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Preface

The linear fractional stable motion (shortly, lfsm) is in the focus of the present thesis.
This is a special type of a stochastic integral driven by α- stable Lévy process. It possesses
the following properties: self-similarity, stationarity of increments, heavy tails and long-
range dependence, some of which helped the process find its way in modeling of computer
networks and solar activities [22, 46]. It is also a generalization of fractional Brownian
motion as it has the same integral core. Apart from lfsms, the thesis considers another
type of stochastic integrals- Lévy driven moving averages.

The thesis comprises four chapters. Chapter 1 presents some introduction to the field
of Lévy processes as well as integrals based on them. It briefly summarizes well-understood
notions and theorems from the literature to help to get acquainted with the field. Chapter
2 is a joint paper with professors Stepan Mazur and Mark Podolskij which is to appear in
Bernoulli journal. It presents feasible estimation techniques for all parameters of lfsms in
both low and high frequency settings. In the end, the paper contains a simulation study
that shows finite sample performances of the estimators along with some comparisons
of them. Chapter 3 is a paper written together with Stepan Mazur and is submitted.
It is devoted to practical aspects of Monte-Carlo simulations and statistical procedures
on lfsms. It describes R package rlfsm designed for those tasks, along with results of
simulations and artifacts found during numerical experiments with the type of motions.
A special attention is paid to our implementation of the FFT-based simulation method
developed by Stoev and Taqqu [40]. Finally, Chapter 4 describes a hybrid method for
simulation of multidimensional Lévy-driven moving averages, where the core of the integral
shows explosive behavior near zero. In this method, simulation of the tail is powered by
multidimensional convolution theorem and is a generalization of the idea presented in [40].
For the area near zero a modification of a method developed by Cohen et al. [17] is used,
and it is based on shot-noise series approximations of the integral. The paper is an early
stage project with Mark Podolskij.

My main contribution comprises designing and performing numerical experiments in
the first two papers, architecturing and developing a large part of the software in rlfsm,
redesigning the algorithm for simulation of lfsms, and creating most of the third paper
except some large-scale ideas and strategies.
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Resume

I denne afhandling er der fokus p̊a den lineære fraktionale stabile bevægelse (kort, lfsb).
Den er en speciel type stokastisk integral drevet af en alfastabil Lévy-proces. Det har
følgende egenskaber: selv-lighed, stationere tilvækst, tunge haler og langtidshukommelse,
nogle af disse egenskaber hjalp processen med at finde sin vej til brug ved modellering
af computernetværk og solaktiviteter [22, 46]. Det er ogs̊a en generalisering af fraktionale
Brownsk bevægelse, da den har den samme integrerede kerne. Bortset fra lfsbs betragter
tesen en anden type stokastiske integraler - Lévy-drevne glidende gennemsnit.

Tesen best̊ar af fire kapitler. Kapitel 1 præsenterer nogle introduktioner til om Levy-
processer og integraler baseret p̊a dem. Den opsummerer vel bekendte forestillinger og
teoremer fra litteraturen for at hjælpe med at blive bekendt med omr̊adet. Kapitel 2
er en fælles artikel fra professorer Stepan Mazur og Mark Podolskij, som kommer til
at blive udgivet i Bernoulli-tidsskriftet. Den præsenterer mulige estimeringsteknikker for
alle parametre af lfsbs ved b̊ade lav- og højfrekvensindstillinger. Til sidst viser artiklen
en simuleringsundersøgelse, der viser endelige prøveudførelser af estimaterne sammen med
nogle sammenligninger af dem. Kapitel 3 er en artikel skrevet sammen med Stepan Mazur,
denne er indsendt til udgivelse. Den er dedikeret til praktiske aspekter af Monte-Carlo-
simuleringer og statistiske procedurer p̊a lfsbs. Den beskriver R-pakken rlfsm designet
til disse opgaver sammen med resultater af simuleringer og artefakter fundet under nu-
meriske eksperimenter med disse typer af bevægelser. Der lægges særlig vægt p̊a vores im-
plementering af den FFT-baserede simuleringsmetode udviklet af Stoev and Taqqu [40].
Endelig beskriver Kapitel 4 en hybrid metode til simulering af multidimensionel Lévy-
drevet glidende gennemsnit, hvor kernen i integralet viser eksplosiv opførsel i nærheden
af nul. I denne metode er simulering af halen drevet af multidimensionel konvolutions-
sætning og er en generalisering af ideen præsenteret i [40]. For omr̊adet nær nul bruges
en modifikation af en metode udviklet af Cohen et al. [17], og den er baseret p̊a korte
støj-serier approksimationer af integralet. Projektet er i et tidligt stadium i samarbejde
med Mark Podolskij.

Mit vigtigste bidrag omfatter design og udførelse af numeriske eksperimenter i de første
to artikler, arkitektur og udvikling af en stor del af softwaren i rlfsm, designudvikling af
algoritmen til simulering af lfsbs og udvikling af det meste af i det tredje artikel, undtagen
nogle overordnede ideer og strategier.
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Notation

Here the reader may find some specific and frequent notations and notions used in the
thesis.

• a.b - scalar product of two vectors

• Minimum and maximum

– a ∨ b = max(a, b), maximum value of two numbers
– a ∧ b = min(a, b) minimum value of two numbers

• a ∗ b - convolution of two functions or sequences

• a ∗ d· · · ∗ b - d-dimensional convolution

• Products

– a× b - regular multiplication
– A×B cartesian product of sets
– R2 = R× R

• a.s. - almost surely

• a.e. - almost every

• a := b - a equals to b by definition

• φ−1 - inversion of function φ

• Γ - Gamma function

• a+ := max(0, a)

• E[x] - expected value of x

• P(A) - probability that set A is observed

• d= - equality in distribution

• a.s.−−→ - almost sure convergence

• P−→ - convergence in probability

• d−→ - convergence in distribution

• N (µ, σ) - normally distributed random variable with mean vector µ and covariance
matrix σ.

• sαs - symmetric α-stable

• for a function g : R→ R, ‖g‖αα :=
∫
R |gs|αds
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• ‖ξ‖α - the scale coefficient of a SαS random variable ξ. It appears in the characteristic
function of ξ, E[eiξt] = e−‖ξ‖

α
α|t|α .

• 2 - end of a proof, Q.E.D.

• 1x∈A - indicator function, 1 if x ∈ A, 0 otherwise.

• F, FT - Fourier transform

• FFT - fast Fourier transform

• DFT - discrete Fourier transform

• DTFT - discrete time Fourier transform
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Chapter 1

Introduction

1.1 Introduction to mathematical tools

Lévy processes

The core of this work relies heavily on Lévy processes as they will be used as drivers for
all of the stochastic integrals under consideration. Rigorous details of these processes can
be found in [39]. A more intuitive introduction to Lévy processes and their applications is
given in [44]. The following definitions, propositions and theorems are adopted from these
two books. We start with the definition of Lévy processes.

Definition 1.1.1. A cádlág stochastic process (Xt)t≥0 on (Ω,F , (Ft)t∈R,P) with values
in Rd such that X0 = 0 is called a Lévy process if it possesses the following properties:

• Independent increments: for every increasing sequence of times (t0, . . . , tn) , the
random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

• Stationary increments: the law of Xt+h −Xt does not depend on t.

• Stochastic continuity:

lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0 for all ε > 0.

The following theorem, the Lévy-Khinchin representation shows that any Lévy process
is fully characterized by only three parameters which are called a characteristic triplet.

Theorem 1.1.2 (Lévy-Khinchin representation). Let (Xt)t≥0 be a Lévy process on Rd.
Then, there exists a characteristic triplet (A, ν, γ), where A is a symmetric nonnegative-
definite d× d matrix, ν is a measure on Rd satisfying∫

Rd
(1 ∧ |x|2) ν(dx) <∞; ν({0}) = 0 (1.1)

and γ ∈ Rd. Then
E[eiz.Xt ] = etψ(z), z ∈ Rd (1.2)

with

ψ(z) = −1
2z.Az + iγ.z +

∫
Rd

(eiz.x − 1− iz.x1|x|≤1)ν(dx). (1.3)

7
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A very important and intuitive result for understanding of Lévy processes is the Lévy-
Itô decomposition. It interprets the motion as a sum of four independent and rather
simple processes: deterministic drift, Brownian motion, a compound Poisson process and
an infinite superposition of independent compensated Poisson processes. This fact is often
used in simulation algorithms, and in fact, will echo in the last chapter, where integrals
driven by Lévy bases will be represented as integrals on Brownian fields, and series with
Poissonian nature.

Proposition 1.1.3 (Lévy-Itô decomposition). Let (Xt)t≥0 be a Lévy process on Rd with
a characteristic triplet (A, ν, γ). Then:

• The jump measure of X, denoted by JX , is a Poisson random measure on [0,∞[×Rd
with intensity measure ν(dx)dt

• There exist a d-dimensional Brownian motion (Bt)t≥0 with covariance matrix A such
that

Xt = γt+Bt +X l
t + lim

t→0
X̃ε
t , where

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx) and

X̃ε
t =

∫
ε≤|x|<1,s∈[0,t]

x(JX(ds× dx)− ν(dx)ds)

(1.4)

The terms in (1.4) are independent and the convergence in the last term is almost sure
and uniform in t on [0, T ].

In this work a special attention is paid to a subclass of the Lévy processes- stable
processes.

Definition 1.1.4. A Lévy process Xt is said to be selfsimilar if

∀a > 0, ∃b(a) > 0 :
(
Xat

b(a)

)
t≥0

d= (Xt)t≥0 (1.5)

Definition 1.1.5. A random variable X ∈ Rd is said to have stable distribution if for
every a > 0 there exist b(a) > 0 and c(a) ∈ Rd such that

ΦX(z)a = ΦX(zb(a))eic.z for all z ∈ Rd. (1.6)

It is said to have a strictly stable distribution if

ΦX(z)a = ΦX(zb(a)) for all z ∈ Rd. (1.7)

The name stable comes from the following stability under addition property: if X
has stable distribution and X(1), ..., X(n) are independent copies of X then there exist a
positive number cn and a vector d such that

X(1) + · · ·+X(n) d= cnX + d (1.8)

It can be shown (see [37], corollary 2.1.3) that for every stable distribution there exists
a constant α ∈ (0, 2] such that in Equation (1.6), b(a) = a1/α. This constant is called the
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index of stability and stable distributions with index α are also referred to as α-stable
distributions. A selfsimilar Lévy process has strictly stable distribution at all times. For
this reason, such processes are also called strictly stable Lévy processes. A strictly α-stable
Lévy process satisfies:

∀a > 0,
(
Xat

a1/α

)
t≥0

d= (Xt)t≥0. (1.9)

In the multidimensional setting there is an analog to a Lévy process- a Lévy basis. Let
S be a collection of sets, which is nonempty. Then S is called a σ-ring if:

∀n, An ∈ S ⇒
∞⋃
n=1

An ∈ S

A ∈ S and B ∈ S ⇒ A \B ∈ S
(1.10)

A Lévy basis L = {L(B) : B ∈ S}, where S is a δ-ring of an arbitrary non-empty set
S such that there exists an increasing sequence of sets (Sn) ⊂ S with ∪n∈NSn = S, is an
independently scattered random measure with Lévy-Khinchin representation

logE[exp(iuL(B))] = iuv1(B)− 1
2u

2v2(B)+

+
∫
R

(
exp(iuy)− 1− iuy1[−1,1](y)

)
v3(dy,B).

(1.11)

Here v1 is a signed measure on S, v2 is a measure on S and v3(·, ·) is a generalised Lévy
measure on R× S (see e.g. [34] for details).

Integrals with Lévy drivers

A classical theory of such integrals was introduced in [34] and summarized in [33]. The
following is adopted from [33]. We study an integral of the form∫

A
fdL,

where L is a Lévy basis on a δ-ring S, f : (S, σ(S))→ (R,B(R)) a measurable real valued
function and A ∈ σ(S), which is the main object of a seminal paper [34]. We will briefly
recall the most important results of this work. By definition of a Lévy basis the law of
(L(A1), . . . , L(Ad)), Ai ∈ S, is infinitely divisible, the random variables L(A1), . . . , L(Ad)
are independent when the sets A1, . . . , Ad are disjoint, and

L (∪∞i=1Ai) =
∞∑
i=1

L(Ai) P− almost surely

for disjoint Ai’s with ∪∞i=1Ai ∈ S. Recalling the characteristic triplet (v1, v2, v3) from the
Lévy-Khinchin representation (1.11), the control measure λ of L is defined via

λ(A) := |v1|(A) + v2(A) +
∫
R

min(1, x2)v3(dx,A), A ∈ S,

where |v1| denotes the total variation measure associated with v1. In this subsection we
will use the truncation function

τ(z) :=
{

z : ‖z‖ ≤ 1
z/‖z‖ : ‖z‖ > 1
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Now, for any simple function

f(x) =
d∑
i=1

ai1Ai(x), ai ∈ R, Ai ∈ S,

the stochastic integral is defined as∫
A
fdL :=

d∑
i=1

aiL(A ∩Ai), A ∈ σ(S).

The extension of this definition is as follows.

Definition 1.1.6. A measurable function f : (S, σ(S))→ (R,B(R)) is called L-integrable
if there exists a sequence of simple functions (fn)n≥1 such that

(i) fn → f λ-almost surely.

(ii) For any A ∈ σ(S) the sequence (
∫
A fndL) converges in probability.

In this case the stochastic integral is defined by∫
A
fdL := P− lim

n→∞

∫
A
fndL.

Although this definition is quite intuitive, it does not specify the class of L-integrable
functions explicitly. The next theorem, which is one of the main results of [34], gives an
explicit condition on the L-integrability of a function f .

Theorem 1.1.7. ([34, Theorem 2.7]) Let f : (S, σ(S)) → (R,B(R)) be a measurable
function. Then f is L-integrable if and only if the following conditions hold:∫

S
U(f(s), s)λ(ds) <∞,

∫
S
f2(s)v2(s)λ(ds) <∞,

∫
S
V0(f(s), s)λ(ds) <∞,

where

U(u, s) := uv1(s) +
∫
R

(τ(xu)− uτ(x))v3(dx, s),

V0(u, s) :=
∫
R

min(1, |xu|2)v3(dx, s).

Furthermore, the real valued random variable X =
∫
S fdL is infinitely divisible with Lévy-

Khinchin representation

logE[exp(iuX)] = iuv1(f)− 1
2u

2v2(f) +
∫
R

(
exp(iuy)− 1− iuy1[−1,1](y)

)
vf3 (dy),

where

v1(f) =
∫
S
U(f(s), s)λ(ds),

v2(f) =
∫
S
f2(s)v2(s)λ(ds),

vf3 (B) = v3 {(x, s) ∈ R× S : xf(s) ∈ B \ {0}} , B ∈ B(R).

In case when the integral is driven by an α-stable Lévy basis, the conditions presented
in Theorem 1.1.7 are significantly simplified:

∫
Rd
|f(s)|αds <∞



Chapter 2

Estimation of the linear fractional
stable motion
Stepan Mazur, Dmitry Otryakhin, Mark Podolskij

2.1 Overview and preliminaries

In this paper we investigate the parametric inference for the linear fractional stable motion
in high and low frequency setting. The symmetric linear fractional stable motion is a
three-parameter family, which constitutes a natural non-Gaussian analogue of the scaled
fractional Brownian motion. It is fully characterised by the scaling parameter σ > 0,
the self-similarity parameter H ∈ (0, 1) and the stability index α ∈ (0, 2) of the driving
stable motion. The parametric estimation of the model is inspired by the limit theory
for stationary increments Lévy moving average processes that has been recently studied
in [7]. More specifically, we combine (negative) power variation statistics and empirical
characteristic functions to obtain consistent estimates of (σ, α,H). We present the law of
large numbers and some fully feasible weak limit theorems.

Now we overview some notions and a theorem obtained by Pipiras et al. [31], which
played one of the key roles in our estimation technique. The primary objects in [31] are
α-stable moving average sequences {Xj,n}n≥1 , j = 1, . . . , J of the form

Xj,n =
∫
R
aj(n− cjx)M(dx), (1.1)

where α ∈ (0, 2), cj > 0, aj ∈ Lα(R, dx) and, in case when α = 1, aj log |aj | ∈ L1(R, dx),
and M is an α-stable random measure on R with the Lebesgue control measure m(dx) = dx
and the skewness β ∈ [−1; 1]. The moving average {Xj,n}n≥1 is called one-sided if aj(x) = 0
for either x < x0 or x > x0, x0 ∈ R. Otherwise, it is called two-sided. Fix nj , j = 1, . . . , J ,
and let Nj > 0 be integers satisfying

Nj ∼
N

nj
, N →∞. (1.2)

For j = 1, . . . , J , and measurable functions Kj set

Sj,Nj :=
Nj∑
n=1

(Kj(Xj,n)− EKj(Xj,n)) (1.3)

11
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An important result of [31] which we used in this paper is Theorem 2.1 that states the
following:

Theorem 2.1.1. Let α ∈ (0, 2) and {Xj,n}n≥1 , j = 1, . . . , J , be α-stable moving averages
defined by (1.1). Suppose that, for each j = 1, . . . , J , the kernel aj in (1.1) satisfies the
condition

∞∑
m=−∞

(∫ m

m−1
|aj(x)|αdx

)1/2
<∞. (1.4)

Suppose also that, for each j = 1, . . . , J , the function Kj in (1.3) is bounded if
{Xj,n}n≥1 is one-sided, and is bounded and twice differentiable with bounded derivatives
if {Xj,n}n≥1 is two-sided. Then, for j = 1, . . . , J ,

(
N
−1/2
j Sj,Nj

)J
j=1

d−→ N (0,ΣM )

where ΣM = (ΣM
jk)j,k=1,...,J .

ΣM
jk = lim

N→∞
E
Sj,NjSk,Nk

N
1/2
j N

1/2
k

<∞ (1.5)

2.2 Introduction

Since the pioneering work by Mandelbrot and van Ness [28] fractional Brownian motion
(fBm) became one of the most prominent Gaussian processes in the probabilistic and
statistical literature. As a building block in stochastic models it found various applica-
tions in natural and social sciences such as physics, biology or economics. Mathematically
speaking, the scaled fBm is fully characterised by its scaling parameter σ > 0 and Hurst
parameter H ∈ (0, 1). More specifically, the scaled fBm Zt = σBH

t is a zero mean Gaussian
process with covariance kernel determined by

E
[
BH
t B

H
s

]
= 1

2
(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0.

We recall that the (scaled) fBm with Hurst parameter H ∈ (0, 1) is the unique Gaus-
sian process with stationary increments and self-similarity index H, i.e. it holds that
(aHZt)t≥0 = (Zat)t≥0 in distribution for any a > 0. Over the last forty years there has
been a lot of progress in limit theorems and statistical inference for fBm’s. The estima-
tion of the Hurst parameter H and/or the scaling parameter σ has been investigated in
numerous papers both in low and high frequency framework. We refer to [19] for efficient
estimation of the Hurst parameter H in the low frequency setting and to [12, 16, 25] for
the estimation of (σ,H) in the high frequency setting, among many others. In the low
frequency framework the spectral density methods are usually applied and the optimal
convergence rate for the estimation of (σ,H) is known to be

√
n. In the high frequency

setting the estimation of the pair (σ,H) typically relies upon power variations and re-
lated statistics, and the optimal convergence rate is known to be (

√
n/ log(n),

√
n). More

recently, the class of multifractional Brownian motions, which accounts for time varying
Hurst parameter, has been introduced in the literature (see e.g. [5, 27, 42]). We refer to
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the work [6, 26] for estimation techniques for the regularity of a multifractional Brownian
motion.

If we drop the Gaussianity assumption the class of stationary increments self-similar
processes becomes much larger. This is a consequence of the work by Pipiras and Taqqu
[30], which in turn applies the decomposition results from the seminal paper by Rosiński
[36] (see also [38]). The crucial theorem proved in [36] shows that each stationary stable
process can be uniquely decomposed (in distribution) into three independent parts: the
mixed moving average process, the harmonizable process and the “third kind” process
described by a conservative nonsingular flow. The most prominent example of a non-
Gaussian stationary increments self-similar process is the linear fractional stable motion
(an element of the first class), which has been introduced in [13]. It is defined as follows:
On a filtered probability space (Ω,F , (Ft)t∈R,P), we introduce the process

Xt =
∫
R

{
(t− s)H−1/α

+ − (−s)H−1/α
+

}
dLs, x+ := max{x, 0}, (2.2.1)

where L is a symmetric α-stable Lévy motion, α ∈ (0, 2), with scale parameter σ > 0 and
H ∈ (0, 1) (here we use the convention xa+ = 0 for any x ≤ 0 and a ∈ R). In some sense the
linear fractional stable motion is a non-Gaussian analogue of fBm. The process (Xt)t∈R has
symmetric α-stable marginals, stationary increments and it is self-similar with parameter
H. Fractional stable motions are often used in natural sciences, e.g. in physics or internet
traffic, where the process under consideration exhibits stationarity and self-similarity along
with heavy tailed marginals (see e.g. [22] for the context of turbulence modelling). The
probabilistic properties of linear fractional stable motions, such as integration concepts,
path and variational properties, have been intensively studied in several papers, see for
example [8, 10, 9] among many others. However, from the statistical point of view, very
little is known about the inference for the parameter θ = (σ, α,H) ∈ R+× (0, 2)× (0, 1) in
high or low frequency setting. The few existing papers mostly concentrate on estimation
of the self-similarity parameter H. The work [4, 32] investigates the asymptotic theory
for a wavelet-based estimator of H when α ∈ (1, 2). In [7, 41] the authors suggest to use
power variation statistics to obtain an estimator of H, but this method also requires the a
priori knowledge of the lower bound for the stability parameter α. Recently, the work [21]
suggested to use negative power variations to get a consistent estimator of H, which applies
for any α ∈ (0, 2), but this article does not contain a central limit theorem for this method.
Finally, in [7, 22] the authors propose to use an empirical scale function to estimate the
pair (α,H). However, this approach only provides a log(n)-consistent estimator without
any hope for a central limit theorem.

In this paper we will propose a new estimation procedure for the parameter θ =
(σ, α,H) in high and low frequency framework. Our methodology is based upon the use
of power variation statistics, with possibly negative powers, and the empirical charac-
teristic function. The probabilistic techniques originate from the recent article [7], which
has developed the asymptotic theory for power variations of higher order differences of
stationary increments Lévy moving averages (see also [31, 32] for related asymptotic the-
ory). However, we will need to derive much more complex asymptotic results to obtain a
complete distributional theory for the estimator of the parameter θ ∈ R+× (0, 2)× (0, 1).
We will obtain a fully feasible asymptotic theory for our estimator with convergence rates
(
√
n,
√
n,
√
n) in the low frequency setting and (

√
n/ log(n),

√
n/ log(n),

√
n) in the high

frequency setting.
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The paper is structured as follows. Section 2.3 presents the basic properties of the linear
fractional stable motion, the review of the probabilistic results from [7] and a multivariate
limit theorem, which plays a key role for the statistical estimation. Section 2.4 is devoted
to the statistical inference in the continuous case H−1/α > 0. The general case is treated
in Section 2.5. Finally, Section 2.6 demonstrates some simulation results. All proofs are
collected in Section 2.7.

2.3 First properties and some asymptotic results

Distributional and path properties

In this section we review some basic properties of the linear fractional stable motion. First
of all, we recall that the symmetric α-stable process (Lt)t∈R with scale parameter σ > 0
is uniquely determined by the characteristic function of L1, which is given by

E[exp(itL1)] = exp(−σα|t|α), t ∈ R. (2.3.1)

Following the theory of integration with respect to infinitely divisible processes investi-
gated in [34], we know that for any deterministic function g : R→ R

X =
∫
R
gsdLs <∞ almost surely ⇔ ‖g‖αα :=

∫
R
|gs|αds <∞.

Furthermore, if ‖g‖α < ∞ then X has a symmetric α-stable distribution with scale pa-
rameter σ‖g‖α. In particular, setting

Xt =
∫
R
gt(s)dLs, gt(s) :=

{
(t− s)H−1/α

+ − (−s)H−1/α
+

}
, (2.3.2)

we see that gt ∈ Lα(R) for any t ∈ R, since |gt(s)| ≤ Ct|s|H−1−1/α when s → −∞ and
H ∈ (0, 1). Hence, Xt is well defined for any t ∈ R and all finite dimensional distributions
of the linear fractional stable motion (Xt)t∈R are symmetric α-stable. It is easily seen that
the linear fractional stable motion has stationary increments.

We recall that symmetric α-stable random variables with α ∈ (0, 2) do not exhibit
finite second moments, and hence their dependence structure can’t be measured via the
classical covariance kernel. Instead it is often useful to consider the following measure
of dependence. Let X =

∫
R gsdLs and Y =

∫
R hsdLs with ‖g‖α, ‖h‖α < ∞. Then we

introduce the measure of dependence Ug,h : R2 → R via

Ug,h(u, v) :=E[exp(i(uX + vY ))]− E[exp(iuX)]E[exp(ivY )] (2.3.3)

= exp(−σα‖ug + vh‖αα)− exp(−σα(‖ug‖αα + ‖vh‖αα)).

The quantity Ug,h is extremely useful when computing covariances cov(K1(X),K2(Y )) for
functions K1,K2 ∈ L1(R); see for instance [32]. Let F denote the Fourier transform and
let F−1 be its inverse. Furthermore, let p(X,Y ), pX and pY denote the density of (X,Y ),
X and Y , respectively. We recall that these densities are not available in a closed form
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Figure 2.1: Left (from bottom to top): The driving symmetric stable Lévy process with α = 1, linear
fractional stable motions with parameters α = 1, H = 0.8 and α = 1, H = 0.2. Right (from bottom to top):
The driving symmetric stable Lévy process with α = 1.8, linear fractional stable motions with parameters
α = 1.8, H = 0.8 and α = 1.8, H = 0.2.

except in some special cases. Using the duality relationship we obtain the identity

cov(K1(X),K2(Y )) =
∫
R2
K1(x)K2(y)

(
p(X,Y )(x, y)− pX(x)pY (y)

)
dxdy

=
∫
R2
K1(x)K2(y)F−1Ug,h(x, y)dxdy (2.3.4)

=
∫
R2

(
F−1K1(x)

) (
F−1K2(y)

)
Ug,h(x, y)dxdy.

We remark that the latter provides an explicit formula for computation of covariances
cov(K1(X),K2(Y )).

Finally, we recall that the path properties of a linear fractional stable motion strongly
depend on the interplay between the parameters H and α. When H−1/α > 0 the process
(Xt)t∈R is Hölder continuous on compact intervals of any order smaller than H − 1/α;
we refer to [8] for more details on this property. If H − 1/α < 0 the linear fractional
stable motion explodes at jump times of the driving Lévy process L; in particular, X has
unbounded paths on compact intervals. We demonstrate some sample paths of the linear
fractional stable motions in Figure 2.1. In the critical case H−1/α = 0 we obviously have
the identity Xt = Lt. In this situation the parameter estimation has been investigated in
[3].

Review of the limit theory

In this section we review some probabilistic results, which will be relevant for our esti-
mation method. Due to stationarity of the increments and self-similarity of the process
(Xt)t∈R, we can discuss the limit theory for the high and low frequency case simulta-
neously. We start by introducing higher order increments of X. We denote by ∆n,r

i,kX
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(i, k, r, n ∈ N) the kth order increment of X at stage i/n and frequency r/n, i.e.

∆n,r
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
X(i−rj)/n, i ≥ rk. (2.3.5)

Note that for r = k = 1 we obtain the usual increments ∆n,1
i,1 X = Xi/n − X(i−1)/n. For

the ease of notation we will often drop the index r (resp. k and n) in ∆n,r
i,kX and other

quantities when r = 1 (resp. k = 1 and n = 1). In particular, the low frequency kth order
increments of X are denoted by

∆r
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
Xi−rj , i ≥ rk. (2.3.6)

According to the self-similarity of the process (Xt)t∈R we readily have that (nH∆n,r
i,kX)i≥rk

d=
(∆r

i,kX)i≥rk. Our main probabilistic tools will be statistics of the form

Vhigh(f ; k, r)n := 1
n

n∑
i=rk

f
(
nH∆n,r

i,kX
)
, Vlow(f ; k, r)n := 1

n

n∑
i=rk

f
(
∆r
i,kX

)
, (2.3.7)

where f : R→ R is a measurable function. It is well known that the process (Xt)t∈R is mix-
ing, see e.g. [14]. Hence, Birkhoff’s ergodic theorem implies the convergence Vlow(f ; k, r)n →
E[f(∆r

rk,kX)] almost surely whenever E[|f(∆r
rk,kX)|] <∞. The same result holds in prob-

ability for the statistic Vhigh(f ; k, r)n due to self-similarity of the process X. However, the
weak limit theorems associated with the aforementioned law of large numbers and the
framework of functions f with E[|f(∆r

rk,kX)|] =∞ are not completely understood in the
literature. To get an idea about possible limits that may appear we briefly demonstrate
some recent theoretical developments from the paper [7], where the case fp(x) = |x|p
(p > 0) has been investigated. We remark that their results are obtained for a wider class
of processes, namely stationary increments Lévy moving average processes, and we adapt
them to the setting of linear fractional stable motions.

We need to introduce some more notation to describe the various limits. For p ∈
(−1, 1) \ {0} we define the constant

ap :=


∫
R (1− cos(y)) |y|−1−pdy : p ∈ (0, 1)
√

2πΓ(−p/2)/2p+1/2Γ((p+ 1)/2) : p ∈ (−1, 0)
, (2.3.8)

where Γ denotes the Gamma function. It is easy to see that ap > 0 is indeed finite in all
relevant cases. For any functions g, h ∈ Lα(R), we introduce the notation

θ(g, h)p = a−2
p

∫
R2
|xy|−1−pUg,h(x, y)dxdy, (2.3.9)

where Ug,h is defined in (2.3.3), whenever the above double integral is finite. Furthermore,
for k, r ∈ N, we define the function hk,r : R→ R by

hk,r(x) =
k∑
j=0

(−1)j
(
k

j

)
(x− rj)H−1/α

+ , x ∈ R. (2.3.10)
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Below (Um)m≥1 is an i.i.d. U(0, 1)-distributed sequence of random variables independent
of L, (Tm)m≥1 are jump times of L and ∆LTm := LTm−LTm− are jump sizes. The following
result summarises the limit theory for the statistic Vhigh(fp; k)n (i.e. r = 1) in the power
variation setting.

Theorem 2.3.1. ([7, Theorems 1.1 and 1.2]) We consider the function fp(x) = |x|p
(p > 0) and assume that H − 1/α > 0.
(i) (First order asymptotics) If p > α we obtain convergence in law

n1−p/αVhigh(fp; k)n d−→
∑

m:Tm∈[0,1]
|∆LTm |p

( ∞∑
l=0
|hk(l + Um)|p

)
.

If p < α we deduce the law of large numbers

Vhigh(fp; k)n P−→ mp,k := E[|∆k,kX|p].

(ii) (Second order asymptotics) Assume that p < α/2. If H < k−1/α we obtain the central
limit theorem

√
n (Vhigh(fp; k)n −mp,k)

d−→ N (0, η2), η2 = θ(hk, hk)p + 2
∞∑
j=1

θ(hk, hk(·+ j))p,

where the quantity θ(g, h) has been introduced at (2.3.9). If H > k − 1/α we deduce a
non-central limit theorem

n1−1/(1+α(k−H)) (Vhigh(fp; k)n −mp,k)
d−→ S,

where S is a totally right skewed (1 + α(k − H))-stable random variable with mean zero
and scale parameter σ̃, which is defined in [7, Theorem 1.2].

We remark that the results of Theorem 2.3.1 remain valid for the low frequency statistic
Vlow(fp; k)n due to self-similarity property of L. Apart from various critical cases Theo-
rem 2.3.1 gives a rather complete understanding of the asymptotic behaviour of the power
variation Vhigh(fp; k)n in the setting H − 1/α > 0. The strong law of large numbers in
Theorem 2.3.1(i) will be useful for estimation of the parameter H. However, without an a
priori knowledge about the stability parameter α, we can’t insure that the condition p < α
holds. Similarly, we would like to use the central limit theorem in Theorem 2.3.1(ii) whose
convergence rate

√
n is faster than the rate n1−1/(1+α(k−H)) in the non-central limit the-

orem. But the conditions of Theorem 2.3.1(ii) rely again on an a priori knowledge about
α.

There are some few related results in the literature. In [31] the authors have shown
a central limit theorem a standardised version of the statistic ∑n

i=1 f(Yi), where f is a
bounded function and (Yt)t∈R is a stable moving average process. In a later work [32] the
result has been extended to a certain class of unbounded functions f under the additional
assumption that α ∈ (1, 2). Similarly to Theorem 2.3.1 the sufficient conditions for the
validity of the central limit theorems in [31, 32] depend on the interplay between the
kernel function of the stable moving average process and the stability index α. We remark
that extensions of these results in various directions will be necessary to obtain the full
asymptotic theory for estimators of the parameter θ = (σ, α,H).
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A multivariate weak limit theorem

Although Theorem 2.3.1(ii) gives a rather complete picture of the weak limit theory in the
power variation case, we will require a much stronger result for our statistical applications.
We introduce the function ψt : R→ R with ψt(x) = cos(tx) and define the statistics

ϕhigh(t;H, k)n := Vhigh(ψt; k)n and ϕlow(t; k)n := Vlow(ψt; k)n, (2.3.11)

which correspond to r = 1. Notice that, in contrast to ϕlow(t; k)n, the high frequency
statistic ϕhigh(t;H, k)n depends on the unknown self-similarity parameter H. In fact, this
is the major difference between the high and low frequency settings, which will result in
different rates of convergence later on. Applying again the strong law of large numbers we
readily obtain the strong consistency

ϕlow(t; k)n a.s.−→ ϕ(t; k) := exp (−|σ‖hk‖αt|α) . (2.3.12)

Clearly, the same result holds in probability for the high frequency statistic ϕhigh(t;H, k)n.
Next, we introduce various types of statistics, which will play a major role in estimation
of the unknown parameter θ. More specifically, we will extend the definition of power
variation to certain negative powers and prove a multivariate limit theorem for power
variations and empirical characteristic functions. We fix d ∈ N and define the statistics
for any 1 ≤ j ≤ d, rj ∈ {1, 2}, p ∈ (−1/2, 1/2) \ {0} and tj > 0:

W (n)(1)
j :=

√
n
(
Vlow(fp; kj , rj)− rHj mp,kj

)
W (n)(2)

j :=
√
n
(
Vlow(ψtj ; kj)n − ϕ(tj ; kj)

)
 when kj > H + 1/α (2.3.13)

S(n)(1)
j := n1−1/(1+α(k−H))

(
Vlow(fp; k, rj)− rHj mp,k

)
S(n)(2)

j := n1−1/(1+α(k−H))
(
Vlow(ψtj ; k)n − ϕ(tj ; k)

)
 when k < H + 1/α

Note the identity E[|∆r
rk,kX|p] = rHmp,k, which explains the centring of the statistics

W (n)(1) and S(n)(1). We remark that the functionals W (n)(1) and W (n)(2) are in the
domain of attraction of the normal distribution (under appropriate assumption on the
powers p) while the functionals S(n)(1) and S(n)(2) are in the domain of attraction of the
(1 + α(k −H))-stable distribution. The latter fact is rather surprising since the statistic
S(n)(2)

j exhibits finite moments of any order.
Before we proceed with the main result of this section we need to introduce some more

notation. In the first step, for any x ∈ R, we define the functions

Φ(1)
j (x) = E[fp(∆

rj
rjk,k

X + x)]− E[fp(∆
rj
rjk,k

X)], (2.3.14)

Φ(2)
j (x) = E[ψtj (∆k,kX + x)]− E[ψtj (∆k,kX)].

Since the functions fp and ψt are even we readily obtain that Φ(l)
j (0) = ∇Φ(l)

j (0) = 0 for
all l, j. Thus, using Lemma 2.7.5, we deduce the growth estimates

|Φ(1)
j (x)| ≤ C

(
x2 ∧ |x|max{p,0}

)
, |Φ(2)

j (x)| ≤ C
(
x2 ∧ 1

)
, (2.3.15)
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for some positive constant C. Next, we introduce the functions

Φ(1)
j (x) =

∞∑
i=1

Φ(1)
j

(
hk,rj (i)x

)
, Φ(2)

j (x) =
∞∑
i=1

Φ(2)
j (hk(i)x) . (2.3.16)

Note that these functions are indeed finite due to (2.3.15) and the estimate |hk,r(x)| ≤
C|x|H−1/α−k for large x. Finally, we set Φ = (Φ(1)

,Φ(2)) = (Φ(1)
1 , . . . ,Φ(1)

d ,Φ(2)
1 , . . . ,Φ(2)

d ).
The main probabilistic result of this paper is the following theorem.

Theorem 2.3.2. Assume that either p ∈ (−1/2, 0) or p ∈ (0, 1/2) and p < α/2. Set
W (n)(i) = (W (n)(i)

1 , . . . ,W (n)(i)
d ) and S(n)(i) = (S(n)(i)

1 , . . . , S(n)(i)
d ) for i = 1, 2. Then

we obtain weak convergence in law on R4d:(
W (n)(1),W (n)(2), S(n)(1), S(n)(2)

)
d−→
(
W (1),W (2), S(1), S(2)

)
, (2.3.17)

where W = (W (1),W (2)) and S = (S(1), S(2)) are independent, W is a centred 2d-
dimensional normal distribution with covariance matrix determined by

cov
(
W

(i)
j ,W

(i′)
j′

)
= lim

n→∞
cov

(
W (n)(i)

j ,W (n)(i′)
j′

)
1 ≤ j, j′ ≤ d, i, i′ = 1, 2,

and S(1), S(2) are independent d-dimensional (1+α(k−H))-stable random variables. The
law of S(1) (resp. S(2)) is determined by the Lévy measure ν1 (resp. ν2) whose support is the
cone (R+)d (resp. (R−)d). More specifically, for any Borel sets A1 ∈ (R+)d, A2 ∈ (R−)d
bounded away from 0 the quantities ν1(A1), ν2(A2) are determined by the identity

νl(Al) = lim
n→∞

nP
(
n−1/(1+α(k−H))Φ(l)(L1) ∈ Al

)
, l = 1, 2. (2.3.18)

The probabilistic result of Theorem 2.3.2 is new in the literature; neither the negative
power variations nor the (real part of) empirical characteristic function have been studied
from the distributional perspective. We remark that the statistics W (n)(1) and S(n)(1) use
the same powers p while the quantities S(n)(1) and S(n)(2) are based on the same order of
increments k. The result of Theorem 2.3.2 does not really use these particular restrictions,
but its statement is sufficient for the statistical application under investigation.

There exists an explicit expression for the covariance matrix of the limit W . We obtain
the following representations:

cov
(
W

(1)
j ,W

(1)
j′

)
=
∑
l∈Z

θ(hkj ,rj , hkj′ ,rj′ (·+ l))p, (2.3.19)

cov
(
W

(2)
j ,W

(2)
j′

)
= 1

2
∑
l∈Z

(
Uhkj ,hkj′ (·+l)

(tj , tj′) + Uhkj ,−hkj′ (·+l)
(tj , tj′)

)
,

cov
(
W

(1)
j ,W

(2)
j′

)
=
∑
l∈Z

θ(l)jj′ ,

with

θ(l)jj′ = −a−1
p

∫
R
|y|−1−pUhkj,rj ,hkj′ (·+l)

(y, tj′)dy.

We will prove that cov(W ) <∞ in all relevant cases and the mapping (σ, α,H) 7→ cov(W )
is continuous (see Section 2.7). The latter allows us to estimate the covariance matrix
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cov(W ) < ∞ and thus obtain a feasible version of the central limit theorem in Theorem
2.3.2.

Similarly, the Lévy measures νl (l = 1, 2) can be determined explicitly. First of all, the
representation (2.7.2) from Section 2.7 implies the identities

Φ(1)
j (x) = a−1

p

∫
R

(1− cos(ux)) exp
(
−|σ‖hk,rj‖αu|

α
)
|u|−1−pdu,

Φ(2)
j (x) = (cos(tjx)− 1) exp (−|σ‖hk‖αtj |α) .

In particular, it holds that Φ(1)
j (x) ≥ 0 and Φ(2)

j (x) ≤ 0. In the next step we need to
determine the asymptotic behaviour of Φ(1)

j (x) (resp. Φ(2)
j (x)) as x → ∞ (resp. as x →

−∞). By the substitution u = (x/z)1/(k+1/α−H) we have that

x1/(H−k−1/α)Φ(1)
j (x) = x1/(H−k−1/α)

∫ ∞
0

Φ(1)
j

(
hk,rj (buc+ 1)x

)
du

= (k + 1/α−H)−1
∫ ∞

0
Φ(1)
j

(
hk,rj (b(x/z)1/(k+1/α−H)c+ 1)x

)
z−1+1/(H−k−1/α)dz

→ c
(1)
j := (k + 1/α−H)−1

∫ ∞
0

Φ(1)
j

(
rkj

k−1∏
i=0

(H − 1/α− i) · z
)
z−1+1/(H−k−1/α)dz

(2.3.20)

as x→∞. The convergence at (2.3.20) follows from the asymptotic behaviour hk,rj (x) ∼
rkj
∏k−1
i=0 (H − 1/α− i) ·xH−1/α−k as x→∞. Applying the same technique we deduce that

|x|1/(H−k−1/α)Φ(2)
j (x)→

c
(2)
j := (k + 1/α−H)−1

∫ ∞
0

Φ(2)
j

(
k−1∏
i=0

(H − 1/α− i) · z
)
z−1+1/(H−k−1/α)dz (2.3.21)

as x → −∞. Now, both measures ν1 and ν2 from Theorem 2.3.2 can be related to the
Lévy measure ν of L. We introduce the mappings τ1 : R+ → (R+)d and τ2 : R− → (R−)d
via

τ1(x) = x1/(k+1/α−H)
(
c

(1)
1 , . . . , c

(1)
d

)
, τ2(x) = |x|1/(k+1/α−H)

(
c

(2)
1 , . . . , c

(2)
d

)
.

Then, for Borel sets A1, A2 as defined in Theorem 2.3.2, we deduce the identity

νl(Al) = lim
n→∞

nP
(
τl(n−1/αL1) ∈ Al

)
= ν

(
τ−1
l (Al)

)
, l = 1, 2. (2.3.22)

2.4 Statistical inference in the continuous case H − 1/α > 0
We start with the continuous case H − 1/α > 0, which turns out to be somewhat easier
to treat compared to the general setting. Since H ∈ (0, 1) and α ∈ (0, 2), condition
H − 1/α > 0 implies the restrictions

α ∈ (1, 2) and H ∈ (1/2, 1).
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It is the lower bound α > 1 that enables us to use the law of large numbers in Theorem
2.3.1(i) whenever p < 1, and the central limit theorem in Theorem 2.3.1(ii) whenever
p < 1/2 and H < k − 1/α. The latter condition H < k − 1/α never holds for k = 1 since
0 < H − 1/α < 1− 2/α < 0 gives a contradiction, but it is always satisfied for any k ≥ 2
since

H < 1 < k − 1/α for any k ≥ 2,

because α > 1.
Now, we introduce an estimator for the parameter θ = (σ, α,H) in high and low

frequency setting. We start with the statistical inference for the self-similarity parameter
H, which is based upon a ratio statistic that compares power variations at two different
frequencies. More specifically, we define the quantities

Rhigh(p, k)n :=
∑n
i=2k

∣∣∣∆n,2
i,kX

∣∣∣p∑n
i=k

∣∣∣∆n,1
i,kX

∣∣∣p , Rlow(p, k)n :=
∑n
i=2k

∣∣∣∆2
i,kX

∣∣∣p∑n
i=k

∣∣∣∆1
i,kX

∣∣∣p , (2.4.1)

where the increments ∆r
i,kX have been defined at (2.3.6). We obtain the convergence

Rhigh(p, k)n P−→ 2pH , Rlow(p, k)n a.s.−→ 2pH

for any p ∈ (0, 1) as an immediate consequence of Theorem 2.3.1(i). Consequently, defining
the statistics

Ĥhigh(p, k)n := 1
p

log2Rhigh(p, k)n, Ĥlow(p, k)n := 1
p

log2Rlow(p, k)n, (2.4.2)

we deduce the consistency Ĥhigh(p, k)n P−→ H, Ĥlow(p, k)n a.s.−→ H as n → ∞ for any
k ≥ 1 and any p ∈ (0, 1). We remark that this type of ratio statistics is commonly used
in the framework of fBm’s when estimating the Hurst parameter H (see e.g. [25] among
many others). In the Gaussian setting, which corresponds to α = 2, the central limit
theorem for the quantity

√
n(Ĥhigh(p, k)n − H) holds for all k ≥ 2 and also for k = 1

if further H ∈ (0, 3/4). As we indicated above, in the framework of pure jump α-stable
driving motion L the central limit theorem never holds if k = 1. Hence, there is no smooth
transition between the non-Gaussian and Gaussian setting when α→ 2.

The estimation strategy for the parameter θ = (σ, α,H) based on high frequency
observations is now straightforward: Infer the self-similarity parameter H by (2.4.2) and
use the plug-in estimator ϕhigh(t; Ĥhigh(p, k), k)n for two different values of t to infer the
scale parameter σ and the stability index α. For the latter step we consider t2 > t1 > 0
and observe the identities

σ = (− logϕ(t1; k))1/α /t1‖hk‖α, α = log | logϕ(t2; k)| − log | logϕ(t1; k)|
log t2 − log t1

.

Recalling that the function hk depends on α and H, we readily obtain a function G such
that

(σ, α) = G (ϕ(t1; k), ϕ(t2; k), H) (2.4.3)
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where we applied the above identities. Next, we present the estimator of the pair (σ, α) in
high and low frequency setting, recalling that the estimators of the self-similarity param-
eter H have been defined at (2.4.2). We introduce the following estimators:

(σ̂high(k, t1, t2)n, α̂high(k, t1, t2)n)

= G
(
ϕhigh(t1; Ĥhigh(p, k)n, k)n, ϕhigh(t2; Ĥhigh(p, k)n, k)n, Ĥhigh(p, k)n

)
,

(σ̂low(k, t1, t2)n, α̂low(k, t1, t2)n) = G
(
ϕlow(t1; k)n, ϕlow(t2; k)n, Ĥlow(p, k)n

)
. (2.4.4)

Before we present the main result of this section we need to introduce more notation. We
define the functions vp : R2

+ → R and F : R2
+ × R2 → R3 by

vp(x, y) = p−1(log2 y − log2 x), F (x, y, u, w) = (G(u,w, vp(x, y)), vp(x, y)) , (2.4.5)

and let JF denotes the Jacobian of F . For any matrix A we write A? for its transpose.
The asymptotic normality in the low and high frequency setting is summarised in the
following theorem.

Theorem 2.4.1. Consider the linear fractional stable motion (Xt)t∈R introduced at (2.2.1).
Let k ≥ 2 and t2 > t1 > 0.
(i) (Low frequency case) Let W = (W (1),W (2)) be the 4-dimensional normal limit defined
in Theorem 2.3.2 associated with d = 2, p ∈ (0, 1/2), k1 = k2 = k and rj = j. Then we
obtain the central limit theorem

√
n

 σ̂low(k, t1, t2)n − σ
α̂low(k, t1, t2)n − α
Ĥlow(p, k)n −H

 d−→ Bnor
low (p, k) = JF

(
mp,k, 2Hmp,k, ϕ(t1; k), ϕ(t2; k)

)
W ?.

(ii) (High frequency case) We obtain the central limit theorem


√
n(logn)−1 (σ̂high(k, t1, t2)n − σ)√
n(logn)−1 (α̂high(k, t1, t2)n − α)
√
n
(
Ĥhigh(p, k)n −H

)
 d−→ Bnor

high(p, k) =

∇v(mp,k, 2Hmp,k)(W (1))? ×

 ∇G1(ϕ(t1; k), ϕ(t2; k), H) (t1ϕ′(t1; k), t2ϕ′(t2; k), 0)?
∇G2(ϕ(t1; k), ϕ(t2; k), H) (t1ϕ′(t1; k), t2ϕ′(t2; k), 0)?

1

 .
We remark that the central limit theorem of Theorem 2.4.1(i) is a simple consequence

of Theorem 2.3.2 and the delta method. In contrast to the low frequency case Theo-
rem 2.4.1(ii) is degenerate in the sense that the limit distribution is solely driven by the
asymptotics of the term

√
n(Ĥhigh(p, k)n−H). Since the parameter H enters the quantity

ϕhigh(t;H, k)n via nH the additional term (logn)−1 appears in the convergence rate.
For a later use we need to extend the definition of the random variables Bnor

high(p, k)
and Bnor

low(p, k) to various directions. First of all, we will allow for negative powers −p with
p ∈ (0, 1/2). Secondly, we would like to define the same limiting variables but associated
with the stable limit S = (S(1), S(2)) from Theorem 2.3.2 rather than W . Thus, for d = 2,
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p ∈ (−1/2, 1/2) \ {0}, k1 = k2 = k and rj = j, we set

Bsta
low(p, k) = JF

(
mp,k, 2Hmp,k, ϕ(t1; k), ϕ(t2; k)

)
S?,

Bsta
high(p, k) =

∇v(mp,k, 2Hmp,k)(S(1))? ×

 ∇G1(ϕ(t1; k), ϕ(t2; k), H) (t1ϕ′(t1; k), t2ϕ′(t2; k), 0)?
∇G2(ϕ(t1; k), ϕ(t2; k), H) (t1ϕ′(t1; k), t2ϕ′(t2; k), 0)?

1

 .
Remark 2.4.2. In Theorem 2.4.1 we use two values t1, t2 ∈ R2

+ and an estimator Ĥ to
infer the parameters (σ, α). Applying basic statistical principles it is more natural to use
all t ∈ R+ for the estimation procedure. For example, when considering the low frequency
framework, we may estimate the parameters (σ, α) via a minimal contrast approach. Given
a positive weight function w ∈ L1(R+) we obtain an estimator (σ̃n, α̃n) of (σ, α) by

(σ̃n, α̃n) ∈ argminθ∈R+×(0,2)

∫ ∞
0

(ϕlow(t; k)n − ϕ̂(t; k))2w(t)dt,

where ϕ̂(t; k) = ϕ(Ĥlow(p, k)n, t; k). In this setting we are likely to require tightness or
a similar property of the stochastic process ϕlow(·; k)n to prove asymptotic normality of
(σ̃n, α̃n). However, this seems to be a non-trivial problem, at least when using standard
tightness criteria for the space (C(R+), ‖ · ‖∞). We leave it for future research.

Remark 2.4.3. The described statistical methodology can be applied to more general pro-
cesses than the mere linear fractional stable motion. In the paper [7] the authors investi-
gated limit theorems for stochastic processes of the form

Yt =
∫
R
{g(t− s)− g0(−s)}dLs,

where g, g0 are deterministic functions vanishing on R− with g(x) = xH−1/αf(x) and
f(0) 6= 0, and L is a symmetric α-stable Lévy motion. In the high frequency setting the
process Y exhibits the tangent process f(0)X, i.e. we have that

∆n,r
i,k Y ≈ f(0)∆n,r

i,kX.

In particular, under certain assumption on f (cf. [7]), the central limit theorem part
of Theorem 2.3.2 holds for the more general class of processes Y . Hence, in this semi-
parametric model it is possible to estimate the parameter (|f(0)|σ, α,H) via the same ap-
proach as presented in Theorem 2.4.1(ii). We remark that the function f can’t be inferred
from high frequency observations on a fixed time interval.

2.5 Statistical inference in the general case

In this section we treat the case of a general linear fractional stable motion as it has been
introduced at (2.2.1). We recall that in the continuous setting the restriction H−1/α > 0
has led to the lower bound α > 1, which is essential for obtaining the asymptotic results
of Theorem 2.4.1. Without having an explicit lower bound for the stability parameter α
statistical inference turns out to be more complex. As a consequence we will require a
different estimation method for the self-similarity parameter H and a two-step procedure
to choose the right order of increments k. Furthermore, in order to obtain fast rates of
convergence we need different treatments for the low and high frequency frameworks.
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Low frequency setting

We note that the basic idea behind the ratio statistic Rlow(p, k)n introduced in (2.4.1) is
the homogeneity of the function fp(x) = |x|p and the fact that mp,k <∞ which is a conse-
quence of p < α (for the associated central limit theorem we need the stronger condition
p < α/2). In order to keep both properties we may instead consider the negative power
variation, which corresponds to the function f−p(x) = |x|−p, and we assume throughout
this section that p ∈ (0, 1/2). This approach has been originally proposed in [21], although
central limit theorems have not been investigated in this setting. Note that the function
f−p is still homogenous and m−2p,k < ∞, which is due to the fact that for any random
variable Y with bounded density near 0 it holds that E[|Y |a] <∞ for all a ∈ (−1, 0). Thus,
Ĥlow(−p, k)n is a strongly consistent estimator of the parameter H for any p ∈ (0, 1/2).

In the next step we need to ensure that we end up in the domain of attraction of the
central limit theorem in Theorem 2.3.1(ii), which requires that k > H+1/α. To guarantee
this we need a preliminary estimator of the parameter α. They are obtained as in (2.4.4)
using the function f−p and k = 1:

α̂0
low(t1, t2)n = G2

(
ϕlow(t1)n, ϕlow(t2)n, Ĥlow(−p)n

)
, (2.5.1)

where G = (G1, G2). Notice that this estimator is consistent, but we do not know if it is
in the domain of attraction of a normal distribution or not. Now, we define

k̂low(t1, t2)n = 2 + bα̂0
low(t1, t2)−1

n c. (2.5.2)

For the sake of brevity we write k̂low = k̂low(t1, t2)n. In the second step we estimate the
parameter θ = (σ, α,H) using k̂low. The self-similarity parameter H is thus estimated by
Ĥlow(−p, k̂low)n. Next, similarly to definitions at (2.4.4), we introduce the estimators(

σ̃low(k̂low, t1, t2)n, α̃low(k̂low, t1, t2)n
)

(2.5.3)

= G
(
ϕlow(t1; k̂low)n, ϕlow(t2; k̂low)n, Ĥlow(−p, k̂low)n

)
.

In order to determine the asymptotic distribution of the proposed estimators we will
need the full force of Theorem 2.3.2. Due to definition (2.5.2) we also require a separate
treatment of the cases α−1 6∈ N and α−1 ∈ N. In the first case k̂low

a.s.−→ 2 + bα−1c while in
the second case we will have

P
(
k̂low = 2 + α−1

)
→ λ and P

(
k̂low = 1 + α−1

)
→ 1− λ

for a certain constant λ ∈ (0, 1). In the first setting, which is easier to treat, we obtain
the following result.

Theorem 2.5.1. Let X be the linear fractional stable motion defined at (2.2.1). Assume
that p ∈ (0, 1/2) and α−1 6∈ N. We obtain the central limit theorem

√
n

 σ̃low(k̂low, t1, t2)n − σ
α̃low(k̂low, t1, t2)n − α
Ĥlow(−p, k̂low)n −H

 d−→ Bnor
low

(
−p, 2 + bα−1c

)
.
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In the framework α−1 ∈ N we distinguish two further cases, that determine the asymp-
totic behaviour the preliminary estimate α̂0

low, which is constructed using k = 1. According
to Theorem 2.3.2 we are in the domain of the validity of a central limit theorem when
H < 1− 1/α while a non-central limit theorem holds if H > 1− 1/α.

Proposition 2.5.2. Let X be the linear fractional stable motion defined at (2.2.1). Assume
that p ∈ (0, 1/2).
(i) (Normal case) Assume that H < 1− 1/α. Then we obtain the central limit theorem

√
n
(
α̂0

low(t1, t2)n − α
)

d−→ Bnor
low (−p, 1)2 .

(ii) (Stable case) Assume that H > 1− 1/α. Then we obtain the weak limit theorem

n1−1/(1+α(1−H))
(
α̂0

low(t1, t2)n − α
)

d−→ Bsta
low (−p, 1)2 .

We note that the result of Proposition 2.5.2(ii) is essentially the same as in the asymp-
totically normal regime except that the convergence rate is now n1−1/(1+α(1−H)) and the
normal limit W is replaced by S.

The next theorem presents the statistical behaviour of the estimator (σ̃low, α̃low, Ĥlow(−p, k̂low)n)
in the case α−1 ∈ N.

Theorem 2.5.3. Let X be the linear fractional stable motion defined at (2.2.1). Assume
that p ∈ (0, 1/2) and α−1 ∈ N.
(i) (Case H < 1− 1/α) Assume that H < 1− 1/α. Then we obtain

√
n

 σ̃low(k̂low, t1, t2)n − σ
α̃low(k̂low, t1, t2)n − α
Ĥlow(−p, k̂low)n −H

 d−→ Dnor
low ,

where the probability distribution Dnor
low on R3 is given by

Dnor
low (·) = P({Bnor

low (−p, 2 + α−1) ∈ ·} ∩ {Bnor
low (−p, 1)2 < 0})

+ P({Bnor
low (−p, 1 + α−1) ∈ ·} ∩ {Bnor

low (−p, 1)2 > 0}).

(ii) (Case H > 1− 1/α) Assume that H > 1− 1/α. Then we obtain

√
n

 σ̃low(k̂low, t1, t2)n − σ
α̃low(k̂low, t1, t2)n − α
Ĥlow(−p, k̂low)n −H

 d−→ Dsta
low,

where the probability distribution Dsta
low on R3 is given by

Dsta
low(·) = P(Bsta

low (−p, 1)2 < 0)P(Bnor
low (−p, 2 + α−1) ∈ ·)

+ P(Bsta
low (−p, 1)2 > 0)P(Bnor

low (−p, 1 + α−1) ∈ ·).

According to Theorem 2.3.2 the statistic (Bnor
low(−p, k), Bnor

low(−p, 1)) is jointly normal
for k ∈ {1+α−1, 2+α−1}. Thus, the probability distribution Dnor

low can be easily computed
using conditioning rules for normal distribution.

Note however that it is problematic to use Theorem 2.5.3 for constructing confidence
regions since we do not know a priori whether part (i) or part (ii) applies. We now introduce
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a decision rule that helps us to solve this problem. Let t4 > t3 > t2 > t1 > 0 be given
real numbers and let α̂0

low(t1, t2)n, α̂0
low(t3, t4)n be two estimators of parameter α ∈ (0, 2)

defined at (2.5.1). Then, similarly to Proposition 2.5.2, we deduce that

an
(
α̂0

low(t3, t4)n − α̂0
low(t1, t2)n

)
converges in law,

where an =
√
n if H < 1 − 1/α and an = n1−1/(1+α(1−H)) if H > 1 − 1/α. Hence, we

immediately conclude the convergence

dn := − log
∣∣α̂0

low(t3, t4)n − α̂0
low(t1, t2)n

∣∣
log(n)

P−→
{

1/2 : if H < 1− 1/α
1− 1/(1 + α(1−H)) : if H > 1− 1/α

In other word, the statistic dn helps us to identify the rate of convergence, but it has a bias
of order 1/ log(n). Our decision rule is now as follows: Use Theorem 2.5.3(i) to perform
statistical inference if

dn > 1/2− (log(n))−1+ε

for some small chosen ε > 0; otherwise use Theorem 2.5.3(ii).

Remark 2.5.4. While we can obtain fully feasible asymptotic theory if we know whether
α−1 ∈ N or not, we are not yet able to deduce a complete statistical method without
this a priori knowledge. Possibly subsampling procedures are required to obtain empirical
confidence regions that automatically adapt to a given setting.

High frequency setting

In the framework of high frequency observations the application of the empirical charac-
teristic function might lead to suboptimal convergence rates for the estimator of (σ, α).
This comes from the following observation. Assume that α < 1. Using the inequality
| cos(x)− cos(y)| ≤ |x− y|α′ for any α′ < α we obtain the upper bound

|ϕhigh(t; Ĥhigh(p, k)n, k)n − ϕhigh(t;H, k)n|

≤ tα
′(nĤhigh(p,k)n−H − 1)α′

n

n∑
i=k
|nH∆n

i,kX|α
′ = OP

(
(n−1/2 logn)−α′/2

)
,

where the last statement follows from E[|∆k,kX|α
′ ] < ∞ and the ergodic theorem. Since

the above expression is predominant in the asymptotic theory and it seems hard to improve
it, we obtain slow rates of convergence for the parameters σ and α if we apply the same
estimation procedure as in the previous section. For this reason we require a different
approach in the high frequency setting.

First of all, we give an explicit formula for the constant m−p,k = E[|∆k,kX|−p], p ∈
(0, 1/2), which has been introduced in Theorem 2.3.1. We recall that the random variable
∆k,kX is symmetric α-stable with scale parameter σ‖hk‖α. Consequently, applying the
identity [21, Eq. (18)] we conclude that

m−p,k = (σ‖hk‖α)−p
a−p

∫
R

exp(−|y|α)|y|−1+pdy = 2(σ‖hk‖α)−p
αa−p

Γ(p/α),
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where the last equality follows by substitution z = yα for y > 0. Now, we use the idea
that has been originally proposed in [21] to identify the parameter α via power variation
statistics. We consider p, p′ ∈ (0, 1/2), p 6= p′, and observe that

mp
−p′,k

mp′

−p,k
=

(2/α)p−p′ap
′

−pΓ(p′/α)p

ap−p′Γ(p/α)p′ =: φp,p′(α). (2.5.4)

It has been shown in [21] that the mapping α 7→ φp,p′(α) is invertible for any p 6= p′.
Hence, we have α = φ−1

p,p′(m
p
−p′,k/m

p′

−p,k). Now, assuming that we know α and H (recall
that the norm ‖hk‖α depends on these parameters), we can recover the scale parameter
σ via

σ =
(
αa−pm−p,k

2Γ(p/α)

)− 1
p

/‖hk‖α.

Summarising the above identities we obtain the function G : (R+)2 × (0, 1) → R2 such
that

(σ, α) = G
(
m−p,k,m−p′,k, H

)
. (2.5.5)

Next, we follow the same two-stage routine as in the previous section. We first compute
Ĥhigh(−p)n = Ĥhigh(−p, 1)n with p ∈ (0, 1/2) and define the preliminary estimator of α
by

α̂0
high(−p,−p′)n = G2

(
Vhigh(f−p, Ĥhigh(−p)n)n, Vhigh(f−p′ , Ĥhigh(−p)n)n, Ĥhigh(−p)n

)
,

(2.5.6)

where the statistic Vhigh(f−p, Ĥhigh(−p)n)n refers to power variation introduced in (2.3.7)
with k = 1 and with H replaced by Ĥhigh(−p)n. Now, we define

k̂high = k̂high(−p,−p′)n = 2 + bα̂0
high(−p,−p′)−1

n c (2.5.7)

and introduce the estimator(
σ̃high(k̂high,−p,−p′)n, α̃high(k̂high,−p,−p′)n

)
= G

(
Vhigh(f−p, Ĥhigh(−p, k̂high)n; k̂high)n,

Vhigh(f−p′ , Ĥhigh(−p, k̂high)n; k̂high)n, Ĥhigh(−p, k̂high)n
)
.

We again require a separate treatment of the cases α−1 6∈ N and α−1 ∈ N. We start with
the first setting. When H < k−1/α we consider the statistic W (n)(1) = (W (n)(1)

1 ,W (n)(1)
2 )

associated with the power −p and

k1 = k̂high, r1 = 1 and k2 = k̂high, r2 = 2.

Recall that W (n)(1) d−→ W (1) according to Theorem 2.3.1. Now, similarly to Theorem
2.4.1, we define

B
nor
high(−p,−p′, k) := ∇vp(m−p,k, 2Hm−p,k)(W (1))? (2.5.8)

×

 ∇G1(m−p,k,m−p′,k, H)
(
−pm−p,k,−p′m−p′,k, H

)?
∇G1(m−p,k,m−p′,k, H)

(
−pm−p,k,−p′m−p′,k, H

)?
1

 ,
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where the function vp has been introduced at (2.4.5). Our first result is the following
theorem.

Theorem 2.5.5. Let X be the linear fractional stable motion defined at (2.2.1). Assume
that p, p′ ∈ (0, 1/2) and α−1 6∈ N. Then we obtain the central limit theorem

√
n(logn)−1

(
σ̃high(k̂high,−p,−p′)n − σ

)
√
n(logn)−1

(
α̃high(k̂high,−p,−p′)n − α

)
√
n
(
Ĥhigh(−p, k̂high)n −H

)
 d−→ B

nor
high

(
−p,−p′, 2 + bα−1c

)
.

Next, we treat the case α−1 ∈ N. For this purpose, whenever H > k − 1/α, we
introduce the notation B

sta
high(−p,−p′, k) to denote the random variable at (2.5.8) where

W (1) is replaced by S(1). We deduce the following result, which is the analogue of Theorem
2.5.3.

Theorem 2.5.6. Let X be the linear fractional stable motion defined at (2.2.1). Assume
that p, p′ ∈ (0, 1/2) and α−1 ∈ N.
(i) (Case H < 1− 1/α) Assume that H < 1− 1/α. Then we obtain

√
n(logn)−1

(
σ̃high(k̂high,−p,−p′)n − σ

)
√
n(logn)−1

(
α̃high(k̂high,−p,−p′)n − α

)
√
n
(
Ĥhigh(−p, k̂high)n −H

)
 d−→ Dnor

high,

where the probability distribution Dnor
high on R3 is given by

Dnor
high(·) = P({Bnor

high(−p,−p′, 2 + α−1) ∈ ·} ∩ {Bnor
high

(
−p,−p′, 1

)
2 < 0})

+ P({Bnor
high(−p,−p′, 1 + α−1) ∈ ·} ∩ {Bnor

high
(
−p,−p′, 1

)
2 > 0}).

(ii) (Case H > 1− 1/α) Assume that H > 1− 1/α. Then we obtain
√
n(logn)−1

(
σ̃high(k̂high,−p,−p′)n − σ

)
√
n(logn)−1

(
α̃high(k̂high,−p,−p′)n − α

)
√
n
(
Ĥhigh(−p, k̂high)n −H

)
 d−→ Dsta

high,

where the probability distribution Dsta
high on R3 is given by

Dsta
high(·) = P(Bsta

high
(
−p,−p′, 1

)
2 < 0)P(Bnor

high(−p,−p′, 2 + α−1) ∈ ·)

+ P(Bsta
high

(
−p,−p′, 1

)
2 > 0)P(Bnor

high(−p,−p′, 1 + α−1) ∈ ·).

Remark 2.5.7. We may use a similar decision rule as proposed in Section 2.5 to figure
out whether part (i) or (ii) of Theorem 2.5.6 is applicable. Let p1, . . . , p4 ∈ (0, 1/2) be
distinct real numbers. As in the previous subsection we have that

dn := −
log

∣∣∣α̂0
high(−p1,−p2)n − α̂0

high(−p3,−p4)n
∣∣∣

log(n)
P−→{

1/2 : if H < 1− 1/α
1− 1/(1 + α(1−H)) : if H > 1− 1/α
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We thus use Theorem 2.5.6(i) to perform statistical inference when

dn > 1/2− (log(n))−1+ε.

2.6 A simulation study

In this section we demonstrate the finite sample performance of our estimators based upon
the theoretical results of Theorems 2.4.1, 2.5.1 and 2.5.5, where the latter two correspond
to the setting α−1 6∈ N (we dispense with the numerical analysis associated with Theorems
2.5.3 and 2.5.6). We simulate high and low frequency observations of the linear fractional
stable motion defined at (2.2.1) for n = 100, 1.000 and 10.000. Whenever we use the
statistics Vhigh(f ; k, r)n and Vlow(f ; k, r)n introduced in (2.3.7), we multiply them by (n−
rk + 1)/n to account for the actual number of summands. Throughout the section we set
t1 = 1 and t2 = 2. We use 5000 repetitions to uncover the finite sample properties of our
estimators. The asymptotic variances appearing in central limit theorems are rather hard
to compute numerically, so we perform Monte Carlo simulations to estimate them. We
generate the number of sample paths mentioned above and compute (σ̂, α̂, Ĥ) for each of
them. Basing on the estimator values, we calculate sample mean and standard deviation,
which are also used to construct empirical distribution functions, analogs of the functions
on the right-hand side of the corresponding limit theorems.

Table 2.1: Bias/standard deviation of the estimators (σ̂low, α̂low, Ĥlow) and (σ̂high, α̂high, Ĥhigh). We use
p = 0.4 and k = 2, and the true parameter is (σ, α,H) = (0.3, 1.8, 0.8).

n σ̂low α̂low Ĥlow σ̂high α̂high Ĥhigh

100 −0.024/0.06 −0.038/0.18 −0.05/0.12 0.06/0.18 −0.07/0.2 0.02/0.10
1000 −0.0008/0.02 0.012/0.068 −0.012/0.05 −0.001/0.12 0.015/0.07 −0.009/0.05
10000 0.00014/0.006 0.0005/0.022 −0.005/0.016 −0.010/0.05 0.001/0.022 −0.005/0.016

We begin with the discussion of Theorem 2.4.1. Table 2.1 reports the bias and the
standard deviation of the estimator of (σ, α,H) = (0.3, 1.8, 0.8) in high and low frequency
settings, where we use the power p = 0.4 and the order k = 2. We observe that our
estimators exhibit a rather convincing finite sample performance in both settings. As
expected from the theoretical statements of Theorem 2.4.1, the estimators of the self-
similarity parameter H exhibit similar finite sample properties in high and low frequency
settings, while the performance of the low frequency estimators for the parameters σ
and α is better than in the high frequency case. This is obviously a consequence of a
slightly slower convergence rate in the high frequency setting. Figure 2.2 plots the empirical
densities of the standardised estimators from Theorem 2.4.1 in comparison to the density of
the standard normal distribution. As mentioned earlier we use Monte Carlo simulations to
estimate the theoretical variances. We again observe a very good performance of estimators
of the parameter H, while the numerical results for the estimators of σ and α are better
in the low frequency case.

Another approach to estimation of the self-similarity parameter H is the log-log re-
gression, which is a generalisation of our approach. The kea idea is the observation that
the convergence Vlow(fp; k, r) a.s.−→ rpHmp,k for p ∈ (0, α) or p ∈ (−1, 0) leads to the
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Figure 2.2: Empirical pdfs of (σ̂, α̂, Ĥ) in high and low frequency settings. The right column corresponds
to the high frequency case and the left one to the low frequency case. The true parameter is (σ, α,H) =
(0.3, 1.8, 0.8), k = 2, p = 0.4.

approximative identity

log (Vlow(fp; k, r)n) ≈ log(mp,k) + pH log(r), r = 1, 2, . . . , r.

Note that the latter is a linear regression and the slope identifies the parameter H. Indeed,
H can be estimated from low frequency data via

Ĥ log
low =

∑r
r=1(xr − x)(yr − y)
p
∑r
r=1(xr − x)2

,

where xr = log(r), yr = log (Vlow(fp; k, r)n) and x (resp. y) denotes the empirical mean of
xr’s (resp. yr’s). Obviously, the asymptotic theory for the estimator Ĥ log

low can be directly
deduced from Theorem 2.3.2; we leave the details to the reader. Instead we restrict our
attention to the empirical performance of Ĥ log

low. The next table demonstrates the finite
sample bias/standard deviation of the estimator Ĥ log

low in the setting of Theorem 2.4.1 with
p = 0.4, k = 2 and r = blog(n)c.
Comparing Tables 2.1 and 2.2, we observe that the standard deviations of Ĥ log

low and Ĥlow
are quite similar in all scenarios, but Ĥ log

low has a much lower bias.
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Table 2.2: Bias/standard deviation of the regression-based estimator for H. Low frequency case. Here
p = −0.4, k = 2 and (σ, α,H) = (0.3, 1.8, 0.8).

n r Ĥ log
low

100 4 −5.8× 10−3/0.13
1000 6 −2.9× 10−4/0.04
10000 9 −1.5× 10−4/0.013

Now, we turn our attention to the low frequency estimation discussed in Theorem 2.5.1.
We use the power p = −0.4 and consider the true parameter (σ, α,H) = (0.3, 1.8, 0.8) and
(σ, α,H) = (0.3, 0.8, 0.8). Observe that the first case corresponds to the setting of Theorem
2.4.1 and the second parameter corresponds to the discontinuous setting. The estimated
order k̂low is computed via (2.5.2). Table 2.3 displays the bias and standard deviation in
the case (σ, α,H) = (0.3, 1.8, 0.8), while Table 2.4 demonstrates the numerical results in
the case (σ, α,H) = (0.3, 0.8, 0.8).

Table 2.3: Bias/standard deviation of the estimator (σ̃low, α̃low, H̃low). Here p = −0.4, k̂low is computed
from (2.5.2) and (σ, α,H) = (0.3, 1.8, 0.8).

n σ̃low α̃low H̃low

100 −0.05/0.09 −0.031/0.18 −0.12/0.23
1000 −0.004/0.04 0.01/0.068 −0.018/0.12
10000 0.0003/0.015 0.001/0.022 −0.003/0.05

Table 2.4: Bias/standard deviation of the estimator (σ̃low, α̃low, H̃low). Here p = −0.4, k̂low is computed
from (2.5.2) and (σ, α,H) = (0.3, 0.8, 0.8).

n σ̃low α̃low H̃low

100 −0.06/0.31 −0.003/0.41 −0.15/0.24
1000 −0.05/0.27 −0.08/0.31 0.003/0.13
10000 0.03/0.26 0.008/0.27 0.04/0.05

Comparing the simulation results of Theorems 2.4.1 and 2.5.1, we see that the finite
sample performance of estimators σ and H in Theorem 2.5.1 is inferior. This is not really
surprising, since the methodology of Theorem 2.5.1 requires preliminary estimation of
α and k, and hence leads to an accumulation of errors. In turn, alpha estimator is not
as sensitive to errors because of the double logarithm. Furthermore, in the setting of a
fractional Brownian motion it is well known that low values of the parameter k give more
efficient estimators. We conjecture that a similar effect appears for linear fractional stable
motions. This would explain the superiority of the results in Table 2.3 compared to those
in Table 2.4, since bα−1c + 2 = 2 in the first setting while bα−1c + 2 = 3 in the second
setting. Figures 2.3 and 2.4 show the empirical density functions, where the theoretical
variances have been estimated via a Monte Carlo simulations. They confirm the better
performance of the estimators in the continuous setting (σ, α,H) = (0.3, 1.8, 0.8). We also
observe that the estimator of the parameter σ exhibits the worst finite sample properties
in the setting (σ, α,H) = (0.3, 0.8, 0.8).
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Figure 2.3: Empirical pdfs of (σ̃low, α̃low, H̃low). Here (σ, α,H) = (0.3, 1.8, 0.8) and p = −0.4.
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Figure 2.4: Empirical pdfs of (σ̃low, α̃low, H̃low). Here (σ, α,H) = (0.3, 0.8, 0.8) and p = −0.4.

Finally, let us discuss the finite sample performance of the high frequency estimators
from Theorem 2.5.5. We again consider two parameter settings (σ, α,H) = (0.3, 1.8, 0.8)
and (σ, α,H) = (0.3, 0.8, 0.8), and we use p = −0.4 and p′ = −0.2. The estimated order
k̂high is computed via (2.5.7). Tables 2.5 and 2.6 display the biases and standard deviations
in both parameter settings. We observe that the estimators of the parameter σ have the
worst performance and we only obtain reasonable results for n = 10.000. Similar conclu-
sions can be drawn from Figures 2.5 and 2.6 that plot the empirical density functions.
The bad performance of the estimator of σ in Theorem 2.5.5 is explained by the fact that
we not only require a preliminary estimation step for our procedure, but we also need to
estimate the parameters H and α first to obtain an estimator of σ. This leads to accu-
mulation of finite sample errors, which results in large bias and variance for small n. To
further highlight this issue, we have plotted the empirical densities for the estimators of σ
from Theorems 2.5.1 and 2.5.5 in Figure 2.7 in the setting (σ, α,H) = (0.3, 0.8, 0.8) where
the parameter (α,H) is assumed to be known. We observe a much better finite sample
performance, which confirms that the bad finite sample properties of the estimator of σ
are largely due to preliminary estimation of (α,H).
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Table 2.5: Bias/standard deviation of the estimator (σ̃high, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and
(σ, α,H) = (0.3, 1.8, 0.8).

n σ̃high α̃high H̃high

100 60/1443 −0.02/0.77 0.23/0.33
1000 0.18/0.82 0.19/0.67 0.02/0.13
10000 −0.003/0.17 0.052/0.26 −0.003/0.05

Table 2.6: Bias/standard deviation of the estimator (σ̃high, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and
(σ, α,H) = (0.3, 0.8, 0.8).

n σ̃high α̃high H̃high

100 16/341 0.19/0.37 0.13/0.4
1000 0.103/1 0.02/0.09 0.06/0.16
10000 −0.11/0.12 0.003/0.04 0.04/0.06
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Figure 2.5: Empirical pdfs of (σ̃high, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and (σ, α,H) = (0.3, 1.8, 0.8).
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Figure 2.6: Empirical pdfs of (σ̃high, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and (σ, α,H) = (0.3, 0.8, 0.8).

2.7 Proofs

In this section we denote all positive constants by C although they may change from line
to line.
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Figure 2.7: Empirical pdfs for σ (Left=Theorem 2.5.1, Right=Theorem 2.5.5) when the parameter
(α,H) = (0.8, 0.8) is known. Here σ = 0.3, p = −0.4, p′ = −0.2 and k = 3.

Preliminaries

Here we will show some technical results, which are necessary to prove the main theo-
rems. We start with the following lemma that is a straightforward consequence of Taylor
expansion.

Lemma 2.7.1. Let hk,r be defined as in (2.3.10). Then it holds that

|hk,r(x)| ≤ C
(
xH−1/α1(0,rk+1](x) + xH−k−1/α1(rk+1,∞)(x)

)
.

Furthermore, the function |hk,r| is strictly decreasing on (rk + 1,∞).

An important quantity when considering various asymptotic covariances is the follow-
ing object:

ρl :=
∫ ∞

0
|hk,r(x)hk,r(x+ l)|α/2dx. (2.7.1)

The next lemma determines the asymptotic behaviour of ρl when l→∞.

Lemma 2.7.2. For l > rk it holds that

ρl ≤ C
{
l(α(H−k)−1)/2 : when k > H + 1/α
lα(H−k) : when k < H + 1/α

Proof. Assume that l > rk. Applying Lemma 2.7.1 we obtain the inequality∫ l

0
|hk,r(x)hk,r(x+ l)|α/2dx ≤ Cl(α(H−k)−1)/2

∫ l

0
|hk,r(x)|α/2dx

≤ C
{
l(α(H−k)−1)/2 ∫∞

0 |hk,r(x)|α/2dx : k > H + 1/α
lα(H−k) : k < H + 1/α

When k > H + 1/α we have
∫∞

0 |hk,r(x)|α/2dx <∞, which is due to Lemma 2.7.1; on the
other hand, for k < H+1/α we deduce that

∫ l
0 |hk,r(x)|α/2dx ≤ Cl1+(α(H−k)−1)/2. Applying

Lemma 2.7.1 once again and using the substitution x = ly we deduce the inequality∫ ∞
l
|hk,r(x)hk,r(x+ l)|α/2dx ≤ C

∫ ∞
l
|x(x+ l)|(α(H−k)−1)/2dx

= Clα(H−k)
∫ ∞

1
|y(y + 1)|(α(H−k)−1)/2dy.

Indeed, the last integral is finite since H < 1 ≤ k. Hence, the statement of Lemma 2.7.2
is proved.
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In the next step we will determine the behaviour of the function Ug,h defined at (2.3.3).
The following result is the statement of inequalities (3.4)-(3.6) from [32].

Lemma 2.7.3. For any u, v ∈ R it holds that

|Ug,h(u, v)| ≤ 2|uv|α/2
∫ ∞

0
|g(x)h(x)|α/2dx

× exp
(
−2|uv|α/2

(
‖g‖α/2α ‖h‖α/2α −

∫ ∞
0
|g(x)h(x)|α/2dx

))
,

|Ug,h(u, v)| ≤ 2|uv|α/2
∫ ∞

0
|g(x)h(x)|α/2dx

× exp
(
−
(
‖ug‖α/2α − ‖vh‖α/2α

)2
)
.

In particular, we have that |Ug,h(u, v)| ≤ 2|uv|α/2
∫∞

0 |g(x)h(x)|α/2dx.

Now we turn our attention to formula (2.3.19), which presents an explicit expression
for the asymptotic covariance matrix cov(W ). In the following we will prove this identity.
For the sake of brevity we will only show formula (2.3.19) for d = 1 and only for the
component var(W (1)

1 ) with k1 = k and r1 = r. All other identities are in fact easier to
prove and we leave them to the reader.

The expression for var(W (1)
1 ) for p ∈ (−1/2, 0) and its finiteness have been shown

in [21, Corollary 3.3 and Theorem 4.2] using methods from distribution theory, so we
concentrate on the case p ∈ (0, 1/2). For p ∈ (0, 1), we have the relationship

|x|p = a−1
p

∫
R

(1− exp(ixy)) |y|−1−pdy. (2.7.2)

which can be shown by substitution xy = z (recall the definition of ap at (2.3.8)). Note
that similarly to (2.3.4) the latter connects power functions with characteristic functions,
which are explicit in the α-stable case. Applying this formula and using stationarity of
the increments ∆r

i,kX we conclude that

cov
(
fp
(
∆r
i,kX

)
, fp

(
∆r
i+l,kX

))
= θ(hk,r, hk,r(·+ l))p,

where the quantity θ(g, h)p has been introduced at (2.3.9). Since W (n)(1)
1 is a sum of

stationary random variables it remains to prove that θ(hk,r, hk,r(· + l))p is absolutely
summable in l to show the identity (2.3.19). This is the statement of the next lemma.

Lemma 2.7.4. For p ∈ (0, 1/2) with p < α/2 it holds that

|θ(hk,r, hk,r( · + l))p| ≤ Cρl.

In particular, if k > H + 1/α we obtain ∑∞l=1 |θ(hk,r, hk,r(·+ l))p| <∞.

Proof. The second part of the statement follows directly from Lemma 2.7.2 and the fact
that (α(H − k)− 1)/2 < −1 when k > H + 1/α. To show the first part of the statement
we will use the inequalities of Lemma 2.7.3. Recalling the definition of θ(hk,r, hk,r(·+ l))p
it is sufficient to compute the double integral over the set (0,∞)2 (instead of R2), which



36 Chapter 2. Estimation of the linear fractional stable motion

is due to symmetry. The domain (0,∞)2 is further decomposed into the regions (0, 1)2,
(0, 1) × [1,∞), [1,∞) × (0, 1) and [1,∞)2, and we denote the corresponding integrals by
I1, I2, I3 and I4, respectively.

For the integral I1 we use the inequality |Ug,h(u, v)| ≤ 2|uv|α/2
∫∞

0 |g(x)h(x)|α/2dx of
Lemma 2.7.3 to deduce that

|I1| ≤ a−2
p

∫
(0,1)2

(xy)−1−p|Uhk,r,hk,r(·+l)(x, y)|dxdy ≤ Cρl
∫

(0,1)2
(xy)−1−p+α/2dxdy,

where the last integral is finite because p < α/2. Applying the main statement of Lemma
2.7.3 we also conclude the inequality

|I4| ≤ Cρl
∫

[1,∞)2
(xy)−1−p+α/2 exp

(
−2(xy)α/2 (‖hk,r‖αα − ρl)

)
dxdy,

By Cauchy-Schwarz inequality we have that ρl < ‖hk,r‖αα. Furthermore, liml→∞ ρl = 0 by
Lemma 2.7.2 and thus, for a given ε ∈ (0, 1), ρl < ε for almost all l ∈ N. Hence, there
exists a constant C > 0 such that

|I4| ≤ Cρl
∫

[1,∞)2
(xy)−1−p+α/2 exp

(
−2C(xy)α/2

)
dxdy,

where the latter integral is obviously finite. For the integral I2 we apply Lemma 2.7.3 once
more to obtain

|I2| ≤ Cρl
∫

(0,1)×[1,∞)
(xy)−1−p+α/2 exp

(
−‖hk,r‖α/2α (yα/2 − xα/2)2

)
dxdy

≤ Cρl
∫

(0,1)×[1,∞)
(xy)−1−p+α/2 exp

(
−‖hk,r‖α/2α (yα/2 − 1)2

)
dxdy

and the last integral is again finite since p < α/2. The term I3 is treated exactly the same
way as I2 and we are done.

At the end of this subsection we remark that the covariance matrix cov(W ) is a con-
tinuous function in (σ, α,H) ∈ R+ × (0, 2) × (0, 1), which follows by Lemma 2.7.4 and a
dominated convergence theorem.

Proof of Theorem 2.3.2

The proof of Theorem 2.3.2 will be divided into several steps. Some parts of the proof will
rely upon asymptotic expansions investigated in [7, 31].

Asymptotic decomposition of the statistic
(
W (n)(1),W (n)(2)

)
In this section we introduce several approximations of the statistic appearing in Theorem
2.3.2. We start with the asymptotically normal part

(
W (n)(1),W (n)(2)

)
. Recalling the

notation (2.3.10) we observe the identity

∆r
i,kX =

∫
R
hk,r(i− s)dLs. (2.7.3)
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In the first step we introduce the short memory approximation of ∆r
i,kX by truncating

the integration region:

∆r
i,kX(m) :=

∫ i+m

i−m
hk,r(i− s)dLs. (2.7.4)

Note that the random variables (∆r
i,kX(m))i≥rk are stationary and 2m-dependent, i.e.

∆r
i,kX(m) and ∆r

j,kX(m) are independent if |i−j| ≥ 2m. For f(x) = |x|p with p ∈ (0, 1/2)
and p < α/2, or f(x) = cos(tx) we introduce the notation

W (n,m)(1)
j := 1√

n

n∑
i=rjkj

{
fp
(
∆rj
i,kj
X(m)

)
− E

[
fp
(
∆rj
i,kj
X(m)

)]}
(2.7.5)

W (n,m)(2)
j := 1√

n

n∑
i=k

{
ψtj

(
∆i,kjX(m)

)
− E

[
ψtj

(
∆i,kjX(m)

)]}
For the function f−p(x) = |x|−p with p ∈ (0, 1/2) we set f ε−p(x) = |x|−p1{|x|>ε} and note
that the latter is a bounded function. In this setting we define

W (n,m, ε)(1)
j := 1√

n

n∑
i=rk

{
f ε−p

(
∆r
i,kX(m)

)
− E

[
f ε−p

(
∆r
i,kX(m)

)]}
. (2.7.6)

In [7, Section 5.4] it has been shown that the convergence

lim
m→∞

lim sup
n→∞

E
[(
W (n,m)(1)

j −W (n)(1)
j

)2
]

= 0 (2.7.7)

holds. On the other hand, since the functions ψtj and f ε−p are bounded, we obtain the
convergence

lim
m→∞

lim sup
n→∞

E
[(
W (n,m)(2)

j −W (n)(2)
j

)2
]

= 0, (2.7.8)

lim
m→∞

lim sup
n→∞

E
[(
W (n,m, ε)(1)

j −W (n, ε)(1)
j

)2
]

= 0

from [31]. Here W (n, ε)(1)
j is the original statistic defined at (2.3.13) associated with the

function f ε−p.

Asymptotic decomposition of the statistic
(
S(n)(1), S(n)(2)

)
In this subsection we derive an asymptotic expansion for the statistic

(
S(n)(1), S(n)(2)

)
.

The main ideas originate from the work [7] and we will adapt their principles to our
setting. The following estimates and decomposition have been treated in the case of power
variation with p ∈ (0, 1/2), p < α/2, in [7], so we will rather concentrate on the functions
f−p, p ∈ (0, 1/2), and ψt.

All expansions are valid componentwise, so we may assume that d = 1. We recall the
notation introduced at (2.3.14). For a symmetric α-stable random variable Y with scaling
parameter ρ > 0 and a measurable function f : R→ R, we introduce the function

Φρ(f)(x) := E[f(Y + x)]− E[f(Y )], x ∈ R, (2.7.9)
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whenever the latter is finite. In the following we will derive various estimates for Φρ(f−p)(x)
with p ∈ (0, 1/2). First of all, using the identity [21, Eq. (18)] we obtain the representation

Φρ(f−p)(x) = a−1
p

∫
R

(1− cos(xy)) exp(−|ρy|α)|y|−1+pdy. (2.7.10)

This identity implies the following result.

Lemma 2.7.5. Assume that ρ, ρ1, ρ2 > ε > 0. Then there exists a constant Cε > 0 such
that the following inequalities hold:

|Φρ(f−p)(x)| ≤ Cε(1 ∧ x2), |Φρ(f−p)(v)(x)| ≤ Cε for v = 1, 2,

|Φρ(f−p)(x)− Φρ(f−p)(y)| ≤ Cε
(
(1 ∧ |x|+ 1 ∧ |y|)|x− y|1{|x−y|≤1} + 1{|x−y|>1}

)
,

|Φρ1(f−p)(x)− Φρ2(f−p)(x)| ≤ Cε|ρα2 − ρα1 |,∫ x

0

∫ y

0
Φρ(f−p)(a+ z + w)|dzdw ≤ Cε(1 ∧ x)(1 ∧ y) for any x, y > 0, a ∈ R,

where Φρ(f−p)(v) denotes the vth derivative of Φρ(f−p).

Proof. Note that the function f−p is even and hence Φρ(f−p)(0) = Φρ(f−p)(1)(0) = 0.
Using the identity (2.7.10) we immediately see that |Φρ(f−p)(v)(x)| ≤ Cε for v = 0, 1, 2.
Thus, we obtain the first two inequalities. By the same arguments we get |Φρ(f−p)(1)(x)| ≤
Cε(1 ∧ |x|). Observing the identity

|Φρ(f−p)(x)− Φρ(f−p)(y)| =
∣∣∣∣∫ x

y
Φρ(f−p)(1)(u)du

∣∣∣∣
we readily deduce the third inequality. The fourth inequality follows immediately from
(2.7.10) and the mean value theorem. The last statement is a straightforward consequence
of the first three inequalities of Lemma 2.7.5.

It is important to note that the result of Lemma 2.7.5 remains valid for the function
Φρ(ψt). In this case it is a consequence of the fact the ψt is a bounded and even function.

In the next step we present some decompositions, which have been investigated in [7].
For any fixed r and k, and the function f = fp, f−p, p ∈ (0, 1/2), or ψt, we define the
random variable

S(f)n = n−1/(1+α(k−H))
n∑

i=rk

{
f
(
∆r
i,kX

)
− E

[
f
(
∆r
i,kX

)]}
=:

n∑
i=rk

V n
i .

We also introduce the σ-algebras

Gs := σ (Lv − Lu : v, u ≤ s) , G1
s := σ (Lv − Lu : s ≤ v, u ≤ s+ 1) ,

and note that (G1
s )s∈R is not a filtration. Now, we introduce the notation

Rni :=
n∑
j=1

ζni,j , Qni :=
n∑
j=1

E[V n
i |G1

i−j ],

where ζni,j := E[V n
i |Gi−j+1]− E[V n

i |Gi−j ]− E[V n
i |G1

i−j ].
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Finally, we observe the decomposition

S(f)n =
n∑

i=rk
Rni +

(
−S(f)n +

n∑
i=rk

Qni

)
+ S(f)n, (2.7.11)

S(f)n :=n−1/(1+α(k−H))
n∑

i=rk

{
Φ(f)(Li − Li−1)− E[Φ(f)(Li − Li−1)]

}
,

where Φ(f)(x) := ∑∞
j=1 Φρ(f) (hk,r(j)x) with ρ = σ‖hk,r‖α. Note that S(f)n is a sum of

i.i.d random variables. For f = fp with p ∈ (0, 1/2), p < α/2 and under assumptions of
Theorem 2.3.2, the convergence

n∑
i=rk

Rni
P−→ 0 and − S(f)n +

n∑
i=rk

Qni
P−→ 0 as n→∞ (2.7.12)

has been shown in [7] (cf. eqs. (5.30), (5.31) and (5.38) therein). The proof of these
convergence results follows from a number of estimates on the function Φρ(fp), p ∈ (0, 1/2),
which are stated in [7, eqs. (5.14)-(5.18) and Lemma 5.8]. But according to Lemma 2.7.5
the same estimates hold also for Φρ(f−p), p ∈ (0, 1/2), and Φρ(ψt) (in fact, the latter
estimates are stronger). Consequently, the convergence at (2.7.12) also holds for the cases
f = f−p and f = ψt and we deduce that

S(f)n − S(f)n P−→ 0 for f = fp, f−p or ψt. (2.7.13)

A limit theorem for the approximations

Recalling the notation introduced in (2.3.14) and (2.3.16) we obtain the identities

S(n)(1)
j := S(fp)n,j = n−1/(1+α(k−H))

n∑
i=rjk

{
Φ(1)
j (Li − Li−1)− E[Φ(1)

j (Li − Li−1)]
}
,

S(n)(2)
j := S(ψtj )n = n−1/(1+α(k−H))

n∑
i=rjk

{
Φ(2)
j (Li − Li−1)− E[Φ(2)

j (Li − Li−1)]
}
,

(2.7.14)

where p ∈ (−1/2, 1/2) \ {0} and the statistic S(fp)n,j is defined as in (2.7.11) using the
parameters rj and k. As a consequence of (2.7.7), (2.7.8) and (2.7.13) it is now sufficient
to show a weak limit theorem for the statistic

(W (n,m)(1),W (n,m)(2), S(n)(1), S(n)(2))

(resp. (W (n,m, ε)(1),W (n,m)(2), S(n)(1), S(n)(2))) when p ∈ (0, 1/2) and p < α/2 (resp.
−p ∈ (0, 1/2)) as n→∞ and then m→∞.

In order to prove this convergence we recall the results of [35] adapted to our setting.
Let (Y (1)

i )i≥1 and (Y (2)
i )i≥1 be i.i.d sequences of centred random variables of dimensions

d1 and d2 respectively, which are not necessarily independent. Define the statistics

Z(1)
n = 1√

n

n∑
i=1

Y
(1)
i , Z(2)

n = n−1/β
n∑
i=1

Y
(2)
i with β ∈ (1, 2).
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Assume now that Z(1)
n

d−→ Z(1) where Z(1) is a d1-dimensional centred normal distribution
and assume that each coordinate Y (2)

1,j , 1 ≤ j ≤ d2, is in the domain of attraction of a
β-stable random variables, i.e.

lim
x→+∞

xβP(Y (2)
1,j > x) = b+j and lim

x→−∞
|x|βP(Y (2)

1,j < x) = b−j .

Assume moreover that there exists a measure ν such that for all sets A ∈ B(Rd2) bounded
away from 0 with ν(∂A) = 0 it holds:

lim
n→∞

nP(n−1/βY
(2)
i ∈ A) = ν(A).

Then we obtain the joint convergence(
Z(1)
n , Z(2)

n

)
d−→
(
Z(1), Z(2)

)
, (2.7.15)

where Z(1) and Z(2) are necessarily independent, and the law of Z(2) is determined by the
Lévy measure ν. Indeed this result is a direct consequence of [35, Theorems 3 and 4] and
their direct extension from bivariate to (d1 + d2)-dimensional setting.

Next, we apply the weak convergence at (2.7.15) to our framework. Notice first that
the statistics W (n,m)(1), W (n,m)(2) and W (n,m, ε)(1) are sums of 2m-dependent random
variables, but this setting can be reduced to sums of i.i.d random variables by the classical
Bernstein’s blocking technique. Hence, the theory of [35] also applies in this case.

For the sake of brevity we apply the convergence at (2.7.15) only for the statistic
(W (n,m)(1),W (n,m)(2), S(n)(1), S(n)(2)). We set

Z(1)
n,m =

(
W (n,m)(1),W (n,m)(2)

)
and Z(2)

n =
(
S(n)(1), S(n)(2)

)
,

and define β = (1+α(k−H)). By the standard central limit theorem for sums of stationary
2m-dependent random variables we deduce the convergence

Z(1)
n,m

d−→ Z(1)
m ∼ N2d(0,Σm) as n→∞,

where the asymptotic covariance matrix Σm is defined by

Σij
m =

2m−1∑
l=−2m+1

cov
(
fp
(
∆ri
riki,ki

X(m)
)
, fp

(
∆rj
riki+l,kjX(m)

))
, 1 ≤ i, j ≤ d,

Σij
m =

2m−1∑
l=−2m+1

cov
(
fp
(
∆ri
riki,ki

X(m)
)
, ψtj

(
∆riki+l,kjX(m)

))
, d+ 1 ≤ i+ d, j ≤ 2d,

Σij
m =

2m−1∑
l=−2m+1

cov
(
ψti (∆ki,kiX(m)) , ψtj

(
∆ki+l,kjX(m)

))
, d+ 1 ≤ i, j ≤ 2d.

In the next step we treat the statistic Z(2)
n . Recalling the definition at (2.7.14), and the tail

convergence of (2.3.20) and (2.3.21), we conclude that the limits of S(n)(1) and S(n)(2)

must be independent since b−j = 0 for 1 ≤ j ≤ d and b+j = 0 for d + 1 ≤ j ≤ 2d.
Furthermore, (2.3.22) readily implies the convergence

Z(2)
n

d−→
(
S(1), S(2)

)
as n→∞,
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where the vector
(
S(1), S(2)

)
has been introduced in Theorem 2.3.2.

Finally, we will prove that the covariance matrix Σm converges as m → ∞. In the
following we write ‖Y ‖L2 for E[Y 2]1/2 for any square integrable random variable Y . For
m1,m2 ∈ N and 1 ≤ j ≤ d observe the decomposition

|(Σjj
m1)1/2 − (Σjj

m2)1/2| = lim
n→∞

|‖W (n,m1)(1)
j ‖L2 − ‖W (n,m2)(1)

j ‖L2 | (2.7.16)

≤ lim sup
n→∞

(
‖W (n,m1)(1)

j −W (n)(1)
j ‖L2 + ‖W (n,m2)(1)

j −W (n)(1)
j ‖L2

)
and the latter converges to 0 as m1,m2 →∞ due to (2.7.7). Hence, (Σjj

m)m≥1 is a Cauchy
sequence and thus it converges. Since var(W (n)(1)

j )→ var(W (1)
j ) we must have that

lim
m→∞

Σjj
m = var(W (1)

j ).

The same argument applies to Σjj
m for d+ 1 ≤ j ≤ 2d and also to covariances Σij

m due to
polarisation identity.

Summarising the results of Sections 2.7-2.7 we obtain the weak limit theorem(
W (n)(1),W (n)(2), S(n)(1), S(n)(2)

)
d−→
(
W (1),W (2), S(1), S(2)

)
,

for p ∈ (0, 1/2) and p < α/2, as claimed in (2.3.17). Similarly, for −p ∈ (0, 1/2) we have
also obtained the convergence(

W (n, ε)(1),W (n)(2), S(n)(1), S(n)(2)
)

d−→
(
W (ε)(1),W (2), S(1), S(2)

)
,

for any ε > 0. Here the limit (W (ε)(1),W (2), S(1), S(2)) is defined as in Theorem 2.3.2,
where the function f−p is replaced by f ε−p. In order to prove the original theorem for
−p ∈ (0, 1/2) we need to let ε→ 0, which is the subject of the next subsection.

Letting ε→ 0

For simplicity we may assume that d = 1 and r1 = r, k1 = k. In the first step we will
show that

lim
ε→0

lim sup
n→∞

E
[(
W (n, ε)(1) −W (n)(1)

)2
]

= 0.

We define the function f̄ ε−p = f−p − f ε−p, p ∈ (0, 1/2). Notice that supp(f̄ ε−p) = [−ε, ε] and
|F−1(f̄ ε−p)| ≤ Cε for all x ∈ R. Applying the formula (2.3.4) we conclude that∣∣∣cov

(
f̄ ε−p

(
∆r
i,kX

)
, f̄ ε−p

(
∆r
i+l,kX

))∣∣∣ ≤ Cε2 ∫
R2
|Uhk,r,hk,r(·+l)(x, y)|dxdy.

In [32, Lemma 3.4] it has been proved that the inequality∫
R2
|Uhk,r,hk,r(·+l)(x, y)|dxdy ≤ Cρl

holds (in fact, the proof is the same as for Lemma 2.7.4). Hence, we conclude by Lemma
2.7.2 and the condition k > H + 1/α∣∣∣cov

(
f̄ ε−p

(
∆r
i,kX

)
, f̄ ε−p

(
∆r
i+l,kX

))∣∣∣ ≤ Cε2l(α(H−k)−1)/2 (2.7.17)
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Since (α(H − k)− 1)/2 < −1 when k > H + 1/α we readily deduce the estimate

lim sup
n→∞

E
[(
W (n, ε)(1) −W (n)(1)

)2
]
≤ Cε2

and the first statement follows.
Now, we are left to proving weak convergence for the vector (W (ε)(1),W (2)) as ε→ 0.

This random variable is bivariate normal with mean 0. Hence, it suffices to show that
the covariance matrix converges. But this follows by setting ε = 1/N and applying a
Cauchy sequence argument as presented in (2.7.16). Thus, the proof of Theorem 2.3.2 is
complete.

Proof of Theorem 2.4.1

Part (i) of Theorem 2.4.1 follows from Theorem 2.3.2 applied to the setting d = 2, p ∈
(0, 1/2), kj = k ≥ 2 (and hence k > H + 1/α), and the classical delta method. In fact, we
only use the central limit theorem part of Theorem 2.3.2.

Part (ii) of Theorem 2.4.1 is slightly more involved. We start with the identity (t > 0)

ϕhigh(t; Ĥ, k)n − ϕhigh(t;H, k)n = 1
n

n∑
i=k

{
cos(tnĤ∆n

i,kX)− cos(tnH∆n
i,kX)

}
,

where we use the short notation Ĥ = Ĥhigh(p, k)n. Setting Mn = nĤ−H and using the
inequality | cos(y)− cos(x) + (y−x) sin(x)| ≤ C|y−x|α′ for some α′ ∈ (1, α), we conclude
that

ϕhigh(t; Ĥ, k)n − ϕhigh(t;H, k)n = − t(Mn − 1)
n

n∑
i=k

(nH∆n
i,kX) sin(tnH∆n

i,kX) +Rn,

where |Rn| ≤ C
|Mn − 1|α′

n

n∑
i=k
|nH∆n

i,kX|α
′
.

We observe that
√
n(Ĥ −H) is asymptotically normal, which follows by a delta method

from Theorem 2.3.2 (take d = 2 and use the convergence in distribution W (n)(1) d−→
W (1)). By the mean value theorem we obtain that

√
n(logn)−1(Mn − 1) =

√
n(Ĥ −H) + oP(1).

Hence, recalling that α′ ∈ (1, α), we deduce by Birkhoff’s ergodic theorem
√
n(logn)−1

(
ϕhigh(t; Ĥ, k)n − ϕhigh(t;H, k)n

)
=
√
n(Ĥ −H)tϕ′(t; k) + oP(1), (2.7.18)

where we used the identity tϕ′(t; k) = −E[nH∆n
i,kX sin(tnH∆n

i,kX)]. Finally, we note that

ϕhigh(t;H, k)n − ϕ(t; k) = OP(n−1/2),

which follows from Theorem 2.3.2. Hence, observing the identities (2.4.3) and (2.4.4), we
obtain the statement of Theorem 2.4.1(ii) by applying the delta method to Theorem 2.3.2.
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Proof of Theorem 2.5.1

First of all, we note that δ := α−1−bα−1c ∈ (0, 1) since α−1 6∈ N. Setting δ′ := min{δ, 1−
δ}/2 > 0 we conclude that

P
(
k̂low 6= 2 + bα−1c

)
≤ P

(
|α̂0

low(t1, t2)−1
n − α−1| > δ′

)
→ 0,

because α̂0
low(t1, t2)n P−→ α and α > 0. This implies the convergence k̂low

a.s.−→ 2 + bα−1c.
Thus, it suffices to prove the asymptotic results of Theorem 2.5.1 when k̂low is replaced by
2+bα−1c. Now, notice that k = 2+bα−1c automatically satisfies the condition k > H+1/α
since H ∈ (0, 1). This guarantees that the statistic (W (n)(1),W (n)(2)) defined at (2.3.13)
is in the domain of attraction of the central limit theorem. Hence, Theorem 2.5.1(i) follows
directly by the delta method from Theorem 2.3.2 (cf. proof of Theorem 2.4.1(i)).

Proof of Proposition 2.5.2

Proposition 2.5.2 is shown by exactly the same arguments as Theorem 2.4.1.

Proof of Theorem 2.5.3

Recall that α−1 ∈ N. Hence, we have

P
(
k̂low 6∈ {1 + α−1, 2 + α−1}

)
≤ P

(
|α̂0

low(t1, t2)−1
n − α−1| > 1

)
→ 0,

because α̂0
low(t1, t2)n P−→ α and α > 0. Note that k ∈ {1 + α−1, 2 + α−1} satisfies the

condition k > H + α−1, which guarantees the validity of a central limit theorem for the
statistic (W (n)(1),W (n)(2)) defined at (2.3.13).

We introduce the notation

Tlow(k̂low, n) :=
√
n

 σ̃low(k̂low, t1, t2)n − σ
α̃low(k̂low, t1, t2)n − α
Ĥlow(−p, k̂low)n −H


and

an :=
{√

n : if H < 1− α−1

n1−1/(1+α(1−H)) : if H > 1− α−1

We set Un = an(α̂0
low(t1, t2)n − α), A = (a1, b1) × (a2, b2) × (a3, b3) and observe the

decomposition

P(Tlow(k̂low, n) ∈ A) = P
(
Tlow(1 + α−1, n) ∈ A, α̂0

low(t1, t2)−1
n − α−1 < 0

)
+ P

(
Tlow(2 + α−1, n) ∈ A, α̂0

low(t1, t2)−1
n − α−1 ≥ 0

)
+ o(1)

= P
(
Tlow(1 + α−1, n) ∈ A, Un > 0

)
+ P

(
Tlow(2 + α−1, n) ∈ A, Un ≤ 0

)
+ o(1).
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Applying Theorem 2.3.2 and Proposition 2.5.2, and using the same arguments as in the
proof of Theorem 2.4.1, we thus conclude the convergence

lim
n→∞

P(Tlow(k̂low, n) ∈ A) = P
(
Bnor

low(−p, 1 + α−1) ∈ A, Blow (−p, 1)2 > 0
)

+ P
(
Bnor

low(−p, 2 + α−1) ∈ A, Blow (−p, 1)2 < 0
)
,

where Blow(−p, 1) = Bnor
low(−p, 1) if H < 1 − α−1, and Blow(−p, 1) = Bsta

low(−p, 1) if H >
1− α−1. Hence, we immediately obtain the assertion of Theorem 2.5.3.

Proof of Theorem 2.5.5

As in the proof of Theorem 2.5.1 we conclude that k̂high
a.s.−→ 2 + bα−1c. On the other

hand, similarly to (2.7.18), we obtain the asymptotic expansion
√
n(logn)−1

(
Vhigh(f−p, Ĥhigh(−p)n)n − Vhigh(f−p)n

)
= −
√
n(Ĥ −H)pmp,k + oP(1),

for any p ∈ (0, 1/2). Hence, the assertion of Theorem 2.5.5 follows the delta method and
Theorem 2.3.2 (cf. the proof of Theorem 2.4.1).

Proof of Theorem 2.5.6

The results of Theorem 2.5.6 follow by the same methods as presented in the proof of
Theorem 2.5.3.

2.8 Appendix

Here the codes for numerical experiments from Section 2.6 are presented.

#### Set of global parameters ####
library(rlfsm)
registerDoParallel()
library(gridExtra)

m<-25#256
M<-60#600

p<-.4; p_prime<-.2
t1<-1; t2<-2; k<-2

NmonteC<-5e2 #2e3
LofF<-NULL

The following chunk corresponds to Theorem 2.4.1, table 2.1 and Figure 2.2.

#############################
S<-c(1e2,1e3,1e4)

alpha<-1.8
H<-0.8
sigma<-0.3

theor_3_1_H_clt<-CLT(s=S, fr='H', Nmc=NmonteC, m=m, M=M, alpha=alpha,
H=H, sigma=sigma, ContinEstim, t1=t1, t2=t2, p=p, k=k)
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theor_3_1_L_clt<-CLT(s=S,fr='L',Nmc=NmonteC, m=m, M=M, alpha=alpha,
H=H, sigma=sigma, ContinEstim, t1=t1, t2=t2,p=p, k=k)

### Panel plot for LH CLTs
l_plot_H<-Plot_dens(par_vec=c('sigma','alpha','H'),

CLT_data=theor_3_1_H_clt, Nnorm=1e7)
l_plot_L<-Plot_dens(par_vec=c('sigma','alpha','H'),

CLT_data=theor_3_1_L_clt, Nnorm=1e7)

ggg<-grid.arrange(l_plot_L[[1]], l_plot_H[[1]], l_plot_L[[2]],
l_plot_H[[2]], l_plot_L[[3]], l_plot_H[[3]],
nrow=3, ncol=2)

The next chunk corresponds accordingly to table 2.3, Figure 2.3 and table 2.5, Fig-
ure 2.5.

#### Theor 4.1 and 4.5 contin ############################

alpha<-1.8
H<-0.8
sigma<-0.3

theor_4_1_clt<-CLT(s=S,fr='L', Nmc=NmonteC, m=m, M=M, alpha=alpha,
H=H, sigma=sigma, GenLowEstim, t1=t1, t2=t2, p=p)

### Panel plot
l_plot<-Plot_dens(par_vec=c('sigma','alpha','H'),

CLT_data=theor_4_1_clt, Nnorm=1e7)
ggg<-grid.arrange(l_plot[[1]],l_plot[[2]],l_plot[[3]],nrow=1,ncol=3)

alpha<-1.8
H<-0.8
sigma<-0.3

theor_4_5_clt<-CLT(s=S, fr='H', Nmc=NmonteC, m=m, M=M, alpha=alpha,
H=H, sigma=sigma, GenHighEstim, p=p, p_prime=p_prime)

### Panel plot
l_plot<-Plot_dens(par_vec=c('sigma','alpha','H'),

CLT_data=theor_4_5_clt, Nnorm=1e7)
ggg<-grid.arrange(l_plot[[1]], l_plot[[2]], l_plot[[3]], nrow=1, ncol=3)

The next chunk corresponds accordingly to table 2.4, Figure 2.4 and table 2.6, Fig-
ure 2.6.

#### Theor 4.1 and 4.5 discontin ############################

#### H-1/alpha<0 ####
#S<-c(1e3,1e4)
alpha<-.8
H<-0.8
sigma<-0.3
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theor_4_1_clt_new<-CLT(s=S, fr='L', Nmc=NmonteC, m=m, M=M, alpha=alpha,
H=H, sigma=sigma, GenLowEstim, t1=t1, t2=t2, p=p)

### Panel plot
l_plot<-Plot_dens(par_vec=c('sigma','alpha','H'),

CLT_data=theor_4_1_clt_new, Nnorm=1e7)
ggg<-grid.arrange(l_plot[[1]],l_plot[[2]],l_plot[[3]],nrow=1,ncol=3)

alpha<-.8
H<-0.8
sigma<-0.3

theor_4_5_clt_new<-CLT(s=S, fr='H', Nmc=NmonteC, m=m, M=M, alpha=alpha,
H=H, sigma=sigma, GenHighEstim, p=p, p_prime=p_prime)

l_plot<-Plot_dens(par_vec=c('sigma','alpha','H'),
CLT_data=theor_4_5_clt_new, Nnorm=1e7)

ggg<-grid.arrange(l_plot[[1]],l_plot[[2]],l_plot[[3]],nrow=1,ncol=3)

################################



Chapter 3

Numerical techniques and results
for the Linear Fractional Stable
Motion
Stepan Mazur, Dmitry Otryakhin

3.1 Overview of Chapter 3

Chapter 3 is a natural continuation of Chapter 2. It introduces rlfsm package that was
used to perform the numerical studies in Chapter 2, brings insight on how this software
was designed and optimized, and shows through new numerical experiments how the
estimators from Chapter 2 work in practice.

rlfsm is a package for R programming language which I initially wrote with Dr. Stepan
Mazur specifically to study numerical properties of estimators related to the linear frac-
tional stable motion. It is open-source software licensed under GPL-3, and is available on
CRAN, The Comprehensive R Archive Network [1], which is today’s largest repository for
checked R packages. The latest version of rlfsm on CRAN 0.3.1 contains approximately
1770 lines of code and includes source code, in-line documentation, comments, examples
and 37 unit tests. There is a gitlab developer repository [2] for this project, where you can
find the freshest bleeding-edge version of this software, and also all the codes for numerical
experiments we have performed regarding LFSMs. Packaging and releasing was done by
means of devtools package [52]. Automated testing employs testthat [47] package which
provides integration with standard R package checks (R CMD check) and a very formative
and parsimonious output for test results. Testing on multiple platforms was done with the
help of R-hub project and rhub package [18]. Documentation was written using Roxigen2
[51] package. Use of the latter brings several advantages, e.g. some pieces of documenta-
tion are automatically created, so each time the code gets changed, the documentation
updates accordingly. Another instance is that Roxigen2 works together with devtools, thus
documentation is renewed and vignettes are printed every build. All these tools are well
described in [49].

I would like to mention the contribution of Mark Podolskij, whose intuition and ex-
perience guided me and Stepan during the very early stage of developing and debugging
of the package, and also that of my peer Mathias Ljungdahl, who pointed at significant
performance issues and brought a new estimator to the package.

47
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The paper is organized as follows. Section 3.2 gives a brief introduction. In Section 3.3
we present the simulation method for sample paths of lfsm and its implementation in our
path function. Then, we present functions for finite sample studies of statistical estima-
tors, and some other functions. Section 3.4 describes implementations of the high- and the
low-frequency parameter estimators and discusses reasons behind their numerical behav-
ior. Finally, in Section 3.5 we suggest an object oriented system that simplifies software
programming of Lévy-driven integrals.

3.2 Introduction

The linear fractional stable motion (shortly, lfsm) (Xt)t∈R on a filtered space (Ω,F ,
(Ft)t∈R,P) is defined via

Xt =
∫
R

{
(t− s)H−1/α

+ − (−s)H−1/α
+

}
dLs, x+ := max{x, 0}, (3.2.1)

where Ls is a symmetric α-stable Lévy motion, α ∈ (0, 2), with the scaling parameter σ > 0
and the self-similarity parameter H ∈ (0, 1). The lfsm is heavy-tailed process with infinite
variance and long-range dependence. A good overview on the role which this process plays
in natural sciences is done by Watkins et al. [45]. One could also find a review of stochastic
properties of lfsm in [29].

We proceed with introduction to existing software, with interest towards study of nu-
merical properties of statistical estimators for lfsm as the main motivation. So far, there is
no standard approach for software development to operating the general class of stochas-
tic processes driven by Lévy processes. Moreover, there was no systematic indexed and
pier-reviewed software for simulating sample paths of lfsm and related estimators prior to
rlfsm. There is a particularly simple and useful numerical algorithm for simulating lfsms
developed by Stoev and Taqqu [40]. The paper contains a minimalistic implementation of
lfsm generator as a MATLAB function. However, some useful packages, that could be used
in numerical routines with Lévy-driven processes (e.g. to create lfsm generator and per-
form unit testing), exist and have been implemented in R. For instance, R package somebm
[24] contains functions for generation of fractional Brownian motion (fBM). dvfBm [15]
has routines for generation of fBm and estimator of the Hurst parameter of the latter.
stabledist [53] and stable [43] contain different functions for stable distributions and ran-
dom variables. A generator of random variables of the kind has been also implemented in
MATLAB (see the code in Chapter 1.7 in [37]).

3.3 Basic R functions

Types of data we use

This version of the package suggests that we work with two types of sample paths. In
the low-frequency setting we only use points spaced 1 temporal index apart from each
other, X1, X2, . . . , Xn. In the case of high-frequency, we use points with discretization
equal to the length of the path vector, X1/n, X2/n, . . . , X1. This division is dictated by
two issues: 1) the same division in the setting of limit theorems obtained by Mazur et al.
[29], and 2) the fact that there is no inference technique for an arbitrary mixture of the two
frequencies. Consequently, temporal coordinates of low-frequency lfsm coincide with point
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index (compare coordinates and point num in the example in Section 3.3) which varies
from 0 to N . Analogously, in case of high-frequency scheme, temporal coordinates equal
to point indexes divided by the total number of sampled points. When after sampling the
index set is different from either (1, 2, . . . , N) or (1/n, 2/n, . . . , 1), rescaling in time should
be performed using the equality (aHXt)t≥0

d= (Xat)t≥0 with a > 0 provided that H is
known or obtained via preliminary estimation.

Simulation method for the linear fractional stable motion

In this section, we start with a discussion on the simulation method of the lfsm proposed
by Stoev and Taqqu [40] which is implemented in R by us. In particular, simulation of
sample paths is done via Riemann-sum approximations of its symmetric α-stable stochastic
integral representation while Riemann-sums are computed efficiently by using the Fast
Fourier Transform algorithm. In R, we introduce path function that creates sample paths
of the lfsm. The idea underlying this sample path generator is that it should be always
possible not only to obtain lfsm path, but also the underlying Lévy motion, generated
during the procedure, and since the core function of lfsm is deterministic it should allow
for lfsm path generation based on a given Lévy motion, and, in theory, otherwise (not
always). For this reason generators of both processes were separated into independent
parts (see Figure 3.1).

lfsm

Lévy motion

Only initial
parameters

Figure 3.1: Scheme of generating Lévy motion and lfsm by path. Black arrows: when the
algorithm initially is given the parameters, it generates Lévy motion, and then lfsm. Green
arrows: when Lévy motion is needed without lfsm in order to save processing time, the
algorithm bypasses computing of the later. Blue arrows: given a Lévy motion and some
parameters, the generator computes the corresponding lfsm.

The function path can be used by
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path(N,m,M,alpha,H,sigma,freq='L',disable_X=FALSE,
levy_increments=NULL,seed=NA)

Parameters N, m, M regard to the index of the process, or time, if applicable. m and M
are the only means to control precision of the integral computation. N is a number of
points of the lfsm to generate. m is a discretization parameter that corresponds to the
number of points where Lévy motion is sampled between two nearby indexes (e.g. N and
N − 1). M is the truncation parameter, i.e. number of points after which the integrated
function is set to zero; freq stands for the frequency of the motion which can take two
values: ”H” for high-frequency and ”L” for the low-frequency setting. This is the switch
between the two data types. disable_X is needed to disable computation of X, the default
value is FALSE, when it is TRUE, only a Lévy motion is returned, which in turn reduces
the computation time. seed is a parameter that performs seeding of the lfsm generator.
Technically, in the path the seed is set just before Lévy increments are generated. The
path function returns a list containing the lfsm, the underlying Lévy motion, the point
number of the motions from 0 to N (point_num) and the corresponding coordinate which
depends on the frequency, the parameters (σ, α,H) that were used to generate the lfsm,
and the predefined frequency.

Generation of symmetric α-stable (sαs) random variables is powered by function
rstable from package stabledist [53] with S0 parametrization based on the Zolotarev’s
representation for an α-stable distribution with some modifications. S0 is used in order
to make sigma a scale parameter of the motion and to get exempt from computing the
normalization constant CH,α presented in [40] and is given by

CH,α :=
(∫

R

∣∣∣(1− s)H−1/α
+ − (−s)H−1/α

+

∣∣∣α ds)1/α
.

The discrete convolution based algorithm and particularities of indexing

As it was mentioned in the beginning of Section 3.3, one of the features of path is the
ability to operate on a pair lfsm - Lévy motion and to switch between them. We recall that
direct computation of the sum approximating the integral in the definition of lfsm (3.2.1)
would involve number of operations proportional to NMm, which makes the method slow.
Instead, the original algorithm by Stoev and Taqqu [40] suggests computing increments
of lfsm with the help of

W (n) :=
mM∑
j=1

aH,m(j)Zα(n− j), (3.3.2)

where W (mk) is a discretized and truncated version of the increments of the lfsm, and in
the limit has the same distribution as them

{W (mk), k = 1, . . . , N} d−−−−−−−−→
m→∞;M→∞

{X(k)−X(k − 1), k = 1, . . . , N};

Zα(k) are i.i.d. sαs random variables that have indexes −mM, . . . ,mN −1 and scaling
parameter equal to 1, and

aH,m(j) := C−1
H,α(m,M)

(
(j/m)H−1/α − (j/m− 1)H−1/α

+

)
m−1/α, j ∈ N
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with

CH,α(m,M) := m−1

mM∑
j=1

∣∣∣(j/m)H−1/α − (j/m− 1)H−1/α
+

∣∣∣α
1/α

.

Figure 3.2: Example of direct computation of sum of the form (3.3.2) for 2 vectors. a
corresponds to the kernel and Z- to the Lévy motion.

Let us consider an example which will recur and evolve throughout this section. Con-
sider computing sum (3.3.2) where m = 1, M = 3, and N = 6 (see Figure 3.2). The
two rightmost cells for W (n) are left empty because there is no sense in computing them
without truncation of a.

A method based on the discrete convolution theorem is used to obtain W (mk). The
theorem relies on Discrete Fourier Transform (DFT), which needs to perform a number
of operations proportional to (mN +mM) log(mN +mM) instead of NMm. In order to
understand how this method works, we review several definitions and theorems.

Definition 3.3.1. For any sequence xn, n ∈ N, Discrete-Time Fourier Transform (DTFT)
is defined as

Xω = DTFT{xn}(ω) =
∞∑

n=−∞
xn exp(−2πinω).

The reverse transform, IDTFT, is defined as

xn = IDTFT{X} = 1
2π

∫ 2π

0
X2π(ω)eiωndω.

Definition 3.3.2. Discrete convolution of two infinite sequences {An}n∈N and {Bn}n∈N
is

(A ∗B)[n] :=
∞∑

m=−∞
A[m]B[n−m].

There is a convolution theorem for discrete sequences which says that the discrete
convolution of two sequences is equal to the Inverse Discrete Fourier Transform (IDFT)
of the multiplication of the direct transforms of the sequences:

Theorem 3.3.3. For any discrete sequences xn and yn, n ∈ N, it holds that

(x ∗ y)[n] = IDTFT[DTFT{xn}(·) ×DTFT{yn}(·)].

Definition 3.3.4. Let xn, n ∈ N be a sequence. Then {xN}[n], n ∈ N is called N -periodic
summation of the sequence:

{xN}[n] :=
∑
k∈N

x[n+ kN ].
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It is straightforward, that the periodic summation in the definition above has period
N . In our case, the latter theorem is applicable even though we will be interested in a
finite sequence of length Ñ . The sequence is padded with zeros to form an infinite one,
and a periodic summation of a the length Ñ is just a periodic extension of it.

Figure 3.3: Example of periodic summation of a zero-padded finite sequence where the
period equals to the sequence length (N = Ñ).

DTFT is not directly useful for simulation purpose, that is why we need a special case
of Theorem 3.3.3, Circular Convolution Theorem which reduces DTFT to DFT.

Definition 3.3.5. The DFT of a finite sequence xn of length N is defined as

Xk = DFTk(xn) :=
N−1∑
n=0

xn exp(−2πikn/N).

The IDFT is

xn := 1
N

N−1∑
k=0

Xk exp(2πikn/N).

Theorem 3.3.6.
(xN ∗ y)[n] = IDFT{DFT(xN )DFT(yN )}

Returning to the task of computing the sum in (3.3.2), we consider two vectors a of
length mM and Z of length m(M +N). Here, we again index vectors starting with zero,
not one. If we extend Z periodically, pad a with zeros to make an infinite sequence, and
compute (a∗Zm(N+M))[n], values with indexes [mM ; m(N+M)−1] would coincide with
the result of a convolution of a and Z. The first mM values would be meaningless. This
gives an idea how to use Circular Convolution Theorem for computation of (3.3.2): instead
of a∗Z we compute one period of (a∗Zm(N+M))[n] through the left part of 3.3.6 and leave
only meaningful values. Figure 3.4 illustrates the use of Circular Convolution Theorem
with periodic extensions of Z and padded a to compute (3.3.2). In this case results with
indexes -1 and -2 are meaningless and should be discarded.

Figure 3.4: Example of transformation of vectors a and Z into sequences before computing
their convolution.

Although the setup of the example as is on Figure 3.4 is the fastest, it is impossible to
use it directly, because in some situations truncation parameter M is larger than N , the
number of points of lfsm sample path that is needed to be simulated. In this case path
function performs an index shift using the following property:
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(ãc ∗ x)[n] :=
+∞∑

k=−∞
a[k + c]·x[n− k]

=
+∞∑

k=−∞
a[k + c]·x[n− k + c− c]

=
+∞∑

k̃=−∞

a[k̃]·x[n+ c− k̃]

= (a ∗ x)[n+ c],

(3.3.3)

where k̃ = k + c. This property is illustrated by Figure 3.5, wherein sequence a[n] is
shifted by 2 to the left, so c = −2. Accordingly, the resulting convolution also gets shifted
2 notches to the left (compare Figures 3.5 and 3.2). In general, according to (3.3.3), when
a[n] is shifted to start from the first non-zero value, the resulting convolution sequence
also starts from the first meaningful value. Thus, path always keeps the first Nm as the
result of convolution operation and discards the rest.

Figure 3.5: Example of index shift in path function.

The algorithm deals differently with the increments of α-stable motion when they are
supplied by the user and when they are needed to be generated (Figure 3.6). Increments
generated by path are indexed [0;mM + mN − 1] already, so lfsm path can be obtained
right away. Further, increments indexed [0;mN − 1] are cut and attached at the end, so
that the actual tail of the Lévy driver is in the beginning. The supplied increments are with
temporal indexes [−mM ;mN − 1]. In order to obtain the full period [0;mM + mN − 1]
for DFT transform, the tail [−mM ; 0] is cut and then attached at the end so that DFT is
computed correctly. In the meanwhile the increments are returned as supplied.

Examples

In the next example, we show how one can use the above function to generate a sample
path and to provide its visualization. Compare the procedure with the similar one from
Section 3.5.

R> # Path generation
R> List<-path(N=2ˆ10-600,m=256,M=600,alpha=1.8,H=0.8,

sigma=1,freq='L',disable_X=FALSE,seed=3)
R> str(List)

List of 7
$ point_num : int [1:425] 0 1 2 3 4 5 6 7 8 9 ...
$ coordinates : int [1:425] 0 1 2 3 4 5 6 7 8 9 ...
$ lfsm : num [1:425] 0 -1.3969 0.0159 1.6487 1.87 ...
$ levy_motion : num [1:425] 0 -21.8 28.3 42.1 38.1 ...
$ levy_increments: num [1:262144] -0.292 -0.708 -1.49 0.517 0.803 ...
$ pars : Named num [1:3] 1.8 0.8 1

..- attr(*, "names")= chr [1:3] "alpha" "H" "sigma"
$ frequency : chr "L"
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1, ..., mN 1, ..., mN 1, ..., mM mM+1, ...,m(M+N)mN+1, ..., m(M+N)

(a) Indexing of Lévy increments when path is to generate them. Left: Indexes before
generation of lfsm vector. Right: vector modification prior to passing Lévy motion to the
output.

  

mM+1, ..., m(M+N)1, ..., mM 1, ..., mM mN+1, ..., m(M+N)1, ..., mN

(b) Indexing of Lévy increments when path is to simulate lfsm based on them. Left:
initial indexes. Right: vector modification prior to lfsm generation.

Figure 3.6: Index change in path function

R> # Normalized paths
R> Norm_lfsm<-List[['lfsm']]/max(abs(List[['lfsm']]))
R> Norm_oLm<-List[['levy_motion']]/max(abs(List[['levy_motion']]))

R> # Visualization of the paths
R> plot(Norm_lfsm, col=2, type="l", ylab="coordinate")
R> lines(Norm_oLm, col=3)
R> leg.txt <- c("lfsm", "oLm")
R> legend("topright", legend = leg.txt, col =c(2,3), pch=1)

0 100 200 300 400

−
1.

0
−

0.
5

0.
0

0.
5

Index

co
or

di
na

te

lfsm

oLm

Figure 3.7: Plot of sample path and Lévy motion with seed=2

The result of the chart rendering is shown on Figure 3.7. The following example shows
how to switch path function in order to alter between simulation of lfsm from scratch and
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computing based on existing sample path of the Lévy motion.

R> m<-256; M<-600; N<-2ˆ12-M
R> alpha<-1.8; H<-0.8; sigma<-1.8
R> seed<-2

R> # Creating Levy motion
R> levyIncrems<-path(N=N, m=m, M=M, alpha, H, sigma, freq='L',

disable_X=T, levy_increments=NULL, seed=seed)

R> # Creating lfsm based on the levy motion
R> lfsm_full<-path(m=m, M=M, alpha=alpha,

H=H, sigma=sigma, freq='L',
disable_X=F,
levy_increments=levyIncrems$levy_increments,
seed=seed)

R> sum(levyIncrems$levy_increments==
lfsm_full$levy_increments)==length(lfsm_full$levy_increments)

[1] TRUE

In the example the Lévy motion is generated without computing the lfsm, which was
done by setting disable X=T, and saved to variable levyIncrems. After that, path was
given the obtained Lévy increments and, basing on them, generated an lfsm path. As one
can observe, the Lévy increments from the both objects produced by path are identical.
The same holds when we obtain an lfsm path from the above procedure and one-step
simulation of lfsm with seeding. These two facts are used in automated tests provided for
rlfsm package.

CLT and numerical properties of statistical estimators

In order to study numerical properties of the estimation procedures developed in [29], we
created a technique, that could be used in solving this problem for any pair stochastic
process and an estimator. The approach was implemented in CLT function (Figure 3.10).
The main motivation here is that for some estimators we have limit theorems, but we do
not have theory which describes estimator behavior when the length of a path is relatively
small, and thus, for instance, we cannot use closed-form expressions to obtain confidential
intervals. In the following examples we show how to use functions CLT, PLot_vb, and
Plot_dens for studying empirical variance, bias and a density function of an estimator. In
the first example, we study GenLowEstim estimator, and its bias and variance dependencies
on the length of the sample paths. In particular, one would be able to determine starting
from which path length the estimator loses bias influence.

R> library(rlfsm)
R> library(gridExtra)
R> registerDoParallel()

R> m<-25; M<-55
R> p<-.4; p_prime<-.2
R> t1<-1; t2<-2
R> k<-2

R> NmonteC<-5e2
R> alpha<-1.8; H<-0.8; sigma<-0.3
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R> S<-seq(from = 100, to = 2e3, by =50)
R> tilda_ests<-CLT(s=S, fr='L', Nmc=NmonteC, m=m, M=M,

alpha=alpha,H=H,sigma=sigma,
GenLowEstim,t1=t1,t2=t2,p=p)

# Structure of tilda_ests is
R> str(tilda_ests)

List of 7
$ CLT_dataset:'data.frame': 1126 obs. of 4 variables:
..$ s : num [1:1126] 100 100 100 100 100 100 100 100 100 100 ...
..$ H : num [1:1126] 0.061 -2.3734 -0.4798 0.0613 0.7941 ...
..$ alpha: num [1:1126] -0.928 -0.129 0.655 -3.099 0.287 ...
..$ sigma: num [1:1126] -0.6235 -2.1252 0.0607 -1.8552 1.2099 ...
$ BSdM : num [1:3, 1:10] 100 1000 10000 1.76 1.82 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:10] "s" "alpha_Mean" "alpha_Sd" "alpha_b" ...
$ Inference :function (t1, t2, p, path, freq)
..- attr(*, "srcref")=Class 'srcref' atomic [1:8] 78 14 109 1 14 1 1000 1031
.. .. ..- attr(*, "srcfile")=Classes 'srcfilealias', 'srcfile' <environment: 0x6837048>
$ alpha : num 1.8
$ H : num 0.8
$ sigma : num 0.3
$ freq : chr "L"

# Structure of BSdM is as follows
R> head(round(tilda_ests$BSdM,2))

s alpha_Mean alpha_Sd alpha_b H_Mean H_Sd H_b sigma_Mean sigma_Sd sigma_b
[1,] 100 1.78 0.18 -0.02 0.66 0.25 -0.14 0.25 0.10 -0.05
[2,] 150 1.81 0.15 0.01 0.68 0.22 -0.12 0.26 0.08 -0.04
[3,] 200 1.82 0.13 0.02 0.71 0.21 -0.09 0.27 0.08 -0.03
[4,] 250 1.84 0.11 0.04 0.74 0.18 -0.06 0.29 0.07 -0.01
[5,] 300 1.82 0.11 0.02 0.73 0.18 -0.07 0.28 0.07 -0.02
[6,] 350 1.82 0.11 0.02 0.75 0.16 -0.05 0.29 0.06 -0.01

R> Plot_vb(tilda_ests$BSdM)

Figure 3.8 shows that when (σ, α,H) = (0.3, 1.8, 0.8), estimator GenLowEstim is unbi-
ased starting approximately from 1000 points.

The second example compares empirical standardized densities of estimates, obtained
by GenLowEstim with the limiting standard normal ones.

R> S<-c(1e2,1e3,1e4)
R> tilda_ests<-CLT(s=S, fr='L', Nmc=NmonteC ,m=m, M=M,

alpha=alpha, H=H, sigma=sigma,
GenLowEstim,t1=t1,t2=t2,p=p)

R> l_plot<-Plot_dens(par_vec=c('sigma','alpha','H'), CLT_data=tilda_ests, Nnorm=1e7)
R> ggg<-grid.arrange(l_plot[[1]],l_plot[[2]],l_plot[[3]],nrow=1,ncol=3)

In short, in these examples for different path lengths s, NmonteC lfsm paths are simu-
lated. To each path we apply tilde-statistic (see Section 3.4), therefore obtaining NmonteC
estimates (σ̃low, α̃low, H̃low) for every s, which in turn, are used to calculate biases, stan-
dard deviations, and density functions (also, for each s separately).
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variable: sigma_Mean variable: sigma_Sd variable: sigma_b

variable: H_Mean variable: H_Sd variable: H_b

variable: alpha_Mean variable: alpha_Sd variable: alpha_b
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Figure 3.8: Variance and bias dependence on path length of tilde- estimators, described
in Section 3.4.

CLT architecture and optimization

It is important to notice that generation of lfsm is numerically heavy routine and also
a large number of estimates is needed to compare their empirical distributions with the
limiting ones. The latter task gave CLT its name. Thus, in order to make computations
feasible in terms of time and memory use, the architecture of CLT must be well-optimized.
Apparently, a multi-core setup is crucial for dealing with the task.

Having fixed a path length, the whole procedure behind CLT could be split in two
parts. First, we need to obtain samples for each estimator. Second, we obtain statistics
of these samples (see Figure 3.10). Once finished, CLT proceeds to the next length value
until reaches the end of the vector of lengths.

In the first part, we generate NMonte Carlo lfsm paths of the length s[i] via path_fast
function. To each of the paths we apply all the estimators to obtain H, α, and σ estimates.
During this stage, we use a foreach-based parallel loop, where each node simulates a
path, computes and returns the statistics removing the path from memory. path_fast is
an unavailable for users version of path with significantly reduced functionality for the
sake of saving execution time. The further desired enlargement of the node task by adding
generation of the whole set of paths instead of just one, making the loop over s[i] parallel,
leads to extreme memory consumption as well as unequal distribution of load among nodes.
The number of numeric values in the set of paths equals to NMonte Carlo×s[i]. Simulations,
performed by Mazur et al. [29] showed that normal distribution is attained by estimators
at s = 103. Given the fact that we need at least 105 Monte Carlo trials for a neat histogram
of a distribution, one can obtain the amount of memory required to store a matrix of size
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Figure 3.9: Empirical distributions of tilde- estimates, described in Section 3.4.

NMonte Carlo × s[i], which makes 763Mb, while some estimators require 80Gb per node.
That is the reason why in the current version of CLT the loop over s is sequential, and the
one over NmonteC is parallel.

During the second part, averages and standard deviations of the samples are computed,
and subsequently used to compute the standardized empirical distributions. So that, the
three characteristics naturally come together within the same numerical procedure. So
far there is no empirical evidence that parallel execution in this section makes CLT more
efficient.

Such architecture is of great use when the number of nodes available for computations
exceeds the number of path length, and the length s[i] differs significantly from s[j] when
i 6= j.

On some of the other basic functions

In this part, we will describe aspects of some of the other R functions implemented in the
package.

Higher-order increments

These increments are the main building block for all statistics we use (see Section 3.4).
They are defined as k-th iterated increments of step r of a sample path. In particular,
∆n,1
i,1 X := X i

n
−X i−1

n
, and ∆n,1

i,2 X := X i
n
−2X i−1

n
+X i−2

n
. In rlfsm, we built two functions

for computation of objects of this class- increment() and increments(). The former
accepts a vector of points at which a user wants to evaluate higher-order increments, and
computes them using formula

∆n,r
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
X(i−rj)/n. (3.3.4)
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Figure 3.10: Scheme of extracting estimator statistics by function CLT for a chosen path
length.

Before evaluation of (3.3.4), the function checks the condition i < kr. Evaluation of the
increments on a sample path of length N takes (k+ 1)(N −kr) operations- k+ 1 sums for
N − kr points. increments() computes increments iteratively on the whole set of path
points. The first iteration gives N − r increments, the second- N − 2r and so on. Thus,
the total number of performed operations is

k∑
j=1

(N − jr) = kN − r(k + 1)k/2.

It is clear that increments() is faster on sample paths with large number of points, but
slower when the increment order is high. As we will show later, orders greater than ∼ 10
are not usable for statistical inference. That is the reason why in all statistics we use either
increments() or its hidden “relatives”.

A visualization method for sample paths

We introduce a pair of functions which makes a panel plot of sample paths produced by
processes with different parameters. Path_array takes a set of α-H values, generates a
path for each combination, and stacks the paths together in a data frame. In the produced
data frame all the paths a tagged with α and H values.

head(arr)
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n X alpha H freq
1 1 0.0000000 0.5 0.2 H
2 2 0.2329891 0.5 0.2 H
3 3 1.1218238 0.5 0.2 H
4 4 -6.1284620 0.5 0.2 H
5 5 -2.2450357 0.5 0.2 H
6 6 3.4979978 0.5 0.2 H

str(arr)

'data.frame': 2709 obs. of 5 variables:
$ n : num 1 2 3 4 5 6 7 8 9 10 ...
$ X : num 0 0.233 1.122 -6.128 -2.245 ...
$ alpha: Factor w/ 3 levels "0.5","1","1.5": 1 1 1 1 1 1 1 1 1 1 ...
$ H : Factor w/ 3 levels "0.2","0.5","0.8": 1 1 1 1 1 1 1 1 1 1 ...
$ freq : Factor w/ 1 level "H": 1 1 1 1 1 1 1 1 1 1 ...

Plot list paths() takes the data frame as an argument and plots the sample paths on
different panels based on their (α,H) values. This functionality is powered by facet wrap()
from ggplot2 [50]. For discontinuous paths Plot list paths() draws an overlapping semi-
transparent line joining neighbouring points in order to highlight jumps.

l=list(H=c(0.2,0.5,0.8),alpha=c(0.5,1,1.5), freq="H")
arr<-Path_array(N=300,m=30,M=100,l=l,sigma=0.3)

Plot_list_paths(arr)
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Figure 3.11: Graph rendered by Plot list paths

3.4 Parameter Estimation of the linear fractional stable
motion

In this section, we describe estimators for the parameters H, α, and σ that are obtained
in the recent paper by Mazur et al. [29], and their implementation in R.
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Parameter estimation in the continuous case

First, we consider the case H − 1/α > 0 which leads us to the important property that
the lfsm (Xt)t∈R is locally Hölder continuous of any order up to H − 1/α. Moreover, this
condition implies the following restrictions

α ∈ (1, 2) and H ∈ (1/2, 1)

that allow us to use the law of large numbers in Theorem 1.1 of [7] when p < 1, and the
central limit theorem in Theorem 1.2 of [7] when p < 1/2, k ≥ 2 and H < k − 1/α.

Now, we consider consistent estimators for the self-similarity parameter H in high-
and low-frequency setting, defined by

Ĥhigh(p, k)n := 1
p

log2

∑n
i=2k

∣∣∣∆n,2
i,kX

∣∣∣p∑n
i=2k

∣∣∣∆n,1
i,kX

∣∣∣p
 ,

Ĥlow(p, k)n := 1
p

log2

∑n
i=2k

∣∣∣∆2
i,kX

∣∣∣p∑n
i=2k

∣∣∣∆1
i,kX

∣∣∣p
 .

Both estimators for H are based upon a ratio statistic that compares power variations at
two different frequencies.

Let us define the following two statistics

Vhigh(f ; k, r)n := 1
n

n∑
i=rk

f
(
nH∆n,r

i,kX
)
, Vlow(f ; k, r)n := 1

n

n∑
i=rk

f
(
nH∆r

i,kX
)
, (3.4.5)

where f : R → R is a measurable function. Estimators for the stability index α of the
driving stable motion in high and low frequency setting are based on the empirical char-
acteristic functions given by

ϕhigh(t;H, k)n := Vhigh(ψt; k)n and ϕlow(t; k)n := Vlow(ψt; k)n

with ψt(x) := cos(tx), for two different values t1 and t2 such that t2 > t1 > 0. Let us
note that the empirical characteristic function ϕhigh(t;H, k)n depends on the parameter
H while ϕlow(t; k)n does not. Thus, we should infer the self-similarity parameter H by
Ĥhigh(p, k)n and then we should use the plug-in estimator ϕhigh(t; Ĥhigh(p, k)n, k)n to infer
the stability index α in high-frequency setting. Estimators for the parameter α are given
by

α̂high := log | logϕhigh(t2; Ĥhigh(p, k)n, k)n| − log | logϕhigh(t1; Ĥhigh(p, k)n, k)n|
log t2 − log t1

,

α̂low := log | logϕlow(t2; k)n| − log | logϕlow(t1; k)n|
log t2 − log t1

.

Estimators for the scale parameter σ in high- and low-frequency are also based on the
empirical characteristic functions which are defined for one value of t > 0. Further, we
define a function hk,r : R→ R as follows:

hk,r(x) =
k∑
j=0

(−1)j
(
k

j

)
(x− rj)H−1/α

+ , x ∈ R,
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where k, r ∈ N , and let ‖hk,r‖αα :=
∫
R |hk,r(s)|αds. Let us note that the function hk,r

depends on two parameters α and H which need to be pre-estimated. Estimators for the
parameter σ are expressed as

σ̂high :=
(
− logϕhigh(t1; Ĥhigh(p, k)n, k)

)1/α̂high
/t1‖hk,1‖α̂high ,

σ̂low := (− logϕlow(t1; k))1/α̂low /t1‖hk,1‖α̂low .

Parameter estimation in the general case

Here, we consider general case when an explicit lower bound for α is unknown. First, we
consider estimators which are obtained in low frequency setting. Consistent estimator for
parameter H for any p ∈ (1, 1/2) is obtained by

Ĥlow(−p, k)n := 1
p

log2


∑n
i=2k

∣∣∣∆2
i,kX

∣∣∣−p∑n
i=2k

∣∣∣∆1
i,kX

∣∣∣−p
 .

Next, we consider two-step procedure to choose the order of increments k, since we should
be in the domain of attraction of Theorem 1.2 of [7] that requires k > H + 1/α. That’s
why we consider the preliminary estimator of α with k = 1 that is consistent given by

α̂0
low(t1, t2)n = log | logϕlow(t2; 1)n| − log | logϕlow(t1; 1)n|

log t2 − log t1
.

Since we do not know if α̂0
low(t1, t2)n is in the domain of attraction, we define the estimator

of the parameter k as
k̂low(t1, t2)n := 2 +

⌊
α̂0
low(t1, t2)−1

n

⌋
.

In the second step we use estimator k̂low := k̂low(t1, t2)n for the estimation of parameters
H, α and σ. In particular, we get the following consistent estimators

Ĥlow(−p, k̂low)n = 1
p

log2


∑n
i=2k̂low

∣∣∣∆2
i,k̂low

X
∣∣∣−p∑n

i=2k̂low

∣∣∣∆1
i,k̂low

X
∣∣∣−p

 ,
α̃low(k̂low; t1, t2)n = log | logϕlow(t2; k̂low)n| − log | logϕlow(t1; k̂low)n|

log t2 − log t1
,

σ̃low(k̂low; t1, t2)n =
(
− logϕlow(t1; k̂low)

)1/α̃low
/t1‖hk̂low,1‖α̃low .

Next, we consider two-stage estimation procedure in the general case in high-frequency
setting which is the same as in the low-frequency setting. For p ∈ (0, 1/2) we compute
Ĥhigh(−p)n = Ĥhigh(−p, 1)n and, therefore, we can define the preliminary estimator of α
by

α̂0
high(p, p′)n = φ−1

(
Vhigh(f−p′ , Ĥhigh(−p)n)pn
Vhigh(f−p, Ĥhigh(−p)n)p′n

)

with

φ(α̂0
high(p, p′)n) :=

(
2/α̂0

high(p, p′)n
)p−p′

ap
′

−pΓ(p′/α̂0
high(p, p′)n)p

ap−p′Γ(p/α̂0
high(p, p′)n)p′
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where p, p′ ∈ (0, 1/2) such that p 6= p′, and Vhigh(f−p, Ĥhigh(−p)n)n is given in formula
(3.4.5) with k = 1, f−p(x) = |x|−p and preliminary estimator Ĥhigh(−p)n for the parameter
H. It is remarkable that φ(·) is always invertible for all p 6= p′ (see Dang and Istas [21]).
Consequentially, we can define the estimator of k in high-frequency setting by

k̂high := k̂high(p, p′)n = 2 +
⌊
α̂0
high(p, p′)−1

n

⌋
.

Thus, consistent estimators of H, α and σ, in high-frequency setting are given by

Ĥhigh(−p, k̂high)n = 1
p

log2


∑n
i=2k̂high

∣∣∣∣∆n,2
i,k̂high

X

∣∣∣∣−p∑n
i=2k̂high

∣∣∣∣∆n,1
i,k̂high

X

∣∣∣∣−p
 ,

α̃high(k̂high; t1, t2)n = φ−1
(
Vhigh(f−p′ , Ĥhigh(−p, k̂high)n; k̂high)pn
Vhigh(f−p, Ĥhigh(−p, k̂high)n; k̂high)p′n

)
,

σ̃high(k̂high; p, p′)n =
(
α̃higha−pVhigh(f−p, Ĥhigh(−p)n)n

2Γ(p/α̃high)

)− 1
p

/‖hk̂high,1‖α̃high .

Implementation in R

We introduce function ContinEstim for performing statistical inference according to Sec-
tion 3.4 when H − 1/α > 0.

ContinEstim(t1, t2, p, k, path, freq)

The function is basically comprised by simpler functions alpha_hat, H_hat and sigma_hat
responsible for retrieving the corresponding parameters. sigma_hat is called using tryCatch
as the former may return an error due to numerical integration in Norm_alpha.

General low-frequency estimation technique, described in Section 3.4 is implemented
in GenLowEstim.

GenLowEstim(t1,t2,p,path,freq)

This estimator first sets a preliminary k to be equal to 1, and uses it to compute pre-
liminary parameters H0 and α0. Using these H0 and α0, a new k is obtained through
2+floor(alpha 0(̂-1)), and then the new k is used for the same estimation procedure as
in ContinEstim. This approach induces an effect, which does not exist in the case when
ContinEstim is applied. When α is smaller than, or close to 2/N , where N is the observed
lfsm path length, the computational errors are more frequent. These extra errors occur
when the preliminary estimation of k appears to exceed N/2, making it impossible to
compute ∆2

i,k̂low
X in statistic Ĥlow(−p, k̂low)N . In case of other sample path realizations

k < H + 1/α, and it is still possible to obtain the estimates which happen to converge to
the true value (Ĥ, α̂, σ̂), because in this case one would be in the domain of attraction of
Theorem 2.2 of [29]. Though, the limiting distribution is not stable anymore, and the rate
of convergence depends on α and H. Real distributions of estimates in this case are left
unexplored.

High-frequency estimator from the same section was implemented in GenHighEstim.

GenHighEstim<-function(p,p_prime,path,freq,low_bound=0.01,up_bound=4)
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Estimate deterioration

Although the general high- and low-frequency estimators presented in Section 3.4 have
important advantages, namely closed form expressions for distribution functions and non-
suboptimal convergence rates, they also reveal two drawbacks in performance. Due to
condition and error handling, the time performances of the general estimators are much
worse than those of the continuous ones. On top of that, the plug-in estimators (because of
their nature) have much less probability of obtaining an estimate at all. The main idea is
as follows: the more statistics are used in a plug-in estimator, the higher the probability to
stumble upon a numerical error during the estimation procedure. We illustrate this effect
by the following experiment, wherein the general high- and low-frequency estimators are
compared to the corresponding continuous ones. For each pair from a set of parameters
(H,α), NmonteC sample paths of the both frequencies were generated, and to each of
them the relevant procedures ContinEstim, GenLowEstim and GenHighEstim were applied
(see the code below). Then, the rates of successful computation results were computed.
The result of estimation was considered “successful” if during the procedure all three
parameters were obtained, no error occurred, and the estimates are meaningful, namely
(Ĥ, α̂) ∈ (0, 1)× (0, 2).

R> #### Set of global parameters ####
R> library(rlfsm)

R> m<-45; M<-60; N<-200
R> p<-.4; p_prime<-.2
R> t1<-1; t2<-2; k<-2

R> NmonteC<-3e2
R> sigma<-0.3

R> ### Grid for alphas and Hs continuous case

R> by_hs<-0.05; by_als<-0.1
R> hs<-seq(0.5+by_hs,1-by_hs,by=by_hs)
R> als<-seq(1+by_als,2-by_als,by=by_als)
R> ####

R> test<-list()
R> dimns <-list(hs,als)

R> mtrx_contin_l<-matrix(data = NA, nrow = length(hs),
ncol = length(als), dimnames=dimns)

R> mtrx_contin_h<-matrix(data = NA, nrow = length(hs),
ncol = length(als), dimnames=dimns)

R> mtrx_gen_l<-matrix(data = NA, nrow = length(hs),
ncol = length(als), dimnames=dimns)

R> mtrx_gen_h<-matrix(data = NA, nrow = length(hs),
ncol = length(als), dimnames=dimns)

R> ##### A function for NA/ NaN / error filtering
R> # returns 1 if everything is OK
R> Errfilter<-function(res){

b1<-ifelse(is.character(res), 0, 1)
b2<-ifelse(length(grep('NA',res))>0, 0, 1)
b3<-ifelse(length(grep('NAN',res))>0, 0, 1)
b1*b2*b3

R> }
R> ####
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R> #### The experiment #######

R> for(ind_hs in (1:length(hs))) {

R> for(ind_als in (1:length(als))) {
R> res<-data.frame()

R> res<-foreach (j_ind = 1:NmonteC, .combine = rbind, .packages='stabledist',
.inorder=FALSE) %dopar% {

R> pathL <- path(N=N,m=m,M=M,alpha=als[ind_als],H=hs[ind_hs],
sigma=sigma,freq='L')

R> pathH <- path(N=N,m=m,M=M,alpha=als[ind_als],H=hs[ind_hs],
sigma=sigma,freq='H')

R> ConEstLow<-ContinEstim(t1=t1,t2=t2,p=p,k=2,path=pathL$lfsm,freq='L')
R> GenEstLow<-GenLowEstim(t1=t1,t2=t2,p=p,path=pathL$lfsm,freq='L')

R> ConEstHigh<-ContinEstim(t1=t1,t2=t2,p=p,k=2,path=pathH$lfsm,freq='H')
R> GenEstHigh<-GenHighEstim(p=p,p_prime=p_prime,path=pathH$lfsm,freq='H',

low_bound=0.01,up_bound=2)

R> rcol<-cbind(CEL=Errfilter(ConEstLow),
GEL=Errfilter(GenEstLow),
CEH=Errfilter(ConEstHigh),
GEH=Errfilter(GenEstHigh))

R> rcol
}

R> suc_rate<-colSums(res)/NmonteC

R> mtrx_contin_l[ind_hs,ind_als]<-suc_rate['CEL']
R> mtrx_gen_l[ind_hs,ind_als]<-suc_rate['GEL']
R> mtrx_contin_h[ind_hs,ind_als]<-suc_rate['CEH']
R> mtrx_gen_h[ind_hs,ind_als]<-suc_rate['GEH']

}

}
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(a) Comparison of success rates for ContinEstim and GenLowEstim. Low frequency case.
Path length N=200, number of sample paths NmonteC=300.

(b) Comparison of success rates for ContinEstim and GenHighEstim. High frequency
case. Path length N=200, number of sample paths NmonteC=300.

Figure 3.12: Comparison of success rates of estimators

This experiment shows that in both high- and low-frequency cases ContinEstim gives
much better precision than the corresponding general estimator. The outcome is rigorous
in low-frequency technique since ContinEstim and GenLowEstim have the same set of
tuning parameters. On the other hand, the high-frequency estimators have non-coinciding
parameter sets, and thus, without fine tuning, the result is merely intuitive. One could
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observe (Figures 3.12a and 3.12b) that in general estimation near the boundaries of the
interval (Ĥ, α̂) ∈ (0, 1)× (0, 2) produces more errors, which is partly due to the fact that
near the boundaries it is easier to obtain an estimate outside the interval. Such an estimate
is removed by Errfilter function in the experiment.

Zones with different convergence regimes in the low-frequency case

In order to show how the general low-frequency estimation works in practice, we peform a
numerical experiment. We set a constant σ and choose two sets of parameters- one for α
and one for H. Then, for each combination of them a number Nmc = 500 of sample paths
is created. All path lengths are set to a constant N = 1000. To each path we apply several
statistics. One of them is k new<-2+floor(alpha 0(̂-1)) where alpha_0 is obtained via
alpha_hat with parameters k=1,freq=’L’ plugged-in. This provides us simulated distri-
bution of k̂low (Figure 3.13). Also, we fix a set k ind = seq(1,8,by=1) and, given a path,
for each of these k’s extract statistics ϕlow(t, k = kind)n and α̂low(t1, t2; k = kind)n, see
Figures 3.14 and 3.15.

Three regimes of performance of GenLowEstim (read, the general low-frequency esti-
mator α̂low(k, t1, t2)n) are observed. To a large extend, only parameter α determines which
regime is in presence.

Due to small variance of α̂0
low(t1, t2)n (Figure 3.15), when α ∈ (1, 2) the estimation

k̂low(t1 = 1, t2 = 2)n returns 2 except from the boundaries, where edge effects are ob-
served. This results in the fact that in cases when statistics k̂low(1, 2)n can be computed
without stumbling on numerical errors performances of GenLowEstim and low frequency
ContinEstim are the same. At the same time, statistic α̂low(k, t1, t2)n is not far from its
limit value for k < 3, that’s why the parameter estimation of the LFSM is technically
possible by ContinEstim and GenLowEstim at such length of the sample path.

When α is near 1 there is a transition between the regime with values of k̂low(1, 2)n
concentrated at point k = 2, and the regime where k̂low(1, 2)n is highly dispersed. This
shift is characterized by only two values of k̂low(1, 2)n: 2 and 3. Such behavior of the
estimated order of increments is due to the fact that when α−1 ∈ N

P
(
k̂low = 2 + α−1

)
→ λ and P

(
k̂low = 1 + α−1

)
→ 1− λ

for some constant λ ∈ (0, 1), see [29], Section 4.1. Surprisingly, λ is close to 0.5 throughout
the whole set of H’s (Figure 3.13). There are no k̂low(1, 2)n higher than 3 observed because
the preliminary estimation of α is still quite precise as one can see from the middle row
on Figure 3.15. After obtaining k̂low(1, 2)n equal to either 2 or 3, α̂low(k̂low(1, 2)n, t1, t2)n
is computed again quite precisely, but worse than in the continuous case.

At α < 1 α̂low(k, t1, t2)n has high variance regardless of what k is chosen, there-
fore different values are obtained when computing k̂low(1, 2)n. These values plugged-in
to α̂low(k, t1, t2)n produce again very dispersed estimates of parameter α. This mecha-
nism explains why α̃low has higher variance in discontinuous case (H − 1/α < 0) than in
continuous (see the numerical study in Section 5 in [29]).

The way α̃low behaves could be explained using pic.(3.14), where ϕn and Vlow(ψt, k)n
are plotted. Cases wherein α̂low performs poorly coinside with ones wherein ϕn and
Vlow(ψt, k)n are significantly distant from each other, so convergence Vlow(ψt, k)n a.s.−−→
ϕn(t; k) isn’t observed at the given length of sample paths, which ruins the whole idea of
(σ, α) estimation. Of course, this effect doesn’t affect H-estimation because it is based on
ratio statistic, which has a different form.
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Figure 3.13: Histograms of preliminary estimations of k, k̂low(1, 2)n. α’s are on vertical
labels, H’s- on horizontal.

3.5 S4 classes for Lèvy-driven motions

Here we describe a simple S4 system (a short introduction to S4 classes is given in [48],
Chapter OO field guide) that could be used to simplify manipulations with the two types
of observations of the linear fractional stable motion. Additionally, we present a possible
way to extend the system so that it encompasses more general stochastic processes. The
system aims to be helpful in

• passing ”attributes” (frequency, σ, α,H) from objects to functions automatically
(without additional developer’s efforts).

• hiding complicated details of interfaces from users.

• using generics to protract functions on different objects by means of inheritance.
For instance, plotting function written for lfsm could be used for other types of
stochastic integral.

Classes for simulated lfsm

Here we describe the least general classes- SimulatedLfsmLow and SimulatedLfsmHigh,
objects of which are obtained by simulating low- and high-frequency linear fractional stable
motions. Figure 3.16 shows their internal structure. Roughly speaking, these classes were
designed to contain minimum information that could fully describe a simulated LFSM
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Figure 3.14: Comparison of the real ϕn(t = 1; k) and the one estimated via Vlow(ψt=1, k)n
on the logarithmic scale. α’s are on vertical labels, H’s- on horizontal. The lower and
upper box sides correspond to the 25th and 75th percentiles.
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Figure 3.15: Convergence of α̂low(k, t1, t2)n to the real α (red line) for different k. α’s are
on vertical labels, H’s- on horizontal. The lower and upper box sides correspond to the
25th and 75th percentiles.
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Figure 3.16: Structure of the classes of simulated lfsm. Frequency indicator and indicator
of process type are included in the class name, whilst motion, coordinates, parameters for
which the path was simulated and the Lévy motion are written in the slots.

path. Indicators of frequency and a process type are included in the name of a class,
which is supposed to make a method dispatch more straightforward, without additional
condition blocks. Moreover, all generic functions distinct high- and low-frequency schemes
of all types with the help of class names. The same holds for motion types. Parameters
H,α, σ, as well as Lévy motion, coordinates and the lfsm itself are written in corresponding
slots.

Examples

In the following example we see how an instance of class SimulatedLfsmLow is created and
then plotting and inference is performed using generic functions plot and ContinInfer.

N<-3000; m<-65; M<-300
sigma<-0.3; alpha<-1.8; H<-0.8
p<-.4; t1<-1; t2<-2; k<-2

# Make an object of S4 class SimulatedLfsmLow
R> List <- path(N,m,M,alpha,H,sigma,freq='L',disable_X=FALSE,seed=3)

# Make an object of parameters
R> prmts<-new("AlpaHSigma",alpha=List$pars[['alpha']],
R> H=List$pars[['H']],sigma=List$pars[['sigma']])

R> X_sim <- new("SimulatedLfsmLow", Process = List$lfsm,
coordinates = List$coordinates, pars = prmts,
levy_motion = List$levy_motion)

# plot the motion
R> plot(X_sim)

# structure of the instance
R> str(X_sim)

Formal class 'SimulatedLfsmLow' [package ".GlobalEnv"] with 4 slots
..@ pars :Formal class 'AlpaHSigma' [package ".GlobalEnv"] with 3 slots
.. .. ..@ alpha: num 1.8
.. .. ..@ H : num 1.8
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Figure 3.17: Output of plot method for simulated lfsm

.. .. ..@ sigma: num 1.8

..@ levy_motion: num [1:3497] 0 -15 -19.8 -21.2 -24.1 ...

..@ Process : num [1:3497] 0 -0.542 -0.912 -1.12 -1.276 ...

..@ coordinates: int [1:3497] 0 1 2 3 4 5 6 7 8 9 ...

R> ContinInfer(x=X_sim,t1=t1,t2=t2,k=k,p=p)

$alpha
[1] 1.870217

$H
[1] 0.8314528

$sigma
[1] 0.3227219

In this example, the plot function takes almost no effort, compared to the similar one from
Section 3.3, which is due to the fact, that there has been a method defined for generic
plot and object SimulatedLfsmLow. The last function, ContinInfer, is a generic which
has a registered method for class StochasicProcLow, general stochastic processes in low-
frequency setting. Since SimulatedLfsmLow inherits from StochasicProcLow, the generic
dispatched this method and performed statistical inference. ContinInfer was designed
to perform inference according to Theorem 3.1 from [29] and is based on R function
ContinInfer. One can see that plot (and, less obviously, ContinInfer) used ’Low’ from
the name of the class to perform computations.

Computational details

The present article corresponds to version 0.3.1 of package rlfsm which is available on
CRAN.
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3.6 Appendix

Here you can see the code for the experiment in (3.4).

#### Set of global parameters ####
library(rlfsm)
library(doParallel)
library(foreach)
library(gridExtra)
library(ggplot2)

registerDoParallel()

m<-45; M<-90; N<-1e3
p<-.4; p_prime<-.2
t<-1; t1<-1; t2<-2
fr<-'L'; NmonteC<-5e2

sigma<-0.3

## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ##

# Grid for (alpha, H)
hs<-c(0.3,0.5,0.7,0.9)
by_als<-0.4
als<-seq(0.2,1.8,by=by_als)

# Sample path creation

path_set<-list()

for(ind_hs in (1:length(hs))) {

path_set_als<-list()
for(ind_als in (1:length(als))) {

S_Path<-paths(N_var=NmonteC,N=N,m=m,M=M,alpha=als[ind_als],
H=hs[ind_hs],sigma=sigma,freq=fr,disable_X=FALSE,
levy_increments=NULL,parallel = TRUE)

ll<-list(H=hs[ind_hs], alpha=als[ind_als], S_Path=S_Path)
path_set_als[[ind_als]]<-ll

}
path_set[[ind_hs]]<-path_set_als

}

# Phi stats vs exp
phis_on_k<-function(p_data){
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S_paths<-p_data$S_Path
alpha<-p_data$alpha
H<-p_data$H

data<-foreach(SP_ind = (1:NmonteC), .combine = rbind) %dopar% {

S_Path<-S_paths[,SP_ind]
d<-foreach(k_ind = seq(1,8,by=1), .combine = rbind) %do% {

phi_vect<-phi(t=t1,k=k_ind,path=S_Path,H=H,freq='L')
exp_vect<-tryCatch(

exp(-(abs(sigma*Norm_alpha(h_kr,alpha=alpha,
k=k_ind,r=1,H=H,l=0)$result)ˆalpha)),
error=function(c) NA)

al_vect<-alpha_hat(t1=1,t2=2,k=k_ind,path=S_Path,H=H,freq='L')

c(sample_num=SP_ind, k=k_ind,
phi_exper=phi_vect, phi_theor=exp_vect,
alpha=alpha, H=H, alpha_est=al_vect)

}
d

}

data

}

# k_new estimates
Monte_k<-function(p_data){

S_paths<-p_data$S_Path
alpha<-p_data$alpha
H<-p_data$H

data<-foreach(SP_ind = (1:NmonteC), .combine = rbind) %dopar% {

alpha_0<-alpha_hat(t1=t1,t2=t2,k=1,path=S_paths[,SP_ind],H=NULL,freq='L')
if(alpha_0<=0) k_new<-NA else k_new<-2+floor(alpha_0ˆ(-1))
c(k_new=k_new, alpha=alpha, H=H)

}
data

}

# Computing on the sample paths
pl<-data.frame()
pk<-data.frame()

for(ind_hs in (1:length(hs))) {
for(ind_als in (1:length(als))) {

pl<-rbind(pl,phis_on_k(path_set[[ind_hs]][[ind_als]]))
pk<-rbind(pk,Monte_k(path_set[[ind_hs]][[ind_als]]))

}
}

# Plotting Phi on k

pl_log<-pl
pl_log$phi_theor<-log(pl_log$phi_theor)
pl_log$phi_exper<-log(pl_log$phi_exper)

pl_log$k<-factor(pl_log$k)
ggp <- ggplot(pl_log) +

geom_boxplot(aes(x = k, y = phi_exper), color='blue') +
geom_point(aes(x = k, y = phi_theor), inherit.aes = FALSE,
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size = 2, shape = 4, color='green3') +
scale_y_continuous(limits = c(-200,0)) +
facet_grid(alpha˜H, scales = "free") +
ggplot2::theme_bw() + labs(x = "k", y=NULL) #labs(x = "k", y = "phi")

ggp
ggsave(filename='phi_on_k.pdf', plot = ggp)

# Plotting alpha_hat on k

pl$k<-factor(pl$k)
ggp <- ggplot(pl) +

geom_boxplot(aes(x = k, y = alpha_est), color='blue') +
geom_hline(aes(yintercept = alpha), colour = "chocolate4") +
facet_grid(alpha˜H, scales = "free") +
ggplot2::theme_bw() + labs(x = "k", y=NULL)

ggp
ggsave(filename='alpha_est_on_k.pdf', plot = ggp)

# Plotting histograms of k_new

ggk<-ggplot(data=pk, aes(k_new)) +
geom_histogram(binwidth = 1, fill = 'darkgreen', center=0) +
facet_grid(alpha˜H) + coord_cartesian(xlim = c(0, 13)) +
scale_x_continuous(breaks=c(1:9,13)) +
theme_bw()

ggk
ggsave(filename='hist_of_k.pdf', plot = ggk)



Chapter 4

Simulation of multidimensional
stochastic integrals with
convolving kernels driven by Lévy
basis
Dmitry Otryakhin, Mark Podolskij

4.1 The model

In this Chapter, we are going to discuss methods for simulation of a certain type of
stochastic integrals

Yt =
∫
Rd
g(t− s)Λ(ds), where (4.1.1)

• d ∈ N.

• g : Rd → R is an integrable function in the sense of Definition 1.1.6.

• Λ is a Lévy basis on Rd, see (1.11).

We are interested in kernel functions having two specific characteristics- singularity near
zero and a long tail at infinity. The function g can have one-dimensional values without
loss of generality, because multidimensional functions might be split by components and
integrated separately. We suggest using a combination of two different methods for com-
puting integrals of type (4.1.1): the one developed by Cohen et al. [17] should be used near
singularity points, and the method based on the convolution theorem- outside that area.
At this stage, the two algorithms are not combined together due to lack of knowledge of
some joint distributions. The idea to mix several techniques while computing a stochastic
integral comes from earlier papers by Bennedsen et al. [11] and Heinrich et al. [23] where
the authors applied hybrid schemes to Gaussian fields.

In this chapter, we consider Lévy drivers, although we remark that the technique
based on the convolution theorem allows more general random measures and even different
types of integrals. The choice of the driving measure determines the way numerical errors
are described. Throughout the chapter the dimensionality is set d = 2 for simplicity of
notation, but similar results hold for any d.
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4.2 Shot-noise approximation of non-Gaussian fractional
fields

This section was derived from [17] until the last paragraph.
Notation. Let υ ∈ N, (Vυ)υ≥1 and (Uυ)υ≥1 be independent sequences of random

variables. We assume that (Uυ, Vυ)υ≥1 is independent of (Tυ)υ≥1.

• (Vυ)υ≥1 is a sequence of i.i.d. random variables with common law ν(dv)/ν(R).

• (Uυ)υ≥1 is a sequence of i.i.d. random variables such that U1 is uniformly distributed
on the unit sphere Sd−1 of the Euclidean space R.

• cd is the volume of the unit ball of Rd .

When ν(R) <∞, the integral (4.1.1) can be represented by a shot noise series.

Proposition 4.2.1 (Proposition 4.1, [17]). Under some assumptions, for every t ∈ Rd ,
the series

Y ser
t =

+∞∑
υ=1

g

(
t,

(
Tυ

cdν(R)

)1/d
Uυ

)
Vυ (4.2.2)

converges almost surely. Furthermore,

{Yt : t ∈ Rd} d= {Y ser
t : t ∈ Rd} (4.2.3)

In simulations a truncated version of sum (4.2.2) is used:

Y ser
t,Υ =

Υ∑
n=1

g

(
t,

(
Tυ

cdν(R)

)1/d
Uυ

)
Vυ, (4.2.4)

For this truncation, the next theorem determines the error rate with the help of Markov’s
inequality:

Theorem 4.2.2. Let t ∈ Rd. Assume that

∀ξ 6= 0, |g(t, ξ)| ≤ C

||ξ||β
(4.2.5)

where β > d/2 and C > 0. Furthermore, assume there exists r ∈ (d/β, 2] such that
E(|V1|r) < +∞. Then, for every ε ∈ (0, β/d− 1/r), almost surely,

sup
Υ≥1

Υε|Y ser
t − Y ser

t,Υ | < +∞ (4.2.6)

Moreover, for every Υ > rβ/d,

E(|Y ser
t − Y ser

t,Υ |r) ≤ C(r, β)D(Υ, r, β)
Υrβ/d−1 (4.2.7)

where
D(Υ, r, β) = Γ(Υ + 1− rβ/d)(Υ + 1)rβ/d

Γ(Υ + 1) (4.2.8)

and
C(r, β) = dCr(cdν(R)rβ/dE(|V1|r))

rβ − d
(4.2.9)
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When ν(R) =∞, the integral (4.1.1) is approximated by a superposition of a shot-noise
series and a Gaussian field. Note that the computational complexity of this algorithm is
proportional to N ×Υ, where N is the number of values of (4.1.1) to compute, and Υ is

the number of jumps. On a rectangular grid, N =
d∏
j=1

Nj , where Nj denotes the number

of projections of the points. There are two reasons why it is not always possible to use the
algorithm introduced by Cohen et al. [17]: first, when the process has too many jumps,
the computational complexity is too high to be used in practice, and second, it comes with
relatively strong assumptions.

4.3 Review of the multidimensional discrete Fourier
transform

A meticulous review on multidimensional Fourier transforms could be found in a book
by Dan E. Dudgeon [20]. Here, only the key results are given. Let x̃(n1, . . . , nd) be a
d-dimensional rectangular periodic sequence with periodicity (N1, . . . , Nd), i.e.

x̃(n1, . . . , nd) = x̃(n1 +N1, . . . , nd +Nd) (4.3.10)

with values in R. For such a sequence discrete Fourier transform is defined as

X̃(k1, . . . , kd) =
N1−1∑
n1=0

· · ·
Nd−1∑
nd=0

x̃(n1, . . . , nd) · exp
(
−

d∑
r=1

2πikrnr
Nr

)
, (4.3.11)

for all integer kj . Note, that X̃(k1, . . . , kd) is periodic in kj with a period Nj . X̃ can be
interpreted as a superposition of 2× d-dimensional waves (2 due to complex space). The
inverse transform is

x̃(n1, . . . , nd) = 1∏d
r=1Nr

N1−1∑
k1=0

· · ·
Nd−1∑
kd=0

X̃(k1, . . . , kd) · exp

 d∑
j=1

2πikjnj
Nj

 . (4.3.12)

The convolution theorem states that for 2 periodic sequences x̃(n1, . . . , nd) and ã(n1, . . . , nd)
with discrete Fourier transforms X̃(k1, . . . , kd) and Ã(k1, . . . , kd) it holds that their linear
convolution

ỹ(n1, . . . , nd) := x̃∗ d· · ·∗ã =
N1−1∑
m1=0

· · ·
Nd−1∑
md=0

ã(m1, . . . ,md)·x̃(n1−m1, . . . , nd−md) (4.3.13)

is equal to the inverse Fourier transform of the Ỹ (k1, . . . , kd) = Ã(k1, . . . , kd)×X̃(k1, . . . , kd).
Computational complexity of multidimensional fast Fourier transform is

O

 d∏
k=1

Nk log

 d∏
j=1

Nj

 (4.3.14)

4.4 Algorithms based on multidimensional fast Fourier
transforms.

The idea in its one-dimensional form was used in [40]. Here we proceed as follows: the
integral is approximated by a sum, and the error is computed accordingly to this approx-
imation. Then, fast Fourier transform in conjunction with multidimensional convolution
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theorem is used to fasten the sum computation. In order to capture two features of the
kernel, described in Section 4.1, we suggest splitting of the kernel domain into three pieces,
subsequent computing of (4.1.1) separately on the first two, and truncating the third one,
Figure 4.1. We choose rectangular grid for sampling the Lévy basis, then the truncated

g(x)

x(I) (II) (III)(II)(III)

Figure 4.1: Example of splitting the domain of the kernel function into 3 zones. x ∈ R1.
The function g(x)→∞ as x→ 0, zone (I). Zone (II) contains its Hölder continuous part.
In zone (III) g(x)→ 0 as x→∞.

integral (4.1.1) is written as

Y trunc
t =

t1+M1∫
t1−M1

t2+M2∫
t2−M2

g(t− s)Λ(ds), Mi are truncation parameters. (4.4.15)

We approximate it as follows:

ΣM1,M2,m(t) =
t1+mM1∑

k1=t1+1−mM1

t2+mM2∑
k2=t2+1−mM2

g

(
t−

[
k1
m
,
k2
m

])
×∆Λ

(
k1
m
,
k2
m

)
(4.4.16)

and define

Ik1,k2(t) =
∫ k1

k1−1

∫ k2

k2−1
g(t− ξ/m)dΛ

(
ξ1
m

; ξ2
m

)
Σk1,k2
M1,M2,m

(t) = g

(
t−

[
k1
m
,
k2
m

])
×∆Λ

(
k1
m
,
k2
m

)
,

(4.4.17)

where the former is the restriction of the integral (4.4.15) to the segment (k1 − 1, k1) ×
(k2 − 1, k2):

Y trunc
t =

t1+mM1∑
k1=t1+1−mM1

t2+mM2∑
k2=t2+1−mM2

Ik1,k2(t), (4.4.18)

where m is a number of observations between neighboring indexes on one axis, e.g. M1
and M1 − 1. This parameter controls precision. On one rectangular segment of the area
(k1 − 1, k1)× (k2 − 1, k2) the approximation error is

Ik1,k2(t)− Σk1,k2
M1,M2,m

(t) =

=
∫ k1

k1−1

∫ k2

k2−1

(
g(t− ξ/m)− g

[
t−

(
k1
m

; k2
m

)])
dΛ
(
ξ1
m

; ξ2
m

)
,

(4.4.19)
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After a change of variables t− k = τ , (4.4.16) can be expressed as

ΣM1,M2,m(t) =
mM1−1∑
τ1=−mM1

mM2−1∑
τ2=−mM2

g (τ)×∆Λ (t− τ) (4.4.20)

and after another change of variables, τ = τ̂ − τ ′, this expression becomes

ΣM1,M2,m(t) =
(2mM1−1)∑

τ̂1=0

(2mM2−1)∑
τ̂2=0

g
(
τ̂ − τ ′

)
×∆Λ

(
t− τ̂ + τ ′

)
=

=
(2mM1−1)∑

τ̂1=0

(2mM2−1)∑
τ̂2=0

g̃ (τ̂)×∆Λ̃ (t− τ̂)

(4.4.21)

One can see that integral approximation (4.4.21) has the form of discrete convolution.
Thus, we can apply the convolution theorem and DFT transforms.

FFT-based algorithm for simulations

• Generate m2(2M1 + N1)(2M2 + N2) independent Lévy random variables
Λ(k1; k2), where kj ∈ [0, 2m(Mj +Nj)− 1]

• Compute ak1,k2 = g̃
(
k1
m ,

k2
m

)
for kj ∈ [0, 2mMj − 1] and pad the sequence

ak1,k2 with zeros to make it of the same size as Λ(k1; k2)

• Use DFT to compute DFT (a) and DFT (Λ)

• Compute inverse DFT of DFT (a)×DFT (Λ)

• keep only elements with indexes [mM1,mM1 +mN1]× [mM2,mM2 +mN2]

4.5 α-stable drivers

Although the method based on the convolution theorem doesn’t restrict us to use any
specific sort of the driver in the integral (4.1.1), the type of the driver still affects the
error produced in the approximation. A very simple in terms of error computation class
of drivers is α- stable Lévy processes, which is going to be discussed in this section. The
value of error (4.4.19) is SαS distributed with scaling parameter

||Ik1,k2(t)− Σk1,k2
M1,M2,m

(t)||αα =
∫ k1

k1−1

∫ k2

k2−1

∣∣∣∣g(t− ξ/m)− g
[
t−

(
k1
m

; k2
m

)]∣∣∣∣α ds (4.5.22)

Points of singularity in case of α- stable drivers

Let us consider (4.1.1) with a one-dimensional Lévy basis (multidimensional setting is
similar). When the driving basis is SαS the integral

∫
g(t−s)Λsαs(ds) is defined if

∫∞
0 |g(t−

s)|αds <∞, which implies that
∫ t
Const(t−s)αφds <∞, which, in turn entails the condition

φ > −1/α in the case g(x) ∼ xφ near zero, φ < 0.
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If we are to compute the integral (4.1.1) value at a single point, and truncate the kernel
function near zero, it will yield an error which is distributed according to the symmetric
α-stable law:

Yt − Y tr
t

d= ||gtr||αα × SαS(1), (4.5.23)
where SαS(1) stands for a symmetric α-stable random variable with the scale parameter
equal to 1.

||gtrδ||αα =
∫ t

t−δ
|g(t− s)|αds ∼

∫ δ

0
sφαds (4.5.24)

up to multiplying by a constant. Therefore, if the kernel parameter φ is close to −1/α,
then the integral (4.5.24) has a high value (up to infinity), yielding a high value of error
(4.5.23).

Hölder continuous function

Functions of this type cannot have a point on a compact where they converge to infinity,
but they are useful to describe long tails. On the other hand, the series representation
requires a power-law behavior, which might not be the case, or might produce a large
error. The following theorem is proposed to deal with this situation.

Proposition 4.5.1. For a κ– Hölder continuous kernel function g(s) the scaling of the
error on a square segment

||Ik1,k2(t)− Σk1,k2
M1,M2,m

(t)||αα ≤ 2
ακ
2 Cm−(2+ακ) (4.5.25)

Also, the scaling of the total error

||Y trunc
t − ΣM1,M2,m(t)||αα ≤ 22+ακ

2 CM1M2m
−ακ. (4.5.26)

Proof.

||Ik1,k2(t)− Σk1,k2
M1,M2,m

(t)||αα ≤ C
∫ k1

k1−1

∫ k2

k2−1

∥∥∥∥(t− ξ/m)−
[
t− (k1

m
; k2
m

)
]∥∥∥∥ακ dξ =

C

∫ k1

k1−1

∫ k2

k2−1

∥∥∥∥(k1
m

; k2
m

)− ξ/m
∥∥∥∥ακ dξ

(4.5.27)

The norm can be bounded by a maximal distance on the square,
√

(1/m)2 + (1/m)2.
Thus, on a single square the error is

||Ik1,k2(t)− Σk1,k2
M1,M2,m

(t)||αα ≤ C2κα/2m−(2+κα). (4.5.28)
Summation over all 2mM1 × 2mM2 squares produces the following bound

t1+mM1∑
k1=t1−mM1+1

t2+mM2∑
k2=t2−mM2+1

||Ik1,k2(t)− Σk1,k2
M1,M2,m

(t)||αα

≤ C
mM1∑

k1=−mM1+1

mM2∑
k2=−mM2+1

2ακ/2m−(2+ακ) =

22+ακ/2CM1M2m
−ακ

(4.5.29)
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Remark 4.5.2. Linearity of the error in M1 and M2 is a result of Hölder continuity of
the kernel. This property prohibits using the error bound for long decreasing tails of kernels
because smaller values of the function will be assigned the same error bounds.

Truncation of kernel function

Proposition 4.5.3. Truncation of exponential tail.
If the kernel satisfies the condition

|g(ξ1, ξ2)| ≤ C exp (−θ1|ξ1| − θ2|ξ2|) (4.5.30)

then truncation (4.4.15) from R × R to [−M1,M1] × [−M2,M2] yields error which is
distributed as sαs random variable with scaling parameter

4C
α2θ1θ2

× exp(−α(θ1M1 + θ2M2)) (4.5.31)

Proof. ∥∥∥∥∥
∫∫

R×R/[−M1;M1]×[−M2;M2]
g(ξ1; ξ2)dL(ξ1, ξ2)

∥∥∥∥∥
α

α

≤

C

∫∫
R×R/[−M1;M1]×[−M2;M2]

(exp(−θ1ξ1))α(exp(−θ2ξ2))αdξ1dξ2 =

C

α2θ1θ2

∫∫
R×R/[−M1;M1]×[−M2;M2]

e−αθ1ξ1e−αθ2ξ2d(αθ2ξ2)d(αθ2ξ2) =

4C
α2θ1θ2

e−α(θ1M1+θ2M2)

(4.5.32)

An analogous theorem holds when the kernel function decays with a power of the
distance.

Proposition 4.5.4. Truncation of tail decaying as a power function.
If the kernel satisfies the condition

|g(ξ1, ξ2)| ≤ C

(ξ1)r1(ξ2)r2
(4.5.33)

for some r1α > 1 and r2α > 1 then truncation from R × R to [−M1,M1] × [−M2,M2]
yelds error which is distributed as sαs random variable with scaling parameter

4CM (1−αr1)
1 M

(1−αr2)
2 (4.5.34)

Proof. ∥∥∥∥∥
∫∫

R×R/[−M1;M1]×[−M2;M2]
g(ξ1; ξ2)dL(ξ1, ξ2)

∥∥∥∥∥
α

α

≤

4C
∫∫

R×R/[−M1;M1]×[−M2;M2]
(ξ1)−r1α(ξ2)−r2αdξ1dξ2 =

4CM (1−αr1)
1 M

(1−αr2)
2

(4.5.35)
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