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Introduction

In this paper, we evaluate the relative K-theory of truncated polynomial algebras
A = Alz]/(z"),

where A is a smooth algebra over a perfect field &k of positive characteristic. This
extends the calculation in [3], where the basic case A = k was considered. Our
motivation to consider the more general case is that it also leads to a calculation
of the groups Nil,(A). The results are stated in terms of the (big) de Rham-Witt
complex of Deligne-Illusie. When A is a polynomial algebra, the structure of these
groups is completely known.

Let A be a smooth k-algebra. The (p-typical) de Rham-Witt complex W% of
Deligne-Illusie is a lift of the de Rham complex Q% to a differential graded algebra
over W(k) with zeroth term the p-typical Witt ring Ws(A). In a similar way, the
big de Rham-Witt complex W,,,{% is a lift of Q7% to a differential graded algebra
over W (k) with zeroth term W, (A). The Verschiebung V,,: W,,,(4) = W,,,(A4)
extends to an additive map of complexes

Vi: W, Q0% — W,,,, Q%
We note, however, that in positive degrees this map is usually not injective.

THEOREM A. Let A be a smooth algebra over a perfect field of positive charac-
teristic. Then there is a natural long exact sequence

o P WL LN P Winn Q2™ = K, 1(Alz]/(z"), () = ...

m>1 m>1

The decomposition of the middle and left hand terms in their p-typical parts is
spelled out in the end of paragraph 1 below. When A is a polynomial algebra, the
value of these components is given explicitly in [5, 1.2.5].

* Supported in part by NSF Grant and the Alfred P. Sloan Foundation.
** Supported in part by The American Institute of Mathematics.
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For any associative unital ring A, one considers the exact category Nil(A) with
objects finitely generated projective (left) A-modules together with a nilpotent en-
domorphism. It contains the exact category P(A) of finitely generated projective
A-modules as a retract, and this carries over to K-theory:

K. (Nil(A)) ~ K.(A) @ Nil,(A).
This defines the groups Nil,(A). The fundamental theorem in algebraic K-theory
states that

K;(Alt]) =2 K;(A) ® Nil;_1(A),
and hence Nil.(A) is the obstruction to K-theory being homotopy invariant. By
a theorem of Serre, a ring A is regular, if and only if every (left) A-module has a
finite projective resolution. So the resolution theorem and the fact that K’-theory
is homotopy invariant show that for a regular ring, Nil,(A) = 0. In general, one

knows that the groups Nil,(A) if non-zero are infinitely generated. It is also known
that the groups Nil,(A) are modules over the big Witt ring W (A), [8].

THEOREM B. Let A be a smooth algebra over a perfect field of positive charac-
teristic. Then there is a natural long exact sequence

s—2m Vn s—2m H n
= D W) = D Wnn Q4 ) = Nl (4la]/ @) = ...

m>1 m>1

All rings are assumed commutative and unital without further notice.

1. Witt functors

1.1. A subset S C N is called a truncation set if it is stable under division,
i.e. if mn € S then both m € S and n € §. In particular, if S is non-empty then
1 € §. We denote by J the category of truncation sets and inclusions. It comes
with a system of endo-functors —/n: J — J, n > 1,

S—8S/n={meN:mnecS},

which is multiplicative in the sense that for all m,n > 1, —/mo —/n = —/mn.
Note that the set S/n is non-empty if and only if n € S. Every object S in J is a
colimit of objects of the form

(ny = {d € N | d divides n}.

For every S in J, we have the big Witt ring Wg(A4). As a set Wg(4) = A%,
and the ring structure is characterized by the requirement that the ghost map

w: Ws(A) = A5, wu(a) = da}/,
d|n
be a natural ring homomorphism. There are natural maps
F,: Ws(A) —)WS/H(A), Vo Ws/n(A) —)Ws(A),
characterized by the formulas
if n|m,

_ _ Am /n»
FE, m — Wmn, Va m = .
(@) v @) {0, otherwise.
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The Teichmiiller character is the multiplicative map
_s: A— Ws (A)
with ag € A the function function that maps 1 € S to a and the rest of S to zero.
Let DGA denote the category of differential graded algebras over Z and let A be
aring. The de Rham-Witt complex W 52 to be constructed below is the universal
example of the following structure.
DEFINITION 1.1.1. A Witt functor over a A is a functor
M: J®? — DGA,
which takes colimits to limits, together with, for every n > 1, additive natural
transformations
F,: M(S) — M(S/n), V,: M(S/n)— M(S),
such that F,, is a map of graded rings and V,, is a map of graded M (S)-modules,
when M (S/n) is considered an M (S)-module via F),, and such that for all m,n > 1,
Flzvvlzlda Fan:ana VmVn:ana
(112) F,V, =n, F.V, =V, Fp if (m,n) =1,
FrdV, = dem/cVn/c + lFm/cVn/c da
where in the bottom line ¢ = (m,n) is the greatest common divisor and % and !
is any pair of integers such that km + In = c. In addition, it is required that as a

functor to rings M(S)° = Wg(A) such that F,, and V,, extend the Frobenius and
Verschiebung, respectively, and that for all a € A,

(1.1.3) F.dag = ggfrtldgs/n,
where _g: A - Wg(A) is the Teichmiiller character. A map of Witt functors is a

natural transformation which preserves all the relevant structure and which is the
identity in degree zero.

The following relations are valid for every Witt functor
(1.1.4) dF,, = nF,d, Vod = ndV,, Vo(zdy) = Vi (2)dV,y,
for all z,y € M(S/n). Indeed, V,(zdy) = V(2 F,dV,y) = V,(z)dV,y and
Vpdz =V (1)dVez = Vi (2)dV, (1) + Vi (1)dV,z
= d(Vo(1)Vaz) = dV, (FpVpz) = ndV,z.
The first relation is proved similarly. We note that since a Witt functor takes

colimits to limits, it is determined by its values on the truncation sets (n), n > 1.
This also implies that M (@) = 0 is the trivial ring concentrated in degree zero.

More generally, if T' is a truncation set, we let Jp = (J | T') be the category over
T. The projection functor J — J is a full embedding which identifies J7 with the
full subcategory of J which consists of all truncation sets S C T. We then define a
T-Witt functor over A to be a functor

M: JP — DGA
which takes colimits to limits, together with additive natural transformations
F,: M(S) - M(S/n), V,:M(S/n)— M(S)
3



subject to the same requirements as above.

For example, a {1}-Witt functor over A is the same as a DGA whose degree
zero term is equal to A, and the trivial ring 0 is the unique (-Witt functor. More
importantly, for every prime p, we have the truncation set

P={1,p,p%...}.

We call a P-Witt functor a p-typical Witt functor. For T' C U and M : J;? — DGA
a U-Witt functor, we get a T-Witt functor :*M by restriction.

PROPOSITION 1.1.5. For every pair of truncation sets U C T, there is an ad-
Junction i, 1%,

Tx
{U-Witt functors over A} » {T-Witt functors over A},
AT
where ©* is the forgetful functor.

PROOF. We use the Freyd adjoint functor theorem to prove the existence of
a left adjoint, see [6]. The category W% of T-Witt functors over A obviously
has all limits, and #* preserves limits. We verify the solution set condition. Let
f: N — i*M be a map in WY. We shall define an S-Witt functor

img f: J — DGA,

for all sub-truncation sets S C 7. If S C U, we set (imgs f)(S') = f(N(9)),
for all S’ C S. Suppose that S — (SN U) is finite and assume inductively that
img f has been defined, for all proper sub-truncation sets Q C S. We define
img f as follows: if S’ C S is a proper subset, we set (im fs)(S’) = (img f)(S"),
and (img f)(S) C M(S) is defined to be the smallest DGA which contains both
Va((img/, £)(S/n)), for all n > 1, and the image of the Teichmiiller character
_g: A — Wg(A). To prove that the functor img f so defined is an S-Witt functor,
we must show that (img f)(S)° = Ws(A) and that F,(imgs f(S)) C img f(S/n),
for all n > 1. The first requirement follows from the fact that every z € Wg(A4)
may be written (uniquely) as a sum

T = E V"a_"s/n’
nes

where a,, € A are the Witt coordinates of . The second follows readily from
(1.1.2), (1.1.3) and the fact that F,, is multiplicative. Finally, for a general S C T,
we define (img f)(S’) as the limit of (img f)(Q) as Q ranges over the sub-truncation
sets Q C S’ such that @ — (Q NU) is finite.

By construction, there is a canonical map of T-Witt functors
g: impf—-M

such that f: N — i*M factors through i*g: i* imp f — i*M. Given N in WY,
there is clearly only a set worth of isomorphism classes of T-Witt functors of the
form imyp f for some f: N — ¢*M. Hence the solution set condition is satisfied. [

Taking U = (), we see that the category of T-Witt functors over A has an initial
object, namely, .0, where 0 is the unique (}-Witt functor.
4



DEFINITION 1.1.6. The universal T-Witt functor over A is denoted
S — WEQ,
and called the T-de Rham-Witt complex of A.

1.2. We will now study p-typical Witt functors more closely. Let us first
restate the definition slightly different. A p-typical Witt functor is a functor

M: JP — DGA,
which takes colimits to limits, together with two additive natural transformations
F: M(S)— M(S/p), V:M(S/p)— M(S),

such that F' is a map of graded rings, V is a map of M(S)-modules when M (S/p)
is considered an M (S)-module via F, and such that

FV=p,  FdV =d.

Moreover, it is required that as a functor to rings M(S)? = Wg(A) such that F
and V extend the Frobenius F}, and Verschiebung V}, respectively, and that for all
a € A,

Fdas = as/pdas/,-

We write Ws% instead of Wg % and call it the p-typical de Rham-Witt complex
of A. If Ais an F,-algebra, this agrees with the de Rham-Witt complex of Deligne-
Nlusie, [5, 1.1.3, 1.2.17].

Let A be a Z,)-algebra and, for a truncation set .S, let

1(S) = {k € S| (k,p) = 1}.

Then the Witt ring decomposes

(1.2.1) Ws(4) = [ Ws(4)ex,

keI(S)
with
= I (lvk(1) - le,(1)).
k Kkl

leI(S/k)\{1}

Indeed, the ghost components for Vi(1) are w, (Vi (1)) = k, if k|n, and 0 otherwise,
) w(%Vk(l)) is the indicator function 1sngy and hence w(ex) = 1lgngp. Also,

Fk(ekm) = €m, Vk(em) = kem-
Moreover, the kth factor in (1.2.1) may be identified via the composite

S/k

R n
Ws(A)er = Ws(4) 25 Wgi(4) —2% W inp(A)

which is an isomorphism. We define two new functors

(1.2.2) {p-typical Witt functors over A} 7 {Witt functors over A}

3!
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If L is a DGA over Z,) and k a natural number prime to p, we write L(1/k) for the
graded algebra L with the differential d replaced by (1/k)d. Let N: J2° — DGA
be a p-typical Witt functor over A. Then 4y N: J — DGA is the functor
(1.2.3) iN(S)= [[ N(S/knP)(1/k)
keI(S)

and the natural transformations

F,: uN(S) = itN(S/n),

Vn: ZIN(S/TL) — ’i!N(S),
are defined as follows: write n = p*h with (h,p) = 1. Then F,, takes a factor k = hl
to the factor [ by the map F'® and annihilates the remaining factors. Similarly, V,,

takes the factor I to the factor k = hl by the map AV*. It follows from (1.2.1) that
i'N(S)? = W5(A), and given this, one readily verifies that iy N is a Witt functor.

Conversely, for M: J°° — DGA a Witt functor, define i'M: Jp° — DGA by
(1.2.4) i'M(S) = M([S))e,
where [S] = {ks € N|s € S, (k,p) = 1} is the union of all truncation sets T with
TNP=S. Then i'M is a p-typical Witt functor.

PROPOSITION 1.2.5. Let A be a Z,)-algebra. Then there are adjunctions

de 4* a3

PROOF. The adjunction i, - i* follows from 1.1.5, and the composites i*i,
and '3, are both the identity. Indeed, by construction iy N has the property that
WN(T)ex, = N(T/k N P). We define n: M(S) — ¢1¢*M(S) to be the map which on
the kth factor is given by

F; Ri?:mP
M(S) — M(S/k)(1/k) ———— M(S/kn P)(1/k).
Then 4, -1 i* is easily verified. Next, we define €: 4,5' M (S) — M(S) as the composite
wi'M(S)= [[ M(S/knP)ei(1/k) - [] M(S/kn P))ex
keI(S) keI(S)

— M(S)ek:M(S),
keI(S)
with the first map given by

LV M([S])er(1/k) — M(IS])ex

k
and with the second map induced from the inclusion S C [S/k N P]. Again the
adjunction 4, 4 4' is easily checked. O

It follows that the functors i., ¢* and %, all preserve colimits. In particular, they
preserve initial objects and hence we have

COROLLARY 1.2.6. There are canonical isomorphisms
Wy = i (W_4)(S) = a(W_Q23)(5),
Wsy = i"(W_Q3)(5),
valid for any Z,)-algebra A.



One may well expect that the last equality hold for every ring A. More generally,
one would like that whenever T' C U, the universal U-Witt functor restricts to the
universal T-Witt functor. We leave this as an open question.

For the convinience of the reader, we spell out the statement of the corollary in
the case of the truncated de Rham-Witt complexes which appear in theorems A and
B of the introduction. First, for every natural number m, we have the truncation
set m = {l € N|l < m}, and we write

W% = W, Q5.

The set I(m) is equal to the set of natural numbers d which are prime to p and less
than or equal to m, and m/d N P = {p* | p‘d < m}. Finally, in the notation of [5],
Wm/dﬁPQ*A = WSQTM

where s = s(m,d) = max{i|p’d < m} + 1. See also [3, pp. 95-96].

2. Truncated polynomial algebras

2.1. Let T denote the circle group and let C,. C T denote the cyclic subgroup
of order r. The topological Hochschild spectrum 7T'(A) is a T-spectrum indexed
on a complete universe &. The reader is referred to [4] for the definition. Let
j: UT — U be the inclusion of the trivial universe. We shall mostly be concerned
with the underlying naive T-spectrum j*7'(A) but will not distinquish in notation.
The obvious inclusion maps
F.: T(A)“ — T(A)°"

are accompanied by transfer maps going in the opposite direction,
V,: T(A)% — T(A)Cr.

We call these maps the rth Frobenius and Verschiebung, respectively.

In addition, T'(A) is cyclotomic. The cyclotomic structure gives a map
R,: T(A)%* — T(A)%,
called the rth restriction. It has the following equivariance property: Let C,. C T
be a subgroup of order r and let p,.: T — T/C,, p.(z) = 2Y/7C,., be the root
isomorphism. If we view the naive T/C,-spectrum T(A4)“" as a naive T-spectrum
piT(A)C" via p,, then R, is a map of T-spectra
Ry: g1 (A — piT(A)".
We define a functor
(2.1.1) M: J°® - DGA

as follows. Its value on the elementary truncation set (r) is the graded abelian
group

M((r)) = m.T(A)",
with a differential to be specified shortly, and M ({rs)) — M((s)) is the map of
graded abelian group induced by R,. To define the differential, let o,n € 77 (T)
be the generators which under the obvious collaps maps restrict to id € 77 (T) and
n € n5(S), respectively, and consider the maps

8,0 mi(prT(A)") =% mipa (Ty A prT(A)r) 5 miga (0FT(A)").
7



The left hand map is given by exterior multiplication by ¢ and 7, respectively, and
the right hand map is induced from the action by T. One easily verifies that ¢ is
equal to multiplication by 7 and that §od = ¢ 0§ = § o¢. It follows that

d: M({n)) = M({(n)), dz = éz + |z|e,

is a differential. Standard equivariant homotopy theory shows that d is a derivation
for the product on M ((n)); hence so is d. We extend M to general truncation sets

by continuity,
§) = lim M ((n))

with the limit running over n € S§. The Frobenius and Verschiebung maps on
M ({n)) induce natural transformations

F,: M(S) —» M(S/n), V,:M(S/n)— M(S).

PROPOSITION 2.1.2. The functor M : J°® — DGA is a Witt functor. In partic-
ular, there is a preferred map

PROOF. We proved in [4, addendum 3.3] that there is a canonical isomorphism
M(S)’ = Ws(4),

compatible with restriction, Frobenius and Verschiebung. The relation (1.1.3) was
proved in [1, lemma 1.5.6], and the relations (1.1.2), except for the last one, are
easy consequences of the fact that, for every G-ring spectrum, the functor which
takes G/H to m,TH is a Green functor. It remains to prove last relation in (1.1.2).
The proof is similar to the proof given in [1, lemma 1.5.1] of the case m = n, where
the relation reads F,dV,, = d. We leave the general case to the reader. See also |2,
3.2.1]. O

LEMMA 2.1.3. If A is a Z,)-algebra then the Witt functor of proposition 2.1.2
is of the form 4y IN .

PROOF. Let N be the P-Witt functor defined by continuity from m,7'(A4)%»°.
The lemma then follows from [3, proposition 4.2.5]. O

2.2. Let k be a perfect field of characteristic p > 0 and let A be a k-algebra.
It was proved in [3, 4.2.10] that there is a natural isomorphism

Tk hohmT @ W (rmt1)n(k)[2m].
R m>0
Here and below, if M is a graded module, we write M[i] for the ith suspension

given by Mi]; = M;_;. The pairing
. s . Cs . Cs
h(ogm T(A)% A h(ogm T(k)y®, , — holimT(A)y

(=4 — !
R R R

and canonical map of proposition 2.1.2 induces a pairing
W Qw (k) T« hohmT(k)V o holimT(A)‘C,;l ,
R n = ? [5~1
8



where W, is the limit of all W Q2% . The W (k)-generator ta, € W (1 41)n (k) [2m]
defines a W (A)-linear map

. * 3 Cs
(2.2.1) tom: WQL[2m] — m, h%m T(A)V[%].
We shall prove

THEOREM 2.2.2. Let k be a perfect field of characteristic p > 0 and let A be

a smooth k-algebra. Then the sum of the maps in (2.2.1) factors to a natural
isomorphism

W% [2m] =5 7, holimT(A)S* .

g?o (m+1)nS¥a[2m] m ?HH ( )v[%]

The proof which occupies the rest of the paragraph is based on [1] and [3]. It
has two parts listed separately below. The first part is calculational and verifies
the theorem when A = k[zj,...,z4]. The second part uses standard covering
techniques for smooth algebras as in [1] and [5].

LEMMA 2.2.3. The theorem holds for A = k[zy,...,z4].

PRrROOF. We prove the lemma for A = F,[z] leaving the many variable case
to the reader. It is only notationally more complicated, compare [1, §2.2]. The
extension to a general perfect coefficient field of characteristic p > 0 is proved in a
manner similar to op.cit. (2.4.5). It is convenient to break up the statement in its
p-typical components. Then by [3, proposition 4.2.5] and corollary 1.2.6 above it
suffices to prove that the maps (2.2.1) induce an isomorphism

* ~ . Cpr
G?O W (m,ay V5 [2m] = 7, h%lmT(A)V )

(era=1y’
where s(m,d) = max{i|p'd < (m + 1)n}.

Let us write V,. for Y/[prdq]. Then VTC” = V,_1 and there is a T-equivalence
T(A)y, ~ \/ T(k)v, A S*(s)4,
s>1

where S!(s) is the unit circle in the representation C®°. Let p,r: S* — S1/Cpr be
the p"th root. Then we get a T-equivalence

P T(A)y =\ pfT(E,)y A S (p" D)1V
(lyp):1u=7'
r—1
Cor—u
V' V opole TE) ™ Ay SHD)4)-
(l,p):l’u:O

Moreover, there is a T-equivalence
. Cpru ~ Cpru
PG, Ty Acpu ST 1)+ = |T(Fy)y! | A S (1)/Cpur,s

where the bars indicate trivial action. Indeed, the [th power map A;: S*(1) — S(I)
is a p-local homotopy equivalence, and we have the isomorphism

Cor—u ~ Cpr—u
IT(Fp)y?" " A S (L)4 = plh JT(Fp)y” NS (1)+

9



which maps (¢,2) to (tz~1,2). The restriction map

R: T(A) — T(A)7 7

is the identity on the circle factors in the above decomposition, and equal to the

restriction . .
R:T(Fp) " " = T(F,)y2 ", 0<u<r,

on the first factor in each sum. Finally, by [4, proposition 9.1],

Tam holim T'(Fy )" = W,_y(F,)
R

Cpor—u . A .
with s = s(m, d). The spectrum holimT'(FF,)”" * is a module over K(I,), so is
«— L

a wedge of the Eilenberg-MacLane spectra H(Wy(m,a)—u(IFp),2m). Let us name
generators as follows:

H*(Sl(l)/cpu-‘ra Z(p)) = Z(p) {xl/p“, xl/pudl()g 33},
H (S"(p"7"1), Zp)) = Zyp) {«P" " 2P" dlog ).
Then we have

T hc(ﬂ_imT(A)‘(’;fr = P (W.(F,){z", z*dlog z | v,(k) > 0, k > 0})[2m] &
R m>0

@ (6_9 W, (F,){z", z*dlog z | v, (k) = —u})[2m],

m>0 u=1
with s = s(m,d). Since W;(FF,) = Z/p" the right hand side is precisely equal to the
direct sum of p-typical de Rham-Witt complexes,
. Cpr ~ *
T hc%mT(A)VT o E]?O We(m,a) U, (z1[2],

compare [1, §2.1] or [5]. It follows that the two sides of the statement in theorem
2.2.2 above are abstractly isomorphic. One argues as in [1, §2] that the stated map
induces an isomorphism. O

We next consider étale extensions, following [1] and [5]. If A — B is étale then
so is Wg(A) - Wg(B), and for any pair of truncation sets S C T, there is a
natural isomorphism

(2.2.4) WT(B) ®WT(A) Wsﬂz = WSQE,
see [5, p. 513, 549]. Let Fil® W% denote the kernel of the restriction,
0 — Fil®* Wr Q% — WrQ% — WsQY — 0.

Then, more generally, (2.2.4) and the fact that étale maps are flat implies that the
natural map

(2.2.5) Wr(B) @w,(a) Fil° Wy 5 Fil° W Q0
is an isomorphism.

Let us define



and extend to all truncation sets by continuity. An argument similar to [1, propo-
sition 2.4.4] and [3, proposition 4.2.5] shows that for A — B étale,

(2.2.6) Wr(B) @wy(a) V5(4) = V§(B).
We write

V*(4) = im V7, (A) = im V7.(4),
and recall that by [3, 4.2.7], the projection
(2.2.7) Vi(A) = VEL(A)

is an isomorphism for i < [(p¥»(T) — 1)/n]. Here v,(T') denote the maximum of the
p-adic valuations of elements of 7. Suppose that A is a smooth k-algebra. Then
the complexW % is bounded, and hence (2.2.7) implies that the map

tam: WQ3[2m] — V*(4)
factors over W1 Q% [2m], for some finite T

LEMMA 2.2.8. Let A = k[z1,...,24] and let A — B be an étale map. Then the
map (2.2.1) factors to a map

t2m: W (m41)nQp[2m] — 7, holim T(B)y:,

7 E=23

PRrROOF. The statement is true for B = A by lemma 2.2.3. We have isomor-
phisms

Fil> WQj = lim Fil® WrQjp,
V*(B) = lim Wr(B) ®@w.,(a) V1 (4),
and the lemma follows from 2.2.5 with S = (m + 1)n. O

A Ek-algebra A is smooth if there exists relatively prime elements fi,..., f, such
that the localizations Ay, = A[l/f;] are étale extensions of a polynomial algebra
k[zq,...,zq4]. Consider Wy (A) — Wy (Ay,) as a cochain complex with the left
hand term located in degree zero. Then the tensor complex

(2.2.9) ®WT(A)(WT(A) — Wr(Ay,))

is acyclic and flat over W (A), see [1, lemma 2.4.6]. Tensoring this complex with
WQ* over Wr(A) we thus get an exact sequence

0— WpQ4 — G?WTQAH - '@1 Wy, o
1= 7=
and similarly with V*(A) in place of W%. (This uses that

Wr(Ay,) ®wra) Wr(4y,) = Wr(Ay,;),
11



which, in turn, is an immediate consequence of the fact that Wy (Ay) = W (A) £
see [5].) In particular, the horizontal maps in the diagram

WO D, W, [2m)

J{Lzm lbzm

VH(A)—— @i, V*(45)

are injective. Indeed, taking limits is left exact. We conclude from lemma 2.2.8
that the left hand vertical map factors to
t2m W(ms1)na[2m] — . holimT(A)‘C,s L
— (=54
R n
Finally, the sum of the exact sequences
0— W(m—l—l)an[Zm] — @W(m—l—l)nﬂzn [2m] — @ W(m+1)an4fij [Zm]
i ij
for m > 0 maps to the exact sequence

0= V*(4) = PV (4r) = PV (Ay,),

and the maps of the middle and right hand terms are isomorphisms. But then so
is the left hand map. This finishes the proof of theorem 2.2.2.

We shall also need to know the following result.
THEOREM 2.2.10. With the assumptions of 2.2.2 there is a natural isomorphism

* ~ . Cs n
Lom: @ W 1Q% [2m] — 7 h(c&mT(A)V[;].
m>0 R n

PROOF. The proof, given [3, theorem 4.2.10], is entirely similar to the proof of
theorem 2.2.2 above. O

2.3. We can now prove theorems A and B of the introduction. The relative
term K (A[z]/(z™), (z)) is defined by the split cofibration sequence
K(Alz]/(z"), (z)) — K(A[z]/(z")) = K(4), z—0,
and similarly for topological cyclic homology. A theorem of McCarthy, [7], implies
that the cyclotomic trace induces an equivalence
K(Alz]/(z"), (z)) = TC(Alz]/(z"), (z))-

Indeed, it follows from results from [4] that both terms already are p-complete. On
the other hand, from [3, proposition 4.2.3] we have the cofibration sequence
. Cs/n _‘/n : C, n
Eho%mT(A)V[%] =y Eh(%mT(A)V[%] — TC(A[z]/(z™), (z)),
and theorems 2.2.2 and 2.2.10 above identifies the left hand and middle terms.
Moreover, using the proof of [3, theorem 4.2.10], one identifies the map V;, with the
map induced from the Verschiebung

Va: Wm+1Qf4 — W(erl)anA-

This completes the proof of theorem A.
12



To prove theorem B, recall that for any ring A, one defines NK(A) by the split
cofibration sequence

NK(A) — K(A[t]) — K(A), t— 0.

The fundamental theorem in algebraic K-theory shows that Nil,(A) = NK(A)[-1].
Now the nil groups vanish for regular rings and a smooth algebra over a field is
regular. Therefore in the case at hand,

NK (A[z]/(z"), (z)) — NK(Alz]/(z")),
and hence we have a split cofibration sequence
NK (Alz]/(z")) — K(A[t, z]/(z"), (z)) = K(Alz]/(z"),(z)), 1t~ 0.

Thus theorem B follows from theorem A.
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