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Preface

This dissertation is the culmination of my PhD studies at the Department of
Mathematics, Aarhus University, from August 1, 2015 until September 4th,
2019. The studies were performed under the supervision of Andreas Basse-
O’Connor (main supervisor), Jan Pedersen, Kim Mouridsen and Lars Nørvang
Andersen and were fully funded by Andreas’ grant “Time-wise behavior of frac-
tional processes” (DFF-4002-00003) from the Danish Council of Independent
Research. The dissertation consists of four papers, divided into two parts.

Paper A Andreas Basse-O’Connor, Thorbjørn Grønbæk and Mark Podolskij.
Local asymptotic self-similarity for heavy tailed harmonizable frac-
tional Lévy motions. Submitted.

Paper B Andreas Basse-O’Connor, Thorbjørn Grønbæk and Mark Podolskij.
Limit theory for quadratic variation of harmonizable Lévy-driven
processes. Working paper.

Paper C Thorbjørn Grønbæk, Lars N. Andersen and Kim Mouridsen. Integra-
tion of sequential EHR information using mathematical representa-
tions. Working paper.

Paper D Thorbjørn Grønbæk. Analysis of medication sequences for sepsis
patients. Draft.

In all of the above papers, I have made major contributions in both the research
and writing phase. The papers A-B were completed during the first two years
of my PhD and constitute the first (Part I) of my PhD. The main topic is limit
theorems for harmonizable Lévy-driven processes and the common context
of Papers A-B is discussed in Chapter 1. The main results of the papers A-B
were included in my progress report, for which I received the degree Master of
Science in Statistics as part of a 4+4 PhD structure (combined M.Sc. and Ph.D.
studies). Parts of both papers were written during the last 2 years of my PhD
studies.

The papers C-D were written during the last 2 year of my PhD and consti-
tute the second (Part II) of my PhD. Paper C is the primary article for part II
of my PhD. Paper D correspond to the work I completed during my exchange
visit to Stanford University and was written in late summer 2019 and may
appear a bit unpolished. A brief introduction is provided in Chapter 4 and
technical supplementary material is provided in Chapter 5.

This dissertation marks the end of my PhD studies at Aarhus University and
it has been a truly unique, challenging and rewarding experience. It is often
said that a dissertation could not have been completed without the support of
certain people – I now realize just how true such a statement may be. My path
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grateful for this and also wish to thank Imon, Alfiia, Armin, Jason, Arturo,
Matthew, Steve and Blaine for engaging discussions, cozy lunches and good
times.

I was lucky to share my PhD journey at Aarhus University with many
people. I would like to thank Victor, Mikkel, Simon Bang, Mathias, Julie,
Patrick, Claudio, Mads, Mark, Jevgenijs and many others for enduring my
talkative nature, keeping up my good spirits and for the recurring discussions
of the weather and prices in the canteen. Lunch will feel different without
you and although I never liked Staff Lounge coffee, I certainly enjoyed the
conversation while waiting for it to brew.

To my friends and family, thank you for always being there. You remind me
that theorems, proofs, code and quantitative analysis is nice but life is about
shared laughter and memories. In December 2019, a little star was born, when
my girlfriend gave birth to our daughter Annabell – she should know that
her smiles makes me feel more complete than ever. To my girlfriend Cecilie,
thank you for laughing when I try to find my keys for the 100th time, being
patient when I work long hours, challenging me when I appear too confident,
forgiving me when I forget to buy milk and rye bread (again) and ultimately
for your love. It means the world to me.
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did not know my own best interest. This thesis would never have been without
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these values half as well as Jan and Andreas does, I will have done well. With
these words, I dedicate this thesis to them.

Thorbjørn Øystein Brynimin Grønbæk
Aarhus, September 2019
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Summary

This dissertation consists of two parts. The first part concerns the study of a
class of complex-valued stochastic processes called harmonizable processes.
Our main topic of interest will be on limit theorems for α-stable harmonizable
processes. We define a class of harmonizable fractional Lévy processes and
give a practical existence criterion for their these. Next, we study the local
behavior of Lévy-driven harmonizable processes and show that if the driving
Lévy process has heavy tails then they are locally self-similar with tangent
process harmonizable fractional stable motion. Previously it has been shown
that a class harmonizable processes where the driving Lévy process has all
moments, are locally self-similar with tangent process fractional Brownian
motion and thus this gives a more complete picture. We show a limit theorem
for the quadratic variation of a class of harmonizable processes towards a
non-degenerate limit. It is of note that harmonizable fractional stable motion
is neither mixing, weakly mixing nor ergodic and thus the above results consti-
tutes a new contribution to limit theory for non-ergodic processes. The results
implies that harmonizable fractional stable motion cannot be a semimartingale
for H < 1/2.

The second part is focused on the analysis of sequential medical data
through two applications. We study electronic health records which are at
the center of health care systems, foremost documenting the patient history
but secondly attributing credit and responsibility to the entity performing
each task. It is therefore of utmost importance that each event is correctly
registered. However, for clinical treatment in a stressed hospital environment,
time spent registering an event equates time not spent diagnosing/treating
patients. This discrepancy of priorities, between registration and actual treat-
ment, appears to be a natural precondition, but if registration of an event could
assist correct diagnosis then both goals would align. This is the aim in both
our two applications. The first application is sequential semantic meaning of
events in electronic health records, gathered for a specific cohort of patients at
Regionshospitalet Silkeborg, Denmark. We show that it is possible to automat-
ically incorporate semantic meaning into a numerical vector representation
by analyzing the records using an algorithm called Skip-Gram. An interest-
ing visualization is provided, which shows that the algorithm automatically
identifies events groups. To the best of our knowledge, this utilization of the
Skip-Gram method to incorporate sequential semantic meaning in medical
data is new to the literature – previous studies focused primarily on free-text
reports. In the second application, medication orders for sepsis patients is
the central topic. The medication logs are extremely short which complicates
statistical analysis. Initially, we study whether a new sepsis alert system alters
the treatment behaviour using a group variable. We show that the most com-
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Summary

mon medications and frequencies of these are the same for each group. From
this, we conclude that the treatment sequences are unchanged between the
groups and proceed to study prediction of the next treatment package and the
graph of treatment packages on larger dataset of sepsis patients. Finally, we
describe our experiences and thoughts on sequential medical data and several
prospective ideas are discussed.
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Resumé

Denne afhandling består af to dele. Den første del omhandler studier af en
klasse af stokastiske processer med komplekser værdier kaldet harmoniske
processer. Vi er særligt interesseret i grænseværdisætninger for α-stabile har-
moniske processer. We definerer klassen af harmoniske fraktionale Lévy pro-
cesser og giver et praktisk eksistenskriterie for disse. Hernæst studerer vi
deres lokale opførsel og under antagelsen om α-stabile halefordelingen af den
drivende Lévy proces, viser vi at harmoniske fraktionale Lévy processer er
lokalt selv-similære med tangent proces den harmoniske fraktionale stabile
bevægelse. Dette sættes i kontekst af et resultat fra litteraturen vedrørende
selv-similaritet for harmoniske fraktional Lévy processer, hvor den drivende
Lévy process har alle momenter. Vi viser også at den kvadratiske variation
for en klasse af harmoniske processer konvergerer mod en ikke-degenereret
stokastisk variabel. Dette resultat er en interessant tilføjelse til grænseværdi-
sætninger for ikke-ergodiske processer, idet den harmoniske fraktionale stabile
bevægelse ikke er ergodisk. Som konsekvens af konvergens kan vi konkludere
at den harmoniske fraktionale stabile bevægelse ikke er en semimartingal for
H < 1/2.

Den anden del omhandler analysen af sekventielle sundhedsdata. Vi stude-
rer elektroniske patientjournaler, som er centrale objekter i sundhedssystemer,
først og fremmest ved at dokumentere patienthistorikken, men dernæst ved at
give kredit og ansvar til sundhedsaktøren som udfører opgaven/hændelsen.
Det er derfor særlig vigtigt at hver enkelt hændelse bliver korrekt registreret.
Men for klinisk behandling i et stresset hospitalsvæsen, er tid brugt på registre-
ring af en hændelse lig tid ikke brugt på at diagnosticere og behandle patienter.
Denne diskrepans mellem prioriteter, kan forekomme at være en naturlov, men
hvis registreringen af en hændelse assistere diagnosticering, så vil målet for
både registrering og behandlingen være opnået. Dette er formålet med vores
to studier af sekventielle sundhedsdata. I første datasæt studerer vi sekventiel
semantisk mening for hændelser i elektroniske patientjournaler for en specifik
patientgruppe fra Regionshospitalet Silkeborg, Danmark. Vi viser at det er
muligt at integrere semantisk mening automatisk i numerisk vektorrepræsen-
tationer ved at analysere journalerne med en en algoritme kaldet Skip-Gram.
Vi laver en interessant visualisering, som viser at algoritmen automatisk finder
hændelsesforløb. Efter vores bedste overbevisning at denne måde at udnytte
Skip-Gram til at finde sekventielt semantisk mening er ny i litteraturen – an-
dre studier har typisk fokuseret på fri-tekst rapporter. I det andet datasæt er
det centrale emne medicinjournaler for sepsis patienter . Medicinjournalerne
er ekstremt korte hvilket komplicerer statistisk analyse. Initialt studerer vi
hvorvidt et nyt sepsis alarmsystem ændrer behandlingsforløbet baseret på
en gruppevariabel. Vi viser at de hyppigste behandlingspakker (og medicin)
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samt deres frekvens er ens for de to grupper. Fra dette, konkluderer vi at
behandlingsforløbene er uændret på tværs af gruppevariablen og vi mangler
de to grupper med at et større datasæt (uden en gruppevariabel) med sepsis
patienter. Til sidst beskriver vi vores erfaringer og tanker om udnyttelsen af
sekventielt sundhedsdata og flere ideer diskuteres.
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Part I

Limit Theorems for Harmonizable
Lévy-driven Processes
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1
Introduction to harmonizable processes

This chapter starts with a brief motivation for stochastic processes followed by
a background brush-up on stationary processes, moving average and spectral
representation. Then, we discuss the intersection of moving averages and spec-
tral representations and exemplify this through fractional Brownian motion.
Fractional Brownian motion is subsequently generalized to the α-stable case
and in this case two different processes arise, namely harmonizable fractional
stable motion and linear fractional stable motion. We present new results on
the local asymptotical self-similarity and quadratic variation for the former
and draw perspectives to known results on the latter.

1.1 Stochastic processes

“Random” behavior or phenomena occurs frequent in daily life, for example
in stock prices, weather forecasts, particle movement, decision-making, im-
precision of measurements and many other examples. A stochastic process,
(Xt)t∈T , is a collection of random variables (or vectors) indexed by T (“time”),
exemplified in Figure 1.1. For a statistician, stochastic processes are typically

Figure 1.1: A simulated stochastic process (Brownian motion).

applied to the study of properties which are invariant across T , allowing the
observer to perform statistical inference. In probability theory, such properties
are commonly referred to as stationarity.

3



Chapter 1 • Introduction to harmonizable processes

1.1.1 Background

We start out with a few basic definitions for stochastic processes. Formally, a
stochastic process (Xt)t∈R is stationary, if

(Xt)t∈R
d= (Xt+h)t∈R, ∀ h ∈R, (1.1)

where d= denotes equality in finite-dimensional distributions. Similarly, a sto-
chastic process (Xt)t∈R has stationary increments if

(Xt+h −Xh)t∈R
d= (Xt −X0)t∈R, ∀ h ∈R. (1.2)

In other words, (Xt+h − Xh)t∈R constitute a stationary process for all h ∈ R.
If the process itself is not stationary, then the increments, log-increments
or other functionals are often stationary. A stochastic process X is weakly
stationary if Xt ∈ L2(P), E[Xt] = 0, Cov(Xt+h,Xh) = Cov(Xt ,X0) for all t, h ∈ R
and t 7→ γX(t) B Cov(Xt ,X0) is a continuous function. In particular if X is
stationary and E[X2

0 ] <∞ (second moment) then X is weakly stationary.
A stochastic process X has independent increments if for any m ∈N and

any sequence t0 < t1 < · · · < tm, it holds that the random variables (or vectors)

Xt1 −Xt0 ,Xt2 −Xt1 , . . . ,Xtm −Xtm−1
(1.3)

are independent. These processes are common for many of the stochastic
processes studied in the literature. A common example of a process with
stationary independent increments is the so-called Brownian motion.

Example 1.1.1 (Brownian motion). A real-valued stochastic process B = (Bt)t∈R
defined on a probability space (Ω,F , P ) is called a Brownian motion (without
drift) if it satisfies that

• t 7→ Bt(ω) is a continuous function for all ω ∈Ω.

• B0 = 0.

• B has stationary independent increments.

• Bt has a normal distribution with mean zero and variance σ2|t| for all
t ∈R.

If σ2 = 1 it is called a standard Brownian motion and a drift µ can be added in
the mean as µ · t to achieve a Brownian motion with drift µ.

The Brownian motion is an example of the larger class of Lévy processes
which again have stationary independent increments.

Example 1.1.2 (Lévy processes). An R
d-valued stochastic process L = (Lt)t∈R

is a Lévy process on R if it satisfies that

• t 7→ Lt(ω) is a càdlàg function for all ω ∈Ω

4



1.1 Stochastic processes

• L has stationary independent increments.

• L0 = 0.

A Lévy process induces an infinitely divisible independently scattered
random measure (see [12]) through

ΛL((s, t]) = Lt −Ls

which may be extended to ΛL(A) =
∫
1A dL for A ∈ Bb(R) (bounded Borel sets)

using standard methodology. Consequently, Lévy processes can be used to
define stochastic integrals as discussed in [12], and these may yield many
different stationary processes (or processes with stationary increments).

Example 1.1.3 (Lévy-driven moving averages). Let L = (Lt)t∈R denote a R-
valued Lévy process and let φ̃,φ : R→R denote measurable functions which
are zero for t ≤ 0. The stochastic process Y = (Yt)t∈R defined by

Yt =
∫ t

−∞
φ(t − s)dLs

is then a stationary process, provided that the integral exists in the sense of
[12]. Similarly, the stochastic process Z = (Zt)t∈R defined by

Zt =
∫ t

−∞
[φ(t − s)− φ̃(−s)]dLs

has stationary increments, provided that the integral exists. The stochastic
processes defined in the previous example, Y and Z, are often referred to
as continuous-time (Lévy-driven) moving averages, respectively stationary
increments (Lévy-driven) moving averages. This definition may be extended
in a natural way to functions φ : R→ R

k×d and R
d-valued Lévy processes L,

resulting in Y and Z with values in R
k .

A particular interesting property in relation to Brownian motion is selfsimi-
larity. A stochastic process (Xt)t∈R is self-similar with index H if

(Xct)t∈R
d= cH (Xt)t∈R, for c > 0,

where d= denotes equality in finite-dimensional distributions. The Brownian
motion is self-similar with index H = 1/2 and its generalization fractional
Brownian motion in Example 1.2.1 is self-similar with index 0 < H < 1. The
following Example 1.1.4 and Theorem 1.1.5 underlines self-similarity and
stationary as related and central properties in the study of stochastic processes.

Example 1.1.4 (Self-similarity and limits). Self-similarity arises as a property
of limit distributions. Namely that if for a stochastic process X = (Xt)t∈R it
holds that (

Xct − g(c)
f (c)

)
d−−−−→

c→∞
Yt , (1.4)

5



Chapter 1 • Introduction to harmonizable processes

for a real-valued function g : R→R and a strictly positive, real-valued increas-
ing function f with f (c)→∞ as c→∞, this implies that the process Y = (Yt)t∈R
is self-similar. Here d−−−−→

c→∞ denotes convergence in distribution. Conversely if
a process Y is self-similar, then Y occurs as such a limit in equatiion (1.4) for
some process (Xt)t∈R. For the full results, see [10].

In addition, self-similarity has a direct connection to stationarity, namely
through its Lamperti transform, equation (1.5), as stated in the following
theorem.

Theorem 1.1.5 (Lamperti, [10]). If (Xt)t≥0 is a stationary process which is contin-
uous in probability and we define

Yt = tHXlog t , t > 0 (1.5)

then (Yt)t≥0 is self-similar with index H . Conversely, every nontrivial self-similar
process with Y0 = 0 is obtained this way from a stationary process (Xt)t≥0.

Thus stationarity and self-similarity are central properties in the study of
stochastic processes and whenever we have a stationary process, the Lamperti
transform in equation (1.5) yields a self-similar process.

1.1.2 Moving average representation

The class of Lévy-driven moving averages is a subclass of the larger class of
moving averages. The Wold-Karhunen representation, see [1, 8], states that
any weakly stationary stochastic process X may be represented by

Xt =
∫
R

φ(t − s)dξs +Vt , ∀ t ∈R (1.6)

where V = (Vt)t∈R is process which is measurable wrt. its ultimate past V−∞,
e.g. V is measurable wrt. V−∞ B

⋂
t∈R span(Vs : s ≤ t) (span denotes the L2

closure of the linear span), ξX is a weakly stationary stochastic processes with
orthogonal increments and φ is a Lebesgue square-integrable determinisitic
function. An application of Bochner’s theorem yields a finite positive measure
FX , often called the spectral measure of X, such that

F [FX ](u) = γX(u)B E[XhX0], (1.7)

where F [FX ](u) =
∫
R
eiusFX(ds) denotes the Fourier transform of the measure

FX . Let F′X(x) denote the absolutely continuous part of FX . If FX satisfies the
condition ∫

R

|logF′X(x)|
1 + x2 dx <∞

then φ(t) ≡ 0 for all t ≤ 0, it will result in

Xt =
∫ t

−∞
φ(t − s)dξs +Vt , ∀ t ∈R,

6



1.1 Stochastic processes

a so-called backward moving average (e.g. depending only on the past). If
the measure FX is absolutely continuous wrt. the Lebesgue measure (cf. Theo-
rem 4.1 in [1]), then X has a moving average representation,

Xt =
∫
R

ψ(t −u)ξX(ds), (1.8)

where ψ : R→R is a Lebesgue square-integrable deterministic function and
ξX is a weakly stationary stochastic process with mean zero and orthogonal
increments. This corresponds to V ≡ 0 in the Wold-Karhunen representation
(1.6).

1.1.3 Spectral representation

In this section we introduce spectral representations and harmonizable pro-
cesses (of which harmonizable fractional stable motion from Example 1.2.2 is
an element) and relate this definition to weak stationarity. By a harmonizable
process Z = (Zt)t∈R, we understand a process defined by

Zt =
∫
R
eitsM(ds)

where M denotes a complex-valued random measure. A process Z = (Zt)t∈R
has harmonizable increments if

Zt+h −Zh =
∫
R

ei(t+h)s − eihs

is
M(ds).

where M is a complex-valued random measure. In alignment with the nomen-
clature in the literature, a process with harmonizable increments will be named
a harmonizable process despite the confusing double naming. In each instance,
we will try to fully write out the representation of the process to avoid this
confusion. A common choice for M is an isotropic infinitely divisible inde-
pendently scattered random measure, see equation (2.10), but it may also
involve dependency across time, as seen in the harmonizable representation of
fractional Brownian motion in Example 1.2.1. The subclass of harmonizable
processes of the form

Xt+h −Xh =
∫
ei(t+h)s − eihs

is
g(s)dLs, (t ∈R) (1.9)

where L is a complex-valued isotropic Lévy process and g is a complex-valued
deterministic function, we shall call Lévy-driven harmonizable processes. The
increments of harmonizable fractional stable motion from Example 1.2.2 is an
example of Lévy-driven harmonizable process. The existence of Lévy-driven
harmonizable process can be checked by combining the result in Theorem 2.3.3
with Lemma 2.4.2. Theorem 2.3.3 directly connects stationarity (or station-
ary increments) with isotropy for harmonizable processes X with infinitely
divisible independently scattered random measure – a well-known result in

7



Chapter 1 • Introduction to harmonizable processes

discrete time from [16]. If we drop independently scattered, it is possible to
obtain harmonizable processes which are stationary but the measure M is not
isotropic. B̃ in the harmonizable representation of fractional Brownian motion
is an example of this.

If the increments of a stochastic process X = (Xt)t∈R are weakly stationary,
we may always express it using its spectral representation (or harmonizable) (cf.
[2, 17]), given by

Xt+h −Xh =
∫
R

ei(t+h)s − eihs

is
ΛX(ds), (t ∈R) (1.10)

where the stochastic process ΛX is complex-valued, square-integrable, continu-
ous in L2 and has orthogonal increments, i.e. E[(ΛX(v)−ΛX(u))(ΛX(t)−ΛX(s))] =
0 for u ≤ v ≤ s ≤ t. The process ΛX is often called the spectral process of X,
due to the direct similarity with the Fourier transformation for deterministic
functions. We will use the terms spectral representation and harmonizable
representation interchangeably as appears common in the literature.

The control measure (or spectral measure/distribution) of ΛX , denoted F, is
defined by

F((a,b])B E[|ΛX(a)−ΛX(b)|2] (1.11)

The function FX is equivalent to the one found in the Wold-Karhunen repre-
sentation in equation (1.6), provided both representations exists.

1.2 Intersection between moving averages and
harmonizable processes

An important interpretation of both the moving average and spectral represen-
tation is that they separate time-dependency and stochasticity of the process
into a deterministic function ψ and a random measure ξ. The deterministic
kernel function carries the time-dependency, whereas the random measure has
stationary and orthogonal (uncorrelated) increments. This motivates analyzing
ψ and ξX separately to determine their effect on the resulting process.

Lévy processes with second moment satisfy the criteria for both types of
representations and consequently have both a spectral representation and
a moving average representation. This is not necessarily an improvement,
since ΛL for a Lévy process L would satisfy weaker assumptions than L itself,
leading to less structure on the stochastic part of the representation. As a quick
example, the increments of Brownian motion B may thus be written using its
spectral representation

Bt+h −Bt =
∫
R

ei(t+h)s − eits

is
ΛB(ds), (t ∈R)

where ΛB is the spectral process of B. B can also easily be written in a stationary
increments moving average form, namely

Bt −B0 =
∫ t

−∞
[1(−∞,0](t − s)−1(−∞,0](−s)] dBs =

∫
R

1(0,t](s)dBs.

8



1.2 Intersection between moving averages and harmonizable processes

In this case, however, the moving average / spectral representation does not
improve amount of known structure on the stochastic component (ΛB or B).

Example 1.2.1 (Fractional Brownian motion, [11]). Fractional Brownian mo-
tion (fBm) was studied in [11], and generalizes the self-similarity property
of Brownian motion. It is a stochastic process with mean-zero, normally dis-
tributed marginals, stationary increments and covariance given by

Cov(Xt ,Xs) =
1
2

(|t|2H + |s|2H − |s − t|2H ) ∀ s, t ∈ R.

Note that we no longer have independent increments unless the similarity
index is H = 1/2 (in which case, fBm equals Brownian motion). It was estab-
lished in [11] that fBm is the only centered H-self-similar Gaussian process
with stationary increments. Fractional Brownian motion has both a moving
average representation and a spectral representation (see Chapter 7 of [15]),
namely

BHt = C1(H)
∫ t

−∞
(t − s)H−1/2

+ − (−s)H−1/2
+ dBs, t ∈R, (1.12)

and

BHt = C2(H)
∫
R

eits − 1
is
|s|−H−1/2+1B̃(dx), t ∈R. (1.13)

Here (Bs)s∈R is a Brownian motion and B̃ is an complex-valued Gaussian mea-
sure defined by B̃ = B(1) + iB(2), where B(1) and B(2) are independent Gaussian
random measures, satisfying B(1)(A) = B(1)(−A), B(2)(A) = −B(2)(A) for any Borel
set A of finite Lebesgue measure. Both representations yield a real-valued
Gaussian H-selfsimilar process with stationary increments and thus by [11]
the same process.

A natural mathematical question is whether the equality between the mov-
ing average and spectral representation can be generalized to non-Gaussian
self-similar processes? A first step in this direction was to use α-stable Lévy
processes as integrators in (1.12)-(1.13), where the Gaussian process is the spe-
cial case α = 2. This idea was pursued in [6] and generalizes the representations
above to α-stable Lévy processes.

Example 1.2.2 (Fractional stable motions, [6]). Linear fractional stable motion
(lfsm) is analog to (1.12) and defined as

Lα,H (t) =
∫
R

a
(
(t − s)H−1/α

+ − (−s)H−1/α
+

)
dMα

s

+
∫
R

b
(
(t − s)H−1/α

− − (−s)H−1/α
−

)
dMα

s , (t ∈R)

where (Mα
s )s∈R is a (symmetric) α-stable Lévy process on R, a,b ∈R such that

|a|+ |b| > 0, 0 < α < 2, 0 < H < 1, H , 1/α. The complex-valued harmonizable
fractional stable motion (hfsm) is similarly analog to (1.13) and defined as

Cα,H (t) =
∫
R

(eits − 1)
is

(
a(s+)−H+1−1/α + b(s−)−H+1−1/α

)
dM̃s, t ∈R,

9



Chapter 1 • Introduction to harmonizable processes

where M̃ denotes a complex-valued isotropic α-stable Lévy process and the
parameter space is 0 < α < 2, 0 < H < 1, a ≥ 0, b ≥ 0, where a+ b > 0. We refer
to Chapter 7 of [15] for detailed definitions of these processes.

Both the lfsm and the real part of hfsm are real-valued H-selfsimilar α-
stable processes with stationary increments, however contrary to the Gaussian
case in [11], we no longer have find that such properties implies uniqueness of
the process. Indeed, the main finding of [6] is the non-trivial result that hfsm
and lfsm are different processes. This raises the question as to which extent
the lfsm (Xt)t∈R and hfsm (Zt)t∈R are related? This is the starting point of our
research.

Comparison of properties for lfsm and hfsm has been done extensively in
the literature, e.g. codifference in [15] and path properties in [9], where lfsm
and hfsm behave differently. Many papers have also been investigating the
structure of stationary α-stable processes, e.g. the characterisation result [14],
stating a α-stable stationary process can be decomposed into a moving average
part, a harmonizable part and a process of a third kind. This reveals that by
studying moving averages and harmonizables processes, we will, in fact, be
studying a large subclass of the stationary stable processes.

1.3 Our contributions

Self-similarity is studied in [4] for a class of Lévy-driven harmonizable fields
(Yt)t∈Rd , where it is crucially assumed that all moments of their driving Lévy
process exist. They obtain the following local asymptotical selfsimilarity(Yu+εt −Yu

εH

)
d−−−−−→

ε→0+
c0(BH (t))t∈Rd ,

where (BH (t))t∈R is the fractional Brownian motion, c0 is a constant given
by the moments for the Lévy measure and the convergence is in a strong
functional distributional sense. To clarify, a stochastic proces (Yt)t∈R is locally
asymptotically selfsimilar (lass), with index h(u) at point u, if

lim
ε→0+

(Yu+εt −Yu
εh(u)

)
d= (Tu(t))t∈R,

where (Tu(t))t∈Rd is a non-degenerate stochastic process. The process (Tu(t))t∈Rd
is called the tangent process at point u. We will often refer to this as locally
selfsimilar.

In Chapter 2, we study local self-similarity for a class of harmonizable
processes, namely the following harmonizable fractional Lévy motions.

Definition 1.3.1. A stochastic process (Xt)t∈R is called a harmonizable fractional
Lévy motion (hflm) with parameters (α,H) ∈R2 if

Xt =
∫
R

eits − 1
is

(
a(s+)−H−1/α+1 + b(s−)−H−1/α+1

)
dLs, t ∈R (1.14)

10
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where L is a isotropic (same as rotational invariance, see Definition 2.3.1) complex-
valued Lévy process, and a,b ∈R.

Theorem 2.3.3 and Theorem 2.4.1 give explicit criteria for existence of hflm
when L is isotropic. We shall need the following assumption to state our result.

Assumption (A): Suppose that L is a rotationally invariant complex-valued Lévy
process without Gaussian component and let ν denote its Lévy measure. We as-
sume that ν is absolutely continuous with respect to the two dimensional Lebesgue
measure with a density f : R2→R+ satisfying

f (x) ∼ c0‖x‖−2−α as ‖x‖ →∞,
f (x) ≤ C‖x‖−2−α for all x ∈R2,

where c0,C > 0 and 0 < α < 2.
In this case, we have the following theorem.

Theorem 1.3.2. Let X be harmonizable fractional Lévy motion with parameters
(α,H) which satisfies (A). Then it holds that X is locally self-similar with index H
and tangent process harmonizable fractional stable motion, i.e. that(Xu+εt −Xu

εH

)
t∈R

d−−−→
ε↓0

(
Cα,H (t)

)
t∈R, (1.15)

where the convergence is in finite-dimensional distribution and the limit Cα,H (t) is
a harmonizable fractional stable motion with parameters (α,H).

In contrast to [4], we drop the assumption of all moments and instead
assume heavy tailed behaviour on the Lévy process. To summarize [4] and
our result – with all moments we obtain a (moving average/harmonizable)
selfsimilar Gaussian tangent process, whereas a lack of moments yields a
harmonizable selfsimilar α-stable tangent process. An alternative formulation
is that the small-scale behaviour of harmonizable fractional Lévy motion is
approximately Gaussian if all moments exists and α-stable if the Lévy process
is heavy-tailed.

In Chapter 3, we aim to study the limit theory for the power variation of
harmonizable processes, i.e. processes of the form (1.10), and in particular
hfsm. Recall that low-frequency power variation (or p-variation) of a process
(Xt)t∈R is defined as

V (p)n B
n∑
t=1

|Xt |p

Similarly, the high-frequency p-variation is simply defined as

Vp(t,n) =
btnc∑
i=1

|Xi/n −X(i−1)//n|p (1.16)

For self-similar processes, the low- and high-frequency settings can be related
by self-similarity. This limit theory would allow comparison to the moving
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Chapter 1 • Introduction to harmonizable processes

averages studied in [3] (which includes lfsm) and yield a deeper understanding
of the connection between kernel function structure and the corresponding
limit theory.

The special case (p = 2), called the quadratic variation, is often the first
non-linear functional to be studied and has received particular interest. It
measures variability of the process X and is given by

n∑
i=1

(
Xi/n −X(i−1)/n

)2

in the high-frequency setting and is used to estimate parameters in many
stochastic processes and diffusions. In the case of Brownian motion B, it is
well-known that

n∑
i=1

(Bi/n −B(i−1)/n)2→ σ2 a.s., as n→∞.

We present our main result on quadratic variation (p = 2) for harmonizable
Lèvy-driven processes in the low-frequency setting.

Theorem 1.3.3. Let X = (Xt)t∈R denote a harmonizable Lévy-driven process driven
by a complex-valued isotropic Lévy process L = L1 + iL2. Then it holds that

1
n

n∑
t=1

|Xt |2
P→U0,

where U0 is an infinitely divisible variable of the form

U0 =
∫
R

|g(s)|2 d
(
[L1] + [L2]

)
s
,

where [L1] and [L2] denotes the quadratic variation of the Lévy process L1 respec-
tively L2.

For a sketch of the proof, we refer to Section 1.3.1. It relies on the chosen
power p = 2 and the multiple integration theory developed in [7]. We expect
that the result holds for general harmonizable processes (Zt)t∈R as well.

However, hfsm is neither mixing nor a semi-martingale (to the best of
our knowledge). We believe the latter observation to be well-known but we
have been unable to find a reference for it. Theorem 1.3.3 yields the following
corollary for hfsm which partially answers this.

Corollary 1.3.4. Harmonizable fractional stable motion X is not a semi-martingale
for H < 1/2.

This aligns exactly with the fractional Brownian motion results from [13].
The cases H = 1/2 and H > 1/2 appear open. In particular, whether H = 1/2
yields a semi-martingale appears to be an interesting open problem since [6]
shows that once α is introduced as another “parameter” in the analogs for

12
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the moving average and harmonizable representations of fractional Brownian
motion, the two processes are different.

The local self-similarity and power variation of stationary increment Lévy-
driven moving averages (including lfsm) was studied in the article [3]. They
show that lfsm arises as a tangent process of certain moving averages, e.g.(Yu+εt −Yu

εH

)
P→ (Lα,H (t))t∈R, as ε ↓ 0+, (1.17)

where Lα,H denotes lfsm and under the assumption that the Lévy measure
of the driving Lévy process has regularly varying tail behavior with index
0 < α < 2. The stronger convergence in probability for moving averages in
(1.17) enables the authors [3] to transfer results regarding the power variation
of lfsm to a larger class of stationary increments Lévy-driven moving averages
in the infill asymptotic setting (fixed time horizon and the number of observa-
tions converge to infinity). The weaker convergence towards hfsm in Theorem
1.3.2 does not allow us to transfer results on the power variation for hfsm to
harmonizable fractional Lévy motion. This led us to focus on the quadratic
variation (p = 2) which has been studied extensively in stochastic integration
theory to model volatility.

In comparison to Theorem 1.3.3, [3] obtained the following result for lfsm
(in the case where H + 1/α > 0)

n−2/α
n∑
t=1

(Yt −Yt−1)2 L−s−−−→ Ũ , (1.18)

where
L−s−−−→ refers to stable convergence in law. The stable central limit theorem

entails that an i.i.d. sequence of symmetric α/2-stable random variables (Yi)i∈N,
that

n−2/α
n∑
t=1

Yi
d→ Y ,

where Y is a symmetric α/2-stable random variable. The tail distributions of
(Xt −Xt−1)2 for both lfsm and hfsm behaves as a power law with index α/2.
Comparing the i.i.d. case to equation (1.18), we see that the normalization rates
are the same whereas the normalization rate is different for hfsm . This may
be related to α-stable moving averages being weakly mixing, whereas α-stable
harmonizable processes are never, see [5]. Weakly mixing can be thought of as a
type of asymptotic independence, and thus figuratively speaking harmonizable
processes contain much more memory. This relates intuitively to the integration
area R of harmonizable processes, whereas for moving averages we write the
following

Xt2 −Xt1 =
∫ t1

0
φ(t2 − s)−φ(t1 − s)dξX(ds) +

∫ t2

t1

φ(t2 − s)dξX(ds).

Assuming that φ is decreasing, e.g. φ(t) → 0 as t → ∞, the above for fixed
t1 ≤ t2 (heuristically) approximates

Xt2 −Xt1 ≈
∫ t2

t1

φ(t2 − s)dξX(ds)−
∫ t1

0
φ(t1 − s)dξX(ds),
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Chapter 1 • Introduction to harmonizable processes

as |t1 − t2| →∞. Note that in this case the two integrals are independent which
is very useful for proving limit theorems. The stronger normalization rate of
the lfsm compared to the hfsm may be motivated by lfsm having a smaller
Hölder index of continuity and thus necessitates stronger normalization to
“smooth” its paths. However, due to the absence of H in the normalization
of hfsm, path properties do not fully explain the difference in normalization
rates.

1.3.1 Proof sketch of main result

In this section, we sketch the proof of Theorem 1.3.3. It motivates why the
theory of multiple stochastic integration is needed. Recall that we aim to prove
the convergence of

na
n∑
t=1

|Xt |2→ Y , for a < 0,

to a non-trivial limit Y and wish to determine both the convergence rate a and
the resulting limit Y . Consider the stochastic process (Xt(s))s∈R defined by

Xt(s) =
∫ s

−∞
eitug(u)dLu , s ∈R (1.19)

where g : R → R is some deterministic complex-valued function and L is
a complex-valued Lévy process. Then (Xt(s))s∈R is a semi-martingale on R,
Xt = Xt(∞) and we may apply integration by parts for semi-martingales to
obtain

|Xt |2 =
∫
R

Xt(s−)dXt(s) +
∫
R

Xt(s−)dXt(s) + [X,X]∞ = Vt +U0,

where

U0 B [X,X]∞ =
∫
R

|eitsg(s)|2 d([L1] + [L2])s,

Vt B 2<
(∫

R

∫ s−

−∞
eitsg(s)e−itug(u)dLu dLs

)
.

The next step is to study each of these terms separately. Observe that U0 has
no dependence on t and will thus be an invariant component of each term in
the sum for the p-variation. Hence, we have that

1
n

n∑
t=1

|Xt |2
P→U0, if

1
n

n∑
t=1

2<
(∫

R

Xt(s)dXt(s)
)

P→ 0.

At this point, the theory of multiple stochastic integrals is needed. The key
observation for the convergence towards zero is actually very simple. First
observe that we may identify∫

R

(∫ s−

−∞
f (u,s)dL1

u

)
dL2

s =
∫
R

∫
R

f (s,u)1[s>u] dL
1
u dL

2
s ,
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References

where the former is a semi-martingale integral and the latter is interpreted as
a double stochastic integral. Continuity and linearity of multiple integrals can
thus be used to study convergence. By linearity, we have that

1
n

n∑
t=1

Vt = 2<
(∫

R

∫
R

f̃n(s,u)dLu dLs
)
,

where our kernel function is given as

f̃n(s,u) := g(s)g(u)
1
n

n∑
t=1

eit(s−u)1[s>u]

This kernel function converges to zero as n tends to infinity and continuity
of the multiple stochastic integral implies that the proof of Theorem 1.3.3 is
complete.
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Abstract

In this work we characterize the local asymptotic self-similarity of
harmonizable fractional Lévy motions in the heavy tailed case. The cor-
responding tangent process is shown to be the harmonizable fractional
stable motion. In addition, we provide sufficient conditions for existence
of harmonizable fractional Lévy motions.

Keywords: local asymptotic self-similarity; harmonizable processes; fractional
processes; spectral representations.

2.1 Introduction

The class of self-similar stochastic processes plays a key role in probability
theory as they appear in some of the most fundamental limit theorems, see
[8], and in modeling they are used in geophysics, hydrology, turbulence and
economics, see [17] for numerous references. This class of stochastic processes
are invariant in distribution under suitable time and space scaling, that is,
a stochastic process (Xt)t∈R is called self-similar with index H ∈ R if for all
c > 0 the two processes (Xct)t∈R and (cHXt)t∈R equals in finite dimensional
distributions. The only self-similar centered Gaussian process with station-
ary increments is the fractional Brownian motion (up to scaling), which is a
centered Gaussian process (Xt)t∈R with X0 = 0 a.s. and covariance function

Cov(Xt ,Xs) =
1
2

(|t|2H + |s|2H − |s − t|2H ) for all s, t ∈R, (2.1)
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where H ∈ (0,1). The fractional Brownian motion has a moving average repre-
sentation and a harmonizable representation, and both lead to the same process
(defined by (2.1)), for further details see Subsection 2.2. However for non-
Gaussian processes their moving average and harmonizable representations
are very different, see e.g. [5] and [14] for the case of α-stable processes. Only a
very specific class of processes are exact self-similar, but a much larger class
of processes behaves locally as a self-similar processes - this is already seen
within the class of Lévy processes.

A stochastic process (Xt)t∈R is said to be locally asymptotically self-similar if
there exists a number H ∈R and a non-degenerate process (Tt)t∈R such that(Xεt

εH

)
t∈R

d−−−−−→
ε→0+

(Tt)t∈R, (2.2)

where
d−→ denotes converege in finite dimensional distributions. The process

T = (Tt)t∈R is called the tangent process of X, and by (2.2), T is necessarily
self-similar. Local self-similarity means that at small time-scales the stohastic
process (Xt)t∈R is approximately self-similar and may be approximated by
its tangent process. This property was introduced to provide a more flexible
modeling framework compared to global self-similarity. For applications, it
has been used to study the behaviour of flows, see [6] and [15], and for showing
high frequency asymptotic results, see [2] or [3].

Moving average fractional Lévy motions: Starting from the moving average
representation of the fractional Brownian motion, [9] has, among many others,
studied fractional Lévy processes defined as

Xt =
∫ t

−∞

(
(t − s)β+ − (−s)β+

)
dLs, t ∈R, (2.3)

where β ∈ (0,1/2) and (Lt)t∈R is a centered Lévy process with finite second
moment. Throughout this paper x+ := max{x,0} and x− := −min{x,0} denote
the positive and negative parts of any number x ∈R.

In the following, we will call such processes for moving averages fractional
Lévy motions to distinct them from their harmonizable counterpart. Under a
regular variation assumption on the Lévy measure of L near zero, [9] shows
that a moving average fractional Lévy motion is never self-similar, but it is
locally asymptotically self-similar with tangent process the linear fractional
stable motion, which is a process of the form (2.3) with L being an α-stable
Lévy process, cf. [5] and Theorems 4.4 and 4.5 of [9].

Harmonizable fractional Lévy motions: Next we define the class of harmo-
nizable fractional Lévy motions which includes the harmonizable fractional
stable motion introduced in [5].

Definition 2.1.1. A stochastic process (Xt)t∈R is called a harmonizable fractional
Lévy motion with parameters (α,H) ∈R2 if

Xt =
∫
R

eits − 1
is

(
a(s+)−H−1/α+1 + b(s−)−H−1/α+1

)
dLs, t ∈R (2.4)
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where L is a rotationally invariant complex-valued Lévy process, and a,b ∈R.

The (over) parametrization in Definition 2.1.1 is chosen due to our forth-
coming Assumption (A). In fact under Assumption (A) below, the H parameter
in Definition 2.1.1 turns out to be exactly the number H in the definition of
local asymptotic self-similarity. From Theorem 2.4.1, below, it follows that
the harmonizable fractional Lévy motions have stationary increments and
rotational invariant distributions. Furthermore, we give concrete conditions
for existence of the harmonizable fractional Lévy motion on (α,H) and the
Lévy measure of L.

In [4], local asymptotic self-similarity is studied for a slightly different class
of harmonizable fractional motions under the assumption that all moments
are finite, e.g. the Lévy measure ν of the Lévy process L satisfies that∫

|x|>1
|x|p ν(dx) <∞ for all p > 0. (2.5)

Their result is the following:

Theorem 2.1.2 (Benassi, Cohen and Istas). Let (Xt)t∈R denote a harmonizable
fractional Lévy motion as in Definition 2.3 of [4] satisfying the moment condition
(2.5). Then the process X is locally asymptotically self-similar with index H and
tangent process the fractional Brownian motion, that is,(Xεt

εH

)
t∈R

d−−−−−→
ε→0+

(c0B
H
t )t∈R. (2.6)

where (BHt )t∈R is a fractional Brownian motion with Hurst index H and c0 is a
suitable constant.

The main aim of this work is to characterize the local asymptotic self-
similarity of the harmonizable fractional Lévy motion when L has heavy tails,
violating the moment condition (2.5). The methods of [4] rely heavily on power
series expansion of the characteristic function which is only available under
the assumption (2.5). Instead of this assumption, we consider the case where
the Lévy measure ν is regular varying in the following sense.

Assumption (A): Suppose that L is a rotationally invariant complex-valued Lévy
process without Gaussian component and let ν denote its Lévy measure. We as-
sume that ν is absolutely continuous with respect to the two dimensional Lebesgue
measure with a density f : R2→R+ satisfying

f (x) ∼ c0‖x‖−2−α as ‖x‖ →∞,
f (x) ≤ C‖x‖−2−α for all x ∈R2,

where c0,C > 0 and 0 < α < 2.

The following theorem, which is the main result of this paper, characterizes
the local asymptotic self-similarity of harmonizable fractional Lévy motions in
the heavy-tailed case, and additional provides an existence result for them.
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Theorem 2.1.3. Let (α,H) ∈ (0,2) × (0,1) and suppose that Assumption (A) is
satisfied. Then the harmonizable fractional Lévy motion (Xt)t∈R, defined in (2.4), is
well-defined and it is locally asymptotically self-similar with index H and tangent
process the harmonizable fractional stable motion, that is,(Xεt

εH

)
t∈R

d−−−−−→
ε→0+

(Ct)t∈R, (2.7)

where the convergence is in finite dimensional distributions and (Ct)t∈R denotes a
harmonizable fractional stable motion with parameters (α,H), which is defined in
(2.4) with L being a complex-valued rotationally invariant α-stable Lévy process.

The choice of constants for (Ct)t∈R can be found by examining the proof.
We note that the tangent process in Theorem 2.1.3 differs from the tangent
processes appearing in Theorem 2.1.2 and Theorem 4.5 of [9]. From this we
infer that it is the behaviour of the Lévy measure of L close to zero which
dominates in the moving average setting, whereas it is the behaviour of the Lévy
measure of L far away from zero which dominates in the harmonizable setting.
The structure of the paper is as follows: Section 2.2 explains the role played by
harmonizable processes within the class of stationary processes. Section 2.3
introduces complex random measures, their integration and provide existence
criterias for harmonizable processes. Finally, at the end of the last section, we
present the proof of Theorem 2.1.3.

2.2 Background on harmonizable processes

Stationary processes are one of the main classes of stochastic processes. For sta-
tionary, centered Gaussian processes, it is well-known that every L2-continuous
process (Xt)t∈R has a harmonizable representation of the form

Xt =
∫
R

eitsM(ds), t ∈R, (2.8)

for some complex-valued Gaussian random measure M defined on R. Further-
more, a rather large class of these processes have, in addition, a moving average
representation, that is, a representation of the form

Xt =
∫
R

g(t − s)dBs, t ∈R, (2.9)

where g is a deterministic function and (Bt)t∈R is a two-sided real-valued
Brownian motion. (Note that, the Brownian motion may be viewed as a shift-
invariant Gaussian random measure.) Indeed, the class of Gaussian processes
having a moving average representation corresponds exactly to those processes
with absolute continuous spectral measure µ. Recall that the spectral measure
µ is given by µ(A) = E[|M(A)|2] for A ∈ B(R), where M is given in (2.8). These
classical results can be found in e.g. [7] or [18].

The only centered Gaussian self-similar process with stationary increments
is the fractional Brownian motion (BHt )t∈R with Hurst index H ∈ (0,1), and
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as already mentioned in the introduction, this process has the following two
representations

BHt =
∫
R

(
(t − s)H−1/2

+ − (−s)H−1/2
+

)
dBs, (“moving average representation”)

BHt =
∫
R

eits − 1
is
|s|−H−1/2+1M(ds), (“harmonizable representation”),

which yields the same process in distribution, see Chapter 7.2 of [14] for fur-
ther details. Hence, the fractional Gaussian noise (BHn − BHn−1)n∈Z has both a
harmonizable, (2.8), and a moving average, (2.9), representation. For compari-
son we will discuss the structure of stationary α-stable processes with α ∈ (0,2)
in the following.

In sharp contrast to the Gaussian situation the class of α-stable stationary
increments self-similar processes, α ∈ (0,2), is huge, and is far from being
understood by now. However, two natural generalizations of the fractional
Brownian motion to the α-stable setting are proposed in [5] generalizing the
fractional Brownian motion to α-stabe processes by replacing the driving
Gaussian random measure with an α-stable random measure in its moving
average and harmonizable representations. This leads to the harmonizable
fractional stable motion (Xt)t∈R, which is defined as

Xt =
∫
R

eits − 1
is

(
a(s+)−H−1/α+1 + b(s−)−H−1/α+1

)
dLs, t ∈R,

where (Lt)t∈R is a two-sided, complex-valued, α-stable, rotationally invariant
Lévy process, and to the linear fractional stable motion (Xt)t∈R, which is defined
as

Xt =
∫
R

a
(
(t − s)H−1/α

+ − (−s)H−1/α
+

)
+ b

(
(t − s)H−1/α

− − (−s)H−1/α
−

)
dLs,

where (Lt)t∈R is a two-sided, real-valued, α-stable, symmetric Lévy process.
Notice that corresponding noise processes (Xn −Xn−1)n∈Z for the linear and
harmonizable fractional stable motions are moving averages and harmonizable
processes, respectively.

Indeed, the Gaussian assumption is crucial for the above equality between
the harmonizable and moving average representations to hold, as it turns
out that harmonizable fractional stable motion and linear fractional stable
motion as quite different processes, cf. [5] and [14]. The seminal paper [11]
shows that every stationary α-stable process has a unique decomposition into a
(mixed) moving average component, a harmonizable component and a process
of the “third kind”, which does not admit moving average nor harmonizable
components. The class of mixed moving averages may be viewed as the class
of processes having the least memory, whereas class of harmonizable processes
is the class having the largest degree of memory, and the processes of the third
kind are in between. These facts come from ergodic consideration, see the
introduction of [12] for more details, and are also illustrated by the fact that
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moving averages are always mixing and harmonizable processes are never
ergodic nor mixing. Hence by studying moving averages and harmonizable
processes, we are examining the two extremes of stationary α-stable processes.

Thus the comparison of results on local asymptotical self-similarity in
the introduction between linear fractional stable motions and harmonizable
fractional stable motions are, in fact, a comparison between α-stable self-
similar stationary increments processes with the least memory and with the
most memory. This encircles the local asymptotical behaviour of general α-
stable self-similar processes with stationary increments.

2.3 Preliminaries on complex stochastic integration theory

All random variables and processes will be defined on a probability space (Ω,F ,P).
A real-valued stochastic variable X is symmetric α-stable (SαS) if for some
α ∈ (0,2], the characteristic function of X satisfies

E[exp{itX}] = exp(−σα |t|α), for all t ∈R,

for some parameter σ > 0 called the scale parameter. If α = 2, then X has
a centered Gaussian distribution and σ2 is the variance of X. Rotationally
invariant random variables and processes are defined as follows:

Definition 2.3.1. A complex-valued random variable X is rotationally invariant
if

eiθX
d= X, for all θ ∈ [0,2π), (2.10)

where d= denotes equality in distribution. Similarly, a complex-valued stochastic
process (Xt)t∈T is rotationally invariant if every complex linear combination is
rotationally invariant, e.g.

∑N
n=1 znXtn is rotationally invariant.

Rotational invariance is called isotropy in some references but due to the
ambiguity of isotropy we chose to use rotational invariance, cf. the discussion
in Example 1.1.6 of [13]. A complex-valued process can equivalently be re-
garded as a R

2-valued random variable, in which case rotational invariance
is invariance in distribution wrt. rotation matrices. We will with some am-
biguity switch between the C and R

2. From the definition it is immediate
that a rotationally invariant random variable X = X1 + iX2 is symmetric and
furthermore if it is infinitely divisible, then X1 and X2 share the same Lévy
measure ν. Let B(R) denote the Borel sets on R, Bb(R) the bounded Borel sets
on R and L0

C
(Ω) the complex-valued random variables. For completeness, we

define complex-valued infinitely divisible random measures and state well
known stochastic integration results, cf. [16] and [10].

Definition 2.3.2 (Complex-valued random measure). A complex-valued random
measure is by definition a complex-valued set function

M : Bb(R)→ L0
C

(Ω),
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such that for disjoints sets A1,A2, . . . ∈ Bb(R), the complex-valued random variables

M(A1),M(A2), . . .

are independent and infinitely divisible, and if
⋃
n∈NAn ∈ Bb(R) then

M
( ∞⋃
n=1

An

)
=
∞∑
n=1

M(An) a.s.,

where the series converges almost surely.

Given a complex-valued random measure M we can find a σ -finite deter-
ministic measure λ on R such that λ(An)→ 0 impliesM(An)→ 0 in probability.
We call λ a control measure for the random measure M. Letting νA(·) denote
the Lévy measure of M(A), we can then apply Proposition 2.4 of [10] to obtain
a decomposition such that

F(A×B)B νA(B) =
∫
R

∫
R

2
1A×B(s,x)ρ(s,dx)λ(ds),

where {ρ(s,dx)}s∈R denotes a family of Lévy measures on R
2. For the rest of the

paper, we shall use the notation

K(θ,s)B
∫
R

2

[
ei〈θ,x〉 − 1−1{‖x‖≤1}〈θ,x〉

]
ρ(s,dx), (θ,s) ∈R2 ×R. (2.11)

A simple complex-valued function f : R→C is a function of the (canonical)
form

f (s) =
n∑
j=1

zj1Aj , (2.12)

where n ∈ N, z1, . . . , zn are complex numbers and A1, . . . ,An are disjoint sets
from Bb(R). For a simple function f , of the form (2.12), and A ∈ B(R) we define∫

A
f dM =

n∑
j=1

zjM(A∩Aj ).

A (general) measurable function f : R→C is said to be M-integrable, if there
exists a sequence of simple function {fn}n∈N such that

(i) fn→ f , λ-almost surely.

(ii) for every A ∈ B(R), the sequence {
∫
A
fn dM}n∈N converges in probability,

as n→∞.

In the affirmative case, we define∫
A
f dM B P− lim

n→∞

∫
A
fn dM,
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where {fn} satisfies (i) and (ii) and P− lim denotes limit in probability. It can
be shown that this definition does not depend on the approximating sequence
{fn}. For further details on stochastic integration theory we refer to [10], [13],
[14] and [16]. In the following<(z),=(z) denotes real, respectively imaginary,
part of a complex number z.

Theorem 2.3.3.
(a): Let f : R → C be a measurable function. Write f = f1 + if2. Then f is M-
integrable if the following condition hold true∫

R

∫
R

2
min

(
1,

[
‖
(
f1(s) + f2(s), f1(s)− f2(s)

)
‖2

]
‖x‖2

)
ρ(s,dx)λ(ds) <∞,

and, in the affirmative case, the characteristic function of
∫
R
f dM is given by

E

[
exp

(
i

{
θ1<(

∫
R

f dM) +θ2=(
∫
R

f dM)
})]

= exp
(∫

R

K

(
θ1f1(s) +θ2f2(s), θ2f1(s)−θ1f2(s)

)
, s

)
λ(ds)

)
.

(b): Suppose f1, . . . , fn are M-integrable. The joint characteristic function is given by

E

exp

i
n∑
j=1

(
θ

(1)
j <(

∫
fj dM) +θ(2)

j =(
∫
fj dM)

)


= exp
(∫

R

K

(∑
j=1

θ
(1)
j fj,1 +θ(2)

j fj,2,
n∑
j=1

θ
(2)
j fj,1 −θ

(1)
j fj,2, s

)
λ(ds)

)
.

(c): Let M = M(1) + iM(2) be a rotationally invariant complex-valued random
measure and let f : R→ C be a measurable function. Then the following integrals
exists simultaneously and are equal in distribution:∫

R

f dM
d=
∫
R

‖f ‖dM =
∫
R

‖f ‖dM(1) + i
∫
R

‖f ‖dM(2). (2.13)

Proof. (a) follows from the same steps as Theorem 2.7 in [10] using complex-
valued functions instead. (b) follows by the same steps as in the proof for
Proposition 6.2.1(iii) of [14]. (c) follows by closely examining the results and
arguments in [16].

Often it is easier to think of the complex-valued stochastic integral as∫
R

f dMs =
∫
R

(f1 + if2)d(M(1) + iM(2))

=
∫
R

f1 dM
(1) −

∫
R

f2 dM
(2) + i

(∫
R

f1 dM
(2) +

∫
R

f2 dM
(1)

)
and show existence for each of the above four integrals separately (this is a
more strict existence criterion). As a consequence of (c), it is also necessary to
prove existence of all of these four integrals, when M is a rotationally invariant
random measure.
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2.4 Existence and properties of harmonizable fractional
Lévy motions

Recall that a harmonizable fractional Lévy motion (Xt)t∈R is defined by

Xt =
∫
R

eits − 1
is

(
a(s+)−H−1/α+1 + b(s−)−H−1/α+1

)
dLs, t ∈R,

where L is a rotational invariant complex-valued Lévy process. Our next result
gives a general existence criterion for harmonizable fractional Lévy motions
together with some properties.

Theorem 2.4.1. Let (Lt)t∈R be a complex-valued rotational invariant Lévy process
without Gaussian component. The harmonizable fractional Lévy motion (Xt)t∈R,
defined in Definition 2.1.1, with parameters (α,H) ∈ (0,2)× (0,1) exists if both of
the following (a)–(b) are satisfied:

1.
∫
|x|>1 |x|

1
H+1/α νR(dx) <∞,

2.
∫
|x|≤1 |x|

1
H+1/α−1 νR(dx) <∞,

where νR denotes the Lévy measure of the real-part of (Lt)t∈R. Furthermore, if X
exists, then it has stationary increments, rotational invariant distribution and the
characteristic function is given by

E

[
exp

{
i
〈
θ,

(
<(Xt),=(Xt)

)〉}]
= exp

(∫
R

K

(
θ1f1(s) +θ2f2(s), θ2f1(s)−θ1f2(s), s

)
λ(ds)

)
,

for all θ = (θ1,θ2) ∈R2, where K is given by (2.11).

To prove Theorem 2.4.1 we will first show the following lemma. In this
result, and in the following, we will write f (t) ∼ g(t) as t→ a for real-valued
functions f and g, if limt→a(f (t)/g(t)) = c for some constant c , 0.

Lemma 2.4.2. Let L be a real-valued symmetric Lévy process without Gaussian
component and Lévy measure ν. Let f : R→R be a measurable function, bounded
on [−1,1]c, and satisfying

|f (s)| ∼ |s|β as s→ 0 and |f (s)| ∼ |s|−γ as |s| →∞, (2.14)

for some β ≤ 0 and γ > 0. Then the stochastic integral
∫
f dL exists if and only if

the following two conditions (a) and (b) are satisfied:

1. γ > 1/2 and the following condition hold true∫
|x|>1
|x|

1
γ ν(dx) <∞.
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2. We have that ∫
|x|≤1
|x|

1
−β ν(dx) <∞.

If ∼ in Lemma 2.4.2 is replaced by f (s) =O(|s|β) as s→ 0, or f (s) =O(|s|−γ )
as |s| → ∞, the criteria for existence of the integral

∫
f dL remain sufficient.

Note that if β > −1/2, the second criterion holds for any Lévy measure.

Proof of Lemma 2.4.2. Writing out the conditions in Theorem 2.7 of [10] and
observing that these are increasing in the function f , it suffices to study these
conditions for a function g(s) B 1[−1,1](s)|s|β + 1[−1,1]c (s)|s|−γ . Recall that the
general condition for existence of

∫
g dL is given by∫

R

∫
R

min(1, |xg(s)|2)ν(dx)λ(ds) <∞, (2.15)

where ν denotes the Lévy measure of L and λ denotes the Lebesgue measure.
Divide this condition into the following four areas,

A11 = {(s,x) ∈R×R : |s| ≤ 1, |x| ≤ 1},
A12 = {(s,x) ∈R×R : |s| ≤ 1, |x| > 1},
A21 = {(s,x) ∈R×R : |s| > 1, |x| ≤ 1},
A22 = {(s,x) ∈R×R : |s| > 1, |x| > 1}.

The monotonicity of g on these sets can then be used to simplify the condition
in (2.15) into 1 and 2. We first consider A22 and let x ∈ [−1,1]c be given. Divide
the inner integral into∫

{|s|>1}∩{|s|>|x|1/γ }
|x|2|s|−2γ λ(ds) +

∫
{|s|>1}∩{|s|≤|x|1/γ }

1λ(ds)

= |x|2
∫ ∞
|x|1/γ
|s|−2γ λ(ds) + 2λ((1, |x|1/γ ]),

= |x|2
[

2
−2γ + 1

s−2γ+1
]∞
|x|1/γ

+ 2(|x|1/γ − 1)

= |x|2|x|−2+1/γ −2
−2γ + 1

+ 2(|x|1/γ − 1) = 3|x|1/γ − 2,

where we have used that γ > 1/2 to ensure the finiteness of the integral and
afterwards that 2

−2γ+1 < 0. Inserting the derived into the original criterion on
the set A22, we get that ∫

|x|>1

[
3|x|1/γ − 2

]
ν(dx) <∞.

Since the area |x| > 1 is of finite ν-measure, this reduces to∫
|x|>1
|x|1/γ ν(dx) <∞,
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which is one of the stated criterions. For A11, let x ∈ [−1,1] be given and assume
that β < 0. The inner integral can in this case be written as∫

{|s|≤1}∩{|s|β≤|x|−1}
|xg(s)|2λ(ds) +

∫
{|s|≤1}∩{|s|β>|x|−1}

λ(ds)

= |x|2
∫

1≥|s|≥|x|−1/β
|s|2β λ(ds) +

∫
{|s|≤1}∩{|s|≤|x|−1/β }

λ(ds)

= |x|2 2
2β + 1

[
s2β+1

]1
|x|−1/β + 2λ([0, |x|−1/β]).

Inserting this into the outer integral we obtain∫
|x|≤1

(
|x|2 2

2β + 1

[
s2β+1

]1
|x|−1/β + 2λ([0, |x|−1/β])

)
ν(dx)

which reduces to the second condition by applying the definition of a Lévy
measure. For β = 0, the proof is trivial. For A12, let x ∈ [−1,1]c be given. We can
again rewrite the inner integral into∫

{|s|≤1}∩{|s|−γ≤|x|−1}
|x|2|s|−2γλ(ds) +

∫
{|s|≤1}∩{|s|−γ>|x|−1}

λ(ds)

=
∫
{|s|≤1}∩{|s|≥|x|1/γ }

|x|2|s|−2γ λ(ds) +
∫
{|s|≤1}∩{|s|<|x|1/γ }

λ(ds)

= 0 +λ([0,1]),

where we used that |x| > 1. Inserting this into the outer integral reduces to a
trivial condition for Lévy measures. For the last area, A21, let x ∈ [−1,1] be
given. In this case the condition similarly reduces to∫

|x|≤1
|x|2 ν(dx) <∞,

which is trivial. This concludes the proof.

Proof of Theorem 2.4.1. Let f denote the integrand of the harmonizable frac-
tional Lévy motion. Observe that f is bounded on [−1,1]c, and

f (s) =O(|s|−H−1/α) as |s| →∞, and f (s) =O(|s|1−H−1/α) as s→ 0.

The existence criteria now follows by Lemma 2.4.2. The stationary increments
follows by a straightforward extension of Theorem 4.1 in [16] to continuous
time, see also Theorem 6.5.1 in [14] for the stable case. The isotropic distribu-
tion follows immediately from (c) in Theorem 2.3.3.

We are now ready to complete the proof of our main result.

Proof of Theorem 2.1.3. We study the characteristic function of the finite di-
mensional distributions for the left-hand side of (2.7) and show convergence
towards the characteristic function of harmonizable fractional stable motion.
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The characteristic function for the finite dimensional distribution of (2.7) is

given by Theorem 2.3.3. For (θ(1)
j ,θ

(2)
j ) ∈R2 for j = 1, . . . ,n, we have that

Aε := logE

exp

i n∑
j=1

[
θ

(1)
j

<(X(εtj ))

εH
+θ(2)

j

=(X(εtj ))

εH

]


=
∫
R

ψ

ε−H n∑
j=1

θ
(1)
j fεtj ,1(s) + ε−H

n∑
j=1

θ
(2)
j fεtj ,2(s),

ε−H
n∑
j=1

θ
(2)
j fεtj ,1(s)− ε−H

n∑
j=1

θ
(1)
j fεtj ,2(s)

ds, (2.16)

where fεtj ,1, fεtj ,2 denotes the real, respectively imaginary, part of integrand fεtj
for Xεtj and with z = (z1, z2)

ψ(z1, z2)B
∫
R

2

[
ei〈z,x〉 − 1−1{‖x‖≤1}(x)〈z,x〉

]
ν(dx)

Writing u = εs, we substitute the ε out of the time index of f and obtain

fεt(s) =
eiεts − 1
is

(
a(s+)−H−1/α+1 + b(s−)−H−1/α+1

)
= ft(u)εH+1/α .

Making the substitution u = εs in equation (2.16) thus yields that

Aε =
∫
R

ψ

εH+1/α−H

 n∑
j=1

θ
(1)
j ftj ,1(u) +

n∑
j=1

θ
(2)
j ftj ,2(u)

,
εH+1/α−H

 n∑
j=1

θ
(2)
j ftj ,1(u)−

n∑
j=1

θ
(1)
j ftj ,2(u)


ε−1 du.

To simplify notation, define gθ,t(u) ∈R2 by(( n∑
j=1

θ
(1)
j ftj ,1(u) +

n∑
j=1

θ
(2)
j ftj ,2(u)

)
,
( n∑
j=1

θ
(2)
j ftj ,1(u)−

n∑
j=1

θ
(1)
j ftj ,2(u)

)
, (2.17)

and let k(z,x) B ei〈z,x〉 − 1 − i1Dc (x)〈z,x〉. Inserting the defined notation, this
implies that we may rewrite the characteristic function to

Aε =
∫
R

∫
R

2
k(ε1/αgθ,t(u),x)ν(dx)ε−1 du

=
∫
R

∫
R

2
k(ε1/αgθ,t(u),x)f (x)dxε−1 du

=
∫
R

∫
R

2
k(gθ,t(u),x)f (ε−1/αx)ε2(−1/α) dxdε−1 du, (2.18)

where we used ν(dx) = f (x)dx and a simple scaling of parameters in R
2. The

next step is to show pointwise convergence of the integrand as ε→ 0+. After
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this we apply the dominated convergence theorem to insert the found limit
under the integral. We postpone the argument for dominated convergence
theorem until the end of this proof. Assumption (A) on the Lévy measure ν
gives us that for every δ > 0 we can find Rδ > 0 such that

1− δ ≤
f (x)
‖x‖−2−α ≤ 1 + δ, for ‖x‖ ≥ Rδ.

Fix x ∈ R2 \ {0} and u ∈ R. For every δ > 0 we can choose ε sufficiently small
such that ‖ε−1/αx‖ > Rδ, which implies that

1− δ ≤
f (ε−1/αx)e−2/α−1

‖x‖−2−α =
f (ε−1/αx)
‖ε−1/αx‖−2−α ≤ 1 + δ.

Thus in the limit we find that

lim
ε↓0

f (ε−1/αx)ε−2/α−1 = ‖x‖−2−α ,

and hence,

lim
ε↓0

k(gθ,t(u),x)f (ε−1/αx)ε−2/α−1 = ‖x‖−2−αk(gθ,t(u),x).

This finishes the proof of pointwise convergence for fε as ε→ 0. Applying the
dominated convergence theorem we find that

lim
ε↓0

logE

exp

i n∑
j=1

[
θ

(1)
j

<(Y (εtj ))

εK
+θ(2)

j

=(Y (εtj ))

εK

]


= lim
ε↓0

∫
R

∫
R

2
k
(
gθ,t(u),x

)
f (e−1/αx)ε−2/α−1 dxdu

=
∫
R

∫
R

2
k
(
gθ,t(u),x

)
‖x‖−2−α dxdu. (2.19)

The book [1], p. 37, identifies ‖x‖−2−α in (2.19) as the Lévy measure of a
rotationally invariant two-dimensional α-stable Lévy process. We can continue
our derivations in polar coordinates and observe that the inner integral may be
rewritten as ∫

R
2
k
(
gθ,t(u),x

)
‖x‖−2−α dx

=
∫ 2π

0

∫ ∞
0
k
(
gθ,t(u), r(cos(s),sin(s))

)
r−1−α dr ds

=
∫ 2π

0
−c0|〈gθ,t(u),

(
cos(s),sin(s)

)
〉|α ds.

Here we used the following result, which follows by substituting z = yr,

−c0|y|α =
∫ ∞

0

[
exp(iyr)− 1− i1{‖r‖≤1}(x)yr

]
r−1−α dr,
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Chapter 2 • Local asymptotic self-similarity for heavy tailed harmonizable
fractional Lévy motions

where c0 B
∫∞

0 [cos(r) − 1]r−1−α dr. Write gθ,t(u) = ‖gθ,t(u)‖(cos(κu),sin(κu))
in polar form for some κu . Inserting this notation and applying a standard
trigonometric rule, we obtain∫ 2π

0
−c0|〈gθ,t(u),

(
cos(s),sin(s)

)
〉|α ds.

= − c0‖gθ,t(u)‖α
∫ 2π

0
|〈(cos(κu),sin(κu)), (cos(s),sin(s))〉|α ds

= − c0‖gθ,t(u)‖α
∫ 2π

0
|cos(κu)cos(s) + sin(κu)sin(s)|α ds

= − c0‖gθ,t(u)‖α
∫ 2π

0
|cos(s −κu)|α ds = −c0‖gθ,t(u)‖αc1,

where c1 =
∫ 2π

0 |cos(s)|α ds. Inserting this into (2.19), we identify the character-
istic function as

exp
(
−c0c1

∫
R

‖gθ,t(u)‖α ds
)

which is the characteristic function of harmonizable fractional stable motion
stated in Theorem 6.3.4 of [14] and on p. 359 of the same book when we
insert gθ,t (up to a scaling factor). Thus all that remains is the argument for
dominated convergence theorem in equation (2.19). By assumption there exists
a C > 0 such that f (x) ≤ C‖x‖−2−α for all x ∈R. This implies that

f (ε−1/αx)e−2/α−1 ≤ C‖ε−1/αx‖−2−αε−2/α−1 = C‖x‖−2−α .

Thus a good candidate for a dominating (integrable) function would be

F(x,u) = ‖(gθ,t(u),x)‖C‖x‖−2−α .

From classical theory of Lévy measures, we know that

|k(gθ,t(u),x)| ≤ 1∧
[
‖gθ,t(u)‖2‖x‖2

]
,

which implies that

F(x,u) ≤ C
(
‖x‖−2−α ∧

[
‖gθ,t(u)‖2‖x‖−α

])
.

By changing to polar coordinates we obtain that (the constant changes from
line to line) ∫

R

∫
R

2
C
(
‖x‖−2−α ∧

[
‖gθ,H,t(u)‖2‖x‖−α

])
dxdu

=
∫
R

∫ 2π

0

∫ ∞
0
C
(
r−2−α ∧

[
‖gθ,H,t(u)‖2r−α

])
r dr dψdu

≤
n∑
j=1

C

∫
R

∫ ∞
0

(
r−1−α ∧

[
‖ftj (u)‖2r−α+1

])
dr du,
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References

where ft denotes the integrand of the harmonizable fractional Lévy motion
at time t. This is exactly the criterion for the existence of the stochastic in-
tegral

∫
|ft |dL̃s wrt. an α-stable real-valued Lévy process L̃. By the choice of

(α,H) ∈ (0,2)×(0,1) such an integral exists by the existence of the harmonizable
fractional stable motion for these parameters. This concludes the argument for
dominated convergence and hence the proof.
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harmonizable Lévy-driven processes
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Working paper

3.1 Background

The classical model of Brownian motion (Bm) was first mentioned by Robert
Brown in the 1820’s and mathematically defined at the beginning of the twen-
tieth century. Ease of use and desirable properties (continuity, stationary in-
dependent increments) lead to widespread applications in many scientific
fields. Fractional Brownian motion generalizes the self-similarity property of
Brownian motion as mentioned in Chapter 1. There exists several stochastic
integral representations of fractional Brownian motion, but we shall emphasize
two of them, namely the moving average representation

BHt = C1(H)
∫ t

−∞
(t − s)H−1/2

+ − (−s)H−1/2
+ dBs, t ∈R, (3.1)

and the harmonizable representation

BHt = C2(H)
∫
R

eits − 1
is
|s|−H+1/2B̃(dx), t ∈R. (3.2)

where C1 and C2 are constants depending only on H , (Bs)s∈R is a Brownian
motion and finally B̃ is an complex-valued Gaussian measure defined by B̃ =
B(1) + iB(2), where B(1) and B(2) are independent real-valued Gaussian random
measures, satisfying B(1)(A) = B(1)(−A), B(2)(A) = −B(2)(A) for any Borel set A
of finite Lebesgue measure. Both representations yield a real-valued Gaussian
H-selfsimilar process with stationary increments and thus the same process by
[13].
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Similarly, recall their analogs for α-stable Lévy processes. The linear frac-
tional stable motion (lfsm) which is analog to (3.1) and defined as

Lα,H (t) =
∫
R

a
(
(t − s)H−1/α

+ − (−s)H−1/α
+

)
dMα

s

+
∫
R

b
(
(t − s)H−1/α

− − (−s)H−1/α
−

)
dMα

s , t ∈R, (3.3)

where (Mα
s )s∈R is a (symmetric) α-stable Lévy process on R, a,b ∈R such that

|a|+ |b| > 0, 0 < α < 2, 0 < H < 1, H , 1/α. The complex-valued harmonizable
fractional stable motion (hfsm) is similarly analog to (3.2) and defined as

Cα,H (t) =
∫
R

(eits − 1)
is

(
a(s+)−H+1−1/α + b(s−)−H+1−1/α

)
dM̃s, t ∈R, (3.4)

where M̃ denotes a complex-valued isotropic α-stable Lévy process and the
parameter space is 0 < α < 2, 0 < H < 1, a ≥ 0, b ≥ 0, where a+ b > 0. We refer
to Chapter 7 of [19] for detailed definitions of both processes. As mentioned in
the introduction chapter, they are different processes, contrary to the Gaussian
case. This raised the question how the lfsm and (possibly real-valued) hfsm
are related. Recall that the low-frequency power variation (or p-variation) of a
process (Xt)t∈R is defined as

V (p)n B
n∑
t=1

|Xt |p.

Similarly, the high-frequency p-variation is simply defined as

Vp(t,n) =
btnc∑
i=1

|Xi/n −X(i−1)/n|p. (3.5)

For self-similar processes (hfsm and lfsm), the low- and high-frequency settings
are related through the self-similarity. The limit theory of the power variation
would allow comparison to the moving averages (which includes lfsm) studied
in [2] and yield a deeper understanding of the connection between kernel
function structure and the corresponding limit theory. The special case p = 2 is
called the quadratic variation. It is a measure of variability for a process X and
is given by

n∑
i=1

(
Xi/n −X(i−1)/n

)2

in the high-frequency setting and is used to estimate parameters in many
stochastic processes and diffusions. In the case of Brownian motion B, it is
well-known that

n∑
i=1

(Bi/n −B(i−1)/n)2→ σ2 a.s., as n→∞.

34



3.2 Results

The above convergence extends to the larger class of semi-martingale. How-
ever for non-semimartingales we may need an additional normalization term.
Indeed for the standard fractional Brownian motion BH , [5] show that

1
n− 1

n∑
i=1

n2H
(
BHi/n −B

H
(i−1)/n

)2
→ 1 a.s.

Observe that this does not equal the empirical volatility unless H = 1/2. Frac-
tional Brownian motion is not a semi-martingale as shown in [16] but it is
mixing as mentioned in [4] and utilized for lfsm in [2]. However this does not
mean that studying the quadratic variation is not useful. In fact, [5] show that a
functional of the quadratic variation of fBm is the best estimator of H with the
asymptotically smallest variance. As another example, a stock price process X
may be described by a diffusion, e.g.

dXt = µtdt + σt dBt ,

where B is a Brownian motion and µt and σt are suitable processes such this
an Itô diffusion. Itô diffusions are semi-martingales, a class which serve as the
building block of price processes in mathematical finance. It is often central
in mathematical finance to estimate the volatility σ and determine whether
we take on a lot risk (or volatility) as compared to the expected payoff. This
estimation is commonly done through the realized volatility. Power variation,
and in particular quadratic variation, of general semimartingales is studied in
[1], where they obtain that

Vp(t,n)
L−s−−−−−→
n→∞

∫ t

0
σs ds,

where
L-s−−−→ denotes convergence in stable law, see [1]. This theory can be utilized

to perform statistical inference by estimating parameters of the underlying
semi-martingale model.

In this paper, we study the quadratic variation of certain harmonizable
processes and show first-order convergence towards a stochastic variable. As a
corollary, we study how this affects the semi-martingale property of harmoniz-
able fractional stable motion.

3.2 Results

We apply the limit theory for the power variation of harmonizable process.
Recall that by a harmonizable process, we understand a process of the form

Zt =
∫
R

eitsM(ds),

where M is a complex-valued random measure. Similarly, a process Z has
harmonizable increments if

Zt+h −Zh =
∫
R

[ei(t+h)s − eihs]M(ds)
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where M is a complex-valued random measure. For definition and existence
of certain subclasses of harmonizable processes we refer to Section 2.3. Recall
that a Lévy-driven harmonizable process is of the form

Xt =
∫
R

eitsg(s)dLs, (3.6)

where L is a complex-valued isotropic Lévy process and g : R→ C is a deter-
ministic function. We present our main result.

Theorem 3.2.1. Let X = (Xt)t∈R denote a Lévy-driven harmonizable process gener-
ated by a complex-valued isotropic Lévy process L = L1 + iL2. Then it holds that

1
n

n∑
t=1

|Xt |2
P→U0, (3.7)

where U0 is an infinitely divisible variable of the form

U0 =
∫
R

|g(s)|2 d
(
[L1] + [L2]

)
s
,

where [L1], and [L2], denotes the quadratic variation of the Lévy process L1, respec-
tively L2.

The proof is postponed to later in this chapter. It relies on the chosen power
p = 2 and multiple integration theory developed in [9, 10, 20]. We expect the
result holds for general harmonizable processes (Zt)t∈R as well, but additional
theory is needed to generalize it.

Note that the increments of hfsm is a harmonizable process. The kth order
increments of a stochastic process is defined as

∆t,kX B
k∑
j=0

(−1)j
(
k
j

)
Xt−j , t ≥ k,

and observe that ∆t,1 = Xt −Xt−1 and ∆t,2 = Xt − 2Xt−1 +Xt−2. Elaborating on
the above, we may observe that the kth order increments of a harmonizable
process

∆t,kX =
∫
R

eits (1− e−is)kg(s)

g̃(s)

dLs, t ≥ k.

is once again a harmonizable process and thus the result in Theorem 3.2.1 will
apply to these processes as well.

Hrmonizable fractional stable motion is not a semi-martingale (to the best
of our knowledge) nor is it mixing. In fact, Theorem 1.3.3 yields the following
corollary for hfsm on whether it is a semi-martingale. We believe this to be
well-known but we have been unable to find a reference for it.

Corollary 3.2.2. Harmonizable fractional stable motion X is not a semimartingale
for H < 1/2.
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3.3 Proofs and further results

To prove this, observe that

n∑
t=1

|Xt/n −X(t−1)/n|2
d= n−2H

n∑
t=1

|Xt −Xt−1|2
Theorem 1.3.3−−−−−−−−−−−−→

n→∞


U0, if H = 1/2.

0, if H > 1/2.

∞, if H < 1/2.

This follows along the known results for fractional Brownian motion in [16].
The cases H = 1/2 and H > 1/2 appear to be open.

The previous section gave the background and context for the main result
in the current section. Section 3.3 contains further results and the proof of the
main result. We include Section 3.4 as supplementary material on multiple
stochastic integrals.

3.3 Proofs and further results

In this section we aim to pave the way for the proof of Theorem 3.2.1. To
do this, we prove some results of separate interest and multiple integration
theory. Finally at the end of this section, we assemble our observations to prove
Theorem 3.2.1 in short order. The proof relies heavily on the following two
results.

Theorem 3.3.1. Let (Xt)t∈R denote a Lévy-driven harmonizable process as in (3.6).
Then it holds that

|Xt |2 =U0 +Vt ,

where U0 is defined in Theorem 3.2.1 and Vt is a multiple stochastic integral of the
form

Vt = 2<
(∫

R

∫ s−

−∞
eitsg(s)e−itug(u)dLu dLs

)
,

where< denotes the real part of a complex number.

In this Theorem, it is implied that both U0 and Vt exist under no further
assumptions than the existence of the process X = (Xt)t∈R. A symmetric R

2-

valued Lévy process L = (L1
t ,L

2
t )t∈R satisfies that −L d= L.

The next step is to show a connection between multiple (stochastic) integrals
and stochastic integrals, understood as in the semimartingale theory of [8].

Proposition 3.3.2. Let f : R2→R be a measurable function vanishing on the di-
agonal with f (s, t) = 0 for all s ≥ t. Let L = (L1,L2) be a symmetric two-dimensional
Lévy process and suppose the multiple integral of f wrt. L exists. Then the integrals
below exists simultaneously and are equal:∫

R

∫
R

f (s,u)1{s>u} dL
1
u dL

2
s =

∫
R

∫ s−

−∞
f (s,u)dL1

u dL
2
s , (3.8)

where the left-hand side denotes a multiple integral and the right-hand side denotes
stochastic integrals (with the existence of these also being implied).
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Proposition 3.3.2 is used to prove Theorem 3.3.1, presented at the start of
this section.

Proof of Theorem 3.3.1. We study a Lévy-driven harmonizable process (Xt)t∈R,
e.g.

Xt B

∫
R

eitsg(s)dLs.

Let ft = eitsg(s) denote the kernel function of (Xt)t∈R. We may identify the
interval [−∞,∞] with [0,1] via a suitable mapping which allows us to interpret
the integral as a semimartingale. Applying integration by parts to the complex-
valued semimartingales

|Xt |2 = XtXt

=
∫ ∞
−∞

(∫ s−

−∞
eitug(u)dLu

)
dXs +

∫ ∞
−∞

(∫ s−

−∞
e−itug(u)dLu

)
dXs + [Xt ,Xt]∞

=
∫
R

(∫ s−

−∞
eitug(u)dLu

)
dft(s)∆Ls +

∫
R

(∫ s−

−∞
e−itug(u)dLu

)
d(ft(s)∆Ls)

+[Xt ,Xt]∞,

where the multiple integrals are defined through Definition 3.4.10. Due to the
semimartingale property, it follows that

[Xt ,Xt]∞ =
∫
R

eitsg(s)e−itsg(s)d[L,L]s =
∫
R

|g(s)|2 d[L,L]s

=
∫
R

|g(s)|2 d([L1] + [L2])s

Inserting the definition of Xt and applying Proposition 3.3.2 (this gives the
existence of the terms), we may recognize the two terms∫

R

(∫ s−

−∞
eitug(u)dLu

)
dft(s)∆Ls +

∫
R

(∫ s−

−∞
e−itug(u)dLu

)
d(ft(s)∆Ls)

as multiple stochastic integrals in the sense of Definition 3.4.10. Existence of
all these integrals follows by applying linearity, then Proposition 3.3.2 and
finally Lemma 3.4.4. Thus we have identified that

|Xt |2 =U0 +Vt ,

where U0 is an infinitely divisible random variable and Vt is a multiple sto-
chastic integral of the form

Vt = 2<
(∫

R

∫ s−

−∞
eitsg(s)e−itug(u)dLu dLs

)

We finally have all the pieces needed to complete the proof of Theorem
3.2.1.
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3.3 Proofs and further results

Proof of Theorem 3.2.1. Collecting the previous observations in Theorem 3.3.1
we see that

1
n

n∑
t=1

|Xt |2 =U0 +
1
n

n∑
t=1

Vt .

Thus all that remains is to show that

1
n

n∑
t=1

Vt
P→ 0.

By linearity of the multiple integral we have

1
n

n∑
t=1

Vt = 2<
(∫

R

∫
R

1
n

n∑
t=1

f̃t(s,u)dLu dLs
)
,

where

ft(s,u)B eitsg(s)e−itug(u)1{s>u}.

Lemma 3.3.3 implies that

1
n

n∑
t=1

f̃t(s,u)→ 0, and
∣∣∣∣1n

n∑
t=1

f̃t(s,u)
∣∣∣∣ ≤ |g(s)g(u)|1{s>u}.

Due to continuity of multiple integrals, it suffices to show that the multiple
integral of |g(s)g(u)1{s>u}| exists. However this follows from Lemma 3.4.4 and
concludes the proof of Theorem 3.2.1.

The following lemma provides the remaining necessary observations for
the proof of Theorem 3.2.1.

Lemma 3.3.3 (Properties of kernel function). Our kernel function in the multiple
integral is given as

1
n

n∑
t=1

f̃t(s,u) = 1{s>u}g(s)g(u)
1
n

n∑
t=1

eitse−itu .

We observe the following properties

(i) ∣∣∣∣∣∣∣1n
n∑
t=1

eit(u−s)

∣∣∣∣∣∣∣ ≤ 2,

for all s, u, n. This implies the following inequality∣∣∣∣∣∣∣1n
n∑
t=1

f̃t(s,u)

∣∣∣∣∣∣∣ ≤ 2
∣∣∣g(s)g(u)

∣∣∣ = 2|g(u)||g(s)|.

where the right-hand side does not depend on n or t.
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(ii) We have the following pointwise convergence

1
n

n∑
t=1

f̃t(s,u) −−−−−→
n→∞

0,

except on a Lebesgue null set.

Proof of Lemma 3.3.3. The first item (i) in the lemma follows immediately from
the triangular inequality. The last statement follows the observation, that

n∑
t=0

(eix)t =
1− eix(n+1)

1− eix
, (3.9)

for x , 0 modulus 2π. We prove this by induction in n. Assume n = 0. Then
clearly the equation holds because

ei0x = 1 =
1− eix

1− eix
.

Assume equation (3.9) holds for n. Then for n+ 1 we have that

n+1∑
t=0

(eix)t =eix(n+1) +
1− eix(n+1)

1− eix
=
eix(n+1)(1− eix) + 1− eix(n+1)

1− eix

=
1− eix(n+2)

1− eix

and the proof of equation (3.9) is complete. This observation implies that∣∣∣∣∣∣∣1n
n∑
t=1

eit(s−u)

∣∣∣∣∣∣∣ ≤ 1
n

(∣∣∣∣∣∣1− ei(n+1)(s−u)

1− ei(s−u)

∣∣∣∣∣∣+ 1
)
≤ 1
n

( 2
1− ei(s−u)

+ 1
)
.

Letting n tend to infinity, we see that this converges to 0, under the condition
that (s −u) , 0 modulus 2π. The excluded set of points is given as

{(s,u) ∈R2 | (s −u) = 0 modulus 2π} =
⋃
k∈Z

(D + 2kπ),

which is a Lebesgue null-set (D denotes the diagonal in R
2). This implies that∣∣∣∣∣∣∣1n

n∑
t=1

f̃t(s,u)

∣∣∣∣∣∣∣ = |g(s)g(u)|

∣∣∣∣∣∣∣1n
n∑
t=1

eit(s−u)

∣∣∣∣∣∣∣→ 0 Leb a.s.

3.4 Multiple integration theory

In this section, we aim to define and discuss the theory of multiple stochastic
integrals. It is meant as a supplementary reading and the only original results
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3.4 Multiple integration theory

are a few straightforward connections to the stochastic integration theory for
semimartingales.

Multiple integrals wrt. α-stable and symmetric Lévy processes has been
studied extensively by many authors in the 1980’s and 1990’s. An incomplete
list includes [3, 11, 14, 17, 18] and references therein. The culmination of this
research appears to the book [12] for predictable integrands and slightly prior
to this, the papers [9, 20]. Recently, the book [10] based on [9, 20] has been
published and this will serve as the main reference in the present exposition.
Today, this theory is still relevant and exemplified in the topic Malliavian
Calculus which utilizes multiple integration, albeit with a modified approach.
Our main application of this theory will be for double stochastic integrals. The
chief goal is to properly define∫

R

∫
R

f dX1 dX2, (3.10)

where X = (Xt)t∈R is an R
d-valued symmetric Lévy process, and a suitable

measurable function f : R2→R. However, as the theory is essentially the same,
we shall instead introduce multiple stochastic integration theory of arbitrary
order d, that is ∫

R

· · ·
∫
R

f dξ1 · · · dξd

d times

, (3.11)

where ξj are point processes. We will highlight simplifications and intuition
whenever the order d = 2 allows it, as seen in Remark 3.4.3 and Lemma 3.4.4.

In subsection 3.4.1, we define multiple stochastic integrals for classical
Poisson random measures as it is the essential building block for multiple
integration theory for Lévy processes. In the next Section 3.4.2 we define
multiple integrals for symmetric Poisson random measures and Lévy processes
as a result of this.

3.4.1 Multiple integration for Poisson random measures

We may write this point process using its atomic representation (see Chapter 2
in [10]), given by

ξ =
∑
n

δτn , (3.12)

where (τn) is a sequence of distinct S-valued random variables. By aM-marked
point process ξ on S, we shall mean a simple point process on the product
space S ×M, such that ξ({s} ×M) ≤ 1 for all s ∈ S. In other words, the process
must only jump once per time point. In the setting of a R

d-valued Lévy process
L = (Lt)t∈R, S = R is the time and M = R

d \{0} is the set of possible jump values.
Furthermore, such a process is Poisson if and only if the intensity measure
of ξ, denoted ν, satisfies that ν({s} ×M) = 0 for all s ∈ S. Or in other words,
the probability that the process jumps at a given time-point s is zero for all s.
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We consider multiple integrals of the form

ξ1 · · ·ξdf =
∫
S×M
· · ·

∫
S×M

f (t1, . . . , td)ξ1(t1) · · ·ξd(td)

where ξ1, . . . ,ξd are independent copies ofM-marked point process ξ on S with
independent increments and intensity E[ξ] = ν, and f ≥ 0 is a measurable
function on S̄d = (S ×M)d which vanishes on the diagonal (henceforth referred
to as non-diagonal). The case ξk = ξ for all k is also treated and is denoted ξdf
instead of ξ1 · · ·ξdf . The integral should be understood as the multiple sums
(possibly infinite) wrt. ξ ∑

j1

· · ·
∑
jd

f (τj1 , . . . , τjd ),

where τji ∈ (S×M) are the atoms of the measure ξj from equation (3.12) for all i.
Heuristically, the reader should understand these two cases as the minimal and
maximal dependency scenarios. Furthermore, as described in the introduction
of [9], most results can be extended by simple projection to general Poisson
point process (with dependency). Interestingly, it turns out that existence of
the integral in (3.24) for the two cases is simultaneous due to the following
theorem.

Theorem 3.4.1 (Kallenberg, [10]). For any non-diagonal, measurable function
f ≥ 0 on S̄d , we have

(i) ξ1 · · ·ξdf <∞ a.s. ⇐⇒ ξdf <∞ a.s.

(ii) ξ1 · · ·ξdfn
P→ 0 ⇐⇒ ξdfn

P→ 0.

(iii) ξ1 · · ·ξdfn
P→ ξ1 · · ·ξdf <∞ =⇒ ξdfn

P→ ξdf .

This does not give explicit criteria for the existence. To formulate explicit
criteria for existence we will define the following notation. These technicalities
may be simplified way for the double stochastic integral, d = 2, in Remark 3.4.3.

Given a measurable function f ≥ 0 on S̄J , where m = |J | <∞, we recursively
define functions f1, . . . fm ≥ 0 on S̄J by

f1 = f ∧ 1, fk+1 B fk
∏
|I |=k

1{νI fk≤1}

where the product extends over all sets I ⊂ J with |I | = k, and νI denotes
integration in the arguments indexed by I , so that νI fk becomes a measurable
function of the remaining arguments indexed by J \I . The notation νI f denotes
the integral of j in the coordinates corresponding to I . The next step is to
recursively define classes Cd of measurable functions f ≥ 0 on S̄d . First set
C0 = {0,1} (the constant functions), and assume Ck to be known for all k < d.
We define the classes Cd recursively by the functions satisfying that

1. vd−k1{vJ fk=∞} = 0
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3.4 Multiple integration theory

2. 1{vJ fk>1} ∈ Cd−k

for all index subsets J of {0,1}d with k = |J | > 0.

Theorem 3.4.2 (Kallenberg, [10]). For any measurable function f ≥ 0 on S̄d , we
have

P (ξ1 · · ·ξdf <∞) = 1{f ∈Cd }

and similarly for ξdf , when f is non-diagonal.

Remark 3.4.3 (Double stochastic integral). Through this example let ξ denote
a simple point process on R

2 with intensity λ (not necessarily the Lebesgue
measure in this example) and let f ≥ 0 denote a measurable function on R

2.
Define the functions

f ′(x)B λ(f (x, ·)∧ 1), f ′′(y)B λ(f (·, y)∧ 1),

e.g. νJf using the above notation. Corollary 6.5 in [9] shows that the double sto-
chastic integral of a deterministic function f exists if and only if the following
criterions hold true

(i) λ({f ′ ∨ f ′′ =∞}) = 0,

(ii) λ({f ′ ∨ f ′′ > 1}) <∞,

(iii) ∫
R

∫
R

[f (x,y)∧ 1]1{f ′(x)≤1}1{f ′′(y)≤1}λ(dx)λ(dy) <∞.

The double integral is simply defined as a double (stochastic) sum, i.e.∑
n

∑
m

f (T 1
n ,T

2
n ).

Item (i) is easily interpreted as the inner sum being finite (regardless of the
order of integration). Next, consider the integrals∫

f ′ dξ and
∫
f ′′ dξ.

These integrals are finite if and only if λ(f ′ ∧ 1) <∞ and λ(f ′′ ∧ 1) <∞.
This allows us to split this criterion into two sets for both f ′ and f ′′ , i.e.∫

f ′ ∧ 1dλ =
∫
f ′1{f ′≤1} dλ+

∫
1{f ′>1} dλ.

The existence of the second integral for f ′ and f ′′ follows by item (ii). The final
criterion deals appears odd, but actually treats the existence of

∫
f ′1{f ′≤1} dξ.

Indeed, observe that∫
R

∫
R

[f (x,y)∧ 1]1{f ′(x)≤1}1{f ′′(y)≤1}λ(dx)λ(dy)

=
∫
R

[∫
R

[f (x,y)∧ 1]1{f ′(x)≤1}λ(dx)
]
1{f ′′(y)≤1}λ(dy)
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If the inner bracket did not contain the restriction to {f ′ ≤ 1}, it would be
exactly the integrability criterion for

∫
f ′′1{f ′′≤1} dλ. Thus we observe that the

following implication holds true∫
f ′ dξ <∞ a.s. =⇒

∫ ∫
f dξ dξ <∞ a.s.

Although the converse statement would be a beautiful result, namely that the
double integral exists if and only

∫
f ′ ∧ 1λ is finite, we have been unable to

prove it so far. The only observation needed for equivalence is whether∫
R

[∫
R

[f (x,y)∧ 1]1{f ′(x)>1}λ(dx)
]
1{f ′′(y)≤1}λ(dy) <∞,

given items (i)-(iii). If it holds, the double stochastic integrals exists if and only
if “double” integrating deterministically is finite – a very beautiful criterion.

A natural attribute of a multiple integral is that the existence of the single
stochastic integral

∫
g(s)dLs implies the existence of

∫ ∫
g̃(s,u)dLu dLs in the

special case g̃(s,u) = g(s)g(u)1{s,u}.

Lemma 3.4.4. Let f : R → R be a measurable function such that the (single)
stochastic integral

∫
f dLs exists. Set f̃ (s,u) = f (s)f (u)1{s,u}. Then it holds that∫

R

∫
R

f̃ (s,u)dLu dLs

exists.

Proof. Existence criteria for the double stochastic integral of a function f :
R

2 → R are given in Remark 3.4.3. The criteria depend on the function ob-
tained by integrating out one of the pairs (s,x) or (u,y) while the other pair
remains fixed, i.e.

f ′(s,x)B
∫
R

∫
R

(f̃ (s,u)xy)2 ∧ 1ν(dy)λ(du),

f ′′(u,y)B
∫
R

∫
R

(f̃ (s,u)xy)2 ∧ 1ν(dx)λ(ds).

The definition of f̃ implies f ′ = f ′′. Writing f ′ with the notation of z = f (s)x,
we see that

g(z)B
∫
R

∫
R

(zf (u)y)2 ∧ 1ν(dy)λ(du). (3.13)

Observe that g(z) = f ′(s,x), and is only a function of z through |z| = |f (s)x|.
Monotone Convergence implies

g(z) −−−−−→
z→∞

∫
R

∫
R

1{f ,0}(u)ν(dy)λ(du) = ν(R)λ({f , 0}). (3.14)

The inequality |a ∧ 1 − b ∧ 1| ≤ |(a − b) ∧ 1| for a,b ≥ 0 implies that g(z) is a
continuous function of z, since

|g(z1)− g(z2)| ≤
∫ ∫

|(z1 − z2)f (u)y|2 ∧ 1ν(dy)λ(du) −−−−−−−−−→
|z1−z2 |→0

0,
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3.4 Multiple integration theory

where the right-hand-side is finite due to the existence of
∫
f dL. It is useful to

divide into two cases now, namely

(I) ν(R) =∞ or λ({f , 0}) =∞.

(II) ν(R) <∞ and λ({f , 0}) <∞.

We assume ν(R) > 0 and λ({f , 0}) > 0, as the contrary cases are trivial. First
we consider case (I). In this case g(z) will converge to infinity. Due to this and
continuity of g, there exists K > 0, such that

|f (s)x| = |z| ∈ [0,K] ⇐⇒ f ′(s,x) = g(z) ≤ 1. (3.15)

Thus, we see that{
(s,x) ∈R2

∣∣∣ f ′(s,x) > 1
}

=
{
(s,x) ∈R2

∣∣∣ |f (s)x| > K
}
. (3.16)

From the existence of the stochastic integral
∫
f dLs, we know that

[λ⊗ ν]
(
{(s,x) ∈R2 | |f (s)x| > 1}

)
<∞,

where λ⊗ ν denotes the product measure between λ and ν. Observe that if
K ≥ 1, then

[λ⊗ ν]
(
{(s,x) ∈R2 | |f (s)x| > K}

)
≤ [λ⊗ ν]

(
{(s,x) ∈R2 | |f (s)x| > 1}

)
<∞.

If contrarily K < 1, it suffices to show

[λ⊗ ν]({(s,x) ∈R2 |K < |f (s)x| < 1}) <∞.

Once again due to the existence of
∫
f dL, we know that

∞ >

∫
R

∫
R

(f (s)x)21{|xf (s)|<1}ν(dx)λ(ds)

≥
∫
R

∫
R

K21{K<|xf (s)|<1} ν(dx)λ(ds)

=K2[λ⊗ ν]({(s,x) ∈R2 |K < |f (s)x| < 1}).

In both cases, we have verified that the set in equation (3.16) is of finite
λ⊗ ν-measure, which show that item (i) from Remark 3.4.3 holds. The second
existence criterion is item (iii) from Remark 3.4.3, i.e.∫

R
2

∫
R

2

[
[f (s)f (u)xy]2 ∧ 1

]
1{f ′(s,x)≤1}1{f ′(u,y)≤1}ν(dx)λ(ds)ν(dy)λ(ds) <∞.

(3.17)
By (3.15) we may rewrite this as∫

R
2

∫
R

2

[
[f (s)f (u)xy]2 ∧ 1

]
1{|f (s)x|≤K}1{|f (u)y|≤K} ν(dx)λ(ds)ν(dy)λ(ds),

45



Chapter 3 • Limit theory for quadratic variation of harmonizable Lévy-driven
processes

for some K > 0. Divide this integral into the following two subsets A1 and A2
of R4,

A1 B {|f (s)f (u)xy| ≤ 1} ∩
(
{|f (s)x| ≤ K} × {|f (u)y| ≤ K}

)
,

A2 B {|f (s)f (u)xy| > 1} ∩
(
{|f (s)x| ≤ K} × {|f (u)y| ≤ K}

)
,

where × denotes the Cartesian product of the sets. On the set A2, the integrand
[f (s)f (u)xy]2 ∧ 1 ≡ 1. Moreover, A2 is empty for K < 1. Observe that

A2 ⊆ {K−1 ≤ |f (s)x| ≤ K} × {K−1 ≤ |f (u)y| ≤ K}
⊆ {K−1 ≤ |f (s)x|} × {K−1 ≤ |f (u)y|},

which we saw was a set of finite λ⊗ν-measure in the proof for the first criterion.
This completes the finiteness of the integral on the set A2. For the set A1 ⊆R

4,
we observe

A1 ⊆ {|f (s)x| ≤ K} × {|f (u)y| ≤ K}

Hence we obtain∫
R

2

∫
R

2
[f (s)f (u)xy]21A1

ν(dx)λ(ds)ν(dy)λ(ds)

≤
∫
R

2
(f (s)x)21{|f (s)x|≤K} ν(dx)λ(ds) ·

∫
R

2
(f (u)y)21{|f (u)y|≤K}ν(dy)λ(du).

Now assume that K ≤ 1. Then the finiteness of the above follows immediately
from the existence of the single stochastic integral. If instead K ≥ 1 we only
need to study the part∫

R
2
(f (s)x)21{1≤|f (s)x|≤K}ν(dx)λ(ds) ≤ K2

∫
R

2
1{|f (s)x|≥1}ν(dx)λ(ds),

and finiteness once again immediately follows from the existence of the single
stochastic integral. This complete the proof in the case (I). The proof in the
case (II) is much simpler and therefore omitted.

Proof of Proposition 3.3.2. We assume the multiple integral of f wrt. L exists.
By definition of the domain, this implies∑

t∈R

∑
s≤t

f 2(s, t)(∆L1
s )2(∆L2

t )2 <∞, a.s. (3.18)

The multiple integral of f is understood as the multiple integral of the function

(s, t,x,y) 7→ f (s, t)xy wrt. µL,

where µL denotes the (symmetric) P RM on R×R2 induced by L with known
intensity measure λ⊗ ν. Let µ1, respectively µ2, denote the jump measure of
L1, respectively L2. Write f (s, t)xy = g(s, t,x,y) + h(s, t,x,y) where

g(s, t,x,y)B (f (s, t)xy)1[−1,1](f (s, t)xy), (L2-case)

h(s, t,x,y)B (f (s, t)xy)1[−1,1]c (f (s, t)xy), (Finite-variation case)
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In general, we could choose any cut-off ε for the jumps and show that it is a
finite variation (i.e. stochastic) integral. Equation (3.18) entails that

∞ > (µ1µ2)(h2) =
∑
t∈R

∑
s≤t

f 2(s, t)(∆L1
s )2(∆L2

s )21[−1,1]c (f (s, t)(∆L1
s )(∆L2

t ))

Being a countable sum (due to càdlàg sample paths) of numbers greater than 1
or 0’s, the sum must have finitely terms. We shall call this the finite variation
case. This implies that both sums are finite almost surely. Thus the integral
equals ∑

t∈R

∑
s≤t

f (s, t)(∆L1
s )(∆L2

t )1[−1,1]c (f (s, t)(∆L1
s )(∆L2

t ))

=
∑
t∈R

(∑
s≤t

f (s, t)∆L1
s1[−1,1]c (f (s, t)(∆L1

s )(∆L2
t ))

)
∆L2

t .

which is a finite variation integral, i.e. stochastic integral. To complete the proof
in the finite variation case, we need to show the process inside the parenthesis
is predictable. First of all, we may recognize it as a process of the form

Ht =
∫
R

f (s, t)dLs =
∫ t

−∞
f (s, t)dLs,

where f (s, t) = 0 for s ≥ t. Such a process is clearly adapted. We wish to show
that this process is predictable. In Theorem 3 (iii)− (iv) of [6] we may replace
adapted and progressively measurable with adapted and predictable, since
the approximating sequence in the paper is in fact predictable. Due to this, it
suffices to show that

R 3 t 7→ f (·, t) ∈M,

is a measurable mapping, where M denotes the Musielak-Orlicz space defined
in [15]. The proof of this is technical and we omit it. Next, we turn our attention
to the function g defined by

g(s, t,x,y)B (f (s, t)xy)1[−1,1](f (s, t)xy).

We will refer to this as the L2-case. By assumption, we know that

∞ >
∑
t∈R

∑
s≤t

f (s, t)2(∆L1
s )2(∆L2

t )21[−1,1](f (s, t)(∆L1
s )(∆L2

t )).

Define the localization (Tn)n≥1 by

Tn = inf

T ∈R
∣∣∣∣∣∣∣∑t≤T

∑
s≤t

g2(s, t,∆L1
s ,∆L

2
t ) > n

.
This localization is well-defined due to equation (3.18) and continuity of the
multiple integral. The localized process will only make jumps of size less than
1 due to the definition of g. To prove existence of the stochastic integral, we
need to show

E

[∫ Tn

t=−∞

∫
R

(g(·, t, ·, y) ∗µ1
t− )

2ν2(dy)dt
]
<∞,
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where ν2 denotes the Lévy measure of L2. The existence criterion is taken from
[8]. Observe that

E[
∫ Tn

t=−∞

∫
R

(g(·, t, ·, y) ∗µ1
t− )

2ν2(dy)dt]

=
∫
R

∫
R

E

[
(g(·, t, ·, y) ∗µ1

(t∧Tn)−
)2
]
ν2(dy)dt

=E

∫ Tn

−∞

∫
R

∑
s≤t

g2(s, t,∆L1
s , y)ν2(dy)dt


=E

∑
t≤Tn

∑
s≤t

g2(s, t,∆L1
s ,∆L

2
t )

 ≤ n+ 1 <∞,

where the first equality uses Tonelli, the second equality uses the compensator
of the integral (g(·, t, ·, y) ∗µ1

t−
) and the last equality uses the definition of the

predictable compensator. This implies that the process g(·, t, ·, y) ∗µ1
t ∈ Gloc(µ2)

in the notation of [8] and thus the stochastic integral of it can be defined.
Define the function

gm(s, t,x,y)B g(s, t,x,y)1{|f (s,t)xy|≥ 1
m }

and observe that gm→ g pointwise and |gm| ≤ |g |. The pointwise convergence
and domination for multiple integrals implies that∫

R

∫
R

gm dL
1 dL2 P→

∫
R

∫
R

g dL1 dL2.

For gm the finite-variation part of our argument implies that∫
R

∫
R

gm dL
1 dL2 =

∫
R

[∫
R

gm dL
1
]
dL2

where the left-hand side is a multiple integral and the right-hand side is a
stochastic integral. All that remains is to show that∫

R

[∫
R

gm dL
1
]
dL2 P→

∫
R

[∫
R

g dL1
]
dL2, (3.19)

which by uniqueness of limits in probability will imply∫
R

∫
R

g dL1 dL2 =
∫
R

[∫
R

g dL1
]
dL2.

Observe first that above we saw that both g and hence gm are locally integrable.
Thus g − gm is locally integrable and dominated by g, e.g.∫

R

∫
R

E

[
({g − gm}(·, t, ·, y) ∗µ1

(t∧Tn)−
)2
]
ν2(dy)dt→ 0.

This implies equation (3.19) and the proof is complete.
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The development of the multiple integration theory relies heavily on the
ability to reduce a PRM on a complete separable metric space to the unit-rate
Poisson process on R. A generalization to the theory was also mentioned in the
introduction of this section, where it is said that, we may generalize to general
Poisson processes using simple projections. These two observations allow the
authors of [9, 10] to prove their results in a simplistic manner and still create
general multiple integration theory. The remainder of this section will explain
the first observation. Kallenberg & Szulga [9] states (without proof) that

“... it will be seen how any multiple integral X1 . . .Xdf with respect to a positive or
symmetric Lévy process X = (X1, . . . ,Xd ) in R

d may be written in the form ηdg or
ξ̃dh, respectively, where η is a Poisson process on S = R+ × (Rd \ {0}), while ξ̃ is a
suitably defined symmetric version of η, and where g and h are suitable functions
on Sd associated with f . By a Borel isomorphism, we may then reduce the
discussion to the case of unit rate Poisson processes on R+. More generally, any
result in the latter context which involves only Poisson and Lebesgue integrals can
be easily extended, via a measure isomorphism (cf. Halmos (1950), p. 173), to the
case of Poisson processes ξ on an arbitrary measurable space S, such that (S,E[ξ])
is separable. ”

— [9] on page 102

In order to perform this reduction, let us recall what defines a PRM with
intensity µ.

Definition 3.4.5. Let (X,E ,µ) denote a σ -finite measure space. A Poisson random
measure Π with control measure µ is a family of random variables {Π(A)}A∈E
defined on a probability space (Ω,F , P ), such that

(i) Π(A) is a Poisson random variable with rate µ(A) for all A ∈ E.

(ii) For disjoint sets A1,A2, . . . ,An ∈ E, the random variables Π(A1),Π(A2),
. . . ,Π(An) are independent.

(iii) The mapping A 7→Π(ω)(A) is a measure on (S,E) for all ω ∈Ω.

In the following, λ will denote the Lebesgue measure on R. The following
theorem is central to this simplification.

Theorem 3.4.6 (Ito (1984), [7]). Let S be a complete separable metric space. Then
every regular probability measure P on S is standard.

We shall omit the exact definition of “standard” but mention the parts
we utilize and avoid some technicalities. Theorem 3.4.6 implies there exists a
bijective map T : S→R such that

P (A) = λ(T (A)), A ∈ B(S). (3.20)

This theorem allows us to reduce several questions regarding measure spaces
to the unit interval.
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Remark 3.4.7 (Reduction to unit-rate Poisson process). Given a σ -finite mea-
sure µ on (S,B(S)) and using Theorem 3.4.6, we may always find probability
measure P and a Radon-Nikodym derivative h on the same space , such that

µ = hdP = hd(λ ◦ T ),

where the last equality is due to (3.20). Thus we may and do define an integral
of f with respect to µ through∫

S
f dµB

∫
S
f d(λ ◦ T ) =

∫
R

f (T −1(x))h(T −1(x))λ(dx). (3.21)

Thus we may reduce the question of integration f wrt. µ to an associated
function f̃ B f (T −1)h(T −1) with respect to the Lebesgue measure λ. In other
words, once we know how to integrate functions with respect to Lebesgue
measure, we can generalize this to a large class of spaces. Indeed, in this case
we may define the stochastic integral of f : S→R+ wrt. ΠS as∫

S
f dΠS B

∫
R

f (T −1(x))h(T −1(x))Π(dx). (3.22)

The control measure is easily checked to be

E

[∫
S
f dΠS

]
= E

[∫
R

f (T −1(x))h(T −1(x))dΠ
]

=
∫
R

f (T −1(x))h(T −1(x))dλ =
∫
S
f hd(λ ◦ T ) =

∫
f dµ.

3.4.2 Multiple integration for symmetric PRM and Lévy processes

In this section we aim define multiple integrals for symmetric Poisson random
measures, e.g. a “symmetrized” Poisson process with values ±1 instead of just
one. This allows us to extend multiple integrals to R

d-valued Lévy processes
which induces a PRM on R ×Rd . Let η denote a PRM with intensity ν with
atomic representation ξ =

∑
n δτn , see Chapter 2 in [10]. The symmetrization η̃

of η is defined as

η̃(A) =
∑
n

σnδτn(A), A ∈ Bb(R+ ×Rd) (3.23)

where (σn)n∈N is a sequence of independent random signs, independent of
the original PRM η. In the case of a symmetric real-valued Lévy process as
integrand, we may also use the original signs of X to create η̃. The main
existence criteria for defining multiple integrals for symmetric PRMs is given
in the following theorem.

Theorem 3.4.8 (Kallenberg, [10]). Let ξ and ξ1, . . . ,ξd be simple point processes
on S with symmetrizations ξ̃ and ξ̃1, . . . , ξ̃d generated by independent sign sequences
σ and σ1, . . . ,σd and fix a measurable function f : Sd →R. Then
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(i) the integral ξ̃1 · · · ξ̃df exists if and only if ξ1 · · ·ξdf 2 <∞ a.s., and similarly
ξ̃df and ξdf 2, when f is symmetric and non-diagonal.

(ii) the following representations hold a.s., whenever either side exists:

ξ̃1 · · · ξ̃df = (σ1 . . .σd)f (ξ1 · · ·ξd), ξ̃df = σdf (ξd).

However, we are mainly interested in multiple integrals for symmetric Lévy
process, e.g.

X1 · · ·Xdf =
∫
· · ·

∫
f (t1, . . . , td)X(dt1) · · ·X(dtd). (3.24)

where X = (X1, . . . ,Xd) denote an R
d-valued symmetric Lévy process of pure-

jump type. Any pure-jump Lévy process X induces a PRM η through ∆Xt =
Xt −Xt− by

η =
∑
t

δ(t,∆Xt) =
∑
n

δ(Tn,∆XTn )

on R×Rd \ {0}, where (Tn)n∈N denotes the jump times of X. It can be seen that
η has intensity measure λ⊗ν, where ν denotes the Lévy measure of X, λ is the
Lebesgue measure on R and ⊗ denotes the product measure. Let f denote a
measurable function on R

d vanishing on the diagonal (two or more coordinates
agree), and define the operators L and L′ on such a function by

Lf (t1, . . . , td ;x1, . . . ,xd)B x1 . . . , f (t1, . . . , td)

L′f (t1, . . . , td ;xij , i, j ≤ d)B x11 . . .xddf (t1, . . . , td)

We define the multiple integral of X as

X1 · · ·Xdf B η̃d(L′f ) = η̃1 · · · η̃d(Lf ), (3.25)

where η̃ denotes the symmetrized version of η and ηj denotes the PRM gen-
erated by Xj . In other words, by defining integrals for symmetric Poisson
random measures and subsequently defining using η. In this case, we have the
following special case of Theorem 3.4.8, which is the main tool in the proof of
Theorem 3.2.1.

Corollary 3.4.9 (Kallenberg, [10]). Let X = (X1, . . . ,Xd) be a symmetric, purely
discontinuous Lévy process in R

d and let η denote its induced PRM. The set function
in (3.27) extends a.s. uniquely to a linear operator X1 · · ·Xdf , on the domain DX of
measurable non-diagonal functions f on R

d with η(Lf )2 <∞ a.s.. In the affirmative
case, we have that

X1 · · ·Xdf B η̃d(Lf ) = η̃1 · · · η̃d(Lf ) a.s. (3.26)

The class DX has the following properties

1. linearity, i.e. if f ,g ∈ DX and α,β ∈R =⇒ αf + βg ∈ DX

2. solid, i.e. if |f | ≤ |g |, g ∈ DX =⇒ f ∈ DX
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3. DX is continuous, i.e.

fn −→ f , |fn| ≤ g ∈ DX =⇒ X1 · · ·Xdfn
P→ X1 · · ·Xdf .

Let Γ be another operator satisfying the above properties and

Γ (I1 × · · · Id)B
∏
i≤d

(
Xi(ti)−Xi(si)

)
, (3.27)

where Ij = (sj , tj ] are disjoint intervals for all j. Then the domain of Γ , satisfies that
DΓ ⊆ DX . In other words, DX is the largest domain for which a multiple stochastic
integral may be defined.

As we will be working with C-valued (or R2-valued) Lévy processes, we will
need to define the multiple integral for it. It is straightforwardly defined by
linearity and existence of all integrals as seen in the following definition. Note
that for isotropic Lévy processes many of the existence criterion are simplified
due to Theorem 2.3.3.

Definition 3.4.10 (Complex multiple integral). Let f = f1 + if2 : R2→ C be a
complex-valued function and let L = L1 + iL2 be an isotropic complex-valued Lévy
process. Let L denote the complex conjugate of L. We define the double stochastic
integal of a complex-valued function f wrt. (L,L) whenever all the integrals in
equation 3.28 exists. In the affirmative case, we define the multiple stochastic
integral of f wrt. (L,L) by∫

R

∫
R

f (s,u)dLu dLs

=
∫
R

f1(s,u) + if2(s,u)d(L1 + iL2)u d(L1 − iL2)s

B
2∑

j,k,m=1

p(j,k,m)
∫
R

∫
R

fm(s,u)dLju dLks , (3.28)

where the function p is defined by

p(j,k,m) = ij−1+m−1+3(k−1).
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4
Introduction to sequential medical data

In this part of the thesis, study sequential medical data through two applica-
tions. The first concerns electronic health records for patients under suspicion
of a serious illness, who have been referred to Diagnostisk Center (diagnostic
unit), Silkeborg Regionshospital. The second dataset originates from Stanford
Health Care and includes data recorded by a newly implemented sepsis alert
system. Common to both applications is the study of how a conceptual under-
lying graph affects sequentially ordered categorical data and how inference
on this graph can be used clinical decision support (automated recommenda-
tions, predictions). The general purpose of both application is to do statistical
inference on this underlying graph.

In the current chapter, we introduce the thematics topics for the Chapters
5-7. Chapter 5 explains many topics used throughout Chapters 6 and 7 and
serves as a technical supplement. In Chapter 6, we study the use of embeddings
to introduce (sequential) semantic meaning into vectors representation of
events from an electronic health record. The resulting vectors are visualized
using t-distributed Stochastic Neighborhood Embedding (see [1]) and show the
ability to associate events from the same treatment package with each other.
In Chapter 7, we analyze the medication logs following a triggered alert from
an automatic sepsis alert system. The aim is to provide a prioritized list of
recommended antibiotics and study whether automated alert systems change
clinical decisions.

4.1 Sequential medical data

The central object for both datasets is sequential categorical data, i.e. an elec-
tronic health record or a medication log. Mathematically, we write this as
observing a sequence s, consisting of items, which belong to a finite space of
possible items I , and write the sequence as

s = (i1, i2, . . . , in), (4.1)

for some n ∈N, denoting the length of the sequence s. In the present chapter
and Chapter 5, the term item refers to the value of an entry in a sequence (or
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log/electronic health record). In Chapter 6, item denotes an event/encounter
from an electronic health record. In Chapter 7, item refers to a treatment
package from a 24 hour medication log.

The observed sequences consists of items, e.g. categorical data, which by
nature poses a few structural challenges. As described in Section 5.2, we
encode categorical data using the so-called one-hot encoding which results
in very high-dimensional unit vectors. In linear models (and indeed in many
other models) each dimension is given its own parameter. The problem is
that we observe many explanatory categorical variables but comparatively few
response variables – and this may lead to over-fitting. In our application in
Chapter 6, we focus on incorporating and analyzing semantic meaning, and
thus overfitting will not be our primary concern. However, we do obtain a lower-
dimensional representation of the categorical variables, but only by utilizing
the high-dimensional encoding – thus it is unclear whether this improves the
over-fitting problem.

4.1.1 Sequential semantic meaning

Semantic meaning refers to the inherent concept or information a word intends
to convey. The word “door” conveys the concept of a door, and humans are
generally very adept at understanding the semantic concept of a door – we
may recognize many different objects as doors through our conceptual under-
standing of a door. We also know that doors are positioned in walls and give or
deny access to rooms. This conceptual understanding and all its implications
illustrates the semantic meaning of a concept. Similarly, the position of an item
in a sequence (e.g. an event in an electronic health record) conveys sequen-
tial semantic meaning to the reader, portraying information from previous
entries and inducing information on future entries. This defines the sequential
semantic meaning of an item.

However, semantic meaning is not conveyed by naively representing items
as levels of a categorical variable. An example of this is Pamol and Panodil,
two light sedatives, that may have each their level of a categorical variable,
but have common usage patterns (e.g. occurs frequently in the same concepts
interchangeably). Without any additional information, these will be entered
as separate variables in the sequence. The two events, Pamol and Panodil,
are semantically interchangeable, and hence we would prefer a model which
constructs semantic meaning to identify this. A different example of semantic
meaning is a specific medication for arthritis may often be given with another
supplementary medication – a semantic fact that we would like to identify and
incorporate in the statistical analysis.

A formalized example of semantic meaning

Suppose that i500 in sequence A and i3500 in sequence B are interchangeable –
but we do not know this. We assign no information to the actual index numbers
500 and 3500. However, if i497, i498, i499 and i3497, i3498, i3499 are the same (or
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nearly the same), we want to infer that i500 and i3500 are interchangeable
(provided that we observe such an occurrence several times throughout the
sequences). Similarly, item i300 may induce that (it)303≤t≤305 takes a certain
value (or heighten the probability). In this case, we want to infer the semantic
relation portrayed by these relations.

4.1.2 Mathematical framework for sequential semantic meaning

The above example of semantic meaning leads to the context of an item it
in a sequence of item s = (i1, i2, . . . , iN ). The context of an entry t is an index
subset I with values near t and defines the set of indexes which affect t. One
may choose a context definition freely based on the application and we present
a few typical choices in Section 5.2.

4.2 Our contributions: Two sequential medical datasets

Common to the two projects with sequential medical data is the study of
an underlying graph which connects the items with each other in a manner
unknown to us. In Chapter 6, we seek to incorporate these graph relations into
a vector representation of each item to obtain a “dense” vector representation
with the graph relation embedded in it. Similarly, in Chapter 7, we study
whether the graph for two groups are the same by comparing edges, vertices
and frequencies. Finally, by weighting the graph edges with their frequency
(e.g. probability), we predict the next item based the maximal frequency.

4.2.1 Embedding of sequential semantic meaning

The embedding of items into vector representations is studied in [2, 3] which
introduce the neural network called Skip-Gram. Their application is specific for
embedding words into vectors with semantic meaning, but their methodology
may be applied to the general concept of ordered sequences as in Section 5.1.

In Chapter 6, we apply the algorithm Skip-Gram to items in an electronic
health record. Our dataset originates from Silkeborg Regionshospital, Den-
mark, and consist of 169 electronic health records for 169 patients. The patient
cohort was chosen from a pool of patients labeled “Suspicion of Serious Ilness”
(SSI) (Danish: Mistanke om Alvorlig Sygdom), which are known to be difficult
to diagnose. The label SSI is given by the patients’ general practitioner who
provides a referral to the diagnostic unit (Danish: Diagnostisk Center) at Silke-
borg Regionshospital. Overall, the patients represent a complex diagnostic
problem, as they are often multi-sick, i.e. suffering from several concurrent
ailments and have specifically been referred by the general practitioner for
a more precise diagnostic elucidation. The dataset consists of 178 thousand
electronic health records entries which is much less than related studies but
what was available in a Danish setting and may be used as a proof of concept.

The underlying hypothesis is that items affect the occurrence of other items
and thus carry a semantic meaning in the context of other items. The Skip-
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Gram algorithm aims to induce sequential semantic meaning of electronic
health records into embeddings of events/treatments based on their sequential
order. The t-SNE visualization of the embeddings in Figure 6.4 reveal intriguing
relations between events and successfully show that the embedding holds some
semantic meaning which is directly interpretable. It is possible to identify
groups of related events and by consultation with a medical doctor, these
groups represent standard treatment packages ordered in the clinical workflow
– the algorithm discovers these relations without prior knowledge of them. This
is a promising result for automatic detection and incorporation of sequential
semantic meaning.

To quantify the quality of the Skip-Gram vector representations, we eval-
uate the clustering algorithm k-means’ ability to rediscover select annotated
groups from Figure 6.4, using the vectors representations as inputs. We com-
pare the performance Skip-Gram representation to a benchmark of a Markov
Chain on three different classification tasks. The Markov Chain slightly outper-
forms the Skip-Gram vector representation on two of the tasks, which may be
explained by its more local behavior and the dataset characteristics. However
as input in a more complex model (Recurrent Neural Network; RNN) we show
that the Skip-Gram representations outperforms the Markov Chain in next-
event prediction. To which extent this is due to the Skip-Gram representations
or the RNN is difficult to determine, but it does show promising results for
the use of vector representations from Skip-Gram as inputs in other statistical
models.

4.2.2 Analyzing medication logs for sepsis patients

Sepsis is a life-threatening condition which occurs primarily in the hospital
settings and has a high mortality rate. Although not completely understood, it
has been closely associated bad hygiene standards, weak immune systems and
implanted foreign bodies (e.g. for fixation of broken bones).

In Chapter 7, we analyze the 24 hour time window following an alert (or
registration) of potential sepsis. We have two datasets on sepsis which both
originate from Stanford Health Care. The first dataset concerns testing a new
automatic rule-based sepsis alert system, which during a trial period would
registers alerts and for half of the registered alerts, an alert was forwarded to a
doctors pager. For the second dataset, we have general sepsis alert registrations,
but no group variable, and we study the 24 hour time window following the
registration.

The initial goal of the project was search for differences in the medications
given to each group in the first dataset – however the analysis showed no
major differences in the frequency of common states, the possible order of
the medications (through the transitions in a Markov Chain), and visualizing
both graphs revealed no major differences. Hence, we concluded that the alert
system did not appear to result in a treatment-altering behavior. Following this
conclusion, we merged the first dataset with a second, much larger, dataset.
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Our main objective for the merged dataset is to predict the next medication
using a Markov Chain. A Markov Chain may appear as a simple tool to model
a complex decision process, but the sequences are on average 3 entries long
and hence more advanced methods were not considered suitable. We report
our prediction accuracy on a test set and the result appears reasonable, given
the semi-large set of medications and the simple estimation procedure of a
Markov Chain.

4.2.3 Conclusion, experiences and thoughts

In the future, we believe that studies of sequential medical data need to in-
corporate both categorical variables and quantitative measurements to obtain
enough signal that a proper, reliable and precise prediction can be made. This
could for example suggest a prioritized list of recommended medications. It
would require integration of many categorical variables with quantitative mea-
surements, but this appears necessary to move beyond idea and the proof
of concept stage to an actual clinical decision support system. Alternatively,
much larger datasets (think all national registrations of sepsis) would be an-
other avenue of obtaining more signal. Most probably, this approach would
not change the fact that sepsis medication sequences typically consist of 2-7
entries. Hence, this does not appear to be the way forwards. A deeper and
more comprehensive analysis of the graph generated by the medications is
another avenue which would benefit significantly from more data – the idea
of studying sub-graphs for patient sub-groups in collaboration with medical
doctors may be fruitful for further hypothesis generation on the causes and
factors of sepsis.
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5
Technical introduction to embeddings

This chapter contains supplementary technical material to the chapters 4, 6,
and 7. Apart from the first two sections which are interconnected, any section
in this chapter can be read almost independently and serves as a quick lookup
for the reader. The aim is to make the thesis as self-contained as possible.

In Section 5.1 we formally define the data structures that we study and in
Section 5.2 we explain how the data structures is encoded as mathematical
vector representation and how we define the context of an event.

5.1 Preliminaries

In this section, embeddings are introduced, both in terms of the presumptions
we make on observed data and the corresponding mathematical details, in-
spired by [5]. We use this general setup in both Chapter 6 and 7. We observe
an unordered collection of sequences, S , e.g.

S = [s1, s2, . . . , sp],

for some p ∈N. Each sequence sj is an ordered set of itemsets (typically ordered
by time or sequential order) and is denoted by

sj = (Xj1,X
j
2, . . . ,X

j
nj ),

for some nj ∈ N which denotes the number of entries in the sequence. The
length of a sequence s = (X1, . . . ,Xns ) is defined by l(s) = |X1|+ . . .+ |Xns |, where
| · | denotes the number of elements. An itemset Xjk is an ordered set of items,
e.g.

X
j
k = {i1, i2, . . . , imj,k }

for some mj,k ∈N which denotes the number of items in the set. The ordering
of the items is fixed prior to analysis and not relevant to us. An item i belongs
to a sequence s = (X1,X2, . . . ,Xn) if

i ∈ s ⇐⇒ ∃ k ∈ {1,2, . . . ,ns} : {i} ⊆ Xk .
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A sequence sa = (Y1,Y2, . . . ,Yna ) is contained in another sequence sb = (X1,X2,
. . . ,Xnb ) if there is a strictly increasing sequence of integers (mj )1≤j≤na such that

Y1 ⊆ Xm1
,Y2 ⊆ Xm2

, . . . ,Yna ⊆ Bmna . (5.1)

In the affirmative case, sa is called a subsequence of sb and we denote this by
sa v sb. We define the set of all unique items in the collection S by

I B
{
i
∣∣∣∃sj ∈ S , such that there exists k : i ∈ Xjk

}
. (5.2)

The itemsets and the order of itemsets define the sequence and hence the
sequences

sa B ({a}, {b}, {c}), sb B ({a}, {c}, {b})

are not equal, provided the items were letters in the alphabet.
Examples of this structure could be a corpora of documents (sequences)

with items being words, or a database of electronic health records with record
entry names being items. In these applications, the itemsets X only contain
a single item. The underlying presumption is that the sequential structure
defines the purpose and meaning of each itemset – in natural language pro-
cessing this is called the Distributional Hypothesis [8]. Exactly how we utilize
the sequential structure to interpret the Distributional Hypothesis to produce
quality embeddings, is a modeling question. Word2vec, introduced in [14] and
computationally enhanced in [15], contains two models, Skip-Gram and CBOW,
grounded on the Distributional Hypothesis. Another model is a Markov Chain.

The framework above is used in Sequential Pattern Mining (SPM). In our
application of SPM, we analyse treatment packages but due to practical data
collection issues we only consider itemsets with a single item. For a good intro-
duction to the field of SPM, we refer to [5]. An example of general sequential
databases is grocery shopping: Each customer corresponds to a sequence of
purchases and each purchase (or basket) consists of groceries, and each grocery
is an item in the above terminology. A central point of analysis in this field is
the relation and co-occurrence of items, which can be used for recommendation
of additional sales items.

5.2 Encodings and embeddings

In this section, we define embeddings and encodings and discuss their func-
tionality in the analysis of sequences of categorical items (as in Section 5.1).
We begin with the following open definitions. These definitions are used in
Chapter 6 and we define them for clarification and lookup.

An encoding is a mapping E : I 7→ R
K , where I denotes the set of unique

items from Section 5.1 and K = |I |. Thus an encoding does not change the
dimensionality. An embedding is mapping E : T1 → T2, from a space T1 to
another space T2 such that dim(T1)� dim(T2), where� denotes much greater
than. Clearly, an embedding reduces the dimensionality and typically T1 = R

K1

and T2 = R
K2 , where K1� K2.
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To make embeddings widely applicable and independent of human bias,
we do not utilize any domain knowledge prior to fitting the embeddings apart
from the sequential structure. Therefore, we may as well observe a sequence of
(uninterpretable) numbers, i.e.

s1 = (1,4,5,1,7,2,5,315,986,10),

s2 = (3,1,4,7,1,5,560,2),

...

sp = (7,2,34,67,23,1050).

(5.3)

In other words, for each item e ∈ I , we associate a unique index number
in {1,2, . . . , |I |}. This one-to-one association is an encoding and is sometimes
also referred to as label encoding.

We proceed to encode each item number in (5.3), as a unit vector in R
I , i.e.

I 3 i 7→ ei ∈RI ,

where

(ei)k =

1, if i = k

0, otherwise.

This mapping is called a one-hot encoding, since all entries are “cold” (or more
precisely, zero) except the ith entry which is 1 and is also implemented in scikit-
learn [18]. Using this processs, we may represent a sequence s = (i1, i2, . . . , ins )
as

s =
(
ei1 , ei2 , . . . , eins

)
(5.4)

where the subscript ik are understood as the number encoding for the item ik
from equation (5.3).

We are at the starting point in the process of learning to infer the meaning of
each number by their sequential placement, i.e. according to the Distributional
Hypothesis, “learning the language” for the collection of sequences. Recall that
I the denotes the set of unique items in the collection S . The one-hot encoding
is an encoding procedure, i.e. it does not change the inherent dimensionality
but it does create a mathematical vector representation (although it is the most
naive representation). Most of the time, label encoding and one-hot encoding
are both performed in succession. In this case the procedure of applying both
is often still referred to as one-hot encoding.

The context of an entry, denoted C, is a user-defined set of points surround-
ing an entry. It is usually independent of the index (apart from corner cases at
the beginning and end of a sequence). In Skip-gram, the context of an entry ij ,
C, is defined as the window of size C around the entry, e.g.

i1, i2, . . . , ik−C , ik−C+1, . . . , ik , ik+1, . . . , ik+C

window of size C around k (excluding ik )

, ik+C+1, . . . . (5.5)
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In a first order Markov Chain, the context of an entry is merely defined as prior
entry, i.e.

. . . , ij−1

context of ij

, ij , ij+1, . . . ,

whereas a kth order Markov Chain has the context

. . . , ij−k−1, ij−k , . . . , ij−1

context of ij

, ij , ij+1, . . . ,

Naturally, the choice of context heavily influences the embedding.

5.3 Neural network architectures

Neural networks is a current hot topic, and here we define a couple neural
network architectures used in Chapter 6. We describe feed-forward fully-
connected neural networks and recurrent neural networks in some detail. In
Section 5.4 we elaborate on the optimization of feed-forward neural networks
but we refrain from presenting “back-propagation through time” for recurrent
neural networks, as it requires significant notation and further technical details
outside the scope of our usage.

A neural network has no strict definition and should simple be understood
as an (extensive) composition of mappings which incorporates some param-
eters. It is most easily understood as a feed-forward fully-connected neural
network, of which linear regression is a special case. We describe this in the
next section.

5.3.1 Feed-forward fully-connected neural networks

A feed-forward fully-connected neural network with K layers is a composition
of mappings such that the following recurrent relation holds true

z[k] B a[k](W [k]z[k−1]) for 1 ≤ k ≤ K, (5.6)

where a[k] is an activation function, W [k] is a matrix of suitable dimension,
z[0] B x is the initial input vector and z[k] is the output vector of the kth
composition (see Figure 5.1 for an illustration of a single hidden layer fully-
connected feed-forward neural network). An activation function is applied
element-wise (on each entry of a vector) and can be any function, as long as
it is (nearly) differentiable – typical choices are tanh or σ (x)B 1/(1 + exp(−x)).
We omit the bias term, since it may be incorporated into the vector of each
layer (explained in Chapter 5 of [1]). In this way, the jth entry of zk is given by

z
[k]
j = a[k]

(
(W [k]z[k−1])j

)
= a[k]

(∑
m

W
[k]
jm z

[k−1]
m

)
, (5.7)

where W [k]
jm denotes the (j,m)th entry in W [k] and similarly for the vector z[k−1].

Each composition fk is called the kth layer. The “inner” layers, that is the layers
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Figure 5.1: A feed-forward fully-connected neural networks architecture.

with 1 ≤ k ≤ K −1, are called hidden layers. The term feed-forward refers to the
fact that inputs in a layer only depend on past layers (and not on future layers).
‘Fully-connected’ refers to the fact that the value of (z[k])j is (possibly) affected
by every value of the previous layers, as seen in equation (5.7) and Figure 5.1.

Feed-forward neural networks are often used with many layers to construct
highly non-linear functions and they are often difficult to interpret due to the
composite output (Skip-Gram is somewhat an exception, see Section 5.5).

5.3.2 Recurrent neural networks

A recurrent neural network (RNN) is an neural network architecture used
primarily to model sequential data inputs (contrary to feed-forward neural net-
works which are not suitable for this). For example, words in a text documents
or speech (in machine translation, language models) with input of the form

x = (x1,x2, . . . ,xT )

and often (depending on use case and specific choice of network architecture)
with associated response variables (h1,h2, . . . ,hT ). A recurrent neural network
is defined through the central concept of a cell. It is often illustrated as in
Figure 5.2. Recurrent neural networks are optimized using “back-propagation

Figure 5.2: Unfolding of a recurrent neural network.

through time” or variants thereof. In Chapter 6, we mainly use RNN as a quick

67



Chapter 5 • Technical introduction to embeddings

reference for a temporal model, capable of accepting high-dimensional vector
of highly varying values in sequential order and producing predictions.

5.4 Loss function, gradient descent and back-propagation

Neural networks contain many parameters and compositions which allows
them to fit highly nonlinear data surfaces. Gradient descent and back-propagation
is often used to train this parameters. The first, gradient descent is the method
used to optimize the weights of a composition of mappings, and the step-wise
process utilized in feed-forward neural networks to pass errors backwards, is
called back-propagation (see [22]). To explain gradient descent, consider an
arbitrary finite composition of mappings

x 7→ ŷ(x)B (fK ◦ fK−1 ◦ · · · ◦ f1)(x) = fK (fK−1(. . . (f1(x)))) (5.8)

where x ∈ Rm denotes an input vector and (fi)i≤K denotes a family of map-
pings from R

mi−1 →R
mi . The result ŷ(x) is the estimate of our target variable

(henceforth referred to as the estimate or output). The target variable can
either be a observed label or a regression value (as in supervised learning), or a
target value formulated through an optimization criterion (as in unsupervised
learning). An example of the latter is k-means, used in Chapter 6.

5.4.1 Loss and cost function

A loss function quantifies the error between the estimate and the target variable,
i.e.

L(y, ŷ),

where ŷ is the output of the mapping and y is the true output. A good loss func-
tion quantifies different types of errors in a desirable way, given the application.
Thus there is no universal good choice for loss function. Common choices are
squared error, L(y, ŷ) = 1

2
∑
i(yi − ŷi)2 for regression (fitting a numerical value)

and cross-entropy L(y, ŷ) = −
∑
i yi log(ŷi) for classification/prediction. The

choice depends on domain, target output and fit choices (for example heavily
penalizing large values). Given a loss function L, the cost function is given as

C =
1
N

N∑
j=1

L(yj , ŷj ),

where N denotes the number of samples, and hence the cost function is simply
the average loss function. Caution is advised, since the names “loss-function”
and “cost function” are often used synonymously in the literature. We choose
to distinguish between the two, as we later optimize the weights based on the
cost function. The formulation of “optimizing the loss function” is confusing,
as it may refer to changing the loss function to a different choice or optimizing
it with gradient descent.
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5.4 Loss function, gradient descent and back-propagation

5.4.2 Gradient descent

In this section, we use gradient descent to adjust the weights in the composition
of mappings in equation (5.8) with the objective of minimizing the cost func-
tion. We start with the cost function and view it as a function of an arbitrary
parameter z. The linearity of differentation implies that

∂C
∂z

=
p∑
j=1

∂L(yj , ŷj )

∂z
.

Thus to decrease the notational load, we omit the sum and just study derivatives
of the mapping

x −→L(y, ŷ(x)) = L(y, (fK ◦ fK−1 ◦ · · · ◦ f1)(x)).

Define z[0] B x and z[k] B fk(z[k−1]) for 1 ≤ k ≤ K . Suppose fj(x) = a(Wx) for
some matrix W = {wij } of suitable dimension and activation function a (but
it could be any mapping which introduces some parameter z for which it is
meaningful to differentiate the loss function). Provided that 1 ≤ j < K , the
chain rules implies that for a fixed wij ,

∂L(yj , ŷj (wij ))

∂wij
=

∂L

∂a[K]

∂a[K]

∂a[K−1]
· · · ∂a

[j]

∂wij
,

where the derivatives/fractions are the Jacobian matrices. The structure of
feed-forward neural networks allows us to compute each of these Jacobian
matrices in a step-wise procedure called back-propagation which we elaborate

on in the next subsection. Letw(0)
ij denote the initial value ofwij . The parameter

update at iteration t of gradient descent is given by

w
(t)
ij = w(t−1)

ij −α
∂L(yj , ŷj )

∂wij
,

where α denotes the learning rate (a hyperparameter, see Section 5.5.4). The
process of “back-propagating” errors (or derivatives) stepwise towards the
input is called backpropagation (see [22]) and is the general method used to
optimize feed-forward neural networks with multiple layers. Certain optimiza-
tion algorithms may modify how this optimization is performed.

5.4.3 Back-propagation

In this section, we describe back-propagation as a stepwise process of updating
the weights in a feed-forward neural network. We lean heavily on the excellent
explanation provided in Chapter 5 of the book [1]. Consider the composition
of mappings (or layers) from Subsection 5.3.1, i.e.

z[j] B a[j](W[j]z[j−1]), for 1 ≤ j ≤ K,

where a[j] is an activation function, W[j] is a matrix of suitable dimension and
z[j] is a vector with z[0] = x, where x is the input vector of the feed-forward
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neural network, and finally z[K] is the output of the feed-forward neural net-
work (i.e. the result of the last mapping). Define the notation (h should not
be interpreted as hidden unit – we merely needed more notation to simplify
calculations later)

h[j] = W[j]z[j−1], 1 ≤ j ≤ K.

To measure the error, we use a loss function L(y,z[K]) and the first goal is to
compute the derivative

∂L(y,z[K])

∂w
[K]
ij

,

where w[K]
ij is the (i, j)’th entry of the matrix W[K]. Since w[K]

ij only enters in the

ith coordinate of z[K] by equation (5.7) and combine this with the chain rule,
we may write this as

∂L(y, z[K])

∂w
[K]
ij

=
∂L(y,z[K])

∂z[K]
i

∂a[K]

∂h[K]
i

∂h[K]
i

∂w
[K]
ij

.

Define for each j the notation δ[K]
j by

δ
[K]
j B

∂L(y,z[K])

∂z[K]
i

∂a[K]

∂h[K]
i

,

and refer to δ[K]
i as the errors in the K ’th layer. Observe that

∂h[K]
i

∂w
[K]
ij

= z[K−1]
j ,

and thus the overall derivative becomes

∂L(y,z[K])

∂w
[K]
ij

= δ[K]
i z

[K−1]
j .

Similarly, define δ[K−1]
j for the layer [K − 1] by

δ
[K−1]
j B

∂L

∂h
[K−1]
j

.

We may rewrite this derivative using the chain rule

δj =
( ∂L
∂h[K]

)T ∂h[K]

∂h
[K−1]
j

=
∑
k

∂L

∂h
[K]
k

∂h
[K]
k

∂h
[K−1]
j

from which we may simplify the notation to

δ
[K−1]
j =

∑
k

δ
[K]
k wkj

∂a[K−1]

∂h
[K−1]
j

= ∂h[K−1]
j

∑
k

δ
[K]
k w

[K]
kj .
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This relation holds for any given δ[s]
j for 1 ≤ s ≤ K by iteration. The procedure of

calculating the δ through the previously calculated δs is called back-propagation.

The take-away is that we may compute δ[s]
j through the previously calculated

δ’s (by iterating this procedure backwards) and obtain the desired derivatives
for gradient descent through the formula

∂L

∂w
[s]
ij

=
∂L

∂h[s]
i

∂h[s]
i

∂w
[s]
ij

= δ[s]
i z

[s−1]
j ,

where w[s]
ij denotes the (i, j)’th entry of W[s] in the sth layer.

5.5 Skip-Gram

Skip-Gram was introduced as a method for natural language processing in
[14] with supplementary computational optimization techniques in [15]. Its
application is natural language processing but the methodology is applicable to
the sequential structure described in Section 5.1. In Chapter 6, we apply Skip-
Gram to obtain word embeddings/representations of events in an electronic
health record.

Skip-Gram is a single hidden layer, feed-forward fully-connected neural
network and thus may be optimized using back-propagation through the
network layers. However, the neural network for Skip-Gram is very simple and
we instead choose to compute the derivatives of the composition of mappings
directly in order to explicitly understand the update of each parameter.

We observe a collection of sequences S as in Section 5.1 which we assume
are one-hot encoded, i.e. of the form in equation (5.4). A central part of the
Skip-Gram method is the creation of the inputs. This is described in detail in
the next section.

5.5.1 Skip-Gram input generation

In this section, we describe the input generation of Skip-Gram, given as se-
quence s. The main point here is that the sampling distribution inside the
context window is a hyper-parameter for which several choices are available.
We use a uniform distribution over the context window, but the original article
[14] suggests that given an entry ik to more frequently sample the neighboring
entries compared to the entries near the edge of context window.

The input generation procedure is automatic and only depends on a set
of hyper-parameters – hence Skip-Gram is an unsupervised learning method
which generates its own input and output with the training performed as a
supervised learning method utilizing the generated input/output. Suppose we
have a sequence s, given by

s = (i1, i2, . . . , ik). (5.9)

In Skip-Gram, the context of an entry ij , denoted C, is defined in equation (5.5).
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We will call the inputs items (x,y) for a pair, as it corresponds to an item
x and an item y in the context of x. Creating the pairs is straightforward,
disregarding the corner cases of starting and endpoints of the sequence and
is illustrated in Algorithm 1. For the beginning and end of the sequence, we
“wrap” around the sequence. That is, for an entry with index less than window
size, the left-most part of the window is small than the right – we fix this by
enlarging the left-part of the context to include the last entries of the sequence
– wrap around). This is done to avoid overestimating (and hence sampling
too many) pairs at the beginning of the sequence. Note that this introduces
synthetic/false pairings but due to the average length of our sequence and a
window size of 10, we deem this to be negligible. The same is done for the end
of the sequence. We recently realized that a preferable method would be to
decrease the sampling frequency of entries at the beginning and end of the
sequence.

Skip-Gram was originally introduced with the creation several pairs for
each input and a single parse through the sequence, but this is nearly equivalent
to passing through the dataset several times (and thus obtaining several pairs
for each input). We perform the latter, and this small change does allow for
re-sampling of the same output word, which may put a bit more emphasis on
frequent word pairings.

According to the discussion in Section 5.2, to each item, we create the
label encoding, e.g. a 1-1 mapping to a unique index. Next, to each index we
perform one-hot encoding to create a 1-1 mapping to a unit vector in R

|I |. For
the practical map composition of Skip-Gram, we understand x as an input
vector, which is simply the label combined with one-hot encoding of the event
i, resulting in a unit vector ex in R

|I |, and similarly for y.
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Algorithm 1: SkipGram pairing generator(sequence)
Result:
list sequence ; /* or a vector */
int sequenceEnd = length(sequence);
vector D = sampling distribution ; /* hyperparameter, a
probability vector */

int windowSize ; /* a hyperparameters */
int returnList = list() ; /* initialize empty list */
for index in sequenceIndexes do

if index ≤ windowSize then
wrappedContext = Context-wrap around (see text);
sampledEntry = ample from wrapped context;

else if sequenceEnd - index then
wrappedContext = Context-wrap around (see text);
Sample from wrapped context;

else
sampledEntry = sample an entry from the window around index
according to D;

pair = (sequence[index],sampledEntry) ; /* a vector or a
tuple */

returnList.append(pair);
end

end
return returnList ; /* a list of pairs */

5.5.2 Skip-Gram mapping

The Skip-Gram composition of mapping is studied in this section. Skip-Gram
is merely a composition of mapping having some input x and true output class
y. Here, x and y is a pair from the pairing strategy in Section 5.5.1 and both are
high-dimensional unit vectors in R

|I |. The definition of Skip-Gram is simple
and contains only a few mapping. These are given as

f1 : R|I |→R
D , f1(x) =Wx

f2 : RD →R
|I |, f2(z) =W ′z

f3 : R|I |→R
|I |, f3(z) = softmax(z),

with the composition

x 7→ ŷ(x) = f3(f2(f1(x))) =W ′Wx,

whereW is an |I |×D-dimensional matrix of weights (or, paramters),W ′ is aD×
|I |-dimensional matrix of weights (or parameters), D denotes the embedding
dimension (a hyperparameter, see Section 5.5.4) and finally softmax denotes
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the function

softmax : R|I |→R
|I |, softmax(z) =

( exp(zj )∑
k exp(zk)

)
j=1,...,|I |

.

Further simplications can be made on the Skip-Gram mapping, since x and y
are unit vectors. Indeed, suppose that x = eI and y = eO, where the I stands for
input vector and the O for output. Let wi denote the ith column of W and let
w′i denote the ith row of W′ . Since x is a unit vector, the function f1 yields the
Ith column of W as can be seen by the following computation


w′1
...

w′|I |


w1 w2 . . . w|I |





0
...
0
1
0
...
0


=


w′1
...

w′|I |


wI

 =


w′1wI

w′2wI
...

w′|I |wI

 ,

where the bars indicate in which direction the vectors extends (e.g. row or
column vector). Notice that the final matrix is simply a vector of inner products
between w′j and wI . Thus the jth entry in ŷ(x) is given by

ŷj (x) =
exp(w′jwI )∑
k exp(w′kwI )

, j ∈ 1, . . . , |I |. (5.10)

This is interpreted as an estimate of the probability that y is the context word,
given the input word x, e.g.

P(y | x)← ŷj (x).

To measure the error of mapping, we use the cross-entropy loss function, given
by

L(y,p) = −
|I |∑
j=1

yi logpi .

for a probability vector y (true distribution) and another probability vector p
(candidate/estimated distribution) – we interpret the probability vector as a
distribution. Since the vector y is simply eO, this reduces to

L(y, ŷ(x)) = −
|I |∑
j=1

yj log ŷj (x) = − log
exp(w′OwI )∑
k exp(w′kwk)

= log
(∑
k

exp(w′kwI )
)
−w′OwI .

(5.11)
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Using this loss function, we obtain the following total cost function

C = − 1
N

N∑
j=1

L(y, ŷ(x))

=
1
N

N∑
j=1

{
log

(∑
k

exp
(
w′k [wI ]j

))
−
[
w′O

]
j
[wI ]j

}
,

(5.12)

where the sum over N training samples, and [wI ]j denotes true input class
of jth sample (xj = eI ) and similarly for yj = eO. It is common to update the
weights after each (or a batch) of samples instead of the total cost function
as above. We adopt this approach as well. This modification of the update
strategy is mentioned in [22] as being effective at avoiding getting stuck in
local minima. It is sometimes referred to as stochastic gradient descent. The
only remaining step is to optimize the cost function which will be described in
Section 5.5.3.

5.5.3 Skip-Gram gradient descent

In this section we describe the procedure for updating the weights in Skip-
Gram, i.e. the matrices W and W′ . This is done by minimizing the cost function
in equation (5.12). Note that the cost function is later modified by Negative
Sampling from Section 5.5.5. Let z denote an entry (or, weight/parameter)
from W or W′ (for a general mapping, any trainable (free) weight/parameter
in the mapping). The goal is to compute

∂L(y, ŷ(x))
∂z

,

with ŷ defined in equation 5.10 and y is the one-hot encoded vector of the true
label. We proceed to update z at iteration t of the training procedure according
to the equation

z(t) = z(t−1) −α
∂L(y, ŷ(x))

∂z
,

where z(t) denotes value of z at the start of iteration t and α denotes a learning
rate, see Section 5.5.4 and subsection 5.4. Note that we must first compute all
such derivatives and then simultaneously update all z.

Let z = (wi)j denote the jth entry in the ith column of W (also commonly
known as Wji) and consider the derivative of the following mapping from
equation (5.11)

(wi)j 7→ L(y, ŷ(x)) = log
(∑
k

exp(w′kwI )
)
−w′OwI ,

for a fixed pair input/output vectors x = eI and y = eO from the sampling
methodology in Section 5.5.1 and where yO, ŷO(x) denotes the Oth entry of the
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probability vectors. We may divide this into whether i = I or not, and obtain

∂L
∂(wi)j

=


∑
k(w

′
k)j exp(w′kwI )∑

m exp(w′mwI )
− (w′O)j , if i = I.

0, if i , I.

Observe that this will only update wI , Ith column of W corresponding to the
input item. Written as a vector, the above gradient is simply

∂L
∂wI

=
∑
k

[
exp(w′kwI )∑
m exp(w′mwI )

]
w′k −w′O

=
(

exp(w′OwI )∑
m exp(w′mwI )

− 1
)

∈(−1,0)

w′O +
∑
k,O

[
exp(w′kwI )∑
m exp(w′mwI )

]
wk ,

∂L
∂w,I

= 0,

(5.13)

which results in the update

w(t)
I = w(t−1)

I −α
(∑

k w′k exp(w′kwI )∑
k exp(w′kwI )

−
(

exp(w′kwI )∑
m exp(w′mwI )

− 1
)
w′O

)
. (5.14)

Note that this update adds a bit of w′O from wI while subtracting a bit of w′k,O.
The effect is that the inner product 〈w′O,wI 〉 is increased while it is decreased
for w′k,O. For the probability estimate ŷ, this results in increased ŷO while it
decreases ŷk,O. This makes intuitively sense, i.e. we observe the pair (x,y) and
the update increases the estimated probability of observing the pair.

Similarly, let z = (w′i)j (also known as W′ij ). We consider the mapping

(w′i)j 7→ L(y, ŷ(x)) = −yO log ŷO(x) = log
(∑
k

exp(w′kwI )
)
−w′OwI ,

and wish to compute its derivative with respect to (w′i)j . Once again, we may
divide into the cases whether O = i or not, and obtain

∂L

∂(w′i)j
= (wI )j

( exp(w′OwI )∑
k exp(w′kwI )

−1{i=O}
)
.

This results in the following parameter update

(w′i)
(t)
j = (w′i)

(t−1)
j −α(wI )j

( exp(w′OwI )∑
k exp(w′kwI )

−1{i=O}
)
.

Written as a vector, this corresponds to

w′(t)i = w′(t−1)
i −α(wI )

( exp(w′OwI )∑
k exp(w′kwI )

−1{i=O}
)
. (5.15)

Observe that we always update all of W′ by this. This update adds a bit of wI

to w′O and subtracts a bit of wI from w′k,O. This increases the inner products
〈wI ,w′O〉, while decreasing 〈wI ,w′k,O〉. Thus the estimated probability ŷO is
once again increased and ŷk,O is decreased.
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5.5.4 Skip-Gram hyper-parameters

Skip-Gram contains a multitude of hyper-parameters, all of which affect the
cost function. Hence to obtain a good result, it is important to study each of
them and how they affect both the cost function and the interpretation of
the model. Overall, we have the following hyper-parameters along their effect
described briefly in the parenthesis

1. Embedding dimension (affects the dimension of the embeddings).

2. Negative sampling (from [15], both if used and the amount of negative
samples).

3. Window size for the context (affects the possible set of pairings).

4. Window sampling distribution (affects the frequency of pairings).

5. Cut-off level (remove rare entries and homogenize – but at the cost of
throwing away/masking rare events).

6. Cut-off technique (replace entry by a standard token in the sequence or
completely remove entry from the sequence).

7. Noise distribution for Negative Sampling (affects the frequency of items
with which items are used as negative samples).

Furthermore, initialization of weight matrices is not a hyper-parameter that
affects the obtained representations but it may nonetheless be useful for faster
convergence of the algorithm.

5.5.5 Negative Sampling

Negative Sampling was introduced in [15] as a computational optimization
for Skip-Gram. The paper introduces Negative Sampling as the procedure
performed by optimizing the following cost function,

σ (w′OwI ) +
k∑
i=1

Ewi∼Pn(w)[logσ (−wiwI )], (5.16)

where σ (x) = 1/(1 + exp(−x)), k denotes the number of negative samples, Pn(w)
denotes a noise distribution on all items and wi is the vector representation of
an item i sampled from the noise distribution Pn. The goal of equation (5.16)
is to train the model to distinguish between the actual output and the noise
distribution – as described in the original methodology paper [7] on noise-
contrastive estimation, of which Negative Sampling is a special case. It de-
scribes the training task as learning to distinguish between the target word
(item) wO and the noise samples (wi)1≤i≤k . The paper [6] describes this change
in the cost function in further detail and observe that Negative Sampling modi-
fies the original training objective in equation (5.11) by introducing a different
objective than original Skip-Gram.
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Define the set of all item and context pairs (w,wc) that occur in the text,
denoted D, by

D B {(w,wc) | (w,wc) is a possible pair from the pairing generators}.

Another way of formulating equation (5.16) is to introduce a random variable
Z which indicates whether the pair (w,wc) is the true output (Z = 1) or a
sample from the noise distribution (Z = 0). In other words, we seek to find the
optimal set of parameter θ = (W,W′) such that the following joint probability
is maximized

argmax
θ

P(Z = 1 |w,wc)
k∏
i=1

P(Z = 0 |w,wi).

which for all samples results in optimizing

argmax
θ

∏
(w,wc)∈D

P(Z = 1 |w,wc)
k∏
i=1

P(Z = 0 |w,wi)

.
Optimizing this, is the same as optimizing the log, which results in

argmax
θ

∑
(w,wc)∈D

logP(Z = 1 |w,wc) +
k∑
i=1

logP(Z = 0 |w,wi)


The negative samples (wi)1≤i≤k are drawn according to a noise distribution Pn.
Most commonly, this distribution utilizes the frequency of item i, denoted f (i)
and defined as

f (i) =
count(i)∑p

i=1ni
,

where ni denotes the length of sequence si , and count(i) denotes the number of
times item i occurs across all sequences. Note that this is a distribution across
i and thus could potentially be used as a noise distribution. The authors [15]
suggest a modified version of this, defined as

Pn(i) =
f (i)3/4∑|I |
i=1 f (i)3/4

.

and thus sample the k negative samples according to Pn. In this case, we
utilize the observation from natural language processing that the occurrence
frequency of words approximately follows a log-uniform distribution (see [19]
for some description and history of the name), given by

f (i) ∼ exp(U (0, log(|I |))),

where U (0, |I |) denotes the uniform distribution on 0, |I |. We draw k negative
samples using this noise distribution for the above equation (5.16). We did
not test different choices of noise distribution although recent experimental
evidence [2] suggests that other choices of noise distribution may be preferable
for non-natural language processing tasks.

78



5.6 Stochastic Neighborhood Embeddings

5.6 Stochastic Neighborhood Embeddings

The technique t-distributed Stochastic Neighborhood Embedding, introduced
in [13] and commonly known as t-SNE, visualizes high-dimensional data in
a 2 or 3-dimensional space, and has quickly become popular. Our aim for
the present section is to attempt a strictly mathematical explanation of t-SNE
whenever it is possible, with the goal of showing how the mathematical theory
relates to the practical interpretations. Note that t-SNE is inherently stochastic
(by the random initialization) and thus each visualization is different from the
other. We use t-SNE to visualize the Skip-Gram vector representations and
proceed to identify several treatment packages in the visualization.

Suppose we observe a collection of data points in a high-dimensional space

{x1,x2, . . . ,xn}, where xi ∈Rm

for some large m (in the context of Section 5.2, m is the embedding dimension
E). We presume that points close to each other are similar. To visualize these
high-dimensional points we seek corresponding points

{y1,y2, . . . ,yn} ⊆R
v ,v ∈ {2,3}

such that

yi and yj are similar ⇐⇒ xi and xj are similar. (5.17)

This is the fundamental problem statement for visualization techniques. The
(chosen) visualization technique defines the similarity measure and how to
compute/optimize it. To name a few methods, we mention Isomap [27], Sto-
chastic Neighborhood Embedding [10], Locally Linear Embedding [21] and
classical PCA [17]. A large review of visualization techniques is available
in [12].

5.6.1 SNE

We start our explanation of t-SNE, by describing its predecessor, Stochastic
Neighborhood Embedding (SNE). SNE is a (stochastic) optimization technique
for finding high quality pairings (yi)i∈{1,...,n} such that the idea in equation (5.17)
holds true. A metric is a (potential very rough) mathematical way of quanti-
fying similarity between points. A very simple measure of similarity is the
Euclidean norm, dEU, given by

dEU(x1,x2) =
√
‖x1 − x2‖2

B

√
(x11 − x21)2 + (x12 − x22)2 . . .+ (x1m − x2m)2.

(5.18)

To refine our measure of similarity, we define for i, j ∈ {1,2, . . .n}

pj |i B


exp(−‖xi − xj‖2/2σ2

i )∑
k,i exp(−‖xi − xk‖2/2σ2

i )
, if j , i,

0, if j = i.

(5.19)
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Here σ2
i is some parameter acting as the variance of the Gaussian distribution

and it will be specified later. Contrary to dEU , this similarity measure between
i and j is no longer symmetric, i.e. pj |i , pi|j in general. Note pj |i is simply a
chosen quantification to measure the similarity between the point xj with the
given point xi , but we can assign the following probabilistic interpretation to it:
For each i, let Pi denote the Gaussian distribution with center xi and variance
σ2
i , i.e.

PiBNm(xi ,σ
2
i Im), (5.20)

where Im denotes the m-dimensional identity matrix, and Nm denotes the
m-dimensional normal distribution. The value pj |i is proportional to

pj |i ∝ fNm(xi ,σ2
i Im)(xj ), (5.21)

where f denotes the density ofNm(xi ,σ
2
i Im). The intuitive interpretation is that

pj |i denotes the conditional probability that xi would pick xj as its neighbor
under a Gaussian distribution centered at xi with variance σ2

i . Similarly, we
define

qj |i B


exp(−‖yi − yj‖2)∑
k,i exp(−‖yi − yk‖2)

, if j , i

0, if j = i

(5.22)

i.e. the conditional probability that yi would pick yj as its neighbor under a
Gaussian distribution centered around yi with variance 1/

√
2. We shall denote

this Gaussian distribution by Qi . Note that we do not include a variance
parameter σ in qj |i , as we did for pj |i . Stochastic Neighborhood Embedding is
performing optimally if these two conditional distributions match. To measure
the match, let P and Q denote probability distribution on some discrete space
X (e.g. finite or countable space). The Kullback-Leibler divergence, DKL, is
defined as

DKL (P ‖Q)B
∑
x∈X

P (x) log
P (x)
Q(x)

. (5.23)

The cost function is defined as the Kullback-Leibler divergence over all data
points

C =
∑
i

DKL (Pi ‖Qi) =
∑
i

∑
j,i

pj |i log
pj |i
qj |i

. (5.24)

Gradient descent can be used to optimize (5.24) with respect to yi and it can
be shown that

δC
δyi

= 2
∑
j

(yi − yj )(pi|j − qi|j + pj |i − qj |i). (5.25)

Several modifications to the optimization procedure for GD are treated in
Section 5.6.2. We will now describe the choice of the parameter σ . Let us first
examine how σ interacts with the value pj |i when the distance changes. For
fixed i, j, we may write

pj |i =
exp(−dij /2σ2)∑
k,i exp(−dik/2σ2)

, (5.26)
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where dik = ‖xi − xk‖2 for k , i. If we let σ tend to infinity, then

pj |i −−−−−→σ→∞
1

p − 1
,

i.e. each point xj is weighted uniformly and thus

(pj |i)j,i −−−−−→σ→∞
uniform({1, . . . , i − 1, i + 1, . . . ,p}). (5.27)

Thus, for large σ , we put approximately equal emphasis on every point xk ,
regardless of their distances dik to xi . Observe that

pj |i =
exp(−dij /2σ2)∑
k,i exp(−dik/2σ2)

=
1

1 +
∑
k,{i,j} exp((dij − dik)/2σ2)

,

where we assume that dik > 0 for all k , i and dik are all different. Let d =
min({di1, . . . ,di(i−1),di(i+1), . . . ,dip}). If dij = d, then

(dij − dik) < 0 ∀k , {i, j} (5.28)

and hence

pj |i −−−−→
σ→0

1
1 + 0

= 1. (5.29)

If dij , d, then
∃k ∈ {1,2, . . . ,p} \ {i, j} : dik < dij (5.30)

and hence the term in the denominator∑
k,{i,j}

exp((dij − dik)/2σ2)

converges to infinity as σ tends to zero. Consequently,

(pj |i)j,i
D−−−−→
σ→0

δmin({di1,...,di(i−1),di(i+1),...,dip}),

where δa denotes the Dirac measure in a. The heuristic interpretation of this is
that for very small σ , the probability mass is (nearly) concentrated in a single
point – the nearest point, provided the data points are different.

We now analyze the case where σ takes some value between 0 and ∞,
i.e. cases between complete certainty and uninformed random guessing. We
assume that there exists a subset K of {1,2, . . . ,p} \ {i} and some boundary ε
such that

∀ k ∈ K : dik/2σ
2 ∈ [0,ε] (5.31)

∀ k < K : dik/2σ
2� ε. (5.32)

This is implies that exp(−dik/2σ2) only “matters” in the value of pj |i if k ∈ K .
Importantly, note how σ directly affects this boundary, e.g. we could formulate
this equivalently as

∀ k ∈ K : dik ∈ [0,2σ2]
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Figure 5.3: Example of a separating neighborhood around the red point.

and

∀ k < K : dik � 2σ2,

where we for simplicity of notation assume that ε = 1. In practical terms, we
draw a suitable sized circle (with radius σ ) around xi such that the circle
separates the space to nearby points and others, as visualized in Figure 5.3. It
is evident that other choices of σ may also lead to other reasonable separations
– thus a qualified estimation of σ is critical. Inserting this into equation (5.19),
if j ∈ K then

exp(−dij /2σ2)∑
k,i exp(−dik/2σ2)

≈
exp(−dij /2σ2)∑
k∈K exp(−dik/2σ2)

and similarly if j < K ,
exp(−dij /2σ2)∑
k,i exp(−dik/2σ2)

≈ 0

which results in

pj |i ≈


exp(−dij /2σ2)∑
k∈K exp(−dik/2σ2)

, if j ∈ K

0, if j < K.

Hopefully, at this point, it is clear that σ directly affects the set K , e.g. the set
of nearby neighbors. Thus a good choice of σ can be found by estimating the
set of effective neighbors.

To estimate the number of effective neighbors, we use the perplexity of a
(discrete) distribution P on a discrete space X , defined as

Perp(P )B eH(P ) = e−
∑
x∈X p(x) lnp(x) =

∏
x

1

p(x)p(x)
, (5.33)

where H(P ) denotes the entropy of a probability distribution, defined as

H(P )B −
∑
x∈X

p(x) lnp(x), (5.34)
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where ln denotes the natural logarithm1. We will try to explain entropy con-
ceptually but add a bit of math to draw a few interesting parallels. The entropy
is a measure of how much information that is contained in your probability
distribution concerning a future value. A high value corresponds to little in-
formation and a low value corresponds a lot of information. It can be shown
that the entropy is the only measure of information which satisfies certain
desirable criteria, see [24]. Our two limiting distributions for σ , uniform and
δ, maximizes, respectively minimizes, entropy, e.g.

H(uniform) = ln(p − 1), and H(δ) = 0,

with the convention that 0 · log0 = 0. Moreover, since the uniform distribution
on the set {1,2, . . . ,U }maximizes the entropy with the value lnU , we provide
the following alternative conceptual understanding of entropy. Let the entropy
of a distribution P (or a random variable with a distribution P ) be H(P ) and
asumme for simplicity that H(P ) is integer-valued. We may find U > 0, such
that the uniform distribution on {1, . . . ,U } satisfies that

H(uniform) =H(P ) = ln(U ).

Provided that H(P ) is a measure of the information provided by a random
sample from the distribution P , we observe that H(P ) corresponds to the infor-
mation provided by throwing a ln(K)-sided dice. This suggests interpreting
the entropy as estimating log of the effective number of classes. Using this
interpretation, the perplexity estimates the effective number of distinct values
as defined in equation (5.33). Finally, for SNE this implies that perplexity may
be interpreted as an estimate of the effective number of neighbors.

The SNE algorithm is run with a user-defined perplexity P , and for each i,
σi is found such that

Perp(Pi) = P .

In the practical implementation, σi is merely found once |P−Perp(Pi)| is below
a very small threshold (for example 1e-5 in scikit-learn implementation, [18]).

5.6.2 Training and optimizing SNE

An unfortunate attribute of unmodified gradient descent is a tendency to
become stuck in saddle points (also known as local minima). To negate this
tendency, the authors “anneal noise” to gradient descent, which is described
in some detail in [13]. A search through the literature did not reveal an exact
formulation/procedure for “annealing noise” but the following rough summa-
rization may be helpful.

Annealing noise: Suitable Gaussian noise is added to the gradient during
training. The added Gaussian noise is controlled by a rate which is large at the
beginning of optimization and then decays to zero.

1The perplexity and entropy can be formulated with any logarithmic base number b. We
use the natural logarithm due to equation (5.19). Note that the perplexity is invariant of the
logarithmic base number.
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However the procedure of annealing noise was not used in t-SNE, and they
state the following caveat:

“... in the early stage of the optimization, Gaussian noise is added to the map
points after each iteration. Gradually reducing the variance of this noise performs
a type of simulated annealing that helps the optimization to escape from poor local
minima in the cost function. If the variance of the noise changes very slowly at the
critical point at which the global structure of the map starts to form, SNE tends to
find maps with better global organization. Unfortunately, this requires sensible
choice of the initial amount of Gaussian noise and the rate at which it decays.
Moreover, these choice interact with the amount of momentum and the step size
that are employed in the gradient descent. It is therefore common to run the
optimization several times on a dataset to find appropriate values for the
parameters. In this respect, SNE is inferior to ...”

— [13] on page 2583

To initialize the optimization procedure of equation (5.25), the initialization
for Y0 is drawn from an isotropic Gaussian distribution with small variance
centered around the origin, e.g. an n-dimensional Gaussian distribution Nn
with mean zero and Var(Nn) = σ2In for some small σ > 0, e.g.

Y (0) ∼Nn.

These initialized values are updated using momentum according to the follow-
ing scheme

Y (t) B Y (t−1) + η
δC
δY

+α(t)
(
Y (t−1) −Y (t−2)

)
, (5.35)

where η denotes the learning rate, Y (t) denotes the solution at iteration t, and
α(t) denotes the momentum at iteration t. Momentum modifies the weight
update by allowing it to depend on its most recent values, effectively accumu-
lating a “momentum”. The advantage of this procedure appears to be faster
convergence and better avoidance of local minima (due to the momentum). We
refer to [26] for a discussion on this.

5.6.3 t-SNE

The t-SNE method was motivated by certain deficiencies of SNE, namely
difficulty of optimization, the “crowding problem” and “outlier problem”
as described in Section 3.1-3.2 of [13].

We first present the changes for P , the distribution on the high-dimensional
datapoints, and subsequently present the outlier problem attached to this. In
t-SNE, instead of pj |i which is non-symmetrical, we symmetrize it by

pij B
pj |i + pi|j

2n
, (5.36)
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where pj |i originates from equation (5.19) in SNE. Unlike pj |i in equation (5.19),
this is no longer a probability distribution over the index j, but instead∑
k,l

pkl B
∑
k

∑
l : l,k

pkl =
∑
k

∑
l,k

pk|l + pl|k
2n

=
1

2n

(∑
k

∑
l : l,k

pk|l +
∑
k

∑
l : l,k

pl|k

)
=

1
2n

(∑
l

∑
k : k,l

pk|l +
∑
k

1
)

=
n+n
2n

= 1,

i.e. a probability distribution over all pairs of distinct indexes. The definition
in equation (5.36) is not the natural generalization to a probability distribution
over all pairs of distinct indexes, which would be

pij B
exp(−‖xi − xj‖2)∑
k,l(−‖xk − xl‖2)

, i , j. (5.37)

The problem with this definition, compared to (5.36), is outliers, i.e. if ‖xi−xj‖2
is large for all j. To illustrate this, we similarly define

qij =
exp(−‖yi − yj‖2)∑
k,l exp(−‖yk − yl‖2)

,

and set the cost function as the Kullback-Leibler divergence between P and Q
over all distinct indices, i.e.

Csym =DKL (P ‖Q) =
∑
k,l

pkl log
pkl
qkl

=
∑
k,l

pkl logpkl − pkl logqkl , (5.38)

This choice for definition of q and p corresponds to the method called sym-
metric SNE, and is indicated by subscript sym in the above cost-function. For
symmetric SNE (with pij as equation (5.37)), the gradient of the cost function
turns out to be

δCsym

δyi
= 4

∑
j,i

(pij − qij )(yi − yj ), (5.39)

using calculations very similar to Appendix A in [13]. For an outlier xi , pij is
very small for all j and hence the gradient wrt. yi will approximately be

δCsym

δyi
= 4

∑
j,i

−qij (yi − yj ).

Observe that this is unaffected by the high-dimensional distribution P . Note
that with pij defined as in equation (5.36), the gradient is unaffected by the
change in qij , and thus yields the same gradient as Csym of its respective cost
function

δC
δyi

= 4
∑
j,i

(pij − qij )(yi − yj )

The term
∑
j pi|j /2n = 1/2n in (5.36) guarantees that

∑
j pij >

1
2n and conse-

quently that yi always makes a substantial contribution to the gradient in
equation (5.35).
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The major change from symmetric SNE to t-SNE is in the low-dimensional
distribution q which in symmetric SNE is given as

qij =
exp(−‖yi − yj‖2)∑

k
∑
l,k exp(−‖yk − yl‖2)

,

but in t-SNE is given as

qij =

(
1 + ‖yi − yj‖2

)−1∑
k
∑
l,k (1 + ‖yk − yl‖2)−1 . (5.40)

Observe that this is proportional to the Students t-distribution with 1 degree
of freedom, e.g.

qij ∝ ft(1)(dij ).

This results in the gradient of the cost function for t-SNE being given by

δC
δyi

= 4
∑
j,i

(pij − qij )(yi − yj )(1 + ‖yi − yj‖2)−1.

Crowding problem

The main reason to change qij is the so-called “crowding problem” which
comes from empirical observations.

“... A related problem is the very different distribution of pairwise distances in the
two spaces(red. high- and low-dimensional spaces). The volumne of a sphere
centered on datapoint i scales as rm, where r is the radius and m is the
dimensionality of the sphere. So if datapoints are approximately uniformly
distributed in the region around i on the ten-dimensional manifold (red. in a
higher dimensional space), and we try to model the distances from i to the other
datapoints in the two-dimensional map, we get the following ‘crowding problem’:
the area of the two-dimensional map that is available to accommodate moderately
distant datapoints will not be nearly large enough compared with the area
available to accommodate nearby datapoints. Hence, if we want to model the small
distances accurately in the map, most of the points that are at a moderate distance
from datapoint i will have to be placed much too far away in the two-dimensional
map. In SNE, the spring connecting datapoint i to each of these too-distant map
points will thus exert a very small attractive force. Although these attractive forces
are very small, the very large number of such forces crushes together the points in
the center of the map, which specific to SNE, but that it also occurs in other local
techniques for multidimensional scaling such as Sammon mapping.”

— [13] on page 2585

We give the following interpretation of the crowding problem. The gist of
the statement is that the dimensionality differences between x and y causes a
problem for dimensionality reduction techniques (such as SNE and t-SNE) to
properly reflect moderately distanced points and distinguish between clusters
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in the low-dimensional representation, as the volume area of moderately dis-
tanced points in the lower dimensional space is much smaller the high dimen-
sional space. t-SNE tackles this problem by imposing a heavier tail distribution
on the low-dimensional points. The heavier tail distribution decreases the
(proportional) weight of moderately distanced points by giving more weight
to distant points and similar weight to nearby points – as compared to SNE.
Empirical verification of this property is also provided in [13].

5.7 Classifiers and the kernel method

We utilize three different classifiers in the model evaluation step in Chapter 6
to classify the data source of each item/event. In this section, we give a short
description of the methodology for each classifier. As with any classifiers, we
have a dataset of pairs (xi , yi)i∈1,...,|I |2, where xi denotes the input vector and
yi the true class label for sample i. The goal is to find a function C : RD →
{1, . . . ,I|}, which utilizes some parameter set θ, such that

argmax
θ

|I |∑
i=1

logP(yi | xi ;θ), (5.41)

is maximized. Many different methods of estimating the above probability can
be used and in this section we aim to describe three of them, namely Support
Vector classifier (SVC), Random Forest classifier (RFC) and k-Nearest Neighbor
classifier (k-NN classifier). Near the end of this section, we describe the Rand
index, a method for comparing partitions (and hence classifiers) which may
have different class size.

5.7.1 Random Forest Classifier

Random forest classifier originates from decision trees and consists of “bag-
ging”(or bootstrap aggregating) many decision trees together into a “forest”
and thus creating a classifier with smaller variance than the individual decision
trees. A random forest has a few major components, namely

1. Resampling strategy to resample from the data (the “random” of random
forest, typically bootstrap).

2. Splitting strategy for growing each decision tree on a resampled dataset
(the same for each tree).

3. Combination strategy of the resulting decision tress into one classifier.

The algorithm is straightforward (once the inner parts of resampling and split-
ting strategy is understood), i.e. we fix a forest size B (note that B conveniently
matches bootstrap and bagging).

2We may in general have K observations and may want to train a classifier on these. However
we stick to |I |, since it fits our application in Chapter 6.
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1. For b = 1 to B:

(a) Draw a bootstrap sample (xbi , y
b
i )i∈1,...,|I | with replacement from the

empirical distribution (xi , yi)i∈1,...,|I |.

(b) Grow a random-forest tree Tb, by recursively applying the following
steps as part of the splitting strategy of a decision tree until the
minimum node size nmin is achieved.

i. Select m variables at random from the D input variables in
(x) = (x1,x2, . . . ,xD ), where x denotes a generic input vector.

ii. Pick the best split according to the splitting strategy (see equa-
tion (5.45)).

iii. Split the tree into two branches according to the above best
split.

Furthermore, random forests utilizes the concept of out-of-bag classification,
i.e. for an observation (xi , yi) the predicted class of the sample is computed by
averaging over the trees in which the observation did not occur.

We discuss “random-forest trees” in the next subsection. This explanation
is heavily inspired by [9].

Classification trees and random-forest trees

A decision tree is illustrated in Figure 5.4. The tree in Figure 5.4 illustrates a
partition of the input space into regions, for example the region

R = {(x1,x2,x3) | x3 > 0.5,x1 < 6,x2 < 2.7}, (5.42)

is obtained by following the left-most branches until the end-leaf. In this way,
we obtain a partition of the observations. The goal of classification trees is to
obtain a “pure” of the data, such that each end-leaf only (or mostly) contains
only one class (hence it is “pure”).

We first need some notation to explain classification trees. A classification
tree is a partition of the input space into disjoint regions according to simple
boolean rules on the input variables. In other words, the classifier of a decision
tree is given by

C(x) =
m∑
j=1

1{x∈Rj } argmax
k

pj,k , (5.43)

where pj,k denotes the probability of the class k in the region Rj , and (Rj )1≤j≤m
denotes the partition regions/areas. This is estimated by counting the fre-
quency of class k among the observations in region Rj . The optimal tree is
found by optimizing across all possible boolean partitions/splits of the dataset,
i.e.

argmin
m∈N,R1,...,Rm

|I |∑
i=1

L(yi , f (xi)),
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x3 > 0.5

x1 < 6 x2 < 3

x2 < 2.7

R2R1 R3

x1 > 4.7

R5 R6R4

noyes

Figure 5.4: An illustration of a decision tree.

where L denotes a function measuring the impurity/error between yi , the
estimated class f (xi) (typically a loss or impurity function) and the regions
(Ri)1≤i≤m are of the form in equation (5.44)3. Note that this problem is com-
putationally infeasible as each choice may be permuted. Instead, we pursue a
greedy algorithm, in terms of maximizing the split at each step.

As our next step, we elaborate on the splitting strategy of the tree and later
return to the pruning strategy of merging nodes in the tree. Define the regions
R1(j, s) and R2(j, s) by

R1(j, s) = {X |Xj ≤ s} and R2(j, s) = {X |Xj ≤ s}. (5.44)

Let imp(t) denote the impurity of node t (representing a region Rt) in the
tree (Gini index of heterogeneity or the cross-entropy are common choices)
calculated on the estimated probability of the node, namely

p̂t,k =
1
Nt

∑
xi∈Rt

1{yi=k}, k ∈ 1, . . . ,K

where Nt = |{xi ∈ Rt}| and K denotes the number of classes. Note that since
we are still growing the tree, the region Rt and m are merely intermediate
parameters for the currently grown tree (we are not necessarily finished with

3We suppress the constraint that the minimum node size hyper-parameter entails on m. The
goal is simply to emphasize that this computation is unfeasible.
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the splitting procedure yet). Thus they do not correspond to the final regions in
equation (5.43). The goal is to find a pair (j, s) such that the changes in impurity
is maximized, e.g.

∆imp((j, s), t) = imp(t)− ptleft
· imp(tleft)− ptright · imp(tright) (5.45)

where ptleft
and ptright

denotes the probability of the left node tlef t , respectively
right node tright, created the split pair (j, s). This procedure is then repeated for
each resulting node until a stopping criterion is achieved (e.g. the node is pure
or the number of samples in the region Rt is below a set threshold, or maximal
tree depth, or the improvement in impurity is below a specified minimum).

Pruning the decision tree

Following the completion of the full tree, it is common to “prune” the resulting
tree, i.e. collapse some of its internal (non-terminal) nodes. Consider a tree T
with terminal nodes/end-leafs numerated 1, . . . ,m in accordance with the final
regions R1, . . . ,Rm and let, as previously

Nt = |{xi ∈ Rt}|,

p̂t,k =
1
Nt

∑
xi∈Rt

1{yi=k}, k = 1, . . . ,K.

Denote the node impurity for terminal node/end-lead t in the tree T by

Qt(T ) =
K∑
k=1

p̂t,k(1− p̂t,k).

During the “pruning” of the tree, the goal is to optimize the cost-complexity
function

Cη =
m∑
t=1

NtQt(T ) + ηm,

where η is a tuning parameter. In other words, we seek to optimize the node
impurity while penalizing trees with a large number of regions m. In general,
we seek a smaller tree Tη ⊆ Torig, where Torig denotes the original tree obtained
from the splitting procedure.

Random-forest tree

The random-forest tree merely differs by adding the additional step. Instead of
splitting based on all variables, we instead sample m of the D input variables
in (xi) = (x1,i ,x2,i , . . . ,xD,i) and compute the splitting costs for these according
to the equation (5.45).

Resampling strategy

The resampling strategy used is commonly bootstrap, but other sampling
strategies, such as subsampling [4] can be used.
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5.7.2 k-nearest neighbor Classifier

The k-nearest neighbor classifier is refreshingly simple. For all data points
(xi , yi)i∈1,...,|I | we compute the (Euclidean) distance matrix D of dimension
|I | × |I | between all possible pairs (xi ,x′i). We then classify a datapoint xi
according to the majority vote of its k nearest neighbors x(1), . . . ,x(k) (the k
datapoints which have smallest distance to xi), e.g.

argmax
c

k∑
j=1

1{y(j)==c},

where y(j) denotes the class of x(j). Clearly, this yields a (explicitly) local classi-
fier, but through a method which depends on the distances between (xi) and
not the actual inputs of xi – contrary to Random Forest Classifier from Sub-
section 5.7.1. We mention that several optimization and modification schemes
can be employed to the k-nearest neighbor method but we did utilize these.

5.7.3 Support Vector Classifier (SVC)

In this section, we briefly introduce Support Vector Classifier (SVC) and de-
scribe roughly how it works without going into the deeper mathematical details
– for this we refer to [9] with their references and the original work [3]. The
overall goal is to find the optimal separating hyperplane for a two-class system
(we later describe how this can be extended to multiple classes) and we assume
that such perfect (linear) separation of the two classes is available. To moder-
ate this procedure, “slack” variables are introduced which allow exceptions
from perfect separation and produce what is instead called soft margins. The
method the use of slack variables to constrain their influence on the obtained
hyperplanes. The optimal support vector classifier can be found using classical
convex optimization techniques.

The multi-class case of SVC is commonly solved by using several binary
classifiers. We use the standard implementation of SVC from scikit-learn [18]
which uses a one-versus-one strategy for this. The one-versus-one strategy builds
a classifier for each possible pair of classes – with n classes, we obtain n(n−1)/2
classifiers. Given an observation x, each binary classifier Ĝij(x) then predicts
either class i or class j. For each class, we count the number of binary support
vector classifiers which places x into it, i.e. the binary classifiers “votes” for its
predicted class. Finally, we define our one-vs-one classifier of x by the class
which received the most votes from our binary classifiers.

5.7.4 Kernel method

The kernel method is a common tool used to allow some statistical learning
techniques to fit nonlinear and high-dimensional manifolds. We utilize it
on the vector representations from Skip-Gram to see whether their (kernel)
transformation can be separated.
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In this description of the kernel method, we rely heavily on [23] and Chap-
ter 14 in [16]. The kernel trick is a general principle which may be applied to
algorithm which can be formulated through inner products 〈x,x′〉. An example
of this is k-nearest neighbor, where we observe

dij = ‖xi − xj‖2 = 〈xi ,xi〉+ 〈xj ,xj〉 − 2〈xi ,xj〉. (5.46)

Formally, we define a kernel function as a mapping κ : X ×X → R with no
further restrictions. The kernel is often symmetric, i.e. κ(x,x′) = κ(x′ ,x), and
non-negative, i.e. κ(x,x′) ≥ 0.

The kernel trick

In this subsection, we describe the kernel trick. Let the observations [x1, . . . ,xN ]
be from some space X . Assume that there exists some mapping φ : X → H,
where H is an inner product space. Define the kernel κ by

κ(x,x′)B 〈φ(x),φ(x′)〉. (5.47)

By applying Mercer’s theorem we may choose the kernel κ (provided that
it satisfies certain assumptions) because it induces a mapping φ. Mercer’s
theorem states that there exists a function φ : X →R so that

κ(x,x′) = 〈φ(x),φ(x′)〉V ,

provided that κ is a symmetric and positive definite. The key step is then
to replace each occurrence of the inner product 〈x,x′〉 with κ(x,x′) in the
formulation of the algorithm/fit function (such as in equation (5.46)). The
trick here is that we may choose our kernel freely, as long as it satisfies the
conditions of Mercer’s theorem. ThusH is potentially infinitely dimensional
inner product space and we do not need the exact form of φ due to Mercer’s
theorem which provides the existence of φ given κ. Note that not the kernel
trick does not apply to all methods and algorithms – an exception is k-means,
but the kernel trick applies to the related k-medoids.

Examples of kernel functions satisfying the conditions of Mercer’s theorem
are

1. Radial basis function (RBF), defined as

k(x,x′) = exp
(
−‖x− x′‖2

2σ2

)
,

where σ2 is a positive constant.

2. Linear kernel, i.e.
k(x,x′) = xT x′ =

∑
i

xix
′
i (5.48)

3. Homogeneous polynomial kernels, defined as

k(x,x′) = (xT x′)d ,

where d ∈N and T denotes transpose (see Chapter 5 of [25]).
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Many examples of kernels are available in Chapter 14 of [16].

5.7.5 Rand index

In this subsection, we describe the Rand index and adjusted Rand index, where
the former was introduced in [20] and the latter in [11]. The purpose of the
Rand index is to compare two partitions (or classifiers/clustering algorithms)
with each other, and we use the Rand Index in Chapter 6 to compare a cluster-
ing algorithm with the true labels.

We lean heavily on the explanations from [16]. Consider two partitions
U = {u1, . . . ,uR} and V = {v1, . . . , vC} of N data points {x1, . . . ,xN }. Define the
following,

1. TP (True positives) is number of data points pairs (xi ,xj ), i , j, for which
it holds that

∃r ∈ {1, . . . ,R} : xi ,xj ∈ ur and ∃c ∈ {1, . . . ,C} : xi ,xj ∈ vc,

i.e. the pairs for which both U and V place them in the same cluster.

2. TN (True negatives) is the number of data point pairs (xi ,xj ), i , j, for
which it holds that

@r ∈ {1, . . . ,R} : xi ,xj ∈ ur and @c ∈ {1, . . . ,C} : xi ,xj ∈ vc,

i.e. the pairs for which both U and V place them in different clusters.

3. FN (False negatives) is the number of data point pairs (xi ,xj ), i , j„ for
which it holds that

@r ∈ {1, . . . ,R} : xi ,xj ∈ ur and ∃c ∈ {1, . . . ,C} : xi ,xj ∈ vc,

i.e. the pairs for which they are in different clusters in U but in the same
cluster in V .

4. FP (False positives) is the number of data point pairs (xi ,xj ), i , j„ for
which it holds that

∃r ∈ {1, . . . ,R} : xi ,xj ∈ ur and @c ∈ {1, . . . ,C} : xi ,xj ∈ vc,

Finally, the Rand index R is defined by

RB
T P + TN

T P +FP +FN + TN
. (5.49)

The lower bound for the Rand index is 0 and the upper bound is 1 – the former
indicating zero overlap between two partitions and the latter indicating perfect
overlap.

The adjusted Rand index is best explained given a contingency table as
visualized in Table 5.1. The values nrc in the table denotes the number of data
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Partition V
Class v1 v2 · · · vC Sums

Partition U

u1 n11 n12 · · · n1C n1·
u2 n21 n22 · · · n2C n2·
...

...
...

...
...

uR nR1 nR2 · · · nRC nR·
Sums n·1 n·2 · · · n·C n·· = n

Table 5.1: A standard contingency table for two partitions U and V . Table
taken from [11].

points x which are clustered into ur and vc. The adjusted Rand index (ARI) is
given by

ARIB

∑
ij
(nij

2

)
− [

∑
i
(ni.

2
)∑

j
(n.j

2

)
]/
(n

2
)

1
2 [

∑
i
(ni.

2
)

+
∑
j
(n.j

2

)
]− [

∑
i
(ni.

2
)∑

j
(n.j

2

)
]/
(n

2
) ,

where the undefined notation can be found in Table 5.1. The adjusted rand
index takes values in [−1,1], with 0 corresponding to expected value of a
hyper-geometric distribution given the clusters sizes , see [11].

An advantage of the Rand index is that it allows comparison between
differently sized partitions. This is useful if given a reference class label and
attempting to find a partition (or classifier) such that clusters are pure (in the
sense that they consist of a single class) – and which may require more clusters
than reference classes.
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Abstract

Background and objective: Electronic health records store information about
encounters and events between health care systems and patients, and represent
a rapidly growing source for medical data analysis. A problematic attribute of
most health care data is heterogeneity and the curse of dimensionality from
transforming qualitative observations. In this study we aim to transform the en-
counters and events to computationally efficient mathematical representations
by utilizing electronic health records displayment treatment trajectories.
Methods: Mathematical representation are obtained with Skip-Gram from nat-
ural language processing and probabilistic distributions from Markov Chains.
We compare their encoding quality by inserting these representation and dis-
tribution estimates as inputs in unsupervised learning tasks. The clustering of
central input groups are compared.
Results: We obtain computationally efficient representations which preserves
the relational structure between encounters and reduce dimensionality sig-
nificantly. We show Skip-Gram outperforms Markov Chains as inputs in un-

1Email adresses: {larsa, thorbjoern}@math.au.dk, kim@cfin.au.dk
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supervised clustering techniques and subsequent identification of treatment
packages.
Conclusion and perspective: The embedding of EHR using Skip-Gram yields an
effective and intriguing representation of events. This method reduces dimen-
sionality by clustering treatment packages in a mathematical representation
suitable for other data analysis problems, effectively homogenizing the dataset.
Using this to merge identified treatment packages into a single EHR entry
could decrease data heterogeneity significantly.

6.1 Introduction

A fundamental problem for the successful incorporation of EHR data into
clinical workflows is data heterogeneity. This occurs across multiple fronts:
different data sources with differing standards, duplicate entries, incorrect
registration but also numerical measurements and free-text observations (the
latter two often called structured, respectively unstructured data). This hetero-
geneity has made a unified analysis, encompassing the entire patient history
and characteristics unfeasible [8, 24]. Historically, this has limited model de-
velopment to (subjective) expert choices of class variables, where such choices
have often been based on hard-earned experience through series of studies.
The aim has often been isolating the effects of a few variables and study their
consequences with respect to a specific ailment. This approach is effective in
finding causal relations between the disease but may fail to understand the spe-
cific patient unless sufficiently many class variables are included (which again
may lead to less interpretable results). Simultaneous integration of diverse
data sources is thus a key challenge for medical data analysis.

The past 10 years has seen major breakthroughs in the analysis of previ-
ously unassailable text data using machine learning, artificial intelligence and
natural language processing, see [13, 14, 17] and their references. Combining
this with modern countries endeavoring on vast collection strategies for elec-
tronic health care data ([28]), the analysis of EHRs is expanding and changing
rapidly both in terms of the available data and methodology. The flexibility
of machine learning models and ability to handle diverse data formats show
promising results and may help to solve the limited scope cherry-picking class
variables using expert identification which might divert a fair statistical analy-
sis. However, many initiatives are still developing and data collection practices
are still converging towards national guidelines.

Part of the integration problem is the treatment of all (unique) actions and
qualitative observations as class variables, resulting in an enormous dimen-
sionality problem. Solving this requires immense amounts of data – much
more than is even available in the era of "big data", and if there is sufficient
data, often the practical usefulness of the model is limited [19] – to qualify a
lot of data as relevant. Furthermore, in comparisons to other application areas
of machine learning, such as Internet text mining, speech recognition and
automatic translation, we cannot easily get more data. Access is limited to due
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privacy concerns and quickly generating health care data is not an option (as
compared to text on web pages or speech recognition). These traits complicates
the integration of health care data.

To tackle the integration problem and solve the sub-problem of utilizing
free-text sources in medical reports, several studies have adopted a technique
called word2vec from natural language processing to extract knowledge from
free-text radiology reports and other medical text-sources. The seminal work
[16] introduced the word2vec algorithms consisting of two techniques, CBOW
and Skip-Gram, which uses unsupervised learning to obtain semantically
meaningful latent word embeddings by training a simple neural network.
Their methodology is not restricted to word embeddings but instead assumes
that each word is defined by its longitudinal position to other words, a con-
jecture first introduced in natural language processing as the Distributional
Hypothesis [9]. In mathematical terms, this translates into assuming a sequen-
tial probabilistic relation between words in a text document (or equivalently
in a sequence of discrete states).

In the clinical field, one of the first adoptions of word2vec was in [20], to
learn concept representations of medical terms based on medical text-databases
such as Pub Med. This inspired many authors to use word2vec-related methods
as a preprocessing step see for example [1–7]. Several of these papers adopt
modifications to the word2vec-method, either in the data cleaning pipeline
[1] prior to word2vec application or in neural network architecture [3]. A
fundamentally different approach using nonnegative restricted Boltzmann
machines is pursued in [31]. Common for all of these studies, the success
of the embedding procedure is evaluated on a subsequent classification task,
independent of the word2vec model.

6.1.1 Contributions of this work

In this study, we aim to solve this integration and dimensionality problem by
applying word2vec, through utilization of the sequential structure in electronic
health records. We examine the obtained representations using clustering
techniques to quantify the clustering performance on predetermined event
groups (e.g. dentist-related treatment, a specific blood sample package etc.)
and verify their strength and sensitivity with respect to our hyperparameters.
We successfully identify clusters of events which may serve as a dimensionality
and noise reduction technique for patient trajectory analysis. Compared to the
above-mentioned studies, which are mostly based on datasets of the magnitude
100 thousand patients and 5+ million of EHR entries, our dataset consists of
only 169 patients with a total of 178 thousand event entries. This serves to
prove word2vec may be successful even for smaller datasets.

The next section provides a description of the dataset and modeling meth-
ods. In the results section, we report and discuss our findings and finally in
the final section provide a conclusion on our findings.
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6.2 Dataset description

We start by providing a practical dataset description and afterwards provide a
formal description. The purpose of the formal description is straightforward,
it provides an abstract formulation of the framework, containing only the nec-
essary assumptions in order to simplify and clarify the structural assumptions
on the dataset. The aim is to make it easy to understand and replicate our
results.

6.2.1 Specific dataset description

Our dataset consists of electronic health records (EHRs) from 169 patients.
These were collected at Diagnostisk Center (DC), Regionshospitalet Silkeborg,
the diagnostic unit at the regional hospital in Silkeborg, Denmark. Our patients
are typically chronically ill and often suffer from chronic pulmonary disease
and several other ailments, including high blood pressure and high cholesterol
– and are often under treatment for these. It is thus important to perceive these
patients as being multi-sick, e.g. suffering from several diseases/ailments con-
currently, complicating coherent symptoms and successful diagnosis. Adding
to this, doctors personalize treatment with their professional, but subjective,
judgment which further increase data heterogeneity. For each patient, the EHR
is comprised of entries from a number of diverse source (e.g. blood sample,
general practitioner visits, medications, surgeries) and as such the data appears
highly heterogeneous.

Patient ID Date (YYYY-MM-DD) Data source Eventname

6 2010-12-18 Pharmacy Mandolgin

6 2014-11-29 Blood Sample P-Natrium

15 2015-09-05 Procedure EKG

39 2016-09-02 Pharmacy Hjerdyl
...

...
...

...

Table 6.1: EHR sample entries.

The records are divided into three groups according to final diagnosis
from DC, namely lung cancer, colon cancer and arthritis. In this setting, the
arthritis patients act as a control group. EHR entries from two years prior to
DC referral and until seven days prior to DC referral are included to emulate
the diagnostic time frame of a general practitioner. The EHR entries consists
of the following variables: anonymous patient ID, data type, event and event
date as illustrated in Table 6.1. The data type variable reflects the database
from which the event in the EHR was pulled from. This could for example
be pharmaceutical database or blood sample database. We note many events
occur in batches - for example a single blood sample may be used to perform
eight blood tests which results in eight entries in the electronic health record.
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The timestamps in each patient record have been pushed by a random time
to de-identify the data, but preserve the sequential and temporal structure. A
number of summary statistics for the dataset is presented in Table 6.2-6.4.

Level Feature Group Count

Patient-statistics No. of patients 168

Arthritis 74

Colon cancer 38

Lung cancer 56

Event-level statistics No. of. unique events 1141

Most common event count 4441

Average event count 82

Table 6.2: SSI dataset statistics.

Feature Group Value

Total no. 93405

Arthritis 36088

Colon cancer 20799

Lung cancer 36518

Max. no. in one EHR 4021

Min. no. in one EHR 36

Average no. of entries 556

Arthritis 488

Colon cancer 547

Lung cancer 652

Table 6.3: Entry-level statistics.

6.2.2 Formal dataset description

Formally, the dataset can be described in the following way. We consider an
unordered collection of sequences e.g.

S = [s1, s2, . . . , sp],

for some p ∈ N. Each sequence sj is an ordered set, consisting of items (i.e.
entry name or symbol) and is denoted by

sj =
(
i1, i2, . . . , inj

)
,
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Data source No. of events No. of. entries

Total 1141 94305

Blood sample 320 40883

GP-related activity 174 19766

Pharmacy/Prescription 436 16765

Procedure 177 8473

Radiology 30 378

Hospitalization 2 127

Ambulant 1 1145

Unknown 1 5868

Table 6.4: Data source distribution.

for some nj ∈N and ij ∈ I , where I denotes the set of all unique items in the
database S given by

I B
{
i
∣∣∣∃ j ∈ {1,2, . . . ,p} : i ∈ sj }.

Note that an item belongs to a sequence s =
(
i1, i2, . . . , ins

)
(consisting of ns

items) if
i ∈ s ⇐⇒ ∃ k ∈ {1,2, . . . ,ns} : i = ik .

The definition of I allows us to pair each symbol with a unique numerical
symbol ID in the natural numbers. Thus henceforth an item or event may also
refer to its corresponding ID. The items and their order define the sequence
and hence the sequences

sa B (i1, i2, i3) , sb B (i2, i1, i3)

are not equal, provided that i1 , i2. Examples of this structure could be a
corpora of documents (sequences) with items being words, or a database of
electronic health records with recorded entry names being items. In the context
of Section 6.2.1, the collection of sequences correspond to the datasets of 169
electronic health records (sequences), consisting of events (items) ordered by
their time & date. The underlying presumption is that the sequential structure
and local context (as defined by the ordering) defines the purpose and meaning
of each item – in natural language processing this is called the Distributional
Hypothesis [9]. Given Table 6.1, the sequence for patient 6, start as

s6 = (Mandolgin, P-Natrium, . . .) .

Assuming that Mandolgin, respectively P-Natrium, are given the event ID 1,
respectively event ID 2, the sequence would start as

s6 = (1,2, . . .) .
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As added auxiliary information in our dataset, we know the data source for
each item/event. To formalize this, let DS denote the space of possible data
source (in our case 8 different data sources as shown in Figure 6.4) and observe
that

∀ i ∃! d ∈DS : data source of i is d,

where ∃! d denotes there exists a unique d. To ease the notation, we will
Section 6.4.3 simply refer to d as DS(i). Additionally, for each sequence s ∈ S
we know the resulting diagnosis Diag(s) ∈ {arthritis, colon cancer, lung cancer}
which is relevant in Section 6.4.5.

Exactly how we utilize the sequential structure in Section 6.2.2 is a mod-
eling question, one possible choice is the embeddings from Word2vec, [16].
Embeddings arises in natural language processing and concern encodings,
e.g. mathematical representations of words (or items). The roughest possible
encoding is the one-hot encoding where each unique symbols is represented by
a |I |-dimensional standard unit vector, i.e. let y denote an item with item ID k

y = (0,0, . . . ,0,1
↑

kth index

,0, . . . ,0) ∈R|I |.

In natural language processing, this illustrates how we would understand
words, if we were only able to form sentences consisting of a single word with
no relational structure surrounding it (i.e. a sentence of multiple words).

6.2.3 Workflow description

The ecosystem, or workflow, for the data analysis is shown in Figure 6.1. It
illustrates how we first clean the raw records through cut-off application
(masking each event which occurs below a certain threshold to a dummy
value 0), then apply word2vec Skip-Gram to obtain event embeddings. These
embeddings are then fed into some classification tasks and the performance
can be measured. The main point of embeddings is that they are trained prior
to training the classifier, allowing a stronger starting point than inputs which
have not been trained prior to classification.

6.3 Methods

Event embeddings have been introduced in the previous section and overall
concern the mathematical encoding of qualitative variables, in our cases events,
into numerical vectors. We aim to model the event meanings by their sequential
placement in EHRs. This is done using two techniques, namely Skip-Gram and
Markov Chains, which each find an encoding based on the sequential order of
events. Note that both encodings do not necessarily optimize with respect to
the same goal and the “encodings” are of different dimensions. Nonetheless
they both aim at representing the relationship between states through their
sequential structure.
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EHR
Records Data cleaning Word2Vec training

Concept Embeddings

Journal classifier RNN classifier

Unsupervised Learning

Preprocessing

Supervised Learning

Figure 6.1: Model development pipeline describing the workflow, starting with
a dataset and ending with a prediction task

6.3.1 Word2vec: continuous Skip-Gram

Continuous Skip-Gram was introduced in [16] as an unsupervised learning
method to obtain semantically meaningful word representations in natural
language processing, with additional computational methods in [18]. The
objective of the Skip-Gram algorithm is to estimate the weight matrix W and
W′ in equation (6.1). Here each row Wi gives an event representation for the
event with ID i. The neural network for Skip-Gram is single hidden layer fully-
connected feedforward neural network, where the input is a one-hot encoding
of the event-ID and the output is an estimated event within the context size C
of the input event. The context around the entry ik in a sequence, is defined as
the window of size W around the entry, e.g.

i1, i2, . . . , ik−W , ik−W+1, . . . , ik , ik+1, . . . , ik+W ,

window of size W around k (apart from ik )

ik+W+1, . . . ,

The true output event is sampled from the indices within context size C,
according to a uniform distribution. The Skip-Gram dataflow graph with input
x can be written as the composition of the following mappings

x 7→ (Wx) 7→W′(Wx) 7→ softmax(W′(Wx))B ŷ ∈RV , (6.1)

where W and W′, denotes matrices of unknown trainable parameters (or
weights) with size D × V , respectively V ×D, where D denotes the (chosen)
embedding dimension and V , the vocabulary size, denotes the number of
unique events after the cutoff (hence V ≤ |I |). The function softmax is defined
on z ∈RV as

R
V 3 softmax(z)B

 exp(zj )∑V
k=1 exp(zk)


j=1,...,V

.
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Let y denote the one-hot encoding true output event with ID k. We measure
the similarity between y and ŷ with the cross-entropy loss function2 and this
results in

L(y, ŷ) = −
V∑
j=1

yj log ŷj = ŷk − log
( V∑
j=1

exp(ŷj )
)
, (6.2)

Backpropagation, introduced in [26], is used to optimize the parameters in (6.2).
Post-training, we normalized each event representation by its Euclidean norm,
as is standard in the literature. The additional modifications to Skip-Gram,
Hierarchical Softmax and Negative Sampling, was added in [18]. We only used
experimented with Negative Sampling and a standard softmax (i.e. no compu-
tational optimization). The purpose of Hierarchical Softmax is computational
simplification (approximation to the softmax function) which was unnecessary
for us due to our small dataset.

In reference to the findings in [29], we experimented with normalized and
unnormalized representations/rows, but we did not notice any systematic
differences between normalized and unnormalized vectors.

Parameter fine-tuning in Skip-Gram

The loss function of Skip-Gram changes whenever the number of negative sam-
ples is adjusted and hence test/training error cannot be used as a performance
criteria to set the number of negative samples. Parameter fine-tuning was thus
done using grid-search and visualizing the embedding using t-SNE, see [15].
t-SNE is a visualization technique used to illustrate similarities between high-
dimensional points in a low-dimensional setting (2- or 3-dimensional) and
has gained significant popularity since its introduction. Before the analysis, a
cutoff threshold was applied in the following way, if the event occurs between
the cutoff, we replace the event with a generic event token Unknown event as
seen in Figure 6.4. The alternative was to completely remove such events, but
this way maintains the sequential spacing between events and avoid synthetic
pairings arising from removals. Notable hyperparameters of Skip-Gram are
are

• #negative samples, embedding dimension, cutoff threshold, window-size.

Our primary visualizations and analysis are based on

• #negatives samples = 12, embedding dimension ∈ {10,20}, censoring
cutoff = 5.

If the dataset is very heterogeneous like ours, censoring cutoff can heavily
homogenize the results (though with the risk of oversimplifying). If the time-
stamps are unreliable, e.g. 10 observations at 10:24 on the same day (typical
for medical observations), then the window-size can be chosen to take this into
account.

2The one-hot encoding y is viewed as a degenerated probability distribution for the cross-
entropy definition.
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(a) Embed. dim. 5 (b) Embed. dim. 10 (c) Embed. dim. 50

Figure 6.2: t-SNE visualizations of Skip-Gram event representations with
colouring based on data source variable.

Dimensionality reduction of Skip-Gram

Skip-Gram is often introduced understood as a dimensionality reduction tech-
nique, e.g. it reduces the (one-hot encoding) dimension of data to a chosen
embedding dimension. However, given that we may choose any embedding
dimension, a natural question is:

Which embedding dimension is the best?

Clearly, this question depends on the definition of best. We note however, that
the effect of the embedding dimension can be drastic. This is illustrated in
Figure 6.2 which shows the effect of changing embedding dimension through
t-SNE ([15]) visualizations. Traditionally, dimensionality reduction can be eval-
uated using (kernel) Principal Component Analysis (k-PCA) on the obtained
weight representations (Wi)i∈1,...,V , see [22] and [30]. k-PCA aims to capture
(inherent) lower-dimensionality in a higher-dimensional space and the kernel
allows fitting to certain non-linear lower-dimensional manifolds.

We test this using grid-search across linear, polynomial and Gaussian
kernels and embedding dimension 5, 10, 15, 20, 50 and 100. Figure 6.3 shows
the eigenvalues decay for some of these runs. The initial drop-off point consists
of a single eigenvalue and is explained by the average. Overall, we observe
that eigenvalues are generally of the same magnitude without a sharp cut-off
point which is the common measure to identify a lower dimensionality. This
indicates data cannot be represented through a lower-dimensional manifold.
This tells us two things, either our dataset consists almost mostly of noise with
no inherent lower dimensionality, or Skip-Gram is not doing dimensionality
reduction in the traditional sense.

6.3.2 Markov Chains

Markov Chain are classical in mathematical modeling, explicitly constructed
to model probabilistic transitions between discrete states, e.g.

· · · → ij → ij+1→ ·· ·
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(a) Linear kernel. Embedding dimension
10

(b) Polynomial kernel. Embedding dimen-
sion 10

(c) Radial Basis kernel. Embedding di-
mension 50

(d) Linear kernel. Embedding dimension
50

Figure 6.3: Plots of eigenvalues for different kernels and embedding sizes

where Xt belong to some discrete set of events. For more theory, we refer the
reader to [25]. As an alternative to the event representation obtained using
Skip-Gram, we estimate the V ×V transition matrix P of a simple one-step (or
order one) Markov Chain and use the rows of P as event representations. In a
1-order Markov Chains, the context of an entry is simple and merely defined
as prior entry, i.e.

. . . , ij−1

context of ij

, ij , ij+1, . . . .

An event representation from a Markov Chain refers to the ith row Pi of P,
e.g. the estimated conditional distribution given current event equals i. This
estimation procedure may lead to imprecise estimates for rare transitions
due to our dataset size. The nature of Markov Chains lends itself to effective
estimation of next-event, provided the event space is small. This is different
from Skip-Gram which utilizes a context to pair events and thus is trained to
predict the probability of state b inside the context window of state a. This
difference shows up again in Section 6.4.4.
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6.3.3 Implementation of methods

We train Skip-Gram and fit a Markov Chain on a train/test split of 60/40 per-
cent across patients. Due to the size of our dataset, we have chosen a relatively
large test set to avoid over-fitting. The code-implementation of Skip-Gram was
done using the open source machine learning library Tensorflow in Python
3.5. The implementation of Markov Chains is straightforward and was imple-
mented using the library Numpy in Python 3.5. The classification algorithms
were implemented using the default configuration of the algorithm in the
scientific computing library [23] for Python. We refer to their documentation
for implementation details as well as [10] for mathematical details.

6.4 Results

In this study, we explore the ability of Skip-Gram to cluster medical events
and support data analysis in clinical decision support systems (CDSS). We
started by finding the event representations, that is, the weight matrix W in
Skip-Gram and transition matrix P for the Markov Chain.

We evaluate the representations using the following criteria

(1) t-SNE-visualization of representation with annotated event groups.

(2) Unsupervised clustering to rediscover the annotated event groups from (1).

(3) Data source classification based on representation and the data source
class.

(4) Next-event prediction, given the current event.

(5) Diagnosis classification, given the averaged event representation of the
patients electronic health record.

We elaborate further on the evaluation criteria in their respective subsections.

6.4.1 Visualization of Skip-Gram

We visualize our Skip-Gram embedding using t-SNE obtained with embedding
size 10 in Figure 6.4, where each point in the plot refers to a unique event.
In the figure, post-visualization, we have identified and marked a number
of categories and we see that the figure demonstrates how the Skip-Gram
representations cluster related events together, and in this sense captures an
equivalent of a "semantic meaning" for the EHRs.

Practically, we observe a large portion of events in a scattered cloud which
we identify as consisting mostly of events performed/prescribed by a general
practitioner (GP). Various treatment packages, dental treatments, mammog-
raphy screening, arthritis-related activities and blood circulation treatment
surround the larger cloud of GP-related events and illustrate the notion that
these treatment packages are subgraph in the patient trajectory and supports
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Allergy tests

Psyhiatric drugs

Mammography screening

Astma treatment

Dental treatments

Morning urin tests

Artery blood sample

Infection counts

Blood circulation

Blood sample tests

GP-related events

Arthritis-related treatment

Lung-related examinations

Figure 6.4: t-SNE visualization of Skip-Gram event representations. The color-
ing is based on the data source and the event name for each point is known.
The marked groups have been identified post-visualization and illustrates the
effectiveness of Skip-Gram in identifying clusters of events. The drawn lines is
directly related groups and the dotted lines are conceptually related groups.
Read more on this in the text.

our understanding of the general practitioner as being the hub for referrals.
Central in the plot, at the bottom, a scattered grouping is colored in mostly
black and green. This cloud consists several types of events with no single
common denominator other than examinations of multi-sick patients, with
the lower half of this cloud consists of lung-related examinations connected
with a reduced lung functionality but this is also closely connected to dietary
recommendations. The upper parts of the cloud appear to be Parkinson’s dis-
ease examinations but certain events obfuscate this hypothesis, leading us to
believe it is a more general group of psychiatric/neurological evaluation(s).
In conclusion, it appears to mainly consists of directly diagnosis-related treat-
ments and few treatment-related events. To the left, a large teal cloud consist
almost entirely of blood sample tests. Within this group, we observe several
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subgroups such as a group for tests of allergies, artery blood sample test pack-
age and several other groups. It is particularly evident here that blood sample
tests are performed in packages. Some of these are exemplified as markings in
Figure 6.4. The structure of the entire plot in Figure 6.4, indicates many events
are related to each other (the large green/black cloud), whereas certain groups
of events happen mostly in connection with each other, illustrated as isolated
groups and exhibiting a treatment-subgraph.

6.4.2 Unsupervised Clustering

Unsupervised clustering technique can be used to "rediscover" an underlying
class structure. In Subsection 6.4.1, we identified several clusters of treatment
packages in a t-SNE visualization of Skip-Gram embeddings. We perform this
analysis to objectively quantify the derived clusters and avoid visual bias. To
test this quantitatively, we apply unsupervised clustering techniques (k-means
and k-medoids, see [10]) to the Skip-Gram representations (Wi)i≤V and verify
whether the algorithm successfully creates "clean" clusters, e.g. the same data
source variables in a cluster (even for large k) and whether it recreates clusters
identified in Figure 6.4. The standard F1-score is not applicable here, since
k-means may need more clusters than there are data source variable values to
fully describe the data. Instead, we use the adjusted Rand Index [12], which
is a measure of the agreements between two different partitions of the data
points and can be used across different partition sizes (e.g. different number
fo classes). The adjusted Rand Index is one for a perfect partition match, and
has expected value zero for a random cluster (e.g. random cluster assignemnt).
However, one should exercise caution in merely studying the value of the
adjusted Rand Index, as it scales inversely with the number of clusters k, as
evidenced in Table 6.5. In other words, we compare the partition/clustering
from k-means/medoids with the partition from the data source variable (true
label). Let I ∗ ⊆ I denote an annotated cluster from Figure 6.4 and let (Kj )1≤j≤k
denote the jth cluster from k-means or k-medoids. Define cluster accuracy for
C by

CAI ∗ =
max1≤j≤k |Kj ∩I ∗|

|I ∗|
,

e.g. the most common cluster Kj for the events in C divided by the total cluster
size. Hyperparameter search was done with k ∈ {5,6, . . . ,150} but for simplicity
we only display k ∈ {5,10,20} as the results extrapolate. The "kernel trick" (see
p. 488 in [21]) was used on k-medoids with linear, polynomial and Gaussian
kernels, however we subsequently omitted the three kernels, as they had ex-
actly the same performance. The results are shown in Table 6.5. To account for
this, we compute a 95-% confidence interval obtained via bootstrapping and
study whether the Rand Index belongs to this. Table 6.5 shows the adjusted
Rand index is firmly outside the bootstrap interval, signifying that our unsu-
pervised clustering technique is able to clusters point into their correct data
source class and much stronger than random guessing. For the predetermined

110



6.4 Results

k-means k-medoids

n Bootstrap interval Rand index Bootstrap interval Rand index

5 (-0.0025,0.0040) 0.36 (-0.0028,0.0040) 0.31

10 (-0.0024, 0.0031) 0.22 (-0.0024,0.0026) 0.24

20 (-0.0016, 0.0020) 0.11 (-0.0020,0.0022) 0.13

Table 6.5: Unsupervised clustering performance.

groups of events, as annotated in Figure 6.4, the performance of k-means is
shown in Table 6.6. The accuracy is measured as the percentage of the cluster
within the same unsupervised cluster from k-means. We observe that k-means
successfully clusters several of the annotated groups to the same clusters.

k = 20 k-means k-medoids

Event Cluster No. of events Cluster accuracy

Allergy tests 16 1.0 1.0

Artery blood sample 24 0.96 0.96

Arthritis-related treatment 35 0.8 0.77

Urin tests 12 0.67 0.75

Table 6.6: Unsupervised clustering of select subgroups.

6.4.3 Data source classification

Events tend to occur in batches, as mentioned in the dataset description, and
in particular close to events of the same data source, see Figure 6.1 for sample
entries and Figure 6.4 for summary statistics. This motivates the following.
We train three classifier: k-nearest neighbors classifier (k-NN), Random For-
est Classifier (RFC) and Support Vector Machines (SVM). For details on the
classifiers, we refer [10]. Denoting the classifier by C, our prediction is given
by

C(x) = ŷ,

where x denotes the event representation from Skip-Gram and ŷ ∈RV is the
predicted data source from the classifier. For the SVM, the "kernel trick" (see
[21]) was used with linear, polynomial and radial basis kernels but neither
showed any performance improvement over the other, hence for simplicity we
just report the results of a linear kernel. We measure the performance by the
accuracy, i.e.

CAC =
1

#samples

∑
j

1{C(xj )=yj }
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For all of the above classification methods, the 5-fold cross-validation accuracy
was computed and is stated in Table 6.7. These results apply across a wide range

Table 6.7: Data source classifier accuracy

Skip-Gram Markov Chain

k-NN RFC SVM Next-event DS
CV accuracy 0.77 0.77 0.76 0.87

of embedding dimensions, with negligible changes in accuracy. We observe that
the classification significantly outperforms naive guessing (which at best would
guess the most common class every time, resulting in accuracy of 0.38). This
shows that our event representations contains strong relational information
and despite not being trained for it, it is capable of finding structure that was
not part of the original input (only directly, due to batches). Knowing that
events tends to occurs in batches, a more direct and local approach to guessing
the data source could be more straightforward. For example given an event x,
our predicted data source is given by

C(x) = DS(argmax
j

(Px)j ),

where DS(·) denotes the data source of the event with id ·, i.e. the data source of
the most likely next event. This result in an accuracy of 0.87 and outperforms
the other methods. This is not surprising since the Markov Chain is specifically
trained to predict the next event (and thus indirectly, the next data type), and
aligns nicely with the batch occurrence of events. For comparison, Skip-Gram
is trained with a larger context window (window size 10) and thus is not as
“local” as Markov Chains.

6.4.4 Next-event prediction comparison

We evaluate the performance of the representation by testing its ability to
predict the next event, e.g. the accuracy of next-event prediction. The large
event space (~1100 unique events) implies that these predictions cannot have
a high accuracy. For the Markov Chain, the prediction for event yi+1 given yi is
simply

ŷi+1 = argmax
i

Pi . (6.3)

For Skip-Gram, we use two methods due to the training goal of Skip-Gram as
discussed in Section 6.3.2. In the first method, the next-event prediction is the
event in closest proximity of the average contextual event representation, e.g.
the average of the event representations. This corresponds to the Continuous
Bag-of-Words (CBOW) algorithm from the word2vec paper, e.g.

�eventi+1 = argmax softmax
(
WT (W′)T

1
|C|

∑
j∈C

xj

)
,
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where C denotes the context size and xj denotes the jth event in the context.
In the second method, a recurrent neural network (RNN; [11, 27]) is trained

on the embedded patient trajectories to perform next-event prediction. We use
a long short-term memory cell for the RNN (same as [2]), where the cell input
is the Skip-Gram event representation. Every output of the RNN is turned into
an appropriately dimension probability distribution, using a fully connected
feed-forward neural network with softmax activation function.

CBOW Markov Chain RNN
Test accuracy 0.01 0.18 0.28

Table 6.8: Next-event accuracy

The CBOW algorithm performs badly and falls victim to the same problem
as mentioned at the end of Section 6.4.4, namely mostly predicting the average
event with an extremely small diversity of predicted events. Nonetheless, the
same Skip-Gram representations used in a RNN outperforms the Markov
Chain.

6.4.5 Diagnosis classification

Each electronic health record correspond to a patient who has visited the Diag-
nostic Center, and received a diagnosis (lung cancer, colon cancer or arthritis).
To draw comparison to the related article mentioned in the introduction, we
also evaluate a classification task.

Similar to [1], we train a k-NN classifier on patient journals through journal
average representations (e.g. average of word vectors). We fit the classifier on a
train/test split of 60/40 percent across patients and report the test set accuracy.
Our test set accuracy using journal averages does not amount to more than

Normalized journal vectors
Test set accuracy 0.45

Table 6.9: Accuracy for the diagnosis prediction.

random guessing, considering that 44 percent of all patients belong to the
arthritis group. Evidently, our classification performance is poor compared
directly to other results, e.g. [2] and [1], but comparatively our dataset is
smaller and much more heterogeneous which may explain the difference.
Noteworthy, classification performance may depend on the events which are
unique to a certain class, hence effectively acting as a classifier group (see
visualizations in [1] and [15] ). Comparatively, this is not the case for our
dataset – data heterogeneity implies that no common, or even uncommon,
event(s) can effectively be attributed to a single diagnosis.
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6.5 Conclusion

In this study, we benchmarked the ability of Skip-Gram to obtain latent event
representations with Markov Chains. We successfully identify concept groups
in Figure 6.4, showing that Skip-Gram effectively and autonomously clusters
treatment regimens together without prior knowledge of treatment relations
other than the sequential structure. In addition, visualization reveals informa-
tion on the large-scale structure of treatment trajectories, successfully identify-
ing larger regions, e.g. GP-related events and blood samples. The results are
often so clear, that even a non-specialist is able to recognize the similarities
produced with this method. We conclude that Skip-Gram is capable of identify-
ing subgraphs in the patient trajectory and associating events. We believe that
this could serve as inspiration to standardize treatment packages into a single
EHR entry, simplifying patient trajectory and pathway analysis and decreasing
data heterogeneity significantly.

The lower-dimensional mathematical representation allows us to integrate
the data with other numerical observations while the sequential structure
mitigates the information loss in connection with the dimensionality restriction.
This, in turn, would greatly enhance model robustness and lower variance.

For the future, we aim to establish whether this the methodology could be
utilized as dimensionality reduction in the following two-fold iterative man-
ner. First, reduce dimensionality and heterogeneity by identifying sub-graphs
using clustering techniques on initial Word2Vec representation. Manually in-
spection with domain knowledge to group treatment packages into a single
entry (requires reasonably sized event spaces). Secondly, reapply Word2Vec
representation on the reduced to obtain mathematically rich relational repre-
sentations.
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Analysis of medication sequences for

sepsis patients

Thorbjørn Grønbæk

Draft

7.1 Introduction

A central belief in every person is that we should not get “more” sick by at-
tending the hospital or a similar health care institution. Sepsis, an infection in
the blood, however, occurs primarily in the hospital setting for already sick
patients. It has been shown to often be connected to insufficient hygiene pre-
cautions and implanted foreign bodies. Sepsis is be a life-threatening condition
with a 30-80 percent mortality rate, depending on the circumstances, and
every precaution should be taken to prevent it from occurring and to treat
it effectively when it does. It may be difficult to diagnose as symptoms may
be few, if any, or overlap with other diseases so that the patient is already
in a serious sepsis condition when diagnosed. Both a timely diagnosis and
effective treatment are needed, as fast response time may drastically reduce
the mortality rate.

In this work, we study the treatment of sepsis, which primarily includes
antibiotics and intravenous fluids. Unfortunately, we have only limited knowl-
edge on the effectiveness of a given antibiotic for a specific patient, despite
the alarming mortality rate. Most treatment is currently based on a general
prioritized list of effective medications contrary to custom medication choices
based on patient attributes.

We study two datasets of medication orders for patients admitted to Stan-
ford Health Care. In the first dataset, we study the medication order for patients
for whom an alert for sepsis is registered when admitted. This dataset is di-
vided into two groups during a trial period – in one group an alert is simply
registered and in the other group it is registered and sent to a doctors pager. It
is not confirmed in the dataset whether the patients actually had sepsis or not
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– thus we will also be analyzing false positives.
We analyze how the alert system to study affects the treatment. Further

details on the alert system and data collection process are presented in Sec-
tion 7.2.

In the second, much larger, dataset, we also study the medication ordering
and the graph of treatment packages (introduced in the next section). This
dataset constitute a single group as it had no alert registration. Since we
conclude in our analysis on the first dataset that sending the alert to a doctors
pager does not alter the treatment, we decided to merge the first dataset with
the second dataset to form a merged dataset.

7.2 Data collection and datasets

The data consists of 24 hour time window medication logs following a sep-
sis alert (or registration for the second dataset). The alerts and registrations
includes false positives. The log stores medications and intravenous fluids pro-
vided to the patient during the treatment of sepsis (or possibly no treatment, if
no sepsis was diagnosed). A sample record is displayed in Table 7.1. We shall

Patient ID Date (YYYY-MM-DD HH:MM) Medication ID Medication name

6 2010-12-18 08:13 143 Terazosin

6 2010-12-18 08:37 37 Pravastatin

6 2010-12-18 11:00 14 Metformin

6 2010-12-18 14:00 17 Metoprolol

Table 7.1: Synthetic sample log for a single alert occurring with timestamp
2010-12-18 6:37.

henceforth refer to a 24 hour time window with medications and intravenous
fluids as a sequence. As described below on noisy timestamps, it is necessary
to truncate timestamps into the nearest hour and thus the resulting sequence
obtained from Table 7.1 is given by

({143,37}, {14}, {17}), (7.1)

where we use the notation of Subsection 5.1. We shall call the itemsets (as
explained in Subsection 5.1) for treatment packages, e.g. {143,37} and {14}
are treatment packages. Both datasets have been preprocessed for errors, and
thus the represented characteristics are obtained after cleaning. The cleaning
included removing patients which had no medication entries at all in the
dataset (only 2 patients) and removing alerts which had both an active alert
and a control alert within the designed 24 hour window of observation – thus
rendering it unclear whether to assign the alert to the active or control group.
These two patients were not included in the merged dataset.
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Noisy timestamps

Timestamps are unfortunately noisy and imprecise – this is a part of the data
collection pipeline, as we use the timestamp on which the data is entered
(other timestamp choices are not always available). As an example of this,
a patient had an alert trigged at 7pm in the evening and the next entry in
the entire patient log (not just a medication entry) was at 1pm the following
day, where around 20 treatments/events were logged. Clearly, we cannot have
20 treatments/events within a single minute in the real world, but in the
logged world, this occurs somewhat regularly. This limits reliability of the
given sequential ordering of entries. Of course, this is an extreme case, but
it serves to show that timestamps are noisy (thus necessarily the sequential
order is noisy). To mitigate this, we instead study ‘treatment packages’, i.e. we
merge all the given medications within a single hour into a single treatment
package (item) to avoid relying too heavily on the noisy timestamp. This means
that the sequences are truncated and may contain at most 24 entries (1 for
each hour) and that the space of possible treatments packages is increased (by
combining different medications at different hour slots). This truncation aligns
with the clinical reality, namely that a treatment strategy is often chosen rather
than a single medication. Note that if the hour contains only a single or zero
medications, the given treatment package is the same as the given medication.

7.2.1 Two datasets

The first dataset studied in this paper originates from Stanford Health Care
and concerns testing a clinical alert system for sepsis. Previously, no system
had been used to warn of sepsis risk/symptoms and thus as an introductory
study, an alert system was set into place where half of the alerts was sent to
doctor pagers (active group) and the other half simply logged as a control
group. We shall refer to these groups as active and control to align with the
medical literature. The alert system itself was simple and only based on value
thresholds for certain observables acting as alert triggers. The setup of the alert
system is not further specified.

The goal was to determine whether sending the alert had an actual treat-
ment-altering effect. The characteristics of the first dataset is described for
both groups in Table 7.2 and Table 7.3. Note that number of sequences does
not correspond to number of patients as a patient may contribute with several
alerts, as long as the 24 hour time windows do not overlap.

The second dataset contains logged sepsis registrations but without division
into groups as in the first dataset. Medications and intravenous fluids are
registered using the same procedure as for the first dataset. As mentioned in
the introduction, we decided to merge the second dataset with the first dataset
by dropping the active/control group variable for the first dataset. This results
in the merged dataset.

The merged dataset consists of the two datasets and these have been cross-
checked for duplicate patients and sepsis registrations. The characteristics of
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Level Variable Amount

Dataset No. of sequences 737

No. of empty sequences 55

Sequence Shortest sequence 1

Longest sequence 18

Average sequence length 3.6

Median sequence length 3

No. of unique treatment packages 1061

Table 7.2: Statistics for the active group of the first dataset.

Level Variable Amount

Dataset No. of sequences 685

No. of empty sequences 50

Sequence Shortest sequence 1

Longest sequence 17

Average sequence length 3.5

Median sequence length 3

No. of unique treatment packages 947

Table 7.3: Statistics for the control group of the first dataset.

the merged dataset is described in Table 7.4. The goal for the analysis of the
merged dataset is to visualize the graph to look for rare sub-graphs and predict
the next medication using a Markov Chain.

It is evident from the average sequence length that we cannot expect a
deep analysis, when we often only have 2 or 3 medications during the 24
hour time window. Clearly, a Markov Chain with 16971 unique states and
≈ 3× 14833 ≈ 44500 entries is not enough to properly estimate the transition
probabilities for all states. Nonetheless, we still wish to fit a Markov Chain to
establish a benchmark. Thus it is necessary to setup a further data processing
step, in which we filter out infrequent entries to obtain fewer states. This is
done using Sequential Pattern Mining.

7.3 Methods

Overall our data consist of qualitative variables (medications/intravenous
fluids) and we aim to model them through a Markov Chain. The initial data
sequences are, however, too short and diverse to obtain a strong model fit. To
mitigate this, we use Sequential Pattern Mining to find the frequent subse-
quences of treatment packages and filter the sequences using these.
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Level Variable Amount

Dataset No. of sequences 14833

No. of empty sequences 4907

Sequence Shortest sequence 1

Longest sequence 19

Average sequence length 2.9

Median sequence length 2

No. of unique treatment packages 16971

Table 7.4: Merged dataset statistics.

7.3.1 Sequential Pattern Mining

In this section, we introduce Sequential Pattern Mining (SPM) for which we ob-
serve that our datasets fits the framework of subsection 5.1. Sequential Pattern
Mining (SPM) is a classical method from computer science to find frequent
subsequences in a sequential database using effective search algorithms. Recall
that given a sequential database S , I defines the set of unique items in the
dataset. In substantially larger databases than ours, it is unfeasible to count the
frequency of all possible subsequences and this necessitates effective search
algorithms. We mention PrefixSpan [3] and CM-Spam [1] which we tested and
used from the Java-library SPMF [2].

Table 7.4 establishes that |S| = 14833 (including empty sequence) and
|I | = 16971 through a total of 14833 sequences with an average length of ap-
proximately 3. To filter these sequence, we need to define when a subsequence
is frequent. The frequency (or support) of a subsequence sa is defined by

f (sa) = |{s ∈ S | sa v s}|, (7.2)

where v is defined in Section 5.1. We introduce a hyper-parameter P called the
minimum support, which defines a threshold. A subsequence sa is frequent if
f (sa) ≥ P .

Note that treatment package is an item in the terminology of Section 5.1.
Thus in particular for each treatment package t, the above definition is equiva-
lent to

f (t) =
|{s ∈ S | t ∈ s}|

|S|
,

e.g. the number of sequences that t occurs in. This definition aligns with the
above as f ({t}) = f (t). Observe that a subsequence sa of length 2 can only be
frequent if each item (treatment package) in it is frequent itself.

This definition of frequent is analog to the cut-off level from the Skip-Gram
algorithm used in Chapter 6, though we use the frequency acrosss sequences
instead of entries.

123



Chapter 7 • Analysis of medication sequences for sepsis patients

Parallels to Markov Chains

Sequential Pattern Mining has a direct connection to Markov Chains (MC).
Firstly, if the itemsets are of size one, this corresponds exactly to studying
Markov Chains as itemsets can be identified with states. In this special case,
frequent itemsets in SPM corresponds to subsets of the state space in the
Markov Chain, for which it holds that there exists a path through the states
and this path occurs in at least P percent of the observed sequences.

Secondly, for the general case, SPM always corresponds to a MC with the
following state space M

M = {0,1}|I |

and the itemset i can be written as the state i, given by

i = (0,1,0,0, . . . ,0,1,0,1)

|I | entries

where 1 in entry j of state i corresponds to item j being in the itemset i.
Technically it is required of the state space M that at least one coordinate
is 1, though the NO-MED token in next chapter could correspond to the
null-state (all zeros). This leads to a large state space of the MC as a given
itemset may contain all unique items I . The transition matrix of this MC
is poorly estimated due to the state space size. But we may still search for
frequent subsequence, which does not rely on the transition matrix. With this
connection established, write a candidate subsequence as s = (Y1,Y2, . . . ,Yn).
This candidate subsequence may be formulated as a sequence of states in the
MC. It occurs in the Markov Chain if there exists a sequence s̃ = (X1,X2, . . . ,Xm)
of states X1 such that

∃m1 < m2 < . . . < mn : ∀i∀k ∈ Yi∃Xmi : 1 = (Xmi )k , (7.3)

where (Xmi )k denotes the kth entry of the state Xmi . Observe that this formula-
tion is parallel to the subsequence formulation in subsection 5.1.

Filtering using SPM

We proceed to filter the sequences by removing treatment packages which
occurs below the threshold P and collecting the resulting sequences which
consist of only frequent treatment packages – we have thus modified the
sequences. Note that frequent subsequences of length 2 or greater are not
used for filtering. The resulting dataset is described in Table 7.5. Note that we
have removed the empty sequences from the dataset, but we mention them
as they are a substantial part of the original dataset. Moreover, note that the
number of unique treatment package correspond to subsequences of length
1. Furthermore, this dataset still includes sequence of length 1, which cannot
be used for Markov Chains (as we need k prior state(s) for a k-order Markov
Chain and k ≥ 1).
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Level Variable Amount

Dataset No. of sequences 7475

No. of empty sequences 0

Sequence Shortest sequence 1

Longest sequence 9

Average sequence length 2.04

Median sequence length 2

No. of unique treatment packages 31

No of unique subsequences with length > 1 6

Table 7.5: Filtered merged dataset statistics.

7.3.2 Markov Chains

The central question given a sepsis patient is the treatment/medication strategy.
We used a Markov Chain to predict the next medication, given a prior med-
ication, on the filtered dataset from Section 7.3.1. Due to the average length
of the sequences, it is only feasible to use a first-order Markov Chain. We had
to filter away sequences of length 1, in order to obtain an initial state. This
results in dropping another 3306 sequence, ultimately yielding the dataset
described in Table 7.6. For the theoretical foundations of Markov Chains, we

Level Variable Amount

Dataset No. of sequences 4169

Sequence Shortest sequence 2

Longest sequence 9

Average sequence length 2.87

Median sequence length 2

Table 7.6: Markov adapted merged dataset statistics.

refer to [4], but in general we mention that the transition probabilities are
estimated by the observed frequencies. We chose to give longer sequences more
weight, by counting frequencies by number of occurrences in total across all
sequences, divided by the total number of occurrences. We did this to obtain
more diversified sequences and give weight to longer sequences, where more
clinical decision information may be contained.

7.4 Results

In this section we describe the results of our analysis. In Subsection 7.4.1,
we analyze whether the alert system alters the treatment strategy for sepsis
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patients. We test whether the inclusion of a NO-MED token in empty hour slots
may lead to better analysis of medications gaps in Subsection 7.4.2. Finally, in
the Subsection 7.4.3 we test whether a Markov Chain can be used to predict
the next medication.

7.4.1 Graph analysis for control and active

In this subsection, we analyze the differences in the treatment packages be-
tween the two groups of the first dataset. Table 7.2 and Table 7.3 describe
summary statistics of the dataset. We observe that these do not differ signifi-
cantly from each other. The 9 most common medications (treatment packages
of size 1) are plotted with their frequency for the active group in Figure 7.1
and the control group in Figure 7.2, where the group 0 is the accumulated
frequency of all other remaining medications (among the frequent medica-
tions). These plots shows that the frequent medications for both groups are
very similar and the only moderate difference is the cumulative frequency of
the remaining states. As we note later, this encouraged us to study semi-rare
treatment packages, as the common states are similar. Further comparison of

Figure 7.1: Barplot for 9 most frequent medications of the active group. The
value 0 correspond to the cumulative frequency of the other medications.

nodes, edges, frequency of edges in the graph revealed no major differences
between the active and control group. Finally, we studied the graph created
by the transition matrix of both groups. A visualization is shown in Figure 7.3
based on the merged dataset, but the graphs were too sparse to make sense for
the two groups in the first dataset. Each node (red dot) represented a treatment
package and the node sizes in Figure 7.3 are scaled with the inverse frequency
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Figure 7.2: Barplot for 9 most frequent medications of the control group. The
value 0 correspond to the cumulative frequency of the other medications.

of the treatment packages. A line is drawn between two nodes if the transition
from one to the other occurs more than once. The clinicians found this visual-
ization particularly helpful and were interested in (semi-rare) subgraphs of
the visualized graph. This led to exploration of sub-graphs – or in other words
rare treatment package patterns which are used infrequently. We observed no
major differences between the groups and we decided to merge the groups for
further analyses.

7.4.2 No medication token

We included a NO-MED token in each hour slot of the 24 hour time window
after an alert to research whether the number of NO-MED tokens could be
an attribute separating the control and active group. The sample entry from
Table 7.1 would thus become,

({NO −MED}, {NO −MED}, {143,37}, {NO −MED}, {NO −MED}, {14},
{NO −MED}, {NO −MED}, {17}, {NO −MED}, . . . , {NO −MED}),

where the vector has 24 entries (one for each hour from the alert time.) The
idea was that the number of NO-MED between entries could be a predictor.
Unfortunately, it introduceleadd NO-MED as the most common entry and
made the model increasingly hard to interpret. The inclusion seemed to over-
complicate the interpretation of both the frequent itemsets and the Markov
Chain predictions tasks and thus we decided to exclude it. However, for a
different model or larger dataset, it could be worthwhile to revisit this idea.
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Figure 7.3: Network visualization with node size equal to inverted frequency
of the treatment package.

7.4.3 Medication prediction

On the merged dataset, the goal was to predict the next medication and we
model this using a Markov Chain on the merged filtered dataset adapted to a
Markov Chain, described in Table 7.6. Note that the difference from the merged
filtered dataset to the merged filtered dataset adapted to a Markov Chain is
that we have removed sequences of length 1.

Given a prior even x, a Markov Chain estimates the conditional probability
P(y | x) by the estimate p̂, given by

p̂ = Px

where P denotes the transition matrix of the Markov Chain, and Px its xth row.
Naturally, the prediction of the next state is simply

ŷ = argmax
j=1,2,...,37

Px.

We split the dataset in Table 7.6 into a training and test set split of 80/20
percent. We obtain a test accuracy of 0.24, which appears reasonable as a
Markov Chain is a simple model and we have a 31 possible states.
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Dataset Accuracy

Training set 0.24

Test set 0.24

Table 7.7: Markov Chain prediction accuracy.

7.5 Conclusion and perspectives

In this study, we initially aimed to analyze the effect of an alert system for
sepsis as to whether it altered the treatment. The initial data cleaning procedure
revealed major problems in the amount of data and we had to filter away many
entries to obtain data suitable for analyzing the frequency of treatments and
predicting the next medication using a Markov Chain. The results from our
analysis points in the direction of no treatment altering effect, but we believe
that a larger study may be warranted to study semi-rare subgraphs and discover
alternate treatment pathways.

Later on, we received the second dataset, which was substantially larger
than the first, but it did not include the group variable. This led us to focus on
prediction of the next medication using a Markov Chain but we still needed to
filter the dataset to obtain data suitable for statistical analysis. Most likely, a
Markov Chain is not an optimal choice of a model. However, with extremely
short sequences (average length around 3) it seemed infeasible to attempt more
advanced models.

At this point, the main goal of the project shifted away from prediction
and towards feature learning and visualization, which helps doctors to suggest
further hypotheses using their domain-knowledge and helps the statistician
select more clinically relevant problems and methodology.

In the future, we would like to study the application of a word embedding
model to the problem, similar to Chapter 6, but we would need a larger
dataset with much longer sequences. This could be obtained by including non-
medical events from the the electronic health record of the patient. We would
use the embedding model to transform the input from qualitative variables
to numerical vectors in a lower-dimensional space (but retaining sufficient
semantic meaning). We would then visualize these vectors using t-SNE and
use/feed these transformed vectors (and thus transformed treatment sequence)
as inputs into a recurrent neural network as we did in Chapter 6.

Another possibility is to include other patient attributes. One could hypoth-
esize that the sub-graph of patients with a certain attribute (old, young, tall,
short etc.) could lead to treatment patterns which are more frequent for the
sub-group than the general cohort.
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