to the order <. We now claim that C consists of F-harmonic components C'
satisfying p(A%) = K. For C € C we have:

1=p(BY) = p((K7'Ap)°) = p(AR) /K = p(AF) = K
Since K > 0 this also implies that C is non-trivial. Since C' C W we have as before
that p(BY\) < 1 using Gelfand. If p(BC\Y) = 1 there must be some component
D C O\ C with p(BP) = 1, but since this implies that D < C, D # C and D € C’
this cannot be the case. So p(B°\Y) < 1 and hence:

1> p(BA\) = p((K ' 4p)0\0) = p(AS\) /K = p(AS\) < K = p(A)

proving that C'is in fact F-harmonic.
For any D € C we have that B?(¢|p) < (By)|p = ¥|p, so:

AR (W|p) < K¢lp = p(AR)YIp
Since 1| p is strictly positive the subinvariance theorem now imply that A2 (y|p) =
p(AR)Y|p, and hence v|p is a positive eigenvector for AP with eigenvalue p(AR).
However this is also the case for x2|p, so there is a positive number ¢, > 0 such

that 1/)|D = tDl’?’D. Set:
n=1v—> tprp

DecC

Since ApzR = p(AR)2P = Kz we see that Bz? = 22 and hence By = 1. The
vector n € R has 7, = 0 for v ¢ W. By definition D, D’ € C has DN D’ # 0 if
and only if D = D', so we also have that 7, = 0 for v € J :=J,. D. Set H to be
the hereditary closure of J in A, H = J, and consider D € C. If v € (H\ J)N D,
then there is D’ € C such that D’Av # () and vAD # (0, and hence by composing
paths D'AD # (. So D' < D. If D’ = D then v € D C J, so D # D', and since
C consists of minimal elements we reach a contradiction. So (H \ J) N D = () and
hence 1|y = ¢|my > 0. For any w € H \ J we have a v € J such that vAw # 0,
ie. By, # 0, and hence:

0= Ny = (Bn)v - Z Bv,unu = Z Bv,unu Z Bv,wnw Z 0
ueA0 u€H\J

So n|g = 0. Since H contains all components C' in W with p(BY) = 1, we get that
p(BV\H) < 1. However for v € W\ H we have:

(BW\Hn‘W\H)'u - Z Bv,wnw - Z Bv,wnw - Z Bv,wnw =M

weW\H weW weAl

So n|w\# = 0, and hence 7 = 0, proving existence.
To prove uniqueness, assume that D is a collection of F-harmonic components
and that there exists sp > 0 for all D € D such that:

=D spep
DeD
So W =Upep D = Ugee C and hence for any C' € C there is a D € D with C C D.
Assume C # D, then there is another C’ € C such that D C C’, and hence C C C’
with C' # ', contradicting the choice of C. So C C D and for C € C the only D € D
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with DNC # 0 is D = C, and hence we get 1|c = scx%|c. By choice of C we know
C'NC =0 for C" € C\ {C} and hence we also have 1|c = tcx%|c. This implies
that to = s¢ for C' € C, and hence:

Ozw—i/):Zsng—Ztcxg: Z sprh

DeD cec DeD\C
proving the uniqueness. Lemma 7.7 implies that each x% satisfies:
Aixg = P(Azc)ﬂcg
Fixai€ {1,2,...,k}. By choice, A;1) = e’i1p, so multiplying with A;e=#" gives:
V= top(AD)eriafy
cec

we now use the uniqueness result to get that:
pAT)E ™ =1 = p(AT) = ™
for all C' € C. Since i was arbitrary this proves the last statements. Il

Corollary 7.10. To be a positive F-harmonic component is independent of choice

of well chosen F, and the vectors z%. are independent of choice of F.

Proof. Assume that C'is a positive F-harmonic component for some well chosen F,
then there is a vector 2% such that (%), = 0 for v ¢ C and that is 1-harmonic for
o where 1 = (In(p(A)), ..., In(p(AY))). Let F be another well chosen set, then by
Proposition 7.9 there is a collection D of F-harmonic components with:

:rg: g thPQ

DeD

This implies that C' = | J DeD D, so C € D and hence C is a F-harmonic component.

If there were a D' € D with D’ # C, then D' C C'\ C which is impossible by choice
of D. So D = {C} and since z% and z% have unit 1-norm z% = 5. O

Corollary 7.10 justifies that we drop the F' and simply call it a positive harmonic
component, and denote the vectors . When we in the following write r! < r? for
vectors r!, 72 € RF we mean that r} < r? for all 4, but that r! # r2.

Lemma 7.11. C' is a positive harmonic component if and only if it is positive and
(P(AD), p(AD). -, p(AD)) £ (P(AT), p(AT), - .., p(AT)) (7.1)
for all components D C C'\ C.
Proof. We will first argue that for all components D and well chosen F' we have:
k
p(AR) =[] p(AP)™ (7.2)
neF i=1

If D is trivial this is true since both sides equal 0, so assume D is non-trivial. Then
AP is strictly positive and hence has a unimodular Perron-Frobenious eigenvector
z, and since A;Ar = ApA; it follows that AP and AP commute, so APAP> =
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p(AR)APz. Hence APz = \;z with \; > 0 for all i. Lemma 3.2 in [aHLRS2| then
implies that \; = p(AP), and hence:
k k
ni\ D ni\ D
P(A?)Z:AIQZZ(ZHAi) Z:Z(HAi> z
ek i=1 neF =1

So if we can argue that (], A7)” = [[;(AP)™ this proves (7.2). This equality
follows from a straightforward induction argument on [ = ny + ---n and the fact
that if By,..., B, is a set of matrices over A" satisfying that B;(v,w) > 0 implies
vAw # ), then BB, - -- B, has the same property.

Assume that C is a positive harmonic component, then for any well chosen F"

c\C
p(A'C) = max p(AD)
DCC\C
so p(AP) < p(A%) for every component D C C \ C no matter the choice of well
chosen F. Now fix a well chosen F' = {ay,...,a,}. Assume for contradiction that

there is a component D C C'\ C and a j with p(AP) > p(AS), and notice that this
implies that D is non-trivial. Define for s,l € N, F; = {ay + sej, ..., a,, + se;} and:

l
F.=FUlJF,
i=1

Then Fj; is well chosen, and hence using (7.2) we get that:
p(AR) + p(A7 ) p(AR) -1 = p(AR ) < p(AF, ) = p(AZ) + p(AT)*p(AR) -1
for all [, s € N. This implies that:

1+ p(AS)* -1
AD < J C

for all I, s and hence letting [ — oo we get that for all s:

AC)
p(a) < B o(ag)

and hence letting s — oo and using p(AP) > p(AY) we get that p(AP) = 0, in
contradiction to the fact that AL is a strictly positive integer matrix. If there
were a D C C\ C with p(AP) = p(AY) for each i then (7.2) would imply that
p(AR) = p(A%), also a contradiction.

Assume on the other hand that C' is positive and satisfies (7.1), then (7.2) implies
that p(AR) < p(A%) for any D C C \ C and well chosen F. Fix a well chosen
F ={ay,...,ap} and define F, = {a; +e;,...,am + ¢} fori =1,... k and F :=
FUF;U---UF,. By definition of F, any component D C C'\ C satisfies:

P(AZ) = p(AR) + Y p(AP)p(AR) < p(AT) + D p(AD)p(AT) = p(AD)

i=1 i=1
Since this is true for all D C C'\ C' we get that p(Ag\c) < p(A%) and hence C'is a
positive F-harmonic component. O

Fix some r € R¥. For each 8 € R we set C,.() to be the set of positive harmonic
components C satisfying that Sr = (In(p(AY)), ..., In(p(AY))).
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Theorem 7.12. Let A be a finite k-graph without sources and let r € R* and B € R.
There is an affine bijective correspondence between the gauge-invariant 3-KMS states
w for a” and the functions f : C,(B) — [0,1] with 3 cce 5 f(C) = 1. A state w
corresponding to a function f is given by:

w(tpt?) = 5/\’76—[3“1(/\)%(/\)
for all A,y € A, where ¢ € [0,00["" is given by:

v= Y f(C)a
CceCr(B)

Proof. Let w be a gauge-invariant S-KMS state for o” and ¢ be the corresponding
unique S-harmonic vector for " given by Theorem 7.4, then for any A, v € A:

w(taty) = / P(tats) dMy = 65, My(Z (X)) = 6rqe" 77 M)

That it is an affine bijection follows from Proposition 7.9 and the definition of C,.(/3).
O

8. THE NON GAUGE-INVARIANT KMS STATES

We will now use Theorem 7.12 and the symmetries of the KMS-simplex to obtain
a description of all the KMS states. The map ¢ — M, is an affine bijection from
the A-harmonic vectors for o’ to the set of e #"-quasi-invariant measures, where
¢ (x,a,y) = a-r. So the extreme points of the simplex A of e~Per_quasi-invariant
probability measures are the measures Mq := M,c, where C' € C.(f). To use
Theorem 5.2 we first have to analyse the paths in A®. For a subset S C A” we say
that a path x € A>® eventually lies in S if there exists a n € N* such that:

r(c™(xz))eS VYm>n
This concept proves important for describing the measures M¢q, C € C.(f3).
Lemma 8.1. Let A be a finite k-graph without sources. For any component D the
. Np :={z € A* | z eventually lies in D}
is a Borel set in A®. For anyr € R¥, 3 € R and D € C,(3) we have Mp(Np) = 1.
Proof. We first want to argue that:
Ng = {z € A | x eventually lies in C'}

is a closed set for all components C. So let y € A®\ Nz. Then there is a m € NF
such that r(c™(y)) ¢ C, and we set A := y(0,m) € A. We claim that Z(\) N Ng =
(. To see this, assume z € Z(A\) N Ng, then there exists a N > m such that
r(oN(2)) € C, however then z(m, N) is a path with r(z(m, N)) = s(\) = r(c™(y))
and s(z(m, N)) = r((¢V(2)) € C, in contradiction to the fact that r(c™(y)) ¢ C.
To prove that Np is Borel, it suffices to prove that:

Np = Np\ U Nz

components CCD\D

If Np N Nz # 0 for some C C D, we must have C' N D # (), which implies that
D = C. This proves 7 C ”. For a path z in the right hand side, numerate the
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finite collection of components C1,Cy,...,C, C D\ D, and let Ny,..., N, € N*¥ be
numbers such that r(c™i(z)) ¢ C;. It then follows that r(o™(2)) ¢ |J._, C; for all
N > Ny V-V N, Thereisa N > N; V---V N; such that r(c™(z)) € D for all
m > N, so r(6™(z)) € D for all m > N, and hence z € Np.

Let r € R*, B € R and D € C.(3). We will first prove that Mp(Ng) = 1. It is
enough to prove that Mp(Z()\)) =0 for A € A with s(\) ¢ D. By definition:

Mp(Z(\)) = e izl

however z” is supported on D, so Mp(Z(\)) = 0, proving that Mp(Ny) = 1. Now
assume for contradiction that Mp(Ng) # 0 for a C C D\ D. If MD(Ng) = 1 then
Mp(Z(v)) = 0 for v € D, since then Z(v)NNg = (), however Mp(Z(v)) = 22 > 0, so
M D( =) €10, 1]. Notice that clearly Nz is invariant in the sense that r(sil(Ng)) =

s(r= (NC)) Ng, and hence as noted earlier we can decompose Mp as a non-trivial
convex combination of two e~#¢"-quasi-invariant measures, contradicting that Mp, is
extremal. So Mp(Ng) = 0 which proves Mp(Np) = 1. O

Given a component D € C,.(3) consider the graph Ap which is a strongly connected
k-graph. Hence as in [aHLRS2] it has a Periodicity-group Per(Ap) C Z* associated
with it. We denote this subgroup of Z* as Per(D) := Per(Ap), and remind the
reader that:

Per(D) = {m —n | m,n € N*, ¢"(z) = 0™(z) for all z € A%y}
c.f. Proposition 5.2 in [aHLRS2]. We let ® : G — Z* denote the map (z,a,y) — a
We can now obtain the entire description of KMS states.

Theorem 8.2. Let A be a finite k-graph without sources and r € R* and 3 € R.

There is a bijection from the pairs (C, &) consisting of a C € C,.(B) and a § € Per(C)
to the set of extremal B-KMS states for " given by:

(07 f) — W

where:

weelf) = /X oy 2 @EOL) dMelw) f € CUG)

IS

Proof. To use Theorem 5.2 we assume for now that 5 # 0. We will prove that for
a D € C.(B), the unique subgroup of Z* described in (1) in Theorem 5.2 for the
measure Mp is Per(D). Assume that y € Np, then there is a m € N¥ such that
r(ol(y)) € D for all [ > m, and hence 0™ (y) can be considered as an infinite path
in the graph Ap. It follows that for ny — ny € Per(D) we have:

oMM (y) = 0" (0™ (y)) = 0™ (0" (y)) = ™" (y)
hence (y,n1 —n2,y) € GJ/. So:
1= Mp(Np) = Mp({z € A* | {z} x Per(D) x {z} C G7})

and hence the subgroup B from Theorem 5.2 satisfies Per(D) C B. Assume for a
contradiction that Per(D) C B, then for | € B\ Per(D) we have:

Mp({z € Np | (z,l,z) € Gi}) =1
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Since Mp(Z(v)) =22 > 0 for a v € D and since:

{r € vNp | (z,l,z) € G} C U {r € vNp | o"(x) = c™(x)}

n,meNF n—m=l

there must be a ny,ny € NF with Mp({z € vNp | o™ (z) = o™(x)}) > 0 and
ny — ne = . Now consider the measure M defined on the strongly connected graph
Ap as in [aHLRS2], since [ ¢ Per(D) we have by Proposition 8.2 in [aHLRS2] that:

M({e € vAF | 0™ (2) = 0™ (x)}) = 0

Since this set is compact we can choose an arbitrary € > 0 and find a finite number
of paths 0; € Ap, i = 1,...,n such that letting Zp(5;) = {z € Ay | z(0,d(5;)) = d;}
for each ¢ we have ZD(5 ) ﬁ Zp(d;) =0 for i # j and:

{z € vAS | o™ (z) = o™(z)} C UZD(@) , ZM(ZD(a ) <e

The paths 0; € Ap can be considered as paths in A, and hence denoting by Z(4;) =
{z € A>* | z(0,d(5;)) = d;} it is straightforward to check that:

{r € vNp | o™ (z) = 0™ (2)} C UZ((SZ-)

By definition of Mp and zP there is a ¢ €]0,1] such that #”|p = cxr where z is
the unimodular Perron-Frobenious eigenvector for AR. Since A;z? = p(AP)2P

follows that AP (zP|p) = p(AP)(xP|p), so since AP ... AP are the vertex matrices
for Ap, it follows that z is the unimodular Perron-Frobenius eigenvector of Ap, c.f.
Definition 4.4 in [aHLRS2]. So by definition of M in Section 8 of [aHLRS2] we get:

Mp (O Z(@-)) < ZMD Zewrd _ Cze B,
= cz M(Zp(8;)) < ce<e

since € was arbitrary, we reach our contradiction, and hence B = Per(D). In the
case where = 0 we notice that the 5-KMS states for o are the same as the 1-KMS
states for a’, with 0 € R¥, since o is the trivial one-parameter group. However
C,(0) = Cy(1), so we also have a bijection in this case. O

Remark 8.3. In our setting the C*-algebra C*(A) is simple if and only if A is cofinal
and has no local periodicity, c.f. Theorem 3.1 in [RS]. Since A has no sources it has
to contain some positive component C', and since it is cofinal C has to be the only
positive component and it has to satisfy C' = C. Since A has no local periodicity it
follows that Per(C') is trivial. To see that C' is a harmonic component, assume D is
another component and ¢ € {1,2,...,k}. Since C is the only positive component,
there exists a n € N* such that A" = A"C. Setting N := |DA"| and letting [ € N
be arbitrary, it follows for each v, w € D and fixed v € wA™ that the map:

vAws XS (A\y)(n,n+le;) € CAC
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has at most N points in ¢! ({v}) for each v € CAC, so [vA"w| < N|p (vA'w) | <
N|C)? - I(A9) | max- It follows that:

IAPY | < TAYI(A?) e < [AINICT? - [I(AT) 1P

By Gelfand’s formula p(AP) < p(AY), so since D is not positive we conclude that
C' is harmonic, and Theorem 8.2 then implies that there is exactly one S-KMS state
for a” if 7 = 5(In(Af),...,In(A7)) and no B-KMS states for o” any other choices

of 5.
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Abstract

The Toeplitz algebra T C*(A) for a finite k-graph A is equipped with a con-
tinuous one-parameter group o’ for each r € R*, obtained by composing
the map R > ¢ — (e'1,... e"™) € T* with the gauge action on TC*(A).
In this paper we give a complete description of the S-KMS states for the
C*-dynamical system (7 C*(A),a") for all finite k-graphs A and all values of
B €R and r € R*.

1. Introduction

An easy way to construct a C*-dynamical system is by considering the
C*-algebra of a directed graph and a continuous one-parameter group defined
using the gauge action on the graph C*-algebra. Describing the KMS states
for such a system is a difficult but rewarding task - the KMS states usually
remembers thought-provoking information about the C*-dynamical system,
and the insight obtained can frequently be generalised to a much broader class
of C*-dynamical systems. Higher-rank graphs is a natural generalisation of
directed graphs, and since one would expect that they give rise to equally
intriguing C*-dynamical systems, the question of describing their KMS states
has been studied intensely in recent years.

For the Toeplitz algebra of a finite strongly connected k-graph A without
sources and sinks the simplex of KMS states was described in [5] for a spe-
cific dynamics defined using the vertex matrices of A (this dynamics is called
"preferred” in [5]). Since then there has been contributions from a handful
of papers where the objective has been to describe the KMS states for more
general graphs and more general continuous one-parameter groups. The most
recent contribution is [2], where the authors describe an algorithm for deter-
mining the S-KMS simplex on the Toeplitz algebra of a finite k-graph A and
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a continuous one-parameter group defined using a vector r € R* subject to
the conditions:

1. A has no sinks and no sources.

2. >0, r € (0,00)% and r has rationally independent coordinates.

3. There are no trivial strongly connected components and no isolated
subgraphs in A

4. For all components C' in A the graph restricted to C', A¢, is coordinate-
wise irreducible and each vertex matrix for A restricted to a component
C has spectral radius greater than 1.

5. If two components C' and D are connected by an edge of any color in
the skeleton of A, then they are connected by edges of all k colors.

The aim of this paper is to describe the simplex of 5-KMS states on the
Toeplitz algebra TC*(A) for the continuous one-parameter group «” for all
values of 8 € R, r € R* and all finite k-graphs A. Our results reveal that some
of the above restrictions imposed in [2] greatly reduce the size and complexity
of the simplex of S-KMS states, for example they imply that the simplex is
finite-dimensional, while our more general approach gives rise to simplexes
with uncountably many extreme points. Furthermore our description does
not involve any repeated algorithm, and we believe that this makes it much
easier to use in concrete calculations.

To describe the KMS states on 7C*(A) for a finite k-graph A we pro-
ceed as follows: In section 2 we present the theory on higher-rank graphs,
groupoids and C*-dynamical systems that we will need in the paper. Section
3 is devoted to a linear algebraic result concerning vectors that are almost
invariant under a family of commuting matrices. In section 4 we use the
general result from section 3 to describe a bijection between certain vectors
over A and gauge-invariant KMS states on the Toeplitz algebra. We then
proceed in section 5 to describe a decomposition of the gauge-invariant KMS
states, which in section 6 allows us to use the theory developed in [1] to
describe all KMS states. To illustrate our results we use section 7 to present
a few examples and compare our results with the literature.

The techniques and approach in this paper are similar to the ones used in
[1] to describe the KMS states on the Cuntz-Kriger algebras of finite higher-
rank graphs without sources, and especially the analysis in section 6 that
describes the non gauge-invariant KMS states is heavily inspired by ideas
in [1]. The description of the gauge-invariant KMS states uses many ideas
and techniques already described in the literature on the subject (e.g. in [3],
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[4] and [5]). We do however find the new insight obtained regarding gauge-
invariant KMS states both interesting and non-trivial, and we consider this
the main contribution of this paper.

2. Background

Higher-rank graphs and their Toeplitz algebra

Throughout N denotes the natural numbers including zero. For k € N
with k& > 1 we write {ej,...,ex} for the standard generators for N* and
for n,m € N¥ we write n V m for the pointwise maximum of n and m. A
higher-rank graph (A,d) of rank k& € N with k& > 1 is a pair consisting
of a countable small category A and a functor d : A — NF that has the
factorisation property, i.e. if d(\) = n + m for some A € A and n,m € N¥,
then there exists unique p,n € A with d(u) = n, d(n) = m and A = un. We
define A" := d=*({n}) for each n € N¥. The factorisation property guarantees
that we can identify the objects of the category A with A°, and we call them
vertexes. Likewise we think of elements A of A as paths in a graph with
degree d()\), and we use the range and the source maps r,s : A — A° to
make sense of the start s(A) and the end r(\) of our path. Some times we
will write A instead of (A, d) and simply call it a k-graph, in which case it
is implicit that & > 1. Whenever X,Y C A we let XY denote the set of
composed paths, and we use the usual conventions for defining sets of paths,
e.g. vAw = {w}A{w} for v,w € A°. For I C {1,...,k} we set:

Ar={AeA : d\);=0forall je{l,... kI\I}

When I # () A; can then be considered as a |I|-graph by defining a d' : A; —
NIl in the obvious way, but to make the notation more fluid we will let the
degree functor be the restriction of d to Ay, i.e. we identify NI with

N':={neN :nj=0forj¢l}

Keeping in line with this notation, we will identify N* with N’ N7 whenever
we have a partition I U J = {1,...,k}, and write d(x) = (d(z);,d(z),). For
each subset I C {1,...,k} we can define a relation <; on A° by letting
v <; w if vAyw = {w}A{w} # 0, and we can then define an equivalence
relation ~; on A° by defining v ~; w when v <; w and w <; v. We write ~
instead of ~y; 1}, and when there can be no confusion about which relation
~r we refer to we call the equivalence classes components. When a graph
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only has one component in ~ we call it strongly connected. Our k-graph A is
finite when A" is a finite set for each n € N*, and without sources when for
each v € A” and n € N* there is a A € A" with 7(\) = v, i.e vA™ # 0. If A
is a finite k-graph, then A; is a finite |I|-graph for each I C {1,...,k} with
I#0. For I C{1,...,k} and V C A we define the I-closure V' of V and
the hereditary I-closure V1 as:

VI::{wEAO eV, w<o) , Vie{weA’ :JweV, v<;w)

We write V := V""" and ¥ .= V{8 and call it the closure and the
hereditary closure of V. Letting Mg(F) be the set of matrices over the
finite set S with entries in I, the vertex matrices Ay, ..., Ay € Myo(N) for
a finite k-graph A are the matrices with entries A;(v,w) = |[vA%w|. They
commute pairwise, and setting A" := Hle A% for n € N it follows that
A" (v, w) = |[vA"w|.

For a finite k-graph A, a Toeplitz- Cuntz-Krieger A-family consists of par-
tial isometries {S) : A € A} subject to the conditions:

1. {p, := S, :v e A’} are mutually orthogonal projections.
2. When A, pn € A with s(\) = r(u) we have Sy, = S\S,..

3. SYSx = ps(n) for every A € A.

4. py > Dy coan 2S5 for all v € A and n € N*.

5. S3SN = (e myeamin(uy) SuSy for all pi, A € A.

where A™(u, \) = {(k,n) € Ax A : ux = \n, d(uk) = d(u) vV d(\)}.
The Toeplitz algebra TC*(A) of A is then the C*-algebra generated by a
universal Toeplitz-Cuntz-Krieger A-family. It follows from the definition of
TC*(A) that TC*(A) =span{S\S; : A, u € A} and that we have a strongly
continuous action 7 : TF — Aut(7 C*(A)) with:

7.(Sy) = 2N Sy for all z € TF and X € A

where 24 .= [TF_, 2/,

C*-dynamical systems and KMS states
In this paper a C*-dynamical system is a pair (A, «) consisting of a C*-
algebra A and a continuous one-parameter group «, i.e. a strongly continuous

representation of R in Aut(A). An element a € A is analytic for o« when
there is an analytic extension of the map R 5 ¢t — a;(a) € A to the entire
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complex plane C, and we then denote the value of this map at z € C as
a,(a). A B-KMS state for the C*-dynamical system (A, «) is a state w on A
satisfying:
w(zy) = w(yais(z))

for all elements x,y in a norm dense, a-invariant x-algebra of A consisting
of analytic elements for a.

For any r € R¥ we can compose the map R 3 t — e/ := (e"i)h_, € TF
with the gauge action v on 7C*(A) to obtain a continuous one-parameter
group . For all A\, u € A the map:

R >t — af(5)8)) = - g, g

has an analytic extension to C, and hence 5,5, is an analytic element for

(TC*(A),a").

Realising TC*(A) as a groupoid C*-algebra

We follow [3] when introducing the groupoid of the Toeplitz algebra.
We write n < m for elements n,m € (R U {oo})* when n; < m; for all
i€{l,...,k} and n < m when n < m and n # m, and we use the same
notation for the relation restricted to the subsets (NU {oo})* and N*. O =
{(p,q) € N¥ x N* : p < ¢} is the standard example of a k-graph A without
sources, and for n € (NU {oo})* we set (., equal to the subgraph {(p,q) €
Q. : ¢ < n}. For a finite k-graph A and each n € (NU {oo})* we let A"
denote the set of degree preserving functors z : Q4 ,, — A and set d(z) :=n
and r(z) := x(0,0). When n has finite entries this set can be identified with
d=*({n}), so the notation does not collide with the one already introduced.

Let:
A= oA
ne(NU{co})*

and define for each A € A the cylinder set Z(\) := {zx € A* : 2(0,d(\)) = A}.
For each finite set F' C s(A)A set

ZA\F) = Z(A)\ (U Z(Au))

The sets Z(A\ F) then form a basis of compact open sets for a second count-
able locally compact Hausdorff topology on A*, and since A* = (J,cp0 Z(v) it
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follows that A* is compact. Whenever we have a partition 7UJ = {1,...,k}
we write ooy 1= (00)ie; € (NU {oo})! for the element with (co;); = oo for
all i € T and for m € N’ we set:

AT ={x e A @ d(x) = (cor,m)}

which is a Borel set by Proposition 3.2 in [3], and we set 9'A = J,,cys A™0™.
When [ = ) then A*r™ = A™ and 9'A = A. When I = {1,...,k} then
A>® := A>®10 is the infinite path space of A. It follows that we have a Borel
partition of A*, i.e.:
A= | ] oA
IC{1,... .k}

For each n € N¥ the formula 0" (z)(p,q) = 2(p + n,q + n) defines a map o™
on {z € A* :d(x) > n} which we call the shift map. We can then define a
groupoid G, as:

Gr={(x.p—q.y) € A" X Z" x A" : p<d(x), ¢ <dly), o*(x) =0(y)}

with the usual composition and inverse. We equip Gp with a topology such
that it becomes a locally compact second countable Hausdorff étale groupoid,
satisfying that the full groupoid C*-algebra C*(G,) is isomorphic to T C*(A),
that the unitspace gg‘” is isomorphic to A* with the topology generated
by the sets Z(A\ F), and that C(A*) ~ span{S,S; : A € A} under an
isomorphism that maps 1z — S\S for each A € A. Furthermore the
continuous one-parameter group o’ corresponds to the one arising from the
groupoid homomorphism ¢, (x, n,y) = r-n in the groupoid picture of TC*(A),
and the topology on G, makes the map ® : Gy — Z* given by ®(z,n,y) :=n
continuous. Since the definition of the topology on G, is not crucial for our
exposition, we refer the reader to Appendix B in [3] for the details.

When considering the groupoid picture of 7TC*(A) every KMS state w on
T C*(A) gives rise to a Borel probability measure m on A* by using the Riesz
Representatiom Theorem on w restricted to C'(A*). We say that this measure
is the measure associated to w, and by Theorem 1.3 in [7] such measure
are exactly the probability measures that are quasi-invariant with Radon-
Nikodym cocycle e=#¢. Since any such measure restricted to an invariant
Borel subset of A*, i.e. a Borel set B with s(r~!(B)) = B, is again a quasi-
invariant measure with Radon-Nikodym cocycle e=# it follows that the
extremal quasi-invariant probability measure with Radon-Nikodym cocycle
e~ maps invariant sets of A* into {0, 1}.
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3. Decomposition of almost invariant vectors

To decompose our KMS states it is necessary to decompose certain vectors
over the set of vertexes, and since our solution to this problem is purely linear
algebraic and works for very general sets and vectors, we have devoted this
section to present it in its full generality. Regarding notation R, = {r € R :
r >0} and we write [['_, H;z for matrices H; and an expression z to mean
H,---Hpzx.

Definition 3.1. Let S be a finite set and By, ..., B, € Mg(Ry) be pairwise
commuting, i.e. B;B; = B;B; for all i,j. We say a vector 1 € [0,00[% is
almost invariant for the family {B;}_, if:

H(lg —B)y >0 for each subset I C {1,...,k} (3.1)

icl

Proposition 3.2. Let S be a finite set, By,..., By € Mg(R,) be pairwise
commuting and v be an almost invariant vector for the family {B;}r_,. For

each subset I C {1,2,...,k} there exists a vector h! that is almost invariant
for the family {B;}¥_, such that:

1. B;h! = h! foralli € 1.
2. limy oo Bfh! =0 forj € {1,... k}\ 1.
3. Y= Zlg{l,...,k} ht

Furthermore this decomposition is unique in the sense that there is only one
family of almost invariant vectors satisfying 1-3.

Proof. Fixai € {1,...,k} and let ¢ be some almost invariant vector. Using
(3.1) with I = {i} we get B;yp <. It follows from the Riesz decomposition
of vectors (see e.g. Theorem 5.6 [8]) that we can write ¢ = 1)y + 1), where:

Yri= lim B, dyi=) B — Bi)
n=0

Clearly By, =4y and lim,,_,o Bl*1p2 = 0. To see that 1; and 1), are almost
invariant let J C {1,2,...,k} be arbitrary. Since:

[1(s = B) Biv] = B [[(1s = Bj)w > 0

jeJ jeJ
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for each n € N it follows that 4; is almost invariant. If i ¢ J, then:

[10s - B Zﬂwzw Zﬁ"leﬂw

jeJ jeJU{i}

Every vector in the sum is non-negative by assumption, so this is a non-
negative vector. If ¢ € J then:

[10s -5 ZW¢BM (Is—B Zmﬂu—>w
jedJ jed

=[[s—B)v =0

jeJ

Hence 9, and 1), are almost invariant. If Bjiy = 1 for some j then clearly
By = for 1 =1,2. If lim,, By =0 the same would be true for ¢, for
[ =1,2since 0 < B¢y < B}y for each n. Hence repeated decomposition
gives us the existence of the family h!, I C {1,... k}.

To prove that the decomposition is unique, assume that the functions ill
I C{1,...,k} are almost invariant for the family {B;}* | and satisfies 1-3.
It then follows that the expression:

lim By lim By*--- lim B*¢
n1—o0 N —>00 N —>00

is equal to both At-*} and h{L--k} - Assume now that A! = h! for all subsets
IC{1,... k}with |I| > nforsomel <n <k, andtakeaset J C {1,... k}
with [J| =n — 1. We write J = {ji,...,jn—1}. Taking the limits:

lim B lim Bj?--- lim B ‘4

mi—00 mag—00 My —1—>00 Jn—1

IS

IDJ DJ

we get from 1 and 2 that:

By assumption k! = h! for all I # J in this sum, so we must have that
h’ = h’. It now follows from induction that the family A’ is unique. O
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4. A description of the gauge-invariant KMS states

The first step in our analysis of the KMS states on the Toeplitz algebra
of a finite k-graph A is to describe the ones that are gauge-invariant. In this
section we will reduce the problem of finding gauge-invariant KMS states to
the much simpler problem of finding certain invariant vectors over A°. We
remind the reader that for a finite set S the I-norm for a vector ¢ € R is

given by [[l[1 = 32 cslsl.

Lemma 4.1. Let A be a finite k-graph and let v € R¥ and 3 € R. Let w be a
B-KMS state for o and set 1, := w(p,) for each v € A°. Then 1 € [0, oo’
is an almost invariant vector for the family {e """ A;}¥_, of unit 1-norm.

Proof. When 3 > 0, r €]0,00[F and A has no sources this statement is part
(a) of Proposition 4.1 in [4]. When interpreting empty sums a 0 the proof
given there works for general 3 € R, r € R* and finite k-graphs, so we will
not give it here. O

Lemma 4.1 gives us an affine map from the set of gauge-invariant S-KMS
states for a” on TC*(A) to the set of non-negative almost invariant vectors
for the family {e #"A;}¥_, of unit 1-norm. Proposition 4.3 below implies
that it is a bijection. To prove this we need the following description of
A when we have a partition I U J = {1,...,k} with I # (. Set:

A(T) :={v e A° : wA™O) £ § for all n € N'}

i.e. A°(I) are the vertexes that are not sources in A;. For (n,m) € N ¢ N/
we set:

U™ = (X e A 2 g(A0,1)) € A°(I) for each 0 <1 < (n,m)}
Giving U™ the discrete topology we can for each n,l € N/ with n < I
define a continuous map 7, : L{I(l’m) — Z/{I("’m) by m.,(A) = A0, (n,m)).

Lemma 4.2. Assume I # 0. Then A°(I) is closed in A, 7, is surjective
and lim,_,, ey M}"’m) is homeomorphic to A>T™,

Proof. To see that A°(I) is closed, let A € vAw with w € A°([) and let
n € NI For p € wA™® then A\ € vA™D+4N) and hence by the unique
factorisation property there are paths N € vA™% and i/ € A?™ such that
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A= Np', so vA™O = (. Tt follows that A°(I) is closed. When p €
U™ then s(u) € A°(I), so for cach s € N we can choose A, € s(u)A with
d(As) =1 —n+ Y, se. Since A" is finite, there is a A € s(u)A'™" with
As(0,1—n) = X for infinitely many s, and it follows that u\ € Z/ll(l’m)7 proving
that 7, is surjective.

Denote by 7, the map AG™ — A(™ given by 7, (\) = A0, (n,m)),
so m is a restriction of 7. The map:

lim A®™ 5 (A ewr = {ntnens € lim 4™ (4.1)
«—neN!

+—neN!

is well defined, because for each n,n’ € N! the element )\, € A™™ satisfies
that A\, € AT can be decomposed A = Appt With g € (A, ) A0
so since n’ was arbitrary s(),,) € A°(J). Standard arguments imply that (4.1)
is a continuous bijection, and so since lim, ey A™™ is compact it is also a
homeomorphism. Since Proposition 3.2 in [3] implies that lim, ,cyr A™™ is
homeomorphic to A®7™ this proves the Lemma. O

The construction of the KMS state in the proof of Proposition 4.3 has a
predecessor in Theorem 5.1 in [3].

Proposition 4.3. Let A be a finite k-graph, r € R¥, 3 € R and let ¢ €
[0, 00[” be an almost invariant vector for the family {e=%7 A;}5_| of unit 1-
norm. Then there exists a unique gauge-invariant B-KMS state wy for o” on
TC*(A) such that wy(p,) = ¥, for each v € A°.

Proof. Assume w and w’ are gauge-invariant 8-KMS states for o with w(p,) =
w'(py) for all v € A°. Lemma 3.1 in [1] implies that both w and w’ is then
determined by their values on the elements S,S%, A € A. Since:

W(SxS3) = e MV w(py) = eIV (py()) = W'(S1S7)

we must have w = w’, which proves that if the state w, exists it is unique.
Proposition 3.2 implies that it is enough to prove that w, exists when there
is a partition I U J = {1,2,...,k} with e A = ¢ for i € I and
lim,, o (e P71 A;)™p = 0 for j € J, so we assume this is the case. We now
define a vector ¢ by:

(b = H(lAO — €_BrjAj)¢

jeJ
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When J = () we interpret this as ¢ := ¢. Notice ¢ € [0,00[*" since ¢ is
almost invariant, it is however not clear yet that ¢ # 0. We will now define
measures ™ on A®5™ for each m € N7 using ¢. When I = ), we define v™
on A®1™ = A™ by v"™({A}) = e "™@yn). When I # () give the finite set
U}"’m) the discrete topology for each (n,m) € N/ @ N’ and define a measure
™™ on L{I("’m) by:

vU({AY) = e‘ﬂr'("’m)%(/\) for A € u}(n,m) (4.2)

Since the vertex matrices commute it follows from the definition of ¢ that
e PriA;p = ¢fori € I. Forv e A°\A(I) thereis an € N! with A0 (v, u) =
0 for all u, and hence ¢, = e P10 (A0 g) = 0. Since A°(I) is closed by
Lemma 4.2 we get for any \ € Z/(I("’m):

A = S et g, = ST e trmg,

pem r({A}) nes(U0
oD ST S S
weAO nEs(/\)u}“"’O’w weA nes(A)AU=n.0)qy

= ¢ mATTIg) ) = e ) = v ({AY)

A standard argument (using e.g. Lemma 5.2 in [3]) gives the existence of a

measure v on lim,_,cnr L{}"’m). We consider v™ as a Borel measure on A*
with (A°™) = v™(A*) and by construction it satisfies:

YZ) QAT = (AL = eI, (43)

for each A € U™ If A € A®™\ /™™ then (4.3) still holds true since both
sides are 0. The measure ™ constructed when I = () also satisfies (4.3). We
will now construct a measure v on 9’A by summing all of the measures v™,
m € N/, When J = () we have only constructed a measure v on A®"Y so
we set v = 1Y and notice that by (4.3) v(Z(v)) = 1, for each v € A°. When
J # () we can use (4.3) for any p € A with [ :=d(u); < m to see that:

SZG) = (2 A Ay = S M) AT (44)
Aes(pu)AOm=1)

=Y g = (40,
A€s(u)ACm=D
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In particular, we have that v™(Z(v)) = e #mOm)(AO™ @) for all v € AP,
Taking a M € N/ we see that:

M;
Z efﬁr(Oﬂn)A(O,m Z H ﬁwA T = H Z (efﬂrjAj)mf o
0<m<M 0<m<M jeJ j€J m;=0
- H Z AT (e — e Ay) | v = [Hmo — (e A)M |y
_]EJ m;= jeJ
= Z \LI H @’TJA M +1] ¥
LLCJ jeEL

By choice of J we have that [T, (771 A;)Mi*1y) — 0 for M; — oo for any
7 € L, so when we consider the limit all terms in the sum except for the one
where L = () vanishes, so:

Z e*BT'(Ovm)A(O’m)QB — w

meNJ

This implies ¢ # 0 and it implies that we can define a Borel probability
measure v on A* by v = ZmeNJ ™ that as in the case where J = () satisfies
v(Z(v)) = 1, for each v € A°. Since v is a Borel probability measure on
the second countable locally compact Hausdorff space A* it is also a regular
measure. We define a state wy by:

wy(a) = / P(a)dv ~ VYa e TC*(A)
where P : TC*(A) — C(A*) is the canonical conditional expectation. Since

P(S\S;) = 0 when p # A it follows that wy is gauge-invariant. For any path
A € A™D for some n € N and | € N’ we have by (4.4) when J # {):

v(ZOW) = D vm(Z(N) =Y v(Z() =Y e rmmAmhg) (o)
meNJ m>1 m>l
= Z e M) (AOm) gy ) = PN Z e PrOm(AOm gy
meN/ meNJ

= e By (Z(5(0)))
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When J = () we also have v(Z()\)) = e #¥MNy(Z(s()))), so in both cases
this implies that:

we(S355) = B Z(N)) = B e IV U(Z(5(N)) = By e Vi)

It now follows, for example as in the proof of part (b) of Proposition 3.1 in
[4], that wy, is a B-KMS state for a’. O

The proof of Proposition 4.3 yields the following corollary.

Corollary 4.4. In the setting of Proposition 4.3 assume that there exist
sets I,J such that TUJ = {1,2,...,k} and e P App = ¢ fori € I and
limnqm(e’ﬁrjAj)”w =0 for j € J. Then the measure my on A* associated
to wy satisfies my(OTA) = 1.

5. Decomposition of gauge-invariant KMS states

In this section we will analyse the gauge-invariant KMS states by analysing
the almost invariant vectors. The first step in this analysis is to construct
almost invariant vectors using components in different equivalences ~ in the
k-graph. The next step is to prove that all invariant vectors can be realised
as convex combinations of the invariant vectors constructed.

First let us introduce some notation. For a set S C A and B € Myo(R)
we let BS € Mg(R) denote the restriction of B to S x S and for any matrix
B we write p(B) for its spectral radius. Whenever we have a k-graph A with
vertex matrices Ay, ..., Ay and some S C A° we set:

p(AS) i= (p(AS), p(AS), ... p(AL)) € R

Definition 5.1. Let A be a finite k-graph, r € R*, € R and let I C
{1,...,k}. A component C in A; (i.e. an equivalence class for ~y) is called
a (I, B,r)-subharmonic component, if it satisfies:

1. All equivalence classes D in ~y with D # C and D C o satisfies:
p(AP)1 £ p(A9);

2. p(AY) = ePri foriel.
3. p(A?) <éiforjeJ:={1,....k}\ I



Paper D. KMS states on the Toeplitz algebras of higher-rank graphs 163

When I = () then A; = A° and the different equivalence classes are just
the sets {v}, v € A% so condition 3 is the only one that is not trivially
fulfilled. We will need some results from [1] regarding the construction of
vectors over A which we will summarise in the following Lemma 5.2.

Lemma 5.2. Let A be a finite k-graph and let r € R and 3 € R. For
each ({1,...,k}, B,r)-subharmonic component C' there exists a unique vector
2C € [0,00[" of unit 1-norm satisfying 1. and 2.:

1. 28 =0 forvgC.
2. Aiz¢ =ePrizC forallie {1,... k}.

Furthermore 26 > 0 for v € C. For any x € [0,00["" of unit 1-norm with
Ajx = ePrig foralli € {1,...,k} there is a unique collection of ({1,...,k},3,7)-
subharmonic components C in A and numbers tc > 0, C' € C, such that:

T = Ztczc

cecC

Proof. Since the construction of the vectors in [1] is for graphs with no
sources, we will start by proving the Lemma when A is without sources.
Let C be a ({1,...,k}, 8,r)-subharmonic component in A, then C' satisfies
the criterion in Lemma 7.11 in [1]. Choosing a finite set F' C N*\ {0} with
the property that for all v,w € A® then }° . A"(v,w) > 0 if and only if
vA'w # () for some [ € N¥\ {0} (such a set is called well chosen in [1]), Corol-
lary 7.10 implies that C' in the terminology of [1] is F-harmonic. By Lemma
7.6 in [1] a F-harmonic component gives rise to a unique vector x¢ € [0, oo[*’
of unit 1-norm, and by Lemma 7.6 and Lemma 7.7 x¢ satisfies 1 and 2 and
x¢ > 0 for v € C, proving existence of z€. If 2’ € [0, co[" is a vector of unit
I-norm satisfying 1 and 2, then by Proposition 7.9 in [1] there is a unique
collection of F-harmonic components C such that 2’ is a convex combination
of the vectors x”, D € C, and furthermore p(A”) = €’ for each D € C.
Combining 1 and the fact that y? is positive on D, we get that each D € C
satisfies D C C, but then condition 1 and 2 in Definition 5.1 combined with
p(AP) = " imply that C = {C}, so 2/ = x“, proving uniqueness. For the
unique decomposition of z, notice that by Lemma 7.11 in [1] a component
Cis ({1,...,k}, 8,r)-subharmonic if and only if p(A®) = €7 and C is F-
harmonic. The statement therefore follows from Proposition 7.9 in [1] and

the construction of the vectors z€.
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Assume now that A is a general finite k-graph, and let C'bea ({1,...,k}, 8,7)-
subharmonic component in A. Then AY # 0 for all 4, so taking a v € C and a
ie{l,...,k} thereis a p € vAC with d(p); > 0. The factorisation property
then implies that vA“C # (). Since this is true for all v € C, it follows that
C C A0 := A°({1,....k}), and hence by Lemma 4.2 it follows that C' C AJ.
Since A° is closed we can consider the finite k- graph A= AA0 which has

vertex matrices A{\ ,...,AQO. To see that A has no sources take v € AO,
m € N¥ and \; € vAlertHeetm for each [ € N. Since \;(0,m) € vA™ for each
I €N, there is a A € vA™ with A (0, m) = A for infinitely many I, which im-

plies that s(\) € A and hence vA™ # (). Since components in A are exactly
components in A contained in AO, Cisa ({1,...,k},B,r)-subharmonic com-
ponent in A, so there exists a unique vector ¢ € [0, oo[AO of unit 1-norm with
¢ =0 when v € AO \ C and A;\Béc = efrizC for all i. Furthermore Z§ > 0
for v € C. It is now straightforward to check that defining z€ € [0, oo[*" by
2% = 2 and 2§ = 0 for v ¢ AV gives the desired vector.

Assume 2’ € [0, 00[" satisfies 1 and 2 and is of unit 1-norm, then 2’| 10 €
[0, co[* A% also has unit 1-norm. By 1 (#/|55)0 = 0 for v € A%\ C and:

AAO /|A0 = (A izl)|Ao = €B”ZI|X5 for all ¢

It follows that z’ ~ = 3¢, which proves uniqueness.

For the last statement let z € [0, 00[” of unit 1-norm satisfy Az = iz
for all 4. If vA™ = () for some n € N then z,, = e #"(A"z), = 0, so 7, = 0

for v ¢ A and hence AA x| = erix| 5 for all i. Using the Lemma on x\AO
we get a unique collection C of ({1,...,k}, 3, 7)-subharmonic component in
A with corresponding unique vectors %C, C € C, and numbers to > 0, C € C,

such that:
2l = D te?”
cec

Since C' is an ({1,...,k}, 3,r)-subharmonic component in A if and only if
it is a ({1,...,k}, B, r)-subharmonic component in A, it follows from the
definition of 2 that we have a unique decomposition:

T = g tczc
cec

which proves the Lemma. 0
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Lemma 5.3. Let A be a finite k-graph, r € R¥, 3 € R, I C {1,...,k}
and C be a (I,(,r)-subharmonic component. There exists a unique vector
¢ €0, OO[AO of unit 1-norm satisfying 1. and 2.:

1. a:g:Oforvgéél.
2. Ajx© = ePrizC for alli € 1.

Furthermore 2§ > 0 for v € .

Proof. If I = () then C = {v} for some v € A° and 2€ is the vector with
29 =0 for w # v and 2§ = 1. If I # () consider the finite graph A; with
vertex matrices (4;)ics. Setting r; = (r;)ic; € R, it follows from Definition
5.1 that C'is a ({i}ier, B, 71)-subharmonic component in the I-graph A;, and
hence we get the unique vector from Lemma 5.2. |

Proposition 5.4. Let A be a finite k-graph, r € R*, 3 € R, IUJ = {1,...,k}
be a partition and C be a (I, [3,r)-subharmonic component. Denote by x¢ €
[0, oo[AO the unique vector given in Lemma 5.3 using C. Set:

e = [Je—e 7 AT) 2 (5.1)
jeJ

C

and | o.z = 0. Then T is almost invariant for the family {e”"" A},

Proof. 1f J = () then ¢ = 2 which is clearly invariant for {e=#7A;}f ||
assume J # ). Notice first that condition 3 in Definition 5.1 implies that
(g — e i AY) ™! exists for each j € J, so (5.1) makes sense. To express £
differently, assume that Jy C J is an arbitrary non-empty subset, then for
any N € N’ we have that:

Z H e—ﬁr]n] AC n; __ H Z e —pBrjn; AC

0<n<N j€eJdo j€Jo \n;=0

Hence as N — oo in N’ we get that:

H(lﬁ_e BT‘]AC Z H e —Brin; AC n; (52)

j€Jo neNJo jE€Jo

Let L C {1,...,k}, to prove that ¢ is almost invariant we then want to
verify (3.1) for the set L and the family {e=#7iA;}* = Since 2 € [0, co[*
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it follows from (5.2) with J = J, that Z¢ € [0,00["’, proving (3.1) when
L = 0. Assume then that L # 0. If y € [0, 00["" is a vector with Y= 0
and B € Myo(R) has the property that B(v,w) > 0 implies v < w, then it
follows that: -

(Bylang=0 » (By)lo= B (o) (53)

This implies that (A”i"c)|Ao\5 =0 for all n € N*, and hence for v € A°\ C
we get:

lII(LW“eﬂ”Aﬂfc ::l}j(—&)W|IIe&R%jC =i >0
leL v SCL les .
Using the second equality in (5.3) we obtain:
lIIqu—e&%AQfC ::lE:(—lﬂﬂIIe&R&jC
leL C SCL les c
=Y (=) e " Af ()
SCL les
= [0 - e AD) ) (54)
leL

It now follows from (5.1) that if there is a i € L N I, then since APzl =
(A;z%)|g = e’riz®|s we get that (15 — e P71 AY)2% 5 = 0, and hence the
expression in (5.4) is zero. If LN T = () then L C J, and:

[0 —e7A0) @) = [] (g —e "7 A7) "2

leL JEINL

It follows from (5.2) with Jy = J \ L that this is a non-negative vector, and
combined with (5.4) this implies that #¢ is almost invariant. O

Definition 5.5. When C' is a (I, 3,7)-subharmonic component we set y© :=
/7)1

The notation in Definition 5.5 is not well defined since a set C C A°
can both be a (I, 3, r)-subharmonic component and a (I’, 8, 7’)-subharmonic
component with (I, 3,r) # (I', 8',r"). If however C is (I, §, r)-subharmonic

and i € I then A;(v,w) =0 for v € C and w € C', so we get that p(A%) >
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p(AZ-6 ), and since A;(v,w) = 0 forv € C'and w € " we furthermore get that

(AC ) > p(AY), so by Definition 5.1 C' can not be (I’, 3, r)-subharmonic for
an I’ # I. Since we will formulate our results for some fixed values of r and
3, we therefore abuse notation and simply write y©.

Proposition 5.4 implies that a (I, 5, 7)-subharmonic component gives rise
to a gauge-invariant S-KMS state w for o”. To prove that all gauge-invariant
states are given by convex combinations of states arising from such compo-
nents, it becomes essential that we can rediscover the vector ¢ from w. To
do this we need the following technical result.

Lemma 5.6. Let A be a finite k-graph and let w be a S-KMS state for o
for some r € R* and B € R. Let m be the measure on A* associated to w
and I'UJ CA{1,...,k} be some partition. For each A\ € A the set:

)\AOOIO {x c A* - )\I/ fO’l" some I/ c AOOLO}

1s Borel and:
m(}\Aooz,O) —e —Br-d(\) ( ()\)AOOI’ )

Proof. To see that AA> is Borel set p := 17 € N if I # () and set p = 0 if
I =10, then:

M=t = | (zomN U U 20

neN pes(A)AnP J€J e€s(A)A%I

Since we take the union over decreasing sets we get that:

m(/\A"OI’O):nli_{gO Z m U U Z(e)

pnes(A)AnP JE€J ees(N)A%I
=lm > m | Z0w\ (U U Z0we) (5.5)
pes(A)AnP JEJ ees(p)AI

Set e, = > o, €@ for any L € J and 1, = w(p,) for v € A%, We claim that
for any path n € A:

U U Z@e) | | =Y (-y)Hlebramesre ey,

JE€J e€s(n)A®I LcJ
(5.6)
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The Lemma follows from (5.6), because using it twice on (5.5) yields:

m(AA®10) 0y — hm Z Z |L\€—5T'd(>\#)e—5r-eL (AeLQ/})S(“)

ues (MNAmP LCJ

=T Y (1) e e (At

n—oo
pes(AN)Anr LCJ

,Brd(/\ ( (/\)AOOI 0)
To prove (5.6) set M(e;) := U,cy(pacs Z(ne). We use that Z(ne) C Z(n) for
each e € s(n)A% and j € J to get the equality:
L\ (Uyes Mien) = L1z = Taiep) = 20 [Ty (67)
jeJ LcJ jeL

Since []c; Imee;) = 1n,., Mie;) We get (5.6) by combining (5.7) with:

m(ﬂ/\/{(ej)>m U Z(ne) | = Z m(Z(ne))

e€s(n)A°L e€s(n)A°L
= 6—6r~(d(71)+eL)(A6L¢)s(n)
O
Lemma 5.7. Let A be a finite k-graph, r € R¥ and 8 € R. Let I C {1,...,k}

and C be a (I, ,r)-subharmonic component. Let w be the KMS state asso-
ciated to the vector y©, and let me be the measure associated to w, then:

29 = 2% yme(vA>r0) Vo e A°

Proof. Since ma(9'A) = 1 by Corollary 4.4, the formula (5.6) implies:

metos) = me (2001 (U U 20) ) = T
J€J ecvA®i LcJ

for each v € A°. When v ¢ C then (A°*y), = 0 for each L, and hence

me(vA®10) = 0. When v € C then (A%y%), = ((A°)**y“|5), and hence:

mc(vAooI’o) = Z(_l)‘Lle_ﬂr'eL((A )ELyC|6)v

LCJ

= [lz°])7" lH(lc—eﬁ”Af)iﬁclc] = 1217 "=¥
jeJ "

Since ¢ = 0 for v ¢ C this proves the Lemma. OJ
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By Proposition 3.2 we already have a decomposition of a general almost
invariant vector, so we can focus on decomposing the vectors appearing in
Proposition 3.2.

Proposition 5.8. Let A be a finite k-graph, r € RF and B € R. Let ¢ €
[0, 00[2" be an almost invariant vector for the family {e~?" A}, and assume
that there is a partition I U.J = {1,...,k} such that e i App =) fori €I
and 1imnﬁm(e’5”Aj)”1/) =0 for j € J. There exists a unique collection of
(I, B,r)-subharmonic components C and numbers tc > 0, C' € C, such that:

=ty

ceC

Proof. Let wy be the gauge-invariant S5-KMS state for a” given by 1, and let
my be the associated measure on A*. Define a vector ' € [0, 0o[*” by:

Yl =my (VA forv e A

If I = () then we can uniquely write 1’ as in (5.8) below where each z€ is
the indicator function for the v with C' = {v}. When I # ) it follows from
Lemma 5.6 that for each i € I and v € A%

Uy = my < U MA°°”0> = ey Ai(v, w)m(wA™0) = e (Ag),
HEVAC weA?

So A" = ePrig)’ for each i € I, and if ¢’ # 0 considering the graph A; and

the action given by r; = (r;);cr, Lemma 5.2 gives us a unique collection C of

({t}ier, B, rr)-subharmonic components in Ay and numbers t, > 0 for C € C

such that:
W=t (5.8)
cec
If ' =0, we set C = () and (5.8) holds true.
We now want to prove that e’ > p(AJé) for all j € J and C' € C, since
that would imply that each C' € C was (I, 3, r)-subharmonic and that each
vector z¢ from (5.8) was equal to #¢ from Lemma 5.3. When J = {) this is

trivial, so assume this is not the case. Since my(9'A) = 1, we get for any
v € A" that:

by = my(Z(v)) = my ( U vA“”") = D my (VA"

neN/ neN/
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Looking at just one of the terms in the sum and using Lemma 5.6 we get:

my (A = Y my [ A0 = Y my (uA>r?)

weAO n€VA0m) weA? pevA 0y

= Z e O 4O (4 )yt = =P Om) (AO0m)yy)

wEAO

v

Let v € C and w € T fora C € C, then ¢, > 0, and by the above

calculations:
Po= 33T e rOm 400wy

neN’ ueA?
This implies that Y, s e # O™ AOM (y ) < oo for such w and v. Now let

u € C, then there exists a m € N/ and w € O such that AOM) () > 0.
For each n € N’ and v € C we have:

efﬂr-(o,n)A(O,n) ('U, u)A(O,m) (’LL, U)) < eBr-(O,m) (efﬂr-(07n+m)A(07n+m) (U, w))

So 3 ens € P OMACN (4 ) < oo for all v,u € C, and hence the sum
S o€ AS) converges for each j € J, proving p(AS) < e

We now know that each C' € C is a (I, 8, r)-subharmonic component, so
the vectors ¢ exist for each such C. For any v € A%

1/)11 _ Z efﬂr.(o,n) (A(O’n)’l//)v — Ztlc Z efﬁr.(O,n) (A(O,n)xC)v

neNJ CeC  neNJ
/ —pr; 4T\ 7\ .C I ~C c
= E te E H (8 ]Aj) el = E tol, = E tay,
CceCpel neN’ jeJ L, CecC cec

where to = t;]|Z%||; > 0. We have now proved that the decomposition exists.

To prove the uniqueness statement assume that D is a collection of
(I, 8, r)-subharmonic components and that there exists sp > 0 for each
D € D such that:
V= Z spy”
DeD

Let mp be the measure on A* associated to y” for each D € D, since m,, =
> pep spmp it follows by Lemma 5.7 that considering these measures on
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A1 give:
O = splE| e
DeD
When I # () then D can be considered a collection of ({i};er, 3, 71)-subharmonic
components in A; and z” are then by construction the unique vectors from
Lemma 5.2. For all I uniqueness of the decomposition in (5.8) of ¢/ then
gives D = C and s¢||Z°||;! = t},, and hence tc = s¢, for each C € C. O

Combining Proposition 5.8, Proposition 4.3 and Proposition 3.2 we get
the following

Theorem 5.9. Let A be a finite k-graph, r € R¥ and 3 € R. For I C
{1,...,k} let CL(B) be the (I, 3,r)-subharmonic components and set:

)= | c®
}

IC{1,..k

There is an affine bijective correspondence between functions f : C.(8) —
[0, 1] with ZCecr(ﬁ) f(C) =1 and the gauge-invariant -KMS states for o' .
A KMS state w corresponding to a function f is given by:

w(SxSy) = e by

where:

v=> (O

CceCr(B)

Remark 5.10. Notice that the face of the simplex of gauge-invariant KMS
states given by components in C/(3) corresponds to the face in the simplex
of almost invariant vectors of unit 1-norm satisfying A,z = e®"iz for i € I and
(e7PiAj)le — 0 for | — oo for j ¢ I, which again corresponds to the face
in the simplex of quasi-invariant Borel probability measures m with Radon
Nikodym derivative e=#¢ satisfying m(9'A) = 1.

Remark 5.11. Theorem 5.9 is already an improvement of the results obtained
in [2]. To see this, notice that if r and § satisfies condition 2 mentioned in
the introduction and w is a S-KMS state for ", then for any A\, u € A and
t € R we get:

w(S\S2) = w(af (S\Sh)) = e @V =dum (5, 8x)
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If w(S)S};) # 0 then this is only possible if - (d(A) — d(p)) = 0, implying
that d(A) = d(p). So S\Sy and S,.S;, are mutually orthogonal when \ # 1,
and since w(S\S%) = 7Ny (S2S,), we get that w(S)S;) = 0 when A # 4.
This implies that w is gauge-invariant, so Theorem 5.9 gives a complete
description of the S-KMS states for finite k-graphs satisfying condition 2
from the introduction.

6. Including the non gauge-invariant KMS states

We are now interested in determining the KMS states that are not gauge-
invariant. To do this we will use the ideas developed in [1]. Theorem 5.9
gives us a complete description of the gauge-invariant KMS states, but by
Lemma 3.1 in [1] this is exactly the KMS states w satisfying w o P = w. So
in the terminology of [7] we can consider Theorem 5.9 as a description of
the quasi-invariant Borel probability measures with Radon-Nikodym cocycle
e~Per where ¢, is the 1-cocycle ¢,(z,n,y) := r-n. Hence we can use Theorem
5.2 in [1] to obtain a description of all KMS states. We follow the outline
and ideas in [1] to do this, and start by analysing the relationship between
the paths in A* and the measures associated to extremal KMS states.

Definition 6.1. We say that a path © € A* eventually lies in S for some set
S C A%, if there exists n n € N*¥ with n < d(x) such that r(c™(z)) € S for
all m € N¥ with n < m < d(x).

Lemma 6.2. Let A be a finite k-graph, r € R¥, 3 € R and let I C
{1,2,--- ,k}. If D is an equivalence class in the relation ~y, then the set:

N}, ={x € 0'A : z eventually lies in D}

is a Borel set. If D is a (I, 8,r)-subharmonic component, then the measure
mp associated to the corresponding 3-KMS state for " satisfies mp(NE) =
1.

Proof. 1f I = () then 0'A = A, D = {v} for some vertex v € A° and the set
NI is the countable set of paths A € A with s(\) = v, hence in particular it
is a Borel set. Assume that I # (), and set:

J\%I = {z € 9'"A : x eventually lies in EI} (6.1)
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Take z € O'A with z ¢ Né,. In particular there is am € N¥ with (0,d(x);) <

m < d(z) such that r(c™(x)) ¢ D' Setting A = z(0,m) € A™ and letting
E :={eec s(A)A : d(e) = e; for some j ¢ I}, we see that:

Z(\)\ (U Z(Ae)ﬂ NNL =0

eclE

however z is contained in the set we intersect with ]\%I, S0 [A* \ ]\%I] NoTA

is an open set in @A, which implies that ]\%I is a Borel set. Letting M be

the set of equivalence classes in ~; contained in D' \ D, then:

Nj = NL\ ( U Né1>

CemM

and hence N, is Borel. The sets N, where D is an equivalence set in ~j, is a
disjoint Borel partition of 9'A, also when I = (). It follows from Theorem 5.9
that mp is extremal in the set of quasi-invariant Borel probability measures
with Radon-Nikodym cocycle e ?¢r, and hence mp maps invariant Borel
sets to {0,1}. Since mp(8'A) = 1 there must therefore exist exactly one
equivalence class C' in ~; such that mp(N.) = 1. We know from Lemma
5.7 that mp(vA®>°1%) > 0 if and only if v € D'. However this must imply
that for each v € D' we have mp(vA®1 N N{&) > 0, which implies that
v e 61, so that in particular D C [ Considering a v € D, it follows since
mp(vA®1? N NL) > 0 that there is an o € vAC such that mp(aA>0) > 0,
and hence using Lemma 5.6 we get that mp(s(a)A>Y) > 0. This implies

that s(«) € ﬁl, so we also get C' D bj, and hence C = D. O

To describe the non gauge-invariant KMS states, fix a 3 € R and r € R¥,

and let C' be a (I, ,r)-subharmonic component for some I C {1,...,k}.
When I # () we define the Periodicity group Per;(C) as:

{(m,0) = (n,0) : m,neN  ¢mOz)=cm9z) for all z € CA®°NNL}

Since C' is a component in the |I|-graph A;, CA;C is a strongly connected
|I|-graph without sources and sinks, and hence it has an infinite path space
(CA;C)™ consisting of functors from € to CA;C. By identifying €, with
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Qk(007,0) We get a homeomorphism from (CA;C)> to CA~*N N/ that sends
the shift map of degree n € N? on (CA;C)™ to the shift 0™ on CA®°NN{,
and that sends a cylinder set in (C'A;C)> given by A € C'A;C to the relatively
open set Z(A) N (CA® N N{). Tt follows from this that our periodicity
group Per;(C) is isomorphic to the periodicity group Per(C'A;C) for the I-
graph C'A;C' introduced in Section 5 in [5], and so by Proposition 5.2 in [5]
it is in fact a group. When I = 0, we let Per;(C') = {0} with 0 € ZF. Using
the continuous map ® : Gy — Z* defined in section 2 we can now describe
the non gauge-invariant KMS states.

Theorem 6.3. Let A be a finite k-graph and fix v € R* and 8 € R\ {0}.
There is a bijection between pairs (C, &), where C' € CL(B) for some I C
{1,...,k} and & lies in the dual Pe/r[(\C) of Per;(C), to the set of extremal
B-KMS states for o' :

(C,8) = wege

where:

weell) = [ 2 Ho)(®() dme(a)

9€G%

Remark 6.4. The observation made after Definition 5.5 is also true here; The
notations wee and me are only well defined because we have fixed 8 and 7.

Remark 6.5. Theorem 6.3 also gives a complete description of the 0-KMS
states for a”. The 0-KMS states are the tracial states on 7TC*(A), but choos-
ing 0 € R¥ this is the same as the 1-KMS states for a°.

Proof of Theorem 6.3. Let C be (I,(,r)-subharmonic. Let A denote the
subgroup of Z* ensured by Theorem 5.2 in [1] that satisfies:

me({x e A" . (GF)=A4}) =1

and denote this Borel set by X(A). Using Lemma 4.1 and Theorem 5.2 in
[1] it is enough to prove that A = Per;(C') to prove the Theorem. Since
me(X(A) N NL) = 1, we can pick a © € X(A) N N/, then setting J =
{1,...,k} \ I there is a m € NF such that (0,d(x);) < m < d(z) and
r(ol(z)) € Cforallm <1 < d(x),ie. o™(z) € CA®ONN[L. Forl € Per;(O)
we can write [ = (s,0) — (p,0) for some s,p € N’ such that o0 (c™(z)) =
o0 (g™ (z)), so | € ®(G¥). Since € X(A) this implies that Per;(C) C A.

For the other inclusion, let z € X(A) N N} and assume that there is a
a € A with a; > 0 for a j € J. Since a € A there exists n,m such that a =
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n—m, n; > m; and ¢"(z) = o™ (x). This implies that d(c"(z)) = d(c™(x)),
so d(z); = oo. Since j € J and z € NL C A this is a contradiction. So
aj = 0 for j € J, which in particular proves the Theorem when I = ). So
assume [ # () and that there exists a € A\ Per;(C). Now fix v € C, then:

XA c | {reud : o"(@) = 0" (@)
n,mENF n—m=a

so since me(vA®1°NX (A)) > 0 we can find a ny, ny € NI with (n;—ns,0) = a
and
me({z € vA®0 MmO (z) = ¢20(1)}) > 0 (6.2)

For the vector y¢ corresponding to m¢o we have A;y¢ = e/riy® = p(A9)y®
for ¢ € I, which implies that

AYyCe = e yCe = p(AQ)y e

Since (A{);e; are the vertex matrices for CA;C)| it follows from (b) in Corol-
lary 4.2, Proposition 8.1 and Proposition 8.2 in [5] that there is a Borel
probability measure M on (CA;C)* ~ CA*1° N NL, with

M({l’ c CAOOI,O N Né . 0.(711,0)(I> — U(nz,O)(x)}> =0
and that for each A € C'A;C satisfies:
M( CA® O A NENZ(AN)} = e Py Sy ol

Let € > 0. By compactness there are paths d;,...,9d, € CA;C of the same
degree such that:

q
{z € CA AN = o™MO(z) = o™ 0(2)} €| | Z(6:) N CA®O NN,
=1

and such that Y7 | M(Z(6;) N CA>° N N) < e. Since € was arbitrary the
calculation:

n

> me(Z(6) =D e P Ime(Z(s(5:))) =Y e Oy,
im1 i—1

i=1

= 1¥%clh Z M(Z(&;)NCA= O N NL) < e
i=1
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implies that:
me({x € CA>0N N(I; : 0("1’0)(3[:) = a("Q’O)(x)}) =0

Combining this with (6.2) gives us a contradiction since any = € vA>"? with
x ¢ Nl satisfies * € Z(a) for some o with me(Z(a)) = 0. In conclusion
A = Per/(C). O

7. Examples and comparison with the literature

7.1. Examples

To illustrate how to describe the KMS states for a given graph we will use
our machinery on a few examples. The first graph we consider is from Exam-
ple 9.1 in [2] where the KMS states for the action given by = (In(5),1n(4))
were calculated. We have included this example to illustrate that our results
give the same KMS states as the ones in [2], but also to show the strength
of our approach when it comes to concrete calculations.

Ezample 7.1. Consider a 2-graph given by the graph below, where normal
edges have degree e; and dashed edges have degree es, and the number at
each edge denote the number of edges:
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No matter which I C {1,2} we choose there are three components {u},
{v} and {w} for ~, so we will analyse for which § and r each is (I, 3,7)-
subharmonic. For this, notice that {v} = {u,v}, {u} = {u} and {w} =
{u,w}. Considering the graph it follows that:

p(AY =pAlfh =4 | p
p(AM = p(aly =2 | pal?) = paly =2
p(AMh = Aty =5 | pAlh) = p(al) =4

Hence by Definition 5.1 the different components give KMS states for fr in
the sets as indicated in the table below.

INC {v} {u} {w}

0 | In(4), oo[x]In(3), oo[ | ] In(2), oo[x]In(2), oo | JIn(5), 00[x] In(4), 00|
{1} {In(4)}x]In(3),00[ | {In(2)}x]In(2),00[ | {In(5)}x]In(4), oof

{2} | JIn(4),00[x{In(3)} | JIn(2),00[x{In(2)} | JIn(5),00[x{In(4)}

(1,2} | {In(4)} x {In(3)} {In(2)} x {In(2)} {In(5)} > {In(4)}

As in [2] we now consider the action given by r = (In(5),In(4)) which has
rationally independent coordinates. Theorem 5.9 then implies that we get a
complete description of the -KMS states for " by describing the (I, 3,7)-
subharmonic components for different I C {1,2}. So we go through each
entry of the table and consider for which value of § that gr lies in the set at
that entry. This gives the following result (notice In(2)/1In(4) = 1/2):

NC {v} {u} {w}
0 |In(4)/1n(5), 00 | ]1/2,00[ | ]1,00][
{1} {In(4)/In(5)} 0 0
{2} 0 {1/2} 0
{1,2} 0 0 {1}

This is exactly the same as obtained in Example 9.1 in [2].

Ezample 7.2. Using Theorem 5.9 we will give an example of a strongly con-
nected graph without sources and sinks and a one-parameter group «” with
two different gauge-invariant S-KMS states for a” for the critical temperature
6. To do this consider the following skeleton:
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The full edges have degree e; and the dashed edges have degree ey, and
the numbers /,p,q > 1 denote the number of edges . Since A; = l1y, .,
then A; and Ay must commute, and hence there exists a 2-graph with this
skeleton, c.f. Section 6 in [6]. In the equivalence relation ~ both {v}
and {w} are components, and choosing r = (In(/),In(2,/pq)) we see that
el = p(Al = p(Al"). Since {o} = {w} = {v,w}, and since p(A,) =
VP ¢, both {v} and {w} are ({1}, 1,)-subharmonic components, and since
there are no (0,1,7)- and ({1,2}, 1, r)-subharmonic components, Theorem
5.9 implies that they give rise to only gauge-invariant 1 -KMS states for a".
Ordering the set of vertexes by {v,w} then the vectors given in Proposition

5.4 are:
5{1’}2< 2 ) j{w}Q( ﬁ?/ﬂ)
3\ Va/vp) 3 2
Both vectors are, as predicted, invariant for the family {I™' Ay, (2,/p~¢) ' A2}
Hence their normalizations y*} and y{*} give rise to two different gauge-
invariant 1-KMS states for a”. When [ > 1 then Per(y({v}) = Perpy({w}) =
{0}, and the 1-KMS states for o are given by convex combinations of the

two states w, (v and wyw), with:

wy{v}(S,\S;) _ 5)\#6*5%(1(/\)3/{11} 7 Wy{w}(S)\S;) _ 5}\7#67ﬁr-d(>\)y{w}

If I =1 then Pergy({v}) = Perpy({w}) = Z x {0}, so letting m, and m,,
be the measures corresponding to respectively {v} and {w}, then ®(G7?) =
Z x {0} for almost all x € A* and the extremal 1-KMS states for o are:

wiyA(f) = / S e (nm), )" dmy(x)

(z,(n,m),x)€GZ

forall A € T and u = v, w.
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7.2. Comparison with the literature

We will now compare our results to the ones in [2]. To do this we will
need the following Lemma:

Lemma 7.3. Let A be a finite k-graph without sources that has the property,
that when v, w € A° satisfies vA™w # 0 for some m € N*\{0}, then they also
satisfy vA™w # O for some m € N¥}\ {0} for each i € {1,... k}. Assume
C' is a component in ~ with p(AS) >0 for each j € {1,...,k}, then:

1. If p(AP) < p(A©) for each D C C\ C, then for alli € {1,...,k}:
p(APY < p(AC)  for all components D C C'\ C (7.1)
2. If C satisfies (7.1) for some i then it satisfies it for all i € {1,...,k}.

Proof. Fix an i. The condition on the graph implies that we can find a finite
set of numbers F' C N\ {0} such that Ap(v,w) ==Y, A"(v,w) > 0 if
and only if vA™w # @ for some m € N¥. Such a set is called well-chosen in the
terminology of [1], and it follows from Lemma 7.11 and Definition 7.5 in that

article that p(Ag\C) < p(A%). Using Lemma 7.8 in [1] on the graph AC'\ C
we get p(AR) < p(AG) for each D C C'\ C. Since p(AR) = >, cp p(AP)™
by equation (7.2) in [1] (7.1) follows.

To prove 2 assume C' satisfies (7.1) for a i and choose F' as above for this
i. Equation (7.2) in [1] gives p(A2) < p(A%) for all components D C C'\ C,
and hence combining Lemma 7.8, Definition 7.5 and Lemma 7.11 in [1] imply
that C' satisfies the criterion in 1. O

To follow the set-up in [2] we consider a finite k-graph A and a r € R*
satisfying condition 1 —5 from the introduction, and we assume that KL =
{1,...,k} is a partition with r; = In(p(4;)) for i € K # 0 and r, > In(p(A;))
for | € L. We let C..it be the components C' in ~ with ln(p(A]C)) = r; for
some 7, and Cpineris be the minimal elements in C,,;; for the order <. Notice
that condition 4 and 5 imply that the condition imposed on A in Lemma 7.3
is satisfied, and that the relations <;, I # ) are all equal.

Let C' € Cpuinerir and set I = {i : In(p(AY)) =r;} then I #0. Forie I C
satisfies 2 in Lemma 7.3, so p(AP); < p(A%); for all D C C'\ C, and by (7.1)
then p(AY) = p(AS) < e for j ¢ I, so Cis (I,1,r)-subharmonic. Assume
on the other hand that C is a (I, 1,7)-subharmonic component for a I # 0,
then for i € I we have In(p(AY)) = r;, 80 C' € Cepip. If C & Cppineri then there
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is a (J,1,7)-subharmonic component D with D C C'\ C and J C {1,...,k}
not empty. If [ ¢ I then:

p(AP) < p(AT) < e

so then [ ¢ J, giving J C I. Since A; as an I-graph satisfies the criterion of
Lemma 7.3, C satisfies the criterion in 1 for the graph A; and D C [oi \C we
get that p(AP) < p(AY) for all i € I. For i € J this implies e = p(AP) <
p(AY) = e"i, a contradiction. So Cpineris i the set of (I,1,7)-subharmonic
components with I # (). -

If {v} is a (0,1, r)-subharmonic component, then p(A§U}) < i for each
je{1,... k},so {v} contains no components from Ce.;;, and hence v ¢ Corit.
If on the other hand v ¢ C/c\m then m contains no critical components,
S0 p(A;‘-U}) < € for each j € {1,...,k}, implying that {v} is (0,1,7)-
subharmonic.

Comparing Theorem 5.9 with Section 7 in [2] we now see that the vertexes
and components giving rise to extremal 1-KMS states for " are the same
in the two expositions. To see that the states also agree it suffices to argue
that the corresponding vectors over A agree. For v ¢ C.. this follows
from comparing the vector defined in Proposition 5.4 when considerind {v}
a (0, 1,r)-subharmonic component with the one constructed in Theorem 6.1
in [4]. For C' € Cpnerit define H C A° as in Proposition 3.4 in [2], then the

vector z of unit 1-norm constructed in [2] corresponding to C' satisfies z, = 0
for v ¢ C' and for all i € {1,...,k} that:

0
ANy = p(AD) 2| aovm

For I := {i:r; = In(p(AY))} we get A;z = e"iz for i € I, so z is the unique
vector 2C from Lemma 5.3. Since 7€ is supported on C = C' and satisfies
A;z¢ = ez, it has to be a scalar of 2%, so y© = z. This proves that the

states obtained in [2] are the same as the ones obtained in Theorem 5.9.
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ABSTRACT. We show that in many cases a one-parameter group of automor-
phisms on a C*-algebra of an étale groupoid is given by a real-valued ho-
momorphism on the groupoid if and only if the KMS weights of the one-
parameter group is given by measures on the unit space. The results are ap-
plied to graph C*-algebras.

KEYWORDS: KMS weights, one-parameter groups, diagonality, graph C*-algebras.
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1. INTRODUCTION

Recent years have seen an increasing interest in the investigation of KMS
states for one-parameter actions on C*-algebras. While the original motivation
for the introduction of KMS states came from the interpretation of these states as
equilibrium states in models from quantum statistical mechanics, the renewed in-
terest stems also from more purely mathematical considerations, where the KMS
states have been related to objects and structures from other fields, such as num-
ber theory or dynamical systems. In the present paper we investigate relations
between properties of the KMS states and properties of the one-parameter action
giving rise to them. As we shall now explain, we show that the existence of a
“diagonal” KMS state or weight implies that the action itself must be “diagonal”.

For most if not all the one-parameter actions on C*-algebras for which we
have been able to determine the structure of the KMS states or KMS weights, the
underlying C*-algebra can be presented as the C*-algebra of a locally compact
groupoid, as introduced by Renault in [9], and the action described as arising
from a continuous real-valued homomorphism on the groupoid by a canonical
procedure also introduced in [9]. For this reason the results of Neshveyev, [7],
which extend results of Renault and give a general and abstract description of the
KMS states for such actions on a groupoid C*-algebra are of utmost importance.
In the following we call these actions diagonal.

182
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When the groupoid and the associated C*-algebra is fixed, it is certainly not
all one-parameter actions that are diagonal. It follows from Neshveyev’s theo-
rem, Theorem 1.3 in [7], that a diagonal action has the property that if a KMS
state exists, there will also be one which factorizes through the canonical condi-
tional expectation onto the abelian C*-subalgebra generated by the continuous
compactly supported functions on the unit space. In the following we call these
states diagonal. The present work sprang from the realization that in many cases
the property that there is a diagonal KMS state characterizes the diagonal actions.
That is, for many groupoid C*-algebras a one-parameter action is diagonal if and
only if the action admits a diagonal KMS state. The simplest example of this is
perhaps the following.

Consider the C*-algebra M, of complex n by n matrices. A continuous one-
parameter group a of automorphisms on M, is inner in the sense that there is a
self-adjoint matrix A € M, such that

“t(B) — eitABe—itA
forallt € Rand all B € M. For each § € R there is a unique -KMS state wg for
« given by
Tr(e P4B)
B) = ———~.
wp(B) = 4 Ay
It can be shown that for  # 0 the state wg factorizes through the canonical (and
unique) conditional expectation from M,, onto the C*-subalgebra of diagonal ma-
trices if and only if A is diagonal. It is this fact we will generalize. For this
note that M, is the groupoid C*-algebra of the groupoid G = {1,2,3,...,n} x
{1,2,3,...,n} with operations

(a,b)(b,c) = (a,c) and (a,b)"! = (b,a).

When M, is identified with the C*-algebra C*(G) of G, the diagonal matrices
in M, constitute the C*-algebra C(G () of (continuous) functions on G whose
support is contained in the unit space

GO = {(kk) :ke{1,2,...,n}}

of G. In this picture the conditional expectation onto the diagonal matrices is the
map

P:C*(G) — C(GD)

which restricts functions to G(©). Furthermore, the matrix A will be diagonal if
and only if there is a groupoid homomorphism ¢ : G — R such that

(1.1) ar(f)(a,b) = &) f(a,b)

forallt € R, (a,b) € G and all f € C*(G). Because the whole setup is so trans-
parent in this case, we can easily conclude that there is an equivalence between
the following conditions:



184 Paper E. Diagonality of actions and KMS weights

(1) a is diagonal in the sense that there is a groupoid homomorphismc : G —
R such that (1.1) holds.

(2) There is a B # 0 and a B-KMS state wg for & which is diagonal in the sense
that it factorizes through the conditional expectation C*(G) — C(G(?).

(B) a;(f) = fforallt € Rand all f € C(G1).

(4) All B-KMS states of «, for B # 0, are diagonal.

Our main result is that these equivalences hold much more generally as we
shall now explain.

2. NOTATION AND MAIN RESULT

Let G be a second countable locally compact Hausdorff étale groupoid with
unit space GO, Letr : G - G® ands : G — G be the range and source
maps, respectively. For x € G put G* = r~1(x), G, = s }(x) and G =
s71(x) Nr~1(x). Note that G¥ is a group, the isotropy group at x. The space Cc(G)
of continuous compactly supported functions is a *-algebra when the product is
defined by

(f1xf2)(g Z AR fa(h7'g)

hegr@

and the involution by f*(g¢) = f(g~1). To define the reduced groupoid C*-algebra
C:(G), let x € GO, There is a representation 77, of C.(G) on the Hilbert space
1?(Gy) of square-summable functions on Gy given by

m(Npg) = Y f(Myh'g).

hegr(8)
C;(G) is the completion of C.(G) with respect to the norm

1fllx = sup [[7x(F)]-

x€G0)

Note that C;(G) is separable since we assume that the topology of G is second
countable.

We shall here be concerned not only with KMS states, but more generally
with KMS weights. Let A be a C*-algebra and A the convex cone of positive
elements in A. A weight on A isamap ¢ : Ay — [0, 0] with the properties that
P(a+b) =1¢(a)+¢(b)and Y(Aa) = Ap(a) foralla,b € Ay andallA € R, A > 0.
By definition ¢ is densely defined when {a € A, : (a) < oo} is dense in A, and
lower semi-continuous when {a € Ay : (a) < a} is closed for all « > 0. We will
use [5], [6] as our source for information on weights, and we say that a weight is
proper when it is non-zero, densely defined and lower semi-continuous. Let ¢ be
a proper weight on A. Set Ny = {a € A : ¢p(a*a) < oo} and note that

My = Span{a*b:a,b e Ny}
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is a dense *-subalgebra of A, and that there is a unique well-defined linear map
My — C which extends ¢ : My N Ay — [0,00). We denote also this densely
defined linear map by .

Leta : R — Aut A be a continuous one-parameter group of automorphisms
on A. Let B € R. Following [2] we say that a proper weight ¥ on A is a f-KMS
weight for « when

(i) poar =1 forallt € R, and
(ii) for every pair a,b € Ny NN, y there is a continuous and bounded function
F defined on the closed strip Dg in C consisting of the numbers z € C whose

imaginary part lies between 0 and , and is holomorphic in the interior of the
strip and satisfies that

F(t) = (aas(b)), F(t+ip) = p(ar(b)a)
forallt € R.

Compared to [2] we have changed the orientation in order to have the same
sign convention as in [1], for example. It will be important for us that there is an
alternative characterization of when a proper weight is a f-KMS weight. Specifi-
cally, by Proposition 1.11 in [6] a proper weight ¢ is a B-KMS weight for « if and
only if it is a-invariant (as in (i) above) and

(2.1) p(a*a) = P(aig/2(a)aig/2(a)”)
for all a in the domain D(a;g/3) of aig/»; the closure of the restriction of a;g /2 to
the analytic elements for a, cf. [5]. A B-KMS weight i with the property that

sup{¢(a):0<a<1} =1
will be called a B-KMS state.
Returning to the case A = C(G), note that the map C.(G) — C.(G)

which restricts functions to G(©) extends to a conditional expectation P : C}(G) —

Co(GY). ViaPa regular Borel measure m on G (0) gives rise to a weight ¢y, :
C;(G)+ — [0, 00] defined by the formula

(2.2) Pm(a) = / P(a) dm.
g(0)

It follows from Fatou’s lemma that ¢,, is lower semi-continuous. Since ¢, (faf)
< oo for every non-negative function f in C.(G©)), it follows that ¢,, is also
densely defined, i.e. ¢, is a proper weight on C;(G) if and only if m is not the
zero measure. In the following we say that a proper weight ¥ on C;(G) is di-
agonal when ¥ = ¢, for some regular Borel measure m on G(°). By the Riesz
representation theorem this occurs if and only if p o P = 1.

Given a continuous homomorphism ¢ : G — R there is a continuous one-
parameter group ¢ on C; (G) such that

(2.3) 0f(8)(2) = g (¢)



186 Paper E. Diagonality of actions and KMS weights

forallt € R,all g € C.(G) and all ¢ € G, cf. [9]. A one-parameter action of this
kind will be called diagonal in the following. We can then formulate our main
result as follows.

THEOREM 2.1. Let G be a locally compact second countable Hausdorff étale
groupoid such that for at least one element x € GO the isotropy group G is trivial,
ie. G¥ = {x}, and that G is minimal in the sense that s(r~1(y)) is dense in G\ for all
yeg 0), Furthermore, assume that G 0) s totally disconnected.

Let w = (a¢)ser be a continuous one-parameter group of automorphisms on C;(G)
and assume that for some By # O there is a fo-KMS weight for a.

The following are equivalent:

(i) There is a B1 # 0 and a diagonal B1-KMS weight for «.
(ii) Whenever B # 0 and there is a B-KMS weight for «, there is also a diagonal
B-KMS weight for .
(iti) a; (f) = f forall t € Rand all f € Co(GD).
(iv) ¢ (Co(G)) C Co(G©)) forall t € R.
(V) « is diagonal.

Some of the (non-trivial) implications hold with fewer assumptions. Specif-
ically, (i)=-(iii) holds without the assumption that the unit space is totally dis-
connected by Proposition 4.1, and the implication (iii)=(v) holds assuming only
that the points with trivial isotropy are dense in G(¥ (i.e. if G is topologically
principal) by Proposition 4.3. The implication (v)=-(ii) holds whenever G 0) js
totally disconnected, without any further assumptions, as it follows from Corol-
lary 3.4. It may be that this implication is true in general and if so the theorem
with (iv) removed is true also when G©) is not totally disconnected. However,
the first two assumptions on G which are equivalent to topological principal-
ity and minimality of G are certainly necessary for the implication (iii)=(i) to
hold, cf. Example 4.9. Finally, the gauge action on the C*-algebra of a strongly
connected (row-finite) graph with infinite Gurevich entropy does not admit any
KMS weights at all, cf. [14], showing that it is necessary to assume the existence
of some KMS-weight for the implication (v)=(i) to hold.

3. NESHVEYEV’'S THEOREM FOR KMS WEIGHTS

LEMMA 3.1. Let A be a C*-algebra, a a continuous one-parameter group of auto-
morphisms on A and 1§ a KMS weight for a. Let p € A be a projection in the fixed point
algebra of a. Then (p) < 0.

Proof. Assume that a > 0, ¥»(a) < co and that a!/? is analytic for a. Then
Proposition 1.11 in [6] applies to conclude that

(3.1) y(pap)=y(aig/2(a'/?)paig a(a'/?)*) <y(aiga(a/?)aig 2 (a/2)*) =1 (a).
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Let {by } be a sequence of positive elements in A such that hm by = pand ¢ (by) <
oo for all k. For each n € N, set

k— o0
[n
= ;/at(bk)e_”tz dt.
R

Then cy , is analytic for a and 1/](0%171) < ek llp(cen) < lleknllp(by) < oo for all
k, n. It follows therefore from (3.1) that ¢(pcg ,p) < (cf,) < oo for all k, n. Note
that

lim lim cf, = lim bf = p* = p.

It follows that there are k, n such that |[p — pcg 2 pll < 1/2,and then spectral theory
tells us that pck,np > (1/2)p. Hence ¥(p) < Zgb(pck,np) <oo. 1

Let G be a locally compact second countable Hausdorff étale groupoid and
c : ¢ — R a continuous homomorphism. Let y be a regular Borel measure on
G and B € R a real number. We say that y is (G, c)-conformal with exponent B, as
in [14], or that u is quasi-invariant with Radon—Nikodym cocycle e P, asin [7], when

62 plsW) = [ e On ) du()
r(W)

for every open b1 section W C G, where "w denotes the inverse r : W — r(W).
For each x € G(©) we can consider the full group C*-algebra C*(GY) of the discrete
group Gy, the isotropy group at x. As in [7] we denote for ¢ € G by u, the char-
acteristic function of the element ¢ when we consider C*(G7) as a completion of
Cc(G%). Thus ug, g € Gy, are the canonical unitary generators of C*(Gy ). Follow-
ing [7] we say that a collection ¢y, x € G(), of states on C*(G) is a y-measurable
field when the function

GO sy Y. F(8)ex(ug)
g€gy
is p-measurable forall f € Cc(G). We identify two p-measurable fields {¢x} 0
and { ¢} } g0 when ¢ = ¢ for p-almost every x.

The following theorem is a version for weights of Theorem 1.3 in [7]. Note
that it deals with the full groupoid C*-algebra C*(G) which is an extension of the
reduced groupoid C; (G). We refer to [9] for the definition of the full groupoid C*-
algebra. To understand the following theorem and its proof it suffices to know
that C*(G), like C;(G), is a completion of C.(G) and that a continuous homomor-
phism ¢ : G — R also defines a continuous one-parameter group ¢ on C*(G) via
the formula (2.3).

THEOREM 3.2 (Neshveyev’s theorem for weights). Let G be a locally compact
second countable Hausdorff étale groupoid and let c : G — R be a continuous homomor-
phism. Assume that the unit space G\°) of G is totally disconnected.
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There is a bijective correspondence between the B-KMS weights for o on C*(G)
and the pairs (i, {@x } . cg(0) ), where p is a regular Borel measure on G and {ox}icgo
is a y-measurable field of states ¢, on C*(G¥) such that:

(i) u is quasi-invariant with Radon—Nikodym cocycle e F<,
(i) @x(ug) = @r(n)(Upgy) for p-almost every x € GO andall g € G, h € Gy,
and
(iii) ¢x(ug) = 0 for p-almost every x € G and all g € G¥\c7(0).

The B-KMS weight ¢ corresponding to the pair (i, { px } ) has the properties

that Cc(G) C My and

xeG0)

3 / ¥ F(8)@xlug) du(x)
g gng

when f € C.(G).

Proof. Let ¢ be a B-KMS weight for o°. Since G(?) is totally disconnected by
assumption there is a sequence p; < py < p3 < --- of projections in C.(G ©0))
with the property that {p,} is an approximate unit for C*(G). It follows from
Lemma 3.1 that ¢(pn) < co for all n. Since ¢ # 0 we can assume, without loss of
generality, that ¢(p,) > 0 for all n. Since ¢(f) < co for every non-negative func-
tion in Cc(G(©)) it follows that Cc(G) C My and from the Riesz representation
theorem that there is a unique regular Borel measure y on G(©) such that

= [ ) an)
G0

forall f € C.(G?). Let U, be the compact and open support of p,,, and set

=Glu, ={6€G:7()s() € Un}

and ¢, = c|gn. Note that ¢(p,) ¢ restricts to a B-KMS state on p,C*(G)p, =
C*(G"). It follows from Neshveyev’s theorem [7] that there is a probability mea-
sure yi, on Uy, and a y,-measurable field { ¢} } ey, of states such that:

(an) py is quasi-invariant on G with cocycle e F¢r,

(bn) @i (ug) = Gl’f(h)(”hghfl) for py-almost every x € U, and all g € G5, h €
(gn)XI

(cn) @} (ug) = 0 for py-almost every x € Uy, and all g € G¥\c, 1(0),

and

‘P(PH) / Z f(8)o%( ug dpn(x)

gegx
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when f € C.(G"). For every f € CC(Un) we get that:
o(p) " [ £) du(x) = / f() dnx) = ¢(pa) 6(F)
Uy

—/Zf )i (itg) dpun(x /f ) dptn(x

gegv

so ulu, = ¢(pn)pn. Notice that since ¢(p,) > 0, being a p null set in U, is the
same as being a i, null set. For a Borel set V C U, C U,,;1 we have that:

P(Prr1)pnt1(V) = p(V) = ¢(pu) pn (V).
So pn = ¢(Pu+1)/P(Pn)pn+1lu,- For every f € C.(G") we get that:

| T 99 dpn) = () () = LD, )1

, gegx (P<pn)
pn+1 / Z f n+1 ug) dynﬂ(x)
| 8€9%
_/Zf n—l—lug d“lxln<>
gégr

Since i, by choice satisfy (an), and since it is easily seen that {¢*1},cy, satisfy
(bn) and (cn), the uniqueness statement in Neshveyev s theorem gives that ¢} =
@1 for a.e. x € Uy,. Hence for a.e. x € G(O) we can define a state on C*(G¥) by:

¢x(d) = lim @ (d).
For every f € Cc(G) thereisa N € Nsuch that f € C(G"), and hence:

¢(f) = ¢(Pn) / Y f(8)ey (ug) dun(x) / Y. f(8)ex(ug) dp(x).

Uy g€Gx g gEgr

The properties (i)-(iii) follow from (an)—(cn), and measurability of x +—

Y. f(8)@x(ug) follows from measurability of x — Y. f(g)@%(ug).
geg)’f gng
For the converse, assume we are given a pair (i, {¢x}, cg ) for which (i),
(ii) and (iii) hold. As shown by Neshveyev in the proof of Theorem 1.1 in [7]

every x gives rise to a state ¢x on C*(G) such that
= L f(®)ex(ug)
8€Gx

when f € C.(G). Note that x — Z f (8) @x(ug) is p-measurable by assumption,
8€0x
and then x — x(a) is also for each a € C*(G). For a > 0 we can therefore define

0) = [ gula) dp(x)
g0
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¢ is a lower semi-continuous weight by Fatous lemma and by regularity

#(puapn) /wx ) dn(x) < llallp(Uy) < oo

for all n, so it is also densely defined. Note that Cc(G) C My and that (3.3) holds
by construction. Since the pair (¢(py) ', {@x }reu, ) represents ¢(p,) ~'¢ in the

sense of Theorem 1.1 in [7] it follows from Theorem 1.3 in [7] that ¢ is a bounded
B-KMS weight on p,,C*(G)py,. Since

) ¢x(a) x €Uy,
Px(pnapn) = {0 v e U,

we find that lim ¢(pnap,) = lim [ ¥x(a) du(x) = ¢(a) foralla > 0in C*(G).
n—oo n ooun
Now note that for every a in the domain of ¢, B/2s

P(pna*apn) = P(055,5(apn)0ig o (apn)™) = P(0ig,5(a) puoip/r(a)”)
since ¢ is a bounded B-KMS weight on p,,C*(G)py,. Since
Jim ¢(0 5,5 (@) pucip2(a)") = ¢(0 55,2 (a)0% 55/2(a)")
by the lower semi-continuity of ¢, we conclude that

p(a*a) = @0 i55(a)0%i5,5(a)"),
showing that ¢ is indeed a B-KMS weight for ¢*.
If (1, {@x}ego) and (1, {95} cg0) represent the same B-KMS weight it

follows from the uniqueness part of the Riesz representation theorem that y = p’.
By using (3.3) we find that

(3.4) / Z f(8)px(ug) du(x) / Z f(8)¢x( ug) dp(x)

g(o) gegx g<0> gegx
when f € C.(G) and k € Cc(G)). It follows from this that
Z f(8)ex( ”g Z f(g (Px ”g

geg% gegx
for y-almost all x € G(¥) and all f € C.(G). Thanks to the separability of C*(G)
we conclude that ¢, = ¢/, for y-almost all x. 1§

COROLLARY 3.3. Let G be a locally compact second countable Hausdorff étale
groupoid and let ¢ : G — R be a continuous homomorphism. Assume that the unit
space G\ of G is totally disconnected and that the isotropy groups G¥,x € G, are all
amenable.

There is a bijective correspondence between the B-KMS weights for o€ on C}(G)
and the pairs (i, {@x } . g(0) ), where p is a regular Borel measure on G and {@x}rego)
is a p-measurable field of states @, on C; (G5 ) such that:
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(i) u is quasi-invariant with cocycle e ~F°,
(i) @x(ug) = @r(n)(upgy—) for p-almost every x € GO andall g € G, h € Gy,
and
(iii) @x(ug) = 0 for p-almost every x € GO and all g € G¥\c1(0).
The B-KMS weight ¢ corresponding to the pair (i, {¢x} cg)) has the properties
that Cc(G) € My and

5 o) = [ L F@)eslug) du(x)

Go) g€G%
when f € C.(G).

Proof. 1t suffices to show that the assumption on the isotropy groups im-
plies that every B-KMS weight ¢ on C*(G) factorises through C;(G). To this
end note that it follows from Lemma 2.1 in [13] that for each n € N there is a
bounded B-KMS weight ¢, on p,C;(G)p, such that ¢, (py7(a)pn) = ¢(puaps)
for alla € C*(G) where 7w : C*(G) — CJ(G) is the canonical surjection. Then
Ou(pnbpn) < Prs1(Pny1bpnst) forallb > 0in CF(G) and we can define a lower
semi-continuous weight ¢ on C(G) such that ¢(b) = I}I_IEO Ou(pnbpy). Tt follows

thatpormr =¢. 1

It is an interesting problem if Corollary 3.3 remains true without the
amenability assumption on the isotropy groups. For the proof of our main re-
sult the following suffices.

COROLLARY 3.4. Let G be a locally compact second countable Hausdorff étale
groupoid and let ¢ : G — R be a continuous homomorphism. Assume that the unit space
GO) of G is totally disconnected. If there is a B-KMS weight for o on C;(G) there is also
one which is diagonal.

Proof. Let ¢ be a B-KMS weight for o€ on C;(G) and let 7 : C*(G) — C;(G)
be the canonical surjection. Then ¢ o 7 is a f-KMS weight for ¢¢ on C*(G) and
we can consider the corresponding regular Borel measure p. Since u is quasi-

invariant with cocycle e ¢ it follows from Proposition 2.1 in [14] that y defines a
diagonal B-KMS weight by the formula (2.2). 1

4. CONDITIONS ON A KMS WEIGHT THAT IMPLY DIAGONALITY OF THE ACTION

4.1. WHEN KMS WEIGHTS FACTOR THROUGH THE CONDITIONAL EXPECTATION
ONTO AN ABELIAN SUBALGEBRA. A weight w is faithful when a > 0, w(a) =
0=a=0.

PROPOSITION 4.1. Let A be a C*-algebra and vy a continuous one-parameter
group of automorphisms on A. Let D C A be an abelian C*-subalgebra and P : A — D
a conditional expectation.



192 Paper E. Diagonality of actions and KMS weights

Assume that w is a faithful B-KMS weight for <y, B # 0, such that w o P = w. It
follows that «y¢(d) = d forallt € Rand all d € D.

Proof. Let f € D, f > 0. Since w is densely defined there is a sequence {a, }

of positive elements in A such that nlgn a, = f and w(a,) < oo for all n. Then

lim P(a,) = f and w(P(an)) = w(a,) < oco. It suffices therefore to consider

n—00

f €D, f>0suchthat w(f) < oo and show that v;(f) = f forall t € R.
We find that
(4.1) w(af) = w(P(a)f) = w(fP(a)) = w(fa)
foralla € M. Since f € M, and this is a subalgebra, the desired conclusion
follows from Result 6.29 in [5]. &

COROLLARY 4.2. Let A be a simple C*-algebra and -y a continuous one-parameter
group of automorphisms on A. Let D C A be an abelian C*-subalgebra and P : A — D
a conditional expectation.

Assume that w is a B-KMS weight for vy, B # 0, such that w o P = w. It follows
that y¢(d) = d forallt € Randall d € D.

Proof. It suffices to show that w is faithful. Fora € A and k € N, set:

Qx(a) = \/g/e_ktz%(ﬂ)dt-
R

Note that Qy(a) is analytic for 7y and that klim Qk(a) = a. Standard approximation
—00

arguments establish the following orservation: Assume that a € M,,. It follows

that
\/ % /e’k(tﬂs)zfyt(a)dt € My
R
foralls € R.

This will be used to show that w is faithful in the following way: Assume
that b = b* € A and that w(b?) = 0. Forac € M, it follows from the observation
that Qx(c), 7ig(Qk(c)*) € M, hence by an application of the Cauchy-Schwarz
inequality

|w(Qr(€)*b*Qi(e)) * = | (t*Qu(c)ip(Qi(c))) > < 0.

Lower semi-continuity now implies that w(c*b*c) = 0 and by using Cauchy-
Schwarz again we deduce that

(4.2) w(Span M,b*> M) = {0}.

Since M,, is dense in A the closure of Span M ,b*>M,, is a (closed two sided)
ideal in A. If b # 0 this ideal must be all of A because we assume that A
is simple. But then we reach a contradiction the following way: let a > 0.
Choose a sequence {x,} C Span M,b*M,, such that nlgrc}o X, = +/a. Since
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XpX; € Span Myb?M,, and lgn xnX,, = a, it follows from (4.2) and the lower
n—oo

semi-continuity of w that w(a) = 0. This is a contradiction because w # 0. Hence
b=0. 1

4.2. ONE-PARAMETER GROUPS TRIVIAL ON THE DIAGONAL. The following re-
sult has a predecessor in the von Neumann algebra setting in Theorem 2 of [3].

PROPOSITION 4.3. Let G be a locally compact Hausdorff étale groupoid and o =
(at)ier a continuous one-parameter group of automorphisms on Cy (G) such that

ar(f) = f

forall f € Co(G0)) andall t € R. Assume that the elements of G() with trivial isotropy
group in G are dense in G(©). There is a continuous homomorphism ¢ : G — R such that

at(8)(8) = e"¥g(g)
forallt e R all g € Cc(G)andall ¢ € G.

Proof. We shall use the continuous linear embedding j : C}(G) — Co(G)
introduced by Renault in Proposition 4.2 in [9].

OBSERVATION 4.4. Let f € C.(G) be supported in an open subset U C G
such that 7 : U — G is injective. Assume that f(&) = 0 for some & € U. It
follows that j(a;(f))(¢) =0 forall t € R.

To prove this, let ¢ > 0. There is an open bisection W of ¢ such that W C U
and |f(u)| < eforally € W. Let ¢ € Co(G?) be such that 0 < ¢ < 1, supp ¢ C
r(W) and ¢(r(&)) = 1. By use of Proposition 4.2 in [9] we find that

@3) (e (f))() = @(r(8)j(a(f))E) = jloat(f))(E) = j(at(9f))(E)-
Note that supp(¢f) € W and that ||¢f|| < €. It follows that

li(at(@f)leo < llae(@hN) = llofll = llflleo <&

where the last identity follows from Lemma 2.4 in [12]. In particular, |j(a:(¢f))(E)|
< ¢, and then (4.3) shows that |j(a:(f))(&)| < e. This proves Observation 4.4.
In the same way we obtain the following.

OBSERVATION 4.5. Let f € C.(G) be supported in an open subset U C G
such that s : U — G is injective. Assume that f(&) = 0 for some & € U. It
follows that j(a;(f))(¢) =0 forallt € R.

OBSERVATION 4.6. Let ¢ € G, and let h,h' € C.(G) be supported in (not
necessarily the same) open bisections in G. Assume that 1(¢) = 1'(¢) = 1. Then

(4.4) jlee () (&) = j(ae(h'))(E)
forallt € R.
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To show this, let 1 - h’ be the point wise product of & and #'. It follows from
Observation 4.4 that

jla(h- 1 — 1)) (8) = jlar(h- 1 = h))(E) =0,

which yields (4.4): j(a(h))(¢) = j(ar(h-1'))(E) = j(ar(h))(S)-
It follows from Observation 4.6 that we can define a map G; : G — C such
that

Gi(6) = jlar(n))(E),
where 1 is any element of C.(G) which is supported in an open bisection and
takes the value 1 at . Note that G; is continuous by construction.

OBSERVATION 4.7. For every f € C.(G) and every ¢ € G,

(4.5) jat(f))(E) = Ge(E)f(S)-

To show this, we may assume that there are open bisections U C V such
that suppf C U and U C V. Assume first that ¢ U. We must show that
j(a¢(f))(¢) = 0 in this case. By continuity and the assumption on G we may
assume that s(¢) has trivial isotropy. If p € U and r(p) = r(g), s(u) = s(¢), we
see that

r(p~'g) =s(u) =s(¢) and s(u~'¢) =s(g)

which is impossible since ¢ # p. It follows that we can write f as a finite sum
f=Yf
1

such that each f; € C.(U) is supported in an open set W; C U such that either
s(&) ¢ s(W;) or r(¢) & r(W;). It follows that j(a;(f;))(&) = 0; in the first case
thanks to Observation 4.5, in the second thanks to Observation 4.4. Hence

jlae(F)(E) = Y jlas(£:)) (&) =0,

as desired. Assume then that & € U C V. Choose ¢ > 0 such that f(&) +& # 0
and a function ¢ € C.(V) such that ¢(¢) = 1. Then

e (f +e9)) (@) = j (e f{;) L)) @U@ +9) = GRF@) +e).
Letting ¢ — 0 we obtain (4.5).

Note that it follows from Observation 4.7 that a;(C.(G)) C C.(G), and

at(f)(8) = Ge(8)f(8)

forall f € C.(G) and all { € G. Since ||f|| = |la:(f)] this implies that |G¢(¢)| = 1.
Furthermore, if i € C.(G) is supported in a bisection and /(&) = 1, we find that

Gis(€) = as(as(h))(€) = as<h><¢>“f<% )@

= as(h)(&)Gt(&) = Gs(&)Ge(2).
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Since t — G¢(¢) is continuous, this implies that there is a unique real-valued
function ¢ : G — R such that

(4.6) G (&) = elf(®).

To show that ¢ is a homomorphism, let 71,2 € G such that s(y1) = r(72). Set
¥ = 7172- Let U be an open bisection containing  and U; an open bisection
containing ;, i = 1,2, such that yyup € U when (1, 142) € 6@ N (Uy x Up).
Choose h; € Co(U;) such that h;(y;) = 1. Then hihy(y) = 1 and

Gt(y) = jlae(hih2))(v) = ar(h1)ar(h2) ()
= ar(hy)(v1)ae(h2) (72) = Ge(71)Gi(72)-

Hence G; is a homomorphism as asserted. Combining (4.6) and (4.7) and taking
derivatives with respect to ¢, it follows that ¢ is a homomorphism, i.e.

(4.7)

c(1172) = c(71) +c(7r2)

when s(y1) = 7(72).
Finally, to show that ¢ is continuous, let ¢ € G and € > 0 be given. Choose

open bisections U C V such that ¢ € U C U C V and h € C(V) a function such
that 7 = 1 on U. Then

Ge(y) = ar(h) ()
forallt € Rand all v € U. Let K C R be a compact set. There are finitely many
points t; € K,i =1,2,...,N, such that for every ¢t € K there is an i such that
Jar () — o, (B) [loo = [l () — &y ()[| < e
By continuity of ay, (1) there is an open neighborhood W C U of ¢ such that

|, () (7) — ar, (h)(§)| < e

forally € Wandi=1,2,..., N. It follows that |G(y) — G¢({)| < 3eforall t € K
and all v € W. By Pontryagin duality this implies that c is continuous. 1

THEOREM 4.8. Let G be a locally compact Hausdorff étale groupoid such that for
at least one element x € GO the isotropy G is trivial, i.e. G¥ = {x}, and that G is
minimal in the sense that s(r—'(y)) is dense in GO for all y € G\, Let & = (as)ser
be a continuous one-parameter group of automorphisms on C;(G) and assume that for
some B € R\{0} there is a diagonal B-KMS weight for a. Then w is diagonal, i.e. there
is a continuous homomorphism c : G — R such that

(4.8) a(9) (&) = e@g(g)
forallt e R all g € Cc(G)andall & € G.

Proof. Combine Corollary 4.2 and Proposition 4.3, using that in the presence
of a single unit with trivial isotropy group the minimality of G is equivalent to the
simplicity of C}(G) by Corollary 2.18 in [12]. 1
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We can now put the pieces together for a Proof of Theorem 2.1. (i)=-(iii) fol-
lows from Proposition 4.1. That (iii) is equivalent to (iv) follows from a standard
argument using that G 0) js totally disconnected. The implication (iii)=(v) fol-
lows from Proposition 4.3 and (v)=>(ii) from Corollary 3.4. This gives the equiv-
alence of all five conditions since (ii)=>(i) is trivial.

EXAMPLE4.9. Let G = I, be the free group on two generators. Then C; (F»)
is a simple C*-algebra and Cy(G(?)) = C1. Let A = A* € C}(IF,) and set

wr(a) = elge 14,

Note that a; acts trivially on Cy(G(?)) = C1. Let Uy, x € Fy, be the canonical
unitaries generating C;(Fp). Assume that there is a homomorphism ¢ : F, —
R such that a;(Uy) = el (M), for all ¢, x. By differentiation this leads to the
conclusion that AUy, — UxA = ¢(x)Uy and hence that Uf AU, = A + c(x)1. The
last equation implies that the spectrum o (A) of A satisfies 0(A) = o(A) + c(x),
i.e. c(x) = 0. But then a;(Uy) = U, for all £,x, i.e. a; = id for all + € R. This
implies by differentiation that AX = XA for all X € Cj(F,), i.e. A is in the
center of C;(F;). So by choosing A ¢ R1, we have an example showing that
Proposition 4.3 does not always hold when there are no units with trivial isotropy
in G. In relation to Theorem 2.1 note that there are B-KMS weights for a for all
B € R. Indeed, when w is the tracial state on C; (F,), the functional

CH(F,) 3 a — w(e Pa)

is a bounded B-KMS weight. Since condition (iii) in Theorem 2.1 holds while (v)
does not, it follows that it is necessary, in Theorem 2.1, to assume the existence of
a unit with trivial isotropy group.

Similarly, by considering a disjoint union I, LI H, where H is an appropriate
groupoid, it is easy to obtain examples showing that the implication (iv)=-(i) in
Theorem 2.1 fails in general if G is not minimal.

5. APPLICATIONS TO GRAPH C*-ALGEBRAS

In this section we apply the results obtained above to the study of KMS
weights on graph C*-algebras. For this we first show how a graph C*-algebra can
be realized as the groupoid C*-algebra of a locally defined local homeomorphism
as it was introduced by Renault in [10]. Recall that graph C*-algebras were origi-
nally introduced for row-finite graphs in [4] as the C*-algebra of the left-shift on
the space of infinite paths in the graph. We show that in general, when the graph
may have infinite emitters, its C*-algebra is still the groupoid C*-algebra of a lo-
cal homeomorphism which is generally only defined on a dense open subset of a
locally compact Hausdorff space.
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5.1. THE RENAULT GROUPOID OF A LOCAL HOMEOMORPHISM. Let X be a lo-
cally compact second countable Hausdorff space. Let U C X be an open subset
and ¢ : U — X alocal homeomorphism, i.e. for every u € U there is an open sub-
setV C Usuchthatu € V, ¢(V)isopenand ¢ : V — ¢(V) is a homeomorphism.
Set ¢¥ = idy (with domain D(¢°) = X) and for n > 1, set
D(p") =Ung ()N () N-- N~ " (L)

and let ¢" be the map

9" =gogo---0p:D(g") = X.
Set

Gp ={(x,n—my) € XxZxX:xecD(¢"), ycD("), ¢"(x) = 9" (y)}
which is a groupoid with product (x,k,y)(y,1,z) = (x,k+1,z) and inversion
(x,k,y)~! = (y, —k, x). Sets of the form
{yn—my): ¢"(x) =¢"(y), xe W,y V}

for some open subsets W C D(¢"), V C D(¢™), constitute a basis for a topol-
ogy in G, which turns it into a locally compact second countable Hausdorff étale
groupoid.

Let F : X — R be a function which is continuous on U. We can then define
cr : Gp — Rsuch that

cr(n—my) = L F(@/() - 3 Fo't).

Note that c is a continuous homomorphism, and if F’ : X — R is a function
which agrees with F on U, then cpr = cr.

PROPOSITION 5.1. Let ¢ : Gy, — R be a continuous homomorphism. There is a
map F : X — R which is continuous on U such that ¢ = cf.

Proof. Define F : X — R such that
F(x) = c(x,1,9(x)) xel,
0 x ¢ U.

It is straightforward to verify that F is continuous on U and thatc = cr. 1

It follows that the continuous homomorphisms G, — R are in bijective
correspondence with the continuous maps U — R.
A point x € X is aperiodic under ¢ when

x € D(¢")ND(9"), ¢"(x) = 9" (x) = n=m.

Under the identification of X with the unit space of G, the aperiodic points are the
elements with trivial isotropy group. We can therefore combine Proposition 5.1
with Proposition 4.3 to obtain the following.
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PROPOSITION 5.2. Let X be a locally compact second countable Hausdorff space,
U C X an open subset and ¢ : U — X a local homeomorphism. Assume that o« =
(at)ter is a continuous one-parameter group of automorphisms on C;(Gy) such that

ar(f) = f
forall f € Co(X) C Ci(Gy) and all t € R. Assume also that the aperiodic points of ¢

are dense in X.
There is a continuous map F : U — R such that

ar(g)(8) = ' Og()
forallt e R,all g € Cc(Gy) and all § € G
For n,m € NU {0}, set

o " (9" (x)) = {® whenx & D(¢"),
{y € D(¢™): ¢"(y) = ¢"(x)} whenx e D(¢").
We say that ¢ is minimal when
(5.1) U (")
n,meNU{0}

is dense in X for all x € X. Note that (5.1) is the orbit of x under the action of G,
on its unit space. Thus ¢ is minimal if and only if G, is.

PROPOSITION 5.3. Let X be a locally compact second countable Hausdorff space,
U C X an open subset and ¢ : U — X a local homeomorphism. Assume that ¢
is minimal and that there is at least one aperiodic point for ¢. Let & = (at)icgr be a
continuous one-parameter group of automorphisms on C; (Gy).

If, for some B # 0, there is a diagonal B-KMS weight for «, then there is a contin-
uous map F : U — R such that

(52) ar(g)(§) = e"rOg(g)
forallt € R,all g € Cc(Gy) and all ¢ € G

Proof. In view of Corollary 4.2 and Proposition 5.2 it suffices to observe that
C; (Gy) is simple under the present assumptions, cf. Proposition 2.5 in [10]. 1

5.2. A LOCAL HOMEOMORPHISM FROM AN INFINITE GRAPH. Let G be a directed
graph with vertexes V and edges E. We assume that G is countable in the sense
that V and E are both countable sets. We let r and s denote the mapsr: E — V
and s : E — V which associate to an edge e € E its target vertex r(e) and source
vertex s(e), respectively. A vertex v is an infinite emitter when s~1(v) contains
infinitely many edges and a sink when s~!(v) is empty. The union of sinks and
infinite emitters constitute a set which will be denoted by V. The graph C*-
algebra C*(G) is by definition the universal C*-algebra generated by a collection
Se,e € E, of partial isometries and a collection Py, v € V, of mutually orthogonal
projections subject to the conditions that:



Paper E. Diagonality of actions and KMS weights 199

(1) S:Sg = Pr(e)l Ve € E,

(2) ¥ S.S; < P, for every finite subset F C s~ !(v) and all v € V, and
ecF

ecs1(v)
Let P¢(G) and P(G) denote the set of finite and infinite paths in G, respectively.
The range and source maps, r and s, extend in the natural way to Pf(G); the
source map also to P(G). Set Qg = P(G) U Q(G), where

Q(G) = {p € P(G) : 7(p) € Vo}
is the set of finite paths that terminate at a vertex in V. In particular, Voo C Q(G)
because vertexes are considered to be finite paths of length 0. For any p € P¢(G),
let |p| denote the length of p. When |p| > 1, set
Z(p)=Aq€ Qc:lal = pl, i =pi, i=12,...,|p]}, and
Z(v) = {9 € Q¢ :s(q) = v},

when v € V. When v € P¢(G) and F is a finite subset of P¢(G), set

(53) zp(v) = ZW\ (U, 20)).

The sets Zp(v) form a basis of compact and open subsets for a locally compact
Hausdorff topology on 2g. When p € P¢(G) and x € Qg, we can define the
concatenation px € ()¢ in the obvious way when r(u) = s(x). The groupoid Gg
consists of the elements in 2 X Z x () of the form

(x|l = 1], '),
for some x € Qg and some p, i’ € P¢(G). The product in G is defined by

(px, || = 11, ' %) (vy, [v] = V[ Vy) = (ux, ]+ [v] = || = V[ V'y),

when /x = vy, and the involution by (ux, |u| — '], W'x) =1 = (W'x, |u'| — |u|, ux).
To describe the topology on Gg, let Zp(u) and Zp (1') be two sets of the form (5.3)
with (i) = r(¢’). The topology we shall consider has as a basis the sets of the
form

(5.4) {(ux, (| = ', x) - px € Ze(p), p'x € Zp (i)}

With this topology G becomes an étale locally compact second countable Haus-
dorff groupoid and we can consider the reduced C*-algebra C;(Gg) as in [9]. As
shown by Paterson in [8] there is an isomorphism C*(G) — C;(Gg) which sends
Se to 1., where 1, is the characteristic function of the compact and open set

{(ex,1,r(e)x) : x € 26} C G,
and P, to 1,, where 15 is the characteristic function of the compact and open set

{(vx,0,vx) :x € Qc} C Gg.
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In the following we use the identification C*(G) = C; (Gg) and identify Qg with
the unit space of G via the embedding Q¢ > x — (x,0,x).
Note that 2\ Ve is an open subset of (2 and that we can define a local
homeomorphism
o: QG\Voo — QG
such that ¢ is the usual left shift on P(G), defined such that o(x); = x;,1, while
o(erey - - - ey) is defined as follows when eje; - - - ¢, € Q(G):

exez---e; whenn > 2,
(6132 ... ) —
r(er) whenn = 1.

It is straightforward to check that there is an identification

gG - gO’/

as topological groupoids. In particular, it follows that any continuous function
F: Qg\ Ve — R defines a continuous homomorphism cr : Gz — R such that

|y |

cr(px, |p| — Iuwx:Z px)) — Y F(co"

To simplify notation the one-parameter group of defined from cr will be denoted
by of. It follows from Proposition 5.1 that every continuous homomorphism
Gc — R arises from a continuous function F : Q25\Vew — R as above. We can
therefore formulate Corollary 3.3 in the following way for graph C*-algebras.

THEOREM 5.4. Let F : Qg\Veo — R be a continuous function. There is a
bijective correspondence between the B-KMS weights for of on C*(G) and the pairs
(0, {@x}xen), where y is a regular Borel measure on Qg and {@x}ren, is a p-
measurable field of states @, on C;((Gg)X) such that:

(i) u is ePF-conformal for o,
(i) @x(ug) = @r(n)(upgy—1) for p-almost every x € Qg and all g € (Gg)x, h €
(Gc)y and
(iii) ¢x(1g) = O for p-almost every x € Qg and all g € (Gg)¥\cy*(0).

The B-KMS weight ¢ corresponding to the pair (i, { ¢x } e ) has the properties

that C.(Gg) C My and

5 o) = [ L F()gs(ug) du(x)

0 8€(Gc)x
when f € Cc(Gg).
Similarly, for graph C*-algebras our main result takes the following form.
THEOREM 5.5. Let G be a countable directed graph such that C*(G) is simple.
Let &« = (a¢)ser be a continuous one-parameter group of automorphisms on C*(G) and

assume that for some B # O there is a Bo-KMS weight for «.
The following are equivalent:
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(i) There is a B1 # 0 and a diagonal B1-KMS weight for «.
(ii) Whenever B # 0 and there is a B-KMS weight for «, there is also a diagonal
B-KMS weight for .
(iii) a¢(f) = f forallt € Rand all f € Co(Qg).
(iv) There is a continuous function F : Qg \ Ve — R such that a = oF.

It follows from Theorem 5.4 (and Proposition 5.1) that all KMS weights for
a diagonal action on the C*-algebra of a graph without loops are diagonal. This is
not true in general; not even for finite strongly connected graphs as shown in [15].
However, we can now show that it holds for strongly connected graphs when the
function F has bounded local variation in the a sense we now make precise.

Let v be a vertex in G and set

n—1 ) n—1 )

Vary(F) = sup | - F(o/(x)) = ¥ F(e1(y)
Xy =0 j=0

where we take the supremum over all pairs x,y € P(G) with the property that

xi =y, i =12,...,n,and s(x;) = s(y1) = v. The following condition (5.6)

should be compared with Bowen’s condition used by Walters, cf. [16].

PROPOSITION 5.6. Let G be a countable directed graph such that C*(G) is simple
and let F : Qg \Veo — R be a continuous function such that for some vertex v,

(5.6) sup Var,, »(F) < oo.
n

Then every KMS weight for ot is diagonal.

Proof. The assumption that C*(G) is simple means that G is cofinal in the
sense used (e.g.) in [14] and that every minimal loop in G has an exit, cf. [11]. Itis
easily seen that the set of vertexes v for which (5.6) holds is both hereditary and
saturated. Under the present assumptions it will therefore hold for all v. Consider
a B-KMS weight ¢ and the pair (i, {¢x}xcn, ) associated to it by Theorem 5.4. It
suffices to show that the elements x € (2 for which the isotropy group (Gg)3 is
non-trivial is a null set with respect to . The isotropy group of a point x € (2¢
is non-trivial if and only if x is an infinite pre-periodic path in G, and there are at
most countably many such points. It suffices therefore to show that u({x}) = 0
for any infinite pre-periodic path x. There is an m € N such that xyp = ¢ (x) is
periodic. It follows from (3.2) that

p({xh) = e P (),
so it suffices to show that u({xp}) = 0. Since xg is periodic there is a finite loop
6 in G such that xp = 6°, and since G is cofinal and every loop in G has an exit
there is also a finite loop ¢’ in G such that &' € xg and s(¢') = s(J). By prolonging
0 and ¢’ if necessary we may assume that the length of § and ¢’ are the same, say
p. For each k € N set
Y = (5kc5'x0.
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Since x( is p-periodic it follows from (3.2) that

u({x0}) = e PT%0 FOoD (o,

kp—1

for all k € N, and the desired conclusion follows if —f Y. F(¢7(xp)) is not zero
j=0
kp—1 .

for some k. Consider therefore now the case where — Y. F(0/(xg)) = 0 for all
j=0

k € N. Since (5.6) holds we find then that
kp—1 kp—1 kp—1

(5.7) ’ﬁZF(ﬂyk‘—‘ﬁZF(ﬂyk ,BZF(ﬂxO’ BIK

for all k, where K = sup Var,,(F) and v = s(¢) is the source of 6. Now apply
n
(3.2) again to find that

gy R p i
u({y}) = e PEmo T FOUD (o)),
Inserting (5.7) this leads to the conclusion that

u({yi}) > e K PE0 FEE 1y

where z = §'xy = o*P(y;). Since

:fllu({yk}) < u(Z(v)) < oo,

we conclude that u({xg}) = 0, as desired. 1

It follows from Proposition 5.6 that a generalized gauge action on a graph
C*-algebra, considered for example in [14], where F only depends on the first
edge only has gauge-invariant KMS weights, at least as long as the algebra is
simple.

REMARK 5.7. It should be emphasized that the conclusion in Proposition 5.6
does not hold without some condition on F. To see this observe that the example
presented in [15] shows that already for the canonical finite graph G for which
C*(G) is a copy of the Cuntz algebra O,, namely the graph consisting of one ver-
tex and two arrows, there are continuous non-negative functions F : Qg — R
such that ¢f admits non-diagonal KMS states. In the example from [15] there
is at least a single extremal KMS state which is diagonal, namely the extremal
KMS-state corresponding to the lowest inverse temperature y. Here we want
to indicate how to modify the example in [15] to get an example where no ex-
tremal KMS state is diagonal. The basis for this is a sequence {b, }7° ; of positive
numbers with the following properties:

(@) by > by Vi,
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(b) lim 21 =1,

n—oo n

© ¥ b, <1,and
n=1

(d) ¥ b5 = ooforalls < 1.

n=1

We leave the reader to verify the existence of such a sequence. Set 1y = —logb,
and a; = logby_1 —logby, k > 2, and identify the infinite path space (2 with
{0,1}N by labelling the two arrows in G by 0 and 1. Define then T : {0,1} — R
such that T((x;)>,) = ar where k = min{i : x; = 0} when (x;)?°;, # 1%, and
set T(1®°) = 0. (As in [15] 1® is the infinite string of 1’s.) This is a continuous
non-negative function. By using Theorem 2.2 in [15] and arguing exactly as in
Section 3 of [15], but with the sequence {n~1} replaced by {a,}, it follows that
there are B-KMS states for ¢! if and only if 8 > 1, and for each B > 1 the extremal
KMS states are parametrised by the circle, and none are diagonal. As guaranteed
by Theorem 5.5 there are for each > 1 also one which is diagonal. As explained
in [15] it arises by integrating the extremal ones with respect to Lebesgue measure
on the circle.

Acknowledgements. We thank the referee for remarks which among others led to a
substantial shortening of the proof of Proposition 4.1.
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