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Abstract

Recently Everitt and Bullmore (1999) proposed a mixture model

for a test statistic for activation in fMRI data. The distribution of the

statistic was divided into two components; one for non-activated voxels

and one for activated voxels. In this framework one can calculate

a posterior probability for a voxel being activated, which provides
a more natural basis for thresholding the statistic image, than that

based on p-values. In this article, we extend the method of Everitt

and Bullmore to account for spatial coherency of activated regions.

We achieve this by formulating a model for the activation in a small

region of voxels, and use this spatial structure when calculating the

posterior probability of a voxel being activated. We have investigated

several choices of spatial models, but �nd that they all work equally

well for brain imaging data. We applied the model to synthetic data

from statistical image analysis, a synthetic fMRI data set and to visual

stimulation data. Our conclusion is that the method improves the

estimation of the activation pattern signi�cantly, compared to the
non-spatial model and to smoothing the data with a kernel of FWHM

3 voxels. The di�erence between FWHM 2 smoothing and our method

were more modest.

�Centre for Mathematical Physics and Stochastics, funded by a grant from the Danish
National Research Foundation.
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1 Introduction

In the literature on analysis of functional magnetic resonance imaging (fMRI)
data the focus is primarily on the temporal aspect. Perhaps the most com-
mon analysis scheme is to treat voxel time series separately, and estimate the
activation level voxel by voxel. This framework ranges from simple t-tests and
correlation methods to more detailed models for the haemodynamic response,
and models which account for correlated noise. The latter encompasses gen-
eralised linear models and time series models. A few papers which fall in
this category are Bandettini et al. (1993), Bullmore et al. (1996), Worsley
and Friston (1995) and Lange and Zeger (1997), but we refer to an overview
paper, like Lange et al. (1999), for the long list of references which should be
cited in this context. The spatial properties of the data are rarely modelled
with the same care as is given the temporal ones. Common approaches are
either to assume spatial independence, or to smooth data spatially with a
Gaussian kernel. The latter approach has been studied primarily by Keith
Worsley in a series of papers, see for instance Worsley et al. (1995). Smooth-
ing the data spatially is in fact equivalent to using a non-parametric model
for the spatial activation pattern, assuming only smoothness of the latter
(M�uller, 1988). It should hence be viewed as an estimation procedure which
is optimal in this model, but there is no general statistical reason for smooth-
ing. On the contrary smoothing reduces the spatial resolution and tends to
underestimate the height of activation peaks (Hartvig, 1999).

A quite di�erent approach are multivariate methods, such as principal
component analysis (PCA), neural networks or independent component anal-
ysis (ICA), where all time-series are modelled simultaneously. Again we will
refer to Lange et al. (1999) for a detailed list of references. However with
these methods, the physical spatial structure is ignored, in the sense that
we may permute the order of the voxels in any way, without changing the
estimate.

The reason for this lack of spatial models is perhaps two-fold: 1) It is
somewhat diÆcult to formulate the general idea of coherency of activated
regions in a speci�c model, which is still general enough to model the range
of patterns observed in brain data. 2) Most spatial models are analytically
intractable, and statistical inference must rely on simulation methods, which
are time-consuming and often requires a lot of user interaction. The latter
makes them less suitable for routine use.

In this paper we try to bridge the gap between formulating a spatial model
which has some realistic properties, and the computational feasibility, which
makes it applicable in a routine analysis. The idea is to formulate the model
through the marginal distribution on a small grid of voxels, for instance a 3
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by 3 region in the slice. Though the model may be used as the spatial part of
a spatio-temporal model, we will only consider the problem of estimating the
activation pattern based on a single summary image (or volume) of voxel-wise
activation estimates. Let fxig denote the latter, where i indexes the voxels.
Recently Everitt and Bullmore (1999) (henceforth denoted EB) suggested a
marginal analysis of such an image. Let Ai be the indicator for voxel i being
activated. The approach of EB is to calculate the conditional probability
P (Ai = 1jxi) for each voxel, and use the latter to estimate the activated
areas. In order to calculate this, they specify the distribution of activated
and non-activated voxels, i.e. the conditional distributions p(xijAi = 1) and
p(xijAi = 0), as well as the probability P (Ai = 1). The method does not use
any spatial properties of the data.

What we propose in this article is to keep the simplicity of the approach
in EB, but to extend it in such a way that spatial interaction is partly taken
into account. Instead of using P (Ai = 1jxi) we suggest to use P (Ai = 1jxCi

),
where Ci is voxel i together with the neighbouring voxels. The idea is that
activated areas tend to constitute a group of at least a few voxels, hence
voxel i has a higher chance of being activated if both voxel i and some of its
neighbours have high values. Conversely the activation probability is small
if xi is high, but all the neighbours has small values. The main problem
in this approach becomes the speci�cation of the marginal probabilities of
the activation ACi

in the region Ci. We propose three di�erent models for
these probabilities, ranging from a very simple one to a more realistic one.
Common to all is that the probability of a voxel being activated has a simple
expression, which can be easily calculated.

In the �rst section we present the method and the models. Next we have
three examples, where we demonstrate how to use the method in practice,
and compare the results with the approach in EB and traditional smoothing
estimates. We �nally discuss our results.

1.1 The model

Let Ci = fi0; i1; : : : ; ikg denote a neighbourhood of voxel i, where i0 = i is
the centre and i1; : : : ; ik are neighbouring voxels (in a general sense). Let a =
(a0; a1; : : : ; ak) be an activation con�guration on Ci, meaning that aj = 1 if
voxel ij is activated and 0 if not, for j = 0; 1; : : : ; k. We will use notation like
ACi

for (Ai0 ; Ai1 ; : : : ; Aik). Let �nally|for typographical reasons| xji = xij ,
j = 0; 1; : : : ; k.

Imagine that we have speci�ed P (ACi
= a) and the densities f(xCi

jACi
=
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a) for all possible values of a 2 f0; 1gk+1. We then have that

f(xCi
; Ai = a0) =

X
aj2f0;1g;j=1;::: ;k

f(xCi
jACi

= a)P (ACi
= a): (1)

The conditional probability we want to use for �nding activated regions now
becomes

P (Ai = 1jxCi
) =

f(xCi
; Ai = 1)

f(xCi
; Ai = 1) + f(xCi

; Ai = 0)
(2)

In all our applications of this method we will assume that given we know
which voxels are activated the responses xi are independent. This means
that we have

f(xCi
jACi

= a) =
kY

j=0

f(xji jAij = aj); (3)

and

f(xCi
; Ai = a0)

= f(xijAi = a0)
X

aj2f0;1g;j=1;::: ;k

 
kY

j=1

f(xji jAij = aj)

!
P (ACi

= a): (4)

Then in order to calculate f(xCi
jACi

= a) we need only specify the two
distributions f(xj0) = f(xjA = 0) and f(xj1) = f(xjA = 1).

In EB the image fxig consists of fundamental power quotients (FPQ),
which have respectively a central and a non-central �2-distribution under
the two activation states. If instead fxig represents the estimated activity
level from a regression analysis, it will be natural to take (xjA = 0) �
N(0; �2). When the voxel is activated, A = 1, it is not so clear what the
proper distribution is. In our Example 3, we �nd that the range of di�erent
activation levels are described well by a Gamma distribution, (xjA = 1) �
�(�; �).

In some cases there are both positive and negative BOLD e�ects. We
then have three densities f(xj0), f(xj1), and f(xj � 1), corresponding to
no activation, positive activation and negative activation. We may handle
this by running the algorithm twice to �nd �rst the voxels with positive
activation and next the voxels with negative activation. Let p+ and p� be
the probabilities of a positive and a negative activation, respectively, and let
p0 = 1�p+�p�. When we run the algorithm to �nd the positive activation,
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say, we must then use the mixture density ~f(xj0) = p0
1�p+

f(xj0)+ p
�

1�p+
f(xj�1)

for the density given that there is no activation. Similarly, when we look for
negative activation we use ~f(xj0) = p0

1�p
�

f(xj0) + p+
1�p

�

f(xj1) for the density
given that there is no activation.

Let us next discuss the choice of neighbourhood region Ci. If we are
modelling a 2-dimensional slice we may take Ci to be the 3 by 3 square
formed by pixel i together with its eight closest neighbours. Alternatively
we may extend this to a 5 by 5 square, with 24 neighbours in total. When
modelling a 3D volume of scans, it is natural to let the region be a 3�3�3
cube. When the voxels are anisotropic an alternative would be to take Ci to
be the square in the slice direction, and only the voxel on top and just below
voxel i in the other direction.

Notice that in the case of, for instance, a 5 by 5 neighbourhood, there
are 224 = 116777216 terms in the sum in (2). This is clearly too many to
make a direct calculation feasible. Fortunately there exist simple expressions
for the sum, for all the models we propose for the marginal probabilities
P (ACi

= aCi
). This reduces the computation time drastically, and makes the

models applicable in practice.

1.2 Models for the marginal probabilities

In this section we give three choices for the marginal probabilities P (ACi
=

a).

1.2.1 Model 1

Perhaps the most simple choice is to take

P (ACi
= a) =

�
q0 if a0 + a1 + � � �+ ak = 0
q1 if a0 + a1 + � � �+ ak > 0:

(5)

Since there are 2k+1 values of a we must have q0 = 1 � (2k+1 � 1)q1 in
order that the probabilities sum to one. Thus this distribution has only one
parameter and a natural way of interpreting this parameter is through the
probability p of a voxel being activated. This gives p = q12

k or

q1 = p2�k and q0 = 1� (2� 2�k)p: (6)

The above model (5) represents the situation that we neither believe that
activated regions consist of single voxels nor that they are very large. To
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illustrate this consider an activated region in Z2 of the form

1
1 1 1

1 1 1 1
1 1 1

and let C be a square. Then the region can be hit by the square in 31
positions giving rise to 26 di�erent activated regions inside the square.

We shall be using the equality

X
aj2f0;1g;j=1;::: ;k

kY
j=1

f(xji jaj) =
kY

j=1

ff(xji j0) + f(xji j1)g:

Let � denote the above product. We then �nd

X
aj2f0;1g;j=1;:::;k

a0=0

 
kY

j=1

f(xji j aj)
!
P (ACi

= a) = q1� + (q0 � q1)
kY

j=1

f(xji j 0);

and from the expressions (2) and (4) we get

P (Ai = 1jxCi
) =

q1f(xij1)�
q1f(xij1)� + f(xij0)fq1� + (q0 � q1)

Qk

j=1 f(x
j
i j0)g

=

8<
:1 +

1

v0i

2
41 + �q0

q1
� 1

� kY
j=1

(1 + vji )

!�1
3
5
9=
;

�1

; (7)

where

vji =
f(xji j1)
f(xji j0)

j = 0; 1; : : : ; k: (8)

This formula shows in a direct way the di�erence to the approach in EB. If
all the neighbours are non-activated then (7) will typically be of the order�

1 +
f(xij0)
f(xij1)

q0
q1

��1

whereas if at least one neighbour is activated the order is typically�
1 +

f(xij0)
f(xij1)

��1

:

For illustration let us consider the case where p = 0:02 and k = 8. Then
q0=q1 = 12289, and if f(xij0)=f(xij1) � exp(�8) then the �rst term is 0.20
whereas the second expression is 0.9997.
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1.2.2 Model 2

Another simple choice of P (ACi
= a) is

P (ACi
= a) =

�
q0 if s = 0
�
s�1 if s > 0;

(9)

with

s = a0 + a1 + � � �+ ak

being the number of activated voxels in Ci. Here 
 = 1 gives back the
model 1 in (5), whereas the restriction � = 
=(1 + 
)k+1 corresponds to the
model where the voxels are independent and the probability of a voxel being
activated is 
=(1 + 
). The latter is equivalent to the model in EB.

In this model we have

q0 = 1� �
(1 + 
)k+1 � 1



;

and the probability p of a voxel being activated is p = �(1 + 
)k.
Using equation (4) we �nd

f(xCi
; Ai = 1) = f(xij1)�

X
aj2f0;1g;j=1;::: ;k

kY
j=1

f(xji jaj)
a
j

= f(xij1)�
kY

j=1

ff(xji j0) + f(xji j1)
g;

and

f(xCi
; Ai = 0)

= f(xij0)
(
�
�1

kY
j=1

ff(xji j0) + f(xji j1)
g+ (q0 � �
�1)
kY

j=1

f(xji j0)
)
:

This gives

P (Ai = 1jxCi
)

=

8<
:1 +

1

v0i

2
4
�1 +

1� �(1 + 
)k+1=


�

 
kY

j=1

(1 + 
vji )

!�1
3
5
9=
;

�1

: (10)
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1.2.3 Model 3

Finally, we will consider a model of the form (9), but being more symmetric
with respect to activated and non-activated voxels. We will consider the
model

P (ACi
= a) =

8<
:

q0 if s = 0;
�1


s�1
1 + �2


s�k
2 ; if 1 � s � k

q1 if s = k + 1
: (11)

In this model we have

1 = q0 + q1 +
�1


1
f(1 + 
1)

k+1 � 1� 
k+1
1 g+ �2


k2
f(1 + 
2)

k+1 � 1� 
k+1
2 g;

(12)

p = q1 + �1f(1 + 
1)
k � 
k1g+

�2


k�1
2

f(1 + 
2)
k � 
k2g;

where p is the probability of a voxel being activated. Instead of (10) we �nd

P (Ai = 1jxCi
) =

�
1 +

1

v0i

N

D

��1

; (13)

where

N =
�1


1

kY
j=1

(1 + 
1v
j
i ) +

�2


k2

kY
j=1

(1 + 
2v
j
i ) + q0 � (

�1


1
+
�2


k2
);

D = �1

kY
j=1

(1 + 
1v
j
i ) +

�2


k�1
2

kY
j=1

(1 + 
2v
j
i ) + fq1 � (�1


k
1 + �2
2)g

kY
j=1

vji :

1.3 Estimation of parameters

Within the model we can calculate the marginal density of xCi
. We denote

this by f(xCi
;�;  ), where � parametrizes the conditional distribution of xCi

given ACi
, and  parametrizes the marginal distribution of ACi

. Thus

f(xCi
;�;  ) =

X
a2f0;1gk+1

f(xCi
jACi

= a;�)P (ACi
= a; ):

A possibility for estimating the parameters (�;  ) is to maximise the contrast
function


(�; �) =
X
i2V

log f(xCi
;�;  ): (14)
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This is related to maximum likelihood estimation, in particular the estima-
tors will be asymptotically normal distributed under conditions where the
maximum likelihood estimators are. For model 2 we get

f(xCi
;�; 
; �)

=
kY

j=0

f(xji j0;�)
(
�




kY
j=0

(1 + 
vji (�)) + 1� �(1 + 
)k+1




)
; (15)

and for model 3 we �nd

f(xCi
;�;  )

=
kY

j=0

ff(xji j0;�)
(
�1


1

kY
j=0

(1 + 
1v
j
i (�)) +

�2


k2

kY
j=0

(1 + 
2v
j
i (�))

+q0 � (
�1


1
+
�2


k2
) + fq1 � (�1


k
1 + �2
2)g

kY
j=0

vji (�)

)
; (16)

with  = (�1; �2; 
1; 
2; q1) and q0 given by the constraint in (12).
Usually, though, we will take a more simple approach instead of using

(14). We propose to use only the marginal distribution of xi to estimate �
and the fraction of activated voxels p. The marginal density of xi is a mixture
density

f(x;�; p) = (1� p)f(xj0;�) + pf(xj1;�); (17)

or, if we have both positive and negative activation,

f(x;�; p+; p�) = (1� p+ � p�)f(xj0;�) + p�f(xj � 1;�) + p+f(xj1;�):
(18)

We thus maximise the contrast function


m(�; p) =
X
i2V

log f(xi;�; p) (19)

to estimate � and p. Under model 1 all parameters have been estimated this
way.

When P (ACi
= a) is given by model 2 we still estimate p = �(1+
)k from

(19). The remaining parameter 
 may then be estimated from the empirical
covariance of fxig. Suppose, for example, that (X jA = 0) � N(0; �2), and
(X jA = 1) � N(1; �2). Then the covariance of Xi and Xj is given by

Cov(Xi; Xj) = P (Ai = Aj = 1)� P (Ai = 1)P (Aj = 1)

= P (Ai = Aj = 1)� p2:
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If j is a neighbour to i, j = i1 say, we may derive the �rst probability as

P (Ai = Aj = 1) =
X

a:a0=a1=1

P (ACi
= a) = �


X
aj2f0;1g;j=2;:::;k


a
2+���+ak

= �
(1 + 
)k�1 = p



1 + 

:

We may estimate the covariance by the correlogram (Cressie, 1991)

Ĉj�i =
1

Nj�i

X
l2V;l+j�i2V

(Xl � �X�)(Xl+j�i � �X�);

where V denotes the set of brain voxels, Nj�i is the number of terms in the
sum, and �X� is the average of the Xi's. Finally we may estimate 
 by


̂ =
b

1� b
; where b = Ĉj�ip̂

�1 + p̂:

When p is given, model 3 has 4 free parameters which may be estimated
from (14).

2 Simulations and applications

We will illustrate the method by applying it to two synthetic data sets, where
the truth is known, and a visual stimulation data set. For the synthetic data,
we may quantify results by respectively classi�cation error, statistical power
or true power rate (TPR) and level of signi�cance or false power rate (FPR).
For a given threshold, the classi�cation error is estimated as the number
of misclassi�ed voxels (either type I or type II errors), divided by the total
number of voxels. The TPR is estimated as the as the number of active
voxels classi�ed as active, divided by the total number of active voxels. The
FPR is estimated as the number of non-active voxels which are classi�ed as
active, divided by the total number of non-active voxels.

2.1 Example 1: Image restoration data

We will apply the models to a classical problem in statistical image analysis,
namely the restoration of an unknown true image based on a degraded version
of it. Techniques for achieving this are applied in many areas where images
are recorded or transmitted with noise, including remote sensing images,
satellite images and medical images. In functional brain imaging the problem
is more complex than in the setting above: It is not as evident what the \true

10



scene" is or which geometric characteristics it has, and the noise sources
are far more complex than in image restoration problems. It still serves
a purpose, however, to study how the models perform in this more simple
problem, in order to understand the characteristics of the models, before
moving on to more complex data.

We will consider two images. The �rst (denoted Image I) is the 64�64
binary image of an `A' by Greig et al. (1989), see Figure 1. The image is
corrupted with binary noise, where a pixel Ai with probability q is replaced
by 1� Ai. The probability densities of the degraded pixel Xi given the true
value Ai are then

f(xi jAi = 0) = qxi(1� q)1�xi; xi 2 f0; 1g;
f(xi jAi = 1) = (1� q)xiq1�xi; xi 2 f0; 1g:

The error rate q was set to 25%. Five independently corrupted images were
produced, in order to assess the variability of the estimates. The results are
summarised in Table 1 and some of the image estimates are displayed in
Figure 1.

The second image (Image II) is the binary image displayed in Fig. 4a of
Besag (1986). The image was corrupted by adding white Gaussian noise with
standard deviation 0.9105. In this setting the densities of a pixel Xi given
Ai are

f(xi jAi = 0) =
1p
2��

e�
1

2�2
x2i ; xi 2 R;

f(xi jAi = 1) =
1p
2��

e�
1

2�2
(xi�1)2 ; xi 2 R;

where � = 0:9105. We produced �ve independent noisy images to assess the
variability of estimates. The results of are given in Table 1.

For each model, the parameters were estimated both by maximising the
contrast function (14) and, for model 1 and 2, by the simple estimators
described in Section 1.3. Since the results were almost similar, we give only
the �gures for the maximum-constrast estimates. In practice we recommend
that the simple estimators should be used when possible, since they are much
easier to obtain, and give almost as good results.

We calculated the posterior probability of Ai = 1 given XCi
in each

pixel i, and the estimate of the true image was obtained by thresholding the
probability image at 0.5. The estimates for one of the noisy versions of image
I can be seen in Figure 1.

The estimated classi�cation error and its standard error are listed in the
second and third column of Table 1. The �rst column lists the models used in
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True image Noisy image

1, 3�3 2, 3�3 3, 3�3

1, 5�5 2, 5�5 3, 5�5

Figure 1: Comparison of spatial mixture models. Top row: True image and

degraded version. Middle row: Estimates of the true image based on model 1, 2

and 3 applied to a 3 by 3 pixel region. Bottom row: Same as above, but with the

models de�ned on a 5 by 5 region.
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this example. The models 1, 2 and 3 of Section 1.2 were applied, respectively
de�ned on a 3 by 3 pixel region and on a 5 by 5 region. For comparison, we
have reproduced the classi�cation errors of the maximum a posteriori (MAP)
estimate and the iterated conditional modes (ICM) estimate, which can be
found in Greig et al. (1989). These two estimates are based on the same
global model for the true image, but only the local properties of the model
are used with ICM.

Table 1: Estimated classi�cation errors for the three models and the ICM and

MAP estimates, based on 5 independent simulations of the degraded image. Image

I refers to the true image in Figure 1, degraded with binary noise. Image II refers

to the image in Fig. 4a in Besag (1986), degraded with Gaussian noise. All �gures

are in percent, standard errors of estimates are given in parentheses.

Model Class. error
Image I Image II

1, 3�3 10.0 (0.3) 14.6 (0.3)
1, 5�5 9.4 (0.2) 12.2 (0.2)
2, 3�3 7.6 (0.3) 9.0 (0.4)
2, 5�5 5.9 (0.8) 6.4 (0.2)
3, 3�3 7.6 (0.3) 9.0 (0.4)
3, 5�5 6.1 (0.3) 6.2 (0.3)
MAP 5.2 (0.2) 5.5 (0.2)
ICM 6.3 (0.4) 6.4 (0.1)

The table shows that model 1 performs worse than model 2 and 3, which
is also clear from Figure 1. It is also clear that the 5 by 5 region models
are superior in this setting, which is not surprising since the true images are
quite regular with large patches of either black or white. We might suspect
that the 3 by 3 models will be more appropriate in brain imaging, where
the true scene is not as regular. Model 2 and 3 perform almost equally well,
hence we prefer model 2, since this only has two parameters.

Model 2 performs well compared to the ICM and MAP methods also.
There are several practical di�erences between these and our model: Firstly,
it is more computationally intensive to obtain the ICM and MAP estimates,
than our posterior probability images. The latter are calculated in closed
form, while the ICM and MAP procedures require iterative algorithms. Sec-
ondly, the MAP and ICM procedures depend on a smoothing parameter
which, especially for the MAP estimate, is crucial for the reconstructed im-
age. In this case, the value of the smoothing parameter was based on the
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true image, which is of course not possible in practice. On the contrary the
parameters of model 2 are estimated directly from the observed image. Seen
in this light, our model seems to be an attractive alternative to the tradi-
tional methods. It is however not as 
exible as the ICM approach, which can
be generalised for instance to multicolour settings.

2.2 Example 2: Simulated fMRI data

In order to study the performance on data which are closer related to brain
imaging problems than the ones in Example 1, we have applied the methods
to a synthetic fMRI data set. We used the data set of Lange et al. (1999),
which was generated from 72 baseline EPI scans that were temporally re-
sampled to 384 scans1. We refer to the paper for a full description of the
data, but will repeat the basic properties here. A region of 24 by 12 voxels
is considered, and in each voxel the time series is linearly detrended. Denote
the residual time series by Yit, where i indexes voxels i = 1; : : : ; V and t
indexes scan t = 1; : : : ; T . Here V = 288 and T = 384. Arti�cial activation
was added to obtain the actual data Zit, say, by the model

Zit = bixt + Yit;

where the magnitude of activation bi is given by

bi = msY;i:

Here s2Y;i is an estimate of �2i , the variance of Yit, given by

s2Y;i =
1

T � 1

TX
t=1

(Yit � �Yi�)
2; �Yi� =

1

T

TX
t=1

Yit:

The temporal activation pattern xt is a simple binary function, where xt = 0
when o� and xt = 1 when on, for t = 1; : : : ; T . The function is periodic
with 8 runs, each of length 48 scans with 12 scans o�, 24 on and 12 o�. The
ratio m of the activation magnitude to standard deviation was chosen to be
positive and constant in the two connected regions of size 25 and 37 voxels
depicted in Figure 2, and zero elsewhere. According to Lange et al. a value
of m = 0:15 was chosen in the activated areas, however when estimating
m directly from the data by a regression analysis (when the true activation
pattern is known), we obtain m̂ = 0:43 with a standard error of 0:015. The
value of m is not important for the present study, however.

1The data may be obtained from the address http://pet.med.va.gov:8080/plurality.
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In order to make the estimation problem a bit harder than in the paper,
we divided the data into 4 subsets, each of length 96 scans. We estimated
the spatial activation pattern from a single subset at a time, and used the
empirical variation over the four subsets to evaluate the uncertainty of our
results.

Consider a voxel time series at voxel i, Zit, for t = 1; : : : ; T0, T0 = 96.
We tested for activation by a t-test. More speci�cly, the estimate of the
activation level is given by

b̂i =
1

SSDx

T0X
t=1

Zit(xt � �x�); SSDx =
T0X
t=1

(xt � �x�)
2;

and the variance of Zit is estimated by

s2i =
1

T0 � 2

T0X
t=1

(Zit � �Zi� � b̂ixt)
2 � �2i �

2(T0 � 2)=(T0 � 2):

Here �2(f) denotes the �2-distribution with f degrees of freedom. Then the
statistic

Xi =
b̂ip

s2i =SSDx

i = 1; : : : ; V;

has a t-distribution with T0 � 2 = 94 degrees of freedom, if the voxel is not
activated. Since the degrees of freedom are quite large, it is reasonable to
make the approximation that the variance estimates are exact, s2Y;i = s2i = �2i ,
whence we get a normal distribution for Xi,

Xi �
(
N(�; 1); if i is activated;

N(0; 1); if i is not activated;

where � = m
p
SSDx. The image of test statistics fXig hence follows a

mixture distribution, where the mean is positive when the voxel is activated
and zero when not, and the setup is as in Section 1.1 with

p(x jA = 0) =
1p
2�
e�

1

2
x2; p(x jA = 1) =

1p
2�
e�

1

2
(x��)2 ; x 2 R:

We have assumed here that the temporal correlation is zero, which is
necessarily an optimistic assumption. Temporal correlation will a�ect the
variance of b̂i, but not the mean, and will lead to a higher variance of the
statistic Xi, than stated above.

Figure 2 displays the image of t-statistics for the �rst of the four sub-
datasets. The posterior probability that a voxel is activated was calculated
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using the simple mixture model without spatial interaction, i.e. the setup of
EB, and the models 1, 2 and 3. The image of posterior probabilities was
thresholded at 0.5, which is a natural level when specifying a neutral balance
between type I and II errors. The thresholded activation images are displayed
in Figure 2. Clearly the spatial models (1, 2, 3) represent the true activation
pattern much more closely than the simple mixture model. When using the
latter, we e�ectively threshold the raw t-statistic image at a certain level,
while at the spatial models we use information in neighbouring voxels, when
classifying a voxel.

True T-image EB

1, 3�3 2, 3�3 3, 3�3

1, 5�5 2, 5�5 3, 5�5

Figure 2: Activation images for the �rst of four subsets of the synthetic data-

set. Top left and middle: True binary activation image and observed t-statistics

image. The remaining are thresholded posterior probability images for the di�erent

models. EB=Everitt and Bullmore's mixture model. 1, 2 and 3: Models 1, 2 and

3 de�ned on a 3 by 3 region or a 5 by 5 region. The images were thresholded at
posterior probability 0.5.

In Table 2 the models are compared quantitatively by their ability to clas-
sify voxels correctly, and by the TPR at a given level of signi�cance (FPR).
The threshold was adjusted to yield an empirical FPR of 5% and 1% respec-
tively in each image, and the TPR of this level was calculated. While the
TPR estimates provide an idea of the strength of the classi�cation test, they
are mainly of theoretical interest, since the threshold used was calculated
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given the true activation pattern. On the contrary to this, the classi�ca-
tion error measures reproducibility of the true pattern, when a practical and
objective threshold is applied.

Table 2: Comparison of models in Figure 3. From left to right are estimates of

classi�cation error for the thresholded images and TPR for images thresholded at

a FPR of 5% and at 1% respectively. All �gures are in percent. Standard errors
of estimates, expressing the variability over the four sub-datasets, are given in

parentheses.

Model Class. error TPR (level 5%) TPR (level 1%)
EB 11.0 (0.7) 66.1 (2.3) 46.8 (5.0)

1, 3�3 6.3 (0.5) 88.3 (0.8) 65.7 (4.0)
1, 5�5 7.0 (0.3) 85.1 (2.0) 57.7 (6.3)
2, 3�3 6.3 (0.8) 90.7 (1.4) 72.5 (2.4)
2, 5�5 6.6 (0.8) 84.3 (2.9) 74.6 (3.5)
3, 3�3 6.3 (0.7) 87.5 (2.3) 66.5 (3.5)
3, 5�5 7.4 (0.3) 82.7 (3.0) 51.6 (7.6)

The table con�rms the impression from Figure 2: The simple mixture
model has the worst classi�cation error and the lowest power. The three
spatial models perform almost equally well, and a grid of 3 by 3 voxels gives
the best result for this data. If the activated areas were larger than these,
the 5 by 5 model might be more suitable, however this activation pattern
seems reasonably representative for real data, and hence we recommend the
3 by 3 model to be used in practice. When considering the power, model 2 is
slightly superior to the models 1 and 3, though this is not signi�cant. Model
1 and 2 are furthermore preferable to model 3, since they have only 1 and 2
parameters respectively.

We may conclude that model 2 applied to a 3 by 3 neighbourhood is
preferable in this situation: The statistical power is more than 90% at a
signi�cance level of 5%, and the mis-classi�cation is reduced by more than
40% compared to the simple mixture model.

We will compare the performance of model 2 with a non-parametric
model, where the activation is estimated by smoothing the data spatially
with a a Gaussian kernel of full width at half maximum (FWHM) 2 and 3
voxels respectively, before calculating the t-statistic image. This is perhaps
the most common way of including spatial information in the analysis of
fMRI data, and usually the smooth t-image is thresholded using the random
�elds theory (Worsley et al., 1995). Voxels may then be classi�ed either on
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the basis of peak height or on cluster size. However, our aim here is not

to compare results from thresholding based on random �elds theory with
that based on posterior probabilities. We think this is diÆcult, since the
underlying principles and assumptions are fundamentally di�erent. Rather
we wish to compare the estimates of spatial activation pattern obtained by
the two models. For this reason, we have thresholded the activation images
in a comparable way, namely at the level which yields an actual FPR of 5%
and 1% respectively, based on the true activation pattern. Figure 3 displays
the estimated activation patterns.

2, 3�3 NP, FWHM 2 NP, FWHM 3

Figure 3: Activation images for the �rst of four subsets of the synthetic data-set.
From left to right: Model 2 de�ned on a 3 by 3 region and the non-parametric

model with FWHM 2 and 3 respectively. Top row: Original activation images.

Below: Images thresholded at empirical FPR 5% (middle) and 1% (bottom).

From the �rst row, we see that the distinction between noise and activa-
tion is dramatically di�erent on the posterior probability scale compared to
the t-image scale. EB made similar observations when comparing p-values
and posterior probabilities. The two last rows show that the non-parametric
model yields estimates which are smoother than the true regions, while the
regions of model 2 are more irregular and have more holes. The estimated
TPR for the non-parametric model are given in Table 3. By comparing this
with Table 2, we see that model 2 reproduces the true activation best, as it
has the highest TPR for each level of FPR. The di�erence is only signi�cant
for FWHM 3.
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Table 3: Estimates of TPR for non-parametric activation images in Figure 3

thresholded at a FPR of 5% and at 1% respectively. All �gures are in percent.

Standard errors of estimates are given in parentheses.

Model TPR (level 5%) TPR (level 1%)
NP, FWHM 2 89.5 (2.0) 66.9 (2.8)
NP, FWHM 3 78.6 (3.4) 46.0 (6.7)

2.3 Example 3: Visual stimulation fMRI data

We �nally considered a visual stimulation data set acquired with T �
2 weighted

EPI on a 1.5 T scanner at the MR Research Centre, Aarhus University
Hospital in Denmark. The data consist of 90 128�128 scans (5�1.875�1.875
mm voxels) for each slice, with a TR of 2 sec. 5 oblique slices were acquired
in axial-coronal direction through the visual cortex. The stimulus was a 7Hz

ashing light, which was presented in a blocked paradigm of 10 scans o�, 10
scans on etc. starting an ending with an o�-period. The �rst 5 scans were
discarded, and we selected one of the slices for this analysis.

The scans were realigned by minimising the squared distance of each scan
to a reference scan under rotations and translations. Next we log-transformed
the data and masked 4389 brain-voxels out. A linear model was �tted indi-
vidually to each voxel time-series. The mean value space was spanned by a
linear trend and a model for the haemodynamic response function given by
a convolution of the paradigm with a Gaussian function with mean 6 sec.
and variance 9 sec2. The estimated activation amplitude was divided by its
standard error to yield an image of t-statistics. The latter is displayed in the
�rst panel in Figure 4.

We did not account for correlation in the time-series, whence we expect
the variance of the statistics to be larger than the theoretical variance of the
t-distribution. We investigated the empirical distribution of the set fxig of
4389 statistics, and found that a mixture of three components �tted well to
this. Two of these were Gamma distributions, modelling respectively positive
and negative BOLD e�ects, and one was a Normal distribution modelling the
noise. The �tted density was

f(x) = p0fN(x; 0; �
2) + p�f�(�x;��; ��) + p+f�(x;�+; �+); (20)

where fN(�;�; �2) denotes the density of a normal distribution with mean �
and variance �2 > 0, and f�(�;�; �) is the density of a Gamma distribution
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with mean �=� and variance �=�2,

f�(x;�; �) =
��

�(�)
x��1e��x; x > 0; � > 0; � > 0:

With the requirement that p0+p++p� = 1, there are 7 free parameters, which
were estimated by maximising the likelihood function under the restriction
that

E(X jX > 0) =

PV

i=1 xi1(xi > 0)PV

i=1 1(xi > 0)
;

i.e. the mean of X given that it is positive, must equal the empirical mean
of the positive xi's. It is well known, that the likelihood function may be
unbounded in mixture models, and the latter restriction was imposed to
reduce the parameter space to �nite likelihood-values. The estimates are
given in Table 4.

Table 4: Parameter estimates for the distribution (20) of fxig.

�̂ =1.5160 p̂� = 0.0502 p̂+ = 0.0081

�̂� = 6.2349 �̂+ = 56.923

�̂� = 0.9433 �̂+ =10.2526

We are only interested in detecting positive activation in this example.
Therefore we write f(x) as

f(x) = (1� p+)f(x jA = 0) + p+f(x jA = 1);

where

f(x jA = 0) =
p0

p0 + p�
fN(x; 0; �

2) +
p�

p0 + p�
f�(�x;��; ��)

is the null-distribution and

f(x jA = 1) = f�(x;�+; �+)

is the distribution of x, given that the voxel is positively activated.
Figure 4 shows the image of statistics fxig and enlarged sections of thresh-

olded posterior probability maps for the non-spatial mixture model (EB), and
for the di�erent models in Section 1.2. The images were thresholded at 0.5.
Like in the previous section, there is hardly any di�erence between the di�er-
ent spatial models, but there is a striking di�erence between the EB model
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and the others. In general the activated areas are larger with the spatial
models and small (i.e. single-voxel) areas are suppressed. Clearly we can
only speculate whether these estimates are closer to the truth or not. How-
ever, the simulated data of the previous section suggest that for activated
areas of a certain size, the spatial model gives a signi�cantly improved es-
timate. The idea that activation should have a certain spatial extent is the
rationale behind spatial smoothing and other �ltering techniques, and hence
also this methodology.

In Figure 5 we have displayed the estimate, one gets by smoothing the
original data before calculating the statistical image. We have no directly
comparable way of thresholding this image, instead we have thresholded the
image at three di�erent levels. The mixture model estimates have some
similarities with these activation patterns, but clearly the latter are much
smoother. Again we can only speculate what is closest to the truth. It is,
however, well known (M�uller, 1988) that a kernel smoothing estimate will be
biased, in the sense that the estimate will be smoother than the underlying
signal. This is a likely explanation for the di�erence in smoothness.

3 Discussion

The proposed mixture model accounts to some extent for the spatial structure
of the underlying activation pattern. We found that the 3 di�erent models
worked almost equally well on synthetic and real fMRI data. In fact we tested
2 more advanced models also (see the Appendix), but they gave similar
results. We recommend model 2 to be used in practice: It has only two
parameters, with natural interpretations: One is p, the probability of a voxel
being activated. An estimate of p is a global measure of the fraction of
activated voxels, which is of interest in itself. The other is 
, which is a
measure of the correlation of true activation �eld. The parameters may
easily be estimated directly from the data.

We found signi�cant improvements compared to the non-spatial mixture
model. A non-parametric smoothing model seems to produce estimates which
are more smooth, than the ones obtained with our method. As mentioned
in Example 3, this could be explained by the bias in the kernel smoothing
estimate. One argument used for smoothing data is the Matched Filter
Theorem (Rosenfeld and Kak, 1982). This states that in order to maximise
signal-to-noise ratio at a speci�c point in an image, one should convolve the
image with a kernel which has the same shape as the signal at that point.
This is a statement about detecting a signal. When one wants to estimate

the signal or some features of it, this is not necessarily an optimal strategy
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Figure 4: Comparison of estimated activation patterns for the di�erent mixture

models. Top left and middle: Raw image of t-statistics and an enlarged section

of this. The remaining panels are posterior probability images thresholded at 0.5.

Top right: non-spatial mixture model. Middle and last row: Models 1, 2 and 3
de�ned on respectively a 3�3 voxel region (middle row) and 5�5 voxel region (last

row.)
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Figure 5: Images of t-statistics based on data smoothed spatially with a Gaussian

kernel of FHWM 2 voxels (top row) and 3 voxels (bottom row). The images are
thresholded at 5.0 (left), 6.0 (middle) and 7.0 (right).
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because of the bias introduced. On the contrary a parametric model, if
correct, yields estimates which are less biased and more eÆcient. Clearly our
model is not \correct", but we would like to emphasise the di�erence between
parametric and non-parametric modelling. Furthermore the choice of the
smoothing parameter, i.e. the FWHM of the kernel, is always a critical point
in non-parametric estimation. It seems that for fMRI data, this parameter
is often chosen in an ad hoc manner. With our method, the \smoothing
parameter" (such as the parameter 
 of model 2) is estimated directly from
the data itself.

The assumptions underlying mixture modelling seem more natural and
transparent to us, than those underlying the random �elds theory. We expect
a priori to �nd basically two di�erent types of voxels, activated and non-
activated, and a model for the data should re
ect this. Also we suspect that
thresholding in the mixture setting is more robust to misspeci�cation of the
model. To illustrate this, we replaced the normal distribution in Example 3
with a t-distribution with 20 degrees of freedom. The thresholded activation
images were almost identical, with only a few voxels changing state. This
is not surprising, since the two distributions are almost equivalent for our
purposes. On the contrary, the random �eld theory relies on the extreme
tail of the distribution, whence there is non-negligible di�erence between a
t(20)-distribution and the normal distribution in this framework.

We have assumed throughout the paper that the observations are uncor-
related given the true activation pattern. Some spatial correlation can be
detected in the noise in fMRI data, and hence this assumption will often be
violated. The correlation of the signal is, however, much larger than that of
the noise, and hence we have accounted for most of the correlation in the data
by the model for the activation pattern. One may extent the methodology to
correlated noise by estimating the spatial correlation �rst, and incorporating
this in the expression for f(xCi

jACi
= a). Clearly the computations get more

complicated then.
From a mathematical point of view, a natural question is whether there

exist global models for the whole set of voxels, which have marginal distri-
butions given by the models in this paper. This is in fact the case, since all
three models have the property, that the structure of the model is maintained
when reducing to marginal distributions. Considering model 2, for instance,
this means that if we formulate the model on the whole set of voxels, the
marginal distribution of a 3 by 3 region will be the same as that obtained
by formulating the model on this region only. This also means that edge-
e�ects may be handled in a rigorous way, by simply reducing the number of
neighbours k.
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4 Conclusion

We have formulated a simple mixture model for fMRI data which captures
some of the spatial structure of the underlying activation pattern. The spa-
tial model has two parameters, which are directly interpretable and may be
estimated from the data. The expression for the posterior probability that a
voxel is activated is given in closed form.

In order to use this method, one needs only specify the null-distribution
and the distribution of activated voxels. These can be any distributions.
The resulting activation image is a posterior probability image, which may
be thresholded in an intuitive way, without the need for correcting for mul-
tiple comparisons. Alternatively, one may display the unthresholded proba-
bility map, which shows a clear distinction between estimated activation and
baseline.
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A Complicated marginal models

In the simple models in Section 1.2 for the marginal probabilities of the
activity ACi

, the probability depends only on the number of activated voxels.
A more realistic model would favour connected components corresponding to
cutting a part of a convex boundary. We will describe two such models in
the two dimensional situation, where Ci is a square with nine pixels. We
have postponed the models to this appendix, since we found that they did
not yield improved estimates in our examples. Still the models, or the ideas
used for constructing them, might be useful in other contexts, which is the
justi�cation for this appendix.

The �rst model is designed to capture situations where the activated re-
gion consists of a number of small, widely separated, convex regions, whereas
the second model captures situations with long straight line boundaries be-
tween activated and non-activated regions.

We use the notation from (8) for vji and as before let s = a0+a1+ � � �+a8.
For j > 8 we let vji = vj�8

i . Furthermore, we use the following numbering
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j = 1; : : : ; 8:

1 2 3
8 4
7 6 5

of the eight boundary pixels. We will consider models of the form

P (ACi
= a) =

�
q0 s = 0
q1(1 + Æ�(a)) s > 0;

(21)

where �(a) is non-zero for certain con�gurations a only.
In the �rst model for � we imagine that there are four possible shapes for

activated subregions. The four shapes are

a) b) c) d)

1
1 1 1

1

1 1 1
1 1 1
1 1 1

1 1
1 1 1 1
1 1 1 1

1 1

1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1

We let the frequencies of these four regions be inversely proportional to the
area of the convex hull of the region. Thus the frequencies are proportional
to w = (1

7
; 1
9
; 1
14
; 1
37
). Most of the cases where �(a) > 0 can be described

by having a consecutive sequence of activated pixels along the boundary
of the square. Let this sequence be aI ; aI+1; : : : ; aI+l�1. If a0 = 0 and
I 2 f1; 3; 5; 7g we let �(a) = �1

l and if I 2 f2; 4; 6; 8g we let �(a) = �2
l .

If a0 = 1 the corresponding values are �1
l and �2

l , except for l = 8 where
�(a) = 
3. Furthermore, �(a) = 
2 for the case where s = 5 and a0 =
a2 = a4 = a6 = a8 = 1 and �(a) = 
1 when s = 7 with aI = aI+2 = 0,
I 2 f1; 3; 5; 7g. We then �nd

�1
1 = 2w1 + w2 + 2w3 + 3w4 �1

2 = w2 + w3 + w4 �1
3 = w2 �1

4 = w4;

�2
1 = w1 + w4 �2

2 = �1
2 �2

3 = w1 + w3 �2
4 = �1

4;

�1
3 = w1 + w4 �1

4 = w3 �1
6 = w4;

�2
3 = w2 + w4 �2

4 = �1
4 �2

5 = w2 �2
6 = �1

6 �2
7 = w3;


1 = w4 
2 = w1 
3 = w2 + 9w4:
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With these de�nitions the sum
P

a:a0=0

Q8
j=1 f(x

j
i jaj)�(a) when the centre

pixel is zero becomes
Q8

j=1 f(x
j
i j0) times

T0 =
X

r2f1;3;5;7g

�
vri (�

1
1 + vr+1

i (�1
2 + vr+2

i (�1
3 + �1

4v
r+3
i )))

+ vr+1
i (�2

1 + vr+2
i (�2

2 + vr+3
i (�2

3 + �2
4v

r+4
i )))

	
; (22)

and the sum
P

a:a0=1

Q8
j=1 f(x

j
i jaj)�(a) when the centre pixel is one becomesQ8

j=1 f(x
j
i j0) times

T1 =
X

r2f1;3;5;7g

�
vri v

r+1
i vr+2

i (�1
3 + vr+3

i (�1
4 + �1

6v
r+4
i vr+5

i ))

+vr+1
i vr+2

i vr+3
i (�2

3 + vr+4
i (�2

4 + vr+5
i (�2

5 + vr+6
i (�2

6 + �2
7v

r+7
i ))))

+
1v
r+1
i

r+7Y
j=r+3

vji

�
+ 
2v

2
i v

4
i v

6
i v

8
i + 
3

8Y
j=1

vji : (23)

Also we have the two equations

1 = q0 + q1f511 + Æ(21w1 + 25w2 + 32w3 + 61w4)g;
p = q1f256 + Æ(5w1 + 9w2 + 12w3 + 29w4)g;

where p is the probability of a pixel being activated. Finally, we �nd

P (Ai = 1jxCi
) =

0
@1 + 1

v0i

q0 + q1
�Q8

j=1(1 + vji )� 1 + ÆT0
�

q1

�Q8
j=1(1 + vji ) + ÆT1

�
1
A

�1

: (24)

In the second model for � we imagine that we have long straight line
boundaries separating activated and non-activated regions. In a square with
nine pixels we see 8 di�erent lines (horizontal, slopes 1

2
, 1 and 2, vertical and

slopes -2, -1 and �1
2
). We can give di�erent weights to the di�erent lines,

Here, though, we will imagine that the di�erent lines have the same length.
Since a line with length l and slope 1 has horizontal length l=

p
2 and similar

a line with slope 2 has horizontal length l=
p
5 we �nd the following values
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for the � and � parameters used in the model above.

�1
1 =

2p
5
+

1p
2
�1
2 =

1p
5
�1
3 = 1 �1

4 =
1p
5
;

�2
2 = �1

2 �2
3 =

1p
2
�2
4 = �1

4;

�1
4 =

1p
5
�1
5 =

1p
2
�1
6 =

1p
5
;

�2
4 = �1

4 �2
5 = 1 �2

6 = �1
6 �2

7 =
2p
5
+

1p
2
:

Furthermore, we introduce a parameter 
 by letting �(a) = 
 when s = 9.
Then we �nd instead of (22) and (23) the expressions

T0 =
X

r2f1;3;5;7g

�
vri (�

1
1 + vr+1

i (�1
2 + vr+2

i (�1
3 + �1

4v
r+3
i )))

+ vr+1
i vr+2

i (�2
2 + vr+3

i (�2
3 + �2

4v
r+4
i ))

	
;

and

T1 =
X

r2f1;3;5;7g

�
vri v

r+1
i vr+2

i vr+3
i (�1

4 + vr+4
i (�1

5 + �1
6v

r+5
i ))

+ vr+1
i vr+2

i vr+3
i vr+4

i (�2
4 + vr+5

i (�2
5 + vr+6

i (�2
6 + �2

7v
r+7
i )))

	
+ 


8Y
j=1

vji :

Also we have the two equations

1 = q0 + q1f511 + Æ[8(1 +
p
2 +

6p
5
) + 
]g;

p = q1f256 + Æ[4(1 +
p
2 +

6p
5
) + 
]g;

The probability P (Ai = 1jxCi
) is still given by (24)
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