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Abstract

In this paper we consider the problem of numerical integration when sampling
nodes are random, and we suggest to use Newton-Cotes quadrature rules to ex-
ploit smoothness properties of the integrand. In previous papers it was shown
that a Riemann sum approach can cause a severe variance inflation when the
sampling points are not equidistant. However, under some integrability condi-
tions on the typical point-distance, we show that Newton-Cotes quadratures
based on a stationary point process in R yield unbiased estimators for the
integral and that the aforementioned variance inflation can be avoided if a
Newton-Cotes quadrature of sufficiently high order is applied. In a stereolog-
ical application, this corresponds to the estimation of volume of a compact
object from area measurements on parallel sections.

Keywords: Point processes, Cavalieri estimator, randomized Newton-Cotes
quadrature, numerical integration, asymptotic variance bounds.

1 Introduction and main results

Before turning to the main subject of Newton-Cotes quadratures based on random
nodes, we describe a geometric application that was the original motivation for
this work. This application will also be taken up at the end of the paper to illus-
trate our findings in stereological examples. It is well known that, using Cavalieri’s
principle, the volume of a d-dimensional solid can be approximated from (d − 1)-
dimensional volume measurements on parallel hyperplanes intersecting the object
with equidistant spacing. In particular, the volume of a compact object Y ⊂ R3 can
be approximated from sections with equidistant and parallel planes positioned along
some fixed direction ν ∈ S2, if the area of each intersection profile is accessible; see
[2, Chap. 7]. Formally, if f(x) is the area of the intersection of Y with the plane
positioned at a signed distance x ∈ R from the origin along ν, the classical Cavalieri
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estimator approximates the integral
∫
fdx = Vol(Y ) of the measurement function

f : R→ R by a Riemann sum

V̂ (f) = t
∑

x∈X
f(tx) for t > 0, (1.1)

whereX = U+Z is a regular standard grid in R shifted with U ∈ R. The variable t >
0 rescales this grid, and we will in particular be interested in the behaviour of V̂ (f)
when t approaches 0. In design-based sampling the set of nodes is randomized by
choosing U uniform in the interval (0, 1). This choice of U turns X into a stationary
point process (i.e. a random locally finite collection of points in R with a translation
invariant distribution) and implies that the random variable V̂ (f) is unbiased for∫
fdx. When the points in X are not exactly equidistant, but when the average

distance between consecutive points is 1, a natural idea is to simply approximate∫
fdx as if the points were equidistant, yielding the generalized Cavalieri estimator,

V̂0(f) = t
∑

x∈X
f(tx), (1.2)

which looks formally like (1.1), but allows for point processesX with non-equidistant
points. The estimator (1.2) is unbiased when X is stationary. However, as remarked
in [3] and [12], the variance of the generalized Cavalieri estimator may be substan-
tially larger than the variance in the equidistant case. The purpose of the present
paper is to show and quantify that this increase in variance can be reduced by using
Newton-Cotes quadrature approximations of higher order instead of the crude sum
(1.2).

The key problem is the statistical analysis of Newton-Cotes quadratures based
on randomized nodes. We therefore treat this problem in full generality and will
return to the stereological question at the end of the paper in a simulation study in
section 7. Throughout the following we assume that an integrable function f : R→ R
with compact support is given, and that it can be evaluated at the points of a
simple stationary point process X ⊂ R; see sections 2 and 3 for details. From now
on all point processes are assumed to be simple, stationary and with positive and
finite intensity. An introduction to the theory of point processes can be found in [9,
Chap. 3].

Realizations of X are (almost surely) locally finite collections of distinct points
in R such that the convex hull Conv(X) of X is R. We therefore recall the definition
of the n-th Newton-Cotes estimator V̂n(f), n ∈ N, from [6] for a fixed realization of
X. On the interval from a point x0 ∈ X to its n’th right neighbour in X, say xn,
the function f is approximated by a polynomial of degree at most n ∈ N passing
through the points {xj, f(xj)}nj=0, where x1 < · · · < xn−1 are the ordered points in
X ∩ (x0, xn). V̂n(f) is then an average of the integral of the concatenation of such
approximations with respect to the starting point chosen. V̂n(f) thus becomes a
weighted average of f over all points in X, V̂n(f) =

∑
x∈X α(x;X)f(x), where the

weights satisfy α(tx; tX) = tα(x;X) for all x ∈ X and t > 0; see Definition 2.1 for
details. We will see in Remark 4.1 that α(x;X) = 1 whenX = U+Z is the translated
standard grid, and therefore, Newton-Cotes estimators of any order applied to the
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scaled translated standard grid tX = t(U +Z) yield the classical Cavalieri estimator
(1.1), that is, V̂n(f) = V̂ (f) for any n ∈ N.

When applying the estimator on randomized sampling points, we work under
the general assumption that a typical distance between two consecutive points has
finite positive and negative moments of all orders:

Assumption 1.1.
E0hj1 <∞ for all j ∈ Z. (1.3)

Here E0 is the expectation under the Palm-distribution ofX, that is, the distribution
of X given that 0 ∈ X (see e.g. [9, sec. 3.3]) and h1 is the lag between 0 and its right
neighbour in X. This assumption is certainly not necessary for the results to hold
for a given n, but finding a necessary and sufficient condition appears to be quite
technical. Our first result shows the unbiasedness of V̂n(f).

Theorem 1.2. Let n ∈ N be given and assume that X is a stationary point process
such that (1.3) is satisfied. Then V̂n(f) is unbiased:

EV̂n(f) =

∫

R
f(x)dx

for all integrable and real-valued functions f with compact support.

In section 4 we present a weaker assumption than (1.3) which is sufficient to
ensure the unbiasedness of V̂n(f), see Assumption 3.1. However, the unbiasedness
is known to hold for n = 1 without integrability conditions and for n = 2 under a
weaker condition than the one presented in (1.3); [6, Ex. 1 and Cor. 3].

Like in the case of classical quadrature, high order quadrature is reducing the
discretization error when the measurement function is smooth. We adopt a smooth-
ness condition which is in widespread use in stereological applications. For m, p ∈
N0 ∪ {∞}, we say that a measurable function f with compact support is (m, p)-
piecewise smooth if it is in Cm−1(R) (only for m ≥ 1) and all derivatives up to
order m+ p exist and are continuous except in at most finitely many points, where
they may have finite jumps. Hence, if f is (m, p)-piecewise smooth, m is the small-
est order of derivative of f which may have jumps; see e.g. [7] for details on such
functions. For our results to hold, we require that p ≥ 1, however, the exact value
of p is otherwise irrelevant. We therefore state all results only for (m, 1)-piecewise
smooth functions. We say that a function f is exactly (m, 1)-piecewise smooth if it
is (m, 1)-piecewise smooth with discontinuous m’th derivative. We let Df (m) denote
the finite set of discontinuity points of f (m), with

a 7→ Jf (m)(a) = lim
x→a+

f (m)(x)− lim
x→a−

f (m)(x)

denoting the corresponding jump-function. The classical Euler-McLaurin formulae
comparing the integral of a function with a Riemann sum approximation are in-
sufficient when assessing the error of V̂n(f), as the sampling points need not be
equidistant. However, applying a refined partial integration formula for piecewise
smooth functions yields a refined version of the classical Peano error representation
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theorem ([11, Theorem 3.2.3]) adopted to such functions. This results expresses the
discretization error

R(n)(f) = V̂n(f)−
∫

R
f(x)dx (1.4)

in terms of higher order derivatives of f . We state it for a realization of X, that is, we
consider X as a deterministic locally finite set of distinct points with Conv(X) = R.

Theorem 1.3 (Refined Peano error representation for Newton-Cotes estimation).
Let n ∈ N be fixed. Given X and m ≤ n there exists a function Km such that

R(n)(f) =

∫

R
f (m+1)(r)Km(r)dr +

∑

a∈Df (m)

Jf (m)(a)Km(a) (1.5)

for all (m, 1)-piecewise smooth functions f : R→ R.

Remark 1.4. The function Km will be called the m’th Peano kernel. It is a piecewise
polynomial of order at most m+ 1 with coefficients given in terms of X. The m’th
Peano kernel is explicitly given by (2.7), below. It is shown in Lemma 3.2 that
for a stationary point process X satisfying (1.3), Km is a stationary stochastic
process on the real line with positive moments of all orders. In particular, the mean
EKm(0) = EKm(r) and the covariance function Hm(s) = Cov(Km(r), Km(s + r))
are both finite and independent of r ∈ R.

When applying the classical Cavalieri estimator with tX = t(U + Z), exact
variance expressions have been found in e.g. [2, Section 13.2]. Let ∗ denote the
convolution operator and let the reflection f̌ be defined as f̌(x) = f(−x). When the
measurement function f is (m, 1)-piecewise smooth, it can be shown [7, Corollary 5.8]
that the so-called covariogram g = f ∗ f̌ is (2m+ 1, 1)-piecewise smooth. When f is
exactly (m, 1)-piecewise smooth, one usually decomposes the variance of V̂ (f) as

Var(V̂ (f)) = VarE(V̂ (f)) + Z(t) + o(t2m+2)

when t ↓ 0. The Zitterbewegung Z(t), which is of order t2m+2, is a finite sum of terms
oscillating around 0, o(t2m+2) is a low-order remainder and the extension term

VarE(V̂ (f)) = t2m+2g(2m+1)(0+)cm (1.6)

explains the overall trend of the variance. Here cm = − 2B2m+2

(2m+2)!
6= 0, where Bk is the

k’th Bernoulli number (see section 5 below), and as such cm does not depend on t
or the function f , other than through its order of smoothness. When applying the
generalized Cavalieri estimator to the following two specific non-equidistant point
models, which are very realistic from a practical point of view, it is shown in [12]
that a variance inflation is present.

Example 1.5 (Perturbed model). A stationary point process is from the perturbed
model if it is derived from equidistant points by having i.i.d. perturbations Ei,
i ∈ Z, of every point; see subsection 6.1. From a stereological perspective this model
is reasonable when cutting an object into slabs using a fixed set of blades which are
equidistant but due to e.g. softness of material exhibit some variation from exact
equidistance.
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Example 1.6 (Model with cumulative errors). A stationary point process X is from
the model with cumulative errors if the intercepts ωi, i ∈ Z, between two consecutive
points ofX form an i.i.d. sequence; see subsection 6.2. This model is reasonable when
the cutting of an object into slabs works like a meat slicer.

The classical stationary point grid U +Z is a special case of both the perturbed
model and the model with cumulative errors; let E1 ∼ δ0 and ω1 ∼ δ1, respec-
tively, with δ being the Dirac measure. If X is from the perturbed model (with not
necessarily vanishing perturbations Ei), the generalized Cavalieri estimator satisfies
Var(V̂0(f)) = t2c′ + Z0(t) + o(t2) when m = 0 and Var(V̂0(f)) = t3c′′ + o(t3) when
m ≥ 1 as t ↓ 0. This was shown in [12, Prop. 1] apart from the missing Zitterbewe-
gung term Z0(t) of order t2 in the first equation, which was omitted there as it was
erroneously claimed that the latter term in [12, Eq. (A3)] is of order o(t2m+2). Hence,
the variance of the generalized Cavalieri estimator has a slower rate of decrease than
the classical estimator for all m ≥ 1. The behaviour is even worse in the model
with cumulative errors, as Var(V̂0(f)) = tc′′′ + o(t) for all m ≥ 0; see [12, Prop. 2].
In contrast to this, the main result of the present paper is the following: Using a
Newton-Cotes approximation of at least the same order as the order of smoothness
of the measurement function, the variance decreases at the same rate as the classical
estimator as long as the randomized sampling points are stationary and (1.3) is sat-
isfied. When the order of smoothness of the measurement function exceeds the order
of the estimator, a faster decrease of the variance is obtained in the case where the
point process is strongly admissible; a property satisfied for the perturbed model
and a fortiori for the equidistant model, and for the cumulative model under certain
exponential moment assumptions; see Lemmas 6.1 and 6.3, respectively.

Definition 1.7 (Admissible point process). Let X be a stationary point process
satisfying (1.3). Let n ∈ N be given and let Hn be the covariance function of Kn.
Then X is called strongly n-admissible if

∫ t
0
Hn(s)ds is uniformly bounded in t ≥ 0.

X is called weakly n-admissible if limt→∞
1
t

∫ t
0
Hn(s)ds = 0.

Admissibility is closely related to ergodicity properties of the stationary field Kn,
and hence to those of X. In fact, if Kn has an exponentially decaying α-mixing
coefficient (see, for instance, [5, Subsection 1.3.2] for the definition of this coefficient),
then [5, Theorem 3.(1), p. 9] and the fact that EKn(0)2+ε < ∞, ε > 0, imply that
Hn(s) is exponentially decaying, and hence, X is strongly n-admissible for all n ∈ N.

Theorem 1.8. Let n ∈ N be given and assume that X is a stationary point process
such that (1.3) holds. If t > 0 and f is (m, 1)-piecewise smooth, then

V̂n,t(f) =
∑

x∈tX
α(x; tX)f(x)

is unbiased for
∫
fdx. If m ≤ n its variance obeys

Var(V̂n,t(f)) ≤ ct2m+2 (1.7)

for some constant c, which does not depend on t.
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If m > n and X is strongly n-admissible, then

Var(V̂n,t(f)) ≤ c′t2n+3 (1.8)

for some constant c′, which does not depend on t.

If f is exactly (m, 1)-piecewise smooth with m < n, the decrease rate in (1.7)
is optimal. This is also true in the case m = n if X is weakly n-admissible; see
Remark 5.2.

When using the trapezoidal estimator, that is n = 1, we have exact expressions
of the asymptotic behaviour of the variance when X is from the perturbed model
and the cumulative model. In the perturbed case, the rate of decrease of the upper
bound in (1.8) is optimal if the perturbations Ei are non-degenerate.

Theorem 1.9. Let X be from the perturbed model and assume that the measurement
function f is exactly (m, 1)-piecewise smooth. Let g = f ∗ f̌ be its covariogram and
let µk be the k-th moment of the perturbations Ei. Then, for t ↓ 0,

Var(V̂1,t(f)) = −t2g′(0+)(µ2 + 1
6
) + Z0(t) + o(t2), for m = 0, (1.9)

Var(V̂1,t(f)) = t4g(3)(0+) 1
12

(2µ2 + 2µ4 + 1
30

) + Z1(t) + o(t4), for m = 1, (1.10)

Var(V̂1,t(f)) = t5g(4)(0)1
8
(2µ4 + µ2µ4 − µ3

2 − µ2
3) + o(t5), for m ≥ 2, (1.11)

where the Zitterbewegung Zm(t) is given by (6.7). It is of order t2m+2, and it is a
finite sum of terms oscillating around 0. Moreover, if Ei has density with a finite
number of finite jumps, for m ≥ 2 the remainder o(t5) is explicitly given by

t6g(5)(0+) 1
720

(
−34µ2 − 90µ2

2 + 110µ4 + 180µ2µ4

− 180µ3
2 − 170µ2

3 + 8µ6 − 1
21

)
+ Z2(t) + o(t6).

(1.12)

It is worth noticing that the Zitterbewegung appearing in the variance decom-
position of the classical Cavalieri estimator is not present in the decomposition of
Theorem 1.9 when m ≥ 2, or rather it is of lower order and thus part of the low-
order remainder. As the Bernoulli numbers satisfy B2 = 1

6
, B4 = − 1

30
and B6 = 1

42
,

the extension term of the classical Cavalieri estimator is VarEV̂ (f) = −t2g′(0+)1
6
,

VarEV̂ (f) = t4g(3)(0+) 1
12

1
30

and VarEV̂ (f) = −t6g(5)(0+) 1
21

1
720

for m = 0, 1, 2, re-
spectively. Hence, the dominating behaviour of the trapezoidal estimator with per-
turbed sampling can come arbitrarily close to the dominating behaviour of the clas-
sical estimator if the errors Ei are sufficiently small. Similarly, the dominating be-
haviour with cumulative sampling can come arbitrarily close to that of the classical
estimator if the increments are sufficiently close to 1.

Theorem 1.10. Let X be from the model with cumulative errors and assume that
Eeηω1 < ∞ for some η > 0. Let the measurement function f be exactly (m, 1)-
piecewise smooth with covariogram g = f ∗ f̌ , and let νk denote the k’th moment of
the increments ωi. Then, for t ↓ 0,

Var(V̂1,t(f)) = −t2g′(0+)1
6
ν3 + o(t2), for m = 0, (1.13)

Var(V̂1,t(f)) = t4g(3)(0+) 1
12

1
30

(6ν5 − 5ν23) + o(t4), for m = 1. (1.14)
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The paper is organized as follows. In section 2 relevant notation is introduced
and the n’th order Newton-Cotes estimator is formally derived. Moreover, our second
main result, Theorem 1.3, is proved. In section 3 we derive integrability statements
which will be of relevance when proving the main results, Theorems 1.2 and 1.8, in
sections 4 and 5, respectively. In section 6 we prove that point processes from the
perturbed and cumulative model are admissible, and we derive the exact variance
expressions presented in Theorems 1.9 and 1.10. Section 7 contains a simulation
study of volume estimation in R3 from 2-dimensional area measurements illustrating
the results of the paper. Conclusions and ideas for future work are found in section 8.

2 The Peano kernel representation

In this section we consider a locally finite set X ⊂ R such that Conv(X) = R, and
an integrable function f : R→ R with compact support which is known at all points
in X. For any x ∈ X and j ∈ Z we define sj(x) = sj(x;X) as the j’th successor
(predecessor for j < 0) of x in X, with s0(x) = x by definition. Hence, for j ≥ 1,
sj(x) and s−j(x) are the unique points in X ∩ (x,∞) and X ∩ (−∞, x), respectively,
such that #(X ∩ (x, sj(x)]) = #(X ∩ [s−j(x), x)) = j. Note that

sj(x+ t;X + t) = sj(x;X) + t (2.1)

for all t ∈ R. For all x ∈ X and j ∈ Z we let hj(x) = hj(x;X) := sj(x;X)−sj−1(x;X)
be the distance from the j’th successor (predecessor) of x to its left neighbour in X.
By (2.1),

hj(x+ t;X + t) = hj(x;X) (2.2)

for all t ∈ R. We now recall the principle of Newton-Cotes quadrature, adapted to an
infinite set of nodes; see [6] for details. On the interval [x, sn(x)], x ∈ X, the function
f is approximated by a polynomial of degree at most n ∈ N passing through the
points {sj(x), f(sj(x))}nj=0. The integral of this polynomial on [x, sn(x)] is

I(n)x (f) = I(n)x (f ;X) =
n∑

j=0

β
(n)
j (x)f(sj(x))

where

β
(n)
j (x) = β

(n)
j (x;X) =

∫ sn(x)

x

n∏

k=0
k 6=j

y − sk(x)

sj(x)− sk(x)
dy (2.3)

for x ∈ X. The approximation V̂n(f) = 1
n

∑
x∈X I

(n)
x (f) is then an average of the

sum of the integral-approximations I(n)x with respect to the starting point chosen.

Definition 2.1 (n’th Newton-Cotes approximation). Let n ∈ N be given. The n’th
order Newton-Cotes approximation of f : R→ R with nodes in X is given by

V̂n(f) =
∑

x∈X
α(x)f(x), (2.4)

with the weights α(x;X) = α(x) = 1
n

∑n
j=0 β

(n)
j (s−j(x)).
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Remark 2.2. From [11, Theorem 2.1.1.1] the integral approximation on an interval
[x, sn(x)] is exact whenever f = p is a polynomial of degree at most n. That is,
R

(n)
x (p) = 0, with the discretization error R(n)

x defined by

R(n)
x (f) = R(n)

x (f ;X) = I(n)x (f)−
∫ sn(x)

x

f(y)dy, (2.5)

x ∈ X.
As shown in Lemma A.1, β(n)

j is a rational function of point-increments, and
(2.2) then implies that

β
(n)
j (x+ t;X + t) = β

(n)
j (x;X) and α(x+ t;X + t) = α(x;X) (2.6)

for all t ∈ R and x ∈ X.
We are now ready to prove the Peano error representation as stated in Theo-

rem 1.3. Given n, X, and m ∈ N0, the m’th Peano kernel from Theorem 1.3 is
defined as

Km(r) = Km(r;X) =
1

m!n

∑

x∈X
1(x,sn(x)](r)R

(n)
x

(
( · − r)m+

)
. (2.7)

The mapping x 7→ (x− r)m+ should be understood as

(x− r)m+ =

{
(x− r)m for x > r,

0 for x ≤ r.

Hence, Km is piecewise polynomial of degree at most m+ 1 with coefficients deter-
mined by X.

Proof of Theorem 1.3. Fix n ∈ N and note that nR(n)(f) =
∑

x∈X R
(n)
x (f) due to

(1.4) and (2.5). For all x ∈ X and y ∈ [x, sn(x)], an induction argument using the
refined partial integration formula [7, Lemma 4.1] yields

f(y−) =
m∑

k=0

f (k)(x+)

k!
(y − x)k

+
1

m!

∑

a∈Df (m)∩(x,y)
Jf (m)(a)(y − a)m +

1

m!

∫ y

x

f (m+1)(t)(y − t)mdt,

(2.8)

for all (m, 1)-piecewise smooth functions f , m ∈ N0. We now assume m ≤ n. Using
the linearity of R(n)

x , the fact that all polynomials of order at most n are integrated
exactly, and the fact that R(n)

x commutes with integration, we find that (with all
expressions considered as functions of y)

m!R(n)
x (f)

= R(n)
x

( ∑

a∈Df (m)∩(x,y)
Jf (m)(a)(y − a)m +

∫ y

x

f (m+1)(t)(y − t)mdt
)

=
∑

a∈Df (m)∩(x,sn(x)]
Jf (m)(a)R(n)

x

(
(y − a)m+

)
+

∫ sn(x)

x

f (m+1)(t)R(n)
x

(
(y − t)m+

)
dt.
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Changing the summation order, (2.7) implies that

R(n)(f) =
1

n

∑

x∈X
R(n)
x (f) =

∑

a∈Df (m)

Jf (m)(a)Km(a) +

∫

R
f (m+1)(t)Km(t)dt,

as claimed.

Before proceeding, we state a useful lemma on continuity properties of the Peano
kernel. For r ∈ R we have

Km(r) =
1

m!n

∑

x∈X
1(x,s1(x)](r)

0∑

i=1−n
R

(n)
si(x)

(
( · − r)m+

)
.

The following result is a simple consequence of this representation and the fact that
polynomials of degree at most n are approximated exactly.

Lemma 2.3. Fix n ∈ N and a locally finite point-set X with Conv(X) = R. Then,
for all x ∈ X and m ∈ N, the function Km is differentiable on (x, s1(x)) with
derivative −Km−1 and jump

JKm(x) =
1

m!n
R(n)
x

(
( · − x)m

)
. (2.9)

In particular, Km is (m− 1)-times continuously differentiable for all 1 ≤ m ≤ n.

3 Integrability properties

To argue that V̂n(f) is an unbiased estimator for
∫
f(x)dx when applied to random-

ized sampling points, we recall the notion of the Palm distribution of a stationary
point process X ⊂ R. It can be interpreted as the conditional distribution of X
given that 0 ∈ X. We denote it by P0 with the corresponding expectation denoted
by E0. When considering the point process X under its Palm distribution, we will
often suppress the dependence on the point 0 ∈ X in the various expression, i.e.
under P0 we for instance write

si = si(0), hi = hi(0), β
(n)
j = β

(n)
j (0)

for all i ∈ Z and j = 0, . . . , n. In addition we write h = (h1, . . . , hn) and for i ∈ Z,
h(si) = (h1(si), . . . , hn(si)) = (hi+1, . . . , hi+n) under P0. As mentioned in section 1
a weaker assumption than (1.3) is sufficient for the estimator to be unbiased.

Assumption 3.1. For a given n ∈ N we assume that

E0

[
hm

hm′

]
<∞ (3.1)

for all multi-indices m,m′ ∈ Nn
0 with |m| ∈ {n + 1, n + 2} and |m′| = n, where

|m| = |(m1, . . . ,mn)| = ∑n
k=1mk.
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Using Hölder’s inequality and [6, Eq. (13)], one shows that Assumption 1.1
is stronger than Assumption 3.1. In Lemma A.1 of the supplementary material
it is shown that the weight β(n)

j (x) is a rational function of the point-increments
(h1(x), . . . , hn(x)), x ∈ X, where the numerator is a homogeneous polynomial of de-
gree n+1, and the denominator is a non-vanishing homogeneous polynomial of degree
n with non-negative coefficients. From the fact that the Palm distribution is invari-
ant under bijective point shifts [6, Eq. (13)], it is easily seen that E0|β(n)

j (s−j)| <∞
for all j ∈ {0, · · · , n} when Assumption 3.1 is satisfied, and consequently

E0|α(0)| <∞, (3.2)

see Lemma A.2. We conclude that either of the two assumptions is sufficient to guar-
antee the Palm-integrability of α(0), which will be used in the proof of Theorem 1.2.

To argue for the variance bounds presented in Theorem 1.8 we need higher-
order moment and translation invariance properties of the Peano kernel Km defined
in (2.7).

Lemma 3.2. Let n ∈ N be given and assume that X is a stationary point process.
Then, for all m ∈ N0, Km is a stationary stochastic process. If (1.3) holds, Km(0)
has finite positive moments of all orders. Moreover, if X has intensity γ, Km satisfies

EKm(0) = E0JKm+1(0) =
γ

(m+ 1)!n
E0R

(n)
0

(
( · )m+1

)
(3.3)

for all m ∈ N0. In particular, EKm(0) = 0 for all m < n.

Proof. Fix n ∈ N. For any r, t ∈ R and any locally finite pointset X, the Peano
kernel satisfies

Km(r + t;X) = Km(r;X − t). (3.4)

This follows from the definition of Km and

R(n)
x

(
( · − (r + t))m+ ;X

)
= R

(n)
x−t
(
( · − r)m+ ;X − t

)
, x ∈ X,

which in turn is a consequence of (2.1) and (2.6). For any N ∈ N and r1 < r2 <
· · · < rN we see from (3.4) that

(
Km(r1 + t;X), . . . , Km(rN + t;X)

)
=
(
Km(r1;X − t), . . . , Km(rN ;X − t)

)
,

and the stationarity of the stochastic process Km is therefore inherited from the
stationarity of the point process X.

We now prove that Km(0) has finite positive moments of all orders. Let k ∈ N
be given. For arbitrary r ∈ R put Ir = {x ∈ X : r ∈ (x, sn(x)]}. Using Hölder’s
inequality and some rather crude upper bounds we obtain from (2.5) and (2.7)

Kk
m(0) ≤

∑

x∈I0

(
R(n)
x (( · )m+ )

)k ≤
∑

x∈I0

(
sn(x)

)km( n∑

j=0

|β(n)
j (x)|+ sn(x)

)k
.

By the refined Campbell Theorem [9, Theorem 3.5.3], (2.1) and (2.6) it follows that

EKk
m(0) ≤ γE0

∫ sn

0

xkm
( n∑

j=0

|β(n)
j |+ x

)k
dx ≤ γE0skm+1

n

( n∑

j=0

|β(n)
j |+ sn

)k
,
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where γ is the intensity of X. By Lemma A.1, Assumption 1.1 and the fact that
sn =

∑n
j=1 hj under P0, the variables sn and β(n)

j have finite positive moments of all
orders under P0. This implies that EKk

m(0) <∞.
Equation (3.3) is a simple consequence of the refined Campbell Theorem [9,

Theorem 3.5.3], Lemma 2.3 and [6, Eq. (13)].

4 Unbiasedness of Newton-Cotes estimators

Proof of Theorem 1.2. Fix n ∈ N and let X be a simple stationary point process
with finite and positive intensity γ. As α satisfies (2.6) and α(0) is Palm-integrable
by (3.2), [6, Theorem 1] can be applied. It states that

EV̂n(f) = γE0[α(0)]

∫

R
f(x)dx (4.1)

holds for all integrable functions f : R→ R with compact support. Hence, if we can
show that E0[α(0)] = γ−1, we have shown that V̂n(f) is unbiased.

For t ∈ R reuse the notation It from the end of the previous section. When f is
an integrable function and |f | ≤ 1, (2.5) implies

∑

x∈It
|R(n)

x (f)| ≤
∑

x∈It

( n∑

j=0

|β(n)
j (x)|+ (sn(x)− x)

)
.

The refined Campbell theorem [9, Theorem 3.5.3], (2.1) and (2.6) imply

E
∑

x∈It
|R(n)

x (f)| ≤ γE0

∫ t

t−sn

( n∑

j=0

|β(n)
j |+ sn

)
dx

= γE0
[
sn

n∑

j=0

|β(n)
j |+ s2n

]
<∞,

where the finiteness follows from Lemma A.1 and Assumption 3.1, which is weaker
than Assumption 1.1. Note that the finite upper bound does not depend on t.

Now let r > 0 be given and consider the function fr = 1[0,r]. Recall that

R(n)(fr) = V̂n(fr)−
∫

R
fr(x)dx =

1

n

∑

x∈X
R(n)
x (fr)

is the error of the n’th Newton-Cotes estimator. The Newton-Cotes approxima-
tion on an interval [x, sn(x)] is exact for all polynomials of degree at most n,
and in particular, it is exact for constant functions. Hence, R(n)

x (fr) = 0 whenever
[x, sn(x)] ∩ {0, r} = ∅. This implies

|ER(n)(fr)| ≤ E
∑

x∈I0
|R(n)

x (f)|+ E
∑

x∈Ir
|R(n)

x (f)| ≤ 2C,

for some finite C ∈ R which is independent of r. Equation (4.1) now implies

0 = lim
r→∞

1
r
ER(n)(fr) = γE0α(0)− 1,

so E0α(0) = 1/γ as asserted.

11



Remark 4.1. If X = U + Z is the translated standard grid, α(x) = 1 for all x ∈ X.
In fact, the Palm version of X is the deterministic set Z, so h1(x) = 1, and (2.6)
yields

α(x;X) = α(x− x;X − x) = α(0;Z)

for all x ∈ X. Hence α = α(x) is deterministic, and V̂n(f) = α
∑

x∈X f(x). As-
sumption 1.1 is trivially satisfied, so Theorem 1.2 implies that V̂n(f) is unbiased for∫
fdx, which is equivalent to α = 1.

5 Asymptotic variance behaviour of Newton-Cotes
estimators

Before proving Theorem 1.8, we recall the variance decomposition of the classical
Cavalieri estimator, as it shows great resemblance to the new non-equidistant set-
up. First we introduce the periodic Bernoulli functions Pm, which we define as in
[8, Paragraph 297]: Let (P̃m)∞m=0 be the sequence of rescaled Bernoulli polynomi-
als, which are defined inductively by P̃0(x) = 1, P̃1(x) = x− 1

2
and P̃ ′m+1 = P̃m,

P̃m+1(0) = P̃m+1(1) = 1
(m+1)!

Bm+1, for m ∈ N, where Bm is the m’th Bernoulli
number. This normalization is chosen as in [7] in order to ease comparison with the
results there. Then Pm(x) = P̃m(x−bxc) is them’th Bernoulli polynomial, evaluated
at the fractional part of x ∈ R. Note that Pm is continuous for all m 6= 1. When the
measurement function f is (m, 1)-piecewise smooth, the variance decomposes as [7,
Chap. 5]

Var(V̂ (f)) = −t2m+2
∑

a∈Dg(2m+1)

Jg(2m+1)(a)P2m+2(
a
t
) + o(t2m+2) (5.1)

as t ↓ 0. Here, g = f ∗ f̌ is the covariogram of f , and the term o(t2m+2) can
explicitly be given as −t2m+2

∫
R g

(2m+2)(s)P2m+2(
s
t
)ds. When the point process X is

not equidistant, we find a similar variance representation involving the Peano kernels
instead of the periodic Bernoulli functions.

Proposition 5.1. Let n ∈ N be given and assume that X is a stationary point
process such that (1.3) holds. If f is (m, 1)-piecewise smooth with m ≤ n, then

(−1)m+1Var(V̂n,t(f)) = t2m+2
∑

a∈Dg(2m+1)

Jg(2m+1)(a)Hm(a
t
)

+ t2m+2

∫

R
g(2m+2)(s)Hm( s

t
)ds,

(5.2)

where g = f ∗ f̌ is the covariogram of f . If m < n or X is weakly n-admissible, the
variance behaviour is determined by the first term, as

∫

R
g(2m+2)(s)Hm( s

t
)ds = o(1)

for t ↓ 0.
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Proof. The definition of α(x) and elementary calculations give

α(tx; tX) = tα(x;X) = tα(x)

for x ∈ X, so putting ft(x) = f(tx) we see that

V̂n,t(f) = tV̂n(ft). (5.3)

As m ≤ n, Theorem 1.3 implies

R(n)(ft) =

∫

R
f
(m+1)
t (s)Km(s)ds+

∑

a∈D
f

(m)

t

Jf (m)

t
(a)Km(a).

Using f ′t(x) = tf ′(tx) whenever the derivative is defined, we arrive at

R(n)(ft) = tm
∫

R
f (m+1)(s)Km( s

t
)ds+ tm

∑

a∈Df (m)

Jf (m)(a)Km(a
t
).

Hence, using (5.3) and the unbiasedness of V̂n, we get

Var(V̂n,t(f)) = Var(tV̂n(ft)) = E(tR(n)(ft))
2

= t2m+2E
(∫

R
f (m+1)(s)Km( s

t
)ds+

∑

a∈Df (m)

Jf (m)(a)Km(a
t
)
)2
. (5.4)

An application of [7, Prop. 5.7] yields

f (m+1) ∗ ˇf (m+1)(x) = (−1)m+1g(2m+2)(x)

−
∑

a∈Df (m)

Jf (m)(a)f (m+1)(a− x)−
∑

a∈Df (m)

Jf (m)(a)f (m+1)(a+ x), (5.5)

and furthermore the jumps of g(2m+1) are given by Jg(2m+1) = (−1)m+1Jf (m) ∗ ˇJf (m) , see [7,
Eq. (5.12)]. The stationarity and square integrability of Km from Lemma 3.2 implies
that EKm(r) and Hm(s) = Cov(Km(r), Km(s+ r)) are both finite and independent
of r ∈ R. Equation (5.2) now follows by expanding (5.4) and applying (5.5), the
structure of Jg(2m+1) together with Fubini’s theorem which is justified by the square
integrability of Km and the fact that f (m+1) is bounded with compact support.

We now show limt↓0
∫
R g

(2m+2)(s)Hm( s
t
)ds = 0 if m < n or X is weakly n-admis-

sible. The weak admissibility assumption yields

lim
t↓0

∫ 1

0

Hm( s
t
)ds = 0 (5.6)

for m = n. Equation (5.6) also holds for m < n without additional assumptions.
In fact, for m < n we have K ′m+1 = −Km by Lemma 2.3 and thus using Fubini’s
Theorem
∣∣∣∣
∫ t

0

Hm(s)ds

∣∣∣∣ =
∣∣Cov

(
Km(0), Km+1(0)

)
− Cov

(
Km(0), Km+1(t)

)∣∣ ≤ c <∞ ,
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where Hölder’s inequality and the stationarity of the Peano kernels have been used
to show that the constant c is independent of t. A substitution allows to derive (5.6)
from this.

Now fix m ≤ n and let ε > 0 be given. As g(2m+2) is integrable and bounded,
there is a simple function φ such that φ ≤ g(2m+2) and

0 ≤
∫

R
g(2m+2)(s)ds−

∫

R
φ(s)ds <

ε

2C
,

where the finite constant C > 0 satisfies sups∈R |Hm(s)| ≤ C. This implies that
∣∣∣∣
∫

R
g(2m+2)(s)Hm( s

t
)ds−

∫

R
φ(s)Hm( s

t
)ds

∣∣∣∣ <
ε

2
.

As φ is simple, (5.6) implies that limt↓0
∫
R φ(s)Hm( s

t
)ds = 0. We conclude that

|
∫
R φ(s)Hm( s

t
)ds| < ε

2
for sufficiently small t > 0, and hence

∣∣∣∣
∫

R
g(2m+2)(s)Hm( s

t
)ds

∣∣∣∣ < ε

for such small t > 0.

Proof of Theorem 1.8. As (1.3) is satisfied for tX, the unbiasedness follows from
Theorem 1.2. From Lemma 3.2 there exists C < ∞ such that sups∈R |Hm(s)| ≤ C,
and we immediately see from (5.2) that

Var(V̂n,t(f)) ≤ t2m+2
(
C‖g(2m+2)‖∞λ(supp g) + C

∑

a∈Dg(2m+1)

|Jg(2m+1)(a)|
)
.

As g is (2m + 1, 1)-piecewise smooth from [7, Corollary 5.8], the t-independent
constant is finite, and (1.7) therefore follows.

For the stronger result (1.8), note that m > n and hence g is (2n+3, 1)-piecewise
smooth, and in particular g(2n+2) is continuous. An application of Proposition 5.1 to
the (n, 1)-piecewise smooth function f and a substitution gives

(−1)n+1Var(V̂n,t(f)) = t2n+3

∫

R
g(2n+2)(st)Hn(s)ds. (5.7)

Let b > 0 satisfy supp g ⊂ [−b, b]. As g(2n+3) is bounded and measurable, g(2n+2) is
absolutely continuous. As Hn is bounded and hence integrable on [−b/t, b/t] for any
t > 0, also the function V given by V (s) =

∫ s
−b/tHn(y)dy is absolutely continuous

on [−b/t, b/t] with derivative Hn almost everywhere; see e.g. [4, Section 9.3] for
details on absolutely continuous functions. Furthermore, as X is assumed strongly
n-admissible, V is bounded by a constant C ′, say. Partial integration for absolutely
continuous functions [4, Theorem 9] shows
∫

R
g(2n+2)(st)Hn(s)ds =

∫ b/t

−b/t
g(2n+2)(st)Hn(s)ds = −t

∫ b/t

−b/t
g(2n+3)(st)V (s)ds,
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where we used that g(2n+2) vanishes at ±b. Returning to (5.7) we find

Var(V̂n,t(f)) ≤ t2n+3t

∫ b/t

−b/t
|g(2n+3)(st)||V (s)|ds ≤ t2n+32b‖g(2n+3)‖∞C ′.

This proves the assertion.

Remark 5.2. If (5.6) is satisfied, the variance

Var(V̂n,t(f)) = (−1)m+1t2m+2
∑

a∈Dg(2m+1)

Jg(2m+1)(a)Hm(a
t
) + o(t2m+2)

is exactly of order t2m+2. This is easily seen by assuming that
∑

a∈Dg(2m+1)

Jg(2m+1)(a)Hm(a
t
)→ 0

as t → 0, and using that g(2m+1) is discontinuous and odd, hence, it has a jump
at 0. Applying (5.6) yields a contradiction. In particular, the decrease rate in (1.7)
is optimal if m < n or X is weakly n-admissible.

6 Variance behaviour under perturbed and
cumulative sampling

In this section the general findings will be exemplified and made more explicit for
the perturbed model and the cumulative model introduced in Examples 1.5 and 1.6,
respectively.

6.1 Perturbed sampling

To construct the perturbed model, we let U be uniform on (0, 1) and independent of
the sequence of i.i.d. variables {Ei}i∈Z, where |Ei| < 1

2
almost surely and EE1 = 0.

The perturbed model is the stationary point process X = {xi}i∈Z for which xi =
U + i + Ei, for all i ∈ Z. Note that it has intensity 1. Under its Palm distribution,
we have

hk = 1 + Ek − Ek−1 ≤ 2, (6.1)

k ∈ Z, so (1.3) is equivalent to

E(1 + E1 − E0)
−j <∞ (6.2)

for all j ∈ N. For instance, (6.2) holds if there is ε > 0 such that |E0| ≤ 1
2
− ε almost

surely. For the perturbed model X we define the shifted kernel K∗m by

K∗m(r) = Km(r + U) = Km(r;X − U)

for m ∈ N0. Note that it only depends on the perturbations {Ei} and not on the
initial uniform translation, and thus it is not (necessarily) a stationary process.
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However, by the i.i.d. structure of {Ei} and the fact that β(n)
j is a rational function

of point-increments, we see that

K∗m(r)
D
= K∗m(r + k) (6.3)

for all k ∈ Z. This can be used to show that X is strongly admissible.

Lemma 6.1. Let n ∈ N be given and assume that X is a stationary point process
from the perturbed model such that (6.2) holds. Then, for all m ∈ N0 and r ≥ 2n+2,
Hm(r) = Hm(r+1) and

∫ r+1

r
Hm(s)ds = 0. In particular, X is strongly n-admissible.

Proof. Fix n ∈ N and r ≥ 2n+2. For such r, the independence between U and {Ei}
yields

E[Km(0)Km(r)] =

∫ 1

0

E[K∗m(−u)K∗m(r − u)]du

=

∫ 1

0

E[K∗m(−u)]E[K∗m(r − u)]du.

(6.4)

Equations (6.3) and (6.4) imply that E[Km(0)Km(r)] = E[Km(0)Km(r+ 1)] and by
stationarity of Km we conclude that that Hm(r) = Hm(r + 1).

Returning to (6.4), we find by Fubini’s theorem, a substitution and the station-
arity of Km that

∫ r+1

r

E[Km(0)Km(s)]ds

=

∫ 1

0

E[K∗m(−u)]

∫ 1

0

E[K∗m(r + 1− u− s)]dsdu

=

∫ 1

0

E[K∗m(−u)]E[Km(r + 1− u)]du = (EKm(0))2,

which yields the asserted properties of Hm. This clearly implies that X is strongly
n-admissible.

In order to obtain explicit leading terms in Theorem 1.9 we state in the following
a connection between the covariance function Hm and certain periodic Bernoulli
functions. For our purpose, it is enough to consider m ∈ {0, 1}, but we also state
that the result holds for all m, when no perturbations are present.

Lemma 6.2. Let n = 1 and let X be from the perturbed model. Then

Hm(r) = (−1)mE[P2m+2(r + E1 − E0)] (6.5)

for m = 0, 1 and all |r| ≥ 4.
If X = U + Z is the shifted standard grid, then

Hm(r) = (−1)mP2m+2(r) (6.6)

for all n ∈ N, m ≤ n and r ∈ R.

16



The proof of Lemma 6.2 can be found in the supplementary material of this
paper; see Corollaries B.2 and B.3. As a consequence of this result we see that, for
the equidistant model X = U +Z, the variance representation (5.2) found using the
Peano kernels is the same as the classical variance representation (5.1) found using
Euler-McLaurin formulae.

Before turning to the proof of Theorem 1.9, we emphasize that the integrability
condition (1.3), or equivalently, condition (6.2), was omitted in the statement of the
Theorem as we work with the trapezoidal rule. In fact, the unbiasedness of V̂1,t(f)
for all stationary point processes and integrable, compactly supported functions f
was already remarked in the paragraph following the statement of Theorem 1.2. Due
to (6.1), the weights satisfy

β
(1)
0 (x) = β

(1)
1 (x) = 1

2
h1(x) ≤ 1,

x ∈ X, which replaces condition (1.3) in all the arguments in sections 4 and 5. The
assumptions of Proposition 5.1 are thus satisfied.

Proof of Theorem 1.9. Let m ∈ {0, 1}. The (2m+1)st derivative of the covariogram
g is an odd function, implying Jg(2m+1)(0) = 2g(2m+1)(0+). As X is strongly admissible,
Proposition 5.1 in combination with (6.5) yields the variance decomposition

Var(V̂1,t(f)) = (−1)m+1t2m+22g(2m+1)(0+)Hm(0) + Zm(t) + o(t2m+2),

where the Zitterbewegung Zm(t) is given by

Zm(t) = −t2m+2
∑

a∈Dg(2m+1)\{0}
Jg(2m+1)(a)E[P2m+2(

a
t

+ E1 − E0)]. (6.7)

The facts that Zm is a finite sum of terms each oscillating around 0 and that it
is of order t2m+2 follow from arguments similar to those of [7, Section 5.2] as f is
assumed to be exactly (m, 1)-piecewise smooth. By the refined Campbell Theorem
[9, Theorem 3.5.3] and the facts that EK0(0) = 0 and EK1(0) = 1

2
E0[R

(1)
0 (( · )2)] by

(3.3), we find that Hm(0) = Var(Km(0)) satisfies

H0(0) = E0

∫ h1

0

(1
2
h1 − y)2dy = 1

12
E0h31, (6.8)

H1(0) = E0

∫ h1

0

(1
2
h1y − 1

2
y2)2dy − ( 1

12
E0h31)

2 = 1
120

E0h51 − 1
144

(E0h31)
2. (6.9)

Using (6.1), it is elementary to conclude (1.9) and (1.10).
Now letm ≥ 2 be given and define H̃1 by H̃1(s) = H1(s)+E[P4(s+E1−E0)]. Due

to Lemma 6.2, H̃1(s) vanishes for |r| > 4. Since g(4) is continuous, an application of
Proposition 5.1 to the (1, 1)-piecewise smooth function f , Fubini’s theorem and the
refined partial integration formula [7, Lemma 4.1] yield

Var(V̂1,t(f)) = t5
∫

R
g(4)(st)H̃1(s)ds− t6

∫

R
g(6)(s)E[P6(

s
t

+ E1 − E0)]ds

− t6
∑

a∈Dg(5)

Jg(5)(a)E[P6(
a
t

+ E1 − E0)].
(6.10)
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As the last two terms in (6.10) are of order o(t5), we only have to simplify the first
term.

For all sufficiently small t > 0 and all s ∈ R with |s| ≤ 4 the function g(4) is
differentiable on the open interval with endpoints 0 and st, so there is a point ξst in
this interval such that

g(4)(st) = g(4)(0) + g(5)(ξst)st

by the mean value theorem. Inserting this into the first term of (6.10), and using
the fact that g(5) and H̃1 are bounded, yields

Var(V̂1,t(f)) = t5g(4)(0)

∫ 4

−4
H̃1(s)ds+ o(t5) (6.11)

as t ↓ 0.
Noting that P4 integrates to 0 on each interval of unit length, we find that

∫ 4

−4
H̃1(s)ds =

∫ 4

−4
H1(s)ds = 1

8
(2µ4 + µ2µ4 − µ3

2 − µ2
3),

where the last equality follows from rather technical arguments exploiting the inde-
pendence and identical law of the perturbations; see Appendix B. Inserting this into
(6.11) yields the assertion (1.11).

The expression (1.12) of the remainder are found by different arguments which
will occur in the upcoming thesis [10].

6.2 Cumulative sampling

Before turning to the proof of Theorem 1.10, we state in Lemma 6.3 below that
the covariance function of the Peano kernel decreases exponentially, from which
admissibility follows. The proof of Lemma 6.3 can be found in the supplementary
material of this paper; see Lemma C.2.

The cumulative process X is a stationary point process with i.i.d. increments
{ωi}i∈Z and with intensity 1. We assume that ω1 has cumulative distribution function
F with density wrt. Lebesgue measure and mean 1 such that F (0) = 0. To explicitly
construct the point process, the first pointX0 ofX∩(0,∞) is chosen with cumulative
distribution function G,

G(x) =

∫ x

0

(1− F (y))dy =

∫ x

0

F̄ (y)dy, x ≥ 0,

see eg. [1, Chap. V: Cor. 3.6]. Note that the distribution G has density F̄ . Given
X0, the last point X−1 of X ∩ (−∞, 0) (i.e. largest point) is chosen according to
X−1 = X0 − ω∗, where ω∗ is the conditional distribution of ω0 given ω0 > X0.
This assures that X−1 < 0, and corrects [12], where ω0 was used instead of ω∗.
Having chosen increments {ωi}i 6=0 independent of X−1, X0, and setting x0 = X0,
xi = X0 +

∑i
`=1 ω` and x−i = X−1 +

∑i−1
`=1 ω−`, for all i ∈ N, we obtain a realization

X = {xi}i∈Z of the cumulative point process. This construction implies that the
point interval containing the origin has the length weighted distribution, as expected.
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Lemma 6.3. Let n ∈ N be given, and let X be from the cumulative model such that
Eeηω1 <∞ for some η > 0, and such that (1.3) is satisfied. Then

Hn(s) = O(e−εs), s→∞, (6.12)

for some ε > 0. In particular, X is strongly n-admissible.

As for the perturbed model, Theorem 1.10 is stated without the integrability
assumption (1.3). This is because (1.3) can be relaxed to only be true for j ∈
N when using the trapezoidal rule, and finite positive moments are ensured by
the exponential moment assumption of the increments. Also, the decrease rate in
Lemma 6.3 can be obtained without assuming (1.3) for n = 1; see Lemma C.1.

Proof of Theorem 1.10. Letm ∈ {0, 1}. AsX is strongly admissible, Proposition 5.1
in combination with the decrease rate (6.12) yields the variance decomposition

Var(V̂1,t(f)) = (−1)m+1t2m+22g(2m+1)(0+)Hm(0) + o(t2m+2),

and the result follows using the fact that E0hj1 = νj in combination with (6.8) and
(6.9).

7 A simulated application in stereology

In this section we present Monte Carlo simulations illustrating the results of the
paper. If we wish to estimate the volume of the unit ball B3 ⊂ R3 from intersections
with 2-dimensional planes, the measurement function (hence area function) becomes

f(x) = 1[−1,1](x)π(1− x2),

which is a (1,∞)-piecewise smooth function as f ′ has jumps and is piecewise linear.
Applying the classical Cavalieri estimator to such a function yields the extension
term VarE(V̂ (f)) = π2

90
t4 due to (1.6). Using sampling by the perturbed model or

the model with cumulative errors we expect that the generalized Cavalieri estimator
decreases at a rate of 3 and 1, respectively, whereas the trapezoidal estimator (n = 1)
and Simpson’s estimator (n = 2) decreases at a rate of 4 in both point-models, an
asymptotic behaviour visible in Figure 1 below. It shows the empirical variances of
those three estimators based on 2000 Monte Carlo simulations as functions of the
mean number of sections, that is 2/t, with the variance plot including the extension
term of the classical Cavalieri estimator and the extension term of the trapezoidal
estimator as given by the dominating terms in (1.10) and (1.14) for the perturbed
and cumulative model, respectively. The variances in this and the following figures
are shown in a double-logarithmic scale with α and α̂ being the theoretical and
approximate rates of decrease (α̂ has been found by the least squares method applied
to the datapoints where 15 ≤ 2/t ≤ 40).

The graphs of Figure 1 are characteristic for the behaviour of variances and
extensions terms for objects with (1, 1)-piecewise smooth measurement functions.
For instance ellipsoids, or, more generally, strictly convex bodies lead to the same
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(a) Perturbed sampling
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Cumulative sampling: Variance for the ball

(b) Cumulative sampling

Figure 1: Empirical variance for the volume estimation of the unit ball B3 in R3 based on
perturbed sampling with perturbations E1 ∼ Unif((−s, s)) and sampling with cumulative
errors with increments ω1 ∼ Unif((1− c, 1 + c)). We choose s and c such that the average
relative deviation (the coefficient of error) of the point-increment from the ideal increment 1
is 5%. In both figures, the graph of the trapezoidal estimator (blue) is almost completely
hidden by the graph of Simpson’s estimator (red), and the trapezoidal extension term
(green) is almost identical to the classical extension term (black).

variance behaviour apart from the facts that intercepts of these curves may be shifted
and the Zitterbewegung may differ.

For comparison, we therefore give another example, where the measurement func-
tion exhibits a higher order of smoothness. The measurement function

f(x) = 1[−1,1](x)
π

2
(1 + cos πx),

is obtained from a spindle shaped body of revolution, if all section planes are orthog-
onal to the rotation axis. The corresponding convex body is illustrated in [6, Fig. 4].
The measurement function f is (2,∞)-piecewise smooth. Using this measurement
function, the extension term of the classical estimator is VarE(V̂ (f)) = π6

60480
t6. Fig-

ure 2 shows empirical variances based on perturbed sampling with the two extension
terms included, where the extension term of the trapezoidal estimator is given as
the sum of the dominating terms in (1.11) and (1.12). In Figure 2a we use small
perturbations to illustrates the fact that the dominating term in (1.11) can be made
arbitrarily small. Hence, a decrease rate of 6 for the variance of the trapezoidal es-
timator can be a good approximation with small perturbations, as the trapezoidal
extension term is approximately given by 1.7·10−4t5+3.0·10−2t6 here. Even when we
consider 100 ≤ 2/t ≤ 200, we only obtain an approximate decrease rate of α̂ = 5.66.
For comparison, Figure 2b gives a better illustration of the actual asymptotic rate of
decrease which corresponds to the bound from Theorem 1.8, that is, α = 5. Here we
use larger perturbations, which in turn gives an approximate trapezoidal extension
term of 0.043t5 + 0.25t6. Increasing the number of intersecting planes to 2/t ≤ 100
the actual rate is even more apparent, as we here obtain an approximate decrease
rate of α̂ = 5.19.

The last two simulations are meant to illustrate the findings in Theorem 1.8 for
point process models where we do not have explicit formulae for the extension term.
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(a) 5% CE (small perturbations)
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(b) 20% CE (large perturbations)

Figure 2: Empirical variance for the volume estimation of a spindle shaped body of
revolution in R3 based on perturbed sampling with perturbations E1 ∼ Unif((−s, s)). We
choose s such that the coefficient of error (CE) of the point-increments are 5% (left) and
20%, (right).

The first is the already discussed model with accumulated errors. To illustrate the
wide range of point process models to which our results apply, we also simulated
from the Matérn hard core process of type II; see [9, sec. 3.5 pp. 93-94], which
satisfies the strong integrability assumption (1.3). The empirical variances for the
aforementioned spindle shaped body are depicted in Figure 3. It is worth noticing
that the variance of the trapezoidal estimator under the Matérn model seem to
satisfy the strong bound of Theorem 1.8, that is (1.8). Increasing the number of
intersecting planes to 2/t ≤ 100 the result is more clear, as we find approximate
decrease rates of α̂ = 4.94 and α̂ = 6.07 for the trapezoidal estimator and Simpson’s
estimator, respectively.
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(a) Cumulative sampling
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Mathern sampling: Variance for the spindle

(b) Matérn sampling

Figure 3: Empirical variance for the volume estimation of a spindle shaped body in R3

based on sampling with cumulative errors with increments ω1 ∼ Unif((1 − c, 1 + c)) and
sampling with a Matérn hard core process of type II with intensity 1 and a hard core
distance of 0.4. c is chosen such that the coefficient of error of the increment is 5%.
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8 Conclusions and future work

Estimating integrals based on known randomized sampling points with unequal in-
crements, we have shown that higher order Newton-Cotes quadratures are to be
preferred over the generalized Cavalieri method, as they are unbiased and have a
faster decrease in variance for decreasing average point-increment. In particular, if
the measurement function is exactly (n, 1)-piecewise smooth, applying n’th order
Newton-Cotes estimation yields an upper bound of the variance decreasing at the
same rate as the variance of the classical Cavalieri estimator based on equidistant
sampling, that is, a rate of 2n + 2. Applying n’th order estimation to a function
with smoothness of order, say, m > n, the variance has an upper bound with a rate
of decrease of 2n + 2 in the general case, whereas the bound decreases at the rate
2n + 3 if the set of sampling points are strongly n-admissible. We have shown that
point processes from the perturbed and cumulative models are strongly admissible
and as such the strong bound holds in these cases. Based on a simulation study of
the trapezoidal estimator it seems that also sampling from the Matérn’s hard core
model of the second kind satisfies the strong bound. From a practical point of view
the trapezoidal estimator is very interesting as the unbiasedness does not require any
integrability conditions of the underlying sampling model. Applying this estimator
to perturbed and cumulative sampling we have found asymptotic variance expres-
sions, with an overall trend arbitrarily close to the trend of the classical estimator
based on equidistant sampling if the perturbations are small and the increments are
close to 1, respectively. This asymptotic trend can be calculated if only the deriva-
tives of the covariogram of the measurement function is known at 0, and if positive
moments of the perturbations and increments, respectively, can be computed. This
observation allows in principle to estimate the extension term of the variance from
measurements of sampling positions and sampled areas in analogy to established
methods in the classical, equidistant case. We intend to carry out this program in a
future study.

It is an open question if the variance bounds in Theorem 1.8 are optimal in all
cases. As the rate of decrease in (1.7) is optimal if the model is weakly admissible
or the order of the estimator exceeds the order of smoothness of the measurement
function, we expect that the rate in (1.7) is optimal for any stationary point pro-
cess satisfying the assumptions of the theorem. Similarly we know that the bound
presented in (1.8) yields the optimal decay-rate when n = 1 under the perturbed
model (assuming non-degenerate perturbations), and as such it is of interest to in-
vestigate whether this is the case for all n in perturbed sampling and in general for
any admissible point process with unequal increments.
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Appendix: Supplement

A Integrability properties

As mentioned in section 3 the weight β(n)
j (x) is particularly simple, as given in the

lemma below.

Lemma A.1. For all n ∈ N, x ∈ X and j = 0, . . . , n, the weight β(n)
j (x) is a

rational function of point-increments,

β
(n)
j (x) =

q
(n)
j (h1(x), . . . , hn(x))

p
(n)
j (h1(x), . . . , hn(x))

where q(n)j : (0,∞)n → R is a homogeneous polynomial of degree n + 1, and p(n)j :
(0,∞)n → R is a non-vanishing homogeneous polynomial of degree n with non-
negative coefficients.
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Proof. Fix x ∈ X, n ∈ N and j ∈ {0, . . . , n}, and consider β(n)
j (x) as defined by

(2.3). Recall that points in X are distinct and therefore all point-increments are
strictly positive. At first we note that the denominator of the integrand in (2.3) is
constant with each term in the product satisfying

sj(x)− sk(x) =

{∑j
`=k+1 h`(x) for j > k,

−∑k
`=j+1 h`(x) for j < k,

and hence
n∏

k=0
k 6=j

(
sj(x)− sk(x)

)
= (−1)n−jp(n)j (h1(x), . . . , hn(x)),

where p(n)j : (0,∞)n → R is the polynomial defined by

p
(n)
j (y1, . . . , yn) =

(j−1∏

k=0

j∑

`=k+1

y`

)( n∏

k=j+1

k∑

`=j+1

y`

)
. (A.1)

The definition of p(n)j implies that it is non-vanishing with non-negative coefficients
and that p(n)j (λy1, . . . , λyn) = λn p

(n)
j (y1, . . . , yn) for any λ ∈ (0,∞). That is, it is

homogeneous of degree n.
With the abbreviation s̃k(x) = sk(x)− x =

∑k
`=1 h`(x), a substitution yields

∫ sn(x)

x

n∏

k=0
k 6=j

(y − sk(x)) dy =

∫ s̃n(x)

0

n∏

k=0
k 6=j

(y − s̃k(x)) dy,

for k ≥ 0. The right side of this equation is a polynomial of degree at most n + 1
in (s̃0(x), . . . , s̃n(x)), as all its derivatives of order n + 2 vanish. We therefore can
define the polynomial q(n)j : (0,∞)n → R by

q
(n)
j (h1(x), . . . , hn(x)) = (−1)n−j

∫ s̃n(x)

0

n∏

k=0
k 6=j

(y − s̃k(x)) dy.

A substitution argument shows that the right side is homogeneous of degree n + 1
as a function of (s̃0(x), . . . , s̃n(x)) and thus also as a function of (h1(x), . . . , hn(x)).
This shows the assertion.

Assuming either Assumption 1.1 or Assumption 3.1, this representation ensures
the Palm integrability of α(0), which is used in the proof of Theorem 1.2.

Lemma A.2. Fix n ∈ N. If X is a stationary point process such that (3.1) is
satisfied, then

E0|β(n)
j (s−j)| <∞ (A.2)

for all j = 0, . . . , n, and consequently E0|α(0)| <∞.
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Proof. From Lemma A.1 we find real constants {c(n,j)m } and non-negative constants
{a(n,j)m′ } such that

|β(n)
j (s−j)| =

∣∣∣
∑

m∈Nn
0

|m|=n+1

c(n,j)m h(s−j)
m
∣∣∣

∑

m′∈Nn
0

|m′|=n

a
(n,j)
m′ h(s−j)

m′
≤

∑

m∈Nn
0

|m|=n+1

|c(n,j)m |h(s−j)m

a
(n,j)

m′0
h(s−j)m

′
0

,

where m′0 is a specific multi-index such that a(n,j)m′0
> 0 which exists by Lemma A.1.

By linearity (A.2) is satisfied whenever

E0

[
h(s−j)m

h(s−j)m
′

]
= E0

[
hm

hm′

]
<∞, (A.3)

for all multi-indexm andm′ in Nn
0 with |m| = n+1 and |m′| = n, where the equality

is a consequence of the fact that the Palm distribution is invariant under bijective
point shifts; see [6, Eq. (13)]. The right side of (A.3) is finite by Assumption 3.1.

B Peano kernels, Bernoulli functions and variance
in perturbed sampling

In this section we consider the relation between the Peano kernels Km and the
Bernoulli functions Pm when we sample X = {U + Ek + k}k∈Z from the perturbed
model. Note that the equidistant model is obtained with degenerate perturbations
concentrated at 0. As in section 6 we work with the shifted kernel, K∗m, defined by

K∗m(r) = Km(r + U) = Km(r;X∗),

where X∗ = X − U = {Ek + k}k∈Z is the shifted process. From (6.3) the shifted
kernel is periodic in law with period 1. Recall that the 1st Bernoulli function is given
by P1(r) = P̃1(r − brc), with P̃1(r) = r − 1

2
for r ∈ R.

Lemma B.1. Let n ∈ N be given and let X be from the perturbed model such that
(1.3) is satisfied. Let X∗ = {xk}k∈Z, with xk = Ek + k, be its shifted process. For all
r ∈ R, K∗0 satisfies

EK∗0(r) = −EP1(E0 − r) + E
[ 1

n

n∑

j=0

β
(n)
j (x0)j

]
− n

2
+Q(r), (B.1)

where

Q(r) =

{
E1E0≥r[

1
n

∑n
j=0 β

(n)
j (x−j)− 1] for r < 1

2
,

E1E0≥r−1[
1
n

∑n
j=0 β

(n)
j (x−j)− 1] for r ≥ 1

2
.

Furthermore, if EK∗0(r) = −EP1(E0 − r) for all r ∈ R, then

Hm(r) = (−1)mE[P2m+2(r + E1 − E0)] (B.2)

for m ≤ n and all |r| ≥ 2n+ 2. If the perturbations are degenerate, that is X is the
equidistant model, (B.2) is true for all r ∈ R.
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Proof. By (6.3) it is enough to consider r ∈ [0, 1). Let n ∈ N and r ∈ [0, 1) be given.
Recall that

nK∗0(r) =
∑

i∈Z
1xi<r≤xi+1

0∑

`=1−n
R(n)
xi+`

(( · − r)0+).

Only the summands with i = −1, 0, 1 can be non-zero, and then

nK∗0(r) = 1E0≥r A−1(r) + 1E0<r 1E1≥r−1A0(r) + 1E1<r−1A1(r),

where, for i = −1, 0, 1,

Ai(r) =
0∑

`=1−n
R(n)
xi+`

(( · − r)0+) =
0∑

`=1−n

n∑

j=0

β
(n)
j (xi+`)1`+j≥1−

n∑

`=1

(xi+` − r).

We let q0 and q1 be the i.i.d. variables defined by q0 = (E0 − r) − bE0 − rc and
q1 = (E1 − r)− bE1 − rc. We will consider the cases r < 1

2
and r ≥ 1

2
separately.

Let r < 1
2
be given. As E1 ≥ r − 1 the kernel simplifies as

nK∗0(r) = 1E0≥r A−1(r) + 1E0<r A0(r).

Note that q0 = E0 − r when E0 ≥ r, and q0 = E0 − r + 1 when E0 < r. Using the
independence of the perturbations, EEi = 0, and the representation of the second
power sum, we find

E1E0≥r A−1(r) = E1E0≥r
( n∑

j=0

0∑

`=1−j
β
(n)
j (x`−1)− nP̃1(q0) + (n− 1)E0 −

n2

2

)
,

E1E0<r A0(r) = E1E0<r

( n∑

j=0

0∑

`=1−j
β
(n)
j (x`)− nP̃1(q0) + nE0 −

n2

2

)
.

Constant functions are approximated exactly, and hence
∑n

j=0 β
(n)
j (x0) = xn− x0 =

En − E0 + n. An index-shift in the former term above then implies

EK∗0(r) = −EP̃1(q0) + E
[ 1

n

n∑

j=0

0∑

`=1−j
β
(n)
j (x`)

]

− n

2
+ E1E0≥r

[ 1

n

n∑

j=0

β
(n)
j (x−j)− 1

]

= −EP1(E0 − r) + E
[ 1

n

n∑

j=0

β
(n)
j (x0)j

]

− n

2
+ E1E0≥r

[ 1

n

n∑

j=0

β
(n)
j (x−j)− 1

]
,

where the last equality follows as β(n)
j (x`) equals β

(n)
j (x0) in law, as they are rational

functions of identically distributed increments.
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Now let r ≥ 1
2
be given. Then E0 < r and the kernel simplifies as

nK∗0(r) = 1E1≥r−1A0(r) + 1E1<r−1A1(r).

Note that q1 = E1 − r + 1 when E1 ≥ r − 1, and q1 = E0 − r + 2 when E1 < r − 1.
With similar arguments as above we find that

E1E1≥r−1A0(r) = E1E1≥r−1
( n∑

j=0

0∑

`=1−j
β
(n)
j (x`)− nP̃1(q1) + (n− 1)E1 −

n2

2

)
,

E1E1<r−1A1(r) = E1E1<r−1
( n∑

j=0

0∑

`=1−j
β
(n)
j (x`+1)− nP̃1(q1) + nE1 −

n2

2

)
.

By the i.i.d. property of the perturbations and the exact arguments as above we
conclude that

EK∗0(r) = −EP1(E0 − r) + E
[ 1

n

n∑

j=0

β
(n)
j (x0)j

]

− n

2
+ E1E0≥r−1

[ 1

n

n∑

j=0

β
(n)
j (x−j)− 1

]

when r ≥ 1
2
. This proves the first part of the lemma.

To show (B.2), we note that

EK∗m(r)− EKm(0) = −EPm+1(E0 − r) (B.3)

for all r ∈ R. This is seen by induction using Fubini’s theorem, the relations P ′m =
Pm−1 and K ′m = −Km−1, the fact that EKm(0) = 0 for all m < n (see Lemma 3.2),
and the continuity properties of the kernels and polynomials. For |r| ≥ 2n + 2, the
perturbations in Km(r) = K∗m(r−U) and Km(0) = K∗m(−U) are independent. With
EU , EX∗ and EE0,E1 denoting the expectations with respect to the given variables,
(B.3) and independence then implies

Hm(r) = EUEX∗ [K∗m(r − U)− EKm(0)]EX∗ [K∗m(−U)− EKm(0)]

= EE0,E1EU [Pm+1(U + E0 − r)Pm+1(U + E1)]

= (−1)mE[P2m+2(r + E1 − E0)],

(B.4)

where the last equality is shown in the proof of [7, Prop. 5.2]. This shows (B.2). If
the model has degenerate perturbations concentrated at 0, (B.4) is true for all r ∈ R
with X∗ = Z deterministic. This concludes the proof.

Corollary B.2. Let n ∈ N be given. If X = U + Z is the equidistant model, then

Hm(r) = (−1)mP2m+2(r) (B.5)

for m ≤ n and all r ∈ R.
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Proof. Fix n ∈ N. Note that X∗ = Z and hence it is deterministic. From Lemma B.1
it therefore suffices to show that K∗0(r) = −P1(−r) for r ∈ [0, 1). Also, the weights
β
(n)
j (x) does not depend on x ∈ X∗, and we therefore let the common weights be

denoted β(n)
j . As polynomials of degree 1 are approximated exactly, we find that

1

n

n∑

j=0

β
(n)
j = 1 and

1

n

n∑

j=0

β
(n)
j j =

n

2
.

Returning to (B.1), we conclude that K∗0(r) = −P1(−r).

Corollary B.3. Let n = 1. If X is the perturbed model, then

Hm(r) = (−1)mE[P2m+2(r + E1 − E0)] (B.6)

for m = 0, 1 and all |r| ≥ 4.

Proof. Since β(1)
0 (x) = β

(1)
1 (x) = 1

2
h1(x) for all x ∈ X (for any set of points X), it is

easily seen that Eβ(n)
1 (E0) = 1

2
and Q(r) = 0. The result follows from (B.1).

Lastly we show the asymptotic variance expression (1.11) fully, with the begin-
ning of the proof given already.

Proof of (1.11). Let m ≥ 2 be given and define H̃1 by H̃1(s) = H1(s) + E[P4(s +
E1 − E0)]. Due to Lemma 6.2, H̃1(s) vanishes for |r| > 4. Since g(4) is continuous,
an application of Proposition 5.1 to the (1, 1)-piecewise smooth function f , Fubini’s
theorem and the refined partial integration formula [7, Lemma 4.1] yield

Var(V̂1,t(f)) = t5
∫

R
g(4)(st)H̃1(s)ds− t6

∫

R
g(6)(s)E[P6(

s
t

+ E1 − E0)]ds

− t6
∑

a∈Dg(5)

Jg(5)(a)E[P6(
a
t

+ E1 − E0)].
(B.7)

As the last two terms in (B.7) are of order o(t5), we only have to simplify the first
term.

For all sufficiently small t > 0 and all s ∈ R with |s| ≤ 4 the function g(4) is
differentiable on the open interval with endpoints 0 and st, so there is a point ξst in
this interval such that

g(4)(st) = g(4)(0) + g(5)(ξst)st

by the mean value theorem. Inserting this into the first term of (B.7), and using the
fact that g(5) and H̃1 are bounded, yields

Var(V̂1,t(f)) = t5g(4)(0)

∫ 4

−4
H̃1(s)ds+ o(t5) (B.8)

as t ↓ 0.

28



Noting that P4 integrates to 0 on each interval of unit length, another application
of Fubini’s theorem, the refined partial integration formula [7, Lemma 4.1] and
Lemma 2.3 gives
∫ 4

−4
H̃1(s)ds =

∫ 4

−4
H1(s)ds

= E
([
K2(−4) +

∑

x∈X∩[−4,4]
JK2(x)−K2(4)

](
K1(0)− EK1(0)

))
. (B.9)

The arguments that lead to (6.4) in combination with (6.3) where r = −4 and k = 8
imply E[K2(−4)K1(0)] = E[K2(4)K1(0)], and the two marginal terms in the last
expression of (B.9) cancel. Hence,
∫ 4

−4
H̃1(s)ds = E

∑

x∈X∩[−4,4]
JK2(x)

(
K1(0)− EK1(0)

)

= E
∑

y∈X
1(y,s1(y)](0)

∞∑

j=−∞
1[−4,4](sj(y))JK2(sj(y))

(
K1(0)− EK1(0)

)
.

Applying the refined Campbell Theorem [9, Theorem 3.5.3] and using the fact that
the summation over all successors of y can be replaced for the Palm version of the
point process by a summation over all successors of 0 and has only finitely many
nontrivial terms, we arrive at

∫ 4

−4
H̃1(s)ds =

∞∑

j=−∞
E0θj (B.10)

with θj = JK2(sj)
∫ s1
0

1[−4,4](sj − y)
(
K1(y)− EK1(0)

)
dy.

We now show that all summands in (B.10) with |j| > 1 can be omitted, and
that the remaining terms can be expressed in terms of moments of E0. Using
sj = j+Ej −E0, we see that the indicator in the definition of θj is constant 1 when
j ∈ I1 = {−2,−1, 0, 1, 2, 3} and it is constant 0 when j ∈ I0 = Z \ {−4, . . . , 3, 5}.
For j ∈ I1 the integral can be shown to evaluate to (1/12)(h31 − h1E0h31). As
JK2(sj) = (1/2)R

(1)
sj

(
( · )2

)
= (1/12)h3j+1 only depends on the perturbations Ej+1

and Ej, it is stochastically independent of the integral when |j| > 1. In particular,
θj = 1

144
h3j+1(h

3
1 − h1E0h31) for j ∈ I1, and

∫ 4

−4
H̃1(s)ds = E0θ−1 + E0θ0 + E0θ1 +Q, (B.11)

where
Q =

∑

j∈Z\(I0∪I1)
E0θj = E0

∑

j∈{−4,−3,4,5}
θj.

A coupling argument shows that Q is zero. The Palm expectation of θ−4 and θ−3 are
unchanged when we put E−3 = E5, E−4 = E4 and E−5 = E3. Under this coupling
assumption, s−4 = s4 − 8, s−3 = s5 − 8, h−4 = h4, and h−3 = h5, and hence

E0θ−3 + E0θ5 =
1

12
E0h36

∫ s1

0

(
1[−4,4]((s5 − y)− 8)

+ 1[−4,4](s5 − y)
)(
K1(y)− EK1(0)

)
dy = 0,
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as this sum of indicators is almost surely 1 and the independence property from
above can be exploited once again. Similar arguments show E0θ−4 + E0θ4 = 0, so
Q = 0. Summarizing, we obtain from (B.11)

∫ 4

−4
H̃1(s)ds = 1

144

1∑

j=−1
E0h3j+1(h

3
1 − h1E0h31)

= 1
8
(2µ4 + µ2µ4 − µ3

2 − µ2
3),

where the last equality follows from lengthy and tedious – but elementary – calcu-
lations. Inserting this into (B.8) yields the assertion (1.11).

C Admissibility of the cumulative model

In this section we show that the covariance function of the Peano kernel decrease
exponentially when we sample from the cumulative model under certain integrability
conditions; we refer to the beginning of subsection 6.2 for the construction of the
process with increments {ωi}i∈Z and increment distribution F . Also, recall the overall
assumption that the typical increment has finite moments of all orders.

Eωj1 <∞ (C.1)

for all j ∈ Z. This ensures that the Peano kernel has finite positive moments of any
order. We will explicitly use that, for fixed n ∈ N, Kn(s) depends on n points in X
to each side of s.

We show the assertion for n = 1 and arbitrary n ∈ N. The proof of the latter is a
generalization of the former, as we need to consider multiple points simultaneously,
hence, the case n = 1 serves as an introduction to the ideas behind the general proof.

Lemma C.1. Let n = 1 and let X be from the cumulative model such that Eeηω1 <
∞ for some η > 0. Then

H1(s) = O(e−εs), s→∞, (C.2)

for some ε > 0. In particular, X is strongly 1-admissible.

Proof. In the case of the trapezoidal estimator, the overall assumption (C.1) can
be relaxed to only hold true for j ∈ N. As we assume that the increments have
exponential moment, they in particular have finite moments of any positive order,
and hence, all integrability results of the Peano kernels apply.

The proof of (C.2) relies heavily on exponential decays in renewal theory, and
we refer to [1, Chapter V] for an introduction to renewal theory. Let N = (N(s))s≥0
be a pure renewal process with increments {ωi}i∈N, and let U be the corresponding
renewal measure, U(s) = EN(s). If X0 denotes the Palm version of X, the points
generated by N are exactly (in law) the points in X0 ∩ [0,∞), and hence U(s) =
E0#(X ∩ [0, s]). Let ψ1 : [0,∞) → R denote the expected Peano kernel driven by
the points generated by the pure renewal process N , that is, ψ1(s) = EK1(s;N) =
E0K1(s;X), and define ψ̃1 by ψ̃1(s) = EK1(s;N)1ω1>s = E0K1(s;X)1h1>s. Then
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ψ1(s) = U ∗ ψ̃1(s) =
∫ s
0
ψ̃1(s − x)U(dx). This can be seen by a renewal argument

obtaining the renewal equation ψ1 = ψ̃1 + ψ1 ∗ F , which has the desired solution.
Another, rather intuitive, approach is to condition on the last arrival prior to s
happening at time x ∈ [0, s), which has probability U(dx)F̄ (s − x). By starting a
new independent pure renewal process at time x and conditioning on the size of the
first jump, the conditional expectation of K1(s;N) given that the last arrival prior
to s happens at x simplifies as

E
[
K1(s− x;N) | ω1 > s− x

]
= ψ̃1(s− x)/F̄ (s− x),

and we obtain the expression ψ1(s) = U ∗ ψ̃1(s) by integrating over [0, s].
The exponential moment assumption implies F̄ (x) = O(e−ηx), x→∞, which in

turn implies that also Ḡ(x) = O(e−ηx). We consider

EK1(0)K1(s) = EK1(s)K1(0)1X0≤s +EK1(s)K1(0)1X0>s,

and an application of Cauchy-Schwarz’ inequality yields

EK1(s)K1(0)1X0>s ≤ [EK2
1(s)K2

1(0)]1/2P(X0 > s)1/2 ≤ C
(
Ḡ(s)

)1/2

for some finite C. Hence EK1(s)K1(0)1X0>s = O(e−ηs/2) as s → ∞, and (C.2)
therefore follows once we show that

EK1(s)K1(0)1X0≤s = (EK1(0))2 +O(e−εs) (C.3)

for some ε > 0, as s → ∞. We apply a renewal argument conditioning on the
first arrival in X ∩ (0,∞), that is, conditioning on the value of X0 ∼ G, and then
initializing a new independent renewal process,

EK1(s)K1(0)1X0≤s =

∫ s

0

E[K1(0)K1(s) | X0 = u]G(du)

=

∫ s

0

E[K1(s− u;N)]E[K1(0) | X0 = u]G(du)

=

∫ s

0

ψ1(s− u)E[K1(0) | X0 = u]G(du).

Since EK1(0) = E0JK2(0) due to (3.3), an application of Fubini’s theorem yields
∫ ∞

0

ψ̃1(s)ds = E
∫ ω1

0

K1(s;N)ds = EK2(0
+;N)− EK2(ω

−
1 ;N) = EK1(0),

and consequently, using [1, Chapter VII: Thm. 2.10(iii)],

ψ1(s) = U ∗ ψ̃1(s) = EK1(0) +O(e−ε
′s) (C.4)

for some 0 < ε′ < η, as s → ∞. Furthermore, by another application of Cauchy-
Schwarz’ inequality, we conclude that

∫ s

0

E[K1(0) | X0 = u]G(du) = EK1(0)− EK1(0)1X0>s

= EK1(0) +O(e−ηs/2)

(C.5)

as s→∞. Combining (C.4) and (C.5) yields (C.3).
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Lemma C.2. Let n ∈ N be given, and let X be the cumulative model such that
Eeηω1 <∞ for some η > 0, and such that (C.1) is satisfied. Then

Hn(s) = O(e−εs), s→∞, (C.6)

for some ε > 0. In particular, X is strongly n-admissible.

Proof. We apply arguments similar to those of the proof of Lemma C.1 above, only
we have to use renewal arguments conditioning on the n’th point in X ∩ (0,∞),
as Kn(s) depends on n points to the left and right of s. As before, we let N =
(N(s))s≥0 be a pure renewal process with increments {ωi}i∈N, and we let U be the
corresponding renewal measure. Also, let y0 = 0 and yi =

∑i
`=1 ω` for i ∈ N, that

is, X ∩ (0,∞) = {X0 + yi}i∈N. Then yi ∼ F ∗i for all i ∈ N. Define ψn : [0,∞)→ R
by ψn(s) = E[Kn(s;N)1yn−1≤s] = E0[Kn(s)1sn−1≤s], and let ψ̃n : [0,∞) → R be
given by ψ̃n(s) = E[Kn(s;N)1yn−1≤s 1yn>s] = E0[Kn(s)1sn−1≤s 1sn>s]. Then ψn(s) =

U ∗ ψ̃n(s). This can be seen by conditioning on the n’th to last point of N prior
to s happening at time x ∈ [0, s), which has probability U(dx)F̄ ∗ F ∗(n−1)(s − x).
Now we initialize a new independent pure renewal process at time x and we obtain,
integrating over [0, s],

ψn(s) =

∫ s

0

E[Kn(s− x;N) | yn−1 ≤ s− x, yn > s− x]F̄ ∗ F ∗(n−1)(s− x)U(dx)

=

∫ s

0

ψ̃n(s− x)U(dx)

= U ∗ ψ̃n(s).

As above, the exponential moment assumption implies F̄ (x) = O(e−ηx), x → ∞,
which in turn implies that also Ḡ(x) = O(e−ηx). Moreover, G ∗ F ∗i(s) = O(e−ηs),
s→∞, for all i ∈ N. We consider

EKn(0)Kn(s) = EKn(s)Kn(0)1X0+y2n−2≤s +EKn(s)Kn(0)1X0+y2n−2>s,

and an application of Cauchy-Schwarz’ inequality yields

EKn(s)Kn(0)1X0+y2n−2>s ≤ [EK2
n(s)K2

n(0)]1/2P(X0 + y2n−2 > s)1/2

≤ C
(
G ∗ F ∗(2n−2)(s)

)1/2

for some finite C. Hence EKn(s)Kn(0)1X0+y2n−2>s = O(e−ηs/2) as s→∞, and (C.6)
therefore follows once we show that

EKn(s)Kn(0)1X0+y2n−2≤s = (EKn(0))2 +O(e−εs) (C.7)

for some ε > 0, as s → ∞. We apply a renewal argument conditioning on the n’th
arrival in X ∩ (0,∞), that is, conditioning on the value of X0 + yn−1 ∼ G ∗ F ∗(n−1),
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and then initializing a new independent pure renewal process,

EKn(s)Kn(0)1X0+y2n−2≤s

=

∫ s

0

E
[
Kn(0)Kn(s)1X0+y2n−2≤s | X0 + yn−1 = u

](
G ∗ F ∗(n−1)

)
(du)

=

∫ s

0

E
[
Kn(s− u;N)1yn−1≤s

]
E
[
Kn(0) | X0 + yn−1 = u

](
G ∗ F ∗(n−1)

)
(du)

=

∫ s

0

ψn(s− u)E
[
Kn(0) | X0 + yn−1 = u

](
G ∗ F ∗(n−1)

)
(du).

Since EKn(0) = E0JKn+1(0) due to (3.3), an application of Fubini’s theorem yields
∫ ∞

0

ψ̃n(s)ds = E
∫ yn

yn−1

Kn(s;N)ds

= EKn(y+n−1;N)− EKn(y−n ;N) = EKn(0),

and consequently, by [1, Chapter VII: Thm. 2.10(iii)],

ψn(s) = U ∗ ψ̃n(s) = EKn(0) +O(e−ε
′s) (C.8)

for some 0 < ε′ < η, as s → ∞. Furthermore, by another application of Cauchy-
Schwarz’ inequality, we conclude that

∫ s

0

E
[
Kn(0) | X0 + yn−1 = u

](
G ∗ F ∗(n−1)

)
(du)

= EKn(0)− EKn(0)1X0+yn−1>s

= EKn(0) +O(e−ηs/2)

(C.9)

as s→∞. Combining (C.8) and (C.9) yields (C.7).

33


