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Summary

In the present paper, we describe a new simple stereological method of estimating
volume tensors in 3D from vertical sections. The volume tensors provide information
about particle shape in 3D. In a model-based setting, the method requires that the
particle distribution is invariant under rotations around the vertical axis. In a design-
based approach, where the vertical section is uniformly rotated around the vertical
axis, the method provides information about an index of elongation of the particles
in the direction of the vertical axis. The method has been implemented on human
brain tissue for the analysis of neurons in layer III of the medial frontal gyrus of
Brodmann Area 46. In the actual implementation, the new estimator shows similar
precision as an earlier estimator, based on an optical rotator design, but it is a
factor 3 faster to collect the measurements for the new estimator.

1 Introduction

Recently, stereological methods of estimating particle shape in 3D have been devel-
oped for arbitrarily shaped particles ([13], [20]). The methods use volume tensors
of rank 0, 1 and 2, from which ellipsoidal approximations to the particles can be
constructed. Earlier methods provided information about shape of 2D particle sec-
tions ([2], [3], [4], [19]). In particular, 2D analogues of volume tensors were used to
describe shape of cell sections ([2], [3], [4]).

In [13] and [20], the volume tensors in 3D are estimated from observations in
several optical planes through a sample of particles. The design is called the optical
rotator and has earlier been used for estimating particle volume and surface area
([18]).

1



As shown in the recent book chapter [12], a much simpler alternative method,
which is a generalization of the planar vertical rotator ([10]), can be constructed.
This method uses measurements in a single optical plane, passing through a reference
point of each sampled particle.

The purpose of our paper is to present this new and simple method to scientists
working in optical light microscopy. In a model-based setting, the method requires
that the particle distribution is invariant under rotations around the vertical axis.
In a design-based approach where the vertical section is uniformly rotated around
the vertical axis, the method provides information about an index of elongation of
the particles in the direction of the vertical axis.

The method has been implemented on human brain tissue for the analysis of
neurons in layer III of the medial frontal gyrus of Brodmann Area 46. This area
was chosen, since it has been the subject of studies related to schizophrenia and
depression ([1], [5], [6], [7], [11], [16]). Methods of assessing the precision of the new
estimator, based on a bootstrap procedure, are also provided.

The paper is organized as follows. First, we introduce the volume tensors. Then,
we discuss inference for particle populations and show how the mean particle volume
tensors can be estimated, using the planar vertical rotator design. Finally, volume
tensor data collected on neurons from a human brain in layer III of the medial
frontal gyrus of Brodmann Area 46 are analyzed. Data, using the planar rotator
as well as the optical rotator, are available on the same set of neurons. Finally, we
discuss our results and further research questions. Some derivations are deferred to
two Appendices.

2 Volume tensors

In this section, we introduce the volume tensors in R3 and show how they can be
used for obtaining information about size, position, shape and orientation of a spatial
particle.

Let k be a non-negative integer. The volume tensor of rank k associated with a
particle X (compact subset of R3) is given by

Tk(X) =
1

k!

∫

X

uk du, (1)

where uk is the symmetric tensor of rank k, determined by u = (u1, u2, u3) ∈ R3, and
the integration is with respect to volume (Lebesgue) measure in R3. Here, u0 = 1
and u1 = u, while u2 is the symmetric 3 × 3 matrix with elements (u2)i,j = uiuj,
i, j = 1, 2, 3. For general k, the tensor uk can be represented as a k-dimensional
array. The integration in (1) is to be understood elementwise.

We will focus on volume tensors of rank 0, 1 and 2. The volume tensor of rank 0

T0(X) =

∫

X

1 du = V (X)

is simply the volume of X, while the volume tensor of rank 1 is the following point
in R3

T1(X) =

(∫

X

u1 du,

∫

X

u2 du,

∫

X

u3 du

)
.
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It follows that T1(X)/T0(X) is the centre of gravity c(X) ofX, indicating the position
of X in R3. The volume tensor of rank 2 can be represented as a 3× 3 matrix with
(i, j)’th entry

T2(X)i,j =
1

2

∫

X

uiuj du, i, j = 1, 2, 3.

Combining T0(X), T1(X) and T2(X), we can obtain information about the shape
and orientation ofX. Thus, these tensors can be used to construct a centred ellipsoid
e(X) of the same volume as X such that c(X)+e(X) is an ellipsoidal approximation
to X, cf. Figure 1. If X is an ellipsoid, then X = c(X) + e(X). The ellipsoid e(X)
can be determined from a spectral decomposition of T2(X − c(X)),

T2(X − c(X)) = T2(X)− T1(X)2

2T0(X)
= BΛBT ,

where B is an orthogonal matrix and Λ is a diagonal matrix with diagonal elements
λi, i = 1, 2, 3. The ellipsoid e(X) is determined by having directions of semi-axes
equal to the columns of B, lengths of semi-axes proportional to

√
λi, i = 1, 2, 3, and

volume equal to V (X).

Figure 1: 2D illustration of the ellipsoidal approximation to a particle X (light grey).
Here, c(X) is the centre of gravity of X and e(X) is a centred ellipsoid, approximating
X − c(X). If X is an ellipsoid, X = c(X) + e(X).

3 Inference for particle populations

In the present paper, we are interested in making inference for a particle population
at the population level. Parameters of interest are, for instance, mean particle volume
and mean particle shape.

We will assume that we can associate a reference point xi ∈ Xi to each parti-
cle Xi. We let T̄k, k = 0, 1, 2, be the mean particle volume tensor of rank k, where
each particle Xi enters in the mean with its own reference point xi as origin. For
k = 0, we get the mean particle volume v̄ = T̄0, while c̄ = T̄1/T̄0 is the so-called
displacement vector ([13, p. 232]), containing information about the average differ-
ence between the centre of gravity and the reference point of the particles in the
population. See Figure 2 for an illustration.
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Furthermore, a centred ellipsoid ē can be constructed that provides information
about average particle shape and orientation. The ellipsoid ē is called the Miles
ellipsoid after Roger Miles who was a pioneer in the development of stereological
methods for particle populations with arbitrarily shaped particles. The Miles el-
lipsoid is determined from T̄0, T̄1 and T̄2, using exactly the same method as the
one used for determining e(X) from T0(X), T1(X) and T2(X). If the particles Xi

are translations of the same particle X0, then the Miles ellipsoid is simply the ap-
proximating ellipsoid e(X0). The concept of the Miles ellipsoid is also illustrated
in Figure 2. Further illustrations of the displacement vector and the Miles ellipsoid
may be found in [13, Fig. 3].

Figure 2: 2D illustration of the displacement vector c̄ and the Miles ellipsoid ē for a
particle population, consisting of an equal mixture of ellipses and circular disks. The centre
of gravity of a particle is indicated by an open circle and the reference point by a closed
circle.

The estimates of the mean particle volume tensors will be based on a random
sample of particles. One possibility is to sample all particles with reference point in
a 3D sampling window W . The indices of the sampled particles are then

S = {i : xi ∈ W}.

In the case of disector sampling ([17]), W may be a set of systematically placed
sampling boxes. An estimator of T̄k is the following

1

N(W )

∑

i∈S
Tk(Xi − xi), (2)

k = 0, 1, 2, where N(W ) is the number of sampled particles.The estimator (2) is
ratio-unbiased if W has a uniform random position (design-based approach) or the
particles can be modelled by a stationary point process model (model-based ap-
proach, see Appendix A).

However, for the determination of the estimator (2), we need to be able to deter-
mine the volume tensors Tk directly on the sampled spatial particles. For the case
where we do not have direct access to the particles in 3D, an estimator of Tk based
on observation in an optical rotator, consisting of several optical planes, has been
developed in [13]. As we shall see in the next section, a much simpler alternative
method can be constructed based on observations in a planar vertical rotator.
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4 Estimation using the planar vertical rotator

In this section, we present an estimator of T̄k that only uses measurements in vertical
planes passing through the reference points of the sampled particles.

The estimator is valid in a model-based setting if the particles can be modelled by
a stationary marked point process, satisfying the assumption of rotational invariance
with respect to a predetermined fixed axis, called the vertical axis. (We use this
terminology for the axis also in cases where it is not vertical.) The particle process
is rotation invariant, if the particle distribution is invariant under rotations around
the vertical axis. Under rotational invariance, the vertical axis represents the average
orientation of the particles in 3D and, as we shall see, the mean particle shape in
3D can be estimated from observations in vertical planes. The point process model
is described in detail in Appendix A where also rotational invariance is formally
defined.

The design used for each sampled particle X is a new, innovative application
of the planar vertical rotator design ([10]), involving registration of 3D coordinates
of intersection points. The design consists of a plane, passing through the reference
point of the particle, taken here to be the origin O. The plane contains the ver-
tical axis. The section is subsampled by a systematic set of alternating half lines,
perpendicular to the vertical axis, see Figure 3.

In [12, p. 427-429], ratio-unbiased estimators of T̄k are derived under the rota-
tional invariance assumption. (In [12], ‘rotational invariance’ was called ‘restricted
isotropy’.) The estimators T̂k are of the following form

T̂k =
1

N(W )

∑

i∈S
T̃k([Xi − xi] ∩ L), (3)

Figure 3: (Left) The particle X is sectioned by a vertical plane, containing the vertical
axis (VA) and passing through the reference point O of the particle. (Right) The section is
subsampled by a systematic set of half lines. The intersection points on a given half line are
ordered according to decreasing distance to VA and are given alternating signs, starting
with + for the most distant intersection point.
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where L is the notation used for the vertical plane. The ratio-unbiasedness relies
on the fact that under rotational invariance the distribution of size, orientation and
shape of the section profiles {[Xi − xi] ∩ L} does not depend on the rotation of L
around the vertical axis. An illustration of this property may be found in [9, Fig. 10].

In Appendix A, the explicit form of T̃k is derived for k = 0, 1, 2. For a sampled
particle X with reference point O, T̃k(X ∩L) is a sum over intersection points {Pj}
between half lines and the boundary of X

T̃k(X ∩ L) =

+/−∑

j

gk(Pj), k = 0, 1, 2. (4)

The sign of an intersection point is also shown in Figure 3. If we let d be the
distance between neighbour half lines and choose a coordinate system such that L
is the xy-plane and the vertical axis is the y-axis, then we get for an intersection
point P = (x, y, 0)

g0(x, y, 0) = πd x2, (5)
g1(x, y, 0) = (0, πd x2y, 0), (6)

g2(x, y, 0) =




π
8
d x4 0 0
0 π

2
d x2y2 0

0 0 π
8
d x4


 . (7)

The estimator of volume obtained by using the g0-function already appeared in [10].
Note that the gk-functions, k = 0, 1, 2, are much simpler than the ones appearing in
[13, p. 231] where the optical rotator was used instead of the planar vertical rotator.

Under the assumption of rotational invariance, the mean particle volume is esti-
mated by v̂ = T̂0 and the displacement vector by ĉ = T̂1/T̂0. An estimator ê of the
Miles ellipsoid can be calculated from T̂0, T̂1 and T̂2, using the same procedure as
the one used for constructing e(X) from T0(X), T1(X) and T2(X).

Note that the estimated displacement vector ĉ is parallel to the vertical axis.
Furthermore, the estimated Miles ellipsoid ê is an ellipsoid of revolution around the
vertical axis, since

T̂2 −
(T̂1)

2

2T̂0

is a diagonal matrix with first and third diagonal elements equal. Under rotational
invariance, the same is true for the theoretical quantities c̄ and ē, see Appendix A.

5 Relaxing the rotational invariance assumption

When rotational invariance is satisfied, it is not needed to rotate the vertical planes
around the vertical axis. However, if rotational invariance is not a plausible model
assumption, one may instead adopt a design-based approach and use vertical planes
that are uniformly rotated around the vertical axis. More specifically, rotational
invariance may be introduced into the model by letting the vertical plane L, used
in the estimators T̂k in (3), have a uniform rotation around the vertical axis. An
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equivalent description of the situation is that each centred particle Xi − xi is given
a random rotation and then sectioned by a fixed vertical plane L0, say. The induced
particle model satisfies the rotational invariance assumption.

Under this design-based approach, v̂ is still an unbiased estimator of the mean
particle volume v̄. As explained in Appendix A, ĉ becomes an estimator of the
projection onto the vertical axis of the displacement vector c̄.

In this design-based approach, the estimator ê of the Miles ellipsoid may be
used to estimate an index I of elongation of the particles in the direction of the
vertical axis. The Miles ellipsoid in the induced model is an ellipsoid of revolution
around the vertical axis. If the lengths of the semi-axes of this ellipsoid, parallel
and perpendicular to the vertical axis, are denoted a and b, respectively, then the
elongation index I is

I = a/b.

Large values of I indicate elongation in the direction of the vertical axis. The index
I takes the value 1, if the original particle population is isotropic. More details about
this index may be found in Appendix A.

6 Practical implementation of tensors in
optical light microscopy

In this section and the next, we exemplify the estimation of volume tensors, using the
planar vertical rotator design, as explained in the previous sections. The resulting
estimator (3) of the volume tensor of rank k will here be called the section estimator.
We will compare the performance of the section estimator with that of the estimator
developed in [13], based on the optical rotator design. The latter estimator will be
called the slice estimator.

The two types of volume tensor estimation methods were used on the same set
of neurons from a 40 µm thick section from layer III of the medial frontal gyrus
(MFG) of Brodmann Area 46 (BA46) in the human cerebral cortex ([14], [15]). One
formalin-fixed brain from a male patient with no history of neurological condition
was selected from the brain collection at Core Centre for Molecular Morphology,
Section for Stereology and Microscopy, Aarhus University Hospital, Aarhus, Den-
mark. The brain was collected in accordance with Danish law and with permission
from the local ethical committee, see case no. 1-10-72-91-17. Data were obtained,
using an Olympus BX51 light microscope with Olympus DP70 camera, an Olympus
60x oil lens (NA=1.35), prior motorized stage and newCAST software (Visiopharm,
Hørsholm, Denmark).

The sampling of tissue is illustrated in Figure 4 while the sample area within
MFG used for further analysis is marked as a yellow rectangle in Figure 5. The
sample area was analyzed with a systematic set of disectors, resulting in 111 sampled
neurons. The nucleolus of a neuron was used as reference point in the sampling.
Figure 6 illustrates the collection of measurements for a sampled neuron, required
for the section estimator. In the actual implementation, n = 4 half lines were used.
An illustration of the measurements required for the slice estimator may be found
in [13, Fig. 7]. Three optical planes were used for analysis of a sampled neuron and
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each optical plane was analyzed by two full lines. Since the expected number of
intersection points is three times larger for the slice estimator than for the section
estimator, the expected workload associated with the slice estimator is three times
larger than that of the section estimator.

A

C

B

D

Figure 4: (A) The region BA46 is defined by its cytoarchitecture and is part of the
Dorsolateral Prefrontal Cortex (DLPFC) which can be identified at the macroscopic level.
(B) A coronal block of DLPFC. (C) The tissue block is rotated uniformly around a vertical
axis (VA), perpendicular to the central pial surface of the block. (D) After agar hardening,
the block is cut into 2.5 mm thick parallel vertical slabs. The slabs are embedded in plastic
(Technovit 7100) and subsequently cut into 40 µm thick sections that are stained with a
Toluidinblue-Borax solution before further analysis.

MFG
IFG}

VA

}

3 mm

Figure 5: The sample area within the medial frontal gyrus (MFG) is marked with a yellow
rectangle. The inferior frontal gyrus (IFG) is also indicated. VA is the vertical axis.
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A

C

B

D

35 µm

Figure 6: Measurement steps for a sampled neuron in layer III of the medial frontal
gyrus in BA46, required for the section estimator. (A) A neuron in focus inside the optical
disector. (B) The nucleolus was chosen as the reference point and the pre-defined vertical
axis appears as a blue line. (C) The cell boundary in the vertical direction (top and bottom)
are marked. (D) Four half lines perpendicular to the vertical axis with uniform random
position appear. The intersection points between the neuron boundary and the half lines
are marked with +.

7 Tensor data analysis

In Table 1, we show the estimated mean particle volume v̂, the signed length of the
estimated displacement vector ĉ, the lengths of the semi-axes of the estimated Miles
ellipsoid ê and the estimated elongation index, based on the section and the slice
estimators, respectively. Recall that the elongation index is the ratio between the
lengths of the semi-axes parallel and perpendicular to the vertical axis. Since we
have taken a design-based approach and rotated the tissue block uniformly around
the vertical axis, we do not need to assume rotational invariance and, in this case,
ĉ estimates the average distance along the vertical axis from the nucleolus to the
centre of gravity of a neuron. Likewise, as explained earlier, the estimate of the
elongation index is valid without rotational invariance.

The estimated mean particle volumes, based on the section and the slice esti-
mator, are quite similar and in fact equal to volumes of balls of radii 10.77 µm and
10.99 µm, respectively. As a further investigation, we plot in Figure 7 the estimated
particle volume, based on the slice estimator, against the estimated particle volume,
based on the section estimator, for each of the 111 sampled neurons separately.

It is of course important to know the precision of the estimates, presented in
Table 1. The variance of the volume estimators v̂ can be estimated by the empir-
ical variance. The displacement vector is estimated by a ratio so, using a Taylor
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Table 1: For the sample of 111 neurons, the table shows the estimated mean particle
volume, the signed length of the estimated displacement vector, the lengths of the semi-
axes of the estimated Miles ellipsoid and the estimated elongation index, based on the
section and the slice estimators, respectively. For more details, see the text.

Section estimator Slice estimator

Volume (µm3) 5235 5558
Displacement (µm) 1.86 2.00
Parallel semi-axis (µm) 12.77 13.85
Perpendicular semi-axes (µm) 9.89 9.79
Elongation index 1.29 1.41
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Figure 7: For each of the 111 sampled neurons, the volume estimate, based on the slice
estimator, is plotted against the volume estimate, based on the section estimator. The
dotted line is the identity.

expansion of the ratio combined with empirical variances/covariances, we can ob-
tain an estimate of the variance of the signed length of the displacement estimator.
Estimation of the variances of the quantities relating to the Miles ellipsoid is more
complicated. However, for any of the estimators, we can use classical resampling
bootstrap to assess the variance, assuming that our sample is at least approximately
independent and identically distributed ([8]). The results are given in Table 2. The
alternative variance estimation methods mentioned above gave similar results, when
applicable.

Part of the variance of the section estimator is due to the random positioning of
the half lines on the neuron profiles. For the slice estimator, the random positioning
of the three optical planes and the lines within the optical planes contribute to the
variance. In order to assess the magnitude of this design variance in relation to
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Table 2: Estimated bias and coefficient of variation for the sample of 111 neurons. Since
the displacement vector may have zero length, the standard deviation is reported instead
of the coefficient of variation for this parameter. For more details, see the text.

Section estimator Slice estimator

Bootstrap Bootstrap

Volume CV 0.059 0.060

Displacement Bias −0.003 −0.001
SD 0.309 0.289

Parallel Bias 0.004 0.002
semi-axis CV 0.027 0.039

Perpendicular Bias −0.006 −0.002
semi-axes CV 0.026 0.027

Elongation Bias 0.002 0.002
index CV 0.035 0.051

the total estimator variance, we performed 5 repeated measurements of 20 sampled
neurons. Since the sampled neurons come from the same vertical slab, the remaining
part of the total estimator variance includes variability due to the rotation of the
slab around the vertical axis.

We will focus on estimation of mean particle volume, displacement and elongation
index. The obtained estimates based on all data are shown in Table 3, together
with the average time spent collecting a single set of measurements on one sampled
neuron. Note that the estimated mean particle volumes, based on the section and
the slice estimator, equal volumes of balls of radii 11.4 µm and 11.7 µm, respectively.
Note also that the time is approximately a factor 3 larger for the slice estimator
than for the section estimator.

In Tables 4–6, we assess the precision of the estimator of volume, displacement
and elongation index in the case when a single set of measurements is available for
20 neurons. A bootstrap procedure can be used for this assessment, see Appendix B.

Table 3: The table shows for the section and the slice estimators, respectively, the esti-
mated mean particle volume, the signed length of the estimated displacement vector and
the estimated elongation index, based on 5 repeated measurements of 20 sampled neurons.
The average time spent collecting a single set of measurements on one sampled neuron is
also shown.

Section estimator Slice estimator

Volume (µm3) 6151 6747
Displacement (µm) 0.41 0.078
Elongation index 1.198 1.257

Time (s) 7.0 19.5
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In Table 4, we show the components of the estimated variance for the mean
particle volume estimator. The variance estimates have been determined empirically
and by a bootstrap procedure, see Appendix B. When using bootstrap, the total
variance may either be estimated as the sum of the average design variance and the
particle variance (indicated by (+) in Table 4) or by a separate procedure. Note that
the obtained coefficient of variation (CV) is 17% for both the section and the slice
estimator. This is the precision of the estimated mean particle volume, when using
a single set of measurements on 20 neurons.

Table 4: Components of the variance for volume estimators. For more details, see the text.

Section estimator Slice estimator

Empirical Bootstrap Empirical Bootstrap

Average design variance 12836 10291 76125 60149
Particle variance 1056755 1005402 1226403 1165501
Total variance 1069590 (+)1015693 1302528 (+)1225650

1027098 1230964

Total CV 0.168 0.165 0.169 0.164

The components of the estimated variance of the displacement estimator, based
on a single set of measurements on 20 neurons, may be found in Table 5. An estimate
of the bias of the estimator of the signed length of the displacement may also be
found in Table 5. As explained in Appendix B, the variance components may in the
case of the section estimator be estimated, using a Taylor expansion or a bootstrap
method. The estimated bias is small in absolute terms.

Table 5: Bias, variance and SD for the signed length of the displacement. For more details,
see the text.

Section estimator Slice estimator

Taylor Bootstrap Bootstrap

Bias — 0.047 0.017

Average design variance 0.050 0.093 0.100
Particle variance 0.941 0.877 0.719
Total variance 0.991 (+)0.970 (+)0.820

— 0.967 0.817

Total SD 0.995 0.983 0.904

In Table 6, the results for the elongation index are shown. The estimated bias is
again small in absolute terms.

In Tables 4–6, the section and the slice estimator show similar performance,
regarding bias and variance. However, the time spent for determining the slice esti-
mator is a factor 3 longer than for the section estimator.
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Table 6: Bias, variance and CV for the elongation index. For more details, see the text.

Section estimator Slice estimator

Bootstrap Bootstrap

Bias 0.0260 0.0044

Average design variance 0.0037 0.0035
Particle variance 0.0161 0.0060
Total variance (+)0.0198 (+)0.0095

0.0193 0.0095

Total CV 0.1160 0.0775

8 Discussion

In the present paper, we have described a new, simple stereological method of esti-
mating volume tensors in 3D from vertical sections. In contrast to the earlier method,
based on observation in several optical planes, see [13], the new method is not sen-
sitive to tissue shrinkage. Furthermore, in the examples considered in the present
paper and in earlier simulation studies ([12]), the new estimator is more efficient
than the one presented in [13].

Methods of assessing the bias and the precision of the new estimator, based on
a bootstrap procedure, have also been provided in the present paper. Note that the
estimator of mean particle volume is unbiased, while the estimators of displacement
and elongation index may be biased to a degree, depending on the number of sampled
particles. In the example, we found that the bias was small and in fact negligible if
100 neurons were sampled. The CVs obtained with 100 neurons were about 5% for
volume and elongation while about 15% for displacement.

In a model-based setting, the new method requires that the particle population
satisfies the assumption of rotational invariance with respect to the chosen vertical
axis. A consequence of rotational invariance, that can be checked with the available
observations, is the following. For each particle, consider the profile Xi ∩ (xi + L),
generated by the vertical plane centred at the reference point xi of the particle.
Reflect within xi + L the profile in the vertical axis through xi. If rotational invari-
ance is satisfied, the distribution of the reflected profiles will be the same as the
distribution of the original profiles.

It is part of our future research plans to develop such procedures for checking
rotational invariance. In the actual example from BA46, considered in the present
paper, we adopted the design-based approach and used a vertical plane that was
uniformly rotated around the vertical axis. This approach allowed us to estimate
mean particle volume, the displacement in the direction of the vertical axis and the
elongation index.
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Appendix A – model-based approach

The particle population of compact particles in R3 is modelled by a stationary
marked point process

{[xi;Xi − xi]},
where xi ∈ Xi is a reference point of the i’th particle Xi and the mark Xi − xi is
the particle translated such that its reference point is at the origin O.

Let X0 be a random compact set distributed according to the particle mark
distribution. The random set X0 may be considered as a typical particle with O as
its reference point. In this model-based approach, the mean particle volume tensor
of rank k is given by T̄k = ETk(X0).

The estimator (2) is ratio-unbiased under this model-based approach. To see this,
we use that for a function f on compact subsets of R3

E
∑

i∈S
f(Xi − xi) = E

∑

xi∈W
f(Xi − xi) = λV (W )Ef(X0),
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where λ is the intensity of the marked point process. It follows that

E
∑

i∈S f(Xi − xi)
EN(W )

= Ef(X0). (8)

Choosing f in (8) as the elements of Tk, we get

E
∑

i∈S Tk(Xi − xi)
EN(W )

= ETk(X0),

and the estimator (2) is therefore a ratio-unbiased estimator of T̄k = ETk(X0).
The particle process is said to satisfy the rotational invariance assumption with

respect to a line M through O if the distribution of X0 is invariant under rotations
around M . The line M is called the vertical axis, although M may be an arbitrary
line.

It follows from [12, (14.10) with r = 1, 2] that, under the rotational invariance
assumption, the displacement vector c̄ = ET1(X0)/ET0(X0) is parallel to the vertical
axis and the Miles ellipsoid ē is a centred ellipsoid of revolution around the vertical
axis. In the particular case where the particle process is isotropic, c̄ = O and ē is a
ball centred at O with volume equal to the mean particle volume v̄.

If we choose a coordinate system such that the vertical plane L is the xy-plane
and M is the y-axis, then under the rotational invariance assumption ETk(X0) can
be unbiasedly estimated by Ťk(X0 ∩ L) where for k = 0, 1, 2, cf. [12, (14.10)],

Ť0(X0 ∩ L) = π

∫

X0∩L
|x| dx dy,

Ť1(X0 ∩ L) =
(

0, π

∫

X0∩L
|x|y dx dy, 0

)
,

and Ť2(X0 ∩ L) is a 3× 3 diagonal matrix with diagonal elements

Ť2(X0 ∩ L)11 = Ť2(X0 ∩ L)33 =
π

4

∫

X0∩L
|x|3 dx dy

and
Ť2(X0 ∩ L)22 =

π

2

∫

X0∩L
|x|y2 dx dy.

Note that any of these integrals can be determined from information only within
X0 ∩ L.

The estimators Ťk(X0 ∩ L) involve integrals of the form
∫

X∩L
|x|i1yi2 dx dy, (9)

where X is a compact subset of R3 and i1, i2 are non-negative integers. Note that
i1 is always an odd integer. If the profile X ∩ L is not available in digitized form,
we may estimate the integral (9), using e.g. a line grid perpendicular to the y-axis.
Let L1(y) denote the line in the xy-plane, perpendicular to the y-axis, at height y.
Let y− and y+ be the lowest and highest point of the projection of X ∩ L onto the
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y-axis. Let n be the number of lines, used in the line grid. The set of lines in the
line grid is given by

L1(yj), j = 0, . . . , n− 1,

where yj = U + j
n
(y+−y−) and U ∼ Unif(y−, y−+ y+−y−

n
). The integral (9) can then

be unbiasedly estimated by

y+ − y−
n

n−1∑

j=0

∫

X∩L1(yj)

|x|i1 dx× yi2j .

If X ∩ L1(y) consists of a union of line segments, then for i1 odd

∫

X∩L1(y)

|x|i1 dx =

+/−∑

P∈∂X∩L1(y)

d(P,M)i1+1/(i1 + 1),

where d(P,M) is the distance from P to the y-axis, here denoted M , and the con-
vention for the sign of an intersection point is as for the vertical rotator ([10]). More
specifically, the intersection points on a given half line are ordered according to
decreasing distance to the vertical axis M and are given alternating signs, starting
with + for the most distant intersection point. If we in Ťk(X∩L) use this discretized
form instead of (9), we obtain T̃k(X ∩ L) in the main text, see (4).

Note that we may increase the efficiency of the estimation procedure by alter-
nately choosing the positive and the negative half line with a random start, as shown
in Figure 3 (right) in the main text. In that case, the contribution from each half
line should be multiplied by 2 in order to obtain an unbiased estimator of (9).

As mentioned in the main text, rotational invariance may be introduced into the
particle model by letting the vertical plane L in (3) be distributed as RL0, where
R is a uniform random rotation around M and L0 is a fixed vertical plane. The
estimator T̂k can then be rewritten as

T̂k =
1

N(W )

∑

i∈S
T̃k(R

−1[Xi − xi] ∩ L0),

where R−1 is the inverse rotation. So an equivalent description of the situation is
that each centred particle Xi − xi is given a uniform random rotation and then
sectioned by the fixed vertical plane L0.

The induced particle model

{[x(Xi);R
−1(Xi − xi)]}

satisfies the rotational invariance assumption with typical particle X̃0 = R−1X0.
Using that R is a uniform random rotation around M , we get for any u ∈ R3

ER−1u = PMu,

where PM is the orthogonal projection onto M , and it follows that

ET1(X̃0) = PMET1(X0).
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Since ET0(X̃0) = ET0(X0), the displacement vector in the induced model is therefore
equal to the projection of the displacement vector c̄ in the original model onto
the vertical axis M . Accordingly, in the design-based approach, T̂1/T̂0 becomes an
estimator of PM c̄.

As mentioned earlier, in the design-based approach we may imagine that each
centred particle Xi − xi is given a uniform random rotation around the vertical
axis. Remaining shape information is available in the Miles ellipsoid of the induced
model. Due to the fact that the induced model satisfies the rotational invariance
assumption, this Miles ellipsoid is an ellipsoid of revolution around the vertical axis.
The elongation index I is the ratio between the lengths of the semi-axes of this
ellipsoid, parallel and perpendicular to the vertical axis.

Appendix B – bootstrap methods

We have data of r = 5 repeated measurements for each of n = 20 neurons. The over-
all results (averaging over all 100 measurements) for the data are given in Table 3.
We have also used the data to assess the precision of the proposed estimators in the
case where a single set of measurements is available for each of n = 20 particles. For
this situation, Tables 4–6 summarize estimates of the different components of the
variance for the volume estimator, the displacement and the elongation index using
a bootstrap procedure (and a Taylor expansion approach where possible). For the
volume estimator, we also estimated the variances by the empirical counterparts.

The bootstrap procedures work as follows. Let x = (xkj)k=1,...,20,j=1,...,5 be the
collection of (vectorized) volume tensors estimated five times for each of n = 20
particles from r = 5 iid repeated measurements. Our aim is to assess the precision
of the estimator of volume, displacement and elongation index in the case when
r = 1 measurement is available for n = 20 particles. For a set y = (yk)k=1,...,20 of
one set of measurements per particle, we denote any of these estimators by θ(y).
The overall estimate, averaging over all 100 measurements, is denoted by θ̄. The
estimators we consider are not necessarily unbiased, so we aim to assess their bias,
variance and coefficient of variation (CV) by a bootstrap procedure. To do so, we
draw B = 105 bootstrap samples, where we first pick a sample {k1, . . . , k20} with
replacement from the indices 1, . . . , 20 and then for each ki, we pick a random index
ji ∈ {1, . . . , 5}. Then, for each bootstrap sample b = ((ki, ji))i=1,...,20, we compute

θ∗b = θ((xki,ji)i=1,...,20).

We obtain the following bootstrap estimates of bias and variance

B̂ias =
1

B

∑

b

(θ∗b − θ̄)

V̂ar =
1

B − 1

∑

b

(
θ∗b −

1

B

∑

b

θ∗b

)2
(10)

where b denotes a bootstrap sample. This procedure was used to obtain the estimates
of the total variance in the second last line in Tables 4–6.
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The variance of θ can be decomposed as follows

Var
(
θ(Y)

)
= E

(
Var(θ(Y)|P )

)
+ Var

(
E(θ(Y)|P )

)
(11)

where |P stands for “given the 20 particles” and Y is the random variable corre-
sponding to the observation y. We refer to the first part in the above decomposition
as the average design variance and to the second part as the particle variance.

For a bootstrap estimate of the average design variance, we proceed as follows.
For k = 1, . . . , 20, we draw a bootstrap observation jk ∈ {1, . . . , 5}, and then we
compute the variance as in (10) using

θ∗D,b = θ((xkjk)k=1,...,20).

We also use a bootstrap procedure to estimate the particle variance. Here, we
draw bootstrap samples b = {k1, . . . , kn} of size n = 20 with replacement from
{1, . . . , 20} and use θ∗P,b to compute the variance as in (10), where

θ∗P,b = θ
((1

5

5∑

j=1

xkij

)
i=1,...,20

)
.

The bootstrap procedure yields two estimates of the total variance of θ(Y). One
is obtained directly and one is the sum of the two bootstrap estimates of the average
design variance and the particle variance. Both estimates agree well overall. The sum
is marked with a (+) in Tables 4–6.

For the volume estimators, we can alternatively estimate the total variance and
the components of the variance in (11) by the empirical counterparts. For the section
estimator used for the displacement, one can alternatively use a Taylor expansion
approximation to estimate the variance components. We have

T1
T0
≈ E(T1)

E(T0)
+

1

E(T0)

(
T1 − E(T1)

)
− E(T1)

E(T0)2
(
T0 − E(T0)

)
.

Hence

Var

(
T1
T0

)
≈ Var(T1)

E(T0)2
− 2Cov(T1, T0)

E(T1)

E(T0)3
+ Var(T0)

E(T1)
2

E(T0)4
,

Var

(
T1
T0

∣∣∣∣P
)
≈ Var(T1|P )

E(T0|P )2
− 2Cov(T1, T0|P )

E(T1|P )

E(T0|P )3

+ Var(T0|P )
E(T1|P )2

E(T0|P )4
,

Var
(
E
(
T1
T0

∣∣∣∣P
))
≈ Var(E(T1|P ))

E(T0)2
− 2Cov

(
E(T1|P ),E(T0|P )

) E(T1)

E(T0)3

+ Var(E(T0|P ))
E(T1)

2

E(T0)4
,

where our data allows us to estimate the quantities on the right hand side of the
second and third line by their empirical counterparts. We estimate the total variance
as the sum of the average design variance and the particle variance.
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