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HIRZEBRUCH SURFACES AND ERROR-CORRECTING

CODES

JOHAN P. HANSEN

Abstract. For any integral convex polytope in R2 there is an
explicit construction of an error-correcting code of length (q � 1)2

over the �nite �eld Fq , obtained by evaluation of rational functions
on a toric surface associated to the polytope. The dimension of the
code is equal to the number of integral points in the given polytope
and the minimumdistance is estimated using the cohomology and
intersection theory of the underlying surfaces. In detail we will
treat Hirzebruch surfaces.
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1. Toric codes

Let M ' Z2 be a free Z-module of rank 2 over the integers Z. Let
� be an integral convex polytope in MR = M 
ZR, i.e. a compact
convex polyhedron such that the vertices belong to M .
Let q be a prime power and let � 2 Fq be a primitive element. For

any i such that 0 � i � q � 1 and any j such that 0 � j � q � 1, we
let Pij = (�i; �j) 2 Fq

� � Fq
�. Let m1;m2 be a Z-basis for M . For any

m = �1m1 + �2m2 2M \�, we let e(m)(Pij) = (�i)�1(�j)�2:
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De�nition 1.1. The toric code C� associated to � is the linear code
of length n = (q � 1)2 generated by the vectors

f(e(m)(Pij))i=0;:::;q�1;j=0;:::;q�1 jm 2M \ �g: (1)

In [JPH] we presented a general method to obtain the dimension and
a lower bound for the minimal distance of a toric code. In particular
we obtained the following three results, where the second code is a
subcode of the Reed Muller code on P2.

Theorem 1.2. Let d be a positive integer and let � be the polytope in
MR with vertices (0; 0); (d; d); (0; 2d), see �gure 1. Assume that 2d <

q�1: The toric code C� has length equal to (q�1)2 , dimension equal to
#(M \�) = (d+1)2 ( the number of lattice points in �) and minimal
distance greater or equal to (q � 1)2 � 2d(q � 1).

Theorem 1.3. Let d be a positive integer and let � be the polytope in
MRwith vertices (0; 0); (d; 0); (0; d), see �gure 1. Assume that d < q�1:
The toric code C� has length equal to (q � 1)2 , dimension equal to

#(M\�) = (d+1)(d+2)
2

( the number of lattice points in �) and minimal
distance greater or equal to (q � 1)2 � d(q � 1).

Theorem 1.4. Let d; e be positive integers and let � be the polytope
in MRwith vertices (0; 0); (d; 0); (d; e); (0; e), see �gure 1. Assume that
d < q � 1 and that e < q � 1: The toric code C� has length equal
to (q � 1)2 , dimension equal to #(M \ �) = (d + 1)(e + 1) ( the
number of lattice points in �) and minimal distance greater or equal to
(q � 1)2 � (d(q � 1) + (q � 1 � d)e) = (q � 1 � d)(q � 1 � e).

1.1. Codes from Hirzebruch toric surfaces. The polytopes we are
interested in are the polytopes with vertices (0; 0); (d; 0); (d; e+rd) and
(0; e) as shown in �gure 2. We obtain the the following theorem.

Theorem 1.5. Let d; e; r be positive integers and let � be the polytope
in MRwith vertices (0; 0); (d; 0); (d; e+ rd); (0; e); see �gure 2. Assume
that d < q � 1, that e < q � 1 and that e + rd < q � 1: The toric
code C� has length equal to (q � 1)2; dimension equal to #(M \�) =

(d+1)(e+1)+ r
d(d+1)

2 (the number of lattice points in �) and minimal
distance greater or equal to (q � 1� d)(q � 1� e).

One should note that Theorem 1.4 is a special case when r = 0 and
that the estimate for the minimal distance is independent of r. The
estimate for the minimal distance is the best possible, in the case when
q = 5; d = e = 1; r = 2 the true minimal distance is the same as the
estimate.
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Figure 1. The polytope of Theorem 1.2 is the left
triangle with vertices (0; 0); (d; d); (0; 2d); the polytope
of Theorem 1.3 is the right triangle with vertices
(0; 0); (d; 0); (0; d) and the polytope of Theorem 1.4 is
the square with vertices (0; 0); (d; 0); (d; e); (0; e):

In �gure 5 and 6, we have plotted for q = 16 and q = 32 the usual
xy-diagrams for the codes obtained, where x for a given code is the
rate of the code, that is the fraction dimension

length
, and y is a lower bound

for the relative minumal distance minimaldistance
length :

2. The method of toric varieties

The toric codes are obtained from evaluating certain rational func-
tions in rational points on toric varieties. For the general theory of toric
varieties we refer to [F] and [O]. Here we will be using toric surfaces
and we recollect their theory.
In 2.2 we present the method using toric varieties, their cohomology

and intersection theory to obtain bounds for the number of rational
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Figure 2. The polytope of Theorem 1.5 is the polytope
with vertices (0; 0); (d; 0); (d; e+ rd); (0; e):

Figure 3. The normal fan of the polytope of Theo-
rem 1.5 (see �gure 2)

zeroes of a rational function. In 2.3 this is used to prove the theorems
on dimension and minimal distance of the codes C� presented above.

2.1. Hirzebruch toric surfaces and their cohomology. Let M

be an integer lattice M ' Z
2. Let N = HomZ(M;Z) be the dual

lattice with canonical Z- bilinear pairing < ; >: M �N ! ZLet
MR= M 
ZR and NR= N 
ZR with canonical R - bilinear pairing
< ; >:MR�NR! R:
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Given a 2-dimensional integral convex polytope � in MR. The sup-
port function h� : NR! R is de�ned as h�(n) := inff< m;n > jm 2
�g and � can be reconstructed:

�h = fm 2M j < m;n >� h(n) 8n 2 Ng: (2)

The support function h� is piecewise linear in the sense that NR is
the union of a non-empty �nite collection of strongly convex polyhedral
cones in NR such that h� is linear on each cone. A fan is a collection
� of strongly convex polyhedral cones in NR such that every face of
� 2 � is contained in � and � \ �0 2 � for all �; �0 2 �.
The normal fan � is the coarsest fan such that h� is linear on each

� 2 �, i.e. for all � 2 � there exists l� 2M such that

h�(n) =< l�; n > 8n 2 �: (3)

The 1-dimensional cones � 2 � are generated by unique primitive
elements n(�) 2 N \ � such that � = R�0n(�).
Upon re�nement of the normal fan, we can assume that two suc-

cessive pairs of n(�)'s generate the lattice and we obtain the re�ned
normal fan. The re�ned normal fans of the polytopes in �gure 1 are
shown in �gure 4.
Consider the polytope of Theorem 1.5, see �gure 2 . The re�ned

normal fan is show in �gure 3. We have that n(�1) =

�
1
0

�
, n(�2) =�

0
1

�
, n(�3) =

�
�1
0

�
and n(�4) =

�
r

�1

�
. Let �1 be the cone generated

by n(�1) and n(�2), �2 be the cone generated by n(�2) and n(�3) , �3
the cone generated by n(�3) and n(�4) and �4 the cone generated by
n(�4) and n(�1). The support function is:

h�

�
n1
n2

�
=

8>>>>>>>>>>>>>><
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The 2-dimensional algebraic torus TN w Fq
�
� Fq

�
is de�ned by

TN := HomZ(M;Fq
�
). The multiplicative character e(m); m 2 M

is the homomorphism e(m) : T ! Fq
�
de�ned by e(m)(t) = t(m) for
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Figure 4. The normal fans af the polytopes in �gure 1

t 2 TN . Speci�cally, if fn1; n2g and fm1;m2g are dual Z-bases of N
and M and we denote uj := e(mj); j = 1; 2, then we have an isomor-

phism TN w Fq
�
�Fq

�
sending t to (u1(t); u2(t)). For m = �1m1+�2m2

we have

e(m)(t) = u1(t)
�1u2(t)

�2

The toric surface X� associated to the re�ned normal fan � of � is
irreducible, non-singular and complete

X� = [�2�U�

where U� is the Fq-valued points of the a�ne scheme Spec(Fq[S�]), i.e.

U� = fu 2 S� ! Fqju(0) = 1; u(m+m0) = u(m)u(m0)8n;m0 2 S�g

If �; � 2 � and � is a face of �, then U� is an open subset of U�.
Obviously S0 = M and U0 = TN such that the algebraic torus TN is
an open subset of X�.
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TN acts algebraically on X�. On u 2 U� the action of t 2 TN is
obtained as

(tu)(m) := t(m)u(m) m 2 S�

such that tu 2 U� and U� is TN -stable. The orbits of this action is in
one-to-one correspondance with �. For each � 2 � let

orb(�) := fu :M \ �! Fq
�
ju is a group homomorphismg:

Then orb(�) is a TN orbit in X�. De�ne V (�) to be the closue of
orb(�) in X�.
A �-linear support function h gives rise to the Cartier divisor Dh.

Let �(1) be the 1-dimensional cones in � then

Dh := �
X

�2�(1)

h(n(�))V (�)

In particular

Dm = div(e(�m)) m 2M

Following [O] Lemma 2.3 we have the lemma.

Lemma 2.1. Let h be a �-linear support function with associated Cartier
divisor Dh and convex polytope �h de�ned in (2). The vector space
H0(X;OX (Dh)) of global sections of OX(Dh), i.e. rational functions f
on X� such that div(f) +Dh � 0 has dimension #(M \ �h) and has
fe(m)jm 2M \�hg as a basis.

In case of the polytope in Theorem 1.5, see �gure 2, we have

Dh := �
X

�2�(1)

h(n(�))V (�) = d V (�3) + e V (�4)

and

dimH0(X;OX (Dh)) = (d + 1 )(e + 1 ) + r
d(d + 1 )

2
:

2.2. Intersection theory on Hirzebruch toric surfaces. For a �-
linear support function h and a 1-dimensional cone � 2 �(1) we will
determine the intersection number (Dh;V (�)) between the Cartier di-
visor Dh and V (�)) = P

1. This is number is obtained in [O], Lemma
2.11. The cone � is the common face of two 2-dimensional cones
�0; �00 2 �(2). Choose primitive elements n0; n00 2 N such that

n0 + n00 2 R�

�0 +R�= R�0n
0 +R�

�00 +R�= R�0n
00 +R�
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Lemma 2.2. For any l� 2 M such that h coincides with l� on �, let
h = h � l�. Then

(Dh;V (�)) = �(h(n0) + h(n00))

In the 2-dimensional non-singular case let n(�) be a primitive gener-
ator for the 1-dimensional cone �. There exist an integer a such that

n0 + n00 + an(�) = 0:

V (�) is itself a Cartier divisor and the above gives the self-intersection
number

(V (�);V (�)) = a:

The divisor classes are represented by the 1-dimensional cones and the
their table of intersections in case of the Hirzebruch surface obtained
from the fan in �gure3 is the following:

(V (�i);V (�j)) V (�1) V (�2) V (�3) V (�4)
V (�1) �r 1 0 1
V (�2) 1 0 1 0
V (�3) 0 1 r 1
V (�4) 1 0 1 0

More generally the self-intersection number of a Cartier divisor Dh

is obtained in [O], Prop. 2.10.

Lemma 2.3. Let Dh be a Cartier divisor and let �h be the polytope
associated to h , see (2). Then

(Dh;Dh) = 2 vol2(�h);

where vol2 is the normalized Lesbesque-measure.

Proof. see [O].

2.3. Determination of parameters. We start by exhibiting the toric
codes as evaluation codes.
For each t 2 T ' Fq

�
� Fq

�
, we can evaluate

H0(X;OX (Dh)) ! Fq
�

f 7! f(t)

Taking all points in T (Fq) we obain the code C�:

H0(X;OX (Dh))
Frob ! C� � (Fq

�)T (Fq
�)

f 7! (f(t))t2T (Fq)
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Figure 5. For all possible codes obtained by Theo-
rem 1.5 in the case q = 16 a point is marked in the
usual xy-diagram, where x for a given code is the rate of
the code, that is the fraction dimension

length , and y is a lower

bound for the relative minumal distance minimaldistance
length .
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Figure 6. For all possible codes obtained by Theo-
rem 1.5 in the case q = 32 a point is marked in the
usual xy-diagram, where x for a given code is the rate of
the code, that is the fraction dimension

length , and y is a lower

bound for the relative minumal distance minimaldistance
length .
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and the generators of the code is obtained as the image of the basis:

e(m) 7! (e(m)(t))t2T (Fq)

as in (1).

Let m1 = (1; 0). The Fq -rational points of T ' Fq
�
� Fq

�
belong to

the q � 1 lines on X� given by
Q

�2Fq
(e(m1) � �) = 0. Let 0 6= f 2

H0(X;OX (Dh)) and assume that f is zero along precisely a of these
lines. As e(m1) � � and e(m1) have the same divisors of poles, they
have equivalent divisors of zeroes, so

(div(e(m1)� �))0 � (div(e(m1)))0:

Therefore

div(f) +Dh � a(div(e(m1)))0 � 0

or equivalently

f 2 H0(X;OX (Dh � a(div(e(m1 )))0 ):

In the cases of Theorem 1.5 this implies that a � d according to
Lemma 2.1. On any of the other q � 1 � a lines the number of ze-
roes of f is according to [H] at most the intersection number:

(Dh � a(div(e(m1)))0; (div(e(m1)))0)

which is equal to

(d V (�3) + e V (�4)� a(V (�1) + V (�4));V (�1) + V (�4)) = e+ (d � a)r

using the intersection table as div(e(m1)))0 = V (�1) + V (�4):
As 0 � a � d the total number of zeroes for f is at most:

a(q � 1) + (q � 1� a)(e+ (d � a)r) � d(q � 1) + (q � 1 � d)e

This implies that the evaluation map

H0(X;OX (Dh))
Frob ! C� � (Fq

�)T (Fq
�)

f 7! (f(t))t2T (Fq)

is injective and that the parameters of the toric code are as claimed.
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