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THE DEFECT OF FACTOR MAPS AND FINITE EQUIVALENCE

OF DYNAMICAL SYSTEMS

KLAUS THOMSEN

1. Introduction

The defect, D(�), of a factor map � : (Y;  )! (X;') between dynamical systems
was de�ned in [Th1] under the assumption that X is a totally disconnected compact
metric space, and it was calculated in a series of speci�c cases. The defect gives
a numerical indication of how far � is from being injective; an indication which is
particularly sensitive to the ambiguity of � over periodic orbits of '. In [Th2] a
variational principle for the defect was established:

D(�) = sup
�

Z
X

log#��1(x) d�(x);

where we take the supremum over all '-invariant Borel probability measures on X.
In this paper the de�nition of the defect is extended to the general case, i.e. we
drop the assumption that Y is totally disconnected and de�ne the defect in a way
which is analogous to - and generalizes - the case when Y is totally disconnected.
We prove the variational principle in the general case and show how almost all the
general properties of the defect follow from this principle. In particular, we obtain
the subadditivity

D(�2 Æ �1) � D(�2) +D(�1)

for the composition of factor maps between invertible dynamical systems. This
property fails dramatically for general non-invertible dynamical systems and this
has e�ects for the notion of �nite equivalence between dynamical systems which
the defect suggests in a natural way. For this reason we consider a slight variation
in the de�nition of the defect which makes no di�erence for factor maps between
invertible dynamical systems, but results in a smaller number in general. We call
this the reduced defect of the factor map, and denote it by Dr(�). The reduced
defect is sub-additive in general and relates directly to the defect via the notion of
natural invertible extensions of dynamical systems. Recall that the (inverse of the)
natural invertible extension is the invertible dynamical system which arises as the
shift acting on the inverse limit of the given space with the given map as bonding
maps. A factor map, �, between (non-invertible) dynamical systems induces in a
natural way a factor map, b�, between the natural invertible extensions, and it turns
out that

Dr(�) = D(b�):
This makes it possible to transfer general properties of the defect to properties of
the reduced defect. For example, we use it to obtain a variational principle for the
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reduced defect of a factor map � : (Y;  )! (X;');

Dr(�) = sup
�

Z
X

logA�(x) d�(x);

where we take the supremum over all '-invariant Borel probability measures on X
and A� is a Borel function A� : X ! N [ f1g canonically associated to �. It
turns out that, unlike the defect itself, the reduced defect is always the logarithm
of a natural number. It follows therefore that to any factor map between arbitrary
dynamical systems there is associated a natural number (or +1) which carries sub-
stantial information about how well the factor map relates the dynamical systems.
As indicated above the subadditivity of the defect (or the reduced defect), com-

bined with the variational principle, leads to a natural generalization of the notion
of �nite equivalence �rst introduced by Parry, cf. [P], and used by him to give
a classi�cation of irreducible so�c shifts in terms of topological entropy. Namely
we say that two invertible dynamical systems, (X;'); (Y;  ), are �nitely equivalent
when there is an invertible dynamical system (Z; �) and factor maps �1 : (Z; �) !
(X;'); �2 : (Z; �) ! (Y;  ) such that D(�1) + D(�2) < 1. This equivalence
relation generalizes the notion of �nite equivalence of irreducible so�c shifts, and
by using the reduced defect instead we obtain a further generalization to arbitrary
dynamical systems. In the remaining part of the paper we make a �rst investiga-
tion of this equivalence relation. Speci�cally, we determine the �nite equivalence
classes of a series of dynamical systems which are all quite well-understood: Irre-
ducible so�c shifts (two-sided as well as one-sided), hyperbolic toral automorphisms
and expansive endomorphisms, periodic maps, homeomorphisms of the circle with
an irrational rotation number and minimal rotations of tori. The most important
invariant for �nite equivalence is the topological entropy, and for some suÆciently
restricted classes of dynamical systems (such as hyperbolic automorphisms of tori or
expansive endomorphisms of manifolds) it is also the only invariant. But in general
it is not. For example we show that two orientation preserving homeomorphisms of
the circle T with irrational rotation numbers, �; � 2 R, are �nitely equivalent if and
only if 1; � and � are rationally dependent.

2. The defect of factor maps: Definition and the variational

principle

Let (X;') be a dynamical system1 acting on a compact space X. Let Y be
another compact metric space and � : Y ! X be a continuous surjection. Let
U = fUi : i 2 Ig be a �nite cover of Y . For any subset F � Y we let C(F;U) denote
the minimal number of elements in U needed to cover F , i.e.

C(F;U) = minf#J : J � I;
[
j2J

Uj � Fg :

For x 2 X, set

ak(x; ';U) = C(��1(x);U)C(��1('(x));U)C(��1('2(x));U) � � �C(��1('k�1(x));U) :
(2.1)

1Here and in the following all dynamical systems are implicitly assumed to act on a compact
metric space.
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When U is a partition of Y , ak(x; ';U) = qk(x; �(U)), where the last quantity was
one of the fundamental entities used to de�ne the defect in [Th1]. Set

ak(';U) = sup
x2X

ak(x; ';U);

so that ak(';U) = qk('; �(U)) when U is a partition, cf. [Th1]. Then

1) ak+n(';U) � ak(';U)an(';U),
2) ak(';U) � ak(';V) when V is a re�nement of U .

It follows from 1) that we can consider the limit

A(';U) = lim
n!1

1

n
log an(';U):

We de�ne the defect of � to be

D(�) = sup
U

A(';U);

where we take the supremum over all �nite open covers U of Y . It follows from 2)
that

D(�) = lim
k!1

A(';Uk);
for any sequence Uk; k 2 N , of open covers of Y for which the maximal diameter of
any set in the cover Uk goes to zero as k tends to in�nity. In particular, D(�) agrees
with the defect de�ned in [Th1] when Y is totally disconnected.

Theorem 2.1. (The variational principle.) The function x 7! #��1(x) is Borel,
and

D(�) = sup
�

Z
X

log#��1(x) d�(x);

where we take the supremum over all '-invariant Borel probability measures on X.
In fact, it suÆces to take the supremum over all '-ergodic Borel probability measures
on X.

Proof. Let Un = fUn
i : i = 1; 2; � � � ; Ing be a sequence of �nite open covers of Y such

that

lim
n!1

maxfdiamUn
i : i = 1; 2; � � � ; Ing = 0:

For each n, set ~Un
1 = Un

1 and

~Un
i = Un

i n(Un
1 [ Un

2 [ � � � [ Un
i�1);

for i � 2. Note that ~Un
i is an F�-set so that �( ~Un

i ) is an F�-set and hence also a
Borel set for all n; i. For each n, de�ne a Borel function fn : X ! N by

fn(x) = #fi : x 2 �( ~Un
i )g =

InX
i=1

1�( ~Un
i )
(x):

We claim that

#��1(x) = lim
n!1

fn(x) (2.2)

for all x 2 X. To see this, let k 2 N satisfy that k � #��1(x). There are then
k distinct elements y1; y2; � � � ; yk 2 ��1(x). Let N 2 N satisfy that maxi diam ~Un

i

is smaller than any distance between yk and yl when k 6= l, for all n � N . Then
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k � fn(x) � #��1(x) for all n � N , proving (2.2). In particular, we see that
x 7! #��1(x) is a Borel function. By Fatou's lemma,Z

X

log#��1(x) d�(x) � lim inf
n

Z
X

log fn d� (2.3)

for any '-invariant Borel probability measure � on X. Let t <
R
X
log#��1(x) d�.

It follows from (2.3) that we can choose n so large that

t <

Z
X

log fn d�:

Since each ~Un
i is an F�-set we can �nd sequences F 1

i � F 2
i � F 3

i � � � � of closed sets
such that ~Un

i =
S
k F

k
i . Then

lim
k!1

maxf#fi : x 2 �(F k
i )g; 1g = fn(x);

non-decreasingly, for all x 2 X, so Lebesgue's monotone convergence theorem gives
us a k such that

t <

Z
X

log(maxf#fi : x 2 �(F k
i )g; 1g) d�(x): (2.4)

When F = fFi : i 2 Ig is a collection of subsets of X (not necessarily a cover), we
set

q0k(x;F) =
k�1Y
j=0

maxf1;#fi : 'j(x) 2 Figg

for x 2 X; k 2 N . Set q0k(';F) = supx2X q
0
k(x;F). Then the limit Q0(';F) =

limn!1
1
n
log q0n(';F) exists and is equal to infn

1
n
log q0n(';F). In particular, there

is, for � > 0, an m such that

1

m
log q0m(';G) < Q0(';G) + �

when G = f�(F k
i ) : i = 1; 2; � � � ; Ing. For each i we choose a decreasing sequence

U1
i � U2

i � � � � of open sets in X such that U l+1
i � U l

i for all l and
T
l U

l
i = �(F k

i ).
Since \

l

U l
i1
\ '�1(U l

i2
) \ '�2(U l

i3
) \ � � � \ '�n+1(U l

im
)

= �(F k
i1
) \ '�1(�(F k

i2
)) \ '�2(�(F k

i3
)) \ � � � \ '�n+1(�(F k

im
))

for each tuple (i1; i2; � � � ; im) 2 Imn , there is an l so large that

q0m(';U l) = q0m(';G);
when we set U l = fU l

i : i = 1; 2; � � � ; Ing. It follows that
Q0(';U l) � Q0(';G) + �: (2.5)

For each d 2 N , let
Ld =

[
J

\
j2J

U l
j;
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where we take the union over all subsets J of f1; 2; � � � ; Ing of cardinality � d. Take
continuous functions gd : X ! [0; 1] with support in Ld. We claim that

Q0(';G) �
Z
X

log(maxf
InX
d=1

gd(x); 1g) d�(x)� 2�: (2.6)

To prove (2.6) it suÆces, since � is the weak�-limit of a convex combination of '-
ergodic Borel probability measures, to consider the case when � is '-ergodic. In
that caseZ

X

log(maxf
InX
d=1

gd(x); 1g) d�(x) = lim
m!1

1

m

m�1X
i=0

log(maxf
InX
d=1

gd('
i(z)); 1g)

for �-almost all z 2 X. There is therefore a point z 2 X such that

1

m

m�1X
i=0

log(maxf
InX
d=1

gd('
i(z)); 1g) �

Z
X

log(maxf
InX
d=1

gd(x); 1g) d�(x)� �

for all suÆciently large m. Since maxfPIn
d=1 gd('

i(z)); 1g � maxf1;#fd 2 In :
'i(z) 2 U l

dgg, we deduce that
1

m
log q0m(';U l) �

Z
X

log(maxf
InX
d=1

gd(x); 1g) d�(x)� �

for all large enough m. (2.6) follows from this and (2.5). Let g1d � g2d � g3d � � � � be
an increasing sequence of continuous functions such that limn!1 g

n
d = 1Ld. Then

lim
m!1

log(maxf
InX
d=1

gmd (x); 1g) = log(maxf#fi : x 2 U l
ig; 1g)

for all x 2 X. It follows therefore from (2.4) and (2.6) that

t� 2� <

Z
X

log(maxf#fi : x 2 �(F k
i )g; 1g) d�(x)� 2�

�
Z
X

log(maxf#fi : x 2 U l
ig; 1g) d�(x)� 2� � Q0(';G):

Since F k
i \ F k

j = ; when i 6= j, we can easily construct an open cover V = fVi :
i = 1; 2; � � � ; In + 1g of Y such that F k

i � Vin
S
j 6=i Vj for all i = 1; 2; � � � ; In. Then

C(��1(x);V) � #fi : x 2 �(F k
i )g for all x 2 X and hence

A(';V) � Q0(';G) > t� 2�:

It follows that D(�) > t� 2�, proving that

D(�) � sup
�

Z
X

log#��1(x) d�(x) :

To prove the reversed inequality, let t 2 R be a number such that t < D(�). There
is an open cover U of Y such that A(';U) > t. For each n choose a point xn 2 X
such that 1

n
log an(xn; ';U) > 1

n
log an(';U)� �. Then

1

n
log an(xn; ';U) > A(';U)� � > t� � (2.7)
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for all n. Let �n be the measure

�n =
1

n

n�1X
i=0

Æ'i(xn):

There is then a sequence fnjg in N and a '-invariant Borel probability measure �1
on X such that limj!1 �nj = �1. Let Æ > 0 be a Lebesgue number for U . We need
the following

Observation 2.2. There is an open cover V = fUi : i = 1; 2; � � � ; mg of Y such that
diam(Ui) < Æ for all i and such that

�n(�(U1)n�(U1)) = 0;

and

�n(�(Ujn(U1 [ U2 [ � � � [ Uj�1))n�(Ujn(U1 [ U2 [ � � � [ Uj�1))) = 0

for j = 2; 3; � � � ; m, and for all n 2 N [ f1g.
To prove this observation we need some notation. For every set B � Y and every

� > 0, let B� = fy 2 Y : dist(y; B) < �g. Let fSi : i = 1; 2; � � � ; mg be an open cover

of Y such that diamSi <
Æ
2
for all i. Since St1 � Ss1 when t < s, we see that the sets

�(St1)n�(St1); t 2]0;
Æ

2
[;

are mutually disjoint. There must therefore be an �1 2]0; Æ2 [ such that �n(�(S�11 )n�(S�11 )) =
0 for all n 2 N [ f1g. Note that

�(St2nS�11 ) � �(Ss2nS�11 )
when t < s. We can therefore repeat the above argument to �nd a �2 2]0; Æ2 [ such
that

�n(�(S
�2
2 nS�11 )n�(S�22 nS�11 )) = 0

for all n 2 N [ f1g. Continuing in this way we �nd �j 2]0; Æ2 [; j = 1; 2; � � � ; m, such
that

�n(�(S
�j
j n(S�11 [ S�22 [ � � � [ S�j�1j�1 ))n�(S�jj n(S�11 [ S�22 [ � � � [ S�j�1j�1 ))) = 0

for all n 2 N [ f1g. Set Uj = S
�j
j ; j = 1; 2; � � � ; m. Then V = fUi : i = 1; 2; � � � ; mg

is an open cover with the desired property.
Set V1 = U1; Vj = Ujn(Uj�1 [ Uj�2 [ � � � [ U1). Then W = fVi : i = 1; 2; � � � ; mg

is a partition of Y which re�nes U . In particular, a(x; ';U) � a(x; ';W) for all x
and hence

1

n
log an(xn; ';U) � 1

n
log an(xn; ';W) (2.8)

for all n 2 N . Note that
1

n
log an(xn; ';W) =

1

n

n�1X
j=0

log C(��1('j(xn));W)

=
1

n

n�1X
j=0

log#fl : 'j(xn) 2 �(Vl)g =
Z
X

log#fl : x 2 �(Vl)g d�n(x)
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for all n. The special properties of V ensure thatZ
X

log#fl : x 2 �(Vl)g d�n(x) =
Z
X

log#fl : x 2 �(Vl)g d�n(x)
for all n. So when we combine with (2.7) and (2.8) we �nd thatZ

X

log#fl : x 2 �(Vl)g d�n(x) > t� � (2.9)

for all n. Since �(Vl) is closed for all l there is a decreasing sequence h1 � h2 �
h3 � � � � of continuous functions such that limn!1 hn(x) = log#fl : x 2 �(Vl)g for
all x 2 X. For each n we have that

t� � �
Z
X

hk d�n

for all k. By restricting to fnjg and taking the limit over j it follows that

t� � �
Z
X

hk d�1

for all k, and by taking the limit over k, that t�� � R
X
log#fl : x 2 �(Vl)g d�1(x) =R

X
log#fl : x 2 �(Vl)g d�1(x). Since each Vl is an F�-set, an application of

Lebesgue's theorem on monotone convergence gives us closed subsets Fl � Vl; l =
1; 2; � � � ; m, such that

t� 2� �
Z
X

log#fl : x 2 �(Fl)g d�1(x): (2.10)

Being the in�mum of continuous functions, the map W given by

W (�) =

Z
X

log#fl : x 2 �(Fl)g d�(x)
is upper semi-continuous on the compact convex set of '-invariant Borel probability
measures on X and hence it attains it maximum at an extreme point. It follows
therefore from (2.10) that there is '-ergodic measure � on X such that t � 2� �R
X
log#fl : x 2 �(Fl)g d�(x). Since #fl : x 2 �(Fl)g � #��1(x) we conclude that

D(�) � supf
Z
X

log#��1(x) d�(x) : � is a '-ergodic Borel probability measureg:
�

3. General properties of the defect

With the variational principle established we can now quickly generalize the gen-
eral properties of the defect from [Th1].

Proposition 3.1. 1) D(�) � log d when #��1(x) � d for all x 2 X, and
D(�) = log d when #��1(x) = d for all x 2 X.

2) D(�) � 1
p

Pp�1
i=0 log#�

�1('i(x)) when x 2 X is p-periodic.

3) When Ai � X; i 2 I, is a family of closed '-invariant subsets such thatS
i2I Ai = X, D(�) = supiD(�j��1(Ai)).

4) D(�) = D(�j��1(
)), where 
 is the set of non-wandering points for '.
5) D(�) = D(�j��1(\1k=0'k(X))).
6) D(�2 Æ �1) � D(�1) when �1 : (Y;  )! (X;') and �2 : (X;') ! (Z; �) are

factor maps, and D(�2 Æ �1) = D(�1) when �2 is a conjugacy.
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Proof. All items follow straightforwardly from Theorem 2.1. �

Theorem 3.2. Let �n : Yn ! Xn; 'n : Xn ! Xn; n 2 N, be continuous maps
between compact metric spaces. Assume that each �n is surjective. Consider the dy-
namical system (

Q1

n=1Xn;
Q1

n=1 'n) and the continuous surjection
Q1

n=1 �n :
Q1

n=1 Yn !Q1
n=1Xn. Then

D(
1Y
n=1

�n) =
1X
n=1

D(�n):

Proof. Let � be a
Q1

n=1 'n-invariant Borel probability measure on
Q1

n=1Xn and set
�1 =

Q1

n=1 �n. Let �k :
Q1

n=1Xn ! Xk be the projection. ThenZ
Q
1

n=1Xn

log#��11 (x) d�(x) =

Z
Q
1

n=1Xn

1X
k=1

log#��1k (�k(x)) d�(x)

=
1X
k=1

Z
Xk

log#��1k (z) d� Æ ��1k (z) �
1X
k=1

D(�k);

proving that D(�1) �
P1

k=1D(�k). To obtain the reversed inequality, choose for
each k a tk 2 R such that tk < D(�k) and a 'k-invariant Borel probability measure
�k on Xk such that Z

Xk

log#��1k (x) d�k(x) � tk:

Let � be the product measure
Q1

k=1 �k on
Q1

k=1Xk and note thatZ
Q
1

n=1Xn

log#��11 (x) d�(x) =
1X
k=1

Z
Xk

log#��1k (z) d�k(z) �
1X
k=1

tk:

It follows that D(�1) �
P1

k=1D(�k). �

Consider a commuting diagram

Y1

�1

��

Y2

�2

��

�Y1oo Y3

�3

��

�Y2oo Y4

�4

��

�Y3oo : : :
�Y4oo

X1

'1

��

X2

'2

��

�X
1

oo X3

'3

��

�X
2

oo X4

'4

��

�X
3

oo : : :
�X
4

oo

X1 X2
�X1

oo X3
�X2

oo X4
�X3

oo : : :
�X4

oo

of compact metric spaces and continuous maps such that each �n is surjective. The
'n's give rise to a dynamical system '1 : lim �(Xn; �

X
n )! lim �(Xn; �

X
n ) and the �n's

to a continuous surjection �1 : Y1 = lim �(Yn; �Yn ) ! lim �(Xn; �
X
n ) = X1. In fact,

when we set X1;k =
T
j>k �

X
k Æ �Xk�1 Æ � � � Æ �Xj (Xj+1) and Y1;k =

T
j>k �

Y
k Æ �Yk�1 Æ

� � � Æ �Yj (Yj+1), we have that
�k(Y1;k) = X1;k

for all k 2 N .
Proposition 3.3.

D(�1) � lim inf
k!1

D(�kjY1;k
):
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Proof. Let �i : Y1 ! Yi and �
0
i : X1 ! Xi be the projections to the i'th coordinate.

By de�nition of the topology, for every �nite open cover U of Y1 there is an N 2
N such that for all k � N there is a re�nement of U of the form ��1k (V) where
V is a �nite open cover of �k(Y1) = Y1;k. Let x 2 X1;k. Since �k(�

�1
1 (x)) �

��1k (�0k(x)) \ �k(Y1), we �nd that C(��11 (x); ��1k (V)) � C(��1k (�0k(x));V). It follows
that A('1;U) � A('1; �

�1
k (V)) � A('kjX1;k

;V) � D(�kjY1;k
). Since this is true

for all k � N we �nd that A('1;U) � infk�N D(�kjY1;k
) � lim infkD(�kjY1;k

). �

In general equality fails in Proposition 3.3, except under appropriate additional
assumptions, like condition (A) of Theorem 1.9 in [Th1].

Lemma 3.4. Let (Y;  ); (X;') be dynamical systems on compact metric spaces X
and Y . Let � : (Y;  )! (X;') be a factor map. Then

sup
x2X

h( ; ��1(x)) � D(�):

Proof. Choose t 2 R such that t < supx2X h( ; �
�1(x)) and let x 2 X be a point

such that t < h( ; ��1(x)). There is then an � > 0 such that, in the notation of
[B2],

t < s ;d(�; �
�1(x)):

Let V = fVi : i 2 Ig be an open cover of Y by balls of radius < �
2
. Consider an

n 2 N and let En be an (n; �)-separated subset of ��1(x) of maximal cardinality. If

n�1Y
j=0

C(��1('j(x));V)) < #En;

there would have to be two di�erent elements, s1 and s2, of En such that  j(s1)
and  j(s2) were contained in the same element of V for all j = 0; 1; 2; � � � ; n � 1.
These two elements would not be (n; �)-separated, contradicting the choice of En. So
we see that

Qn�1
j=0 C(�

�1('j(x));V) � #En. Thus log an(';V) � log an(x; ';V) �
log#En = log sn(�; �

�1(x)). Since n was arbitrary we conclude that

D(�) � A(';V) � s ;d(�; �
�1(x)) > t:

�

Lemma 3.5. Let (Y;  ); (X;') be dynamical systems on compact metric spaces X
and Y . Let � : (Y;  )! (X;') be a factor map. Then

h( ) � h(') +D(�):

Proof. Combine Lemma 3.4 with Theorem 17 of [B2]. �

Theorem 3.6. Let (Y;  ); (X;') be dynamical systems on compact metric spaces X
and Y . Let � : (Y;  )! (X;') be a factor map. Then

D(�) <1 ) h( ) = h('):

Proof. With Lemma 3.5 substituting for Lemma 3.6 of [Th2] and Proposition 3.3 for
Remark 1.10 of [Th1] the proof of Theorem 3.5 in [Th2] can be used ad verbatim. �

Lemma 3.7. Let � : (Y;  )! (X;') be a factor map. Assume that  is surjective
and ' injective. Let � be a '-ergodic Borel probability measure. There is then a
natural number k�� 2 N or k�� = 1 and a '-invariant Borel set B � X of full
measure such that #��1(x) = k�� for all x 2 B.
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Proof. Under the present assumptions on ' and  the identity ��1('(x)) =  (��1(x))
is valid and shows that '�1(fx 2 X : #��1(x) � kg) � fx 2 X : #��1(x) � kg for
all k 2 N . By ergodicity, this implies that

�(fx 2 X : #��1(x) � kg) 2 f0; 1g:
Let k�� be the supremum of all k 2 N for which �(fx 2 X : #��1(x) � kg) = 1 and
set B =

T
k<k��
fx 2 X : #��1(x) > kg. �

Theorem 3.8. Let � : (Y;  )! (X;') be a factor map. Assume that  is surjective
and ' injective and that D(�) < 1. There is then a k 2 N and a '-ergodic
probability measure � on X such that #��1(x) = k for �-almost all x, and

D(�) = log k:

Proof. Combine Lemma 3.7 with Theorem 2.1.
�

As in [Th2], the variational principle implies a certain subadditivity of the defect
between invertible dynamical systems. This fact will be exploited below.

Theorem 3.9. (Subadditivity of the defect.) Let (X;'); (Y;  ) and (Z; �) be invert-
ible dynamical systems. Let �1 : (X;') ! (Y;  ) and �2 : (Y;  ) ! (Z; �) be factor
maps. It follows that

D(�2 Æ �1) � D(�1) +D(�2):

Proof. The proof of Theorem 3.3 in [Th2] can be adopted ad verbatim. �

It follows from Theorem 3.7 that the defect of a factor map � : (Y;  ) ! (X;')
between invertible dynamical systems is in�nite or the logarithm of a natural num-
ber. This number has other interpretations: When � is a  -ergodic Borel probability
measure and B and B0 denote the Borel �-algebras of Y and X, respectively, the
relative entropy H�(Bj��1(B0)) equals

R
X
log#��1(x) d� Æ ��1(x) by Lemma 1 of

[NP] and hence

D(�) = sup
�

H�(Bj��1(B0)); (3.1)

where we take the supremum over all  -ergodic Borel probability measures.

Remark 3.10. Mike Boyle, Doris and Ulf Fiebig have introduced a notion of con-
ditional entropy for factor maps between invertible dynamical systems, [BFF], and
shown, among others, that this quantity is related to the defect. As pointed out in
Proposition B.4 of [BFF], it follows from the variational principle for the defect that
whenever the identity in their variational principle holds, see Theorem 6.6 of [BFF],
�nite defect implies that the conditional entropy is zero.

The defect is also related, via the crossed product construction (or group-measure
space construction), to the Jones index for sub-factors, [J]. See [DT1] and [DT2].
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4. The reduced defect

For general (non-invertible) dynamical systems the subadditivity of the defect,
Theorem 3.9, fails as shown by example in Remark 3.4 of [Th2]. In fact, as the next
example shows, there are factor maps

(X;')
�1 // (Y;  )

�2 // (Z; �)

such that D(�1) = 0; D(�2) <1 and D(�2 Æ �1) =1.

Example 4.1. We elaborate �rst on the examples from Example 2.5 of [Th1] and
Remark 3.4 of [Th2] as follows. Let m 2 N . Consider �nite sets A and B such that
#A � #B � 1. De�ne ' : A [ f1; 2; � � � ; mg ! A [ f1; 2; � � � ; mg such that '(A [
f1g) = f2g; '(i) = i+1; modulo m; 2 � i � m, and de�ne  : B [f1; 2; � � � ; mg !
B[f1; 2; � � � ; mg, such that  (B[f1g) = f2g and  (i) = i+1; modulo m; 2 � i �
m. Then (A [ f1; 2; � � � ; mg; ') and (B [ f1; 2; � � � ; mg;  ) are both non-invertible
dynamical systems. De�ne �1 : A [ f1; 2; � � � ; mg ! B [ f1; 2; � � � ; mg such that
�1(A) = B and �1(i) = i for all i. Then �1 is a factor map with defect D(�1) = 0, cf.
Remark 3.4 of [Th2]. Let � : f1; 2; � � � ; mg ! f1; 2; � � � ; mg be cyclic permutation
and de�ne �2 : B [ f1; 2; � � � ; mg ! f1; 2; � � � ; mg such that �2(B [ f1g) = f1g
and �2(i) = i when i � 2. Then �2 is a factor map and D(�2) =

log(#B+1)
m

while

D(�2 Æ �1) = log(#A+1)
m

, cf. Remark 3.4 of [Th2].
By using the freedom in this construction we can �nd sequences of factor maps,

(Xn; 'n)
�n
1 // (Yn;  n)

�n
2 // (Zn; �n);

such that D(�n1 ) = 0 for all n,
P1

n=1D(�n2 ) <1 and
P1

n=1D(�n2 Æ �n1 ) =1. Then,
by Theorem 3.2 above or Theorem 1.11 of [Th2],

(
Q1

n=1Xn;
Q1

n=1 'n)
Q
1

n=1 �
n
1// (
Q1

n=1 Yn;
Q1

n=1  n)
Q
1

n=1 �
n
2// (
Q1

n=1 Zn;
Q1

n=1 �n)

are factor maps such that D(
Q1

n=1 �
n
1 ) = 0; D(

Q1

n=1 �
n
2 ) <1, while D((

Q1

n=1 �
n
2 ) Æ

(
Q1

n=1 �
n
1 )) = D(

Q1

n=1 �
n
2 Æ �n1 ) =1.

To obtain a notion of defect which is also subadditive for factor maps between
non-invertible dynamical systems, we take the de�nition of the defect up for a slight
revision. Let (X;') and (Y;  ) be dynamical systems acting on compact metric
spaces, and let � : (Y;  )! (X;') be a factor map. Let U = fUi : i 2 Ig be a �nite
open cover of Y . For each k 2 N , H � X, set

bk(H; �;U) =
C(��1(H);U)C( (��1(H));U)C( 2(��1(H));U) � � �C( k�1(��1(H));U):

For x 2 X, set bk(x; �;U) = bk(�
�1(x); �;U), i.e.

bk(x; �;U) = C(��1(x);U)C( (��1(x));U)C( 2(��1(x));U) � � �C( k�1(��1(x));U):
(Compare with (2.1).) Note that bk+n(x; �;U) � bk(x; �;U)bn('k(x); �;U) and that
bk(x; �;U) � bk(x; �;V) when V re�nes U . We set

bk( ;U) = sup
x2X

bk(x; �;U):

Then

1) bk+n( ;U) � bk( ;U)bn( ;U),
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2) bk( ;U) � bk( ;V) when V is a re�nement of U .
It follows from 1) that we can consider the limit

B( ;U) = lim
n!1

1

n
log bn( ;U):

We de�ne the reduced defect of � to be

Dr(�) = sup
U

B( ;U);
where we take the supremum over all �nite open covers U of Y . It follows from 2)
that

Dr(�) = lim
k!1

B( ;Uk);
for any sequence Uk; k 2 N , of open covers of Y for which the maximal diameter of
any set in the cover Uk goes to zero as k tends to in�nity.

Lemma 4.2. 1) Dr(�) � D(�),
2) Dr(�) = D(�) when  is surjective and ' injective.

Proof. In general  j(��1(x)) � ��1('j(x)) for all j; x, and this gives 1). Under the
assumptions of 2) we have that  j(��1(x)) = ��1('j(x)). �

Lemma 4.3. Let � : (Y;  ) ! (X;') be a factor map. Then �(
T
j2N  

j(Y )) =T
j2N '

j(X) and

B( ;U) = B( jT
j2N 

j(Y );U)
for every �nite open cover U of Y . In particular,

Dr(�) = Dr(�jTj2N 
j(Y )):

Proof. The �rst statement is straightforward to check. Let U be a �nite open cover
of Y . We claim that

B( jT
j  

j(Y );U) = lim
k!1

B( j k(Y );U): (4.1)

To prove (4.1), let � > 0 and choose n 2 N such that

1

n
log bn( jTj  

j(Y );U) � B( jT
j  

j(Y );U) + �:

Recall that
bn( jTj  

j(Y );U)

= sup
x2
T
j '

j(X)

n�1Y
l=0

C( l(��1(x) \
\
j

 j(Y ));U):

An easy compactness argument gives us for each x 2 Tj '
j(X) a Æx > 0 and a

jx 2 N such that
n�1Y
l=0

C( l(��1(x) \
\
j

 j(Y ));U)

=
n�1Y
l=0

C( l(��1(BÆx(x)) \  i(Y ));U)

for all i � jx. The cover BÆx(x); x 2
T
j '

j(X), of
T
j '

j(X) has a �nite subcover
fBÆi(xi) : i 2 Ig. By (the proof of) Lebesgue's covering lemma, (cf. Theorem 0.20
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of [W]), there is Æ > 0 so small that every ball BÆ(x); x 2
T
j '

j(X), is contained in
BÆr(xr) for some r 2 I. Hence

sup
x2
T
j '

j(X)

n�1Y
l=0

C( l(��1(BÆ(x)) \  i(Y ));U)

� max
r

n�1Y
l=0

C( l(��1(BÆr(xr)) \  i(Y ));U)

� bn( jT
j  

j(Y );U)

(4.2)

for all i � maxr jxr . Choose k � maxr jxr so large that every element of 'k(X) has
distance less than Æ to an element of

T
j '

j(X). Then (4.2) shows that

sup
x2'k(X)

n�1Y
l=0

C( l(��1(x) \  k(Y ));U)

� bn( jT
j  

j(Y );U):
Hence

B( j k(Y );U) �
1

n
log bn( j k(Y );U)

� 1

n
log bn( jTj  

j(Y );U) � B( jT
j  

j(Y );U) + �:

Since B( j k(Y );U) decreases with k and B( j k(Y );U) � B( jT
j  

j(Y );U) for all k,
this proves (4.1). To complete the proof, we need only show that

B( ;U) = B( j m(Y );U) (4.3)

for all m 2 N . To establish (4.3) observe that

 m+i(��1(x)) �  i(��1('m(x)) \  m(Y ))
for all x 2 X and all i 2 N . It follows that there is an L 2 N which only depends
on U and m such that

bk(x; �;U) � Lbk�m('
m(x); �j m(Y );U)

for all k > m and all x 2 X. Hence bk( j m(Y );U) � bk( ;U) � Lbk�m( j m(Y );U)
all k > m, proving (4.3). �

Proposition 4.4. In the setting of Proposition 3.3,

Dr(�1) � lim inf
k!1

Dr(�kjY1;k
):

Proof. Let �i : Y1 ! Yi and �
0
i : X1 ! Xi be the projections to the i'th coordinate.

By de�nition of the topology, for every �nite open cover U of Y1 there is an N 2 N
such that for all k � N there is a re�nement of U of the form ��1k (V) where V =
fVi : i 2 Ig is a �nite open cover of Yk. Since

 j1(�
�1
1 (x)) �

[
j2J

��1k (Vj)

,
 jk(�kjY1;k

�1(�0k(x))) �
[
j2J

Vj

(4.4)
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for all x 2 X1, all J � I and all j 2 N , we see that bk( 1; ��1k (V)) = bk( kjY1;k
;V)

for all k. It follows that B( 1;U) � Dr(�kjY1;k
) for all k � N . Hence B( 1;U) �

lim infkDr(�kjY1;k
) and by taking the supremum over U we get that Dr(�1) �

lim infkDr(�kjY1;k
).

�

For � > 0, let B�(x) denote the closed ball of radius � centered at x. Set

b�k( ;U) = sup
x2X

bk(B�(x);U):

Clearly b�k( ;U) � bk( ;U) for all � > 0.

Lemma 4.5. For each k there is an � > 0 for which b�k( ;U) = bk( ;U).
Proof. For any given x 2 X there is clearly an �x > 0 such that

bk(B�x(x); �;U) = bk(x; �;U):
Let fB�xi

(xi) : i 2 Ig be a �nite subcover of fB�x(x) : x 2 Xg and let � > 0 be a
Lebesgue number for fBxi(xi) : i 2 Ig. Let z 2 X. Then B�(z) � B�xi

(xi) for some
i and hence

bk(B�(z); �;U) � bk(B�xi
(xi); �;U) = bk(xi; �;U) � bk( ;U):

It follows that b�k( ;U) = bk( ;U).
�

Consider a factor map � : (Y;  )! (X;'). Then

Y

�

��

Y

�

��

 oo Y

�

��

 oo Y

�

��

 oo : : : oo

X X'
oo X'

oo X'
oo : : :

'
oo

commutes and we get therefore a factor map b� : (bY ; b ) ! ( bX; b'), where bY =

lim �(Y;  ) and bX = lim �(X;'). b is the homeomorphism of bY given by b ((yi)) =
( (yi)). b' is de�ned similarly. The invertible dynamical system (bY ; b ) is the natural
invertible extension of (Y;  ), and we call the factor map b� the natural extension of
�.

Theorem 4.6. Let � : (Y;  )! (X;') be a factor map. Then

Dr(�) = D(b�);
where b� : (bY ; b )! ( bX; b') is the natural extension of �.

Proof. It follows from Proposition 4.4 that Dr(b�) � Dr(�), so by combining with
2) of Lemma 4.2, we have that D(b�) � Dr(�). To prove the reversed inequality

observe �rst that b� : (bY ; b )! ( bX; b') is also induced by the commuting diagram

T
j  

j(Y )

�

��

T
j  

j(Y )

�

��

 oo
T
j  

j(Y )

�

��

 oo
T
j  

j(Y )

�

��

 oo : : : oo

T
j '

j(X)
T
j '

j(X)
'oo

T
j '

j(X)
'oo

T
j '

j(X)
'oo : : :'oo
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We can therefore, by Lemma 4.3, substitute � : (Y;  )! (X;') by � : (
T
j  

j(Y );  )!
(
T
j '

j(X); '), and hence assume that ' and  are both surjective.
Let t < Dr(�) and choose a �nite open cover V of Y such that B( ;V) > t.

Let Æ > 0 and choose m 2 N so large that 1
m
log bm( b ; ��11 (V)) � B( b ; ��11 (V)) + Æ.

(Remember that �k : bY ! Y and �0k :
bX ! X are the projections to the k'th coordi-

nate.) By Lemma 4.5 there is an � > 0 so small that bm( b ; ��11 (V)) = b�m(
b ; ��11 (V)).

There is a k 2 N so large that the diameter of every subset of bX of the form ��1k (z)

for some z 2 X has diameter less than �. Since �k(�
�1
1 (�0k

�1(z))) = ��1(z) (because
of the surjectivity of  ), we have that �k( 

j
1(�

�1
1 (�0k

�1(z))) =  j(��1(z)) for all

j 2 N and all z 2 X. Since �0k
�1(z) � B�(z1) for some z1 2 bX we can combine this

with (4.4) to see that

bm( ;U) � b�m(
b ; ��1k (U))

for every �nite open cover U of Y . If we set U =  �k+1(V), we have that ��1k (U) =
��11 (V) and hence that

1

m
log bm( ;  

�k+1(V)) � 1

m
log b�m(

b ; ��11 (V))

=
1

m
log bm(b ; ��11 (V)) � B(b ; ��11 (V)) + Æ:

(4.5)

But it is easy to see, directly from the de�nition, that B( ;  �k+1(V)) = B( ;V), so
we see from (4.5) that B( ;V) � B(b ; ��11 (V)) + Æ. It follows that Dr(�) � Dr(b�).
Since Dr(b�) = D(b�) by 2) of Lemma 4.2, the proof is complete. �

Corollary 4.7. (Subadditivity of the reduced defect.) Let �1 : (Y;  )! (X;') and
�2 : (X;')! (Z; �) be factor maps. Then

Dr(�2 Æ �1) � Dr(�1) +Dr(�2):

Proof. Combine Theorem 4.6 with Theorem 3.9. �

Corollary 4.8. Let � : (Y;  )! (X;') be a factor map. Then

Dr(�) <1 ) h( ) = h('):

Proof. Combine Proposition 5.2 of [B1] with Theorem 4.6 and Theorem 3.6. �

There is also a variational principle for the reduced defect. It is, however, some-
what more complicated. Let � : (Y;  ) ! (X;') be a factor map. For � > 0 and
any closed subset F � Y we let #�F denote the largest number of elements in an
�-separated subset of F , i.e. if d denotes the metric of Y ,

#�F = maxfn 2 N : 9fx1; x2; � � � ; xng � F such that d(xi; xj) � �; i 6= jg:
For F = ; we set #�F = 0.

Lemma 4.9. For every � > 0 and every k 2 N, the function

x 7! #� k
�
��1(x) \

\
j

 j(Y )
�

is Borel.
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Proof. For F � Y closed, set

#�F = maxfn 2 N : 9fx1; x2; � � � ; xng � F such that d(xi; xj) > �; i 6= jg:
Then

#� k
�
��1(x) \

\
j

 j(Y )
�
= inf

q
#q 

k
�
��1(x) \

\
j

 j(Y )
�

for all x 2 X, when we take the in�mum over all rational q < �. It suÆces therefore
to show that

x 7! #� 
k
�
��1(x) \

\
j

 j(Y )
�

is Borel. Let F = fF1; F2; � � � ; FMg be closed subsets of Y . Set

B(F)(x) = #fj :  k���1(x) \\
l

 l(Y )
�\

Fj 6= ;g;

for x 2 X. Since

#fj :  k���1(x) \\
l

 l(Y )
�\

Fj 6= ;g =
MX
i=1

1�( �k(Fi)\
T
l  

l(Y ))(x);

we see that B(F) is Borel. For each t > 0 and y 2 Y , let Bt(y) denote the open ball
of radius t centered at y. Let fyig be a dense sequence in Y . Then

#� 
k
�
��1(x) \

\
l

 l(Y )
�
= sup

F

B(F)(x);

where we take the supremum over all collections F of the form

F = fBq(yij) : j = 1; 2; � � � ; Kg;
where q > 0 is rational and d(yik; yij) > � + 2q for k 6= j. Since this is a countable
collection of functions, we are done.

�

Since #� k
�
��1(x) \Tj  

j(Y )
�
is decreasing in �, we can de�ne

A�(x) = lim
�!0

�
lim sup

k

#� k
�
��1(x) \

\
j

 j(Y )
��
;

which is a Borel function A� : X ! N[f1g by Lemma 4.9. Observe that A�(x) = 0
for x =2 Tj '

j(X), and that A� does not depend on the metric.

Theorem 4.10. (The variational principle for the reduced defect.) Let � : (Y;  )!
(X;') be a factor map. Then

Dr(�) = sup
�

Z
X

logA�(x) d�(x); (4.6)

where we take the supremum over all '-invariant Borel probability measures on X
and use the convention log 0 = 0. In fact, it suÆces to take the supremum over all
'-ergodic Borel probability measures on X.

Proof. We will prove (4.6) by combining Theorem 4.6 with the variational principle

for the defect, Theorem 2.1. Let �i : bY ! Y and �0i : bX ! X be the projections to
the i'th coordinate. Then

#b��1(z) = lim inf
l!1

lim
�!0

lim
k!1

#� k�l[��1(�0k(z)) \
\
j

 j(Y )] (4.7)
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for all z 2 bX. To see this, observe �rst that a compactness argument shows that

lim
k!1

#� k�l[��1(�0k(z)) \
\
j

 j(Y )] = #��l(b��1(z)): (4.8)

Assume then that #b��1(z) � N for some N 2 N , and let y1; y2; � � � ; yN be dif-
ferent elements of b��1(z). There is then a K 2 N so large that the elements
�i(y1); �i(y2); � � � ; �i(yN) are di�erent for all i � K. For such an i, the elements
�i(y1); �i(y2); � � � ; �i(yN) are Æi-separated for some Æi > 0 and since �i(yj) =  d�i(�d(yj))
for all d > i, we see that #Æi d�i[��1(�0d(z)) \

T
j  

j(Y )] � N for all d > i. Hence

limk!1#Æi k�i[��1(�0k(z)) \
T
j  

j(Y ))] � N and consequently

lim
�!0

lim
k!1

#� k�i[��1(�0k(z)) \
\
j

 j(Y ))] � N

for all i � K. It follows that the righthand side of (4.7) dominates the lefthand
side. To prove the reversed inequality, consider an � > 0 and some l 2 N . If
limk!1#� k�l[��1(�0k(z)) \

T
j  

j(Y )] � N for some N 2 N , there is K 2 N so

large that #� k�l[��1(�0k(z)) \
T
j  

j(Y )] � N for all k � K. We can therefore

�nd, for any k � K, elements yk1 ; y
k
2 ; � � � ; ykN 2

Q1
j=0 Y such that  (�j(y

k
i )) =

�j�1(y
k
i ); �(�j(y

k
i )) = �0j(z) for all i and all j � k, and such that the set

f�l(yk1); �l(yk2); � � � ; �l(ykN)g

is �-separated for all k. For some sequence fkjg in N the limits limj!1 y
kj
i = yi will

all exist in
Q1

j=0 Y and by construction they will lie not only in bY = lim �(Y;  ), but
actually in b��1(z). Furthermore, by construction the set f�l(y1); �l(y2); � � � ; �l(yN)g
will be �-separated, so it follows that #b��1(z) � N . This proves (4.7).
There is a bijective correspondance between the b'-invariant Borel probability

measures on bX and the '-invariant Borel probability measures on X such that a
'-invariant Borel probability measure � on X corresponds to the b'-invariant Borel
probability measure � on bX with the property that � Æ �0k�1 = � for all k 2 N . For
such a � Lebesgue's theorem on monotone convergence and Fatou's lemma combined
with (4.7) gives us thatZ

bX
log#b��1(z) d�(z)

� lim inf
l!1

lim
�!0

Z
bX
log
�
lim
k!1

#� k�l
�
��1(�0k(z)) \

\
j

 j(Y )
��
d�(z):

(4.9)

By compactness of Y the functions z 7! #� k�l[��1(�0k(z))\
T
j  

j(Y )] are uniformly
bounded, so by Lebesgue's theorem on dominated convergence we have thatZ

bX
log
�
lim
k!1

#� k�l��1(�0k(z)) \
\
j

 j(Y )
�
d�(z)

= lim
k!1

Z
bX
log
�
#� k�l

�
��1(�0k(z)) \

\
j

 j(Y )
��
d�(z):

(4.10)
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SinceZ
bX
log[#� k�l

�
��1(�0k(z))\

\
j

 j(Y )
�
] d�(z) =

Z
X

log[#� k�l
�
��1(x)\

\
j

 j(Y )
�
] d�(x);

where � is the '-invariant Borel probability measure on X corresponding to �, we
�nd that Z

bX
log
�
lim
k!1

#� k�l
�
��1(�0k(z)) \

\
j

 j(Y )
��
d�(z)

= lim
k!1

Z
X

log
�
#� k�l

�
��1(x) \

\
j

 j(Y )
��
d�(x)

= lim
k!1

Z
X

log
�
#� k

�
��1(x) \

\
j

 j(Y )
��
d�(x):

(4.11)

Since there is a uniform bound on #� k
�
��1(x)\Tj  

j(Y )
�
and � is a �nite measure,

we can use Fatou's lemma to conclude that

lim
k!1

Z
X

log
�
#� k

�
��1(x) \

\
j

 j(Y )
��
d�(x)

�
Z
X

log
�
lim sup

k

#� k
�
��1(x) \

\
j

 j(Y )
��
d�(x):

(4.12)

However, Z
X

log
�
lim sup

k

#� k
�
��1(x) \

\
j

 j(Y )
��
d�(x)

=

Z
bX
log
�
lim sup

k

#� k�1
�
��1(�01(z)) \

\
j

 j(Y )
��
d�(z)

=

Z
bX
log
�
lim
k
#� k�1

�
��1(�01(z)) \

\
j

 j(Y )
��
d�(z)

�
Z
bX
log#b��1(z) d�(z) (by (4.8)):

(4.13)

It follows from (4.10)-(4.13) thatZ
bX
log
�
lim
k!1

#� k�l
�
��1(�0k(z)) \

\
j

 j(Y )
��
d�(z)

�
Z
X

log
�
lim sup

k

#� k
�
��1(x) \

\
j

 j(Y )
��
d�(x)

�
Z
bX
log#b��1(z) d�(z);

for all � > 0 and all l 2 N . Combining with (4.9) and using Lebesgue's theorem on
monotone convergence, we �nd thatZ

bX
log#b��1(z) d�(z) = Z

X

logA�(x) d�(x):
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Since � is b'-ergodic if and only if � is '-ergodic the theorem follows now from
Theorem 4.6 and Theorem 2.1.

�

Corollary 4.11. Let � : (Y;  ) ! (X;') be a factor map such that Dr(�) < 1.
There is then a k 2 N and a '-ergodic Borel probability measure � on X such that
A�(x) = k for �-almost all x, and Dr(�) = log k.

Proof. This follows from Theorem 4.10 in essentially the same way as Theorem 3.8
follows from Theorem 2.1, using that #� k(��1('(x))) � #� k+1(��1(x)).

�

5. Equivalence relations based on the defect

The subadditivity of the defect, Theorem 3.9, forms the basis for at least two
equivalence relations among invertible dynamical systems which it seems worthwhile
to investigate. They are both inspired by the work of Adler and Marcus in [AM].
The point of departure is the following lemma which is analogous to Proposition
(2.14) of [AM].

Lemma 5.1. Given invertible dynamical systems and factor maps,

(X;')

�1 $$IIIIIIIII
(Y;  )

�2zzvvvvvvvvv

(Z; �)

there is an invertible dynamical system (W;�) and a commuting diagram,

(W;�)
�3

zzuuuuuuuuu
�4

$$IIIIIIIII

(X;')

�1 $$IIIIIIIII
(Y;  )

�2zzuuuuuuuuu

(Z; �)

of factor maps such that D(�3) = D(�2) and D(�4) = D(�1).

Proof. Set W = f(x; y) 2 X � Y : �1(x) = �2(y)g; � = ' �  ; �3(x; y) =
x; �4(x; y) = y. Then #��13 (x) = #��12 (�1(x)), so for any '-invariant Borel proba-
bility measure � we �nd thatZ

X

log#��13 (x) d�(x) =

Z
Z

log#��12 (z) d� Æ ��11 (z) :

Since any �-invariant Borel probability measure on Z has the form � Æ ��11 for some
'-invariant Borel probability measure � on X, we conclude from Theorem 2.1 that
D(�3) = D(�2). The equality D(�4) = D(�1) follows in the same way. �

De�nition 5.2. Two invertible dynamical systems, (X;'); (Y;  ), are �nitely equiv-
alent (resp. strongly equivalent ) when there is an invertible dynamical system
(Z; �) and factor maps �1 : (Z; �) ! (X;'); �2 : (Z; �) ! (Y;  ) such that
D(�1) +D(�2) <1 (resp. D(�1) = D(�2) = 0).
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It follows from Lemma 5.1 and Theorem 3.9 that '�nite equivalence' and 'strong
equivalence' are both equivalence relations for invertible dynamical systems.
Let us immediate extend the de�nition to cover general (non-invertible) dynamical

systems.

De�nition 5.3. Two dynamical systems, (X;'); (Y;  ), are �nitely equivalent (resp.
strongly equivalent) when there is a dynamical system (Z; �) and factor maps �1 :
(Z; �) ! (X;'); �2 : (Z; �) ! (Y;  ) such that Dr(�1) + Dr(�2) < 1 (resp.
Dr(�1) = Dr(�2) = 0).

Finite equivalence and strong equivalence are equivalence relations thanks to the
sub-additivity of the reduced defect, Corollary 4.7, and the variational principle for
the reduced defect, Theorem 4.10. The argument is basically the same as in the
proof of Lemma 5.1.

Lemma 5.4. Two invertible dynamical systems are �nitely equivalent (resp. strongly
equivalent) in the sense of De�nition 5.2 if and only if they are �nitely equivalent
(resp. strongly equivalent) in the sense of De�nition 5.3.

Proof. When

(W;�)
�1

zzuuuuuuuuu
�2

$$IIIIIIIII

(X;') (Y;  )

is a diagram of factor maps such that Dr(�1) + Dr(�2) < 1 (resp. Dr(�1) =
Dr(�2) = 0), and (X;') and (Y;  ) are both invertible, by passing to natural invert-
ible extensions we get also a diagram

(cW; b�)
c�1

zzuuuuuuuuu c�2
$$HHHHHHHHH

(X;') (Y;  )

where D(b�i) = Dr(�i); i = 1; 2, by Theorem 4.6. Hence (X;') and (Y;  ) are
�nitely equivalent (resp. strongly equivalent) in the sense of De�nition 5.2. Since
the other implication follows from 2) of Lemma 4.2, the proof is complete.

�

Note that �nitely equivalent dynamical systems must have the same topological
entropy by Theorem 3.6 and/or Corollary 4.8.

Theorem 5.5. Let (�1; �) and (�2; �) be irreducible twosided so�c shifts. Then the
following conditions are equivalent:

1) h(�1) = h(�2).
2) (�1; �) and (�2; �) have a common �nite-to-one extension which is a twosided

irreducible subshift of �nite type.
3) (�1; �) and (�2; �) are �nitely equivalent.

Proof. 1), 2) follows from Theorem 3.6 and the entropy-classi�cation of irreducible
subshifts of �nite type, cf. Theorem 8.3.8 of [LM]. 2) ) 3) follows from 1) of
Proposition 3.1. 3) ) 1) follows from Theorem 3.6. �
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Corollary 5.6. Let (X;') and (Y;  ) be boundedly �nite-to-one factors of irreducible
subshifts of �nite type. Then (X;') and (Y;  ) are �nitely equivalent if and only if
h(') = h( ).

In particular, we see that hyperbolic toral automorphisms are �nitely equivalent
if and only if they have the same entropy. Compare [AM].

Proposition 5.7. Let (X;') and (Y;  ) be invertible dynamical systems. Then the
following are equivalent :

1) (X;') and (Y;  ) are �nitely equivalent.
2) (X;'n) and (Y;  n) are �nitely equivalent for all n 2 Z.
3) (X;'n) and (Y;  n) are �nitely equivalent for some n 2 Z.

Proof. 1) ) 2) follows from the argument which proved Lemma 3.7 of [Th2], using
the variational principle. It suÆces therefore to show that 3) ) 1). Furthermore,
it suÆces to consider the case n > 1. Let (Z; �) be a dynamical system and �1 :
(Z; �)! (X;'n); �2 : (Z; �)! (Y;  n) factor maps such that D(�1) +D(�2) <1.
Let Z0; Z1; Z2; � � � ; Zn�1 be disjoint copies of Z and de�ne e� :

Sn�1
j=0 Zj !

Sn�1
j=0 Zj

such that e�jZj : Zj ! Zj+1 is the identity when j < n� 1 and e�jZn�1 : Zn�1 ! Z0 is

�. De�ne e�1 : Sn�1
j=0 Zj ! X such that e�1jZj = 'j Æ �1 for all j = 0; 1; 2; � � � ; n� 1.

Then e�1 : (Sn�1
j=0 Zj; e�) ! (X;') is a factor map and # e�1�1(x) = n#��11 (x) for all

x 2 X. Hence D( e�1) = logn +D(�1) by Theorem 2.1. Similarly, we de�ne a factor
map e�2 : (Sn�1

j=0 Zj; e�)! (Y;  ) such that D( e�2) = logn+D(�2). �

Corollary 5.8. Let (X;') and (Y;  ) be dynamical systems. Assume that X and
Y are �nite-dimensional spaces. Assume that ' and  are periodic, i.e. that 'k =
idX ;  

m = idY for some k;m 2 N . Then (X;') and (Y;  ) are �nitely equivalent if
and only if there is a compact metric space Z and continuous surjections �0 : Z ! X
and �1 : Z ! Y such that supx;ymaxf#��10 (x);#��11 (y)g <1.

Proof. This follows immediately from Proposition 5.7. �

Remark 5.9. In many cases it is easy to see that there is a Z satisfying the require-
ment in Corollary 5.8. On the other hand, it is also easy to give examples which
shows that it does not always exist, so it would be nice to have general criteria for
the existence of such a space Z.

Lemma 5.10. Let (�1; �) and (�2; �) be two-sided mixing subshifts of �nite type.
Assume that h(�1; �) � h(�2; �). Then the disjoint union (�1t�2; �t�) is �nitely
equivalent to (�2; �).

Proof. Assume �rst that h(�1; �) = h(�2; �). Then (�1; �) and (�2; �) are �nitely
equivalent by Lemma 5.5. It follows then easily that (�1 t �2; � t �) is �nitely
equivalent to (�2t�2; �t�), which in turn is �nitely equivalent to (�2; �). Assume
next that h(�1; �) < h(�2; �). By a wellknown formula for the topological entropy
of a mixing subshift of �nite type, cf. [LM], there is then an N 2 N so large that

#fx 2 �1 : x has minimal period ng < #fx 2 �2 : x has minimal period ng
for all n � N . Let P be a prime larger than N . Let P = f1; 2; � � � ; Pg, and let
q : P ! P be cyclic permutation. Then (�1 � P; � � q) and (�2 � P ; � � q) are
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irreducible subshifts of �nite type, with entropy h(�1; �) and h(�2; �), respectively.
In addition

#fx 2 �1 � P : x has minimal period n under � � qg
< #fx 2 �2 � P : x has minimal period n under � � qg

for all n. By Krieger's embedding theorem, cf. Theorem 10.1.1 of [LM], there is
then an embedding (�1�P ; ��q)! (�2�P ; ��q). Since (�i�P ; ��q) is �nitely
equivalent to (�i; �), and

(�1 � P t �2 � P; � � q t � � q)
to (�1 t �2; � t �), we can assume from outset that we are given an embedding
� : (�1; �)! (�2; �). De�ne � : (�1 t �2; � t �)! (�2; �) such that �j�1 = � and
�j�2 is the identity. Then #��1(x) � 2 for all x 2 �2 and hence D(�) � log 2. Thus
(�2; �) is �nitely equivalent to (�1 t �2; � t �), as asserted.

�

Proposition 5.11. The non-wandering parts of two subshifts of �nite type are
�nitely equivalent if and only if they have the same entropy.

Proof. For an irreducible subshift of �nite type some power has a non-wandering
part which is the disjoint union of a �nite number of mixing subshifts of �nite type.
Combine Lemma 5.10 with Theorem 5.5 and Proposition 5.7. �

Remark 5.12. I am not sure how sensitive �nite equivalence is towards the wandering
points of a subshift of �nite type. However, entropy is certainly not the only invariant
for �nite equivalence of general subshifts of �nite type. To illustrate the situation
in the simplest cases, consider the graphs

A ��� // ��� // ���

B ��� // 44��� // ���

C ��� // ���

D ���

Of the four edge-shifts, all with zero entropy, given by these graphs, A and B
are �nitely equivalent, but no pair among B, C and D are �nitely equivalent. So
it appears as if �nite equivalence is sensitive to how many irreducible components
are connected, but ignores how they are connected. Presently I do not know how
representative these very simple examples are.
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Concerning strong equivalence it is clear that (X;') and (Y;  ) can only be
strongly equivalent when

#fx 2 X : 'n(x) = xg = #fy 2 Y :  n(y) = yg
for all n 2 N. In view of Krieger's Embedding Theorem and Boyle's Lower Entropy
Factor Theorem, cf. Theorem 10.1.1 and Theorem 10.3.1 of [LM], respectively, it
seems reasonable to ask if this condition is suÆcient for irreducible subshifts of �nite
type. In this paper we concentrate the investigations on �nite equivalence.

Lemma 5.13. Let � 2 Tn and let � : Tn ! Tn be the corresponding rotation, viz.
�(z) = �z. Then (Tn; �) is �nitely equivalent to (Tn; �k) for all k 2 Z.
Proof. De�ne �1 : Tn ! Tn by �1(z) = zk and let �2 be the identity map of Tn.
Then �1 : (T

n; �)! (Tn; �k) and �2 : (T
n; �k)! (Tn; �k) are factor maps of defect

D(�1) = lognjkj and D(�2) = 0, respectively. It follows from Lemma 5.1 that
(Tn; �) is �nitely equivalent to (Tn; �k). �

Lemma 5.14. Let �; � 2 T, and let � : T ! T and � : T ! T be the corresponding
rotations of the circle. Then � and � are equivalent if and only if there are numbers

k;m 2 Z such that �m = �k, i.e. if and only if � = � modulo Q=Z.

Proof. If such m and k exist it follows from Lemma 5.13 that � and � are equivalent.
Conversely, assume that � and � are equivalent. If both � and � are rational
(i.e. of �nite order in the group T), there is nothing to prove, so assume that �
is irrational. Let (X; ) be a common �nite defect extension of (T; �) and (T; �).
Let � : (X; ) ! (T; �) be a factor map of �nite defect. It follows from Theorem
3.7 that there is a  -ergodic Borel probability measure � on X such that � Æ ��1
is Lebesgue measure on T and #�(x) = k for almost all x 2 T. Since (T; �) is a

factor of (X; ), � must be an eigenvalue for the unitary T : L2(X; �) ! L2(X; �)
induced by  . Let f : X ! T be the corresponding (continuous) eigenfunction.
As is well-known, cf. Lemma 1 of [NP], we can identify the measure space (X; �)
with the space T � f1; 2; � � � ; kg equipped with the product of Lebesgue measure
on T with the homogeneous probability measure on f1; 2; � � � ; kg. In this picture
 (x; i) = (�x; �x(i)), where � : T ! �k is a Borel function taking values in the
symmetric group. Hence

g(x) =
kY
i=1

f(x; i)

is a Borel function g : T ! T such that g(�x) = �kg(x) for almost all x 2 T. Since
the spectrum of the unitary on L2(T) induced by � is f�z : z 2 Zg, we conclude
that �k = �m for some m 2 Z. �

Theorem 5.15. Two orientation preserving homeomorphisms of the circle with ir-
rational rotation numbers, � and �, are �nitely equivalent if and only if there are
integers, n;m 2 Z, such that n��m� 2 Z.
Proof. By the Poincar�e Classi�cation Theorem, cf. Theorem 11.2.7 of [KH], any
orientation preserving homeomorphism of the circle with irrational rotation number
has the rigid rotation with the same rotation number (mod Z) as a factor under a
factor map � for which #��1(x) = 1 for all x outside of a countable subset of the
circle. Hence D(�) = 0 by Theorem 2.1 and we see that any orientation preserving
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homeomorphism of the circle with irrational rotation number is strongly equivalent
to the rigid rotation with the same rotation number. Apply Lemma 5.14. �

Remark 5.16. Theorem 5.15 is not true for orientation preserving homeomorphisms
of the circle with rational rotation numbers. Indeed, it is not true that any homeo-
morphism of the interval [0; 1] is �nitely equivalent to the identity map. For example,
it is not diÆcult to see that a homeomorphism of [0; 1] for which the set of �xed
points is in�nite can not be �nitely equivalent to one for which the set of �xed
points is �nite. So at least some characteristics of the �xed point set is preserved
under �nite equivalence, and presently I do not know exactly which. The problem
is related to the problem mentioned in Remark 5.9. However, it is true that two
orientation preserving homeomorphisms of the circle or two homeomorphisms of the
interval are �nitely equivalent when they have the same set of periodic points.

The method of proof in Lemma 5.14 can be extended to give a classi�cation of
minimal rotations of higher-dimensional tori as follows.

Theorem 5.17. Let �; � be minimal rotations of the n-torus Tn; n � 1. Then
(Tn; �) and (Tn; �) are �nitely equivalent if and only if there is a continuous surjec-
tive endomorphism B : Tn ! Tn and a natural number k 2 N such that

�k ÆB = B Æ �: (5.1)

Proof. Assume �rst that B and k exist. Since B is constant-to-one (with a �nite
constant) we see immediately from (5.1) that B is factor map of �nite defect showing
that (Tn; �k) and (Tn; �) are �nitely equivalent. Hence (Tn; �) and (Tn; �) are �nitely
equivalent by Lemma 5.13.
Assume then that (Tn; �) and (Tn; �) are �nitely equivalent, and write � =

(�1; �2; � � � ; �n); � = (�1; �2; � � � ; �n), where �i; �i 2 T for all i. The argument
from the proof of Lemma 5.13 shows that there is a k 2 N such that �ki is in the
spectrum of (Tn; �) for all i. Since the spectrum of (Tn; �) is the set

f�z11 �z22 � � ��znn : z1; z2; � � � ; zn 2 Zg;
we conclude that there is a n� n-matrix A = (Aij) with Z-entries such that

�ki = �Ai11 �Ai22 � � ��Ainn (5.2)

for all i. When B denotes the endomorphism of Tn given by A, (5.2) means that
�k = B(�), so the transitivity of � (which implies the transitivity and hence the
minimality of �k) shows that B is surjective. �

Theorem 5.17 can also be formulated as follows: Choose �; � 2 Rn such that
p(�) = �; p(�) = �, where p : Rn ! Tn is the canonical surjection. Then (Tn; �)
and (Tn; �) are �nitely equivalent if and only if there is an invertible n � n-matrix
D over Q such that D� � � 2 Qn .

Before we turn to a few non-invertible dynamical systems, let us �rst observe that
all surjective dynamical systems are �nitely equivalent to their natural invertible
extension. If namely (X;') is a dynamical system with ' surjective, the projection

to the �rst coordinate, p0 : ( bX; b')! (X;'), is a factor map which ensure a strong
equivalence:
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Proposition 5.18. Let (X;') be a dynamical system with ' surjective. Then the

reduced defect of the factor map p0 : ( bX; b') ! (X;') is 0, and (X;') is strongly

equivalent to ( bX; b').
Proof. Recall that bX is a closed subset of the in�nite product

Q1
i=0X, equipped

with the metric

d1((xi); (yi)) =
1X
i=0

d(xi; yi)

2i
:

Then p�10 (x) � Q1

i=0 '
�i(x) and b'k(p�10 (x)) � Q1

i=0 '
k�i(x) for all x 2 X; k 2 N .

Hence the d1-diameter of b'k(p�10 (x)) tends to 0 as k tends to in�nity, and hence
lim supk#

�b'k(p�10 (x)) = 0 for all x and all � > 0. It follows that Ap0 = 0 and hence
from Theorem 4.10 that Dr(p0) = 0.

�

Remark 5.19. An alternative proof of Proposition 5.18 goes as follows : The natural
extension bp0 of p0 is a conjugacy and hence Dr(p0) = D( bp0) = 0 by Theorem 4.6.

It follows from Proposition 5.18 that for any dynamical system (X;'), the system
(
T
j '

j(X); ') will be strongly equivalent to an invertible dynamical system. It seems

to be generally agreed that the interesting dynamics of ' takes place in
T
j '

j(X),
so we may conclude that up to strong equivalence all interesting dynamics can be
realized in invertible dynamical systems.

Theorem 5.20. Two one-sided irreducible so�c subshifts are �nite equivalent if and
only if they have the same entropy.

Proof. The natural extension of a one-sided irreducible so�c subshift is a two-sided
irreducible so�c subshift to which it is strongly equivalent by Proposition 5.18. Apply
Theorem 5.5. �

Corollary 5.21. Let (X;') and (Y;  ) be boundedly �nite-to-one factors of irre-
ducible one-sided subshifts of �nite type. Then (X;') and (Y;  ) are �nitely equiv-
alent if and only if h( ) = h(').

Proof. The necessity of equal entropy follows from Corollary 4.8. So assume that
h( ) = h('). The assumptions, combined with Theorem 2.1 and 2) of Lemma 4.2,
show that both dynamical systems are �nite reduced defect factors of irreducible
one-sided subshifts of �nite type. Apply Theorem 5.20. �

Corollary 5.22. Let (X; ) and (Y; ') be expansive endomorphisms of compact
�nite-dimensional di�erentiable manifolds, X and Y , respectively. Then (X; ) and
(Y; ') are �nitely equivalent if and only if h( ) = h(').

Proof. By Corollary 5.21 it suÆces to show that both dynamical systems are �nite-
to-one factors of irreducible subshifts of �nite type. First note that expansive endo-
morphisms are factors of full shifts by [S] and hence transitive. By Theorem 7.30 of
[Ru] it suÆces therefore to show that an expansive endomorphism is expanding in
the sense of 7.26 of [Ru]. But this is not diÆcult, and was pointed out already in
[CR]. �
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Example 5.23. Let  : [0; 1] ! [0; 1] be a unimodular map with positive en-
tropy, and let ' : [0; 1] ! [0; 1] be the tent-map with the same entropy. Us-
ing their kneading theory, Milnor and Thurston constructed in [MT] a factor map
h : ([0; 1];  )! ([0; 1]; '). The construction is reproduced in [KH], pp. 514-518. We
will show here that the reduced defect of h is zero, provided that there are points
a; b 2 [0; 1] such that a � c � b, where c is the critical point, for which the union of
pre-images is dense in [0; 1], i.e. we will show that

9a; b 2 [0; 1]; a � c � b such that
[
m2N

 �m(a) and
[
m2N

 �m(b) are both dense

) Dr(h) = 0:
(5.3)

To prove this we �rst argue that

if x 2 [0; 1]; k 2 N , and I � h�1(x) is a closed non-empty interval

such that  k(I) = I, then I contains only one point.
(5.4)

To prove (5.4) let I be an interval with the speci�ed property, and assume to reach a
contraction that I is non-degenerate. Then all the intervals I;  (I);  2(I); � � � ;  k�1(I)
are non-degenerate, so for any j 2 f1; 2; � � � ; k� 1g we can �nd x 2  �n(a) \ I and
y 2  �m(a)\ j(I) for some n;m 2 N . Then I 3  nk(x) =  k(a) =  mk(y) 2  j(I),
so that I \  j(I) 6= ;. Since h is constant on I and  j(I) (equal to x on I and to
'j(x) on  j(I)), we conclude that h is constant on I [  j(I). Since j was arbitrary
we deduce that h is constant equal to x on

S
j2N  

j(I), and that x is a �xed point

for '. Since
S
m  

�m(a) is dense there must be an l 2 N such that a 2  l(I), and we
conclude that h(a) = x. Similarly, we deduce that h(b) = x. Since a � c � b and h
is non-decreasing we deduce that h(c) = x. But h(c) = 1

2
by (4) and (5) of Lemma

15.6.8 of [KH], so we conclude that 1
2
is a �xed point for the tent-map '. This is

not possible because the entropy of ' is positive. This contraction establishes (5.4).
To prove that Dr(h) = 0 it suÆces to show that limn!1 diam n(h�1(x)) = 0

for all x 2 [0; 1] by Theorem 4.10. Since h is nondecreasing, h�1(x) is an inter-
val, and the conclusion we seek is automatic if the sets  j(h�1(x)); j 2 N , are
all mutually disjoint, so we may assume that there are k < l in N such that
 k(h�1(x)) \  l(h�1(x)) 6= ;. Set J = h�1('k(x)) and note that  k(h�1(x)) � J .
Since h is constant on J and  l(h�1(x)), and these sets intersect, we conclude that
'l�k('k(x)) = 'k(x), so that  l�k(J) � J . If follows that I =

T
n2N  

(l�k)n(J)
is a closed non-empty interval in J = h�1('k(x)) such that  l�k(I) = I. It fol-
lows therefore from (5.4) that I is a point. Since J �  l�k(J) �  2(l�k)(J) �
 3(l�k) � � � � we deduce that limn!1 diam n(l�k)(J) = 0. Since the functions
 ;  2; � � � ;  l�k are uniformly continuous it follows that limn!1 diam n(J) = 0.
Hence limn!1 diam n(h�1(x)) = limn!1 diam n�k(J) = 0, and we have estab-
lished (5.3).
Note that this conclusion actually does give us some information which does not

follow from the mere existence of the factor map h. In fact, it follows that

#fx 2 [0; 1] :  n(x) = xg = #fx 2 [0; 1] : 'n(x) = xg
for all n. Indeed, there is a bijective (dynamical) correspondance between the peri-
odic orbits of a dynamical system and that of its invertible natural extension, and
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since Dr(h) = 0 we get from Theorem 4.6 that D(bh) = 0, and we conclude that bh,
and hence also h, sets up a bijective correspondance between the periodic orbits of
 and that of '. In fact, with a little more e�ort it is not diÆcult to see that h sets
up a continuous aÆne homeomorphism between the  -invariant and the '-invariant
Borel probability measures.
I must admit that I am not sure if the existence of a and b as in (5.3) implies

that h is actually a conjugacy. Note that the existence of a periodic point p for
 for which

S
j  

�j(p) is dense in [0; 1] will give us the points a and b we need.
Furthermore, an inspection of the above argument shows that if we instead of (5.3)
just assume the existence of single point whose pre-images are dense, and that
limj!1  

j(diamh�1(�)) = 0, where � denotes the �xed point (6= 0) for the tent
map, then we can again deduce that Dr(h) = 0. If, in any of these cases, there is
an attractive periodic point for  , h will be a bijection between the periodic orbits
of  and ', and yet not a conjugacy. 2

Remark 5.24. Following Williams, [Wi], Franks and Richeson calls two dynami-
cal systems, (Y;  ) and (X;'), shift equivalent (of lag m), when there are maps
r : (Y;  ) ! (X;') and s : (X;') ! (Y;  ), not neccesarily surjective, but such
that r Æ s =  m and s Æ r = 'm for some m 2 N , [FR]. For invertible dynam-
ical systems shift equivalence is the same as conjugacy, but not in general. Shift
equivalence of (Y;  ) and (X;') implies that (

T
j  

j(Y );  ) and (
T
j '

j(X); ') are
strongly equivalent. Indeed, if (Y;  ) and (X;') are shift equivalent, say of lag
m, via r and s as above, it follows that r : (

T
j  

j(Y );  ) ! (
T
j '

j(X); ') and

s : (
T
j '

j(X); ') ! (
T
j  

j(Y );  ) are factor maps (i.e. surjective) and hence that

the natural extensions br : (bY ; b ) ! ( bX; b') and bs : ( bX; b') ! (bY ; b ) de�ne a shift

equivalence (of lag m) between ( bX; b') and (bY ; b ). By using 6) of Proposition 3.1
this implies that D(bs) = 0 and hence, by Theorem 4.6, that Dr(sjTj '

j(X)) = 0.

In the preceding we have used the defect to identify what seems to be a natural
notion of �nite equivalence for general dynamical systems. There is, however, also
another more obvious application of the defect to dynamical systems which we would
like to mention in closing: A dynamical system (X;') can be considered as a factor
map from itself to itself; ' : (X;') ! (X;'), at least if ' is surjective. (If '
is not surjective, consider ' : (

T
j '

j(X); ') ! (
T
j '

j(X); ') instead.) While the
reduced defect is zero in this setting, the defect itself becomes a conjugacy invariant
for dynamical systems, which carries information, not on the complexity of the
dynamical system, but about 'how non-invertible' the system is. As an invariant it
is in some cases more sensitive than the topological entropy. This is illustrated in
the last example below.

Example 5.25. Let n 2 N ; n � 3. For each natural number k; k � n�2
2

p
1 + n�2,

there is a (unique) piecewise linear map 'n;k : [0; 1] ! [0; 1] with slope n on all
intervals of linearity, with 2k + 1 turning points, such that 'n;k(t) = nt; t 2 [0; 1

n
],

and 'n;k(t) = �nt + n; t 2 [1� 1
n
; 1].

2I am grateful to Joao Alves for pointing out that the existence of an attractive periodic point
prevents h from being a conjugacy.
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The graph of 'n;k.

Set c(n; k) = n�2
2k

p
1 + n�2 which is 1�mint2[ 1

n
;1� 1

n
] 'n;k(t). When #'�1n;k(t) > 2,

#'�1n;k('
j
n;k(t)) = 2 for all j � 1 such that njc(n; k) < 1 � c(n; k). So if k >

(nj+1)(n�2)
2

p
1 + n�2, we �nd that D('n;k) � 1

j+1
log(2k+2)+ j

j+1
log 2. On the other

hand, when nj+1c(n; k) � 1, we have a j+1-periodic point x0 such that #'�1n;k(x0) =

2k + 2 and hence D('n;k) � 1
j+1

log(2k + 2) + j

j+1
log 2 by 2) of Proposition 3.1. So

for arbitrary j 2 N we �nd that

D('n;k) =
1

j + 1
log(2k + 2) +

j

j + 1
log 2

when (nj+1)(n�2)
2

p
1 + n�2 < k � nj+1(n�2)

2

p
1 + n�2.
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