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Preface

In oneof thefirst paperd readonfunctionalmagnetiacesonancenaging(fMRlI),
it was statedthat non-parametridestsseemedooth necessaryand sufficient to
copewith significancetestingin this area. This wasslightly discouraginggiven
thatl hadjuststarteda Ph.D.studyin statisticalmodellingof fMRI data.Luckily
time have provedthatthe statementvaswrong: During the lastfour yearsthere
hasbeenanincredibleactuity in this researctarea,anddetailedmodelsarenow
recognizedasnecessaryor understandingMRI dataandfor usingtheseto gain
new insightin thebrain. Thedevelopmenbf graduallymorerealisticandexplicit
modelsaswell astherefinemenof analyticalandcomputationamethodsis still
aresearchopic of muchinterest.

As is almostalwaysthe casethe practicalproblemshave spavnedtheoretical
statisticalresearchas well. In the opinion of Keith Worsley, one of the most
influential statisticiansn thefield, the impactof brainimagingdataon statistics
in thenext centurymaybe aslarge asthe effectthatagriculturalfield trials hadin
this. Themostvisible theoreticaresearcthasbeenwithin thetopic of excursion
setsof randomfields, a theorywhich is usedto assignsignificanceto obsened
activationclusterdn abrainimage.Withoutdoubt,otherfieldsof spatialstatistics
will be influencedby thesedataalso. Thereis an abundanceof complex spatial
and spatio-temporaproblemsin brainimaging,andthereis arich potentialfor
applyingcurrentanddevelopingnew statisticalmethod€o addresshese.

This papertogethemwith theenclosednanuscripts¢onstitutemy Ph.D.thesis
submittedto the Faculty of Science University of Aarhus. The enclosedpapers
are written independentlyand the purposeof this first paper is to provide an
introductionto themethodgresentedandcompareheresultswith thoseof other
researchers thefield.

| wishto expressmy sinceregratitudeto all, who have helpedandencouraged
me during the writing of this thesis,in particularto my supervisorJensLedet
Jensenwhois aninexhaustiblesourceof goodideas.HansStgdkilde-Jagensen,
JeppeBurchhardtandtheir colleaguesat AarhusUniversity Hospitalintroduced
meto the subjectandhave shareddataandinsight, for which | amvery grateful.
| wish to thank Lars Kai Hansen,TechnicalUniversity of Denmark,and Antti
Penttinen,University of Jyvaskyla, andtheir colleaguesand Ph.D. studentsfor
their hospitalityduringmy stays.Finally | amindebtedto my wife, Helle, for her
endlesgatiencetoleranceandsupport.

Arhus,July 31,2000. Niels Veewer Hartvig
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1 Intr oduction

The purposeof this overview paperis to 1) give a brief presentatiorf the statis-
tical problemsin functionalmagneticresonancemaging (fMRI), 2) presenthe
main resultsand methodsof the accompawing papersand 3) give a critical ex-
position of resultsobtainedby other researcherin the area. We startwith an
introductionto fMRI, anda motivationfor the succeedinghapters.

1.1 Functional magneticresonancemaging

1.1.1 Physicalbackground

Magneticresonancemaging (MRI) is a scanningtechnique,which was intro-
ducedto clinical medicineabouttwenty yearsago. It is a uniqueandextremely
flexible technique which is regardedasone of the biggestadvancesin medical
imaging sinceRontgens discovery of X-raysin 1895. Contraryto X-rays, MR
is capableof producinganatomicaimagesof soft tissuein the body, by exploit-
ing themagnetigpropertienf hydrogemuclei. Theimageshave extremelygood
resolution,is acquiredand displayedwithin millisecondsand the recordingof
theimageis completelyharmlesgo the subject,who is exposedonly to a strong
magnetidield.

The MR scannecreatesanatomicaimagesfrom the hydrogendensityof the
tissue.A furtheradvantageof thescannerhowever, is thepossibilityof measuring
arangeof othertissue-specifiparameterdunctionalMRI is oneexampleof this.
fMRI useghedifferentmagnetigropertiesof oxy- anddeoxyhaemoglobito vi-
sualizelocalizedchangesn blood flow, blood volumeandblood oxygenationn
the brain. Thesearein turn indicatorsfor local changesn neuralactivity. By ex-
posinga subjectto controlledstimuli, which arecarefully designedo affect only
certainbrain functions,it is possibleto estimatethe anatomicalocationof neu-
ronsinvolvedin thecorrespondindunctions.Brain functionmaythenbemapped
to brain anatomyby combiningfMRI scanswith anatomicalscansobtainedby
corventionalMRI.

The possibility of usingMRI for neurofunctionaktudiesof the brainwasdis-
coveredlessthanten yearsago—oneof the first experimentswas publishedby
Kwongetal. (1992). Sincethentheinterestin fMRI hasbeenenormousandfor
goodreasonsfMRI hasa betterspatialresolutionthanthe older positronemis-
siontomography(PET)techniquethetemporalresolutionis ordersof magnitude
betterandfMRI is completelynon-invasie. Formulatedn popularterms,aPET
scannerecordsphotograph®f brainfunction,while fMRI providestheneurosci-
entistswith entiremoviesof the spatio-temporadctivationprocesses.
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Leaving the journalisticjargon aside,we will describehow anfMRI experi-
mentis actuallycarriedout. The scannerecordsanimageof a slice of thebrain
of thicknessabout5 mm. Theimageconsistof 64 x 64 or 128 x 128 pixels(or
voxels) of dimensionl.5-3mm. Thetwo terms“pixel” and“voxel” areabbrei-
ationsof respectrely “picture element’and“volumeelement”,andwill be used
interchangeablyIn moststudiesa collection of equi-distantslicesis combined
to form a pseudo-3Dvolume. “Pseudo”,becausehe slicesareobtainedsequen-
tially in time, andhencethe time differencebetweerthe top andbottommay be
aslarge asseveral secondsandbecausehe slicesare often not consecutre, but
have a distanceof severalmillimetres.

A volumeof slicesmaybeobtainedwithin oneor two secondsandasequence
of suchvolumesarerecordedvhile the subjectis exposedo certainstimuli. This
mayfor instancebeamotorstimulus relatedto themusculamovemenif ahand,
or a sensorystimulationpresentedsa flashinglight or a sound. The stimulusis
presentedepeatedlywith epochsof restin between.Sincebrainactivity maybe
assessednly relatively to the restcondition, the latter is designedas carefully
asthe stimulationcondition,in orderto illuminate a specificbrain function. In
a motor or sensoryexperiment,the subjectmay simply be asked to relaxduring
rest,while in a cognitive experimenttherestconditionmay be anotherstimulus,
which is perceved differently by the mind. An exampleis the presentatiorof
well-known wordsduring stimulationandnonsens&vordsduringrest.

More comprehensie introductionsto MR scanningand fMRI experiments
may be foundin Lange(1996)and CohenandBookheimern(1994),the paperby
Langeand Zeger (1997) containsa good introductionalso. The readerwho is
interestedn the physicsof MR scanningnaylook in Canet(1996)or Starkand
Bradley (1992).

1.1.2 Data and pre-processing

The dataobtainedin anfMRI experimentis atime seriesof scansfogethermwith
covariatesof the experiment. The latterincludesthe stimulationfunction, which
indicatesthe periodsof stimulationandbaselinethe scan-paramete@ndsome-
timesalsoexternalmeasurementsf pulseandrespiratoryrates.

Usually the headof the subjectis fixed with a vacuumcushionor with foam
paddingsduring scanning but small headsmovementsare unavoidable. Before
thestatisticalanalysisamotion-correctiomoutineis hencealmostalwaysapplied.
Usuallythe scansarealignedindividually to areferencescanunderrotationsand
translationsandpossiblyalsocorrectedor thedelayednagnetizatioreffectsthat
previousmovementsmay have on the presenscanthroughthe so-calledspinhis-
tory (Fristonetal., 1996b).

When datafrom a single subjectis to be analysedthe detectedactivation
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may be mappedlirectly on ananatomicakcanfrom the subject.However, when
resultsmustbe generalizedo a populationor whendatafrom differentsubjects
areto be combined,it is often necessaryo relatedifferentbrainsto a standard
atlas,this is known asstereotaxicmormalization.Evenif brainshave almostthe
sametopography the anatomicalvariationis quite large and the normalization
is hencea very difficult task. The standardapproachis to usethe coordinate
systemof Talairachand Tournoux (1988), which is definedby the position of
characteristicanatomicallandmarks. A brainis ‘transformed’to the reference
coordinatedy aligningthelandmarksof the brainandthe atlasunderpiece-wise
linear scalingsof the axes. This normalizationis far from perfect—majorsulci
(groovesbetweerridgesonthecorticalsurface)mayvaryin positionby 1-2cmin
anormalpopulation(TalairachandTournoux,1988)—andhe statusasa standard
atlasis mainly dueto thelack of practicalalternatves. More satisfyingmethods,
which are alsomuch more computerintensve, have beendevelopedduring the
lastyears,basedon for instancedeformableandprobabilisticatlase Thompson
etal., 2000).

A goodalternatve to stereotaximormalization,which is applicablein some
studiesjs to delineataegionsof intereston ananatomicascan andthencompare
relevantsummarystatisticsof the activationin theseregionsbetweersubjects A
problemwith this approachis thatit is difficult to obtainstandarderrorsof the
estimatedo be comparedpwing to the lack of a goodmodelfor the activation.
This problemis addresseth a Bayesiarframenork in paper.

Finally a commonpre-processingtepis to smooththe dataspatially to in-
crease€'signal-to-noise’ratio. We preferto view this asa spatialestimationpro-
cedureandwill hencediscusst in the context of spatialmodelsin Chapter3.

1.1.3 Statistical analysis

Ideally the experimentshouldbe designedwith a specificneuroscientifidhiypoth-
esisin mind, andthe purposeof the statisticalanalysigs to testthe corresponding
hypothesis.In generalhowever, it may be extremelydifficult to testhypotheses
which are not phrasedn termsof the location of the activation, and hencethe
primary goal of the analysisis to estimatethe position of the activation, thatis
regionsof thebrain,wheretheintensitycorrelateswith the stimulationfunction.

Thoughthe datamay be viewed asa high-dimensionatime series;t is com-
monto separatéhe spatialandtemporalanalysesandperformthetemporalanal-
ysis voxel-by-voxel. We show in Paperl thatin somecircumstanceshis corre-
spondsto a sufficient reductionof the data,and no informationis lost by sep-
aratingthe two steps. In generalhowever, the separateanalysesare madefor
simplificationandfor computationatorvenience.
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Temporal analysis. Theintensitiesof a singlevoxel is regardedasa one-dimen-
sionaltime series andan estimateof the “correlation” with the stimulationfunc-
tion is obtained. The centralstatisticalproblemat this stageis to formulatean
appropriatgime seriesmodel. To definetheterm“correlation” onemust:

e Formulatea model for the haemodynamicesponseo neural activation.
Owingto thelack of acommonlyacceptediologicalmodelto explainthe
couplingof haemodynamicesponséo neuralactivation,thismustbebased
on empiricalstudies.

e Formulatea modelfor the noise. The distribution of the noisemay bevery
complex andmaydiffer from onevoxel to another Model controlis hardto
perform,sincethousandsf time seriesareanalysedn anautomatioway.

¢ Choosea statisticto quantifythe magnitudeof activationin thetime series.
In the light of the remarksabove, robustnesgo deviationsfrom the model
is arelevantissue.

Thedelicatebalancebetweersimplicity andsensitvity ononehandandflexibility
androbustnes®ntheothermaybevery difficult to obtain,andhasrecevedmuch
attention.We review approacheso solvingtheseissuesn Chapter2.

Spatial analysis. The voxel estimatesare next viewed as a volume (or a map)
whichis analysedy a spatialmodel—commonlythe aim is to classifyvoxelsas
active or non-actve. Oftenthe estimatesaretest-statisticsvhich have acommon
distribution underthe null-hypothesif no activationarnywhere. The temptation
to view the spatialanalysisasa hypothesigestingproblemis obvious: The map
is comprisedof thousand®f identicalvoxel-wisetestswhich may be rejectedor
acceptedoy thresholdingthe map. One problemhereis that of multiple com-
parisons:If the voxel-wisetestis madeat level «, a fraction of o voxels will
be classifiedasactive by chancewhenthereis no activationanywhere,whichis
clearly unacceptableThe simplestsolutionis to correctthe significanceevel to
a/|V|, where|V| is the numberof voxels. Whenall voxels areindependenand
|V| is large, this so-calledBonferronicorrectionwill yield a global significance
level of a. Whenthe voxels are correlated however, the Bonferronicorrection
may be muchtoo conserative. A bettersolutionis to modelthe mapasa cor
relatedrandomfield, and setthe thresholdsuchthat the maximumof the field
exceedst with probability o;, underthe null-hypothesiof no actvation. Thisis
far from easy sincea theoreticalexpressiorfor the distribution of the maximum
of arandonfield is rarelyavailable.Much researcthasbeendevotedto obtaining
approximatexpressiongor thetails of this distribution, particularlyfor Gaussian
randomfields, but alsofor ¢-fields, x-fieldsand F-fields. We discussherandom
field theoryin greaterdetailin Section3.1.
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Thehypothesigestingapproacthasotherproblemghanthatof multiple com-
parisons.The fundamentaproblemis the lack of a modelfor the activation, i.e.
thereis no modelfor the distribution of the statisticsunderthe alternatehypoth-
esis,and no assumptionsare madeaboutthe distribution of shapeand size of
activatedregions. Without anexplicit spatialmodel,conceptsuchasuncertainty
of the estimatedpatternor the testingof high-level hypothesesboutthe activa-
tion profile arevery difficult to study This problemis studiedin several of the
enclosedaperspy investigationof differentspatialmodels.In Section3.2 this
work, and relatedapproachesare reviewed and comparedwith the hypothesis
testingsetup.

1.1.4 Why “parametric modelling”?

We usetheterm“parametricmodelling” in thetitle to emphasizeéhefocusof this
thesis.Therehasbeenanimmenseactvity in fMRI dataanalysisandresearchers
with differentscientificbackground$ave attacled the problemswith the philos-
ophyandtoolsof their own field. Ourviewpointwill naturallybe from statistics,
andwe will focuson probabilitybasednodelsfor thedata,throughwhich signifi-
cancestatementsanbemade.Clearlytheterm“parametric”is notfully adequate
for this classof methodssincenon-or semi-parametrienodelsmay fulfill these
criteriaalso,andwe will discusssomeof theseapproacheaswell. Yet paramet-
ric modelsarecharacterizedby the factthatthey incorporateexplicit knowledge
of the phenomenainderstudy Often this allows for directinterpretationof pa-
rameterdan termsof the physicalprocessegeneratinghe obsenations,andthe
possibility of formulating hypothese®f interestthrough simple restrictionson
parameterslt is this type of structurednodelswe will focuson here.

Parametrionodelsform thecoreof thetoolsfor fMRI dataanalysissincere-
searchersnostoftenwish to attachuncertaintyestimatego their findings. There
has,however, beenmuchresearctin relatedareassuchasonnon-parametrienul-
tivariatemethodswhich extractsrelevantspatio-temporaleaturedrom data,and
allows oneto displaydatain enlighteningformats. Thesemay rarely be usedto
testhypotheseshut arevery usefulfor hypothesegeneratiorandfor diagnosing
unexpectedfeaturedn theresidualsof a model. We will not discussary of these
methods but refer the readerto recentovervien papersandreferencesherein,
suchasPeterssortal. (1999a)andLangeetal. (1999).

1.2 Summary of enclosedpapers

A brief summaryof the enclosedrapersaregivenbelow. Four of them(I-111,V1)
areconcernedvith spatialandtemporalmodelsfor fMRI data,while papersV
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andV aretheoreticalpapers.PaperlV describesa simulationalgorithmusedin

Paperlll, andPaperV studiesasymptoticahormality of the maximumlik elihood
estimatorin statespacemodels.We usestatespacemodelsfor modellingrespec-
tively noisecomponent$n PaperVIl andthe haemodynamicesponsédunctionin

Paperl. We will discussthe contentsin greaterdetail andrelatedapproachei

thefollowing chapters.

A stochasticgeometrymodelfor fMRI data. Thispaperdescribeshigh-
level spatio-temporainodelfor theactivationpattern.Thisis modelledspa-
tially asacollectionof Gaussiarunctionswith unknavn width, heightand
position,andtemporallyby a statespacemodel. Inferencein the modelis
basedon MCMC andthe paperdescribesanalgorithmfor simulatingfrom
the posteriordistribution. Submittedo Scandinaviardournal of Statistics.

Spatial mixtur e modelling of fMRI data. This paperproposeseverala
priori spatialmodelsfor the activation patternin a small squareor cubeof
voxels. Thedistribution of a teststatisticis modelledunderboth the acti-
vation stateandthe non-actvatedstate,andwhenusingthe spatialmodels
proposedthe posteriordistribution of a voxel beingactvatedmay be cal-
culatedin closedform. The modelsmay also be usedas mamginal priors
in imagerestoratiorproblems.Written jointly with JensLedetJensen.Ac-
ceptedfor publicationin HumanBrain Mapping

Spatial decorvolution of the BOLD signalby a hierarchical model. This
paperdescribes convolutionmodelfor thespatiahaemodynamieffectsin
fMRI data.Theneuralactvationpatternis modelledasanindependenfield
of Gammavariateswhich is next smoothedwith a kernelrepresentinghe
haemodynami®dlurring. By MCMC methodswe may estimatethe neural
activationpattern;effectively this corresponds$o a spatialdecomwolution of
thedata.Unpublishednanuscript.

Simulation of the Gamma-Normal distrib ution. This paperstudiesare-

jectionsamplingalgorithmfor simulatingadistributionwith densityf (z) o

2"~ exp(—azx — Bz?), z > 0. Thealgorithmis provedto beasymptotically
optimal for certainlimits of the parameters.The simulationalgorithmis

usedto make inferencein the convolution modelof the previouspaper Un-

publishedmanuscript.

Asymptotic normality of the Maximum Lik elihood Estimator in state
spacemodelsIn this paperwe prove asymptoticnormality of the maxi-
mumlik elihoodestimatoiin a certainclassof stationarystatespacemodels,
namelymodelswherethe latentprocesselongsto a compactspace.The



techniqueis basedon a martingalecentrallimit theorem. Written jointly
with JensLedetJensen. Publishedin Annalsof Statistics(1999), 27(2),
514-535

VI Non-linear state spacemodelswith applicationsin functional magnetic
resonancamaging. This manuscriptdescribesan approximatve Kalman
filter for non-linearstatespacemodels. The filter is basedon sequential
normality approximationsywheremomentsarecalculatedoy numericalin-
tegration. The methodis usedto estimatephysiologicalfluctuation pat-
ternsandtrendsin fMRI time seriesof large veins. The estimatednoise
componentsare next usedas confoundsin a generallinear modelfor the
data. Unpublishedmanuscript. Presentedat 4th InternationalConfeence
on FunctionalMappingof the HumanBrain, Montreal 1998, Neuwlmage
7(4),S592.

2 Temporal modelling of fMRI data

Comparedo othertypesof brainimagingdata,fMRI datahave specialtemporal
aspectswhich needexplicit consideratiorandmodelling. Thesemay be divided
into thefollowing threecateayories:i) Dynamicpropertiesof thehaemodynamical
effectswhich causeghe measuredignal,ii) the form of structurednoisein the
data,arisingfrom physiologicalsourcessuchasrespiratoryor cardiaccyclesor
from drifts in the signallevel, andiii) the propertiesof randomnoise.

Clearly oneof theseissuescannotbe studiedwithout definingthe othertwo.
Neverthelesst is almostatraditionin theliteratureto focuson eachof thediffer-
entaspectseparatelyandwe will try to make the samedistinctionbelow. In the
first sectionwe will discussapproaches modellingthehaemodynamicesponse
to stimulation,next we turn to modellingof structuredhoisecomponentsandfi-
nally to modelsfor the randomnoise. In the last sectionwe discussa Bayesian
approactwherethethreepartsarefully integrated.

We will focusonly on the temporalmodellingin this chapter With a few
exceptions,all the modelsreviewed below treatthe dataasa collectionof inde-
pendentime series,onefor eachvoxel, anddo not assumeary spatialstructure.
As mentionedn the previous chapterthe spatialmodellingis traditionallyintro-
ducedeitherimplicitly in the preprocessingf the dataor asa secondstepin the
analysis.We will deferthediscussiorof spatialmodellingto the next chapter

Unlessotherwisestatedve will usethenotation{Y}; }icv,:=1,...» for thespatio-
temporalfMRI data,whereV is the setof voxel indices,andt = 1,...,n isthe
scannumber
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2.1 Modelsfor the haemodynamicresponse

The functional MRI signal arisesfrom the haemodynami@ffects occurringin
thevascularsystemconcurrentlywith neuralactivation. The biological processes
behindthis are not fully understoodput the generalstructureof the signalhas
beendescribedand reproducedn mary studies. The haemodynamigesponse
lagsthe neuronalactivation with several secondsijt increaseslowly to a peak
valueat about6-8 secondsafter a neuronalimpulse,andthenreturnsto baseline
again.Theshapeof theresponséooksroughlylikea Gammadensity Oftenalate
undershoots reportedaswell, in the sensehatthe signaldropsbelow baseline
for aperiodafterthe peakvaluebeforeit returnsto the baselinevalue.

Thereasonwhy thisresponseanbe measureds the differentmagneticprop-
ertiesof oxygenatechnddeoxygenatedlood. A relative increasen the amount
of oxyhaemoglobimwill causea slower trans\ersaldephasingf the nucleispins,
whichis detectedasa signalincreasen 7, weightedMR sequencesEvenif neu-
ral activationincreaseshelocal oxidatve metabolismgcausingarelative decrease
in theamountof oxyhaemoglobinthis will be overcompensatebly theincreased
blood flow andvolume,which occursafter a few seconds.The resultis thusa
delayedincreasein the level of oxyhaemoglobinwhich is the contrastusedin
blood-oxygen-lgel-dependentBOLD) fMRI.

Thoughtherehasbeensomeattemptsto modelthe physiologicaleffectsun-
derlyingthe BOLD signaldirectly (Buxtonetal., 1998;Glover,1999),mostmod-
els for the haemodynamicesponsdunction (HRF) areempiricalin nature,and
assumptionsave beentesteddirectly ontheobsereddata.

2.1.1 Periodic models

Thefirst fMRI experimentswere basedon blocked periodic stimulationdesigns
wherethe two epochsstimulationandbaselinewererepeatedvertime. A peri-
odic modelfor thehaemodynamicesponseés thusa naturalchoice. Thesimplest
possiblemodelfor the HRF is a binarymodelwhichis 1 duringstimulationandO
duringrest.Evenif this seemsimplistic,giventhe complex natureof thehaemo-
dynamiceffects,it is themodelunderlyingthe simpletwo samplet-test,whichis
notuncommonin practicalanalysis.The modelis sometimesefinedby shifting
thebinaryfunction4-8 second#sn time, to accommodatéhedelayof theresponse.
Bandettinietal. (1993)andLeeetal. (1995)proposedo modelthe HRF as
a sine-wave with the sameperiodasthe stimulationfunction. This resembleshe
obsenred responsamore than a binary function, and may furthermorebe inter-
pretedasa spectralanalysisof thetime serieswherethe power at the stimulation
frequeng is theparameteof interest.Bandettinietal. (1993)proposedo usethe
cross-correlationf thesinusoidakeferencdunctionandthetime seriesasatest-
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statistic,whichis equialentto at-statisticin aregressiommodelwith independent
normalerrors. The cross-correlatiors still a very popularmethod,owing to its
simplicity andgoodpower. Bullmoreetal. (1996)andArdekanietal. (1999)took
this modela stepfurther, by modellingtheresponséunctionasalinearcombina-
tion of cosinesandsineswith the stimulationfrequeng andthe first andsecond
harmonicsof this. This correspondso a Fourier basisfor the responsdunction.
Thesewo papersalsoaddressethoregenerahoisemodelsthanBandettinietal.,
we will returnto thisissuelater.

2.1.2 Linear models

Parallelto thestudyof periodicmodels therehasbeenmuchfocuson corvolution
modelsfor the haemodynamicesponse.Thesearelessempiricalsincethey at-
temptto explaintheresponsdérom abiologicalviewpoint,andthusaimatabetter
understandingf theunderlyingprocessesThis in turn allows for generalizations
to non-periodicexperimentsandothermoredetailedstudiesof the brain.

In a convolution modelthe haemodynamicesponsés givenas

o(t) =hxm(t) =Y h(t— s)m,.

Herer, is the stimulationfunction, which is 1 during stimulationand O during
rest, and h(t) is a modelfor the impulseresponsealso known asthe transfer
function. Thelatter may be interpretedasthe haemodynamicesponséo a short
stimulationof onetime point. Theassumptionsinderlyingthis modelarethatthe
responsas time invariant(or stationary),in the sensehatthe impulseresponse
h(t) is the samefor all stimulationtime points, andthat the impulseresponses
combineadditively over prolongedperiodsof stimulation.

Motivatedby obseredresponseseveralchoicesor themodelh(t) havebeen
proposed AmongthesearethediscretePoissordensity(Fristonetal., 1994),the
Gaussiarfunction (Fristonet al., 1995),the Gammadensity(Langeand Zeger,
1997)andthe shifted Gammadensity(Boyntonetal., 1996). A parametridorm
for theimpulseresponsallows for separatestimationof parameterin different
voxels,by whichdifferencesn delayandshapeof theresponsenaybequantified.
A moreempiricalandlessarbitrarychoiceis to usetheactuallyobseredimpulse
responsén otherfMRI studies(Cohen,1997).A stepin the oppositedirectionis
to usecompletelynon-parametrienodelsfor the impulseresponseas proposed
by Nielsenetal. (1997)in alikelihoodframevork andby Hgjen-Sgrenseat al.
(2000)in a Bayesiarframeawork.

For blocked paradigmswherethe stimulusis presentedluring severalscans,
the corvolved responsep(t) will not be very sensitve to the exact shapeof the
transferfunction h(t). In recentyears,however, there hasbeenan increasing
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interestin so-calledevent-relategparadigmswherethe stimulusis only presented
for ashortperiodof time. Experimentsnaybedesignedvith greateiflexibility in
this case sincemary stimuli cannotbe repeatedver a block of scans.This may
bethecasen cognitive experimentswherefor instanceheimmediateperception
of avisualor auditorystimuli is of interest.More carefulmodellingis neededo
extracttheresponsérom thistypeof data,which hasledto refinedmodelsfor the
impulseresponsdunction. Glover (1999)andWorsley (2000a)modelthe latter
asa differencebetweentwo Gammadensities which representespectiely the
initial increaseandthelaterundershoot,

0= () o5 e G) e

Herep; = «;0; is maximumpoint of the Gammadensity andmaythusbeinter-
pretedasa delayparameterGlover (1999)estimatecparametergor an auditory
responsdo a; = 6, ap = 12, B = (o = 0.9 sandc = 0.35. A similar form
wasconsideredyy Fristonet al. (1998a),who alsouseda further refinementoy
combiningh(t) with its temporalderivate 0h/0t. A linear combinationof the
two may; in a Taylorlike fashion,accountfor smallvoxel-wisedifferencesn the
delayof theresponseA non-parametri@pproachwhichis applicablewhenthe
stimuluseventsarepresentegberiodically wasproposedy Josephgtal. (1997),
who modelledthe impulseresponsesa linear combinationof 32 Fourier basis
functions.

The approximateinearity of the haemodynamicesponseéhasbeendemon-
stratedempiricallyin visualstimulationstudiesby Boyntonetal. (1996)andDale
andBuckner(1997).Boyntonetal. variedbothstimuluscontrastandlength,and
illustratedthatthe response&ombinesapproximatelinearly over time, andthat
thetemporalprofile of thehaemodynamicesponsdéunctiondoesnotchangewith
contrast.Themagnitudeof theresponsevas,however, anon-linearfunctionof the
stimulationcontrast.This washypothesizedo resultfrom thenon-linearesponse
of theneuronakystemwhich hasbeenobsenedalsowith single-unitrecordings.
Their conclusionis thusthat the haemodynamisystemis approximatelylinear
asa function of neuronalactivation, but thatthe neuronalactivationmay depend
non-linearlyon the stimulationcontrast.

2.1.3 Non-linear and non-stationary models

The evidenceof linearity of the haemodynamicesponsehouldbe contrastedo
thework of Glover(1999),whofoundthattheresponsem themotorandauditory
corticeswerenotlinear;themagnitudeof theresponseo veryshortstimuli (<1 s)
wassmallerthanexpected,andtheresponséo long stimuli (about16 s) shoved
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lessundershoothanpredictedby alinearmodel.VazquezandNoll (1998)found
non-linearresponsed the visual cortex, alsofor shortstimuli (<4 s). Friston
etal. (1998b)detectecandquantifiedthe non-linearpropertiesof theresponsen

the auditory cortex asa function of word presentatiomate. They useda second
ordermodelfor the HRF of theform

p(t) =D Bt —s)m+ > Bt —s,t — s)mmy,

whereh! andh? arekernelsmodellingrespectiely first andsecondrdereffects.
The authorsassumedhat the kernelswere given by a linear combinationof a
smallnumberof known basisfunctions,

h(t) = Zgilbi(t), (s,1) = ) giibi(s)bi(t),

2,j=1

the responsas thenjust a linear function of the unknowvn parametergg; } and
{g7;}. The authorschosep = 3 andlet b;(t) be a Gammadensitywith shape
parametep’. Thisis clearlyaveryimportantpartof the modelformulation,and
someof their resultsmay be sensitve to this choice. The modelmay eitherbe
interpretedasa so-calledvolterraseriesexpansiorof agenerahon-linearsystem,
or, perhapsnoreintuitively, asa non-linearfunction f of alinearsystem

o(t) = f (Z h(t — s)m) :

By Taylorexpandingf to the secondorderwe getapproximatelythe samerepre-
sentatiorasabove. The authorshypothesizéhatthe neuronakctvity is linearas
afunctionof word presentatiomate,andthatthe non-lineareffectsareintroduced
by the haemodynamieffects. In this casef would represennon-lineareffects
of thehaemodynamisystem for instancea non-linearrelationshipbetweerflow
andoxygenextractionfraction.

The assumptiorof stationarityof the haemodynamicesponsés clearly are-
strictive one.In mary experimentonecanimaginethattheresponsavill change
with generaklertnes®r dueto learningeffects,anda constanimodelfor theim-
pulseresponsédunctionh(t) maynotbeapplicable A parametrianethod which
addresseson-stationarityis that of sliding time-windows (GaschleiMarkefski
etal., 1997). Basically overlappingtemporalblocks of the time seriesare anal-
ysedseparatelyandthe resultsare combinedto studythe temporaldevelopment
of theactwation. It is difficult to combineresultsin differentblocksin arigorous
way, andhencethe authorsusethe methodmainly descriptvely in this sense.
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Gosslet al. (2000) studya non-stationaryresponsdunctionin a statespace
model. A simplecorvolution modelis usedasa fixed regressorin the analysis,
but the magnitudeof the function is consideredas a latent, time-varying func-
tion, which is estimatedndividually in eachvoxel. Sincethey alsohave anin-
terestingnoisemodel,we will postponehe detaileddescriptionof the modelto
the next section. Their approachis very appealingasit permitsa study of the
spatio-temporaactivation patternin a solid statisticalframewnork. Oneproblem,
however, is thatthe mainparameteof interestthe magnitudeof activation,is not
well-definedwhenthe modelresponséunctionis zeroduringepochsof rest.

A statespaceapproachwasalsoconsideredn Paperl, wherethe entirere-
sponsegunctionwasmodelledasa latentprocess.The responsavasassumedo
be a randomwalk with drift given by a simple corvolution model. This frame-
work is ratherflexible, andinsteadrestrictionswereimposedon the spatialpat-
tern. Firstly we madethe assumptiorthatthe responsdunction wasthe samein
all voxels,andsecondlythe magnitudeof activationwasdescribedspatiallyby a
collectionof Gaussiarfunctionswith a minimal extentandheight. We will de-
scribethemodelin moredetailin thecontext of spatialmodelsin thenext chapter
By MCMC techniquesheposteriodistribution of theresponséunctiongiventhe
datawasobtainedandthisindeedshonvedsignificantnon-stationaritiesh avisual
stimulationexperiment.

2.2 Modelsfor the systematicnoise

Trends,drifts or fluctuationsare often obsened in the dataand have beenre-

portedin mary studies. It is in generalunclearwhat causeshesebut several

explanationsarepossible. Trendsmay be causedy instability in the scannerby

motion artifactsor possiblyby slow variationsin physiologicalparametersuch
asblood pressure Fluctuationsmay be aliasedphysiologicaloscillationscaused
by thecardiacor respiratorycycle. Therepetitiontime, or inter-scantime, is often

aroundl or 2 secondswhich meanghatboth cardiacandrespiratoryeffectsmay

bealiased.

2.2.1 Filtering of physiologicalfluctuations

A simple approachto reducingfluctuationscausedby the aliasedcardiacand
respiratoryrhythmswas proposedoy Biswal et al. (1996). They monitoredthe
processesxternally, anddesignedsaussiarband-rejecfilters to remove the cor-
respondingrequencief the time-series.Filtering introducescorrelationin the
seriesandthereis henceatrade-of betweerremoving nuisancecomponentsind
the costof reducingdegreesof freedom.Filtering may thusbe worsethandoing
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nothing. This wasrecognizedy BuonocoreandMaddock(1997)who designed
Wiener filters to remove physiologicalfluctuations. Effectively a Wiener filter

returnsthe residualsof the time seriesafter a a linear least-squaresstimateof

the structurednoisecomponentasbeenremoved. The methodthusrequiresan

estimateof structuredaswell asrandomnoisecomponentsor ratherthe spectral
densityof these. A group of voxels, which were dominatedby eitherform of

noise,were usedto estimatethesecomponentglirectly from the data,henceno

externalmeasurementsererequired.Liketheband-rejecfilters, Wienerfiltering

introducescorrelationin thetime seriesandBuonocoreandMaddockconcluded
thatthe filter wasonly usefulif the stimulationfrequeng was contaminatedy

physiologicalnoise.If this wasnotthe case the improvementin the detectionof

activationwasnot large enoughto compensatéor thereductionin the degreesof

freedom.

The filtering methodsrely on approximateperiodicity of the physiological
noise;at leastthe frequeny bandof this noisemustbe relatively smallandcon-
stantover time. Due to aliasingeffectsthis may not be a realisticassumption.
A morerobustandin factvery simpleapproachs proposediy Hu etal. (1995)
who monitor the heartandbreathrate externally. Thetime point of eachscanis
transformedo its relative positionwithin the unit cardiaccycle, andthescansare
re-shufled in accordancéo this. At eachpointin k-spacé, the obserationsare
replacedy theresidualsafterfitting a periodicfunctionto theunit cycle obsena-
tions,andthescansarethenshufled backin their original order Hencevariations
consistenwith the cardiacrhythm areremoved individually in eachpointin k-
space.This actsasa preprocessingtepof theraw scansyatherthana modelfor
thenoise,but seemanoreeffective thanapplyingfilters of high-order Only four
parameterarefitted in eachtime-seriesn k-spaceassuringa minimal reduction
in the degreesof freedom. The main disadwantages the requiremento monitor
the physiologicalprocessegxternally; besideshe practicalproblemswith this,
the equipmenimaydisturbthe staticmagneticfield of the scanneandthusintro-
duceartifactsin the MR signal. This wasaddressedby Le andHu (1996)who
obtainedinformation on the physiologicalprocessedlirectly from the k-space
data,however a fastimagingratewasrequiredfor this, which is not possiblein
all experiments.

2.2.2 Simpletrendmodels

Evenif trendsmay be consideredas noisesourcesijt is often more corvenient
to modelthemin the meanvalue of the time seriesthanto formulatemodelsfor

1The k-spaces thefrequeng spacen which thescansareacquired The obseredimagesare
obtainedby a 2-dimensionalFouriertransformof the k-spaceémage.
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stochastigprocessesywhich may exhibit the relevant features. The mostsimple
approachs to modelthetrendby alineartermin the meanvaluespacea choice
whichis verycommonin theliterature.Evenif this mayseenmsimplistic,it senes
as a good approximationfor mary time series,andit is a more parsimonious
choicethansomeof the moreelaboratedhoisemodels.Obviousextensionsareof
courseto includehigherorderpolynomialtermsor exponentiafunctionsof time.

Holmesetal. (1997)first proposedo includea basisof low frequeng cosines
in the meanvalue space wherethe maximalfrequeng is chosenwell below the
stimulationfrequeng, say lessthan a half of the latter When both sinesand
cosinesare includedin the meanvalue spacethis effectively corresponddo a
high-pasdilter for the data,but formulatedin a statisticalmodel. Holmeset al.
proposedto useonly cosineterms, however, presumablyin orderto trade off
flexibility for a smallerdimensionof themodel.

Oftenaso-calledglobalsignalis includedin themeanvaluealso. Thisis sim-
ply thetime seriesobtainedby averagingall voxel time series.The motivationfor
this originally comesfrom PET data,wherethe global signalmay beinterpreted
asglobalbloodflow; in fMRI data,wherethemagnitudeof theintensitieshave no
directphysicalinterpretationthe globalsignalcanonly beinterpretecasaglobal
trendstructurein thedata.Thebiggestproblemwith theinclusionof aglobalsig-
nalis thatit maybeconfoundedvith activationrelatedsignals thiswill especially
bethe caseif large areasareactivated. This may leadto underestimatiorof the
responsen activatedareasandartificial detectionof negative activationin non-
active voxels. Onthe otherhand,Zarahnetal. (1997)shovedthatinclusionof a
globalsignalreducedhe spatialcorrelationof voxelsandhencealsothevariance
of estimatedactivationpatterns.

2.2.3 Semi-parametrictrend models

Ardekani et al. (1999) took a semi-parametri@pproachto estimatingglobal
trends. Supposewe let Y; denotethe time seriesin voxel 7, Y; is thena vector
with lengthequalto thenumberof scansn. They considered modelof theform

Y; = Ab; + Bo; +¢ei, & ~ N,(0,0°L,),

where A is a known n x p matrix representinga basisfor the haemodynamic
responsemodel (the authorsuseda trigonometricbasisfor a periodicresponse
function),and B is anunknavn n x ¢ matrix with trendterms. All voxelswere
assumedo be independentind have equalvariance. The column spaceof B,
denotedhenuisancespacewasestimatedy maximumlik elihood,subjectto the
constrainthatthe columnspace®f B and A wereorthogonal.Theorderq of the
nuisancespacewasselectedy aminimumAIC procedureijn their examplesthe
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authorsselectedy = 2. Forthisvalueof ¢, onewould expectthatthetwo columns
of B correspondo analmostconstantermanda globaltrendterm. In this sense
the modelis closelyrelatedto modelswherea global signaltermis includedin
the meanvalue spaceinsteadof the estimatedrendterm. However, unlike the
global signalterm, the trendtermshereare orthogonalto the responsdunction,
avoiding confoundingoetweerthetwo.

In factthe authorsshavedthatthe MLE of B is givenby the g first principal
component®of the residualdata,after the estimatedesponse-functiohasbeen
removedin eachvoxel. (SeeMardiaetal. (1979)for a descriptionof principal
componenfnalysis.) This givesa more intuitive understandingf the method;
eachestimatedrendtermis just a weightedaverageof the residualtime series,
wherethe weights constitutean eigervector of the empirical spatialcovariance
matrix of the voxels. This alsopointsto a weaknes®f the method,becausehe
weight assignedo a given voxel time serieswill scalewith the varianceof the
series. Contraryto the authorsassumptionyariancehomogeneityacrossvoxels
is often not realistic,and voxels with high variancewill hencetendto dominate
in the estimateof B. This may, or may not, be an adwvantage dependingon how
trendsandvariancearerelatedin thedata.

In Paper VI we describeca methodfor estimatingtrendsdirectly from the data
also.Ratherthanrestrictingtrendsto beorthogonato theresponsdunction, they
were estimatedonly from voxels which did not correspondo neuronaltissue.
In a concreteexample,six voxels correspondindo sinussagittalis,a large vein
in the mid-sagittalline of the head,were selectedfor estimatingthe structured
noise componentsincluding the cardiacfluctuationeffect. The hypothesishe-
hind this wasthat trendscorrespondingo movementartifacts, signal drifts and
slowly varying physiologicalprocessesvould be detectablan a large vein, and
could hencebe estimatedrom the noisevoxels,andusedwhenanalysingvoxels
correspondingo neuronatissue.

Let X; = (X4, - - ., Xx:) denotethe k-dimensionatime seriesof the k noise
voxelslocatedin alargevein. Theseareassumedo consistof a fluctuationterm
with a commonfrequeng, which is determinedby the cardiacrhythm, andan
individualtrendtermin eachvoxel. The modelfor X; is thus

Xy = g+ acos(vy) + bsin(vy) + &4, & ~ Ni(0,%). (2.1)

Hereyu, € R* representhetrendterms,v, is the phaseattime ¢ of thefluctuation
termanda andb arek-dimensionaVvectorsdetermininghemagnitudeandrelative
phaseof the fluctuationin eachseries. By restrictingb; = 0, v, is the phaseof
X1;. Thetrendsandphaseareassumedo be unobsered,andmodelledaslatent
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processes astatespacdramework,

Mt = H—1 + wfu wf ~ Nk(oao-z[k)a
6o =04 p(6,1 — 6) +wi, w! ~ N(0,02), (2.2)

UVp = V¢ 1+ 515-

Onemay interpretthetermd, asthe aliasedpulserateattime ¢, whichis allowed
to vary arounda long-termaverages.

Sincew; entersnon-linearlyin the obsenation equationthe ordinaryKalman
filter cannotbe used. One may linearizethe obsenation equationby a Taylor
expansion,which would give the generalizedkalmanfilter (Fahrmeirand Tutz,
1994),but sincethetrigonometricfunctionsarehighly non-linear this wasfound
notto work well. Insteadve proposednothe@pproximatve Kalmanfilter, based
on sequentialGaussiarapproximationof the filtering distributions, wherethe
momentf thelatterwerecalculatedoy numericalintegration. This maybeused
to obtain estimatesof the latent processesand to calculateapproximationgo
thelikelihoodfunction andthe residualvariance;the latter wasusedto estimate
parameterby numericalminimization.Wewill returnto theapproximaté<alman
filter in Chapterd.

In the applications the modelwasfoundto yield an acceptablédit to the six
noiseseries,andthe estimatedpulserate correspondeadvell with externalmea-
surements. The estimatedtrendterms i;; j = 1,...,k, aswell assinesand
cosinesof the estimatedoulsephaser; wereincludedasregressorsn a multiple
regressiormodelfor the time seriesin ary voxel. Denotethe latter Y;;, wheres
indexesthevoxel, themodelwasthen,

k 3
Yvit = M + Z Olijﬂjt + Z (%’j COS(le)t) + )\ij Sin(j@t)) + a; O + Eit,
j=1 i=1

where{e;; }; followedan AR(1) model. Here ¢, is the HRF, which wasomitted
in the study sincewe only consideredbaselinedata. We verified the fit of the
modelby studyingseveraltime serieswhich werecontaminatedby high levelsof
structurechoise.Theresidualdrom theseseriesshavedno significantdeviations
from a sequencef independenhormalvariables.We furthermorecomparedhe
modelto modelswith alineartrendtermanda cosinebasisfor thetrends but also
with AR(1) errors. As measuredy a minimum AIC criteria, the modelabove
gavethebestfit in respectiely 92%and88%of thevoxels. Thetwo othermodels
did, however, notaccounfor cardiadluctuation,whichis atleastpartlythereason
for theimprovedfit.

Theadwantageof thismethods thatstructuralnoisecomponentsreestimated
directly from the data,without artificial regularity assumption®n these suchas
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restrictingtrendsto be “sufficiently different” from the haemodynamicesponse.
In the casewherefor instancemotion artifactsare correlatedwith stimulus,the
assumptiorof orthogonalitybetweertrendsandthe responsenay not hold. The
cardiacpulsationsarenotrestrictedo beapproximatelyperiodicasin thefiltering
approachedyut is allowedto vary with the pulserate,andno externalmeasure-
mentsof the pulsearerequired.Oneof the weaknesseis the someavhatarbitrary
choiceof the noisepixels: It is not obvious how mary one shouldchoose,and
how they shouldbe chosen.This maybe comparedvith the problemof choosing
theform andnumberof basisfunctionsin agenerakrendbasis.In theapplication
we have selecteda groupof threevoxelsin thefront of the headandthreein the
back,in orderto capturethedifferenteffectsof movementn differentpartsof the
image. This seemgo work well, but it may be possibleto useanothemumberof
voxels. The voxelswerefurthermoremanuallyselectedo ensurethatthey were
locatedatthevein, it is notaneasytaskto designanautomaticselectiorprocedure
which doesthis.

Gosslet al. (2000)consideranapproactbasedn statespacemodelsaswell. The
modelis of theform

Yit = ai + zitbir + €it, it ~ N(O, Uiz)- (2.3)

The noise componentsare temporally and spatially independent. Here z;; =
z(d;, 0;) i1s a model for the haemodynamiaesponsepbtainedby corvolving
the stimulationfunction with a Poissondensitywith meanf; andlaggedd; time
points. Thetermsa;; andb;; arelatentprocessesvhich representespectiely a
trendandthe magnitudeof the haemodynamicesponseThe modelfor theseare

Ay = 20341 — Qg2 + Gt Gt ~ N(0,02), (2.4)
bit = 2biy—1 — b2 + M, nit ~ N(0,02). (2.5)

Theauthordirst obtainsimpleestimatedor theparametergd;, 6;) by minimizing
the squaredistancebetweeny;; andz,(d;, 0;),t = 1, ..., n, andnext usethe EM
algorithmto estimatethe variances.The Kalmanfilter andsmootherare usedin
the expectationstepof the EM-algorithm,aswell asto produceestimates;; and
varianceestimatess; = of thelatterin thefitted model.

The generalframework is very appealing.The modelfor the trendis flexible
and intuitive, avoiding arbitrary choiceson the form or numberof basisfunc-
tions,andthe commonassumptiorof temporalstationarityof the haemodynamic
responsas relaxed, allowing the researcheto study spatio-temporahctivation
patternsin the data. Ironically, the flexibility is alsothe main dravback of the
method: The authorsnotethemselesthat modelcompleity directly influences
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inferential power, and suggestthat if the temporalnon-stationarityis only ex-
pectedto be slight, then one shoulduse a fixed responsdunction instead. In
facttheir exampleswith realdatasuggesthatthe modeldoesnotimprove thefit,
comparedo a simplemultiple regressiormodelof theform

Yie = pi + ot + iot® + 24bi + i, € ~ N(0,07),

wherez;; is thesameresponsdunctionasabove. In thecasewherea;, = 0 thisis
a parametricsub-modebf the statespacemodelobtainedby restrictinga and

2 , tozero. Thusin this casethestatespacemodelwill alvvaysha/ealargermax-
|m|zedI|keI|hoodvaIue In thegeneralcasewherea;; € R, theregressiormodel
is strictly speakingnot containedn the statespacemodel,but the quadraticrend
is a specialcaseof the generaltrendtermin the statespacemodel. A rigorous
comparisorof thedifferencein maximumlik elihoodof non-parametri@andpara-
metricmodelsis not possible andhencaeit is difficult to determinewhetherthefit
of the statespacemodelis significantlybetter The authorschooseo quantifythe
fit by the R? valuegivenby

2 Zt(yzt yzt)
=1 Zt(yzt )

wherej;,; is the estimatedralueof E(y;;). Whenfitting the modelsto a rangeof
time series the authorsfind thatthe R? value of the statespacemodelis signif-
icantly larger thanthat of the regressiormodel,whencomparingthe valuesby a
pairedi-test.Onthisbasisthey claimthatthe statespacemodelfits betterthanthe
regressiormodel;this seemdo be a very weakargument. Supposefor the sale
of agument,thatwe consideredwo nestedparametrionodels.For a parametric
modelthe R? measurenaybewrittenasR? = 1 — Q%™ whereQ is thelik elihood
ratio for the hypothesisH, : F(Y;;) = u;. Thus R? is anincreasingfunction
of the maximumlik elihoodvalue,anddueto the nestingthe biggestmodelwill
alwayshave the largestR? value. The importantissueis of course whetherthe
R? differencds largerthanwhatcanbe explainedby theaddedamountof param-
eters,which in the parametriccasecould be quantifiedby usingthe asymptotical
x2-distribution of thedifferencein log-likelihoods.

For the statespacemodelthe situationis more complicated sincethe maxi-
mizedlik elihoodfunctionhasa morecomplicatedexpressionandtheasymptotic
theorydoesnotapply. Theprincipleis howeverthesame:lt is notsurprisingthata
morecomplicatednodelyieldsa betterfit in termsof the R? value,andthis alone
doesnot justify the model. Their examplesfurthermoreillustrate, thatthe differ-
encein R? valuesis not greaterfor real data,thanfor syntheticdatagenerated
with the stationaryresponsef the regressionrmodel. It is hencenot evidentthat
the statespacemodelreally improvesthe fit comparedo muchsimplermodels,
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contraryto the claim madeby the authors.Whenconsideringhe computational
burdenof estimatingparameters thestatespacanodelsaswell, asimplermodel
mayvery well befavourable.

Gossletal. considerthe processof studentizedaluesh;, /6s,,, anddiscusghe
possibilitiesof studyingthe spatio-temporatievelopmentof activation through
these for instancein experimentswherethe activation patternmay changewith
attentionalshifts. This is unaguably an interestingfeature,but we think that
one shouldbe careful not to misinterpretthe maps. The estimateb;, shouldbe
interpretedasthe magnitudeat time ¢ of the modelhaemodynamicesponsen
voxeli. It will bedifficult to understandhow b;; relatesto valuesin neighbouring
voxels,if the HRF of the voxelsdiffer; onecannotmake ary directinterpretation
of differencesvithoutconsideringheresponséunctionsalso.A clearexampleof
thisis theproblemof interpretingb;; whenz;; = 0. Wewould preferto investigate
the processesit?)it whichis morereadilyinterpretable.

Purdon and Weissloff (1998) proposeda relatedapproach by modelling the
noiseasa superpositiorof an AR (1) andawhite noiseprocessOnemaythink of
this asa statespacemodel,wherethephysiologicainoiseis modelledasanAR(1)
processandthe randomscannemoiseis superimpose@swhite noise. The au-
thorsdid not considera statespacdramavork, but gave adirectandefficientway
of performingthe linear transformation.~'/2¢, whereX = var(e), througha
whiteningfilter. Onceestimateof the varianceparametersre obtained ik eli-
hoodinferencein the modelmay hencebe performeddirectly. They considered
datawith differentinter-scantimes(TR) andfoundthatthe AR(1) correlationde-
creasedoughlyasexp(—TR/15seq. This was,however, basedon the assump-
tion thatall time seriesin a certainregion of interesthadthe samedistribution,
andthe authorsdid not reportany modelcontrol. Yet their modelis partly veri-
fied by an extensve empiricalstudyby Zarahnet al. (1997),who investigateca
rangeof noisedatasetsThey assumedhatall time seriesn adatasetwereidenti-
cally distributed,andcalculatecanaveragederiodogranior all time series.They
demonstratethata power spectruncorrespondingo thatof the AR(1) pluswhite
noiseprocessitted well to thedata.Interestinglythey alsodemonstratethattime
seriesobtainedfrom a silicone phantomcontainedcorrelatednoise. Hencetem-
poral correlationcannotsolely be attributedto physiologicalprocesseshut also
arisesintrinsically in thescanner

2.3 Modelsfor the random noise

The randomnoiseis basicallywhat is left when haemodynamiacesponseand
structurednoise componentdave beenspecified. Of coursethis may both be
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“genuine” randomphysiologicalnoiseand scannemoise,but alsoresidualvari-
ancedueto animperfectmodel. Probablythe mostpopularmodelis thatof white
Gaussiamoise. Evenif this is not always written explicitly, it is the implicit
modelunderlyingsimplet-testmethodsor correlationrmethodswhich arewidely
used.However, aswe sav in the lastsection,a white noisemodelis not always
a simplistic choice. The validity of the modeldependon how one definesand
modelsstructuredchoisecomponents.

Worsleyand Friston (1995)studiedarefinemenbf thewhite noisemodel,which
isin factbuilt onthelatter, but theinferencein themodelis designedo berobust
to deviationsfrom the white noiseassumption.This wasoriginally proposedoy
Fristonetal. (1994)andFristonetal. (1995),but wasbroughtinto a solid statis-
tical framewvork by Worsley andFriston(1995). Let Y; denotethe time seriesin
voxel i of lengthn. Theideais to consideralinearmodel,

Y= A6, +¢i, &~ Ny(0,%;),

whereA is an x d designmatrix with a modelfor the haemodynamicesponse,
aconstantmeanvaluetermandtrendterms.Herey; is anunspecifieccovariance
matrix. RatherthanestimatingX:; andperforminga usualmaximumlik elihood
analysisthe authorstake the oppositeapproachandsmooththe databy convolv-
ing it with akernel K,

An estimatorfor 6; is now givenby
f; = (AK'KA)'A'K'KY;.

Thisis not asefficientasthe maximumlik elihoodestimatoy but it is anunbiased
estimatorwhich doesnot dependon the unknowvn varianceX;. The fundamental
assumptioris now that K¥; K’ ~ ¢?KK'. Thisis only exactif a white noise
modelis assumedi.e. Y; = o021, , but theideais thatby smoothingthe data,the
inferenceis lesssensitve to deviationsfrom the white noisemodel. Using this
assumptionthe varianceof §; may bedirectly obtained.andan unbiasecestima-
tor s? of o7 may be obtainedfrom the residuals. Using Satterthvaite’s method,
an approximatve distribution s? ~ o?x?(f)/f is obtained wherethe so-called
effective degreesof freedom f dependon the smoothingkernel K. Assuming
furthermorethat s? and ¢; areindependentan approximatet-statisticis derived
for the hypothesighata specificconstrasbf the coordinate®f 6; are0. We refer
to Worsley andFriston(1995)for details.

The adwvantageof the methodi,is its robustnessowardsthe non-specifiecco-
variancestructure . Theassumptiomwhich underliesmary otherapproachesyf an
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identicalcovariancemodelin all voxels,will in generalnot hold, sincethe noise
tendto dependon the propertiesof the underlyingtissue. The framework above
will in generabemorerobustto awide rangeof actualnoisedistributions,which
is clearlyabig advantagevhenanalysinghousandef time seriesn anautomatic
way. Theframewnork canof coursebe extendedby insertinganestimateof ¥, in-
steadof assuming:; = 021, (Zarahnetal., 1997).Thiswill resultin ananalysis
thataccountgartly for the specifiedcovariance but is robustto the varianceof
theestimator

An importantpart of the methodis the choice of the smoothingkernel K.
Fristonet al. (1995) chosethis to resemblehe impulsehaemodynamiceponse
by referenceo theso-calledMatchedFilter Theorem.Thelatteris atheorenfrom
thesignalprocessinditerature which stateghata signalembeddedh white noise
is optimally detectedy corvolving thedatawith akernelshapedik ethesignal. It
is however notobvioushow oneshouldinterpretthisin statisticalterms.Worsley
(2000b)views the methodfrom a spectralpoint of view (asdid alsoFristonetal.
(1994)originally). In thespectradomainit maybeseerasweightedeastsquares
with weightsproportionalto the Fourier coeficientsof the smoothingkernel. By
choosingthe kernelto equaltheimpulseresponsefrequencie®f thetime series
which are dampenedy convolution with the responseand hencecontainlittle
informationon this, arethusgivensmallweights.

Bullmore et al. (1996) consideran AR(1) modelfor the noiseand a periodic
haemodynamicesponsdunctionmodelledby thefirst threeFouriercomponents
of the stimulationfrequeng,

3

Yie = i + Bit + Z (ik sin(kwt) + 6, cos(kwt)) + 44,
k=1

wherethe noiseprocess{e;; }; is AR(1). Herew = 27 /T is thefrequeng of the
stimulationwith an on/off periodof length7". The authorsverifiedthe modelby
diagnostigplotsof theauto-correlatiomndthenormalityof theresidualshowever
mainly usinga singletime seriesobtainedby averagingl56 voxel time series.In
orderto detectactivationthey considerthefundamentapower quotient,

22 $2
Vi1 + 031
FPQ = +~—*%
Q=57
wheres? is anestimateof the (approximategommonvarianceof 4;; andé;;. This
is closelyrelatedto usingthe periodogramat frequeny w astest-statisticassug-
gestedoy Leeetal. (1995)andBandettinietal. (1993),but the FPQstatistichere
is basedon anexplicit parametrianodelfor the signalandthe noise. Underthe
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null hypothesisy; = ¢; = 0, the statistichasanapproximatey?(2) /2 distribution,
which maybederivedusingthe asymptoticnormality of estimatorsWhenstudy-
ing baselinedata, however, the authorsfound that the empirical distribution of
the statistichada differentlocationandvariancethanthe theoreticadistribution,
hencethe approximationwasnot valid. This may eitherindicatethatthe model
doesnot hold, contraryto the model control performedby the authors,or that
thereis notenoughobsenationsto usethe asymptotictheory

Bullmore et al. refrainedfrom studyingthis issuefurther, but useda ran-
domizationtestinstead. They obtainedthe null-distribution of the statistic by
randomlypermutingthe order of the obsenationsin eachobsened time series,
andcalculatingthe FPQ statisticfor eachrandomizedime series.By reference
to the permutationdistribution, the significanceof an obsened FPQ value was
calculated. Careshouldbe taken, wheninterpretingthis distribution: The null-
hypothesisno matterwhat test statisticis used,is that all permutationsof the
data,have the samedistribution. In the presenimodelthis correspondso the si-
multaneoushypothesighat: 3; = 0, v = di = 0for k = 1,2,3 andp; = 0,
wherep; is the AR(1) correlation. The alternatve hypothesidgs that just one of
theseconditionsdoesnot hold. Henceary specificinferenceaboutthe actva-
tion mustbe basedon non-statisticatonsiderationsthe permutationtestcanbe
usedonly to rejectthenull-hypothesisBullmoreetal., however, calculatecritical
valuesfor the FPQ statisticfrom the permutationsand usetheseto make infer-
enceaboutthe activation; this doesnot seemto be a valid interpretationof the
permutatiordistribution.

Locascioet al. (1997)studya morecomprehensie noisemodelby fitting ARMA
modelsindividually to eachvoxel time series. For a given voxel, the modelfor
thetime seriesy}; is givenby,

k
Yie = s + Z ai;Cjt + Bt + Biot® + €it,

=1

wherethenoiseprocesge;, }; followsanARMA (p;, ¢;) model. ThetermsC, are
indicators(or contrasts)f the statesof possiblyk differentstimulationtypes,in
the simlestcasewith only onetaskC}; is just the stimulationfunction. The au-
thorsestimateheorderindividually in eachvoxel, by startingwith anARMA(3,3)
modelandthen successiely remove non-significantcorrelationterms. The pa-
rametersare estimatedoy conditionalleastsquaresgconditionalon the assumed
valuesof Y, prior to theinitial time point, andt-statisticsand P-valuesfor hy-
pothesef the form a;; = 0 is calculated. Clearly this modelis more flexible
thanan AR(1) modelfor all voxels,anda betterfit to thetime seriess inevitable.
Furthermoregheauthorsverify thefit of themodelin anautomatiovay, by requir
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ing thatthe residualspassa Box-Ljung testfor white noisein eachtime series.
An automaticandroutinely applicablemodelcontrollik e this is a rarefinding in
thefMRI literature. The authorshowever note, thatabout5% of the voxelsdoes
not passthis testandis discardedijt doesnot seemobviousthenhow oneshould
modelthese. The authorsusea simplistic binary modelfor the HRF, but their
methodis of coursenotrestrictedo this choice.
Whenmakingglobalinferencein theimageof P-values,Locascioetal. pro-
poseto solve the multiple comparisorproblemby a permutationtestin the fol-
lowing senseA randompermutatiorof thetime-pointsis appliedsimultaneously
to the white-noiseresidualsof all voxels. Using the samecontrastfunction Cj;
asabove, a t-testis calculatedfor the hypothesighata;; = 0 in the permuted
residuals,a hypothesiswhich is true by construction. This producesan image
of P-values,andby performingmultiple randompermutationsa distribution of
theseimagesis obtained. The fundamentabssumptioris now: Underthe null-
hypothesisof no activationin ary voxel, the multivariatedistribution of the P-
valuesis thesamefor theoriginal dataandfor all permutation®f thewhite-noise
residuals.Theauthorsmake this assumptiorandusethe permutatiordistribution
to make inferencein the original P-valueimage. The multiple comparisorprob-
lem is handledby consideringthe distribution of the minimal P-value (seethe
paperfor details). It does,however, not seemobviousthatthe assumptiorabove
is fulfilled. Firstly, the spatialcorrelationis differentin the residualtime series
comparedo the original ones,becausalifferentmodelsare appliedin different
voxels. The authorsstressthat their method,unlike the Bonferronicorrection,
considersspatialcorrelation but it is the correlationof theresidualsnottheorig-
inal data,which is accountedor. Secondlythe original P-valuesandthe per
mutationvaluesarecalculatedunderdifferentmodelsandestimationprocedures.
Evenif the P-valueshavethesameheoreticauniformdistributionunderthenull-
hypothesispnecouldfearthattheir sensitvity to deviationsfrom the true model
may be differentin differentmodels. This effect may be especiallyproblematic
whenthe multivariatedistribution of awholeimageof P-valuesis consideredin
factwe knowthatthewhite-noisemodelis wrong,sincetheresidualswill allways
be slightly correlated hencethereis strictly speakingno theoreticalfoundation
for assumingthat the P-valueshave identical distributions. Henceratherthan
beingassumption-freeas mostpermutationrmethods their methodrelieson as-
sumptionsvhichareknown notto holdin general Thesensitvity of theresultsto
departuresrom the assumptionss of coursea differentandmoredifficult story.

Lange and Zeger (1997) consideredan even more generalmodel, by assuming
only thatthe noiseprocess|e, }; is stationaryand Gaussian(For clarity we omit
the voxel index 7 for a moment.) Thenit hasa spectralrepresentatioffCox and
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Miller, 1965),

£ z/ e S(dw),
where{S(w)} is a complex Gaussiamprocesswith orthogonalincrements.The
varianceof S is givenby the spectraldensityg(w),

w2

var(S(wz) — S(wy)) :/ g(w)dw, w < ws.
Supposeve obserecy, ..., e, wheren is odd. By approximatinghe above in-
tegral with a Riemann-Stieltiesumwith n terms,we mayinverttherelationand
obtainincrementf the S processy adiscreteFouriertransform(DFT) of &4,

—

n—
—twpt

Ry = d.(wg) = e €t

S|=

t

wherewy, = 27k/n, k € {—[n/2],...,[n/2]} andRy = S(wy + 7/n) — S(wk —
7/n). Herewe adoptthenotationof LangeandZeger(1997)whered; istheDFT
of afunction f. When{s,} is realthereis complex symmetrysuchthat R, = R 4,
whencethereis abijectionbetweere,, ..., &, andRy, ..., Ry, /5. Thelatterwill
bean(approximatelyjndependensequencef Gaussiarvariableswith different
variancesleterminedy the spectradensity

After removal of a lineartrend, the authorsconsidera cornvolution model of
theform

Il
=)

Yie = BilA(; 0;) x T(t) + €4,

where{e;; }; is astationaryGaussiarprocessHere \(t; 6;) is the Gammadensity
with parameterg; € R?, andr, is the stimulationfunction. Whenperforminga
DFT we approximatelyhave

dyl. (wk) = ﬂid,\(wk; gz)dﬂ-(wk) + dsi (wk), k= 0, PP [’I’L/Q]

Theauthorgrestrictthemselesto periodicparadigmsawith, say m on/off periods.
Thend,(wx) = 0 unlessk is amultiple of m, andhencethe obsenationsof the
form dy; (wim) for & € N aresufiicientfor (3;,6;). In the exampleof the paper
theon andoff periodshave equallength,whenced, (wy) is only non-zerowhenk
is anodd multiple of m.

Sincethe Fourier transformsd, andd, are known, the problemis reduced
to a non-linearregressionmodel, wherethe noisetermsare comple< Gaussian
variableswith unequalarianceslin orderto estimate3;, 6;), theauthorsassume
that the noisevarianceshave a homogeneouspatialand temporalstructure. In
their application,the varianceof d.,(wy) is assumedo be homogeneousver a
regionof 11 x 11 voxels,andoverthe5 closestfrequencieswy, |k — k| < 2.
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Oncethe parameter$s;, 6;) areestimatedthe spatialcorrelationis modelled
by fitting isotropic exponentialor Gaussiarcorrelationfunctionsto the normal-
ized residualsat eachfrequeng. This in fact correspondg¢o a non-separable
spatio-temporatovariancefunction, where noise componentf differenttem-
poral frequencieshave different spatial correlation. The varianceestimatesare
usedto calculatethe covarianceof §-estimatesn differentvoxels,whichin turn
is usedto calculatea y2-teststatisticfor specifichypothesesf theform gz = 0,
whereR is asmallregion of voxels.

Theapproachs very elegantin the context of periodicstimulationparadigms:
The transformto the Fourier domainreducesthe convolution term to a simple
productand the correlatednoise processto independenbbsenations. A non-
parametrianodelfor the noisereally makessenseatleastasa benchmarkmodel,
given the complex and non-homogeneousatureof the time series. However,
asmentionedabove, the authorsassumea specifichomogeneitystructurefor the
variance,which is ad hoc anddifficult to interpretin termsof a specificmodel
for the noiseterms. Thusthe general hon-parametriédramenork assumeadvhen
formulating the modelis somavhat restrictedin the estimationprocedure and
the assumptiorof spatialhomogeneityof the variancemay in factbe violatedin
practice.

Anotherproblemwith the approachwasraisedby the discussantsf the pa-
per: Almost all information on the activation will be containedin the Fourier
coeficient correspondingo the fundamentafrequeng, dy,(wy,). In essencehe
authorsfit threemean-walue parametersising this single complec variable,and
concernsregardingidentifiability are natural. The authorsreporttroubleswith
convergenceof theirestimatioralgorithm,whichmayalsobe causedy thisover
parametrization.

The modelmay be appliedto non-periodicstimulationparadigmsbut the ex-
tensionis not straightforvard, sincethe frequenciesv, thatdoesnot containary
signalareusedpresentlyto estimatehenoisespectraln thecaseof generaktim-
ulation functionit might be necessaryo assumea specificcovariancemodel,in
which casethereis no particularreasorto work in the Fourierdomain.

Mar chini and Ripley (2000) considerthe sameapproachas Langeand Zeger,
but restrictthemselesto simplesinusoidakesponsdunctions.They henceavoid
the problemswith overfitting describedabove. They proposean alternatve way
of estimatingthe spectraldensity namelyby fitting a smoothingsplineto thethe
log-periodogram Furthermorethey only smooththe periodogranspatially over
a3 x 3 grid. They illustratethatthis works well on real dataandbaselinedata,
but do not make arny formal comparisonsvith the relatedapproachof Langeand
Zeger.
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2.4 A Bayesianapproach

In this last sectionwe will review a Bayesianapproachwherethe modelsfor
thethreedifferentcomponent®f the time seriesareintegratedto an extent, that
doesnot allow usto cateyorizethemasabove. Bayesianapproachegarerarein
fMRI analysis presumablybecausef the typically larger computationaburden
of thesemethods.Franket al. (1998) studieddifferentBayesianmodels,which
were, however, mainly adaptationsof well known modelsfrom the likelihood
framework to the Bayesiarparadigm.

Genovese(2000) took a fundamentallynev approachby consideringa model
givenby
Yie = (1 + a(74,65)) + dig +€i1, €3¢ ~ N (0, Uz?),

whereaq; is the activationprofile, d;; is atrendterm,andy; is the baselinemean.
The parametery; = (vi1,---,Yic) IS the magnitudeof the activationin eachof
C differentstimulationconditionsand; is an 8-dimensionaparametedescri-
bing the shapeof the haemodynamiagesponse(t; 6;) to a single stimulation
epoch. The latter is constructedrom cubic splines, by a decompositioninto
a delay a smoothlyincreasingand decreasingpart and a post-stimulusunder
shoot. Response$rom closely spacedepochsare combinedadditively or pos-
sibly sub-additvely; in the additve casethe modelfor the activation profile is
at(7,8) = Y, 76, b(t — ti; ), wheret, is the startingtime andc;, is the type of
the k’th stimulationperiod. Thedrift termd;; is modelledby cubicsplines.

Genwesetakesa Bayesiampproactandformulatesprior distributionsfor all
parameters.The ~;.'s are a priori either O or positive, in the latter casev;. is
exponentialdistributedwith mean2%. Thedrift term,interpretedasa continuous
functiond;(t), hasa Sobole prior

) oo {5 (e [ asrais [ aperar) )

wherep,,. determineghe relative penalizationof magnitudeand curvature. The
authorchoose,,. = 0.01. Thenumberandpositionof knotsfor the cubicspline
basisarefixed whenposteriormaximizationis performed put is allowedto vary
whensamplingfrom the posterioroy MCMC. Thecoordinate®f §; haveindepen-
dentGammapriors, which are selectedby experiencefrom earlierexperiments.
All voxelsareassumedo beindependenbothin theprior andin thelik elihood.
The inferencein the modelis eitherbasedon posteriormaximizationor on
samplingby MCMC. The biggestproblemin this context seemsto be the fact
that the modelis composeddf submodelsof different dimension,obtainedby
letting differentsubsetof the~;.’s be 0, or by varyingthe numberof knotsused
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for the spline. This is either handledby reversiblejump (Green,1995) or by
combiningdifferentsubmodeldy weightingthemwith their respectre posterior
probabilities(i.e. their Bayesfactors),obtainedoy Laplaceapproximations.

To illustrate the adwantageof a Bayesianframework, Genweseaddresses
more complicatechypothesighanusuallyasked. An exampleis the monotonic-
ity hypothesisy,;r» < vir, < vin < %vimr, WhereT;, T, andT; aretasksof
increasingdifficulty, andT'r is a control task. The posteriorprobability of this
eventis calculatedn eachvoxel anddisplayedasa map.We maynote,thatinfer-
enceof this type may alsobe performedin a parametridramewvork by mapping
ateststatisticfor the hypothesisn all voxels,aswasalsopointedout by Worsley
(2000a).1t is not clearhow to correctfor the multiple comparisorproblemin the
Bayesianframewvork: The largerthe searchregion, the greaters the chancethat
an estimateof the posteriorprobability will be large someavhere,and hencethe
thresholdshouldsomehav be dependenbn the searchregion. In a Bayesiarset-
ting also,this problemis addresseth Paperl andll by usingglobalinformation
from all voxelsto calculateposteriomprobabilities. Thereis no explicit or implicit
spatialstructurein Genweses modelto be usedin this contet; all voxels are
independent.

The distribution of the sizeof activatedclustersis alsostudiedby simulation
and comparedunder different conditions. This is a very complicatedissuein
most parametricmodels,but is very easyin the Bayesianframework, although
time-consumingsimulationsare needed. One would, however, expectthat the
distribution of a spatialparametetik e sizeof a cluster is critically dependenbn
the (lack of) spatialstructurein the model,andthe resultsshouldbe interpreted
with thisin mind.

Theincorporationof prior informationis very relevantin fMRI dataanalysis,
andGenoeseillustrateswhy, by choosinggenuinepriorswhich arebasecn pre-
vious studiesaswell asgenerakexperiencewith thedata.fMRI dataaredifferent
from mary othertypesof datain thesensehatthey maybeacquiredn enormous
guantitiesextremely quickly andthe importantfeaturesof the dataarecommon
to almostall experimentsHencethereis prior informationavailableon bothtem-
poral and spatialaspectf the data,which shouldof coursebe usedwheneer
possible.Genweseincludesprior informationon thetemporalstructure but spa-
tial priors,which canbeincludedin themodelsdiscussedh Section3.2,mayturn
outto beevenmorefruitful.

As a final point, we may note that there are somesimilarities betweenthe
modelstudiedin Paperlll and Genoreses model. Both usesGamma-priorgor
the activation magnitude Genwesehowever restrictshimselfto an exponential
prior with mean2%. Thelatterhasa rathersmallstandardieviation, andis prob-
ably chosenfor computationatonveniencesinceit is conjugatewith the normal
distribution of the errorterms,in the sensehatthe posteriorof ;. will beatrun-
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catednormal.It seemselevantto studygeneralGammapriors,thatexpresdarger
uncertaintyaboutthe activationlevel. Theposteriordistribution of ~;. would then
beof the Gamma-Normalorm, which maybe simulatedoy procedureslescribed
in PaperlV.

Notice that unlike mary other models, Genwesescalesthe activation asa
fractionof the baselindevel. It is commonto interpretactivationlevelslik e this,
both becausdhereis someevidencethat variability tendto scalewith intensity
level andbecauséhe absolutentensityvaluesof the MR scanneidoesnot have
ary physicalinterpretation. An alternatve is to assumean additive modelbut for
thelog-transformediata,whichis theapproachn for instancePaperl.

3 Spatial modelling of fMRI data

In this chapterwe will focuson the spatialanalysiswhich ensuesfteranimage
(or volume) of voxel-wiseactiation estimatediave beenobtainedby atemporal
model,asdescribedn the previous chapter In the brainmappingliterature,this
is known asa statisticalparametricmap(SPM).Unlessotherwisestated we will
usethenotationX = {X;} for the SPM,to distinguishit from theoriginal spatio-
temporaldata{Y;; }. Wewill, however, follow thenotationof theenclosedgapers,
whichis unfortunatelynot entirely consistentvith this rule.

Often X; is scaledto have a standardnormal or a ¢-distribution underthe
null-hypothesisof no activation. As discussedn the introductionit is therefore
naturalto view theanalysisof X from ahypothesigestingpoint of view. Thefirst
sectiondescribegshe randomfield theory which is a very successfubpproach
in this contet. In the secondsectionwe turn to explicit spatialmodelsfor the
distribution of thespatialactivationpatternwherethemainfocusis onthemodels
presentedn Paperd, 1l andlll.

3.1 Gaussianrandom field theory

This sectioncontainsa brief introductionto the randomfield theoryandits appli-
cationin brainimaging. Ratherthanto give a completeaccounwf thetheory the
intentionis to discussadvantagesand disadwantagesin orderto provide a com-
parisonwith the explicit spatialmodelsto be presentedater. Thereare several
overview paperswhich give a more completeintroductionto the theory seefor
instanceAdler (1998)for areview, Worsley (1996)andPeterssoret al. (1999b)
for non-technicabverviews, Worsley et al. (1996)and CaoandWorsley (1999)
for summariesf the differentformulasinvolved andFristonet al. (1996a)for a
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discussiorof theinterpretatiorof theinference.

3.1.1 Theoretical background

Perhapghe bestway to understandhe philosophyof the randomfield approach
from a statisticalmodelling point of view, is to considerthe setupof Siegmund
andWorsley (1995)wherearandomfield { Z(s), s € C C R”} is considered,

Z(s) = &oy " f(o (s = s0)) + W (s). (3.1)

Here W is a randomfield of white Gaussiamoise,and f(-) is a known signal
with unknovn width oy € [o1, 05], positions, € C andmagnitude¢ > 0. For
simplicity we will adoptthecommonassumptiorthat f(-) is anisotropicGaussian

function,
f(s) = 7P exp(—|Is]*/2),

which is normalizedsuchthat [ f(s)?ds = 1. Let X (s, o) be Z(s) corvolved
with thesignal f,

X(s,0) =0 P2 / f(e™Y(h — s))dZ(h). (3.2)

Thiscorvolutionwill partlybeperformedprior to theanalysispy thepointspread
function of the scannersothe obsered datamay be consideredas{ X (s, o1)}s,

for o; > 0. We mayobtain{X (s, o)}, for o > o; by additionalsmoothing.We

wishto testthehypothesishatnosignalis presentn { X (s, 01)}s,1.e. Hy : £ = 0.

Theauthorsshav thatthe maximumlik elihoodestimateof (s, oy) is givenby

(80,00) = Argmax X(s,o0)
s€C,o€lo1,03]

andthaté = X(&,8,). Furthermore—2log@ = X (3o, 0)% whereQ is the
likelihoodratio for the hypothesi§ = 0. This meanghatthe maximumvalueof
X overthephysicalspaceC andthescalespacgo, 05| shouldbeusedto testfor
the presencef thesignal.

Mostofteno, is assumedo befixedandknown, by prior knowledgeof typical
signal widths. For simplicity, we will make this assumptionn the following.
In this casethe likelihood ratio test for the presenceof the signalis given by
X (80, 00), Wheres, = Arg max,. X (s,00). Theoptimaltestfor £ = 0 is thus
obtainedby smoothingthe imagewith the signalitself, and then obtainingthe
maximumvalue over C. This illustrateswhat is known as the MatchedFilter
Theorenmfrom thesignalprocessinditerature which saysthatto optimally detect
a signalembeddedn an imageof white noise,one shouldcorvolve the image
with the signalitself.
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DenoteX (s, 09) by X (s). In orderto testwhethera signal f(-) is presenior
not, onemustthenobtainthedistribution of max, X (s) underthenull-hypothesis
that X (s) hasmeanzero. Exactresultson the distribution of the maximumof
arandomfield of this type is not available, but an approximationwas given by
Adler (1981),which haslater beenrefinedby Worsley (1995a,b)and Siegmund
andWorsley (1995),andextendedo non-Gaussiarandonfields (Worsley, 1994,
1998). The approximations basedon the exactexpressiorfor the meanvalueof
the Euler charactisticof an excursionset, basedon the following intuition: For
athresholdz, definethe excursionsetby A, = {s € C| X (s) > z}, andlet
x(A,) bethe Eulercharacteristiof A,. Basicallythe Euler characteristicounts
the numberof connectedegionsin the set A, minusthe numberof holesand
plus the numberof hollows in these.For high thresholdsthe holesand hollows
tendto disappegrandtherewill bejustoneconnectedegionif the maximumof
thefield is higherthanz andnoneif the maximumis belon z. Hencethe Euler
characteristiavill approximatethe indicatorfor the maximumof the field being
above z,

X(A,) ~ 1(m5axX(s) > 2),

which leadsto the approximationP (max, X (s) > z) ~ E(x(A,)). Underregu-
larity conditionson X, agenerakexpressiorfor this meanvalueis givenby

D

E(x(A.) = mi(C)pil2),

1=0

where u;(C) is proportionalto the i-dimensionalMinkowski functional of C,
which is relatedto the geometryof C, and p;(z) is the so-calledEuler charac-
teristicintensity whichis givenby thedistribution of X. For a Gaussiamrandom
field in threedimensionsthe dominatingthird termin the sumis givenby

13(C)ps(2) = [CIN2(2m) (2% — 1)e™ /2,

where )\ is a measureof the smoothnessf the field, namelythe varianceof the
partial derivatives. This expressionwasusedby Worsley et al. (1992)asan ap-
proximationto P(max, X (s) > z).

3.1.2 Estimation of the signal

Giventhe approximatesxpressionfor the tail-distribution of the likelihoodratio
statistic,we may testthe hypothesis< = 0. Thisis rejectedif the maximumof
the field exceedsa giventhresholdz,, determinedoy the level a of thetest. In
this case the signalhasbeendetectedandthe inferentialproblemis changedo
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characterizingor estimatingthe shapeof the signal. It is in this step,that the
largestweaknes®f therandomfield theoryis found.

If the model (3.1) wasreally true, the maximumlik elihood estimateof the
signalwould be given by the estimates¢, 3, o) andthe known function f(-),
andwe would be done. In practice,however, the field may have morethanone
signal and they are not necessarilyshapedike Gaussiarfunctions. One does
thusnot really believe the model(3.1), but useit merelyasa stepin a heuristic
argument.Insteadhesignalis estimatedvithoutreferenceo aspecificmodel,for
instanceby theentireexcursionsetA, . Therationalebehindthis estimatds that
ary voxel in the excursionsethasa significantdegreeof activation,asmeasured
by the thresholdz,, andis henceregardedas activated. Basically the imageis
thresholdedo detect'significanttops”.

The problemis of course,that the estimatedsignal doesnot even remotely
reflectthe original model(3.1). Firstly the theoreticalsignalrisesfrom zeroand
takes all valuesfrom zeroto fao_D/Qf(O), while the estimatedsignal will only
have valueslargerthanz,. Thetraditionaldiscussioraboutthe significancdevel
andthe philosophybehindthe Neyman-Pearsoapproacho statisticalinference
is extremely relevantin this situation: The experimentermay slide the signifi-
cancelevel o up anddown by pulling a bar on the computerscreen by which
theexcursionsetsdecreaseandincreasesmoothly andeventuallythe activation
peaksmay be followed all the way to zero. A problematicquestionis why the
magicnumbera = 5%, say is chosenwhenclearly the activation patternhas
morefacetsthanwhatis revealedby the significantexcursionsetat this level.

Anotherproblemis thatthesmoothingappliedto theimageo, is optimalin the
senseof maximizingtheteststatisticfor activation,but notin termsof producing
anexcursionset,which reflectsthe true signal. On the contraryif thetrue signal
haswidth oy, thedetectedaignalin thefield X (s, o) will have width /24, andit
will hencebewiderthanthetrue signal.In practicethis meanghatthe estimated
activationpatternswill betoo smoothandactivationmaybe presentn unrealistic
areasln otherwords,the optimal smoothings relatedto the detectiorthe signal,
notto theestimation.

The issuesraisedabove are someof the “obvious pitfalls of answeringwhat
is really anestimationquestionby a hypothesigest” (Worsley, 1997).Procedures
which areoptimalin hypothesigestingneednot be optimalin anestimationpro-
cedureandinferentialchoicesvhichareacceptedvhentestingahypothesisinay
be subjectve andad hocin anestimationframework.



32 3. SRATIAL MODELLING OF FMRI DATA

3.1.3 Alter native test-statistics

As mentionedaborve, the signalmay have characteristicsvhich the excursionset
A,, doesnot corvey. To reveal these,alternatve test-statisticave beenpro-
posedandtheirapproximatedistribution obtainedor arandomfield of type(3.2)
underthe null-hypothesiof no signal. Onestatisticis the maximalsizeof a con-
nectedegion, or clusterin theexcursionsetA, (Fristonetal., 1994;Xiong etal.,
1995). Thethresholdz is chosersmallerthanthe significantthresholdz,, above,
andanentireclusteris declaredsignficantf its sizeis largerthanwhatis expected
by chance.This statisticis not derived asa lik elihoodratio statisticin a specific
modelfor the signal, but it is more powerful thanthe maximumheight, for dis-
tributednon-focalsignals(Fristonetal., 1994;Xiong etal., 1995).An alternatve
is to combinethetwo tests by declaringa peaksignificantusingboththesizeand
the height(Polineetal., 1997). Fristonet al. (1996a)takesthe inferencea step
furtherandperformsa setlevel inference wherea completesetof clustersis de-
claredsignificantbasedon their numberandsize. Individual clustersmay hence
beinsignificant,but the entiresetof clusterss significant.

Theestimatesbtainedn thisway suffer from thesamdimitationsastheones
discussedibove: Characteristideaturesof the estimatesare determinedby the
significancdevel of a hypothesigest,ratherthanfrom a modelfor the activation
pattern. For the clustersizetest,the activation level mustalwaysbe higherthan
thethresholdusedto definethe clusterswhichis commonlychosenn anadhoc
way, andthe estimatectlusterswill alwaysbelargerthanthecritical size.

3.1.4 Assumptionsunderlying the random field theory

Thedistributionalresultsrely ontheassumptiornihattheobsereddiscreteandom
field { X;} is a sufficiently good approximatiorto the continuous,L?-differenti-

ablefield X (s, o) in (3.2). The critical assumptionsirethati) thefield mustbe

stationaryand Gaussianii) the discretizatiormustbe sufficiently fine compared
to the width of the auto-correlation. Furthermorethe distributional resultsare

asymptoticalwhicharegoodapproximation®nly for high limits of thethreshold
z, andthe expressionsdependon the smoothnes®f the field, which must be

estimated.

The Gaussiardistribution is crucial, sincethe extremetail is usedto deter
minethethreshold.Thereis hencea considerablalifferencebetweera Gaussian
distribution and a ¢-distribution with 20 degreesof freedom,for instance. The
assumptiorthat the field is smoothcomparedo the discretizationis also quite
restrictve, andis problematicn fMRI data,wherethe voxelsarenot very corre-
lated. Thetypical solutionto this problemis to smooththe dataspatiallywith a
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Gaussiarkernel. This correspondso transformingthe raw dataX (s, o) to the
smoothedield X (s, 09). As mentionedearlierthis transformationandthusthe
choiceof the smoothnesparameter,, is basedon knowledgeof typical signal
widths, but often the concernthat datamustbe smoothenoughto comply with
thetheoreticalframenork influenceghe choiceof smoothingalso. Regardingthe
latter aspectijt is of coursepreferableto adaptthe theoryto the data,ratherthan
viceversa.

We focuson the Gaussiarrandomfield framework here,but shouldnotethat
arangeof alternatve methodshave beenproposedor assessinghe distribution
of the test-statisticswhenthe assumptionsre not fulfiled. Thesearebasedon
permutationtests(Holmeset al., 1996; Bullmore et al., 1999) or Monte Carlo
simulationgRolandetal., 1993;PolineandMazoyer, 1993,1994;Formanetal.,
1995;Ledbeg etal., 1998).

3.1.5 Smoothingasnon-parametric estimation

As mentionedabove, the spatialsmoothingof the datais partly madein orderto
obtainthe optimal teststatisticfor a signalandpartly to ensurethatthe discrete
datais agoodapproximatiorto acontinuougandontield. A third way of viewing
smoothings asanon-parametriestimatiorproceduresincethesmoothedmage
may be interpretedas a kernelestimateof the true activation surface (assuming
for the momentthatthe kernelis scaledto integrateto 1). An overview of kernel
estimationfor longitudinaldatais givenby Miller (1988).

Non-parametriaegressionmethodsare valuabledata-eploratorytools, and
they are superiorto parametricmethodsif thereis a lack of knowledgeon the
function of interestto proposea realisticparametrianodel. Evenif thisis partly
the casefor fMRI data, due to the compleity of the activation signal, we do
have someknowledgeof the physiologicalandneuronalprocessesyhich maybe
includedqualitatively in a parametrianodel. Also thereis often substantiaprior
knowledgeon thelocationof the activation,basedon high-resolutioranatomical
scanswhich shouldalsobeusedin amodel.

As is well-known the bandwidthof the kernelgovernsthe trade-of between
biasandvarianceof the estimateithe wider the kernel,the morebiasedandless
variablewill the activation surfacebe. The biasis proportionalto the second
derivative of the true surface,andwill hencebe high nearpeaks,which arethe
mostinterestingfeaturesof the fMRI signal. Choosingthe correctbandwidthis
thereforea difficult andimportantissue which hasrecevedmuchattentionin the
kernelestimationliterature. In fMRI, however, the degreeof smoothingis often

1An alternatie is to reducevoxel size by interpolationto a finer grid. The dimensionalityof
thedatadoes however, increasalrasticallywith this approach.
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selectedy asubjectve criteria,andit seemghatnoneof thetraditionalmethods,
suchascross-alidation,have beenapplied.

3.1.6 Why is the random field approachsopopular?

As discussedbore, thereare problemswith the randomfield theorywhenused
for estimatiorof theactivationpattern.Yettherandonfield approachs extremely
popularin the brain imaging community and it hasdevelopedinto the golden
standardby which to reportonesresult. The naturalquestiongiventhe problems
mentionedabove, is why thisis so.

The field of humanbrain mappingis still youngandit is evolving rapidly.
The first fMRI experimentswere reportedlessthan 10 yearsago andthe PET
experimentgredatethesewith only a few years. Therehasbeena greatdeal of
pioneerer&nthusiasnin thefield, dueto thepotentialof non-invasively obtaining
movies of the working humanbrain, and the analysistechniqueshave evolved
veryrapidly. Theenormousamountof informationin brainimagingdatamay be
pre-processedinalysedanddisplayedin a multitude of ways,which may make
it impossibleto obtaina transparenview of the informationpresentedlin order
to have a solid scientificfootholdin this evolving researclervironment,it is very
importantto force researcherso quantify the significanceof their resultsin an
objectveway, andtherandonfield theoryprovidesaframeavork for doingexactly
this.

Thereis a strongtradition in the medicalworld to reportsignificanceof ob-
tainedresultsin termsof p-values.Thesearefamiliar quantitiesandresearchers
know they areon safeground,whena p-value canbe attachedo their findings.
This is what the randomfield theory provides. Evenif a p-value providesonly
limited information,the conceptof varianceof an estimatorof the activationvol-
umeis muchmoresubtle,alsofor statisticians.It is a bit tricky to interpretand
visualizethe varianceof a vectorof dimension65536, say

Therandomfield approachwasoriginally usedfor PET dataandit gainedits
popularity here. PET dataare quite differentfrom fMRI data,for examplebe-
causethe spatialresolutionis muchlower in PET, sincethe imagesare smooth
at acquisition. Furthermordt is often necessaryo combinedatafrom different
subjectsin PET studiesto obtain sufficient statisticalpower, which requiresad-
ditional smoothing,in orderto transformdatato a commonbrain atlas. Hence
boththe signalandthe noisetendto be muchsmoothelin PET, thanin MR data.
This bothmeanghatthe assumptiorof smoothnessf thefield is oftennaturally
satisfiedor PET data,andthatdetailedestimationof the spatialactivationpattern
is not relevant. On the otherhandMR datahasan excellentspatialresolutionat
acquisitionwhichis oftensacrificedn orderto usethe randomfield theory

Finally animportantpracticalissueis thecomputationaburdenof ananalysis
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techniqueand the degreeto which it can be automated.Many, thoughnot all,
of the spatialmodelsto be presentedater, requirestime consumingalgorithms
anda lot of userinteraction,which makesthemunsuitablefor routineanalyses.
The simpleformulasof the randomfield theoryarehardto competewith in this
respect.

3.2 Parametric spatial models

We will now turnto areview of differentspatialmodelsthathave beenproposed
for the activationpatternin fMRI data. They will bedividedinto threemain cat-
egories,basedon the threedifferenttypesof spatialmodelling,thatthe enclosed
papersaddress.

3.2.1 Local models

By theterm*“local model” we heremeana model,whichis specifiedhroughcon-
ditional or mamginal distributions for small regions of the scan. The inferential
aim in this approachis more modestthanthat underlyingthe high-level models
describedn the next section: One doesnot attemptto modelthe simultaneous
distribution of the entireactivation surface,but merelywishesto includethe as-
sumptionsof cohereng andsmoothnesm the estimateof the activation pattern.

In Paper |l we proposeamaiginal mixturemodelfor thespatialpatternof activa-
tion. Thedistribution of the patternis specifiedonasmallregion of voxels,saya 3
x 3 x 3 blockaroundthevoxel of interestandtheneighbourarethenusedwhen
calculatingthe posteriordistribution of the centrevoxel beingactivated. Unlike
relatedlocal smoothingor filtering techniquesthis approachs basedon a para-
metricmodelfor thedata,which providesabettertheoreticalnderstandingf the
method,andallows usto quantifyresultsin probabilisticterms.

Wewill assumehattheactivationis describedy anunobseredbinaryimage
{4;}icv, WwhereA; = 1 if voxeli is actvatedand A; = 0 if not. The mamginal
distribution of the X;’sis a mixture of two components,

f@)=pflz|A=1)+(1-p)f(z[A=0), (3.3)

whereA is theindicatorvariablefor activationin the particularvoxel andp is the
global probability that a voxel is active. In a typical analysisof an SPM, only
the null-distribution f(xz | A = 0) is explicitly given; this is the distribution of
thetest-statistiainderthe null-hypothesiof no activationin the particularvoxel.
Herewe alsorequirethatthealternatve distribution f(z | A = 1) canbespecified.
The latter may be a non-centralversionof the null distribution or it may have
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an entirely differentform, this will dependon the test-statisticusedand on the
distribution of activatedvoxels.

Let C; = {i%4!,...,i*} denotethe neighbourhoodiroundvoxel i, suchthat
i = tisthecentreands', . . ., i* arethek neighboursFor typographicateasons
we will usethe notationX? insteadof X;;. Let X¢, = (X;, X}, ..., XF) andlet
Ac, bedefinedsimilarly. Supposeve have specifieda prior distribution P(A¢, =
a) for ary configurationa € {0, 1}**1. Thecorrespondingosterioris thengiven
by

P(Acl =a | Xcl) X P(Xcl |AC1 = G)P(Acl = a).

This may be maginalizedto the posteriordistribution of A; by summingover
the neighbourvalues. If we furthermoreassumehatthe X;'s are conditionally
independengiven A¢,, we arrive atthe expression

P(A, = 0,0 | XC’Z)

o f(Xila®) > - ) (Hf(Xf’ \af)) P(Ag, =a). (3.4)

ale{0,1} ake{0,1} \j=1

It is very appealingto usethis posteriordistribution for classificationof a voxel:
It combinesthe obsened valuesof the statistic,not only at voxel 4, but alsoat
theneighbouringroxels,andby theprior distributionfor A., we mayincludeour
knowledgeof the activationpattern.

The importantpart of the modelis the specificationof the prior distribution
for Ac,. We proposethreedifferentmodelsin the paper rangingfrom analmost
simplisticoneto amorerealisticone. They all reflecttheidea,thatactvatedareas
tendto constitutea clusterof voxels, ratherthana singleisolatedvoxel. For a
givenconfigurationa € {0, 1}**! we will let s = Zfzo a’. The simplestmodel
is thengivenby

P(Aci:a):{qo !fS—O,

g ifs>0.

Sinceall configurationsvith atleastoneactivatedvoxel have thesameprobability;
this is a kind of uninformatie prior, which neitherfavours configurationswith
very large activation regions, nor isolatedactivatedvoxels. The modelmay be
parametrizedy the probability p of a voxel beingactive, givenby p = ¢:2%. An
extensionof themodelis

qo
P(Acz = CL) = {a,ys—l
Here~ is a correlationparameteland the restrictiony = 1 correspondgo the
previous model. Finally we also considera model where both the numberof
active andnon-actve voxelsenterin the prior, we referto the paperfor details.

if s=0,

35
if s> 0. (3.5)
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At afirst sight, the practicalproblemwith this approachnamelythe calcula-
tion of the sum(3.4), seemdo be a severelimitation. If the neighbourhoods a
3 x 3 x 3 cube,thesumhas2?® ~ 67 million termswhich is far too mary for
directnumericalcalculation. Luckily, for mary relevantmodelsof P(A¢, = a),
includingthe onesabove, the summay be givenin closedform. Thekey pointis
thesimpleidentity

Yoo Y [t ey =] (F(x70)+ £(XF 1)),

ale{o,1} ake{0,1} j=1 Jj=1

which reducedhe large sumto a simpleproductof £ terms.Usingvariousforms
of this, we derive closedform expressiondor the posteriorprobability P(A; =
1| X¢,), for instancefor the simplemodelwe get

14 (Z—‘l) - 1) (ﬁ(l + v{)) 1] }1 ., (3.6)

7 j=1

1
P(A=1|Xe) = {1+U0

where .
5 fXI
" f(x70)

Noticethatv? is thelik elihoodratiofor thevoxel i/ beingactivevs.notactive. The
formula(3.6) thuseffectively combinethelik elihoodratiosfrom voxel i together
with thoseof its neighbourgo calculatethe posteriomprobability of activation.

While the posteriordistribution is calculatedusing only local information,
globalinformationis usedfor estimation.Denotethe modelparameter®y (¢, ¢)
where¢ parametrizeshe conditionaldistribution of X, given A¢,, andy para-
metrizesthe maginal distribution of A-,. One possibility for estimationis to
maximizethe contrastfunction

Y, ) =) log f (X 6, ).

eV

—-0,1,...,k (3.7)

Thedensityof X, maybe calculatecanalyticallyby the sametechniqueasused
whencalculatingthe posteriordistribution above. An alternatve to the full con-
trastfunction,is to useonly the mamginal density(3.3) of X; to estimate(¢, p),

Ym($,p) =Y log f(Xi; ¢, p).
%
The simplestmodelfor A, hasonly oneparameterp, which may be estimated

in thisway. The correlationparametery of the extendedmodel(3.5) maybe es-
timatedby the methodof momentsusingthe empiricalspatialcovarianceof the



38 3. SRATIAL MODELLING OF FMRI DATA

field. Both contrastfunctionsarebasedon densitieshencethe estimationequa-
tionswill be unbiasedandthe estimatorswill be consistentand asymptotically
normalundermild regularity conditionson the spatialcorrelationof the process.

Everitt and Bullmor e (1999)consideredhe samebasicmixturemodelasabove,
but did notuseary spatialinformation. Theirmodelis in factequivalentto assum-
ing thatall voxels are spatiallyindependentandtheir approachis thusa special
caseof our setup,obtainedby therestrictiona: = v/(1 + )* in (3.5). Not sur
prisingly spatialinformationis very importantfor obtaininga good estimateof
a spatialpattern,and we found that our modelreducedclassificationerror with
morethan40% in a syntheticfMRI dataset.Whenapplyingthe modelsto true
data,therewasa striking differencebetweenthe estimatedactivation patternin
our modelandin the non-spatiainodel,seeFigure4 of Paperll. In generalthe
activatedareaswerelarger, andsingleactvatedvoxelsweresuppressed.

Kernel smoothing estimates. The maginal mixture modelmay alsobe com-
paredwith the usualfiltering approachwherethe dataare spatially smoothed
with a Gaussiarkernelbeforecalculatingthe summaryimage. We comparedhe
estimate®btainedwith our methodto thoseobtainedoy smoothingthe datawith
akernelof full-width-at-half-maximum(FWHM) 2 and3 voxelsrespectrely. The
latter arecommonlyusedkernelwidths. On syntheticfMRI data,we found that
our methodwas more powerful than FWHM 3 smoothing,at a given level of
significance ,while the FWHM 2 and our methodhad similar power. The ob-
tainedestimatesvere, however, qualitatvely different,with our estimatedeing
lesssmooth,this was especiallyobsened with true data. Clearly we canonly
speculatevhat the “correct” activation patternlooks like for real data, but it is
well known thatsmoothingoroducesa biasedestimatewhich may partly explain
thedifference.

Salli et al. (1999)proposedh so-calledcontextual clusteringmethod whichis ef-
fectively a spatialmixturemodel,with anlsing prior. They considethefollowing
setup,

wherep > 0. The X;'s areindependengiventhe indicatorfield { 4;}, andthe
latterhasanlsing prior distribution,

] A e (530104, = 4) ).

ji
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A neighbourhoodaonsistingof the 26 closestvoxelsin acubeof size3 x 3 x 3 is
used.The posteriorprobability of a voxel beingactivatedis then,

Plai=1143)7 = Lo {u (<L - vy + w2 - %) |

whereU; = #{j ~ i| A; = 1}. Forfixedvaluesof g andy, thelCM algorithmis
usedto estimateheactivationfield. This correspondso iteratively settingA; = 1
if
2
X+ 220 - NJ2) > 2
andA; = 0 if not, sweepingover all voxelsuntil corvergence.

A problemin this approachs thatthe prior is symmetricwrt. active andnon-
activevoxels. Thisisrarelyrealistic,in mostcasesherewill bemuchfeweractive
voxelsthannon-actve. To compensatéor this, the parameterg; and . aread-
justed,guidedby simulationstudies,to control the numberof voxels which are
wrongly classifiedasactive. Fromamodellingpoint of view, thisis somavhatar-
tificial; the g parameteshouldreflectthe smoothnessf theunderlyingactivation
pattern,and . shouldreflectthe magnitudeof activatedvoxels, neitherof these
have directinterpretationin termsof the probability of a voxel beingactive. The
authorsare aware of this, andargue thatthey usethe modelonly asa hypothe-
sistestingdevice, ratherthanasa modelfor the true pattern. It would, however,
be easierto interpretresultsif the modelwasconsideredn termsof the distribu-
tion of the data. This could be obtainedby addinga first-ordertermto the prior,
governingthe overall balancebetweeractive andnon-actve voxels,

p(Ai| A_;) x exp (pl(AZ- =1)+ ﬂz 1(4; = A,))
J~t
The parametersnay be estimatedlirectly from the data,to reflectthe properties
of thetrueunknown activation. Unfortunatelyin a conditionallyspecifiedmodel,
theparametersannotbedirectly interpretedn termsof, for instancethe number
of active voxels,asis possiblefor the maiginal modelsin Paperll.

Descombest al. (1998a)consideiaMarkov Randomield (MRF) modelaswell,

howeverfor thespatio-temporadlata. TheauthoramodelthedataYy = {Y};} after
having subtractedhe outputof a temporalmoving averagefilter in eachvoxel.

Let X = {X} denotethe true underlyingprocess. Becausemeanandtrends
have beenremoved from the data, X is consideredo represenbnly the spatio-
temporalactivation process.In the caseof isotropicvoxels, the prior for X has
theform

p(X) X €xXp {— i Z (Z ﬁ@(l"it - l“jt) + Qﬂ@(ﬂfit - $it+1)) } )

t=1 i€V \ jri
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whereg > 0 andtheinteractionfunctionis

1

o=

Thespatialneighboursaregivenby thefour closestvoxels(theauthorsonly model
2D scans).The so-called®-interactionfunctionfavourshomogeneousegionsin
spaceandtime, but doesnot smoothedgestoo much, sincethe function hasan
asymptoteat O as|u| — oo. The edgeswhich shouldbe preseredin this situa-
tion, arethetransitionsbetweerbaselineandactivation. A robustnoisemodelis
assumedby letting thelik elihoodfunctionbe of the sameform asthe prior,

P(Y|X) x exp {— ZZ(I)(mit — yit)} )

t=1 i€V

By a simulatedannealingalgorithm the authorsobtaina MAP estimateof X.
They illustrate,usingsyntheticandreal data,thatthe edgesof activatedareaare
muchbetterpreseredin this estimatehanwhensmoothinghedatawith a Gauss
kernel.

In principle inferencecanbe madeby simulatingobsenationsfrom the pos-
terior distribution with an MCMC algorithm. The authorsrefrain from this, pre-
sumablybecausat is a very difficult task,dueto the high dimensionalityof X.
Insteadthey proposeto usethe modelonly for restoringthe activation pattern,
andthenproceedwith anordinaryvoxel-by-voxel analysis treatingthe MAP es-
timateasthe obseneddata.They acknavledge however, thatthisis problematic,
becausehe distribution of the MAP estimateis very differentfrom that of the
original data,andhenceassumptionsinderlyingusualanalysisprocedureslo not
hold.

As an alternatve, a kind of meta-analysiss proposedn Descombet al.
(1998b). From the restoreddataempirical estimatef the HRF are obtainedin
eachvoxel, anddistinctive featuressuchasthemaximumanddelayareextracted.
An MRF modelis next constructedvherethesesummarystatisticsaretreatedas
obsenations,and a binary activation map is consideredas a hiddenprocessn
a Bayesiansetting. An MRF prior is formulatedfor this classificationrmap,and
interactiondetweerthelatterandthe parametemapsareconstructedThemodel
is, however, a somavhat ad hoc construction,which is not basedon physical
propertiesof the data,andthe authorsdo not give ary significancestatementsn
thesetupeither

Kornak et al. (1999) proposedanothermodelbasedon MRF’s, formulatedfor
an SPM{X;}. Themodelfor the latteris, X; = A;M; + ;, where{M;} is a
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conditionalautorgressve Gaussiarrandomfield modellingthe strengthof acti-
vation,and{4,} is a binaryfield indicatingwhethera voxel is active or not. The
correlationstructurein the A field is modelledby letting A; = 1(W; > 0) where
{W;} is anintrinsic Gaussiarrandomfield. Theframeawork is only sketchedn a
conferenceroceedingsandthereseemgo beno publicly availablepapersonthe
methodyet.

Relatedapproachesin statistical image analysis. The maginal mixture model
of Paperll may be consideredrom a statisticalimageanalysisviewpoint also.
Pioneeredy GemanandGeman(1984)andBesag(1986),Markov randomfield

priors have beenwidely usedin this area. Their popularityis dueto the factthat
knowledgeof thelocal spatialstructurein theimagemaybeincludedin themodel
in anintuitiveandmathematicallyelegantway, in termsof the pairwiseinteraction
functionsin a Gibbsmodel. It is well known, however, thatthejoint distribution
of an MRF may possessinexpectedeffects, suchaslong rangecorrelation. In

statisticalimageanalysis,theseglobal propertiesare a nuisance andlocal esti-
mation methods,suchas ICM, are designedto minimize the influencethat the
global structureof the modelhason the estimate. The formulation of a model
throughmaminal distributionsis henceanalternatve, wherewe ensurethatonly
the specifiedocal propertiesareusedin thereconstruction.

We comparedestimatesof an image obtainedby our method,and respec-
tively the MAP andICM estimatesusingan|sing prior. We considerectlassical
datasetdrom the literaturewith both Gaussiarandbinary noise,andfound that
our method,usingthe model(3.5)ona5 x 5 grid in the plane,performedcom-
parablywell with both othermethods.An importantdifference however, is that
we give closedform expressiondor the estimateswherethe MRF approaches
requireiterative procedures.

MelocheandZamar(1994)considered framenork very similarto ours. They
alsorestoredbinary imagesusing maiginal models,and furthermoreconsidered
avery elegantnon-parametri@approachwherethe distribution of the underlying
imagewas completelyunspecified.Using the methodof momentshey obtained
unbiasedestimatordor the parametersTheir adaptve setupallowedthemto re-
storequite differentimageswithin a singlemodel,but insteadthey hadto restrict
themselesto small neighbourhoodef only four neighbours.The direct calcu-
lation of the sum (3.4) wasthusnot a problemfor them,andthey did not obtain
closedform expressiongor it.

An earlyreferencas Hjort andMohn (1984),who alsostudieda very similar
approach. Their frameawork is reviewed in Hjort and Omre (1994). They con-
sidereda transitionmodel,which, in our notation,hastheform P(A¢, = a) =
p(a®) H?zl p(a’ | a®). This form allows analyticalcomputationof the sumasin
our setup. They alsostudiedthe extensionto correlatednoise,wherethe simple
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form of the posteriomprobabilityis maintained.

3.2.2 High-level models

It is often the case,that more high-level questionsare asked than what can be
answeredy asimplespatialactvationestimate While alocalmodelis attractve,
becausét is simpleandcomputationallyfast,globalmodelshold the potentialfor
moredetailedinferenceaboutthe spatio-temporahctivation pattern.

Pioneeredby theseminalpaperof GrenandeandMiller (1994),therehasbeen
anincreasingnterestin thefield of statisticalimageanalysisn formulatingprior
modelsfor spatialpatternswhich are basedon high-level structuresatherthan
low-level smoothnesproperties. Whereimageanalysismainly meant‘restora-
tion” in the eighties the focusof the ninetieshave beento interpretthe structure
of animagein closedform. Examplesin this line of thoughtare the works by
Baddelg andvanLieshout(1993)andRueandHurn (1999).

In this section,we will discussmodelsfor fMRI data, which are basedon
this high-level line of thought. The aim of the analysiswith this type of models
areoftenmoreambitiousthanwhatcanbe achieved by local smoothnessodels.
Unlike a local model, a high-level model may be parametrizedby the number
of activation foci andthe extent of these,and inferenceon theseparameterss
thereforgoossible Hencemorespecifichypothesisnaybeaddressedhanmerely
“where s the activation?”. An examplecould be the hypothesighat the areaof
anactivatedregion increasesinderonetaskcomparedo another The price paid
for this advantageis of coursethat strongerassumptiongre madein the model.
A critical pointis thusto study how well datasupportthese,or how robustthe
conclusionsareto violation of the assumptions.In contrastto statisticalimage
analysisthisis oftena very difficult taskin fMRI, sincewe never actuallyknow
whatthetrue activationpatternis.

In Paper | we formulatea globalmodelin a Bayesianframenork for the spatio-
temporaldata{Y;;}. Thefundamentabhssumptiors thatspaceandtime aresep-
arable,in the sensehatthe temporalactivation profile is the samein ary voxel,
only themagnitudechangeg$rom voxel to voxel. For simplicity, we only consider
atwo-dimensionaimodelfor a singleslice.

Let X = {X;,...,X,} beamarked point processwhich parametrizeshe
activation pattern. A point X; = (y,, a4, d;,7;,6;) mayto someextentbe con-
sideredasa centreof activation, wherethe locationis givenby 1;, andthe four
marks(a;, d;, r;,6;) describerespectrely the magnitude area,eccentricityand
angleof the centre. The magnitudeof activation { A; };cy is assumedo have a
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specificgeometrynamelya sumof Gaussiariunctions,
Ai(X) = h(i; X1) + -+ - + h(i; X5)

where

s e (T2 (Ot i)}

andi = (i1,4) = R(—0;)(i — p;) and R(6) is a rotationwith angled. This
representatiors motivatedoy thecommonassumptionsf smoothnesandspatial
extent of the activation, andthe ideais that a generalsmoothactivation surface
with few localizedpeaks may be well approximatedy a collectionof Gaussian
functions.

We have specificprior knowledgeon the differentparametersn the spatial
model. The magnitudeof the activationis typically about2%-5%,we expectthe
activatedareasto cover at leasta few voxels, and we may even have a strong
prior ideaof wherethe activationwill occut basedon previous experimentson
the samesubjector on generaknowledgeof the brain function understudy We
will assumehatthe prior distribution of X hasdensitywith respecto the unit
ratePoissormprocesf theform

p() o< [ ] B(w) (H é (i, xﬂ) L1 {p(@)p(d)p(rs)}

1<j

Heref(-) is anintensityfunction,whichmaybeconstantf we havenoknowledge
of wheretheactivationis likely to occur ¢(-, -) is a pairwiseinteractionfunction,
whichdiscouragesentrego fall ontop of eachother andp(-) is agenerianotation
for a prior distribution for the three mark parameters:;, d; andr;. We have
chosentruncatedinverted Gammadistributions for a; and d;, which penalizes
smallvaluesseverely, butis fairly uninformatve otherwise.

Supposehata modely, for the HRF is assumedWe remove alineartrendin
eachtime seriesprior to analysisandthusassumehatnon-actvatedvoxelshave
mean0. Given X, thedetrendedlataY;, aremodelledas,

Yie = (Ai(X) +mi)pr + €in (3.8)

wheree = {e4} ~ Ny xn(0,0°T ® A), andn = {n;} ~ Ny, (0,7%Iy)). The
n-termsconstitutea spatialprocesswhich compensatéor small differencesn
the true activation surfaceandthe idealizeddescriptionA(X). Technicallythe
purposeof therandomsurfaceis to regularizethe spatialestimate put intuitively
we may think of the variancer? asa measureof how well we expectthe actual
true surfaceto berepresentetdy the simplestructureof the model.
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Let ; denotethe estimatedregressioncoeficient wrt. ¢ in voxel i, Y; =
Y/A Yo/’ A o, whereY; = (Yiy,...,Y:,) ande = (¢1,...,9,)". There-
gressionmageY = {Y;};cyv thencorrespondso the usualSPMin the present
model. In the paper we show thatY is sufficient for X, andinferenceon the
lattermayhencebecarriedoutin the spatialdomainonly. Thisillustratesthatthe
classicalpproachof reducingthetime seriesof scango a singleimage,whichis
next analysedy aspatialmodel,is in facta sufficientreductionof thedatain this
case.Also it providesanintuitive understandingf the spatio-temporamnodel;in
thecasewherey is known, it is in factjusta quite simplespatialmodel.

In themoregenerakase whereyp is notknown, we may assumea parametric
modelfor this. In the paperwe have illustratedthe flexibility of the methodby
assuminga generalstatespacemodelfor ¢, which allows for temporalvariation
in theHRE Themodelis

ot =N+ W, (3.9)

where), is afixed corvolution modelfor theHRF, and{v,} is arandomwalk.
Theinferencein the modelis centredon the posteriordistribution of (X, ).
We may computeestimatesof the posteriormeanof different functionsof in-
terest,and assesgsheir uncertaintyby the posteriorvariance. Also the support
that datagivesto a specifichypothesisof interestmay be quantifiedby poste-
rior probabilities. In order calculatetheseintegralswith respecto the posterior
distribution, we have designecan MCMC algorithmfor simulatingthe point pro-
cessX given(Y, ), basednthe GeyerandMgller (1994)algorithmfor general
point processesTheposteriordistribution of ¢ given(Y, X, n) is asimplenormal
distribution, which maybe simulateddirectly by the Kalmansmootherecursion.

Kiebel et al. (2000) proposedo decompose spatialactivation patternin terms
of Gaussiarfunctionsaswell, howeverin a quite differentframeavork. Their ap-
proachwasbasedn atechniquéor extractingthe corticalsurfacefrom anatomi-
calMR scansacquiredsimultaneouslyvith thefunctionalscans.Thegrey matter
surfaceis describedby alist of verticesandtriangularfaces,which is projected
onto a planeto form a flattenedmap. The projectionis designedio minimize
distortionsdue to the curvature of the cortical surface. A setof spatial basis
functionsb{v, j =1,...,N, is definedon theflattenedsurface,Whereb{D is an
isotropic Gaussiarfunction with standarddeviation w. The centresof the func-
tionsform aregularhexagonalgrid in the plane,with distanced betweerpoints.
The authorschosew = 1 mm andd = 2 mm, which givesin the order of
1500 basisfunctionsin eachhemisphereof the brain. A spatialactvation pat-
tern of the form Z;.V:”I B;b% may now be projectedbackonto the folded cortical
surface,andthentransformedo voxel spaceby integratingthe activation contri-
butionin eachvoxel. Theseoperationsaffect the basisfunctionsonly, andthere
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is hencealinearrelationshipbetweerthevolumeof scansy,; andthemagnitudes
Bt = (Bt - - -, Bn,e) attimet,

Yi = ABu + €t (3.10)

Heree,, representscannemnoise.Clearlythisis a very appealingramework, in
which to work: It is muchmorenaturalandrealisticto formulatesimple spatial
modelsin the corticalsurfacespacethanin thearbitraryspacedeterminedy the
voxels. It is quiteclearthatin orderto extractmoreandbetterphysicalknowledge
of thebrainfrom neuroimagespneshouldlet theanatomyof the braindictatethe
analysishotthe scanneequipment.

Kiebel et al. continuefrom the representatior{3.10) by obtaininga ridge
regressionestimateof 3,; andnext usea combinationof singularvalue decom-
position and canonicalvariateanalysisto estimatethe activation patternin the
(B-space.The procedurds not bacled by anexplicit statisticalmodel,andhence
the authorsdo not make ary significancestatementsThereis, however, a wide
rangeof alternatve andrelevant methodsfor making model basedinferencein
the B-space:The complicated3D dataarereducedo a regulartwo-dimensional
hexagonallattice, andary relevantlattice processrom spatialstatisticsmay be
appliedfor this part of the analysis. The -parametersould be consideredas
a spatio-temporastochastigorocessn a Bayesiansetting,andthe assumptions
underlyingthe stochasticgeometrymodel above, of a certainspatial extent of
the activations,would naturally be translatednto a positive correlationbetween
neighbouringsitesin thelattice process Prior information,regardinglocationof
theactwvation,is easilyincorporatedn this framework aswell, andtheuncertainty
of the 3-processnaybereadilyquantifiedby the posteriorvariance A furtherad-
vantageis thattherewould be a clearerdistinctionbetweenscannenoise,repre-
sentedvy ¢, andthe physiologicalnoise,which would beembeddedn the model
for the B-process. In short, we are of the opinion that spatio-temporaimodels
formulatedin thespaceof the corticalsurfacehave mary advantagesomparedo
voxel basedmnodels,andthereis no doubtthatthis is a promisingandimportant
researchopic for thecomingyears.

The marked point processmodel could be formulatedon the flattenedmap
also. In practicethis would not be a good solution, becausehe transformation
of the activation patternfrom the flattenedmapto voxel spacewould have to be
recalculatedor arny updateof the point processn the MCMC algorithm,which
would be quite expensve in computertime. Insteadit really makes senserom
a practicalpoint of view, to discretizethe spaceinto the amplitudesof the basis
functions,andwork in thelattice spaceanstead.

Taskinen (2000) studiesan extensionof the marked point processmodel. In
orderto make themodelmorerealistic,he modelseachactivationsite by a centre
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point, or a “mother” point, which hasan associatedsaussiarfunction with an
unknowvn width and height. The motherpoint hasa sequencef daughterpoints
aswell, thesearemodelledby a Poissorprocesswith anintensitythatdecreases
with the distancefrom the motherpoint. Eachdaughtemoint contributesto the
activation surfacewith a small Gaussiarkernelwith a fixed width. Clearly one
can represenirregular activation areasmore satistctorily in this setup,and it
is furthermorepossibleto interpretthe motherpointsindividually, unlike in the
approachin Paperl. The setupis however quite complicated: The activationis
describedby a marked point processwhere one of the marksis itself a point
process. The task of designingan MCMC algorithm which moves efficiently
in this vast statespaceis by no meansstraightforvard, and henceone may be
concerneaboutthe simulationof the posteriordistribution.

3.2.3 A decorvolution model

With Kiebel et al. (2000)asan exception,the modelsdescribedabove all focus
on estimatingthe smoothhaemodynami@ffects of neuralactivation. It seems
natural,however, to studyapproacheso solve the inverseproblem,andestimate
the underlyingneuralactivationinstead which is the main parametenof interest.
By formulatinga modelin termsof local smoothbasisfunctions, Kiebel et al.
effectively performa kind of decowolution of the data,and estimateactivation
on a neuronallevel. In this approachthe shapeandsize of the basisfunctions
arechoserin anadhocmanner Descombesgtal. (1998b)proposedo extenttheir
Markov randomfield modelwith acorvolutionterm,to modelthehaemodynamic
effectsdirectly, but they aswell aguethatthe choiceof the corvolution kernelis
adifficult one.

The decorvolution approachis also studiedin Paperlll, wherea modelis
formulatedfor theanSPM X = {X };cy. LetT" = {T';};cy denotetheactivation
patternon a neuronallevel. Thisis modelledasa randomfield, definedon the
discretevoxel spacé/. Thevariated"; areapriori assumedo beindependenand
follow amixtureof apositveandanegatve Gammadistributionandadistribution
concentrate@t0. Thehaemodynamicesponse\ is modelledby convolving this

I'-field by akernel,
Ai - Z kijfj,

JeV
wherek;; is akernelon V' x V, which is normalizedsuchthat ), k;; = 1.
Finally the obsenredfield is modelledby addingGaussiamoiseto the haemody-

namicresponse,
X=A+¢, 8NN‘V|(0,E),

whereX isa|V| x |V| covariancematrix.
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Thewidth andshapeof thekernelis estimatedy the methodof momentsFor
astationarymodel,we have that

cov(X;, X;) = oy—; + var(l';) Z kijki;,

JEV

hencehecovarianceof the X field will consisiof apartdeterminedy therandom
noise,anda part determinedoy the haemodynamidiffusion kernel. The noise
covariancemay be estimatedvery well from the original time seriesof scans,
usedto producethe summaryimage X, and hencewe may usethe empirical
covarianceof X to estimatethe kernelk. For visual stimulationdata,we found
thatanexponentialkernel

ki oc exp (—[[ill/w), 1€ 22,

with w = 1.1 mmfitted well to the empiricalcovarianceat smalllags. The model
thus predictsthat the vasculareffects spreadover a circle of diameterabout5
mm, which correspondsvell to the figuresof 3-6 mm reportedin the literature
(MalonekandGrinvald, 1996).

We studythe posteriordistribution of the I'-field by MCMC simulations.An
algorithmis proposedwhich employs anauxiliary variableto decorrelatéheI'-
field in the posterior In orderto perform Gibbs updateswe furthermoreuse
a rejectionsamplingalgorithmfor simulatingobsenationsfrom the “Gamma-
Normal” distribution, of the form f(z) o %! exp{—fz — y2*}, = > 0. The
algorithmusesdifferentcombinationsof ervelopesin eachof four differentre-
gionsof the parametespace We describethealgorithmin detailin PaperlV and
show thatit is asymptoticallyoptimalwith certainlimits of the parameters.

We estimatd” by the posteriormeanimage andillustratehow amoredetailed
and“sharper’imageof the activationis obtained. The differenceis particularly
large,whencomparedo thenon-parametri&erneldensityestimateswhichtakes
thedirectoppositeapproactandsmooththe data.

3.3 Estimation or hypothesistesting?

The philosophyof parametricspatialmodelsin Section3.2is very differentfrom
the hypothesistestingapproachdiscussedn Section3.1. The outcomeof the
analysisis an estimateof the activation surface,preferablywith standarderrors.
Thereis no multiple comparisongroblemas such, becauseone doesnot test
multiple hypothesesin contrasto therandomfield approachywe maysummarize
theadvantage®f parametrionodelsasfollows:
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1. The dataare not smoothedspatially hencethe detailedresolutionof the
MR scanis maintained.Insteadthe smoothingis performedimplicitly by
themodel.

2. Prior knowledge,suchasthe anticipatedocationof the activation, may be
includeddirectly in the model.

3. The distributions of active aswell as non-actve voxels are modelled;in
generathiswill make theanalysigobustto assumptionsf thenoisemodel.
In contrasttherandomfield approachdefinesactivationby the extremetail
of the noisedistribution, andit will hencebe very sensitve to deviations
from themodel.

4. Parametricmodelsallow the study of detailedhypotheses.One example
is the questionof whetherthe sizeof anactivatedregion increasesindera
demandingaskcomparedo a simplertask. Questionf this type may be
closerrelatedto the neuroscientifidqiypothesesf interestthanthe question
of wheretheactiationis.

5. By imposingstructureon the spatialactivation pattern,assumptionsn the
temporakesponsenayberelaxed. As describedn Chapter2, thereis much
debateaboutthe temporalpropertiesof the HRF, andit thereforeseems
relevantto studythis with asfew assumptiongaspossible.

We have alreadytoucheduponsomeof the disadwantageof parametrianodels,
whichtherandomfield approachdoesnot have:

1. Most parametrianethodsare muchmore computerintensive thanthe ran-
domfieldsapproachandthe analysismaybeharderto automate.

2. The spatialactivation patternmay be very comple, and most parametric
modelsaretoo simplisticto fully describehetruesceneModeldiagnostics
andcritical evaluationof assumptiongarehencevery important.

3. Themedicalworld hasa strongtradition of assigningp-valuesto obsena-
tionsmadefrom data. Most likely mary researcherpreferthis measureof
significanceto the more difficult conceptof uncertaintyof an estimateof
theactiationpattern.

4. Thethresholdingn the randomfield setupis very intuitive. Theresultof a
parametrianodelmay be lesstransparenandmoredifficult to visualizein
asimpleway.



49

Above we view thetwo methodsascompetitorsandcontrastheiradvantages
anddisadwantagesbut this neednot bethe casen practice.A pragmaticsolution
would beto combinethe bestof the two worlds,andusea thresholdingapproach
to detectsignificantactivation and next analysedataby a parametricmodelin
orderto obtainconfidencantervalsfor thesizeof theactive regions,for instance.
Thiswould eliminatesomedoubtsthatthe parametrieestimateof theactivationis
really “significant”.

Thechoiceof methodmayalsodependntheaim of theanalysis.If themain
interestis to detectan activation site, it may suffice to considerthe locationof a
peakin the SPM,asthismaybeinterpretedf themaximumlik elihoodestimateof
the centreof the signal. In mary functionalstudieshowever, the entireactivation
estimatas interpretedandstudiedn detail. Thisis especiallythecasevhenfMRI
is usedfor pre-sugical planning.In this casethevarianceof the estimateas much
more importantthanthe protectionagainstfalsepositves—mostpatientswould
supposediype moreworried aboutfalsenegatives.

Anotherexampleis the combinationof resultsfrom fMRI studieswith data
from otherbrainimagingmodalitiessuchasmagneto-or electroencephalography
(MEG/EEG)(Liu etal., 1998).Thelattertechniquesecordbrainactivationwith a
temporalresolutionof millisecondsput with avery poorspatialresolution.When
the detailedspatialresolutionof fMRI andthe excellenttemporalresolutionof
EEG/MEG canbe successfullycombined,a very powerful imagingtechniques
available.Also in this caseanestimateof theactivationfrom thefMRI data,with
associatedtandarcerrors,is needed.

4 Statespacemodels

Statespacemodelsis a very flexible classof time seriesmodels,which are be-
comingincreasinglypopulartheseyears. This is both dueto the wide rangeof
applicationsandto the intuitive framework, which allows oneto interpretvari-
ablesandthe structureof the modelin a directway. As discussedn the previous
chaptersstatespacemodelshave alsofound applicationsn fMRI dataanalysis,
asflexible trendmodelsandasmodelsfor the haemodynamicesponseTheaim
of this chapteris not to give anintroductionto thefield assuch,but to introduce
thework on statespacemodelspresentedn PaperV andVI. A shortintroduction
to statespacemodelsandthe Kalmanfilter, with the CanadiarLynx data(Elton
andNicholson,1942)asa motivatingexample, maybefoundin PaperVI. Chapter
8 of Fahrmeirand Tutz (1994)is a conciseexpositionof the generaltheory with
specialfocuson generalizedinear models,andalsoK insch(1999)givesa good
andshortintroduction. The book by WestandHarrison(1989) providesa more
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detaileddiscussionparticularlyfrom a Bayesianpoint of view, with mary good
examples.

4.1 Definition and examples

A statespacemodelis a modelfor a sequenceof dependenbbsenation {Y;}
wherethe dependences modelledthroughanunobsered Markov process X, }.
The latter is often referredto asthe latent processor the regime Given X the
Y,;’sareindependentandthe conditionaldistribution of Y; depend®n X; only. A
generaktatespacanodelmaythusbeformulatedas,

Y| Xe ~ go(ye | @),
Xy \ X1~ @0(1"15—17 33t),

fort = 1,...,n and Xy ~ my(xy). Hereay(-,-) is the transition density of
the latentMarkov processgy(- | -) is the conditionaldensityof Y; given X;, and
6 € © € R? is aparametepf themodel.

Thevariablesmayhave ary dimensiorandthe statespacesnaybecontinuous
or discrete.In the casewherethelatentprocessX takesvaluesin adiscretefinite
spacethetermhiddenMarkov modelis oftenusedinsteadof statespacemodel.

An appealingeatureof themodelis thefact,that X mayoftenbedirectlyin-
terpretedasa processwhichis driving thesystemandwhich we areinterestedn
estimating.Thisis the casein mary applicationsn biology andfinance.Alterna-
tively themodelmaybe a mathematicatonvenientway of formulatinga specific
correlationstructurefor instanceall ARMA processemaybeformulatedasstate
spacanodels.

4.1.1 Thelinear Gaussianmodel

SupposehatY;, € RF and X; € R¢. The linear Gaussianstatespacemodel
assumeshefollowing form of thetransitiondensities,

Y = BXy + i, vy ~ Np(0, V), 4.1)

Xy = G X1+ wy, wy ~ Ng(0, W), .
fort =1,2,...,nand X, ~ Ny(mg,Cy). Here F; andG; areknown k£ x d and
d x d matricegespectrely, andtheerrorsequence$y, } and{w;} areseriallyand
mutually independent.Despitethe generalformulation, this modelis very easy
to analysesinceall relevantconditionalandjoint distributionsare Gaussianand
thecorrespondingnomentsnaybecalculatecdefficiently by therecursve Kalman
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filter' andsmoother As an example,the filter and smoothemjivesformulasfor
the momentsof the conditionaldistributions (X | Y3, ...,Y,), (X;|Y3,...,Y%),
(Xy | Xy, Y1, ..., Y) and (Yy | Ya, ..., Y, q) fort = 1,... n. In particularthe
likelihoodfunctionp,(Y3, . .., Y;,) mayeasilybeobtained.

4.1.2 Applicationsin fMRI analysis

We have describedapplicationsof the linear Gaussiarstatespacemodelfor the
analysisfor fMRI datain the earlierchapters.We will reconsidesomeof them
here,aswell asgive anew example.

Gosslet al. (2000)consideredhe statespacenodel(2.3)on pagel7 for thetrend
andthe haemodynamicesponseFor a particularvoxel 4, it may be rewrittenin
theabove form by settingX; = (a, a1, bis, bir—1), Fy = (1,0, 2;,0), V; = 02,

2 -1 0 0 oz 00 0
1 0 0 0 00 0 0
“=1lo 0 2 -1 We=1 9 o o2 0
0 0 1 0 00 0 0

The unknovn parametersre V; and W,, which are estimatedby the EM-algo-
rithm. Herethe Kalmanfilter andsmootherare usedto calculatethe conditional
meanandvarianceof X; givenY,...,Y,, which areneededn the expectation
stepof the algorithm, and for estimatingthe haemodynamicesponsez;;b;; by
the posteriorneanE (z;;b;; | Vi, - - ., Yin), with theestimated/arianceparameters
inserted.

In Paper | the statespacemodel(3.9) is consideredor the haemodynamice-
sponsdunction. Let Y,; = (Y;;):;cv denotethe vectorof all voxel intensitiesat
time ¢, andlet the spatialactivationmagnitude A; + 7;);cy in themodel(3.8) be
denotedby A, we will conditionon a known valueof the latter for the moment.
Supposedhatthe noiseis temporallyuncorrelated\ = I,,. Themodelis thenof
theform

Yie = Ay + €44, Ext ™ NIVI(O’ UQF)’
Pt = Qp_1 + Wy, wi ~ N(Ae — A1, 72)-

Theterm*“filter” maybeabit confusingfor a statistician:The Kalmanfilter hasnothingto do
with afilter in the probabilisticsenseof a sequencef increasings-fields. A filter in this context
is a device for estimatingan underlyingcomponentX; from a sequencef noisy obsenations
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wherethenoisesequence$:,; }; and{w, } aremutuallyandseriallyuncorrelated.
Besideghedrift \; — \;_; in the stateequationthisis the samesetupasin (4.1).
In the paper inferenceis madeby an MCMC algorithm, whererecursvely the
spatialpatternA andthetemporalresponsey is simulated. The formulasof the
Kalmansmootherallow directsimulationof the posteriordistribution of ¢ given
(Y, A): We simply startfrom the backby simulatingy,,, andthenwork our way
backwardsby simulatingy; from the conditionaldistribution (¢; | ¢;+1), whichis
givenin closedform.

It is possibleto extend the statespaceframenvork to somenon-diagonalA-
covariancematrices.In the paper afirst orderautorgressve noisemodelis con-
sideredthismaybeaccommodatedy augmentinghestateprocessvith thenoise
terme,, andmodifying the obsenationequationaccordingly

Bicheland Friston (1998)presenanapplicationof a statespacanodelin fMRI
in adifferentcontect. Theauthorsstudyeffective connectwity, whichis definedas
theinfluencethatoneneuralsystemexertsover anotherandthey areinterestedn
how the effective connectvity may be modulatedby attention.They conducteda
visualfMRI study wheretwo differentstimuli werepresentedn boththesubject
waswatchinga screenwith white dotsemeging radially from the centrepoint.
The subjectwas instructedto fixate on the centre. In the “attention” task the
subjectwasinstructedto “detectchanges’in speedandin the “no-attention”to
just look. The speedof the dots was constant,but psychophysicatestsprior
to scanninginducedthe anticipationof speedchanges. The hypothesisof the
experimentwasthatattentionhasa modulatingeffectontheconnectity between
the motion sensitve areaV5 in the visual cortex and the region known asthe
posteriorparietalcortex (PP).Let Y; and F; denotethe fMRI time seriesfrom
respectrely PPandV5. Theirmodelwasthen,

Y, = FX; + e, e~ N(0,0%),
Xy = Xy + wy, Wy ~ N(07 7_2)a

where X, is interpretedas an index of effective connectvity. By the Kalman
filter and smoother estimatesof the smoothedvaluesX; = E(X;|Yi,...,Y,)
were obtained. It was demonstratedhat thesewere significantly higher during
attentionperiodsthanduring no-attentionwhich wasinterpretedastheinfluence
attentionhason theconnectiorbetweenV5 andPPR Theestimatedime courseX;
wasfurther shavn to correlatewell with the time seriesof a third region which
wasinterpretedasthe sourceof the modulation.

We discusghework hereasaninterestingexampleof how theestimatedatent
processnay be usedto address specificneuroscientifitypothesis A different
matteris that one shouldbe very carefulwheninterpretingthe resultsfrom this
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statisticalframeavork, which canonly provide ameasuref correlation.Theinter
pretationan termsof causaldependencieshatthe authorsmake, mustbe based
on non-statisticahguments.The authorsreferto previously verified hypotheses
and generalknowledgeof connectvity of the brain for this. It is beyond most
statisticiangrainingto judgetheseclaims,but it is the statisticiangob to warnre-
searcheraboutmisinterpretatiorof detectedlependenciesyhichis herebydone.

4.1.3 Non-linear models
Supposensteadof (4.1)themodelis

Y, = h(Xy) + 1, vy ~ Ni(0, V), 4.2)

Xy = G X1 + wy, wy ~ Nq(0, W), -
whereh(-) : R? — R* is a non-linearfunction. In this situation, wherethe
conditionalmeanof Y; is notalinearfunctionof X;, thesimpleframavork of the
Kalmanfilter breaksdown. The distributionsareno longer Gaussianandthere
areno simpleformulasfor the moments.

The typical approachto a problemof this kind, is to twist the modelinto the
standardramework by simplifying assumptionsThisis alsothe casefor the ear
liest solutions,which are basedon a linearizationof ~ by a Taylor expansion.
The approximatemodelis thenlinear andall distributionsare normal. Several
techniquef this flavour have beenproposedandcarry namessuchasgeneral-
izedKalmanfiltering, extendedKalmanfiltering, non-linearfiltering andsoforth
(WestandHarrison,1989).

An alternatve is to keepthe non-linearfunction 4 but to approximatethe
distributions of the latent processby normal distributions, wherethe moments
are calculatednumerically This is the approachstudiedby Schnatter(1992),
Fruhwirth-Schnatte(1994) andin PaperVI. Let Y} = (V1,...,Y;), andsup-
posethat X; | |Y/™" ~ N(m; 1,C; 1). ThenX;|Y}/™" ~ N(as, R;) where
a; = Gymy_, and R, = G,C,_1G} + W;. By Bayestheoremthe posteriordistri-
bution p(X; | Y}) is givenby

p(Xe [ YY) oc p(Yy | Xo)p(Xe | Y77,

This will in generalnot be normal,but is approximatedy a normaldistribution.
Themomentwf X, | Y/ areobtainedby numericalintegrationwith respecto the
unnormalizeddensity
In the paperdoy Friuhwirth-Schnattea generalizedinearmodelframeavork is
assumedwhere
g(E(Y,|X)=H X, HeR,
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for a monotonefunction g, andwhereY; may have ary exponentialfamily dis-
tribution. In PaperVI we restrictoursehesto normaldistributions, but consider
a differentnon-linearstructure.We split the latentprocessnto two components,
X = (X1, X:2), andassumehat the modelis linearif we conditionon X ;.
This allows us to usethe ordinary Kalman filter conditionally on the value of
X1 andthenonly performthe numericalintegration with respectto this vari-
able. Sincenumericalintegrationis very inefficient for higher(morethanthree)
dimensionsthe proposeddimensionalityreductionis a crucial stepin mary ap-
plications. The modelfor dynamicpulseratein (2.1) and (2.2) hasthis form:
Conditionally on the phaseof the pulsewv; the modelis linear The numerical
integration needsonly be performedin one dimensionin this case,even if the
dimensionof the statespacds 8.

Numericalintegrationapproachewith essentiallynoassumptionsnthestate
spacanodelhave beenstudiedby Kitagawva (1987)andWestandHarrison(1989).
They usea finite grid of pointsto approximatethe densityof the latentprocess
X, 1| Y/~! ateachtime pointt. Theupdatingfrom oneposteriorto the next may
thenbe calculateddirectly. The numberof grid pointsrepresent& compromise
betweenspeedand accurag of the approximation. West and Harrison (1989)
arguethatthe choiceof the finite setof pointsis crucial,anddesignsanadaptve
way of updatingthe setsuchthat the grid evolvesin time. For both methods,
thecomputationsnay be very time consuminggspeciallyif thedimensionof the
latentprocesss large.

Thesetupin PaperVI is in facta specialcaseof theframeavork namedpatrtial
non-Gaussiastatespaceby Shephard1994),who designedh Gibbssamplerfor
makinginference.The specialstructureof the modelis advantageouslsoin this
situation,sincethe ordinaryKalmansmoothemay be usedfor simulationof one
partof the latentprocessconditionallyon the other Therehasbeenmary other
approaches$o simulationbasednferencein statespacemodels;seeDurbin and
Koopman(1997),ShephardandPitt (1997)andthereferencesherein.

4.2 Asymptotic normality of the MLE

In PaperV we prove thatfor a generalstatespacemodel,with a probability that
tendsto 1 asn — oo, thereexistsa sequencdd, } of (local) maximumpointsof
thelikelihoodfunction,whichis consistenandasymptoticallynormal,

Vn(6, —0)) — N(0,Z;'), Py,-weaklyasn — co.

In particularthe maximum ik elihood estimatoris asymptoticallynormal, if it
existsandis consistent.The informationmatrix Z, may be obtainedasthe limit
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of the obsenedinformation,
1.0
n 0006’

wherel,, () is thelog-likelihoodfunction correspondindo n obsenations. The

resultsarevalid for generalstationarystatespacemodels however to prove mix-
ing resultswe needboundss and M onthetransitiondensities,

ln(én) R Ty, N — oo,

0<o<ay(r,z) <M < oo forallz,zandd

(AssumptionAl), aswell asanupperboundon

9y | z)
SUp sup ~———=
0 x,x gB(y ‘ SE)

(AssumptionA3). Typically theseareonly fulfilled if the statespaceof the latent
processs compact.
Theproofis basedn thefactthatthe scorefunctionmaybewritten as

0 . "0 1
%ln(e)—;%bgpe(ytﬂﬂ )-

Ast — oo thetermsin the sumwill tendto a stationarymartingaleincrement
sequenceandthe scorefunctionwill henceapproacha martingalein thelimit as
n — oo. Theasymptoticnormality is thenobtainedfrom a martingalecentral
limit theorem.

Our proof is an extensionof the work by Bickel et al. (1998),who consider
thecaseof hiddenMarkov models wherethelatentprocessakesvaluesn afinite
space.They in turn build onthe proofby BaumandPetrie(1966),whereboththe
latentand obsened statespacesarefinite. Besidestheseworks, Leroux (1992)
studiedhidden Markov models,and proved consisteng of the MLE. Recently
DoucandMatias(1999)have studieda differenttechniqudor proving asymptotic
normality, wherethe chaindoesnot have to be stationaryaslong asthe modelis
time-invariant. Their assumptiongre,however, very similar to the onesin Paper
V, andthey do hencenot provide the final proof, for non-compactatent state
spaces.

5 Concluding remarks

Let me concludewith a few generalcommentson fMRI dataand statistics—as
only a young researchewould be foolish enoughto do. In mary waysfMRI
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representa new typeof data,whichis becomingncreasinglycommonin applied
statistics,andwhich may eventuallyforce usto take a freshlook at someof the
pillars of theoreticaktatistics.

Traditionally datais viewed as an almostsacredquantity of informationin
statistics. We aretaughtthat one mustnever throw away databut only consider
sufficient reductions andwe strive to find estimatorswvhich usethe information
with full efficiency. Besideghe mathematicainterestin deriving estimatorswith
optimal properties this is alsodueto the fact that datais often very expensve
anddifficult to obtain,andshouldbe treatedwith this in mind. In fMRI studies
a datasetof several millions of obsenationsis acquiredwithin one minute. If
somethinggoeswrong, anothersetis acquired,virtually free of running costs.
Clearly neuroscientificstudiesare designedcarefully and needsmuch planning
andconsiderationbut a datasetis not a treasurevhich is passedrom teacheito
studentin this world. Seenin this light onemay very well questionthe practical
relevanceof the optimality conditionsthat are usually undisputedn theoretical
statistics.

Anotherfeatureof fMRI datais the problemof determiningwhatthe dataac-
tually is. Theraw obsenationsof theMR scannearesample®f currentsn acoil,
whichform animagein aFourierspace.Thescanneautomaticallyperformsspa-
tial filtering, Fouriertransformatiorandpossiblyalsospatialinterpolation. Next
differentpre-processingoutinesareappliedto correctfor imageartifactsandfor
movementeffects. By thetime thestatisticianactuallygetsthedata,it hasalready
beenprocessedndanalysedat severaldifferentstagesWe shouldnotregretthis,
becausdhe pre-processingtepsimprove the quality of the dataand makesthe
statisticiangob mucheasier Butit is a bit worrying to know thatit is never possi-
ble to replicatethe conditionsunderwhich your datawasgeneratedHow should
we interpreta frequentisticor asymptoticagument,whenwe know thatthereis
no suchthing asanexactreplicationof the sameexperiment?

Most likely mary typesof dataof the next centurywill possesseaturedike
these andthey will maybechangehefield of statisticsasmuchasthedataof this
centuryhas.Seenin this light, this thesisis only aninfinitesimalstep!
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A stochastic geometry model for fMRI data
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Abstract

Functional magnetic resonance imaging (fMRI) is a principal method for mapping
the human brain. fMRI data consist of a sequence of MR scans of the brain acquired
during stimulation of specific cortical areas, and the purpose of analysing the data
is to detect activated areas, i.e. areas where the intensity changes according to the
stimulation paradigm. A common analysis procedure is to estimate the activity pat-
tern non-parametricly by smoothing the data spatially. The focus is then on assessing
significance of peaks or clusters in the smoothed activation surface by means of multi-
ple hypothesis testing, rather than assessing the uncertainty of the estimated pattern
itself. In this paper we formulate a more structured model for the spatial activation
pattern. We achieve this by considering a stochastic geometry model where the acti-
vation surface is given by a sum of Gaussian functions, which to some extent can be
thought of as individual centres of activation in the brain. The model is formulated
in a Bayesian framework, where the prior distribution of the centres is given by a
marked point process density. An advantage of this approach is that inference can be
carried out by simulation techniques, and hence it is easy, though time consuming, to
evaluate the uncertainty of the estimate or to test hypotheses of interest regarding the
activation. Furthermore in this framework, we are able to model the temporal pattern
of the activation with fewer assumptions than usually imposed. This reveals signifi-
cant non-stationarities in the analysed data, which violate the common assumption of
stationarity of the haemodynamic response.

Keywords: Functional magnetic resonance imaging; Stochastic geometry model; Marked

point proces; Markov chain Monte Carlo; State space model; Correlogram

Introduction

Functional magnetic resonance imaging (fMRI) is a medical imaging technique where fast
MR scanners are used to measure changes in blood oxygenation in the brain. The latter is
known as the Blood Oxygen Level Dependent (BOLD) signal. These oxygenation changes
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correlate with neural activity in the surrounding tissue, and hence fMRI is an indirect
method for measuring activation in the brain. The technique is quite new, one of the first
experiments was reported by Kwong et al. (1992) and since then the number of publications
in the field has grown extremely fast. fMRI is a very attractive modality for imaging the
brain, since it is non-invasive and has a good temporal and spatial resolution.

In a typical fMRI experiment a subjects brain is scanned while specific centres are stim-
ulated, for instance the visual cortex can be activated by flashing a light in the eyes. The
acquired data consist of a sequence of scans and the aim of the statistical analysis is to iden-
tify regions in the images, where the intensity changes according to the stimulus rhythm. A
biostatistical introduction to the subject is given in Lange (1996), Lange and Zeger (1997)
also contains a good introduction.

The analysis of the data is impeded by the uncertainty of the haemodynamic response to
the stimulus. It is well known, that the response is delayed about 6 seconds and dispersed
in time compared to the stimulus paradigm, but otherwise there is no general accepted
biological model for the response, which can guide us when modelling the signal.

Another problem is the incorporation of spatial structure in the analysis. Of course the
spatial activation pattern depends on the type of stimulation, and it is difficult to impose
structure on this in a general setting. Instead, a common approach is to marginalize the
analysis to a one dimensional time-series problem for each voxel in the scan, see for instance
Worsley and Friston (1995), Lange and Zeger (1997) or Bullmore et al. (1996). The spatial
structure of the data is included in a second step, when the image of activation estimates is
convolved with a smoothing kernel to obtain a non-parametric estimate of the activation. In
this approach there is no specific model for the spatial pattern of activation. Furthermore
the focus is on assessing significance of peaks and clusters in the image by testing thousands
of voxel-wise hypotheses simultanously.

In this paper we will focus on the issue of estimating the activation pattern, rather than
testing multiple hypotheses. The model for the spatial pattern is based on two fundamental
assumptions in the fMRI literature: 1) The activated areas have a spatial extent of several
millimetres and 2) the activation pattern is “smooth”. Both assumptions are based on the
haemodynamic origin of the signal: Even if neural activation is localized to a single voxel,
say, the haemodynamic effects will occur in the surrounding venes, and will cover a larger
area. We will incorporate these two assumptions in a stochastic geometry model based on
marked point processes, see for instance Baddeley and van Lieshout (1993). This is done by
modelling the spatial activation surface by a collection of Gaussian functions, which to some
extent can be thought of as individual centres in the brain. The model is formulated in a
Bayesian setting where the centres a priori are distributed as a marked point process; here
the points are the locations of the centres and the marks describe the shape and height of
the centres. The inference in the model is based on simulation techniques, by which we can
estimate the posterior mean of functions of interest, such as the mean activation pattern.

The advantages compared to the common analysis procedure outlined above are many.
1) We don’t have to smooth the data spatially, but can retain the detailed resolution of the
MR scans. 2) We can assess the uncertainty of the estimated spatial pattern in a Bayesian
framework. 3) We can quantify our belief in more specific hypotheses about the activation by
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estimating posterior probabilities in the model. 4) Finally we can model the haemodynamic
response function, i.e. the temporal pattern of the activation, in a semi-parametric way, which
allows for non-stationarities and non-linearities. With the latter approach explicit knowledge
of the stimulation paradigm is not required, and we can hence estimate activation which is
not time-locked to the stimulation rhythm.

The paper is organized as follows: In Section 2 we formulate the Bayesian model for the
spatial activation pattern, and combine this with a simple initial model for the temporal
response to obtain a spatio-temporal model. The temporal pattern is assumed to be known
and described by a convolution model. This is somewhat restrictive, but it allows us to
focus on the spatial pattern for a start, and discuss how we can simulate the latter from the
posterior distribution. This is done by an MCMC algorithm, which is described in Section 3.
In Section 4 we apply the model to a simulated data set, which is used for estimating prior
parameters, and to visual stimulation data. In the next two sections we extend the model in
different ways: In Section 5 we describe a state space model for the haemodynamic response
function, and demonstrate its ability to model non-stationarities which are indeed present in
the data. In Section 6 we extend the covariance structure to account for the spatio-temporal
correlation, which is present in the noise. Finally we have a discussion in Section 7 and an
appendix where theoretical properties of the MCMC algorithm are studied.

2 The model

2.1 Preprocessing of the data

Suppose the data consist of m scans, acquired with a stimulation paradigm , ..., 7,,, where
m¢ = 1 indicates stimulation and m; = 0 no stimulation at time ¢. Typically the paradigm
is arranged in blocks of, say, 10 scans with stimulation and 10 without. Let V be the
set, of voxels covering brain tissue, V' C S, where S represents a 2 dimensional slice or
a 3 dimensional volume of the brain. The dataset is hence given by a set of intensity
measurements Y = {Y, i € Vit =1,...,m}.

The units of the intensities recorded by the MR scanner are arbitrary, and it is common
in the literature to report variation of the signal in percent of baseline intensity. In order
to consider variation of the intensity in different voxels on the same scale, we have log-
transformed the data. Suppose for instance, that the measurement in a given voxel at time
t is given by Y; = u(1 + ¢;), where ¢; is a deviation from the baseline intensity of the voxel.
For small deviations we then have

logY; =log pu+ log(1 + &) > log pu + &4,

and hence the magnitude of (structural and random) variations of the log data, can be
compared between different timeseries. Furthermore, the unit of the deviations can be
thought of as percent of baseline intensity.

We will preprocess the data, such that the images are aligned to correct for subject
movement and has been corrected for trends. In our applications we have used a simple
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procedure, where each image is aligned to a reference image by minimizing the squared
difference between the two images over all translations and rotations. As for the trend
correction, we will consider the residuals after subtracting the mean and correcting for
a linear trend in each individual time series. The presence of trends and low-frequency
fluctuations in fMRI time series is often reported in the literature, though the processes
which generate these are not well understood. Modelling these features as linear terms is
necessarily an approximation, and more general models such as proposed by Holmes et al.
(1997) and Petersen et al. (1998) may be applied. However, as will be described in Section
5, our aim is to model general temporal response patterns, and hence we are cautious not to
remove any fluctuations caused by the haemodynamic response. A linear model is a good
compromise in this context.

A basic assumption of the model is that the spatial and temporal patterns of the ac-
tivation can be modelled separately. Considering an image or a volume of the activation
magnitudes A = {A4;,i € V} and a timeseries ¢ = {¢;,t = 1,...,m} of the common tem-
poral variation caused by the BOLD effect, we assume that the mean intensity measured in
voxel ¢ at time ¢ is given by EY;; = A;p;. We will now describe in detail how the spatial and
temporal pattern are modelled.

2.2 A model for the spatial activation pattern

Consider first the case where data only represent a 2 dimensional slice of the brain, that is
V C S C R%. The spatial activation pattern will be modelled as a collection of n “activation
centres” X = {Xi,Xo,...,X,}, each parametrized as X; = (u;,a;,d;,r;,6;). The global
pattern A(X) = {A4;(X)|i € V} is given by the superposition of n bells,

Ai(X) = h(; X1) + -+ - + h(i; Xa)

where

ey mlog 2 i? i2 ) }

i) = { = 0 (s e W
and ¢ = (i1,12) = R(—0;)(i — p;). Here R(6) is a rotation with angle §. Hence h(-; X;) is
a Gaussian bell of height a; centred at u; € S. The parameter d; € R, is the area of the
contourellipse at half height, r; € (0,1) is a measure of the eccentricity of the ellipse, more
precisely the ratio of the first principal axis and the sum of the two axes, and §; € [—7/4, 7/4]
is the orientation of the ellipse. Notice that the angle is constrained to an interval of length
7/2 to ensure identifiability of the parameters (r, ).

In order for this specification to be meaningful, we need to restrict heights to be positive
and incorporate some regularity in the point pattern. We will achieve this by formulating a
prior model for X in the context of marked point processes, see for instance Mgller (1999).
Each centre X; = (u;,a;,d;,7;,0;) is a point in X = S x M, where

M =10,0,] % [0,C4] x (0,1) x [—7/4,7/4].
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Here C, and C, are natural bounds for the height and area respectively. Though time series
with negative activation amplitude is observed, we will initially assume that all bells have
positive height. We will discuss later, how negative activation can be accounted for in the
model.

Let X be equipped with the Borel o-field § x M and the Lebesque measure Ay X A4,
and let 2 denote the exponential space over X, that is the set of finite sets {z1,...,z,}
where z; € X for all i. The activation profile X = {X;,..., X,;} can then be interpreted
as a point process in {2 or equivalently as a marked point process with point space S and
mark space M. A priori we will assume that X has density wrt. the unit rate homogenous
Poisson process on €2 of the form

f(z) o< p" (H 11 ¢(xi,:rj)> H{p(aj)p(dj)p(rj)}, z=A{z1,..., 20} (2)

i=1 j=i+1

where n = n(z) is the number of points in = and £ is an intensity parameter. The pairwise
interaction function ¢ introduces a regularity in X, discouraging configurations with centres
placed “on top” of each other. A popular choice when modelling repulsive point patterns
is the Strauss model with interaction radius p > 0 with respect to a metric 6(-,-) on X. In
this case ¢ is given by

(&m) = CEN g e,

with v € [0,1] and with the convention that 0° = 1. In our setup, however, we wish to
impose a hard-core restriction, which prohibits pairs of centres with distances close to zero.
The hard-core model with v = 0 is not very suitable in this context, since the posterior
distribution will be very sensitive to the choice of p. An appropriate alternative is the
so-called very-soft-core model of Ogata and Tanemura (1984) with

o(&n) =1—exp{—(6(&,n)/p)"}, &Ene X, p=>2. (3)

The hard-core model is obtained by setting p = oo, while finite values of p yield a continous
interaction function which increases smoothly from 0 to 1 with the distance between two
points. A plot of the interaction functions for different values of p can be seen in Figure 1.

The metric §(-, -) should be defined such that two centres x; and z, are close, if they are
close in space and have similar size and shape. One way of assessing this is by the J-divergence
(Kullback, 1959) of the corresponding Gaussian functions: By rewriting the expression in
(1), we find that the activation intensity h(-,z;) induced by z; = (u;, aj,d;,7;,0;) is given
by h(i;x;) = a;d;f;(¢)/log2, where f;(-) = f(-; uj, X;) is a multivariate normal density with
mean x; and covariance matrix

no_% pu (f 10;7,>R(—0).

2mlog2 -

The J-divergence between the two densities is now given by

fi(x)
fa(x)

§(ar, ) = T (fu, fo) = / (f1(2) — fola)) log 42 3, (dx) (4)
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Figure 1: The soft-core interaction function ¢(£,n) in (3) as a function of the distance 6(&, ),
&,m e X. The parameter p equals 1.

and by inserting the means and variances we get
1 _ _ _ _
5(:61, 332) = -2+ 5 {(/,61 - /,62)1(21 ! + 22 1)(,LL1 — ,UIQ) + trace(EZ 121 + El 122)} . (5)

Figure 2 is a plot illustrating distances between pairs of points with this metric. The ex-
pression can of course be rewritten in terms of the (d, r, #)-parametrization of the Gaussian
density.

The priors for a and d should be as uniform as possible, yet penalizing values close to
zero. The inverted Gamma distribution is a suitable choice in this context, with its light tail
near zero and its quite heavy tail for large values. Hence we will assume that ™' ~ I'(2, 5,)
and d~' ~ I'(2, 34) with the restrictions that a € (0,C,] and d € (0, Cy]. The density of d is

p(d) = exp(Ba/Ca)(Ba/Ca+ 1) ' B3d > exp(—pa/d), d € (0,C4].

In our application we set 3, = 0.05 and 3; = 200 mm?, for comparison the voxels cover an
area of 3.61 mm? in each slice in our data. As for the axis ratio 7 we wish to discourage very
eccentric ellipses. This can be obtained by a Beta-prior, r ~ Beta(5,5). Finally the angle 6
is uniformly distributed on [—n/4, 7/4].

With this choice of prior, we assume that the intensity 3 of the centres is constant over
V. An obvious refinement is to include covariate information on the underlying tissue and
allow the intensity to depend on the location. Also the experimenter often has good prior
knowledge of where the activation is likely to occur, which could be used, when specifying
0.

This specification can straightforwardly be generalized to a 3-dimensional setting where
S C R3. In this case a centre is given by = = (u,a,d,r1,79,01,0,), and the contribution to
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Figure 2: Examples of distances measured by the metric (5) on the product space of points
and marks. Illustrated are pairs of countour ellipses at half height of the respective bells,
together with their distance.
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the activation volume is

i ) o (A B, B B
1. ) = aex — 10 —_— .
’ P 5% \3d (r2[rars)? " (2 rirs)2P " (12 [rara)?B

Here r3=1—1r1 — 719, 7; > 0 for i =1,2,3 and

cosf;cosfy —sinf; — cos6; sinby
i = (i1,%2,73) = | sinfycosfy cosf; —sinfysinby | (i — p).
sin 6, 0 cos 0,

With this parametrization d is the volume of the contour ellipsoid at height a/2, and r; is
the ratio of the sth main axis and the sum of the three main axis. The angles #; and 6, are
the rotations in the xy-plane and xz-plane respectively, which are restricted to the interval
[—m/4,7/4]. The natural extension of the priors is to assume that (ry,79) ~ Dy(5,5) where
D5 is the two-dimensional Dirichlet distribution.

2.3 A model for the temporal pattern

In order to obtain a reasonably simple spatio-temporal structure in the model, we will
assume that the temporal pattern ¢ = {¢;,t = 1,...,m} is approximately the same for all
voxels. Hence we assume that any voxel-wise differences in the delay is negligible, and we
assume that the shape of the haemodynamic response is the same everywhere. This should
be contrasted to, for instance, the approach in Lange and Zeger (1997), where differences
from one voxel to another is explicitly accounted for. However, we will discuss later how the
model can be extended in order to relax this assumption.

Initially we will follow the approach in Friston et al. (1995) and consider ¢ to be known
and given by a convolution between the paradigm 7 and a Gaussian density of mean 6
seconds and variance 9 seconds?, modelling the delay and dispersion of the signal. Hence

T (T — 6)?
o zi:m_z Tam3 g ) (6)

where T is the repetition time, i.e. the time between two consecutive images. This is a rather
simple model, and there is no particular reason for choosing a Gaussian density as the model
for the impulse response function, neither is it obvious that the response is stationary. In
Section 5 we will describe a more flexible semi-parametric model for the temporal pattern
which does not require these assumptions. However the simulation procedure to be presented
in the following section simplifies a great deal if we assume a known and fixed response, and
we will thus start with this model.

2.4 Combining the spatial and temporal models

Given the centres X and the haemodynamic response function ¢, the model for the intensity
Y is,

Yii = (Ai(z) + m)os + i, mi ~ N(0,7%), e ~ N(0,0%), i€V,it=1,....m (7)
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where {¢;;} and {7;} are independent white noise sequences. We assume a simple noise model,
with the €;;’s being independent, but more general covariance structures can be incorporated
in a theoretically simple way, see Section 6. Also more complicated noise sources may be
removed before the analysis, for instance by procedures in Le and Hu (1996) or Petersen
et al. (1998).

The likelihood function in the model (7) is given by

_ 2y (m=LIV] 1 S = \?
p(Y|z) = (270?) exp {—52 D27 (Ya Vi) } x

(2n(0® +7%s5,) Fexp{ == ——— 3" (Vi- (@) §. (8)
2(0?[ss, + 72)

eV

Here . .
Y=Y Yag/ss, ss, = @, (9)
t=1 t=1

is the coefficient of the projection of {Y;;,t = 1,...,m} on the vectorspace L = span{p}.
Notice that the likelihood function factorizes into two terms, involving only the projection
of Y onto L and onto the orthogonal complement to L, respectively, with X only entering
in the latter. Hence we find that {V;,i € V} is sufficient for X. The former is a regression
image with the voxel-wise estimated activation amplitudes, this is also known as a Statistical
Parametric Map (SPM) in the fMRI literature (Friston et al., 1994). The estimation of
the spatial pattern A;(z) can hence be viewed as a model based way of smoothing the
SPM. This provides a link to more traditional methods, where the SPM is smoothed with
a Gaussian filter, and afterwards regarded as a differentiable Gaussian random field for
inference purposes. The model in this simplest setting hence provides an alternative estimate
for the activation based on the raw SPM and a way of assessing the uncertainty of the
estimate. In the more general setting described in Section 5, we can estimate ¢ semi-
parametricly rather than assuming it is known, which is in general not possible in the
traditional SPM approach.

The purpose of the random effect term 7; is to regularize the estimate of X. To see
why this is necessary, consider the log posterior distribution of X, which up to an additive
constant is given by

logp(z]Y) = BT . > (Y - Ai(m))2 + log p(z).

o2/ss, + 72) =

Suppose for a moment that 7 = 0, corresponding to omitting the random effect 7; above.
By inserting sufficiently many small bells, we can obtain a configuration where A;(z) = Y;
when the latter is positive, and A;(xz) = 0 elsewhere. This configuration will minimize the
sum of squares above. Even if the prior density of such a pathological point configuration
is very small, it will be the maximum aposteriori estimate in the limit as m, and hence
ssy, tends to infinity, since the sum of squares will dominate in the limit. By assuming a
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fixed positive value for 72 this undesirable property of the posterior distribution is removed.
Intuitively 72 is a measure of how well we expect the actual activation surface to be described
by a reasonable collection of Gaussian functions, while the purpose of the prior for X is to
quantify what we mean by a reasonable collection.

When applying the model, we will insert ad hoc estimates of 02 and 72. An unbiased
and consistent estimator for o2 is given by

Q

e \V\ZZ( W= Tip) ~ oD/ = m-DV. ()

eV t=1

As for 72, we will estimate o2/ss,, + 72 by considering the regression coefficients ¥;. These
are distributed as ~
Y; ~ N(Ai(z),0%[ss, +7°), i€V,

with all Y;’s independent. Letting di denote the 9-voxel neighbourhood of i, we will let

o %foj ~ N(Ai(x), %(a%s(p +72))

j€di

fori € V°, where V° = {i € V|97 C V}. By assuming that the activation surface A;(x) can
be approximated by a plane locally around ¢, we have that A;(x) = A;(z) and hence that

o 3 ) w
v 2
is an unbiased and consistent estimator for o?/ss, + 72. When the approximation is not

exact, we will get a slight positive bias in the estimate for 72.

2.5 Modelling negative activation

So far we have only considered areas with increased intensity during stimulation, but in fact
in some areas of the brain a parallel decrease in the intensity is observed. This is typically
attributed to large veins or other types of non-neural tissue, and as such is not of primary
interest in the analysis. However, in order to obtain a realistic model for the data, we need
to consider this effect.

A natural way to proceed is to model the activation as At — A~, where AT and A~
are positive surfaces describing positive and negative activation respectively, and each has a
prior similarly to the surface A described earlier. When doing this, we have to incorporate
restrictions in the prior that separates the two surfaces for identifiability reasons. If not,
the two surfaces may overlap to an extent where they cannot be individually identified as
positive and negative activated areas, but rather positive and negative terms in a general
surface, which is not necessarily given by sums of Gaussian functions. As a result of this the
positive and negative centres will become highly correlated, and the interpretation of the
activation surface becomes very difficult.
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Suppose we let X* and X~ be two point processes modelled as described in Section
2.2, determining the postive and negative surfaces respectively. One way of separating the
surfaces would be to model the prior as

PXT,X7) o f(XH)F(X ) exp(—a ) A(XT)A(X 7)),

eV

where f(-) is the density in (2) and o > 0. This prior allows some overlap between A(X™)
and A(X ), but the last term penalizes configuration where A;(X ™) and A;(X ) are both
large for some 7 € V. The parameter o determines the weight of the separation term in the
prior. Suppose we let o' = 02 /ss,,+ 72, the variance of Y;, such that \/a4; is given as units
of standard deviation of Y;. The posterior obtained with this prior is then

p(XT,X7]Y) o exp {—2(02/%2 ) Z (}7; —[A;(XT) — Ai(X_)])2}

eV

X FXF) (X ) exp {—ﬁ ZAAX*)AAX—)}

eV

X exp {_2(02/551(;, ) Z (Y/; — Ai(X+)>2} f(X)

i€V

X exp {_2(02/5; + 72) 2 (YZ * Ai(X_))Q} FX7).

eV

This shows that X and X~ are independent given the data Y, and the marginal distribution
of X* is the same as that obtained when ignoring X ~ as described in the previous sections.
Hence if we choose to separate the surfaces by this choice of prior, we can make inference
about Xt and X~ in their respective marginal distributions, and afterwards combine esti-
mates using the independence of the two point processes. Naturally this prior is only one
suitable way of restricting the two activation patterns out of many. As an alternative one
might model repulsion between points in the two point processes, or one could consider a
hard-core restriction prohibiting the surfaces from overlapping more than a certain amount.
In these cases the two point processes would not be independent in the posterior distribution.
However, the independence argument above makes it plausible to make separate inference
about positive and negative activation, or to only consider positive activation, which is the
main parameter of interest. As there are considerable advantages of considering only one
type of activation at a time, namely a reduction of the dimensionality of the point processes
and improved properties of the simulation algorithm, we will henceforth marginalize the
inference in this way.
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3 Simulating from the posterior distribution

In order to explore the posterior distribution of the activation centres given the data, we have
designed a Metropolis-Hastings algorithm based on the Geyer and Mgller (1994) algorithm
for general finite point processes. Let x be the current point configuration. We will then
propose to 1) insert a new point, 2) remove an existing point or 3) change an existing point,
with probabilities p;, ps and ps respectively, where p; + ps + p3 = 1. By “change an existing
point” we mean that one of the coordinates of the point is changed, either the position or
one of the mark-coordinates.

Let ¢, (2" | z) denote the proposal density of a new configuration z’ based on the current
configuration x with move type m = 1,2,3. The probability of accepting the move is then
respectively

" — min p(z'| Y)ga(z|2")p2
(@) = { p(@[Y) g1 (o' |2)py ’1}’

ay(z, ') = min p(@' | Y)q (z[z)p,

2( ’ ) { p(l“\Y)qg(x’|x)p2 ’1}’
p(z' | Y)gs(z|x") 1}
p(z|Y)gs(2'|z) 7 )

If the move is rejected, the Markov chain stays in x. The proposal distributions are described
in detail in the following.

a3(z,2') = min {

3.1 Insertion of a point

With probability p; we propose to add a new point & = (u,a,d, r,0) to the existing point
configuration x = {z,...,z,}. In order to obtain a reasonable acceptance rate for this
move, we wish to perform a Gibbs-like update and sample the parameters from a density
proportional to the Papangelou conditional intensity p(x U £|Y")/p(z|Y). However this is a
distribution on the 6 dimensional space of points and marks and it is not possible to simulate
directly from it. Instead, we will propose the parameters (u, a, d, 7, §) sequentially, hence the
proposal ¢;(z U &|x) is a combination of the terms,

n(zU€lz) = q(plz)q(alp, )q(d|p, a, z)q(r|p, a, d, 2)q(0| 1, a, d, 7, ), (12)

where we use the generic symbol ¢(-|-) for a proposal density. We will choose the proposal
of a single parameter, a say, such that it resembles the conditional intensity of a point
(i, a, dy, T, 0p) given the current configuration z, where (dy, ¢, 0y) are fixed typical values for
the remaining parameters and p is the proposed position of the point. In our applications we
have chosen ag = 0.01, dy = 50 mm? (corresponding to about 14 voxels in our data), ry = 0.5
and fy = 0. Generally we simulate from discretized approximations to the conditional
intensities, the details are given below.
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Using (8) we find that when ignoring the priors, the Papangelou intensity of a new point
& given x is

% = exp {_2(0'2/881()0 + 7_2) (Z h(l,f)Q -9 Zh(l, 6)({/1 — Az(.T))) } . (13)

i€V

By approximating the discrete sum by an integral, we find,

Sntuer = [f o {258 (s e ) s

icv
27 log 2
= // a? exp {— T ;g (z* + y2)} dzdy/(vyvy)
= a*d/(2log 2v,v,) = ad/(210g?2), (14)

where v, and v, are the length of the voxelsides in mm’s and d = df (vgvy) is the area
measured in voxels. Above (xy,yy) represents a translation and rotation of (z,y), and the
second equality follows since this transformation together with the coordinate scaling has
Jacobian one.

When proposing the position p we will fix the remaining parameters at (ag, do, 79, 6p) and
approximate the Papangelou intensity in (13) with a voxel-wise constant density;

q(plz) o eXp{

1 .
WZ}Z(’L,M, ao,do,To,eo)(n—Ai($))} fOI',LLE V.
i€V

We will need to calculate a sum over V for all possible values of © € V' in order to simulate
from this density. Hence an order of |V |? iterations are required, which can be quite large; in
most applications |V| is around 5000. The computational burden can however be reduced,
either by only performing the sum over a part of V, where h(-; u, ag, do, ro,6p) is greater
than a certain threshold, in which case the number of iterations is O(|V]). Alternatively the
convolution can be calculated in the Fourier domain, which requires O(|V'|log, |V|) iterations
when a Fast Fourier Transform algorithm is used, see Press et al. (1992).

Considering (13) as a function of the height a, the proposal density is then

q(alp, )

Ocexp{_z( 1 ( a’dy _QaZh(i;u,l,do,ro,Oo)(ffi—A,—(a:)))}, (15)

o?/ss, +72) \ 2log2v,v, g

which is a Gaussian distribution,

G‘IUJ r~ N (ZiEV h(i§ﬂalad0,ro,90)(}~/¢ — Az(.T)) UQ/SS(/, +7-2)

do/(210g2) " do/(210g2)
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restricted to the compact interval (0,C,]. As for the three remaining parameters (d, r, #) we
will approximate the conditional intensity with a piecewise log-linear intensity, and sample
from the corresponding distribution. When proposing d we will select a grid (dg, ..., 0m)
such that dy = 0, 6,, = C,; and let

Di — Di—1

51' — 51',1 (d — 51'—1)} for d € (51'—1, (5,],

Q(d|/,6, a, l') X exp {pi—l +
where

a

2 ~
P = — ! (5 — 2 " h(i; p, a, 6,70, 00) (Vi — Az’(x)))
eV

2(0?[ss, + 72) "2log 20,0y
— 3logd; — Ba/di, (16)

fore=1,...,m—1, pg = p1 and p,,, = pm_1- Above the last two terms stem from the prior
for d.
The expressions for q(r|u, a, d, z) and ¢(0|u, a,d,r, ) are derived similarly.

3.2 Removal of a point

With probability p, we propose to remove a point. If the current configuration z is empty we
do nothing, otherwise we select the candidate between the points in z with equal probability

3.3 Moving a point

With probability p; we propose to change a parameter of a randomly selected point. We
choose one of the parameters p, a, d, r or § with equal probability and a new value is proposed
by considering the conditional distribution of the parameter given the other parameters.

Suppose for instance that a point & = (p, a,d, r,0) € x has been selected and we wish to
propose a new position y' for £&. Corresponding to the insertion of a new point above, we will
then propose the position by simulating from a distribution which has voxel-wise constant
density

q(p'|z) o< exp { ! ) Zh(i; Wya,d,r,0)(Y; — Ai(ﬂf\ﬁ))} , HeEV

2 2
(0%/ss, + T p

For the parameters r, d and 6 we consider a neighbourhood of the current value, and
approximate the conditional density as in (16) above. In our application, we have chosen a
neighbourhood of 100 mm? for d, 0.3 for 7 and 0.35 for 6.

Finally, the height a is simulated from a normal distribution as when proposing a new
point,

a|x~N Zievh(i;u,l,d,r,g)(ffi—Ai(x\{f)) UZ/SS¢+T2
d/(21og2) " d/(2log2) |
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4 Simulation study

Estimation of an activation surface can be carried out by simulating from the posterior dis-
tribution of the surface given the data. However, we are left with the problem of determining
sensible values for the parameters of the prior for X, sensible in the sense that the estimated
activation surface corresponds well with the underlying true surface. To this end we have
generated a training data set by simulating from the model (7), with a known underlying
activation pattern A. An image of the latter can be seen in Figure 3. The image was gener-
ated to mimic a “true” activation image, with coherent regions of activation of both small
and moderate sizes. In each region the activation level in individual voxels were simulated
from a normal distribution with a common mean. Finally the image was smoothed with a
Gaussian kernel to obtain a smooth activation image. Naturally an image obtained in this
way cannot be reproduced exactly by a single realization of the activation pattern of model,
in this sense the training data is not different from real fMRI data sets. However by using
the posterior mean of the activation pattern as an estimate of the latter, we can reproduce
more general patterns than those represented by the prior model.

We will fix the parameters of the priors for d, ¢ and r at the values given earlier. Hence
we are left with the intensity 3, the scaling parameter p and the order of the soft-core prior
p. Since we need to perform an entire run of the MCMC algorithm for each combination
of parameter values, it is only possible to perform a crude estimation where a few different
values of each parameter are tried. For each set of parameters we produced 400000 samples
from the MCMC algorithm and stored every 100’th sample. After an initial burn-in of
500 subsamples, the chain was judged to be stationary from plots of diagnostics of the
simulated point patterns (not shown). We will measure the goodness-of-fit of the model by
the posterior mean of the L? distance between the activation surface and the true surface.
We will estimate this quantity by

N 1/2
GOF = % > {Z(Az‘(l‘(j)) - Ai)2} :

j=1 eV

where (), ... (™ is a sequence of simulations from the MCMC algorithm. The variance
of this estimate was estimated by the method of batch means with batch sizes of 25. The
variance estimate gives an idea of the level of uncertainty, but as it depends on the chosen
batch size, it should be interpreted with care.

The true values for the standard deviations were respectively o = 0.03 and 7 = 0.005.
The estimates obtained by (10) and (11) were 6 = 0.02996 and 7 = 0.005074. Table 4 shows
the goodness-of-fit of the model with different parameters values. The model which yields
the best fit is the one with § = 0.01, p = 5 and p = 10. Though the largest changes in
the GOF measure occur when varying 3, the four rows of 3 = 10~* indicates that some
degree of regularity (p > 0) improves the goodness-of-fit. In the last column of the table is
an estimate of the mean integrated activation, that is the integral of the activation surface.
This can be considered as a summary statistic of the total level of activation.
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Evidently the choice of prior parameters affects the final result to some extent. Usually,
we would prefer to estimate the parameters in an empirical Bayes fashion, however as the
maximum likelihood estimates can in general correspond to a prior that favours meaningless
point configurations, cf. the discussion in Section 2.4, this is not an advisable strategy. The
fully Bayesian approach, with hyperpriors on the parameters, is an alternative. However, it
is not obvious how one should simulate the posterior distribution of the parameters, since the
unknown normalization constant of the point process density would enter in the Metropolis-
Hastings ratio. Instead we will fix the prior parameters at the values which yield the best
fit in the simulation study. Though the result will to some extent depend on this choice, we
note from the table that statistics of interst, such as the mean integrated activation, varies
only litte, and in no systematic way, with the parameters.

B3 p p GOF (s.e.x10') Int. act. (s.c.)
107 5 2 01342 (222)  4.89 (0.029)
104 20 2 01345 (2.59)  4.43 (0.019)
0% 5 10 01357 (2.16)  4.63 (0.022)
104 20 10 01328 (1.97)  4.57 (0.018)
104 0 - 01355 (3.01)  4.68 (0.022)
102 5 10 0.1305 (2.87)  4.86 (0.026)
106 5 10  0.1428 (2.00)  4.83 (0.025)

Table 1: Estimates of the goodness-of-fit of the model with different parameter values.
Standard errors due to the simulation are given in parentheses. In the row with p = 0 no
interaction between the points was included in the model. In the last column is an estimate
of the mean integrated activation.

In Figure 3 is the estimate of the posterior mean activation image under the best model
above. For comparison, the smoothed SPM estimate of the activation is also displayed in
the figure. This is obtained by smoothing the regression image {f/;} with a Gaussian kernel
of FWHM 3 voxels. The latter denotes the full width of half maximum of the smoothing
kernel, this is the typical measure for the width of a smoothing kernel in the medical imag-
ing literature. Both estimates tend to oversmooth the true image, due to the smoothness
assumptions underlying them both, but the bias is largest for the SPM. This is more clearly
seen in the plot in Figure 4 which shows the number of voxels with an activation level higher
than a given threshold for the true image, the posterior mean activation image and the
smoothed SPM. One cannot reduce the oversmoothing of the SPM by reducing the width of
the smoothing kernel, since the theory of Gaussian random fields, used for making inference
in the SPM, requires the discrete image to be a reasonable approximation to a differentiable
spatial process.
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Figure 3: Top Left: The artificial activation image used for generating training data. In-
tensity values range from 0.0 to 0.04, but the image is clipped at 0.03 for display purposes.
Top Right: The regression image {Y;} obtained from the training data. Bottom left: The
estimate of the mean posterior activation with § = 0.01, p = 5, and p = 10. Bottom right:
The regression image smoothed by a kernel of FWHM 3 voxels. Note that the color scale
differs in the upper right image compared to the three others.
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Figure 4: The number of voxels with activation level exceeding a given threshold. Shown is
respectively the true image, the posterior mean activation image and the smoothed SPM.

4.1 An analysis of a visual stimulation dataset

We will apply the method to an fMRI dataset consisting of 90 scans, acquired while a light
was periodicly flashed in the eye of the subject. The scans, which was obtained by a method
denoted Echo-Planar Imaging (EPI), was recorded every 2 seconds during a 3 minute period.
The stimulation was arranged in blocks of 20 seconds off, 20 second on, 20 seconds off etc.,
with 4 complete on-off cycles during the session. Each scans consists of 128 by 128 voxels
each covering an area of 1.875 x 1.875 mm in a slice of thickness 5 mm.

In general the magnetization of the tissue will be highest in the initial scans, causing an
increased intensity in the beginning of the time series. After a couple of scans an equilibrium
is obtained, and the intensity stabilizes at a steady level, and we will hence discard the first
5 scans and only consider the remaining 85 in the analysis.

The variance estimates were ¢ = 0.0294 and 7 = 0.00421. We generated 1 million
simulations from the MCMC algorithm and subsampled every 100’th sample. In Figure 5
is a plot of two diagnostics of the simulated point process, namely the number of points
and the L? norm of the residual image, {Y; — A;(z)}. As can be seen from the plots there
is an initial burn-in period of about 2000 subsamples, after which the chain stabilizes to
a stationary level. However, as the auto-correlation plot for the number of points shows,
the samples are somewhat correlated, and it would be worthwhile to improve the mixing
properties of the algorithm to speed up convergence. The acceptance probabilities for the
different movetypes are listed in Table 2.

In Figure 6 is a plot of the posterior mean activation image and the posterior standard
deviation of the activation, calculated voxelwise. The back of the head is in the top of the
images. It is evident from the images, that there are large areas of activation in the back
of the brain, which corresponds to the location of the visual cortex, that processes visual
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Figure 5: Diagnostics plots of the simulations obtained by subsampling every 100’th iteration
of the MCMC algorithm. Shown is to the left the number of points in X and to the right
the L? norm of the residual image, {¥; — 4;(X)}. Below are auto-correlation plots of the
two timeseries.

Move type Acceptance (%) Acceptance (%)

Independent noise Correlated noise
Insert point 5.51 4.72
Delete point 5.53 4.75
Update position 15.78 11.35
Update height 43.92 25.98
Update area 35.63 23.76
Update angle 66.86 52.10
Update ratio 59.84 45.43

Table 2: Acceptance probabilities for the different move types in the MCMC algorithm. The
correlated noise model will be described in Section 6.
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impressions. For comparison is also the smoothed SPM, which appears to oversmooth the
image, also in this example.

The posterior variance image gives some idea of the uncertainty of the activation estimate.
The area which has large posterior variance turned out to posses some time series which were
more noisy than the remaining ones, this lack of fit of the model is hence reflected in a larger
uncertainty of the estimate in this area. Alternatively the uncertainty can be quantified
by the posterior probabilities of individual voxels having activation level greater than a
certain threshold, 0.009 say. The latter corresponds to the standard error of usual voxel-
wise regression estimates for the activation level. The posterior probabilities are displayed
as an image in the figure.

Often the interest is on a particular summary statistic, such as the activation area,
measured in terms of number of activated voxels. For the current data set the estimate of the
mean activation area is 491.0 voxels, and the standard deviation of the area is estimated to
26.0. More specific hypotheses about the activation pattern may be evaluated by estimating
posterior probabilities of events of interest.

Finally we will estimate the shape of the response function, given the estimated activation
surface. Recall that Y;; = A;p; + €5, hence for known A the m.l.e. of ¢; is given by ¢; =
> AiYu/ Y, AZ for t =1,...,m. By inserting the estimate of the posterior mean activation
surface displayed in Figure 6, we get the estimate of ¢ plotted in Figure 7. Overlaid on
the plot is the model response function given in (6). As can be seen from this plot, there
are substantial differences between the model, and the observered response. The observed
response does not appear to be stationary, for instance the last peak is higher than the 3 first,
and the dip below baseline is more prominent after the first and third cycle than after the
second. In the next section we will describe a method for modelling such non-stationarities
in a semi-parametric setting.

5 A semi-parametric model for the haemodynamic re-
sponse

Though the model for the haemodynamic response (6) is verified empirically to give a reason-
able fit to the observed response, its limitations were demonstrated in the previous section.
Several hypothesis have been proposed to explain the complex interplay between the local
blood flow and oxygenation changes and the BOLD signal, yet there is still not concensus
of the quantitative relationship between these. Clearly the choice of a convolution model
with a Gaussian impulse response function is somewhat ad hoc in this context. Alternative
models for the impulse response has been proposed, such as Gamma densities by Lange and
Zeger (1997), Friston et al. (1998) and FIR filters by Nielsen et al. (1997). The question
of whether a convolution model is appropriate is however not clear; in some circumstances
the response is approximately linear (Dale and Buckner, 1997) while in others it is highly
non-linear (Vazquez and Noll, 1998). Also a relevant question is whether the response is sta-
tionary over time, or if the response changes with general alertness and learning as suggested
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Figure 6: Top left: Monte Carlo estimate of posterior mean activation surface. Top right:
Smoothed SPM estimate of activation surface. Bottom left: Estimate of voxelwise posterior
standard deviation. Bottom right: Voxelwise posterior probability of activation level greater
than 0.009. The images represent a slice of the brain, the upper part of the images correspond
to the back. The grey line represents the surface of the cortex.
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Figure 7: Thick line: Maximum likelihood estimate of the haemodynamic response function
under the assumption that the spatial activation pattern is known and given by the estimate
in Figure 6. Thin line: The model for the haemodynamic response in (6).

by Gaschler-Markefski et al. (1997).

Considering the complexity of temporal response, it seems very appealing to model the
latter in a semi-parametric setting. In this framework we do not have to assume stationarity
over time or additivity of the response. Instead we will assume a prior of the form

or=M+v, vi—v,1~N(0,k%), t=1,2,...,m. (17)

where {v; — 14_1} are independent and vy = 0. Here the mean )\; is a simple model, such
as that in (6) used in the previous section, reflecting the overall structure of the response.
However ¢ is allowed to deviate a lot from the mean, via the random walk structure of the
noise terms v;,. The variance x? governs the smoothness of ¢, — ;.

Combining this prior for ¢ with the prior for spatial activation pattern (2) we can
make inference about (X, ¢) through the simultaneous posterior distribution P(X,¢|Y).
For computational reasons we will in fact consider the posterior distribution of (X,Y,n)
where 7 = {n;,i € V'} are the random intercepts in the model (7). This posterior is given by

p(X, 9,mY) oc P(Y[X, 9,n)P(X)P(p)P(n),

where the likelihood term is obtained by conditioning on 7 in (7). The variable n can be
considered as an auxiliary variable in the simulation algorithm, since it is not of interest in
itself, but simulation of the two other variables X and ¢ becomes much easier, when we
condition on 7.
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We can generate a Markov chain which has the posterior as invariant distribution by a
variable-at-a-time Metropolis-Hastings algorithm, where we iteratively update one parameter
given the two others. When updating X, the proposals are as described earlier, though with
the modification that we replace A;(z) with A;(z) + 7; and set 72 = 0 in the formulas in
Section 3, in order to account for the fact that we condition on 7. A similar modification
applies to the likelihood function in (8), when calculating the acceptance ratio.

When updating 7, we will simulate directly from the conditional distribution given
(Y, X, ). This is hence a Gibbs update, which will always yield acceptance rates of 1.
It can easily be verified that

2 ~ 2
Y, X, o~ N[ —T (Vi — A,(X)), 721 — —— )], 18
WYX~ N (e (= 40,720 - ) (19

with all n;’s conditionally independent.

We will simulate directly from the conditional distribution of ¢ given (Y, X, n), as well,
since this is also normal, where mean and variance can be calculated as follows. Let Y,; =
(Yit)iev denote the image recorded at time ¢, regarded as a |V|-dimensional vector, and
let £, be defined correspondingly. In the following, all distributions are conditionally on
A = A(X) and 7. Then the model (7) states that

Y= (A+n)pi+ceu, ea~N0,0y), t=1,...,m,

which combined with the prior (17) is a linear Gaussian state space model. Hence it is not
difficult to see that if we condition on Y, ¢ has a Gaussian distribution. The literature on
state space models is extensive, hence we will just give the formulas for the conditional mean
and variance of ¢ as given by the Kalman smoother, and refer to West and Harrison (1989),
for instance, for the proofs.

Let Dy = 0{ Y., . .., Yy} denote the information up to time ¢ and suppose that ¢; 1|Dy 1 ~
N(ps—1,Cy—1). This is true for ¢ = 1 when we consider the initial distribution of ¢y as a
degenerate normal distribution concentrated at 0. The Kalman filter then gives that
given D is also normal, ¢;| Dy ~ N (us, Cy), where

Crt=[lA+n|*/0® + (Coos + K7) 7,
C
Pt = p—1+ Ap — Am1 + 0—;(14 + 1) (Yae = (A4 10) (-1 + Ae — Xi—1)).
Here prime denotes the transpose matrix.

In order to simulate from the distribution of ¢; given Y = D,,, we will also consider
the Kalman smoother. Suppose that ¢yi1|@iio, Dy ~ N (fig41,Ci11). By the recursion
above, this is true for ¢ + 1 = m with G, = p, and C, = Cp. Then we have that
@t 0111, D ~ N(fig, Cy), where

_ C? ~ C
CtZCt—CtTtKQ, 'ut:Mt+C’tTtli2(%+l_'ut_)\t+l+/\t)' (19)
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In fact this is the conditional distribution of ¢; given ¢;i1,...,¢m, Dm, by conditional in-
dependence of ¢; and ¢y, ..., @m, and hence we can use this recursion to simulate |D,,:
We simply simulate the ¢;’s one at a time, starting from the back with ¢,,.

We note here, that a collection of response functions could be modelled by allowing a
multidimensional ¢. We could assign different functions to different groups of centres, and
in this way account for regional differences in the response. The formulas above would be
slightly more complicated, but at least for moderate dimensions of ¢ the recursive simulation
routine would still be very efficient.

In Figure 8 is a plot based 1000000 simulations of this Markov chain. We considered the
visual stimulation data of the previous section, though preprocessed in a slightly different
way, as we removed some low-frequency trends with very large magnitude from the data, in
order to stabilize the algorithm. The plot illustrates the estimated posterior mean E(p|Y)
with confidence limits for ¢ based on the posterior variance. For comparison is an overlay of
the initial model (6). The plot shows the same deviations from stationarity as was indicated
by Figure 7.
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Figure 8: Monte Carlo estimate of the posterior mean of the haemodynamic response
function based on 10000 subsamples of 1000000 simulations. Overlaid is pointwise 95%-
confidence regions based on the estimated posterior variance. The thin line is the prior
mean of the response given by the convolution model in (6).

One consequence of modelling ¢ in this way, is that the paradigm is only vaguely included
in the model, in the sense that the response function is not time-locked to the paradigm,
but is allowed to drift by the random walk structure. It might seem unwise to ignore a
relevant covariate like this, however, in some experiments the actual paradigm is not directly
controllable by the experimenter and hence precise information of this is not available. For

.24



instance in memory processing or other mental stimulation experiments, it is not possible
to end the stimulation at an exact time point. Furthermore with this formulation, we may
detect subtle activation patterns, which depends on the paradigm in more complex ways.
An example of the latter is the XOR signal of Lange et al. (1999).

6 Accounting for correlated noise

The initial model in (7) assumed that the noise was uncorrelated both temporally and
spatially. This is necessarily a somewhat optimistic assumption. The noise sources in fMRI
data are both of physiological and physical origin. The pixel values are constructed by inverse
Fourier transforms of a sequence of mesurements of currents in a coil over a short time period.
Hence there is no physical separation of the pixels, which could justify independence. The
temporal correlation is likely to arise from physiological sources, but also intrinsicly in the
MR scanner.

In order to investigate the correlation of the noise, we will consider the residuals in the
model (7), ry = Yit—f’icpt, where we assume the response function ¢ is known. The empirical
temporal and spatial correlograms are respectively,

m—1
A(l):w 1=1,2,....m—1,i€V,

Zgl TiZ,t

3 Zier TitTitk,t

At(k) = Z T2 )
1€V it

where Vi, = {i € V]i+ k € V}. We estimate the correlograms voxel-by-voxel respectively
scan-by-scan in order to assess whether the correlation is stationary over voxels and scans.
In Figure 9 is a plot of 4;(1) as a function of i € V with estimated 95%-confidence bounds
based on a global AR(1) model ;(1) = (1) and ~;(1) = 0 for [ > 1 for all i. Displayed
is also a plot of A\:((1,0)) as a function of ¢ with estimated 95%-confidence bounds based
on the spatial model described below. About 10% of the points fall outside the confidence
bounds in each plot, which indicates that the temporal (spatial) correlation structure is
not the same in all voxels (scans). This is not really surprising, as it merely reflects the
inhomogeneity of the underlying tissue. The observation suggests that a non-separable
covariance model, which allows for the different temporal structures, should be fitted to the
data. One such model is that proposed by Lange and Zeger (1997), where the voxel time
series are considered in the frequency domain, and different spatial covariance models are
fitted to different frequencies. However, since we need to invert (or Cholesky decompose)
the large spatio-temporal covariance matrix in order to calculate the likelihood function, we
will have to restrict ourselves to reasonably simple covariance structures. For this reason we
will only consider a separable model in the following sense. Let ¢ = {e;,i € V.t =1,...,m}
be the noise terms in (7) regarded as a |V| x m matrix, then

keZ’t=1,...,m,

g~ N|V|Xm(0,021“ X A).
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Figure 9: Left: The empirical temporal correlations at lag 1, 4;(1), as a function of voxel
number. The 95%-confidence bounds are based on a common AR(1) model for all voxels.
Right: The empirical spatial correlation at lag (1,0), A((1,0)), as a function of scan number.
The 95%-confidence bounds are based on a common spatial model for all scans (see text.)

where ® denotes the Kronecker product and where I' and A are |V| x [V| and m x m
correlation matrices.

Global correlation estimates are obtained by the averages (1) = |V|™' Y, 4:(l) and
k) =m! Doy A(k). A plot of the empirical temporal correlations can be seen in Figure
10. The fitted AR(1) model with 4(1) = 0.0367 gives a reasonable fit to the observed
correlations.
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Figure 10: The empirical temporal correlogram for all voxels with the fitted AR(1) correlo-
gram.

A plot of the empirical spatial correlation can be seen in Figure 11. The correlation
is clearly non-isotropic and furthermore there is evidence of negative correlation at lag 2
voxels. The plot indicates that observations further than a distance of 2 voxels apart are
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almost uncorrelated, which suggests a moving average type model,

i = Zngi-l—j: eV,

jeD

where {U;, j € Z?} is white noise and D is some neighbourhood of the origin. Here and in
the following we will only consider the spatial covariance structure of a single scan and hence
ignore the temporal index ¢ in the notation. The parameters g;,7 € D can be estimated
by fitting the model to the empirical covariances and an estimate of the spatial correlation
matrix I' may be calculated. The problem with this approach, however, is that one needs
to invert I', or at least compute the Cholesky decomposition I' = LL' where L is lower
triangular, in order to calculate the likelihood function. In our data set there are more than
4000 voxels constituting V' which makes it very demanding to decompose the correlation
matrix. As a practical alternative to the above model, we propose to parametrize the
Cholesky square root L rather than I' itself, and hence consider the model &€ ~ Ny (0,02LL")

where L is parametrized as follows. Let L = {I;;} be a lower triangular matrix, such that

lij ifi>ji—jeD,
lyj=41 ifi=j,
0

else,

where D is a neighbourhood of the origin, not necessarily equal to the neighbourhood in the
moving average model above. Then we let L = {l;;} be given by

lij
(Siat)”

The normalization above ensures that LL' is correlation matrix. Notice that when ignoring
edge-effects, the model will be stationary since L;; = L;_;.

In this formulation I' can be calculated by a matrix product, and expressions such as
21z for z € RYV!, which enters in the likelihood function, can be calculated by

lij = 1,jEV

ZT7 0 = L7 = oI, (20)

where v is the solution to Lv = z which can be obtained easily due to the lower-triangularity
of L. Notice that we have to order the indices in |V| when expressing the spatial correlation
as the matrix I". The correlation between ¢; and ¢; is given by

COI"I"(SZ',SJ') = Z li—klj—k- (21)

k<min(i, )

Hence the model has the peculiar property, that the covariance structure depends on the
ordering of the indices. From a theoretical point of view this is difficult to accept, since the
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ordering is arbitrarily chosen. From a practical point of view, however, the ordering is chosen
in any natural way, and the model is judged by how well it fits data. We will demonstrate in
a moment that the model fits data well, and since the computational advantages by working
with L rather than I or ['"! are considerable, we favour this method.

The parameters may be estimated by fitting the implied correlation (21) to the empirical

covariance,
2

[ = argmin Z Z I_plj—k — 4(7)

{jez?:DN(D—3)#0} \ k<min(0,j)

We have chosen the natural lexicographic ordering of the voxel indices (z,y) and have
parametrized the model by letting D include 3. order neighbours, which gives 6 free param-
eters. In Figure 11 is a plot of the empirical correlation along the 4 equiangular directions
(0,7/4,7/2,7), together with the fitted correlation. Clearly the model fits the data quite
well.
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Figure 11: Empirical and fitted spatial correlations along the four equiangular directions
(0,7/4,7/2,3m/4)

Incorporating estimates of I" and A in the model (7) is quite straightforward if we assume
that these are reasonable precise estimates, and hence can be regarded as fixed. Consider
the data Y as a |V| X m matrix, and let Y° = Y/(M~!), and ¢° = M, where M is the
lower triangular Cholesky square root of A. Then the conditional likelihood function, where
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we condition on the values of 7, is given by

_mvl L m L Qe oty oo
p(Ylz,0,n) = (2m0®)" 2 [T 2€XP{—@Z”L (Ve -Y SOt)||2}
t=1

cexp{ oL - A- ], @)

2 o
202 [ss¢,
where
m m
70 __ 2 : o o o o __ § : 02
in - Y;t(pt/ssgo’ SS(p - Pt
t=1 t=1

is defined equivalently to Y in (9). Recall from Section 3 and 5 that the proposal distributions
for updating X and ¢ in the MCMC algorithm were based on the model with independent
noise. A big advantage from an application point of view is that these need not be changed
when we incorporate correlated noise terms, if we are willing to accept slightly worse mixing
properties. By simply substituting the expressions for the likelihood ratio in the Metropolis-
Hastings ratio, we ensure that the chain converges to the correct posterior distribution.
Inference on X can hence be made by simulating (X, 7n) iteratively, where the distribution
of n|X,Y, pis as in (18).

We considered the visual stimulation data again, and simulated 1000000 samples of X
using the same MCMC algorithm as described in Section 3, but with the modified likelihood
function. As expected, the acceptance rates decreased a bit, see Table 2. The effect of
accounting for correlation in the noise shows both in the activity estimate itself and in an
increased uncertainty of the latter. The mean activation image is illustrated in Figure 12.
The largest difference, compared to the activation image obtained with the uncorrelated
noise model in Figure 6, is the circular region in the back of the brain, which is much larger
in the current image. As an example of how the variance of the estimate increases, we
may consider the number of activated voxels. The mean and standard deviation of this are
estimated to 543.1 respectively 31.4, the corresponding figures from the uncorrelated model
in Section 4.1 were 491.0 and 26.0.

7 Discussion

We have proposed a spatio-temporal model for fMRI data which explicitly accounts for the
fact that the signal changes are locally coherent in both space and time. This assumption is
often implicitly included in the analysis of fMRI data, when spatial and temporal filtering
are applied prior to the analysis, but rarely included explicitly in a model. The relation (8)
shows that in the simplest setting the procedure is effectively fitting ellipsoids of different
sizes and orientations to a regression image, and assessing the significance of these. The
random field theory has counterparts to this procedure, namely the search for local maxima
in both scale and space, Siegmund and Worsley (1995), and in the space of ellipses with
different orientation and shape, Shafie et al. (1998). The method is, however, fundamentally

1.29



Figure 12: The estimate of the posterior mean activation image in the correlated noise model.

different from the random field approach. The latter provides a framework for testing the
null-hypothesis of no activation in each individual voxel with correction for the large number
of tests performed. As was pointed out by Keith Worsley in the discussion of Lange and
Zeger (1997), what is really an estimation problem is hence answered by a large number
of statistical tests, with corresponding conceptual and mathematical problems. With the
proposed method the focus is shifted towards estimating the activation pattern by use of
standard Bayesian methods, rather than testing for activation in individual voxels.

Assessing the uncertaincy of the estimated activated pattern is theoretically easy by
considering posterior variances. This allows us to evaluate the significance of hypothesis of
interest within single subjects. Alternatively we may record estimates and standard errors
of relevant features of the activation in different experiments, and use this when comparing
different groups of subjects. This might for instance be the mean activity level in a certain
region of the brain, where the latter could be identified individually in each subject from
high-resolution anatomical scans acquired simultaneously with the fMRI scans.

The approach of modelling the temporal response in a non-parametric setting with few
assumptions seems appealing to us, given the uncertainty about the nature of the haemo-
dynamic effects in different stimulation types. Also the fact that the modelled response
depends only vaquely on the specified paradigm is an advantage when analysing data where
the actual paradigm is difficult to determine. Naturally the method has it’s limitations.
Firstly the prior we have formulated, restricts the response to be sufficiently smooth, and
one could imagine that this is not the case in the recent event-related pardigms Buckner
(1998), where several stimulation types are rapidly interchanged. To analyse these data
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with our method, an alternative prior should be formulated, possibly by incorporating the
paradigm and assuming some sort of stationarity.

Another limitation is the assumption, that the response is the same everywhere in the
brain. Authors such as Lee et al. (1995) and Kornak et al. (1999) have found, by fitting
simple parametric response functions to fMRI time series, that the delay can vary with a
few seconds over the activated regions. Though the semi-parametric model is limited by
the assumption of constant delays, it is advantageous in the sense that it can capture more
general response patterns than those proposed by these authors. An obvious way of relaxing
the assumption of constant delay and shape is by working with a collection of response
functions, and assigning different functions to different centres, hence we would only assume
that the response is locally similar. In this formulation we would in fact search for any
spatial regions of similar temporal pattern, and not only paradigm related patterns.
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A Ergodicity properties of the Markov chain

Theoretical results for the algorithm described in section 3 are studied in Geyer and Mgller
(1994), Mgller (1999) and Geyer (1999). Geyer has a stability condition, namely that the
point process has bounded conditional intensities, which implies Harris recurrence and ge-
ometric ergodicity of the algorithm, that he studies. This situation is, however, slightly
different, since our proposal density for inserting a new point ¢»(£ U z|z) is not constant, as
in Geyer’s algorithm, but has a rather complicated structure. However, when restricting the
support of the prior in a natural way ¢(§ U z|z) is bounded below, which turns out to be
sufficient to apply Geyer’s method.

PROPOSITION 1 There exists a constant M such that

p(z UEY) < Mp(z|]Y) Ve Qe X.
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PrOOF Recall that ¢(z;,z;) given by (3) is less than 1, hence we have,

p(ng‘Y) _ p(fo) (Y|xU£ ﬂH¢ 67 (I, d,’/’)

Yy T el p(Ve) AL
X exp { (UQ/SS gy (;h —2 ;h(i; H(Y; - Ai(fv))> }
1
< cexp {W;h Y}

1/2
1 -
< cexp m (CdCE/(Q log 2 v,vy) Z Y;2>

eV

Here the last inequality follows from (14). Let M denote the expression in the last line, this
does not depend on z og & and the proof is complete. [J

In the rest of this section we will restrict the support of the prior to the region D given

by

n(z)

D={xeQ|) h(iz;) <C,VieV}.

j=1
This assumption says that not only is C, a natural upper bound for the height of individual
activation bells, but also for the image obtained by combining all bells. As C, was chosen
arbitrarily large, this is not a restriction in practice.

PROPOSITION 2 There exists a 6 > 0 such that
gUzlz) > VEe X, x € such that t UE € D.

Proor We will show that each of the factors in (12) is bounded below. Considering ¢(u|z)
we have

q(plr) = Z texp {; Zh(i; I, ag, do, To, 90)(371‘ — A,(x))} ,

2 2
0%/ss, + T ey

where Z is the normalizing constant, that is the sum over y € V of the last term. By an
evaluation such as that in the proof of Proposition 1 we have that this term is bounded
above by a finite constant c;, hence Z=! > (|V|c;)™!. By the assumption that z U& € D we
have that A;(z) < C, for all : € V such that the last term is bounded below by a positive
constant co. Hence we have g(p|z) > co/(|V|e1). A similar evaluation of ¢(a|u, z), combined
with the fact that the proposal is restricted to a bounded interval, shows that q(a|u, x) > c3
for a positive constant ¢z and all z, 4 and a. Likewise p; defined in (16) is bounded below
and above for all 7, and hence so is ¢(d|a, u, z). The proposals for r and 6 are equivalent to
the one for d. [J
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PropPOSITION 3 The algorithm simulates a Markov chain that is Harris recurrent and geo-
metrically ergodic.

These properties are desirable, since they ensure that the chain will converge to the
correct stationary distribution geometrically fast, such that a central limit theorem holds.

Proor By Propositions 1 and 2 the probability of accepting an upstep can be dominated

as follows,
Y 1 M
min{ljp(vafl ) }S _
p(xlY) (n+1Dg(xU€x) d(n+1)
As the number of points n tends to infinity, the expression on the right hand side tends to
zero. The probability of accepting a downstep is

min {1 7p(x|Y)
"p(zUE]Y)

for n large enough. Hence if the number of points gets very large, the propability of accepting
a further upsted is almost zero while we will allways accept a downstep. This guarantees a
drift towards a smaller number of points which again implies geometrically ergodicity. We
refer to the arguments in the proofs of Propositions 2 and 3 in Geyer (1999) for details. O

(n+ 1>q1<xu5|x>} > 1,
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Abstract

Recently Everitt and Bullmore (1999) proposed a mixture model
for a test statistic for activation in fMRI data. The distribution of the
statistic was divided into two components; one for non-activated voxels
and one for activated voxels. In this framework one can calculate
a posterior probability for a voxel being activated, which provides
a more natural basis for thresholding the statistic image, than that
based on p-values. In this article, we extend the method of Everitt
and Bullmore to account for spatial coherency of activated regions.
We achieve this by formulating a model for the activation in a small
region of voxels, and use this spatial structure when calculating the
posterior probability of a voxel being activated. We have investigated
several choices of spatial models, but find that they all work equally
well for brain imaging data. We applied the model to synthetic data
from statistical image analysis, a synthetic fMRI data set and to visual
stimulation data. Our conclusion is that the method improves the
estimation of the activation pattern significantly, compared to the
non-spatial model and to smoothing the data with a kernel of FWHM
3 voxels. The difference between FWHM 2 smoothing and our method
were more modest.
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1 Introduction

In the literature on analysis of functional magnetic resonance imaging (fMRI)
data the focus is primarily on the temporal aspect. Perhaps the most com-
mon analysis scheme is to treat voxel time series separately, and estimate the
activation level voxel by voxel. This framework ranges from simple ¢-tests and
correlation methods to more detailed models for the haemodynamic response,
and models which account for correlated noise. The latter encompasses gen-
eralized linear models and time series models. A few papers which fall in
this category are Bandettini et al. (1993), Bullmore et al. (1996), Worsley
and Friston (1995) and Lange and Zeger (1997), but we refer to an overview
paper, like Lange et al. (1999), for the long list of references which should be
cited in this context.

The spatial properties of the data are rarely modelled with the same care
as is given the temporal ones: Common approaches are either to assume
spatial independence, or to smooth data spatially with a Gaussian kernel.
The latter approach has been studied primarily by Keith Worsley in a series
of papers, see for instance Worsley et al. (1996). Smoothing the data spatially
is in fact equivalent to using a non-parametric model for the spatial activation
pattern, assuming only smoothness of the latter (Miiller, 1988). It should
hence be viewed as an estimation procedure which is optimal in this model,
but there is no general statistical reason for smoothing. On the contrary
smoothing may produce a biased estimate, by displacing activation peaks
and underestimating the height of the latter (Descombes et al., 1998; Hartvig,
1999).

Even if explicit spatial models are rare, the value of including spatial
information in the analysis has been recognized for many years. Commonly
this is achieved by assessing significance of activation by the size of supra-
threshold clusters. This was first suggested by Poline and Mazoyer (1993) and
have later been studied from a theoretical point of view (Friston et al., 1994;
Poline et al., 1997), using Monte Carlo methods (Forman et al., 1995) and
permutation methods (Bullmore et al., 1999). In our minds the important
distinction here, is that of a spatial model and the inference made in this.
Even if cluster size is used as a measure of significance, the estimated pattern
is still a product of the underlying model used to produce the clusters. Also
in this context, the non-parametric smoothing model seems to be the typical
choice.

Recently Descombes et al. (1998) proposed a Markov random field model
for the spatio-temporal activation pattern and used this for estimation of
the latter. Their assumption is that the activation pattern is spatially co-
herent, yet may possess sharp boundaries between different regions, and the
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model introduces this explicitly in the estimation procedure. Assessment of
uncertainty and significance is not straightforward in this framework, since
it requires simulations of the posterior distribution of the spatio-temporal
activation pattern. In principle this may be done with Markov chain Monte
Carlo (MCMC) techniques (Gilks et al., 1996), but since the state space of
the spatio-temporal activation pattern is enormous it is a time-consuming
and far from trivial task. Instead the authors suggested to use the procedure
only as a preprocessing step, and did not use the model for making explicit
inference on the activation.

The dimensionality of the activation pattern is much reduced in Hartvig
(1999) where stronger assumptions are made. Specificly the activation is
modelled as a collection of centres with Gaussian shape, but with unknown
extent and height. This enables inclusion of prior information directly in the
model, and simulation of the posterior distribution is possible by MCMC.
However also in this context the need to perform lengthy simulations is a
limitation of the method.

The problems of the two last approaches perhaps explain the lack of
spatial models: 1) It is somewhat difficult to formulate the general idea
of coherency of activated regions in a specific model, which is still general
enough to model the range of patterns observed in brain data. 2) Most
spatial models are analytically intractable, and statistical inference must rely
on simulation methods, which are time-consuming and often requires a lot
of user interaction. The latter makes them less suitable for routine use. In
this paper we try to bridge the gap between formulating a spatial model
which has some realistic properties, and the computational feasibility, which
makes it applicable in a routine analysis. The idea is to formulate the model
through the marginal distribution on a small grid of voxels, for instance a 3
by 3 region in the slice.

Though the model may be used as the spatial part of a spatio-temporal
model, we will only consider the problem of estimating the activation pattern
based on a single summary image (or volume) of voxel-wise activation esti-
mates, also known as a statistical parametric map (SPM). Let {z;} denote
the latter, where ¢ indexes the voxels. Recently Everitt and Bullmore (1999)
(henceforth denoted EB) suggested a marginal analysis of such an image.
Let A; be the indicator for voxel ¢ being activated. The approach of EB is
to calculate the conditional probability P(A; = 1|z;) for each voxel, and use
the latter to estimate the activated areas. In order to calculate this, they
specify the distribution of activated and non-activated voxels, i.e. the condi-
tional distributions p(z;|A; = 1) and p(z;|A; = 0), as well as the probability
P(A; =1). The method does not use any spatial properties of the data.

What we propose in this article is to keep the simplicity of the approach
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in EB, but to extend it in such a way that spatial interaction is partly taken
into account. Instead of using P(A; = 1|z;) we suggest to use P(4; = 1|z¢;),
where C; is voxel ¢ together with the neighbouring voxels. The idea is that
activated areas tend to constitute a group of at least a few voxels, hence
voxel ¢ has a higher chance of being activated if both voxel ¢ and some of its
neighbours have high values. Conversely the activation probability is small
if z; is high, but all the neighbours has small values. The main problem
in this approach becomes the specification of the marginal probabilities of
the activation A¢, in the region C;. We propose three different models for
these probabilities, ranging from a very simple one to a more realistic one.
Common to all is that the probability of a voxel being activated has a simple
expression, which can be easily calculated.

2 Theory

In the two first subsections we present an overview of the method and the
spatial models for the activation pattern. The third subsection is on estima-
tion of parameters in the model, and is more technical than the two first.
The reader who is most interested in the general concept and examples of
application of the model may skip this third subsection on a first reading.

2.1 Overview of the mixture model

As mentioned in the introduction, we assume that a statistical parametric
map {z;} is given, and we wish to derive a posterior probability that a voxel
is activated using this map. In the following we will describe how a local
model for the activation pattern around a voxel 7, can be used to incorporate
spatial information in the posterior probability. In order to simplify notation
we will drop the voxel index ¢ from the notation.

Suppose we consider k£ neighbours around voxel i. Typically these would
be the 8 neighbours in a 3 x 3 square in the slice or the 26 neighbours in a
3 x 3 x 3 cube in a volume of slices with voxel i in the centre. We will let C
denote the set of £+ 1 voxels given by voxel ¢ together with the k neighbours.

We will let A be an indicator for the event that voxel i is activated,
in the sense that A = 0 means that there is no activation in voxel ¢ and
A =1 means that the voxel is activated. Likewise, we will let A, ... A* be
a vector of indicators for activation in the £ neighbours. We index the A’s
by a superscript to avoid confusion with the usual voxel subscript. Finally
Ac = (A, AL, ..., A¥) is the vector of all activation indicators in C. We will
consider this as a vector of unobserved stochastic variables, and formulate a
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model for it’s distribution. Thus for each vector ac = {0, 1}**! we specify
the prior probability P(Ac = ac¢) that the activation configuration takes
a particular value. Different choices of models, which reflect the idea that
activated areas tend to constitute a cluster of voxels, are proposed in the
next section.

Rather than observing A¢, we observe ¢ = (z,z!,...,z%), the values of
the test statistic for activation in the different voxels. Like before x is the
value for voxel 7, and x!,. .., z* are the values for the neighbours. The usual
hypothesis testing approach assumes a specific model for = given that the
voxel is not activated, for instance that this is a normal variable with zero
mean and unit variance. In our setup, we require that one can also specify
the alternative distribution, i.e. the distribution of x given A = 1. In EB the
statistics are fundamental power quotients (FPQ), which have respectively
a central and a non-central y2-distribution under the two activation states.
In our Example 3, the test statistics are the estimated activity level from a
regression analysis, and it is natural to take (z|A = 0) ~ N(0,0?). When
the voxel is activated, A = 1, it is not so clear what the proper distribution
is. We find that the range of different activation levels are described well by
a Gamma distribution, (z|A = 1) ~ ['(\, 8). Denote the distribution of z¢
given Ac = ac by the density f(z¢ |ac).

When these two parts of the model are specified it is straightforward to
calculate the posterior probability of an activation configuration ac given the
data z¢, since, by Bayes rule, this is given by

P(A¢ = ac|zc) x f(zc|ac)P(Ac = ac).

Thus the posterior probability that the activation pattern Ac equals ac is
simply proportional to the likelihood of observing x¢ given Ac = a¢ times
the prior probability of Ac = a¢. In particular, one may calculate the
probability that voxel ¢ is active or not, irrespectively of the neighbours, by
summing over the neighbouring states,

1 1

PA=alzc)x -} flwc|ac)P(Ac = ac), (1)

al=0 ak=0

where ac = (a,a!,...,a¥). The constant of proportionality can be deter-
mined from the fact that the probabilities P(A = 0|x¢) and P(A = 1|z¢)
must sum to one.

The problem with using this approach in practice is the calculation of the
sum in (1), which has 2* terms. In the situation with a 3x3x 3 neighbourhood
cube, the sum thus has 2% or about 67 million terms, and since we must
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calculate this for each voxel in the volume, we are facing an order of 103
iterations. Even though the computations may be performed in parallel, this
is of course hopelessly too many in practice. The main contribution of our
method, is that we propose models for P(Ac = a¢), which are able to model
clustered activation, but where the sum may be calculated analytically. Thus
we obtain a simple, closed form expression for the posterior probability that
a voxel is activated, which may be calculated almost instantly. These are
given for each of the three models in the following sections, see equations
(4), (16) and (19).

We will assume in the following that the statistics z¢ are independent
given the true activation pattern Ags. Thus the density of x¢ given Ag can
be written as,

k
flze | Ac =ac) = f(z]a) fo7|a7
7j=1
where f(z|a) is the density of z given A = a.

2.2 Models for the marginal probabilities

In this section we give three choices for the marginal probabilities P(A¢ =
ac), ac = (a,a',...,a*) € {0,1}**1. For an activation configuration ac, we
will let s = a + a! + -- - a*, that is the number of ones in ac.

2.2.1 Model 1

Perhaps the most simple choice is to take

P(Ac = ac) = { w ifs=0, @

q1 if s > 0.

Since there are 25! values of ac we must have ¢ = 1 — (2¥*! — 1)q; in
order that the probabilities sum to one. Thus this distribution has only one
parameter and a natural way of interpreting this parameter is through the
probability p of a voxel being activated. This gives p = ¢;2* or

g =p2"* and g=1-(2-2")p. (3)

Notice that in the model there is equal probability of observing a config-
uration with all ones and one with only ones in a corner of the region C, for
instance. If we expected the activated areas to be large coherent regions, the
former probability should be larger than the second, whereas if we expected
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the areas to be of moderate size but with long boundaries, the second prob-
ability should be larger than the first. The above model hence represents
the situation that we neither believe that activated regions consist of single
voxels nor that they are very large.

We will illustrate in this simple situation how the posterior probability
in (1) may be calculated. We shall be using the equality

21:21: (ﬁf(aﬂa] ) H{f 2’10) + f(a7[1)} .

Let n denote the above product. When a = 0 the expression in (1) is

PA=0|zc) o f(z[0)D -+ (foﬂ\aﬂ) (Ac = ac)

al=0 ak=0

k
= f(x0) (Q177+ o — q1 Hf $]|0)

Jj=1

and when a = 1 we simply get

P(A=1]|z¢) x f(z|1)gn.

Since the two probabilities must sum to one, we find,

P(A = 1|zc) = f(z[Dqin
SV + £(210) (a0 + (a0 = a1) [T}y S (7]0) )

= 1+% 1+<q11)(ﬁ(1+“j)>1 1, (4)

feln) S

f(z0)’ f(27]0)
Notice that v is the likelihood ratio for the voxel being active vs. not active.
The formula (4) thus effectively combine the likelihood ratios from voxel 4
together with those of its neighbours to calculate the posterior probability of
activation. The formula shows in a direct way the difference to the approach
in EB. If all the neighbours are non-activated then (4) will typically be of

the order .
fis Lot )
fzl) ¢

where

j=1,...,k. (5)
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whereas if at least one neighbour is activated the order is typically

-1
1o ooy
f (1)
For illustration let us consider the case where p = 0.02 and £ = 8. Then

go/q1 = 12289, and if f(z]0)/f(z|1) ~ exp(—8) then the first term is 0.20
whereas the second expression is 0.9997.

2.2.2 Model 2

Another simple choice of P(A¢c = a¢) is

_ | @ if s =0,
Plde =ac) = { ay®t if s> 0. (6)
Here v = 1 gives back the model 1 in (2), whereas the restriction a@ =

7v/(1+ )% corresponds to the model where the voxels are independent and
the probability of a voxel being activated is y/(1+7). The latter is equivalent
to the model in EB.

The model may be parametrized by the probability p of a voxel being
active, which is given as p = a(1 + ), and by 7. The latter is a measure of
correlation of neighbouring activation sites. The last parameter ¢q is given
by the constraint that the probabilities must sum to one. The posterior
probability of activation may be derived in the same way as in model 1, the
expression is given in (16) in the appendix.

2.2.3 Model 3

Finally, we will consider a model of the form (6), but being more symmetric
with respect to activated and non-activated voxels. We will consider the
model

4o if s =0,
PAc =ac) =4 i ' +apyi ™ if1 <s<k, (7)
Q1 ifs=k+1.

The model may be parametrized by the probability p of a voxel being ac-
tive, and 4 other parameters describing the correlation between voxels. The
relation between parameters may be found in the appendix, as may the ex-
pression for the probability that a voxel is active (18).
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2.3 Estimation of parameters

For estimation purposes, we will now study the whole volume of voxels,
rather than just a single voxel. For this reason, we will let the notation
depend explicitly on the voxel index. Rather than just using z¢, we will let
z¢; denote the vector of observations in the region C; around voxel 7. The
elements of the vector are denoted by ro; = (29,2}, ..., 2%), thus z? refers to
the statistic x; in voxel 4, and x},. .., z¥ to the statistic in the k neighbours
of 4. Similarly Ac is changed to Ao, = (AY, Al ..., A¥) and the likelihood
ratios (5) are denoted v/, where

. I
vl = Lx;' ), i=0,1,....k i€V
f(zi10)
Within the model we can calculate the marginal density of ;. We denote
this by f(z¢,; ¢, 1), where ¢ parametrizes the conditional distribution of z,
given Ac,, and ¢ parametrizes the marginal distribution of A¢,. Thus

flacidv) = > flee|Ac = ac; ) P(Ag, = ac; ).

acE{O,l}k‘H

A possibility for estimating the parameters (¢, 1) is to maximize the contrast
function

) = log f(zc,; 6, ). (8)

eV

This is related to maximum likelihood estimation, in particular the estima-
tors will be asymptotically normal distributed under conditions where the
maximum likelihood estimators are. For model 2, and hence also for model
1 by setting v = 1, we get

f(qu,u ¢a 7> Oé)
k
[1 /@06 {
j=0

The formula for model 3 is given in (19) in the appendix.

Usually, though, we will take a more simple approach instead of using (8).
We propose to use only the marginal distribution of z; to estimate ¢ and the
fraction of activated voxels p. The marginal density of z; is a mixture density

Hl-ﬁ-’yv +1—M}. 9)

o
v v

f(z;0,p) = (1 =p)f(z|0;¢) +pf(z]|1;9), (10)
We thus maximize the contrast function
Ym(,0) = Y _log f(xi; ¢,p) (11)

%
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to estimate ¢ and p. Under model 1 all parameters have been estimated this
way.

When P(A¢, = ag,;) is given by model 2 we still estimate p = «o(1 +
7)* from (11). The remaining parameter 7 may then be estimated from
the empirical covariance of {z;}: Suppose, for example, that (x| A = 0) ~
N(0,0?), and (z|A = 1) ~ N(1,0%). Then the covariance of x; and z; is
given by

=P(Ai=4;=1)—7p" (12)

If 7 is a neighbour to 7, say neighbour number 1, we may derive the first
probability as

Pldi=4;=1) = > P(Ac,=ac)=ay Y. At
ai €{0,1},j=2,...k ai €{0,1},5=2,..k
- g
=a%1+wk1=pTI;. (13)

Notice that the two expression above does not depend on the position of the
neighbour j. Suppose an estimate C of the covariance Cov(z;, x;) is given.
This may be combined with the estimate p of p to form an estimate of v by
the equations above,

b N
’3’ = ]_——b where b = Cﬁ_l +f) (14)

Since the covariance is the same for all neighbours, we may combine estimates
of the covariance at different spatial lags within the neighbourhood, to form
the estimate C. In practice in our examples (where we consider respectively
3x3 and 5x5 neighbourhoods) we have used the eight nearest neighbours to
estimate the covariance,

A

é = (é(l,()) + é(lal) + 0(051) + C(flal))'

Here () is the correlogram for the spatial lag [ (Cressie, 1991),
A 1

G=x Z (zj — Z.)(zj — T.),
JEVJHIEV
where V' denotes the set of brain voxels, /V; is the number of terms in the

sum, and z. is the average of the x;’s.
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Notice that the probability in (13) only depends on the model for Ag,
and hence applies whenever model 2 is considered. This is not true for the
covariance in (12), which depends on the distribution of x given A. In the
setup above we have considered a statistic which is distributed as (x| A =
0) ~ N(0,0?) and (z| A = 1) ~ N(1,0?). When more generally (z|A =
1) ~ N(p,0?%) where p > 0, we obtain the setup above by scaling z by
!, When the distribution of x is not normal, one needs to calculate the
covariance in (12) for the distribution considered. A general formula, which
applies whenever z; and z; are conditionally independent given A4; and A,
is given by

Cov(z;,zj) = Cov(E(z; | Ai), E(xj | Aj)).

Usually it is straightforward to calculate the right hand side above. This is
the approach used in Example 3, where x; has a Gamma distribution when

As for the model 3, this has 4 free parameters when p is given. Mo-
ment estimators may be derived for these as above, but we will refrain from
this since the equations get more complicated. Instead we will estimate the
remaining parameters from (8).

In our examples below we have used the simplex method to maximize the
contrast functions (Press et al., 1992). The standard errors of the maximum
contrast estimators may be obtained by general asymptotic theory, see for
instance Heyde (1997). Cressie (1991) provides formulas for the standard
error of C;. Presently we have no formal way of including the uncertainty
of the parameters in the analysis, it is, however, our experience, that the
posterior probability maps were quite robust to the observed variations in
the parameters. In fact, as we will show in the Example 2 and 3, they are
quite robust to the choice of model.

3 Simulations and applications

We will illustrate the method by applying it to two synthetic data sets, where
the truth is known, and a visual stimulation data set. For the synthetic data,
we may quantify results by respectively classification error, statistical power
or true positive rate (TPR) and level of significance or false positive rate
(FPR). For a given threshold, the classification error is estimated as the
number of misclassified voxels (either type I or type II errors), divided by
the total number of voxels. The TPR is estimated as the as the number of
active voxels classified as active, divided by the total number of active voxels.
The FPR is estimated as the number of non-active voxels which are classified
as active, divided by the total number of non-active voxels.
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3.1 Example 1: Image restoration data

We will apply the models to a classical problem in statistical image analysis,
namely the restoration of an unknown true image based on a degraded version
of it. Techniques for achieving this are applied in many areas where images
are recorded or transmitted with noise, including remote sensing images,
satellite images and medical images. In functional brain imaging the problem
is more complex than in the setting above: It is not as evident what the “true
scene” is or which geometric characteristics it has, and the noise sources
are far more complex than in image restoration problems. It still serves
a purpose, however, to study how the models perform in this more simple
problem, in order to understand the characteristics of the models, before
moving on to more complex data.

We will consider two images. The first (denoted Image I) is the 64x64
binary image of an ‘A’ by Greig et al. (1989), see Figure 1. The image is
corrupted with binary noise, where a pixel A; with probability ¢ is replaced
by 1 — A;. The probability densities of the degraded pixel X; given the true
value A; are then

flelA=0)=¢"1-¢)"° =ze{0,1},
flzlA=1)=(1-¢% ", =ze{01}.

The error rate ¢ was set to 25%. Five independently corrupted images were
produced, in order to assess the variability of the estimates. The results are
summarized in Table 1 and some of the image estimates are displayed in
Figure 1.

The second image (Image II) is the binary image displayed in Fig. 4a of
Besag (1986). The image was corrupted by adding white Gaussian noise with
standard deviation 0.9105. In this setting the densities of a pixel X; given
A, are

1 2
fe|A=0)=— e, TER,

T

1 1
flz|A=1)= e @ g e R,

B V2TT

where 7 = 0.9105. We produced five independent noisy images to assess the
variability of estimates. The results are given in Table 1.

For each model, the parameters were estimated both by maximizing the
contrast function (8) and, for model 1 and 2, by the simple estimators de-
scribed in Section 2.3. Since the results were almost similar, we give only
the figures for the maximum-constrast estimates. In practice we recommend
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that the simple estimators should be used when possible, since they are much
easier to obtain, and give almost as good results.

We calculated the posterior probability of A =1 given X¢ in each pixel,
and the estimate of the true image was obtained by thresholding the prob-
ability image at 0.5. The estimates for one of the noisy versions of image I
can be seen in Figure 1.

The estimated classification error and its standard error are listed in the
second and third column of Table 1. The first column lists the models used in
this example. The models 1, 2 and 3 of Section 2.2 were applied, respectively
defined on a 3 by 3 pixel region and on a 5 by 5 region. For comparison, we
have reproduced the classification errors of the maximum a posteriori (MAP)
estimate and the iterated conditional modes (ICM) estimate, which can be
found in Greig et al. (1989). These two estimates are based on the same

global model for the true image, but only the local properties of the model
are used with ICM.

Table 1: Estimated classification errors for the three models and the ICM and
MAP estimates, based on 5 independent simulations of the degraded image. Image
I refers to the true image in Figure 1, degraded with binary noise. Image II refers
to the image in Fig. 4a in Besag (1986), degraded with Gaussian noise. All figures
are in percent, standard errors of estimates are given in parentheses.

Model Class. error
Image I  Image II

1,3x3 10.0 (0.3) 14.6 (0.3)
1,5x5 9.4 (0.2) 12.2 (0.2)
2,3x3 7.6 (0.3) 9.0 (0.4)
2,5x5 5.9 (0.8) 6.4 (0.2)
3,3x3 7.6 (0.3) 9.0 (0.4)
3,5x5 6.1(0.3) 6.2 (0.3)
MAP  52(0.2) 5.5 (0.2)
ICM 6.3 (04) 6.4 (0.1)

The table shows that model 1 performs worse than model 2 and 3, which
is also clear from Figure 1. It is also clear that the 5 by 5 region models
are superior in this setting, which is not surprising since the true images are
quite regular with large patches of either black or white. We might suspect
that the 3 by 3 models will be more appropriate in brain imaging, where
the true scene is not as regular. Model 2 and 3 perform almost equally well,
hence we prefer model 2, since this only has two parameters.
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b
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i =1y

.

True image

1, 5x5 2, 59%9 3, 9X9

Figure 1: Comparison of spatial mixture models. Top row: Image I and
degraded version. Middle row: Estimates of the true image based on model
1, 2 and 3 applied to a 3 x 3 pixel region. Bottom row: Same as above, but
with the models defined on a 5 x 5 region.
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Model 2 performs well compared to the ICM and MAP methods also.
There are several practical differences between these and our model: Firstly,
it is more computationally intensive to obtain the ICM and MAP estimates,
than our posterior probability images. The latter are calculated in closed
form, while the ICM and MAP procedures require iterative algorithms. Sec-
ondly, the MAP and ICM procedures depend on a smoothing parameter
which, especially for the MAP estimate, is crucial for the reconstructed im-
age. In this case, the value of the smoothing parameter was based on the
true image, which is of course not possible in practice. On the contrary the
parameters of model 2 are estimated directly from the observed image. Seen
in this light, our model seems to be an attractive alternative to the tradi-
tional methods. It is however not as flexible as the ICM approach, which can
be generalized for instance to multicolour settings.

3.2 Example 2: Simulated fMRI data

In order to study the performance on data which are closer related to brain
imaging problems than the ones in Example 1, we have applied the methods
to a synthetic fMRI data set. We used the data set of Lange et al. (1999),
which was generated from 72 baseline EPI scans that were temporally re-
sampled to 384 scans'. We refer to the paper for a full description of the
data, but will repeat the basic properties here. A region of 24 by 12 voxels
is considered, and in each voxel the time series is linearly detrended. Denote
the residual time series by Yj;, where 7 indexes voxels ¢ = 1,...,V and ¢
indexes scan t = 1,...,T. Here V = 288 and T = 384. Artificial activation
was added to obtain the actual data Z;;, say, by the model

Zit = bwy + Y,
where the magnitude of activation b; is given by
bi = MSy-

2 . . 2 . .
Here sy, is an estimate of o7, the variance of Yj;, given by

R 1 <
2 = Yy —Y:.)? Y==Y.
Sy T_lz(t )% T; t

t=1

The temporal activation pattern z; is a simple binary function, where z; = 0
when off and z; = 1 when on, for £ = 1,...,7T. The function is periodic

!The data may be obtained from the address http://pet.med.va.gov:8080/plurality.
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with 8 runs, each of length 48 scans with 12 scans off, 24 on and 12 off. The
ratio m of the activation magnitude to standard deviation was chosen to be
positive and constant in the two connected regions of size 25 and 37 voxels
depicted in Figure 2, and zero elsewhere. According to Lange et al. a value
of m = 0.15 was chosen in the activated areas, however when estimating
m directly from the data by a regression analysis (when the true activation
pattern is known), we obtain 7 = 0.43 with a standard error of 0.015. The
value of m is not important for the present study, however.

In order to make the estimation problem a bit harder than in the paper,
we divided the data into 4 subsets, each of length 96 scans. We estimated
the spatial activation pattern from a single subset at a time, and used the
empirical variation over the four subsets to evaluate the uncertainty of our
results.

Consider a voxel time series at voxel i, Z, for t = 1,...,T,, Ty = 96.
We tested for activation by a t-test. More specificly, the estimate of the
activation level is given by

1 To To
b = Y Zu(w—x.), SSDy =) (z—2.)
SSD, — =
and the variance of Z; is estimated by
1 &
57 = T3 Z(Zit — Zi. — bxy)® ~ 07 (T — 2)/(To — 2).
t=1

Here x?(f) denotes the y?-distribution with f degrees of freedom. Then the
statistic

Xi— iy LV

" /s2/SSD, ’
has a t-distribution with Ty — 2 = 94 degrees of freedom, if the voxel is not
activated. Since the degrees of freedom are quite large, it is reasonable to
make the approximation that the variance estimates are exact, s3.; = s7 = o7,
whence we get a normal distribution for X;,

x N(u,1), ifiis activated,
' N(0,1), if 4 is not activated,

where p = m+/SSD,. The image of test statistics {X;} hence follows a
mixture distribution, where the mean is positive when the voxel is activated

and zero when not, and the setup is as in Section 2.1 with
1 1
p(r|A=0)= e 2%, plx|A=1)= — 3w’ eR

V2r V2r
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We have assumed here that the temporal correlation is zero, which is
necessarily an optimistic assumption. Temporal correlation will affect the
variance of b;, but not the mean, and will lead to a higher variance of the
statistic X;, than stated above.

Figure 2 displays the image of t-statistics for the first of the four sub-
datasets. The posterior probability that a voxel is activated was calculated
using the simple mixture model without spatial interaction, i.e. the setup of
EB, and the models 1, 2 and 3. The image of posterior probabilities was
thresholded at 0.5, which is a natural level when specifying a neutral balance
between type I and II errors. The thresholded activation images are displayed
in Figure 2. Clearly the spatial models (1, 2, 3) represent the true activation
pattern much more closely than the simple mixture model. When using the
latter, we effectively threshold the raw t-statistic image at a certain level,
while at the spatial models we use information in neighbouring voxels, when
classifying a voxel.

True

2, 5%x5

Figure 2: Activation images for the first of four subsets of the synthetic
data-set. Top left and middle: True binary activation image and observed ¢-
statistics image. The remaining are thresholded posterior probability images
for the different models. EB: Everitt and Bullmore’s mixture model. 1, 2
and 3: Models 1, 2 and 3 defined on a 3 x 3 region or a 5 x 5 region. The
images were thresholded at posterior probability 0.5.
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In Table 2 the models are compared quantitatively by their ability to clas-
sify voxels correctly, and by the TPR at a given level of significance (FPR).
The threshold was adjusted to yield an empirical FPR of 5% and 1% respec-
tively in each image, and the TPR of this level was calculated. While the
TPR estimates provide an idea of the strength of the classification test, they
are mainly of theoretical interest, since the threshold used was calculated
given the true activation pattern. On the contrary to this, the classifica-
tion error measures reproducibility of the true pattern, when a practical and
objective threshold is applied.

Table 2: Comparison of models for the synthetic fMRI data in Figure 2. From left
to right are estimates of classification error for the thresholded images and TPR
for images thresholded at a FPR of 5% and at 1% respectively. All figures are
in percent. Standard errors of estimates, expressing the variability over the four
sub-datasets, are given in parentheses.

Model Class. error TPR (level 5%) TPR (level 1%)

EB  11.0 (0.7) 66.1 (2.3) 46.8 (5.0)
1,3x3 6.3 (0.5) 88.3 (0.8) 65.7 (4.0)
1,5%5 7.0 (0.3) 85.1 (2.0) 57.7 (6.3)
2,3x3 6.3 (0.8) 90.7 (1.4) 72.5 (2.4)
2,5%x5 6.6 (0.8) 84.3 (2.9) 74.6 (3.5)
3,33 6.3 (0.7) 87.5 (2.3) 66.5 (3.5)
3,5%x5  7.4(0.3) 82.7 (3.0) 51.6 (7.6)

The table confirms the impression from Figure 2: The simple mixture
model has the worst classification error and the lowest power. The three
spatial models perform almost equally well, and a grid of 3 by 3 voxels gives
the best result for this data. If the activated areas were larger than these,
the 5 by 5 model might be more suitable, however this activation pattern
seems reasonably representative for real data, and hence we recommend the
3 by 3 model to be used in practice. When considering the power, model 2 is
slightly superior to the models 1 and 3, though this is not significant. Model
1 and 2 are furthermore preferable to model 3, since they have only 1 and 2
parameters respectively.

We may conclude that model 2 applied to a 3 by 3 neighbourhood is
preferable in this situation: The statistical power is more than 90% at a
significance level of 5%, and the mis-classification is reduced by more than
40% compared to the simple mixture model.
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We will compare the performance of model 2 with a non-parametric
model, where the activation is estimated by smoothing the data spatially
with a a Gaussian kernel of full width at half maximum (FWHM) 2 and 3
voxels respectively, before calculating the ¢-statistic image. This is perhaps
the most common way of including spatial information in the analysis of
fMRI data, and usually the smooth ¢-image is thresholded using the random
fields theory (Worsley et al., 1996). Voxels may then be classified either on
the basis of peak height or on cluster size. However, our aim here is not
to compare results from thresholding based on random fields theory with
that based on posterior probabilities. We think this is difficult, since the
underlying principles and assumptions are fundamentally different. Rather
we wish to compare the estimates of spatial activation pattern obtained by
the two models. For this reason, we have thresholded the activation images
in a comparable way, namely at the level which yields an actual FPR of 5%
and 1% respectively, based on the true activation pattern. Figure 3 displays
the estimated activation patterns.

2,3x%3 NP, FWHM 2 NP, FWHM 3

Figure 3: Activation images for the first of four subsets of the synthetic
data-set. From left to right: Model 2 defined on a 3 x 3 region and the
non-parametric model with FWHM 2 and 3 voxels respectively. Top row:
Original activation images. Below: Images thresholded at empirical FPR 5%
(middle) and 1% (bottom).

From the first row, we see that the distinction between noise and activa-
tion is dramatically different on the posterior probability scale compared to
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the t-image scale. EB made similar observations when comparing p-values
and posterior probabilities. The two last rows show that the non-parametric
model yields estimates which are smoother than the true regions, while the
regions of model 2 are more irregular and have more holes. The estimated
TPR for the non-parametric model are given in Table 3. By comparing this
with Table 2, we see that model 2 reproduces the true activation best, as it
has the highest TPR for each level of FPR. The difference is only significant
for FWHM 3.

Table 3: Estimates of TPR for non-parametric activation images in Figure 3
thresholded at a FPR of 5% and at 1% respectively. All figures are in percent.
Standard errors of estimates are given in parentheses.

Model TPR (level 5%) TPR (level 1%)
NP, FWHM 2 89.5 (2.0) 66.9 (2.8)
NP, FWHM 3 78.6 (3.4) 46.0 (6.7)

3.3 Example 3: Visual stimulation fMRI data

We finally considered a visual stimulation data set acquired with 75 weighted
EPI on a 1.5 T scanner at the MR Research Centre, Aarhus University
Hospital in Denmark. The data consist of 90 128x128 scans (5x1.875x1.875
mm voxels) for each slice, with a TR of 2 sec. 5 oblique slices were acquired
in axial-coronal direction through the visual cortex. The stimulus was a 7Hz
flashing light, which was presented in a blocked paradigm of 10 scans off, 10
scans on etc. starting an ending with an off-period. The first 5 scans were
discarded, and we selected one of the slices for this analysis.

The scans were realigned by minimizing the squared distance of each scan
to a reference scan under rotations and translations. Next we log-transformed
the data and masked 4389 brain-voxels out. A linear model was fitted indi-
vidually to each voxel time-series. The mean value space was spanned by a
linear trend and a model for the haemodynamic response function given by
a convolution of the paradigm with a Gaussian function with mean 6 sec.
and variance 9 sec?. The estimated activation amplitude was divided by its
standard error to yield an image of ¢t-statistics. The latter is displayed in the
first panel in Figure 4.

We did not account for correlation in the time-series, whence we expect
the variance of the statistics to be larger than the theoretical variance of the
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t-distribution. We investigated the empirical distribution of the set {x;} of
4389 statistics, and found that a mixture of three components fitted well to
this. Two of these were Gamma distributions, modelling respectively positive
and negative BOLD effects, and one was a Normal distribution modelling the
noise. The fitted density was

f(m) = pOfN(xa Oa0-2) +p7fr(_$, )‘7’ ﬂ*) +p+ff($7 /\—f-a/@-}-)a (15)

where fx(-; u,0%) denotes the density of a normal distribution with mean p
and variance o2 > 0, and fr(-; A, 8) is the density of a Gamma distribution
with mean \/8 and variance \/(?,
fr(z; A, B) = ﬂ—)\ac)‘_le_ﬁx, x>0, A>0,6>0.
()

With the requirement that po+p,+p_ = 1, there are 7 free parameters, which
were estimated by maximizing the likelihood function under the restriction
that

v
E(X|X > 0) = 2z 2T > 0)
> i1 (@i > 0)
i.e. the mean of X given that it is positive, must equal the empirical mean
of the positive z;’s. It is well known, that the likelihood function may be
unbounded in mixture models, and the latter restriction was imposed to

reduce the parameter space to finite likelihood-values. The estimates are
given in Table 4.

Table 4: Parameter estimates for the distribution (15) of {z;}.
6 =1.5160 p, =0.0502 p_ = 0.0081

)\+ =6.2349 \_ = 56.923
,3+ =0.9433 [_ =10.2526

We are only interested in detecting positive activation in this example.
Therefore we write f(x) as

f(@)=1—=ps)f(z|A=0)+psf(z[A=1),
where

_ Do
flz|A=0) = p+p_fN(ac00) P

fr(_ma )‘7a ﬂ*)
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is the null-distribution and

f(x | A= 1) = fr(ﬁ )\+aﬁ+)

is the distribution of x, given that the voxel is positively activated.

The setup is hence as in Section 2.1, only here the null-distribution rep-
resents both no activation and negative BOLD effects. As an alternative to
the Gamma distribution for positive activation, one could consider the sum
of a Gamma and a Normal distribution, to account for the fact that the ac-
tivation level is observed with noise. The density of the latter is, however,
not available in closed form, and since the distributions are very similar at
the present noise level, we have chosen a single Gamma.

Figure 4 shows the image of statistics {z;} and enlarged sections of thresh-
olded posterior probability maps for the non-spatial mixture model (EB), and
for the different models in Section 2.2. The images were thresholded at 0.5.
Like in the previous section, there is hardly any difference between the differ-
ent spatial models, but there is a striking difference between the EB model
and the others. In general the activated areas are larger with the spatial
models and small (i.e. single-voxel) areas are suppressed. Clearly we can
only speculate whether these estimates are closer to the truth or not. How-
ever, the simulated data of the previous section suggest that for activated
areas of a certain size, the spatial model gives a significantly improved es-
timate. The idea that activation should have a certain spatial extent is the
rationale behind spatial smoothing and other filtering techniques, and hence
also this methodology.

In Figure 5 we have displayed the estimate, one gets by smoothing the
original data before calculating the statistical image. We have no directly
comparable way of thresholding this image, instead we have thresholded the
image at three different levels. The mixture model estimates have some
similarities with these activation patterns, but clearly the latter are much
smoother. Again we can only speculate what is closest to the truth. It is,
however, well known (Miiller, 1988) that a kernel smoothing estimate will be
biased, in the sense that the estimate will be smoother than the underlying
signal. This is a likely explanation for the difference in smoothness.

4 Discussion

4.1 Conceptual summary

We have proposed a spatial mixture model for a statistical parametric map
{z;}. The idea is to model the distribution of z; both when the voxel is
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Figure 4: Comparison of estimated activation patterns for the different mix-
ture models of the visual stimulation data. Top left and middle: Raw image
of t-statistics and an enlarged section of this. The remaining panels are pos-
terior probability images thresholded at 0.5. Top right: non-spatial mixture
model. Middle and last row: Models 1, 2 and 3 defined on respectively a
3x3 voxel region (middle row) and 5x5 voxel region (last row.)
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[
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Figure 5: Images of t-statistics based on the visual stimulation data smoothed
spatially with a Gaussian kernel of FHWM 2 voxels (top row) and 3 voxels
(bottom row). The images are thresholded at 5.0 (left), 6.0 (middle) and 7.0
(right).



Hartvig and Jensen I1.26

not active and when it is. Typically the non-activated distribution is known,
this is the usual null-distribution of the SPM. The activation distribution
might either be a simple non-central version of the null-distribution, as in
Example 2, or a completely different distribution, which models the range
of different activation strengths observed in the data, as in Example 3. The
activation pattern is described by an unobserved volume of binary indicators,
{A;}. We suggest three different prior models for this pattern, which reflect
the property that activation tends to occur in clusters rather than individual
pixels. By formulating the models locally on a small region of pixels, it is
possible to obtain a closed form expression for the posterior probability that
a voxel is activated, given the values of the SPM in a region around the voxel.

To use the method in practice all one needs to specify are the two dis-
tributions of the test statistic. As in an ordinary analysis, the choice of test
statistic influences the sensitivity, but there are no restrictions on the class
of statistics that may be employed: The only requirement is that one can
specify parametric distributions for the two activation states.

The proposed models account to some extent for the spatial structure of
the underlying activation pattern. We found that the three different models
worked almost equally well on synthetic and real fMRI data. In fact we tested
2 more advanced models also, but they gave similar results. (The models are
described in a research report by the authors.) We recommend model 2 to be
used in practice: It has only two parameters, with natural interpretations:
One is p, the probability of a voxel being activated. An estimate of p is a
global measure of the fraction of activated voxels, which is of interest in itself.
The other is 7, which is a measure of the correlation of the true activation
field. The parameters may easily be estimated directly from the data.

When only modelling a single slice with 1.9 mm voxels, we found that
a 3 x 3 neighbourhood worked well. When a volume of slices is considered
the neighbourhood could be extended with the two voxels directly below and
above the centre or to a 3 x 3 x 3 cube. This should of course depend on the
interslice distance.

4.2 Comparison with existing methods

The methodology extends that of EB, who proposed a non-spatial mixture
model. In fact the EB model is a special case of our analysis scheme, as it is
contained in model 2. We found significant improvements in sensitivity on
synthetic fMRI data compared to the non-spatial mixture model: The sensi-
tivity increased from 66% to 91% at a FPR of 5%, and the mis-classification
rate of the 0.5-thresholded images was reduced from 11% to 6%. The analysis
of visual stimulation data indicated similar improvements.



Hartvig and Jensen I1.27

When applied to synthetic fMRI data, our method was more sensitive
than smoothing the data with a kernel of FWHM 3 voxels, but the sensitivity
of the FWHM 2 smoothing was similar to ours. However the non-parametric
smoothing model seems to produce estimates which are more smooth, than
the ones obtained with our method. As mentioned in Example 3, this could
be explained by the bias in the kernel smoothing estimate. One argument
used for smoothing data is the Matched Filter Theorem (Rosenfeld and Kak,
1982). This states that in order to maximize signal-to-noise ratio at a specific
point in an image, one should convolve the image with a kernel which has the
same shape as the signal at that point. This is a statement about detecting
a signal. When one wants to estimate the signal or some features of it, this
is not necessarily an optimal strategy because of the bias introduced. On the
contrary a parametric model, if correct, yields estimates which are less biased
and more efficient. Clearly our model is not “correct”, but we would like to
emphasize the difference between parametric and non-parametric modelling.
Furthermore the choice of the smoothing parameter, i.e. the FWHM of the
kernel, is always a critical point in non-parametric estimation. It seems that
for fMRI data, this parameter is often chosen in an ad hoc manner. With
our method, the “smoothing parameter” (such as the parameter v of model
2) is estimated directly from the data itself.

The assumptions underlying mixture modelling seem more natural and
transparent to us, than those underlying the random fields theory. We ex-
pect a priori to find basically two different types of voxels, activated and
non-activated, and a model for the data should reflect this. The inference
in the model is fundamentally different from the usual hypothesis testing
framework. In the latter, what is really an estimation problem, is answered
by a hypothesis test (Worsley, 1997). The main problem is then the pro-
tection against false positives, with the large number of tests performed. In
our approach we estimate the proportion of active voxels p, and use this to
determine the posterior probability that a voxel is activated. As may be seen
from (3) and (4) the probability that A =1 tends to 0 as p tends to 0. This
may be regarded as our way of handling multiple comparisons: If the size
of the volume is increased, but the number of active voxels is fixed, p will
decrease, and hence so will the posterior probability that a voxel is activated.
For a fixed amount of activation, a larger search volume hence yields a more
conservative analysis than a small.

Another advantage compared to the random fields framework is the ro-
bustness to misspecification of the model. To illustrate this, we replaced the
normal distribution in Example 3 with a ¢-distribution with 20 degrees of
freedom. The thresholded activation images were almost identical, with only
a few voxels changing state. This is not surprising, since the two distribu-
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tions are almost equivalent for our purposes. On the contrary, the random
field theory relies on the extreme tail of the distribution, whence there is non-
negligible difference between a ¢(20)-distribution and the normal distribution
in this framework.

The method may be particularly relevant in applications where signal
estimation is more important than signal detection. This is the case for in-
stance when fMRI is used for pre-surgical planning, where the protection
against false negatives is more important than false positives. Another ex-
ample is when the results of an fMRI study are combined with data from
other modalities, such as to regularize the inverse problem of MEG/EEG
(Liu et al., 1998).

During the review process of this paper, we realized that the idea of
using local models for the true image in restoration problems is not new.
Meloche and Zamar (1994) used an approach which is almost similar to
ours, and they also derived moment estimators for parameters of the true
image model. Meloche and Zamar considered a more general framework,
where they estimated the probabilities P(A¢ = a¢) non-parametrically in
a very elegant way. We restrict our attention to parametric models which
are realistic from a brain imaging point of view, and this gives us the big
advantage of being able to calculate the posterior probability in closed form.
As mentioned earlier this point is crucial for the applicability of the method
in practice. Furthermore Meloche and Zamar only consider models of the
form (z| A =0) ~ N(0,0%) and (2| A = 1) ~ N(1,0?), where our setup is
completely general.

We have assumed throughout the paper that the observations are uncor-
related given the true activation pattern. Some spatial correlation can be
detected in the noise in fMRI data, and hence this assumption will often be
violated. The correlation of the signal is, however, much larger than that
of the noise, and hence we have accounted for most of the correlation in
the data by the model for the activation pattern. In some models, one may
extend the methodology to correlated noise by estimating the spatial correla-
tion first, and incorporating this in the expression for f(z¢ |ac). Assuming
stationarity of the correlation, this may be estimated from the residual time
series, see for instance Hartvig (1999). Clearly the computations get more
complicated then, as the closed form expression for the posterior probability
is lost.

From a mathematical point of view, a natural question is whether there
exist global models for the whole set of voxels, which have marginal distri-
butions given by the models in this paper. This is in fact the case, since all
three models have the property, that the structure of the model is maintained
when reducing to marginal distributions. Considering model 2, for instance,
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this means that if we formulate the model on the whole set of voxels, the
marginal distribution of a 3 by 3 region will be the same as that obtained
by formulating the model on this region only. This also means that edge-
effects may be handled in a rigorous way, by simply reducing the number
of neighbours k, when calculating the probability of activation in boundary
voxels.

5 Conclusion

We have formulated a simple mixture model for fMRI data which captures
most of the spatial structure of the underlying activation pattern. The spa-
tial model has two parameters, which are directly interpretable and may be
estimated from the data. The expression for the posterior probability that a
voxel is activated is given in closed form. Rather than the usual hypothesis
testing, the focus of the method is estimation of the activation, which seems
more natural in many applications.

In order to use this method, one needs only specify the null-distribution
and the distribution of activated voxels. These can be any distributions. The
resulting activation image is a posterior probability image, which may be
thresholded in an intuitive way, without the need for correcting for multiple
comparisons. Alternatively, one may display the un-thresholded probabil-
ity map, which shows a clear distinction between estimated activation and
baseline.
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A Appendix

We will derive the formulas for the posterior probability that a voxel is acti-
vated in model 2 and model 3 in the following.
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A.1 Model 2

For given p and 7, gy is determined by
(1+94 -1

Y
Using the same technique as in model 1, we find
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In this model we have
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where p is the probability of a voxel being activated. Instead of (16) we find
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with ¥ = (a1, a2,71,72,¢1) and ¢o given by the constraint in (17).
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Abstract

We propose a hierarchical model for deconvolving the spatial haemodynamic
effects in fMRI data. The activation on a neuronal level is modelled by a field
of independent variables, which is smoothed by a kernel to represent the cou-
pling between the neural activation and local changes in blood oxygenation. The
smoothed image is finally overlaid by Gaussian noise to model an observed statis-
tical parametric map (SPM). In this framework we may estimate the shape and
width of the haemodynamic diffusion kernel directly from the data. The inference
in the model is centered on simulation techniques, and we formulate a Markov
chain Monte Carlo algorithm for simulating observations of the posterior distri-
bution of the activation field. The model is fitted to visual stimulation data, and
we illustrate how the estimated activation image is much more detailed than the
usual estimate, obtained by smoothing the SPM.

Keywords: Functional magnetic resonance imaging; Bayesian deconvolution; Spatial
model; Markov chain Monte Carlo; Haemodynamic response; Correlogram

1 Introduction

In functional magnetic resonance imaging (fMRI) the spatial and temporal properties of
the haemodynamic effects as a function of neural activation have often been investigated
for the purpose of including these in a model for the data. A common approach is to
model the temporal response as a linear, stationary system (Lange and Zeger, 1997,
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Friston et al., 1994; Cohen, 1997; Rajapakse et al., 1998). Assuming that neural acti-
vation follows the stimulation function, the convolution of the latter with the impulse
response function (or haemodynamic response function) then completely describes the
temporal response. This seems to be reasonable in many experiments (Cohen, 1997;
Dale and Buckner, 1997), but unreasonable in others (Glover, 1999; Vazquez and Noll,
1998; Friston et al., 1998). In an analysis of this type, one effectively makes inference on
the temporal activation pattern on a neural level, exploiting the simple model between
neural and haemodynamic activation.

While temporal convolution models are widely applied, spatial models of the same
flavour seem much rarer. A common assumption is that the haemodynamic effects are
spatially more smooth and dispersed than neural activation; this is based on the fact
that the haemodynamic effects occur in the surrounding veins, and will consequently be
less localized. This assumption motivates spatial filtering of the data (Siegmund and
Worsley, 1995; Worsley and Friston, 1995; Lowe and Sorenson, 1997) or explicit spatial
models (Kiebel et al., 2000; Descombes et al., 1998a; Hartvig, 1999; Hartvig and Jensen,
2000). However, following the temporal deconvolution approaches, it seems relevant
to try to solve the inverse problem of estimating localized neural activation directly,
rather than the resulting haemodynamic effects. Basically this would yield activation
maps that are “sharper” than the smoothed maps, and would—to the extent that the
assumptions of the model hold—be interpretable on a neural level. Assuming additivity
and stationarity of the haemodynamic response, this corresponds to performing a spatial
deconvolution of the data. While this cannot be performed directly, due to the high noise
level in the data, we may perform it indirectly via a Bayesian model.

This has previously been suggested by Descombes et al. (1998b), who modelled the
activation pattern as smooth, coherent regions, with possible non-smooth boundaries,
by a Markov random field model. The authors discussed the possible extention to a
convolution model, where the haemodynamic effects are explicitly modelled, but noted
that the choice of the convolution kernel was problematic. We will address this issue
by deriving the shape and width of the kernel directly from the data. The kernel
fits our data well, and the width corresponds to measurements of the extent of the
haemodynamic response reported in the literature.

Bayesian models are widely applied in medical imaging, examples are models for
simple Gamma camera images (Besag et al., 1995), PET images (Higdon, 1998) and
ultrasound images (Husby et al., 1999). They provide a general framework for modelling
unobserved or partially observed variables together with the stochastic process that
generates the observed data. Let [ denote the unobserved neuron activation field. This
is assigned an a priori distribution, p(I') which reflects the expected properties of the
field, before observing the data. The prior may be “uninformative”, in the sense that
little subjective information is built into the model, or it may represent substantial prior
knowledge about the activation area under study, for instance obtained from previous
experiments on the same subject. The likelihood function p(X |T") is the distribution of
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the data X given the unobserved field T, i.e. a model for the haemodynamic effects and
the noise. The inference on I' is then based on the a posteriori distribution

p(T|X) x p(X |T)p(T).

This is the probability distribution of the I'-field given the data, which combines prior
knowledge with the information contained in the data. The result of a Bayesian analysis
is thus a whole distribution, which allows us to estimate different functions of interest,
such as the mean activation field or the proportion of activated voxels, as well as assessing
the uncertainty of the estimates. On a higher analysis level, we may quantify how well
data support a specific neuroscientific hypothesis of interest simply by calculating the
posterior probability for the corresponding event.

In this paper, we will assume a prior: that the neuron field consists of independent
variates, which may either be zero, or have a non-zero Gamma, distributed value. The
Gamma model is motivated by the simple idea that in a stimulation experiment, the
distribution of neural activity over the brain may range from values very close zero to
very large values. At the next level the haemodynamic diffusion effects are modelled
by smoothing this field with a kernel. The kernel may be non-stationary and non-
isotropic, allowing for incorporation of anatomical covariates which describe the local
tissue properties. A model for a single regression image or statistical parametric map
(SPM) is finally obtained by adding noise to the smoothed field.

The most critical assumption is the spatial additivity of the haemodynamic effects.
This assumption is made implicitly in other models as well (Kiebel et al., 2000; Hartvig,
1999), but it remains to be studied how good approximation it is to the true effects.
However, the Bayesian convolution model is robust to minor non-additive effects, since
these may be absorbed in the noise process.

The posterior distribution p(I" | X) is not directly assessible, since it is only known up
to a constant of proportionality. Instead we may explore it by the simulation technique
known as Markov chain Monte Carlo (MCMC) (Gilks et al., 1996; Tierney, 1994). The
idea of this technique is to simulate a Markov chain of observations, which asymptotically
has the correct distribution. Originally invented in physics (Metropolis et al., 1953), this
methodology is becoming a major tool in statistics these years due to its flexibility and
applicability, enabling the researcher to analyse very complex models. We construct an
MCMC algorithm based on an auxiliary variable, which decorrelates the observed field
X and the underlying neuron field I', enabling efficient simulation of the latter.

The construction of the model is very similar to that used by Wolpert and Ickstadt
(1998), who used smoothed Gamma random fields as intensity measures for a Poisson
process. They used the conjugacy of the Gamma and Poisson distributions to design an
elegant algorithm for simulating the underlying Gamma field given the data. This is not
possible in our case, but our decorrelation technique described above, is quite similar to
the one they proposed.
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The paper is organized as follows: We will first describe the model and discuss how
to parametrize it in the stationary and possibly non-stationary case. Next we will give
a brief introduction to MCMC methods, and describe the algorithm used for making
inference in the model. The performance and limitations of the method are illustrated on
a visual stimulation data set in Section 3, and finally we discuss our results in Section 4.

2 The spatial convolution model

2.1 The basic model

The model may be formulated as a spatio-temporal model, but for simplicity we will
only consider a spatial model for a summary image (or volume) X = {X;};cy in this
paper. Typically this would be a regression image, or a statistical parametric map, of
voxel-wise estimated activation levels with respect to a given haemodynamic response
function. Here V' denotes the set of brain voxels. At the top level of the model we have
a field I' = {I';};cv of independent variates, which intuitively represent activation on a
neural level. The independence assumption implies that we make no a priori assumptions
of interaction between neurons in different voxels. We will assume a Gamma distribution
for the activation level given that this is positive,

Li|Ti >0~ T(ay, By), 1€V

The Gamma distribution allows the levels of activation to vary from values close to zero
to very large values. We will also allow “negative” activation,

ITi[ [Ti <0~ D(a,8-), i€V

Negative activation levels have no obvious neuroscientific interpretations, but we will
include them as a way of modelling negative BOLD effects. We will assume that the
level is either zero, positive or negative with the probabilities

P, =0)=pio, PI;>0)=piy, PTi<0)=p,

where p;o + pi— + pi+ = 1. In the case where these probabilities does not depend on %,
we may interpret p, as the proportion of voxels with neural activation.

At the next level we will let A = {A;} represent the BOLD effect caused by the
neural activation, that is a smoothed version of the I'-field,

Ai = Z kijfj, Z € V,
Jjev

where k;; = k(i,j) for a kernel £ on V' x V. The kernel will be normalized such
that Zj kij = 1 for all ¢ € V. Here we make the assumption of additivity, i.e. that
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haemodynamic effects from different voxels combine additively. As mentioned earlier
this assumption is difficult to verify empirically, but is made for convenience here. The
kernel need not be stationary, in the sense that k;; only depends on (¢, j) through i — j.
In the case where local tissue characteristics are available we may hence incorporate this
covariate information in the diffusion kernel.

Finally the observed image X = {X;} is modelled as A overlaid with Gaussian noise,

X=A+e¢, 6NN|V|(O,E).

Here ¥ = {0;} is a |V| x |V| covariance matrix. In the simple setting where X is a
diagonal matrix, the X;’s are conditionally independent given I'.
The moments of X are given by

EX; =) kyE(I;), i€V, (1)
jev
cov(X;, X)) = oy + Zkijkljvar(l“j) i,leV. (2)
jev

Here o o
ET) =pi— —p; —, 3
) == 5 ®)

and

oy (14 ay) a_(1+a) ( oy a>2

var(l';) = pj+ 2 Dj— P Pj+ 75— 3, — Dj- 3 (4)

Notice that a part of the correlation between the variables can be attributed to the
noise, and a part to the underlying haemodynamic effects. In particular when I' and
the kernel are stationary, the covariance function consists of the kernel convolved with
itself plus the noise covariance.

In the following, we will assume that ¥ is diagonal, 3 = diag(o?, .. UIV\) This is no
restriction when the covariance matrix is known, or a good estimate of this is available.
Suppose namely that X is a general covariance matrix with Cholesky decomposition 3 =
LIL'. The class of distributions given by the model is closed under linear transformations,
and we can thus decorrelate the data by working with X = L' X instead of X. Letting

= {k;;} denote the matrix of original kernel values, the model is then X = A + ¢,
Where £ are iid. standard normal variates and A = L~ 1K ['. The kernel matrix for the
transformed model is thus changed to L=*K but the underlying random field I is the
same, and inference on the latter can hence be based on the transformed data X.

2.2 Parameters and covariates

In order to complete the setup, we must specify the parameters of the Gamma field,
the kernel £ and the covariance matrix >. In general the noise covariance may be well
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estimated from the original set of scans, used to produce the regression image, and we
will hence assume that Y is known. We will denote the parameters of the Gamma field
by 6.

When specifying parameters, we may take either a likelihood (or empirical Bayes)
approach, considering the parameters as fixed unknown quantities, or a Bayesian ap-
proach, where the parameters are considered as unobserved random variables with a
prior distribution. When uninformative priors are used, the two methods will lead to
similar estimates, hence the main argument for using one method or the other is a
philosophical one, interpreting probabilities either from a frequentist or from a subjec-
tive point of view. A practical advantage of the Bayesian methodology, however, is a
computational one. When estimating parameters in the likelihood setup in the present
case, one has to use MCMC maximum likehood estimation (Geyer, 1994), which requires
both a good initial guess of the parameters to use for calculating an approximation to
the likelihood function, as well as a maximization of the latter. Both of these opera-
tions involve separate numerical procedures, as well as the MCMC algorithm. When
using the Bayesian strategy a single MCMC algorithm suffices to all inferential purposes.
Furthermore inclusion of parameter uncertainty in the estimate of the activation field is
straightforward in a Bayes setup, but more cumbersome in the likelihood setting.

We will assume a priori that the mean and variance of the I'-variates have a log-
normal distribution, with a high variance to express our lack of prior information about
these. Specificly, we have set,

log(a+/ﬂ+) ~ N(07 K2)7 log(a-l-/ﬁi) ~ N(O’ K’2)7

where £ = 1000, and similarly for the negative Gamma field. A more informative
alternative would be to let the priors represent typical observed activation levels, i.e. in
the order of 5%-10% of the baseline intensity.

The kernel k& may be estimated from the theoretical covariance (2) of the X field,
assuming stationarity of the latter. The covariance cov(X;, X;;;) may then be estimated
by the empirical covariance, known as the correlogram (Cressie, 1991),

al) = ﬁ S (X = D) (X — X), LeZ?, (5)

i€V,

where V, ={i e V|i+1 € V} =V n(V —=1). Since the correlogram converges to the
true covariance as the number of pixel tends to infinity, by equation (2) we have

C(l) ~ 6+ var() Y kijkisrj, 1€ Z (6)

JEV

Here var(I") = var(I';) and o, = cov(e;, £;44), ¢ € V, denote the variances of the station-
ary processes. In the absence of anatomical information to use for modelling the kernel,
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we will assume a stationary and isotropic form
k[ ocexp{—(|llll/7)*}, 1€Z? fora=1,2,

corresponding to respectively an exponential or Gaussian kernel. The kernel width 7
may be estimated by least squares, minimizing

> (Corth - C0))

leL

where L is a set of lags in Z?, and Cy,(1) is the theoretical covariance at the given kernel
width.

Unless we have specific covariate or prior information, it is natural to assume a
stationary I'-field, where p;y = py,p;. = p_ for all + € V. For given values of the
kernel and the parameters of the I'-field, we will let p, and p_ be given by a moment
estimator. We will use the empirical mean and variance of the X-field, set this equal to
the theoretical values in (1) and (2), and solve for p, and p_, using the expressions (3)
and (4), to obtain the estimates. In our application we have more than 4000 observation
in an image, and hence the variance of the empirical moments of X will be quite small.

More generally, however, it is often the case that external information is available
with the data, such as tissue classifiers obtained from high-resolution anatomical scans,
quantitative or qualitative prior knowledge of the brain functions under study or other
covariates which can potentially explain variations in the neural activation level. Denote
these covariates by 1;; € R% for each voxel i € V. They are naturally incorporated in
the parameters for the neuronal activation field, to reflect a higher a priori expectation
of activation. We may employ the framework of generalized linear models for this
(McCullagh and Nelder, 1983) and obtain the model

logitp;, =m + Biny, B, eR™ icV,

Here 7, determines the overall probability of observing neural activation, and the co-
variates modify this level locally.

Similarly we may have covariates 1, € R% which explain local changes in the haemo-
dynamic response, an example of the latter is the position of the cortical surface, re-
cently used by Kiebel et al. (2000). These may be included in the model for the kernel
k(i,5) = k(i,j; B2, mi2) in an appropriate way; in the case of cortical surface information
the kernel may be rotated with the tangential plane to the cortical surface, thereby
modelling a haemodynamic effect that diffuses over the surface. Due to the complexity
of the final model, inference on the hyperparameters B = (B;, By) are most easily per-
formed by adopting a fully Bayesian paradigm, assuming prior distributions for these
as well.

We will restrict ourselves to the stationary model in the following.
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3 Inference by simulation

Let & denote the vector of all the unknown variables, that is the I'-variates and the
parameters of the prior . In order to make inference on the underlying neuron field,
we wish to study the conditional distribution of & given X. This is not analytically
tractable, hence we will do this by simulating a sequence of observations from it. The
distribution cannot be simulated directly by simple techniques, both because of the
dependency between I' and the hyperparameters # and because the data introduces
correlation in the underlying I'-field. Instead we may apply MCMC, where a Markov
chain of variates £®) € V| k = 1,2,... is generated with a transition density which
fulfils the so-called detailed balance condition (see e.g. Gilks et al., 1996). Under mild
regularity conditions, we then have that in the limit as & tends to infinity, £*) will have
a stationary distribution which equals the conditional distribution of ¢ given X. In
particular the ergodic theorem ensures that for any function f(-) ,

= D HEW) 5 B(F©)1X) a5 K oo

The flexibility in choosing the function f(-) illustrates the power of the MCMC approach:
We may let f(§) = T to estimate the posterior mean of the neural activation field
E(l'| X), and we may combine this with an estimate of E(I'?| X) to form an estimate
of the posterior variance of I'. The latter may be used to make significance statements
about the observed activation. An alternative would be to let f(§) = (1(I'; > 0),i € V),
i.e. an indicator field for whether I'; is greater than 0. This would produce a map of
the posterior probability that the voxel is activated. Thresholding the probability map
at a natural level, typically 0.5, would produce a map of significantly activated voxels.
Finally we may also study functions related to a specific neuroscientific hypothesis of
interest, for instance that the activation in one area of the brain has a greater extent
than in an other. By letting f be the indicator for this event, we may obtain a posterior
probability which quantifies how well data support the hypothesis.

Also the posterior mean of # may be of interest. For instance we may use the
simulations of p, to estimate the global amount of activation, together with a credibility
interval for this.

3.1 Metropolis-Hastings algorithm

We refer to Gilks et al. (1996), Geyer (1999) or Green (2000) for a general introduction to
MCMC methods, but will briefly describe the structure of the algorithm in the following.
We will use the Metropolis-Hastings algorithm, which generates the Markov chain £®*),
k = 1,2,... in the following way. At time k we propose a new value & from £®) by
simulating an observation from a proposal distribution ¢(£%),.). This move is accepted
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with a probability given by the Metropolis-Hasting ratio,

p(¢' [ X)q(€, €M) )
Tp(ER) | X)q(E®, &) )

If the move is accepted, we let E#+1) = ¢’ if not we set £#+D = ¢*) This acceptance step
ensures that the Markov chain has the distribution p(£| X)) as stationary distribution,
irrespectively of the choice of the proposal distribution ¢(-,-). Most commonly the
proposal is chosen such that only one part of the vector £ is updated at a time, and one
then iterates between updating different components of the vector, either systematically
or in random order. This is the case for the so-called Gibbs sampler, where the ith
coordinate &; is updated by proposing a new value from the conditional distribution of
& given (€_;,X), here &, = (&;,7 # i). With this proposal, the Metropolis-Hastings
ratio is always 1, so the move is always accepted. Below we will combine both Gibbs
and Metropolis-Hastings updates.

R = min <1

3.2 Auxiliary variables

In the current setting, we need to propose updates of I' given (6, X). In principle one
may perform Gibbs updates here, sweeping through the coordinates of V' and simulating
I'; conditionally on (I ;, X, 6). The problem with this approach, however, is that the
variables in the Gamma field may be very correlated, especially if the kernel £ is wide.
When only one variable is updated at a time, this may lead to an algorithm with
very correlated samples, which in turn implies that the convergence to the stationary
distribution is too slow. This is a well known problem with single-site updating which
have also been described by Husby et al. (1999) and Higdon (1998).

This is the reason for introducing a so-called auxiliary variable Z which will be used
in the simulations. We will simulate a Markov chain of (I', 6, Z) variables, which has
stationary distribution p(I',0,Z| X) = p(I',0|Z)p(Z| X). Note that (I',6) will still
have the correct limit distribution. The point in introducing 7, is that [' and X are
conditionally independent given Z, and the I'-variables are independent given Z. This
makes p(I', 0| Z) much easier to simulate from, than p(I, 0| X).

The auxiliary variable is given by Z = {Z,;,i € V,j € R;}, where R, = {j € V | k;; >
0}. Conditionally on I', we will let these be independent and distributed as

Zij |T ~ N(kijLj, kijo?), i€V,j€R,.

Setting X; = Zje Ri Z;; yields the same model for X as before, but here X and I' are
conditionally independent given Z. This enables us to run a Gibbs sampler of (Z,T),
where we recursively simulate I' | Z and Z | (I, X). The two following results provides
the conditional distributions needed for this.
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REesuLT 3.1 The T';’s are conditionally independent given Z, and T'; has conditional
density

p(vi| Z) o p(vi eXP{( > Zifo; )% ( > kﬁ/af-)vf}, v >0. (7)

JuER; JUER;

where p(7;) is the prior distribution of T'; given by

(ﬁ+) a+—16_5+7i

p(7i) o< 1(vi = 0)po + p11(v: > 0) =~ Tlog) "

+p_1(v; < 0) (=)=t

RESULT 3.2 Let Z; = (Zij)jer;- Conditionally on X and I', {Z;}icv are independent
and Z; has a multivariate normal distribution with E(Z;;| X,T') = ki;(T; + X; — Ay),
VaI'(Zij |X, F) = O'sz”(l — l"u'm) and COV(Zij, sz | X, F) = —O'?kijk'ik, ] 7é k. The distribu-
tion is degenerated, since ZjeRi Zi; = X;.

Both results may verified by direct calculations.

REMARK 3.1 Notice that we assume that the kernel is normalized such that jev Kij

1 for all 7. Thus edge-effects are treated by scaling the kernel near the edges of V. When
V C Z3 we will typically define the kernel £ on V' x V' by a normalized kernel k on
73 x 7.3, letting kij = kij/n; for i,j € V, where n; = Z - ku When implementing the
algorithm, the auxiliary variables Z;; are then most naturally defined on the extended
neighbourhood j € R; = {j € Z*| k;; > 0} since the dimension and conditional covari-
ance of the vector Z; is then the same for all i € V. Thus we let Z;; | ~ N (ki;T;, kijo?)
for j € RNV and Z;; |T ~ N(0,k;o?) for j € R; \V The theorems above apply in
this situation also, with slight modifications: In (7) o should be replaced by n;oj. In
the variance and covariance formulas in Result 3.2, kzy should be replaced by k”, and
the conditional mean should be replaced by E(Z;; |X T) = kil + ki (Xi = Ny) if j €V
and F(Zi; | X,T) = kij(X; — Ay) if 5 ¢ V.

3.3 Proposal moves

For a given Z, we will in the following let b; and ¢; denote parameters of the distribution

(7),
=Y Zijo}, ¢t= ( > ka-/af-).

JHUER; JueR;

We propose the following moves in the algorithm.
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e Update of Z given (T', X). This is a Gibbs update where for each i € V, we
simulate Z; = (Z;j,j € R;) directly from its conditional distribution as given in
Result 3.2.

e Update of I" given (Z,0). The coordinates are independent by Result 3.1. Each
coordinate will by updated by one of the following three moves:

— If 4 > 0: With probability exp(—(c;b;)?/2) we propose a move to 0, denoted
move 1. The reverse move from y; = 0 to a positive value is defined below.
Together they yield the Metropolis-Hastings ratio

por(a+)
Ry(y:,0) = ! . 8
10:0) Py By exp(—Byyi) V2e ®)

With probability 1 — exp(—(c;b;)?/2) we propose a move of type 3 to a new
positive value by simulating from the conditional distribution p(v; | Z,6,T; >
0). The latter has distribution

p— 1
p(vi| Z,0,Ts > 0) o<y " ' exp ((bz — By)vi — 2—02%2> ., 7% >0 (9)
This last move is a Gibbs update, which has Metropolis-Hastings ratio 1.

— If v; < 0 we propose similar moves as above: With probability exp(—(c;b;)?/2)
we propose a move to 0, denoted move 2. The reverse move from 0 to ; < 0
is described below. The Metropolis-Hastings ratio is

pol'(a) '
p—B-2(—7)* ~Lexp(B_7;)V2mc;

Else we propose a move of type 4 to a negative value by a Gibbs update,

Ry(7:,0) = (10)

1
p(v| Z,0,I; <0) (—%)a:lexp ((bz +B-)vi — 2—02%2) , % < 0.
7

— If 7; = 0: With probability ®(c;b;) we propose a move of type 1 to v; > 0
and with probability ®(—¢;b;) a move of type 2 to 7; < 0. Here ®(-) denotes
the standard normal distribution function. When a move to a positive value
is proposed, we simulate the new value 7, from a truncated normal,

1 1
0,7)=————exp [ —— '.—c?b-Q), ’'> 0.
q( ’Yz) @(czb,)\/ﬂcz p ( 2012 (’Yz 1 Z) i
The Metropolis-Hastings ratio R;(0, ;) is the inverse of (8), with ] inserted
instead of 7;. The type 2 move is similar, with

1 1
0,7) = exp | —— {—cgbi2>, 1 <0,
q(0, %) S e ane p( 26?(% ibi)” ) i
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and Metropolis-Hastings ratio Ry(0,~!) equal to the inverse of (10) with }
inserted instead of 7;.

e Update of 6 given I'.

— We propose randomly to update either the mean «, /3, or the variance
o4 /B2 of the positive I-variates, or one of these two parameters for the
negative [-variates. Let ¢ denote the parameter chosen. The new value ¢’ is
proposed as ¢ +¢€, € ~ N(0,7,), and we let 6 be the new value of # obtained
by recalculating p; and p_ for the new value of ¢. The Metropolis-Hastings
ratio for accepting the move is

_ p(T[9)p(8)
p(T[0)p(6)

where p(0) is the prior for §. The variance 7, may depend on which of the
four parameters that is chosen for updating.

Ry

The transitions from I'; = 0 to ['; > 0, for instance, are effectively dimension changing
steps (Green 1995). Notice that we need to simulate from several different types of
distributions in the proposals above. Algorithms for the normal, Gamma and truncated
normal distributions may be found in Ripley (1987) or Devroye (1986). When updating
" given Z, we have to draw random samples from the unnormalized density in (9). For
« = 1 this is a normal distribution truncated below at 0, but for other values it is not a
standard distribution and the shape of the density depends very much on the parameters,
in the same way that the Gamma distribution depends on the shape parameter. Since we
must draw millions of samples from this density in a typical analysis, we need an efficient
simulation algorithm. For this purpose we have designed a rejection sampling scheme
(see e.g. Ripley, 1987), where a range of different envelopes are employed to ensure
efficient sampling for all parameter values. The details of the algorithm are described
in the separate paper Hartvig (2000), where also asymptotical optimality properties of
the algorithm is studied.

3.4 Assessing convergence

As mentioned earlier the Markov chain is only asymptotically stationary and an impor-
tant question when using MCMC is to assess how many simulations is needed before the
chain has reached convergence. Though there exists several diagnostics for this (Gilks
et al., 1996), the only fail-proof method to detect if the chain has reached stationarity, is
the so-called perfect simulation (Propp and Wilson, 1996). In practice the simplest diag-
nostic tool is to monitor time series of the simulations, and visually determine whether
these have reached a stationary distribution or not. Also one may start the chain in dif-
ferent initial states and monitor the time series to see when the effect of the initial state
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has disappeared. In the same manner we may use the ergodic theorem and consider the
sequential averages of a function f(§),

K
%Zf(g“f)) K=1,...,N. (11)
k=1

By plotting the average as a function of K for different initial states of the Markov
chain, we may detect when the effect of the initial state on the estimate is negligible.

4 Results

4.1 Visual stimulation data

We will apply the model to a visual stimulation data set. The data consist of 90 sets
of MRI scans acquired with echo-planar imaging, each set consisting of 5 oblique slices
in axial-coronal direction. The interscan time is 2 seconds. One scan consists of 128 by
128 voxels each covering a physical region of 1.875 x 1.875 x 5 mm? and the interslice
distance is 2.5 mm. The scans were acquired during a visual stimulation task, where the
subject was watching a 7 Hz flashing light. The stimulus was presented in a periodical
on-off paradigm with 10 scans off, 10 scans on etc., starting and ending with 10 scans
of off-period. The magnetization level had stabilized after the first 5 scans, and these
first scane were discarded from the analysis. We selected one slice covering the visual
cortex for this analysis.

4.2 Calculation of activation image

We preprocess the data to obtain a single activation image to be analysed with the
model. First we realign the images, by minimizing the L? distance between each scan
and a reference scan under rigid transformations in the plane. Roughly 4500 voxels
corresponding to brain tissue are masked out, and is considered as the set V. After log-
transforming the data, we estimate the level of activation individually in each voxel, by
fitting a linear normal model to the time series, where the mean value space is spanned
by a constant term, a linear trend term and a model for the temporal haemodynamic
response. The latter is a convolution of the paradigm and a Gaussian function with
delay 6 sec. and variance 9 sec.? to model the delay and dispersion of the response. The
temporal correlation in the model was modelled by a first order autoregressive model.
We scale the estimated regression coefficient of the haemodynamic response function to
have unit variance and consider this as the level of activation in the voxel.

The above procedure produces the image X = {X;}icy of voxel-wise estimated
activation levels, to be analyzed by the model. An image of X may be seen in Figure 6.
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4.3 Estimation of kernel width

We will ignore edge effects in the estimation, and assume a stationary kernel k;; =
ki—;. We used the residual time series, i.e. the original time series minus the fitted
mean values, to estimate the spatial covariance of the noise, {6;,1 € Z?}, assuming
stationarity. This was estimated by the correlogram (5) based on the residual scans.
The correlogram was calculated scan by scan and averaged over the 85 scans, as we found
almost identical covariance structures of the noise in all scans. Likewise the correlogram
C (1) of the activation map X was calculated to estimate the covariance caused by the
haemodynamic effects. In Figure 1 is a plot of &, and C(l) — &, for different directions
in Z2. The noise is almost uncorrelated for lags larger than 6 mm (3 voxels). The
covariance caused by the haemodynamic response has much greater extent, especially
along the direction with angle 0, which is the horizontal direction in the images in Figure
6. It is not evident what causes this anisotropy, but symmetries in the activation pattern
in the two hemispheres of the brain is a likely explanation.
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Figure 1: Left: Plot of the estimated noise covariance ; along 4 equiangular directions
in the scan. Right: Same as left, but for the estimated covariance difference C(l) — 4;.

Another distinctive feature of the covariance function is a “hump” at around lag 10
mm. This suggests, that the covariance can be decomposed into two parts, a quickly
decaying part near 0, and a more flat part for greater lags. Most likely the flat part
corresponds to global structure in the data, either large scale haemodynamic effects or
neuronal activation patterns with a spatial structure, while the quickly decaying part
may be attributed to local haemodynamic effects. Since we are only modelling local
haemodynamic effects with the present model, we are most interested in the steep part
of the covariance function.

Previously Matérn (1960) modelled similar covariograms by a mixture of two com-
ponents, and though he was studying area distributions and volumes of trees, the idea
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is very natural in our framework also: Suppose we still have a stationary model, but
rather than one underlying Gamma field, we have two, I'' and I'? independent of each
other. The model is then

X =A+A+e, where A? =) kP.I% p=1,2. (12)

1—j= jo
jev
Here the two kernel widths 7, and 75 represent two different types of haemodynamic
responses. The covariance is then

2
Clry ) (1) = cov(Xy, Xipg) = 01 + Z var(I'?) Z k;”k;{’u ieV ez (13)

p=1 jEZ2

Thus the covariance is a sum of two parts, each given by the convolution of a kernel
with itself. Notice that by construction, this is a valid covariance function (i.e. positive
definite) for all kernels k. Following the procedure described earlier, we fitted this model
to the empirical covariance difference C(I) — 6;, modelling the kernels as

K ocexp{—(IUI/m)}, 1€Z’ fora=1,2,

corresponding to respectively exponential or Gaussian kernels. The parameters (7, 72)
were estimated by least squares, minimizing

S (Conmy) - COY)

lel

where L is a set of lags in Z2. The maximal lag used was 20 voxels.

In Figure 2 is a plot of the empirical covariances with the fit of the exponential and
Gaussian kernels. The estimated parameters is listed in Table 1. The two models fit
almost equally well as measured by the L? distance above, with the Gaussian kernels
giving a slightly better fit. However it is clear from the plots, that the exponential
kernels gives a better fit for small lags, and since it is important to get a good fit near
the origin, we will use the exponential model.

Table 1: Estimated kernel widths.

Exponential Gaussian
7 1.057mm 7 1.812 mm
Ty 7191 mm 7o 14.623 mm

We will only consider inference for the activation field corresponding to the narrow
kernel, hence we will use the width 7 = 1.057 mm in the model. We will return to
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Figure 2: Fitted covariograms in the form of (13). Displayed is the values of the empirical
covariogram for a range of lags in Z?, with the fitted covariogram, i.e. the sum of the two
kernels convolved with themselves (full line) and the widest of the two kernels convolved
with itself (dotted line). Left: Exponential kernels. Right: Gaussian kernels.

the point of making simultaneous inference on both kernels in the discussion. We may
note that with this kernel, the modelled haemodynamic effects spread over an area of
diameter about 6 mm, which corresponds well to figures reported in the literature.

4.4 Estimation of neuronal activation field

We considered the model with both positive and negative Gamma fields, with unknown
shape and scale parameters. For computational simplicity, and given the short correla-
tion length of the noise field, we chose a model with independent noise, where the noise
variance was held fixed at the theoretical value o = 1.0.

We iterated the MCMC algorithm 100000 times, at each step choosing randomly to
update either the Gamma field, the matrix of auxiliary variables or one of the hyper-
parameters. We subsampled every 100’th observation, to obtain a time series of 1000
values. In Figure 3 is a plot of respectively the sum over all brain voxels of the absolute
value of the Gamma variates and the number of positive variates. The plots indicate
that the subsampled Markov chain stabilizes after about 100 iterations, and the remain-
ing 900 samples are hence considered as simulations from the stationary distribution.
The two variables are plotted together in Figure 4. This plot displays the same features
as Figure 3, with an initial burn-in period and a stationary “cloud” of points. The high
degree of posterior correlation between the variables is also visible. In order to assure
that the initial state had no effect on the stationary level of the chain, we started the
chain in two different states. Figure 5 shows the plot of the sequential average (11) of
the mean of the positive Gamma variables, oy /3. The averages converge to the same
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value despite the starting point, as predicted by the ergodic theorem. This supports the
assumption that the chain has converged at the present number of iterations.
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Figure 3: Time series of 1000 subsamples from the MCMC simulations.

Figure 6 displays the raw activation image X, together with posterior mean images
of the A-field, that is the estimate of the haemodynamic activation pattern, and the
neuronal activation field I'. While the estimate of A is clearly much less noisy than
the raw image X, the spatial resolution of the two are the same, since the data are not
smoothed spatially. Visually this means, that the activation pattern is not smoothed out
in the A image. The I'-field may be considered as a denoised and decorrelated version
of the original image. The figure illustrates how the spatial extent of the estimated
activation foci are reduced and the activation pattern is sharpened in the I'-image,
compared to the A image.

For comparison Figure 7 displays activation images obtained by smoothing the data
with a Gaussian kernel of FWHM 2 and 3 voxels, before the activation image is calcu-
lated. The latter corresponds to the usual SPM’s. The estimated activation pattern is
much smoother than both the posterior mean estimate of the haemodynamic and neu-
ronal activation fields in Figure 6. In particular the images illustrate how larger areas of
activation in the smoothed maps may correspond to a single or just a few active voxels
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Figure 4: Plot of the number of positive Gamma variates against the absolute sum of
the Gamma variates in the MCMC simulation.
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Figure 5: Plot of the sequential average (11) of the mean of the positive Gamma dis-
tribution. The two lines correspond to two runs of the MCMC algorithm with different
initial values.
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Figure 6: Top left: The image of voxel-wise estimated activation levels { X;}. Top Right:
An enlarged 64x64 subregion covering the visual cortex. Bottom: Estimated activation
patterns. Left: Posterior mean of the smoothed activation field, A, based on 100000
simulations from the MCMC algorithm. Right: Posterior mean of the uncorrelated
activation field, I". The left image may be interpreted as a haemodynamic activation
image, while the ['-image is a decorrelated version of this, which may be interpreted on
a neuronal level.
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in the I'-activation map. Clearly, we can only speculate how the “true” pattern looks
in this case. The argument for smoothing the data is based detecting the signal with
optimal sensitivity, however when the aim is to estimate the signal, there is no general
statistical argument for smoothing the data. On the contrary it is well known (Miiller,
1988) that a non-parametric smoothing estimate produces a biased estimate, which is
more smooth than the true field.

I

-4.98 -0.63 3.72 8.06 12.41 -4.58 -0.42 3.73 7.89 12.04

Figure 7: Smoothed activation estimates. Left: Activation map based on data smoothed
with a Gaussian kernel with FWHM 2. Right: As left, but with FWHM 3.

The inference on the activation field may be based on two measures: One is the
posterior probability that a voxel has a positive value, P(I'; > 0| X), i € V. A natural
threshold of this image is at 0.5, representing a neutral balance between type I and type
IT errors. The other is the mean of the I'-variate, which represents the level of activation.
This two are combined in the left panel in Figure 8, which shows the posterior mean
field, masked such that only voxels which have posterior probability of being positive
greater than .5 is displayed.

On a higher level we may summarize the posterior distribution of the proportion of
activated voxels p,, the total activation mass ), |I;| or other parameters of interest.
These distributions are a concise representation of the activation, which allows us to
compare aspects of different datasets in a rigorous way, without normalizing the data to
a standard brain atlas. In Figure 9 are plots of the simulations of different parameters
in the model, together with histograms of the empirical distribution. The difference
between the mean and range of positive and negative BOLD effects are clearly visible
in the distributions of the means and variances of the two I'-fields.
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Figure 8: Posterior mean of the I'-field. The image is masked, such that only voxels
with posterior probability of being positive greater than 0.5 is displayed.
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Absolute sum of Gamma impulses
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Mean, positive Gamma Mean, negative Gamma
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0.25 0.30 008 010 012 014 016 018 020

Figure 9: Simulations of the posterior distribution of different parameters in the model
given the visual stimulation data.
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For model validation, we may study how well the modelled activation surface captures
the actual activation pattern. For this we considered the residual activation image R =
X — E(A|X), i.e. the data X minus the estimated posterior mean of A. If the model is
correct, this should be an image resembling the noise, in particular the spatial correlation
should correspond to that of the noise. In Figure 10 are plots of the corellogram of this
residual image, which may be compared with the correlogram of the noise in Figure 1.
We see that the correlation functions are very similar, which means that the signal is
well represented by E(A|X). A noticeable feature however, is that the covariance of
the residuals are less than that of the noise, which indicates some degree of overfitting.
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Figure 10: Correlogram of the residual image R = X — E(A | X).

5 Discussion

By formulating a Bayesian model for the haemodynamic response, we may perform a
spatial deconvolution of the fMRI data. We assume that the haemodynamic response is
additive, however as noted earlier the framework is not as sensitive to minor non-additive
effects as direct deconvolution. The model for the underlying neural activation pattern
is very flexible: We impose no dependency on neighbouring voxels, and assume a broad
class of distributions, namely Gamma distributions, for the range of positive activation
levels. The motivation for this was to be as uninformative as possible of the activation
pattern under study. If substantial prior information is available, which describe possible
dependencies in the activation on a neuronal level, they may be included in the model.

The deconvolved patterns in Figure 8 showed a much more localized activation pat-
tern than the original images, and in particular than the pre-smoothed images. In
particular we may note that activation detectable in a single or a few voxels in the de-
convolved image, may correspond to a much larger area in the smoothed images. Clearly
the idea underlying the two methods are very different: When smoothing the data, the
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main focus is to optimize the probability of detecting a signal of a certain shape and
size. On the contrary our aim here is to try to solve the inverse problem of estimating
the activation pattern on a neuronal level by a deconvolution.

Stationarity of the haemodynamic response is not required, in the sense that the
diffusion kernel is allowed to depend on the underlying tissue. In the present application,
however, we have only investigated the stationary case. We estimated the shape and
width of the kernel directly from the data by the method of moments, and found that
an exponential kernel of width about 1.1 mm fitted the data best. With this model the
vascular effects spread over a circle of radius about 3 mm, which corresponds well to the
figures reported by Malonek and Grinvald (1996). Using optical imaging, they observed
a spread of the vascular response of about 3-5 millimeters.

We found that an exponential shaped kernel fitted the data better than Gaussian
kernels. In passing we may note that a Gaussian kernel is often chosen for filtering the
data, by reference to the Matched Filter Theorem. For the present data, however, an
exponential filtering kernel seemed to match the signal better.

The covariance structure of the data was best represented by a sum of two exponential
kernels convolved with themselves. We interpret the narrow kernel as corresponding to
local vascular effects, and hence we only include this in the model. Yet the correlogram of
the residuals in Figure 10 demonstrates, that the observed spatial covariance structure
is well captured by the model. The observed long-range correlation in the data may
either correspond to dependencies within the neuronal activation field or to large scale
haemodynamic effects arising for instance from larger veins. One possibility of exploring
this further is to consider a model with two independent I'-fields with different kernels,
as suggested in (12), and make simultaneous inference on the two fields. In this way
it may be possible to separate large-scale and short-range haemodynamic effects, and
effectively only make inference on the latter. We have made some initial investigations
of this sort of model, and have found promising results. To some extent, the effects
of the wide and narrow kernels seem to correspond to different areas, suggesting an
interpretation in terms of different types of vascular responses.

There is some degree of overfitting in the model. This can be observed in the mean
I-field in Figure 8, where some of the active voxels with small posterior mean values
seem to corresponds to noise, and from the covariance of the residuals in Figure 10,
which is smaller than that of the noise. Finally the estimated value of p, of about 21%
seems too high to be interpretable as the relative number of active voxels. There is very
little regularizing structure in the model, which may explain this overfitting: We assume
no prior dependency between the ['-variates, and the kernel £ is relatively narrow, hence
only limited spatial regularization is introduced in the A-field. Though it is possible to
restrict the model by assuming some specific correlation structure on the I'-field, we are
reluctant to doing this, since it is difficult to formulate realistic models for this. The
study of interaction and connectivity on the neuronal level is a separate and complex
issue, and formulating simple structures in this context seems very problematic. A more
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promising alternative would be to use a robust noise model, which would be less sensitive
to outliers.

In order to shed more light on this issue, the model could be validated on baseline
datasets without stimulation, which is also the subject of current work. One problem
with this, however, is that the model is explicitly defined for activation datasets, in the
sense that the parameters of I'-fields will be undefined for p, = p_ = 0. In practice this
may lead to numerical problems and instability of the MCMC algorithm.

For the reasons described above, we would hesitate to interpret the detected ac-
tivation directly in terms of the fitted parameters or to test detailed hypotheses by
simulations. The method should be validated more firmly before this level of inference
can be performed. The model may, however, be used for spatial deconvolution to obtain
much more detailed activation estimates, than when smoothing the data. As the focus of
the brain studies move from simple detection of activation to higher level interpretation
of the latter, estimation of the activation pattern seems increasingly relevant.
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Simulation of the Gamma-Normal Distribution

Niels Veever Hartvig*
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Abstract

We develop rejection sampling algorithms for simulating from the “Gamma-normal”
density (1). This distribution arises naturally in problems where Gamma and normal
distributions are combined, with our motivation stemming from human brain mapping.
We perform a detailed study of the efficiency of the algorithms, as measured by the
acceptance rate. While the algorithms are fairly simple, we show that in most cases
they are asymptotically optimal.

AMS 2000 subject classification. Primary 65C10; secondary 68U20.
Keywords: Random numbers, simulation, Gamma distribution, normal distribution.

1 Introduction

In this paper we will consider the problem of simulating random variables with density

p(z; e, B,v) = 2" exp(—azx — f2%)/C(a, B,v), @ > 0. (1)

Here C(a, 3, v) is the normalizing constant,

Cla, B,v) = /00 "~ exp(—ax — B2?) dz,
0

which is finite fora € R, > 0, > 0 and for a > 0,6 =0,v > 0.

Our motivation for studying this problem comes from functional magnetic resonance
imaging, see Hartvig (2000). In that paper we consider a spatial model for neuronal acti-
vation in the brain, during periodic stimulation of a specific cortical centre. The activation
levels are modelled as a Gamma random field, which is smoothed by a kernel to represent the
blood oxygenation effects, that are detected by the MR scanner. By corrupting this image

*Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, email:
vaever@imf.au.dk
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with additive Gaussian noise, we obtain a model for the observed scans. The primary inter-
est is to make inference on the underlying Gamma field from the recorded scans, and to this
end we wish to draw random samples from the conditional distribution of the Gamma field
given the scans. The latter turns out to be of the form (1), which is intuitively clear from
the following simple example: Consider a model where § ~ I'(v, ) and X |6 ~ N(6,5?%). The
conditional distribution of @ given X is of the form (1) with « = A — X/o? and 37! = 202

The ability to simulate efficiently from this density is hence important in this model, as
well as in other missing data problems where Gamma and normal distributions are combined.
Another example is stochastic frontier models in econometry, where the unobserved efficiency
of a firm is modelled by a Gamma distribution, see Ritter and Simar (1997) or Koop et al.
(1995).

The distribution (1) was first introduced by Toranzos (1952) as a generalization of the
Pearson family of frequency functions. Toranzos main motivation was to introduce an asym-
metric bell-shaped density on the positive real axis, given by the sub-family with v > 1. He
gave recurrent moment formulas and proposed to use these for parameter estimation. Re-
cently Castillo and Puig (1997) considered maximum likelihood estimation, viewing the dis-
tribution as a general exponential family which encompasses the truncated normal, Gamma,
and Rayleigh distributions. The authors used this nesting to develop tests for departure
from any of the three distributions.

From a Bayesian perspective the distribution is of interest, as it is a conjugate prior
whenever the Gamma or normal distribution are. Hence the family is a flexible class of prior
distributions for a positive parameter, such as the positive mean or the inverse variance of a
normal variable, the inverse scale parameter of a Gamma variable or the mean of a Poisson
variable.

Simulation from this family have mainly been considered in the case v = 1, where the
distribution is a truncated normal. Devroye (1986) lists several rejection sampling algorithms
for simulating from the tail of the normal distribution. More generally Koop et al. (1995)
describe a rejection sampling algorithm for the case v € {1,2,3}, within a Gibbs sampling
framework. Here we give rejection sampling algorithms which encompasses all values of
v > 0, and we study the expected number of iterations in the algorithm. The latter is equal
to the rejection constant (see Devroye, 1986) which, in our case, is a continuous function of
the parameters, and is hence bounded on compact sets. We derive the asymptotic limit of
the rejection constant, as the parameters tend to the limit of the parameter space. In most
cases the rejection constant tends to 1, i.e. the algorithm is asymptotically optimal. We
also give tables of the rejection constant calculated numerically for different finite parameter
values.

Notice first the special case where § = 0. Then (1) is the density of the I'(v, ) distribu-
tion, which can be simulated efficiently by the algorithms found in Ripley (1987) or Devroye
(1986). We can simulate easily also when a = 0, as the distribution is then given by VX,
where X ~ I['(v/2,3). Hence we will consider the case where § > 0, « # 0 and v > 0. It
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suffices to consider the two densities
1
prlsine) = to (= ge 4 1?) /L), o> @
o
1
p_(z;v,0) = 2" L exp ( - ﬁ(aj — 1)2> /C_(v,0), x>0, (3)
o

for v > 0 and o > 0. For if we let 0> = 2(3/a? and generate Y ~ p_(-;v,0) if a < 0 or
Y ~py(v,0)if a >0, then X = Y|a|/(20) has the desired distribution.

We will divide the simulation of p, and p_ into the cases 0 < v < 1 and v > 1. Section 2
and 3 give algorithms for p, and Section 4 and 5 for p_. Finally, we have deferred all proofs
to an appendix.

2 Simulation of p, with 0 <v <1

We have at least two good envelopes for p, in this case, which can be used for rejection
sampling. The first, g, is derived by

pi(z) < 2 exp ( L 1))/o+<u, o) = crgn(2),

where

o1 =T(4)25 1o 22 /C, (v, 0), (4)

v
2

and
2

g(r)=———a"texp | — La?Q , x>0.
(202)¥/2T°(%) 207

This is the density of vZ where Z ~ I'(%, 7). The second is given by

25 vl v-1 1 2
gg(x)zw(x—kl)(x—i—@ z exp(—ﬁ(aj—i-l) ), x>0, (5)

which is the density of VZ +1—1if Z ~T'(v,1/(20?)). We find that
pi(z) =271 B (20°) T(W)(z + 1) (z +2)' ™92(2)/C4 (v,0) < e20(),

where .
co = 0?T(v)e 22 /Cy(v,0). (6)

The rejection constants c¢; and ¢, should be as small as possible to obtain a good accep-
tance rate. Thus for fixed v we should use g; when ¢; < ¢y or when

1 F(%) /2—-1 _— VT /2 —
1 > i —2V v — 72 v I/‘ 7
o I 7 Treh 7 )
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Here we have used the formula (Abramowitz and Stegun, 1965, p. 256)

(% _ - 1/2—v 1
v =V ey

2

=

=

We hence find that ¢; should be used when

1/v

1

o> (%) 75 = 1873~ 0.965v + 0.3550°
2

The approximation, found by a least squares fit, is quite accurate for v in the range from 0
to 1, with an absolute error less than 0.01.
Let here and in the following U denote a uniform variate on (0, 1), the algorithm is thus:

Algorithm 1. p,, 0<v <1

1. Initialize: If & > 1.873 — 0.965v + 0.35512 go to 2, else go to 4.

2. Generate Z ~ ['(%,1) and let X = 0v/2Z.

3. Generate U. If U > exp(—X/0?) go to 2. Otherwise return X.

4. Generate Z ~ I'(v,1) and let X = /2027 +1 — 1.

5. Generate U. If U > 21X +1)7}(X + 2)!7¥ go to 4. Otherwise return X.

The algorithm has a good acceptance rate for all values of the parameters. Writing
¢; = ¢;(v,0) to express the dependence on (v, o) explicitly, we have the following optimality
properties.

PROPOSITION 1 The rejection constants satisfy:
1) For allv > 0, ¢1(v,0) is decreasing in o and tends to 1 as 0 — 0.
2) For allv > 0, ca(v,0) is increasing in o and tends to 1 as 0 — 0.

3) Forallo >0, ¢1(v,0) Aca(v, 0) is bounded by a function k(v) given in (13). The latter
is increasing with v, k(v) — 1 as v — 0 and k(1) = 2.36.

We may note, that the actual rejection constants are somewhat smaller than the bound
k(v) obtained above. In Table 1 are listed the maximal rejection constants for different
values of v.

3 Simulation of p, with v > 1

For v > 1 we will proceed as in the case v < 1, dominating p, (x) by two envelopes, one for
small values of ¢ and one for large. For small values of o we will use go in (5), which also
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Table 1: Maximal rejection constants for algorithm 1 for different values of v.

V maX,ci N Co

0.1 1.05
0.2 1.11
0.3 1.17
0.4 1.24
0.5 1.30
0.6 1.37
0.7 1.45
0.8 1.53
0.9 1.61
1.0 1.70

in this case is an asymptotically optimal envelope as o tends to 0. For large values of o we
will use an envelope of the form
21_% 1,2

_ -1, -5z
g3(m) - O'a]_—‘(%)a: e 22 , T > O,

i.e. the density of v/7Z, where Z ~ I'(2, 513). A scaled version of g3 can dominate p, when

27 202
a < v. Choosing « such that the modes of p, and g3 coincide, we find that

1 1 2+y—1+
=— — — v
@ 202 202 o2 ’

which satisfies & < v. By choosing the rejection constant c3 as small as possible such that
po(5) < csg5(x), we get

3 = 2%711-\ (%) (Z/ _ a)l/faOZVfaef(Vfa)f%%/C+(V’ 0_).
As before, we should use g3 rather than g, when

C3 F(%)
b2 T T

2507 (v — )%, (8)

When v =1 this reduces to o > /7/2, and one may show that for any ¢ > 0, ¢3/c; — 0 as
v — o0. Hence for any o, the envelope g3 should be used for v sufficiently large.
The algorithm is then as follows:

Algorithm 2. p,, 1 <v <

1. Initialize: Let t; = 1/(202), ta = /B +2L(v—1) —t1, a = v —to, t3 = /2, ts =
to log(tg) and t5 = IOg 0'2. Let t6 = IOg F(tg) —IOg F(V)+06931472(t3— 1) —t3t5 +t4—1o.
If t¢ < 0 then go to 2 else go to 4.
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2. Generate Z ~ I'(t5,1) and let X = 0v/2Z.

3. Generate U. If logU > —2t X — t4 + t2(log X + 1 — t5) then go to 2. Else return X.
4. Generate Z ~ I'(v,1) and let X = /2027 +1 - 1.

5. Generate U. If U > 2"}(X +1)71(X + 2)'7 go to 4. Otherwise return X.

We have the following asymptotical optimality properties.

PROPOSITION 2 The rejection constant c3(v, o) satisfies:
1) For allv > 1, c3(v,0) tends to 1 as o0 — oo.
2) For all 0 > 0, c3(v,0) tends to 1 as v — 00.

Proposition 1 and 2 combined tell us, that the rejection constant is 1 in the limit as either
v — 00, 0 = 0 or ¢ — oo. Hence the algorithm is asymptotically optimal in these limits.
The propositions do not describe the asymptotic behaviour of max, c2(v,0) A c3(v,0) as v
tends to infinity, which is difficult to obtain since the maximum is not available in closed
form. There is, however, some numerical evidence, that the maximal rejection constant may
be unbounded along this curve in the parameter space. In Table 2 below we have listed
rejection constants for different values of v.

Table 2: Rejection constants for algorithm 2

V maX,cs A c3 ca N\ c3

c=01 oc=10 o0=10.0

1.0 1.78 1.01 1.53 1.14
1.5 1.55 1.02 1.31 1.05
2.0 1.55 1.03 1.24 1.04
3.0 1.63 1.06 1.18 1.02
5.0 1.79 1.15 1.14 1.01
10.0 2.06 1.64 1.09 1.01
15.0 2.31 2.13 1.07 1.01
25.0 2.67 1.83 1.05 1.00

4 Simulation of p_ with 0 < v <1

This distribution is the most difficult of the four cases, as the shape of the density varies
very much with the parameters, and there is no simple limit distribution as the parameters
tend to the boundary of the parameter space. This makes it difficult to construct envelopes,
which are asymptotically optimal.
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When v < 1 the density tends to infinity at zero, and may or may not have a mode,

depending on the value of . When o? < 4(11—_11) the density has a local minimum at z =

s —1/1+0%(v—1)and amode at z = 3 + /1 + 02(v — 1). As 0 — 0 the mode will tend
to 1, and the density is almost a truncated normal density except for the infinite pole near

0.

A good envelope should be of the form 2! close to 0 while being almost normal near 1.
Of course, it should be easy to simulate from it as well. This is the motivation for dominating
p— in the following way

p(z) < (qx”ﬂ(o <z<1)+ e*ﬁﬂw*l)z) /C (v,0), z€R,

for some g > 0. The minimal ¢ for which the inequality holds is not available in closed form,

but a valid ¢ is given by
T 0<o<1,
Q(U) = {\/_EL
e 22 og>1.

We will hence let g4(z) be the density

1

g4(.’L‘) = (o) Voo

(q(a)x”_ll(O <z <l1l)+ e*%%(“lV) , z€R

which is a mixture between a normal density, and the density vz*~!, 0 < z < 1. The latter
is the density of U+ when U is uniform on (0, 1). The rejection constant is then

14

ca(v,0) = <@ + \/ﬁa) /C_(v,0). (9)

We may generate random variables from the normal density by for instance the Box-Muller
method, see Devroye (1986). The algorithm is thus:

Algorithm 3. p_, 0<v <1

1. Initialize: If 0 < 1 let ¢ = 0.6065307 ¢ else let ¢ = exp(—5=). Let t; = q/v t, =
t; 4+ 2.506628 0.

Generate U;. If t,U; < t; then go to 3, else go to 5.

Generate U,. Let X = Uy .
Generate Us. If U < gexp (55 (X — 1)?) + X/U, then go to 2, else return X.
Generate X ~ N(1,0?). If X <0 go to 2.

Generate Uy. Let t3 = X', If X < 1 then t3 = t3 + gexp (50(X — 1)?). If U; ' < 3
then go to 2, else return X.

A T
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As mentioned earlier, the algorithm is not optimal. In fact the rejection constant is
unbounded as ¢ — oo or as ¢ — 0 and v — 0, as the following proposition states. Since p_
doesn’t tend to any simple distribution in these limits, it seems hard to determine an optimal
envelope. However, the rejection constant is acceptable for typical parameter values, as is
shown in Table 3. Furthermore, the algorithm may be speeded up by introducing squeezing
steps, where the rejection conditions in step 4 and 6 are pretested by simpler expressions,
before the exponentials are calculated.

PROPOSITION 3 The rejection constant c4 satisfies:
1) Forall0 <v <1, ¢s(v,0) = (27‘(6)7% v1+1 foro—0.

2) For all0 <v <1, cs(v,0) = V2rot™2'721(%) "1 (1 + o(1)) for o — oco.
8) For all 0 >0, cs(v,0) = ®(3)* (% + 1) as v — 1. The limiting expression tends
to (2me)™/2+1 aso — 0 and to 2 as 0 — oo.

1

4) Forallo > 1, cq(v,0) = 1 asv — 0, and for all 0 < 1, ¢4(v,0) — oen? ™7 as v — 0.

Table 3: Rejection constants for algorithm 3 for different values of v and o.

v =01 =10 o¢=10.0

0.1 3.39 2.64 4.71
0.2 2.19 1.89 4.42
0.3 1.80 1.69 4.32
0.4 1.60 1.61 4.14
0.5 1.48 1.58 3.84
0.6 1.40 1.56 3.48
0.7 1.34 1.55 3.08
0.8 1.30 1.53 2.67
0.9 1.27 1.51 2.28
1.0 1.24 1.48 1.93

5 Simulation of p_ with v > 1

In this situation we will use a single envelope for all values of ¥ and o. The envelope g5 is a
normal density,

2ro
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where the mean p is chosen to match the mode of p_, i.e.

1 1
p=g+ 1—1—02(1/—1).

A scaled version of g5 can dominate p_ when y > 1, which is fulfilled in this setting where
v > 1 and ¢ > 0. By choosing the rejection constant c; as small possible subject to
p_(z) < czg5(x) for all z, we get

2 —1 v—1
cs = V2o (Ll)) 77 W= 0 (1, 0). (10)
l/[l —
The algorithm is thus:
Algorithm 4. p_, v > 1

1. Initialize: Let u =
and to = (u—1)/0

2. Generate X ~ N(u,0?). If X <0 then go to 2.

3. Generate U. If logU > (v — 1)(t; + log X) — Xt5 then go to 2. Else return X.

+ﬂ/i+02(1’_ 1). Let t; =1 —2logo —log(v — 1) + log(un — 1)

The algorithm is quite simple, compared to the two-envelope procedures developed in
the earlier chapters. As might be expected the cost of this simplicity, is that the algorithm
is not asymptotically optimal in all limits of the parameters. The algorithm does, however,
yield asymptotical rejection constants which are less than 2, and it is hence reasonably fast,
if not optimal, in the limit. The details are given in the following proposition.

PROPOSITION 4 The rejection constant cs satisfies:
1) Forallv>1, c5(v,0) = 1 as o — 0.

2) For allv > 1, c5(v,0) — ¢(v) as 0 — oo, where o(v) is a continuous function of v
with (v) = 2 asv — 1 and ¢(v) = V2 as v — 0.

3) For allo >0, ¢5(v,0) = V2 as v — o0.

4) Forallo >0, ¢5(v,0) = ()™ asv — 1.
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Table 4: Rejection constants for algorithm 4
v 0=01 o0=10 o0c=10.0

1.0 1.00 1.20 1.85
1.5 1.00 1.21 1.54
2.0 1.00 1.23 1.48
3.0 1.01 1.26 1.45
5.0 1.02 1.29 1.43
10.0 1.04 1.32 1.42
15.0 1.05 1.34 1.41
25.0 1.08 1.35 1.41

A Proofs

PROOF (Proposition 1) The first claim follows by rewriting the normalizing constant as
o 1 2
Ci(v,0) = / e w4y
0

1 o 2 V2
= 6%20U2U/2/ Yy le Ve e Vdy
0

= e @ YPGB ], Z~T(51). (1)

Here we make the substitution z = \/§oy in the second line. Inserting this in the expression

for ¢; in (4) we find
ci(v,0) = E[e’@]_l.

By dominated convergence, the mean tends to 1 as ¢ — oo, which proves 1). If we instead
substitute z with oy above, we find that

Ci(v,0) = o T(W)E[e "], V~T(u,), (12)

and hence

o2y2 . _
o(v,0)=Ele 2 ] '
Again by dominated convergence, the mean value tends to 1 as 0 — 0 and 2) is shown.
In order to prove 3) we will apply Jensen’s inequality to the mean values above, and
obtain

er(v,0)™ = Ele™7] > exp (—?mm) = exp (-??;)) ,

av.0) ™ = Bl 2 exp (< T BV =0 (-5 0 +07)).
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For fixed v we hence have

c1(v,0) A co(v,0) < exp (? FISZ?)) A %2(1/ + 1/2)) < exp { (FIEZ?))) ’ (v(1+v))

W=

}(13)

where the last inequality follows by maximizing over o. By letting k(v) be the last expression
we see that 3) holds. O

ProOOF (Proposition 2) Using the expression for C, (v, 0) in (11), we find that

olv—a)]""*T(5) vz 1\ L
C3(V’U):[ (\/Ee )] I'(Y) (Bl])

where Z, ~ I'(%,1). By the dominated convergence theorem we see that the mean value
term tends to 1 as 0 — oo. It can be directly verified that: 1) « is an increasing function
ofo,a—1laso—0and a = v as 0 — o0, and 2) o(v — «) is an increasing function of o,
which tends to 0 as 0 — 0 and to v/v — 1 as 0 — oo. Hence we have proved 1).

To prove 2) we rewrite the expression for c3(v, o) above, using Stirling’s formula for the
Gamma function (Abramowitz and Stegun, 1965, p. 257)

T(z) = e %2 2v2r(1 4+ 0(1)), z— o0, (14)

whence we get

(v, o)=e 2 (%) T (70(1/\/—;(1))”_0“ (E [6_@])_1 (1+0(1)).

By the central limit theorem we have that (Z, — %)/+/v/2 2 N(0,1) as v — oo, and by

1
the continuous mapping theorem we then have /2, — \/g 2N (0, i) Provided that the
Laplace transform converges as well, we have that

B(e™ %) = ¢ ¥ a7 (1 +o(1)). (15)

The Laplace transform at s € R converges if sup, E [65(\/2_,,—\/%)] < 0o (Hoffmann-Jgrgensen,

1994, 5.14). Tt suffices to show that the transform is bounded in the limit as v — oo. By
concavity of y/z we have

1

f—\/gsmj

(x—y), for0<y<uz.
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Using this inequality we find
E [eSWZ_u—\/%)} <P(Z, < §)+ E[1(Z, > §)e V7V

L s3]

—5
—1+<1——) e 2v2

e

— 145,

v
2

ml:

Here the Laplace transform of Z, in the second line is finite for /v > s/v/2. We see that
the transform is asymptotically bounded, which was to be shown.

By inserting the expression for o and using the expansion log(1 + ) = = — 32% + o(z?)
as v — 0, with z = & — 1, it is straightforward to show that

a—1

o (2)7 e E )

Likewise we find that

<%)H = e 5 (14 0(1)).

Combining the these two results and (15) we find that c3(v,0) = 1 + o(1), which proves 2).
0

In order to prove Proposition 3 and 4, we will formulate the following lemma.
LEMMA 1 For allv > 0 and 0 > 0 we have
C (v,0) = ¢ T T(§)E [77],
where Z ~ T'(3,1). We furthermore have,
1) C_(v,0) =v2m0(1+0(1)) as 0 — 0.
2) C_(v,0) = e_ﬁ”L%J”Z%’lF(%)(l +o0(1)) as v — oo.
3) C_(v,0) = ®(2)V2m0 asv — 1.

4) C_(v,0) = e_ifu_l(l +o0(1)) asv — 0.
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PROOF By definition C_(v,0) is given by

O wo)= [ o exp(—is(e—1)) dr. (17)
[ = om (gnte-7)

The first expression follows directly by substituting z with v/20z in the integral.
In order to prove 1) we write C_(v,0) = v2noE[h(X,)] where X, ~ N(1,0%) and

v—1
hz) = {x x>0,

0 z < 0.

By Chebychev’s inequality X, — 1 in probability as ¢ — 0, and we must show that also
E[|h(X,) —1|] = 0. By (Hoffmann-Jgrgensen, 1994, 3.25.6) this is true if {|h(X,)[,0 < 0 <
1} is uniformly integrable. Consider first » > 1. Then V[%] > 1 and

v

B (X)) < B[1X, ] Z() 1%, — 17

n=0

= [Z ([Z]>ana” < Z <[Z]>a" Vo<1,

where a, = 2?7 1/2I(%H). By (Hoffmann-Jgrgensen, 1994, 3.24.5) this implies uniform
integrability. When 0 < v <1 and a¢ > 1 we have

1

au—l 1 L
sup E [|h(X,)[1(|h(X,)| > a)] = sup / P e g
o<1 0

o<1 2ro
1
1 121
< sup e 2 2(1me" T 2 oty
o<l 210 v
1 1

L N—= — 1 _v_
= ——(1—am1)"e 2 g1 5 0as a — oo
v

V21

Thus we have that {|h(X,)],0 < o < 1} is uniformly integrable.
2) By the argument in the proof of Propostion 2 we have that

B[] = B[#VAVD] o = it (140(1)),

which together with the expression (16) proves 2.

3) follows by using Lebesque’s dominated convergence theorem on the expression for
C_(v,0) in (17).
4) By splitting the integral in (17) into two, we have

1 1
C(l/,a):/ 2l 2@ gy 4 O(1) = /xv—l(ez%z +0()) dz + 0(1)
0 0

— e 4 0(1),

which proves 4) O
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PROOF (Proposition 3)
All the cases follows directly by inserting the limiting values of C'_ (v, o) found in Lemma
1 in the expression (9) for ¢s(v,0). O

PRrROOF (Proposition 4) 1) In the limit as 0 — 0 we have by Lemma 1

02(V - ].) v-l 1 2 1 1
es(v,0) = (ﬁ) eI (1 4 0(1)).

Since (u?> —1)/(20%) v —1and (u—1)/o? - v —1 as 0 — 0, we see that c5(v,0) — 1.
2) By Lemma 1 we have the following expression for ¢5(v, o),

es(v,0) = V21 (:((:7:1)))”_1 BT (2) [e@} - (18)

where Z ~ I'(%,1). The mean value term tends to 1 as 0 — oo, and furthermore (u—1)/0 —
Vv —1 and p?/20? — (v — 1)/2. Hence we find

v—1

-1\ ? v
cs(v,0) = V2r (U ) 2'720(%) " as o — oo

e

Denote the right hand side above ¢(v). Using Stirling’s formula for the Gamma function
(14) it is now straightforward to verify that ¢(v) - 2 as v — 1 and ¢(v) — V2 as v — oc.
3) Using Lemma 1 we find that as v — oo,

xexp {ga(’ 1) = (= 1) + o = L} 2E0(G) (14 0(1)). (19)

Now

which implies

By inserting this in (19) and using Stirling’s formula for the Gamma function (14), we find
that

v—1

cslvno) = Ve (“22) (1 o(1)) = V(1 + o)

14

which proves 3)
4) Tt is easy to see that (u—1)/(v —1) = 02 and u — 1 as v — 1. Inserting these limits
and result 3. from Lemma 1 in the expression (10), we obtain 4) OJ
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ASYMPTOTIC NORMALITY OF THE
MAXIMUM LIKELIHOOD ESTIMATOR IN
STATE SPACE MODELS

JENS LEDET JENSEN! NIELS VEVER PETERSEN?2

University of Aarhus'? and MaPhySto'*

Abstract

State space models is a very general class of time series models capable of
modeling dependent observations in a natural and interpretable way. Inference
in such models have been studied by Bickel et al., who consider hidden Markov
models, which are a special kind of state space models, and prove that the
maximum likelihood estimator is asymptotically normal under mild regularity
conditions. In this paper we generalize the results of Bickel et al. to state space
models, where the latent process is a continuous state Markov chain satisfying
regularity conditions, which are fulfilled if the latent process takes values in a
compact space.

AMS 1991 subject classification. Primary 62F12; secondary 62M09.
Keywords and phrases. State space models, asymptotic normality, maximum likelihood
estimation.

1. Introduction. A state space model is a discrete time model for dependent
observations { Y} }, where the dependence is modelled via an unobserved Markov process
{X\} such that, conditionally on {X} the Y;’s are independent, and the distribution
of Y, depends on X}, only. The unobserved process { Xy} is often referred to as the
latent process. The state space framework encompasses the classical ARMA models,
but, more interestingly, non-linear and non-Gaussian models can be formulated in this
framework as well.

We will consider inference in state space models by the likelihood method. The
likelihood function can not always be calculated explicitly in these models, however, for
linear state space models with Gaussian errors the likelihood function can be calculated

*Centre for Mathematical Physics and Stochastics, funded by a grant from the Danish National
Research Foundation.
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by the Kalman filter. There is an extensive literature on Kalman filtering, see for
instance West & Harrison (1989) who gives a comprehensive treatment of linear state
space models with many examples.

For non-linear state space models and for state space models with non-Gaussian
errors the likelihood function can rarely be calculated explicitly. Instead different ap-
proximations to the likelihood function have been proposed. Kitagawa & Gersch (1996)
discusses an approximation to the likelihood function based on numerical integration
techniques, an approach which is also studied in Frithwirth-Schnatter (1994). However,
with these techniques the likelihood function can only be approximated to a certain
degree of accuracy. Alternatively the likelihood function can be approximated to any
degree of accuracy by simulation techniques. This approach is investigated by Durbin
& Koopman (1997), Shephard & Pitt (1997) and references therein.

Inference in state space models has mainly been studied in the case of hidden
Markov models where the latent process takes values in a finite set. Leroux (1992)
proved consistency of the maximum likelihood estimator and Bickel, Ritov & Rydén
(1998) proved asymptotic normality. The purpose of this paper is to extend the results
of Bickel et al. to cover more general state space models where the latent process is
a continuous Markov process. We show that the distributional inequality in Lemma
4 in Bickel et al. is valid in our setup also, under regularity conditions which can be
fulfilled if the state space of the latent process is a compact set. The inequality states
a mixing property of the latent process, given the observed process, and is the main
key to proving asymptotic normality. Having established this mixing result we follow
Bickel et al. in their proof of the central limit theorem for the score function and in
the proof of the uniform law of large numbers for the observed information.

In Section 2 we state the model and the assumptions we will work under. In Section
3 we state our main results, the central limit theorem for the score function, the uniform
law of large numbers for the observed information, and, finally, asymptotic normality
of the maximum likelihood estimate. In Section 4 we prove the central limit theorem
and in Section 5 we prove the law of large numbers.

2. Notation and assumptions. Let {X}} denote a stationary homogenous Mar-
kov chain on the measurable space (X, A, u). Here X may be continuous or discrete.
A typical setting fulfilling our assumptions below, is where X is a compact set. Let
ay(z, z) denote the transition densities with respect to p which are parametrized by
a parameter § € © C RY. Let {Y;} be a sequence of stochastic variables on the
measurable space (), B,v) such that given {X;} the Y;’s are independent, and the
distribution of Y; depends through {X;} on X; only and has density go(y;|x;) wrt. v.
The model can thus be formulated as

Yi | Xk ~ go(yr | 1),
X | X1~ ag(zp—1, 7).

We will let my denote the density wrt. u of the stationary distribution of X.
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We observe values Y7, Ys, ..., Y, of the process {Y}; } while { X} remains unobserved,
and we wish to estimate by the maximum likelihood method. We will let /,,(#) denote
the log likelihood function based on Yi,...,Y,. In Section 4 an expression for this
function is derived. For the moment we only give the expression for the simultaneous
density of (X1,...,X,, Y1,...,Y,) wrt. p" x ",

n

Pa(ﬂh, <oy Ty Yty - -, yn) = Wa(ﬂfl)ge(yl | 331) H{O‘B(-Tk—l; $k)ge(yk|$k)}- (1)

Above, as everywhere else in this paper, we use the sloppy, but hopefully clear notation
po(z) for the density of a stochastic vector Z with respect to a measure given by the
context.

We will let Dgy denote the gradient of gy wrt.  and D?g, will denote the Hes-
sian, and we will let 7y(x) = Dlogmy(z), Ag(z,2) = Dlogay(z,z) and ~y(ylz) =
Dlog go(y|x). The true parameter will be denoted 6, and a notation like 7y is short for
Tgo- Throughout the paper X7* will denote the vector (X1,...,X,) and c will denote
an unspecified finite constant. In the assumptions below we will let | - | denote the
max-norm of a d x d maxtrix, |A| = max;; |4;;|.

We will assume that there exists a § > 0 such that with By = {0 € © |0 —0y| < 4}
the following conditions hold.

(A1) There exists a 0 > 0 and an M < oo such that 0 < ay(z,2) < M forallz,z € X
and all § € B,.

(A2) For all z,z € X the maps 0 — «ay(x,z) and § — 7e(z) are twice continuously
differentiable on Byj. Likewise, for all z € X and y € ) the map 0 — gy(y|x) is
twice continuously differentiable on By.

(A3) Define p(y) = supyep, SUp, e 90(y|2)/ge(y|x), then

int, | wlwla)/o(0) () > 0.

(A4) (i) suppep, SUP; ex |Ao(2; 2)| < 00 and supge g, Supgex |79(2)| < oo
(i) supgep, SUPy,zex [ DAo(, 2)| < 00 and supge g, sup,ex | D7o(2)] < o0
(iii) Define 7*(Y1) = suppep, SuP,ex |70(Y1]z)| then +*(Yy) € L*(F) and
SUPge g, SUPex [ DY (Yi]2)| € L (F)-

(A5) (i) For v-almost all y € Y there exists a function h, : X — R, in L'(u) such
that |gs(y|z)| < hy(z) for all 6 € B,.

(ii) For p-almost all z € X there exist functions Al : Y — R, and h2:Y — Ry
in L'(v) such that |Dgy(y|z)| < hl(y) and |D?ge(y|z)| < h2(y) for all
0 € By.
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(A6) 00 S 1nt(®)

REMARK 2.1 Note that if sup, ,c |Ag(, 2)| < oo for a 6 € By and sup,cx |79(z)| <
oo for a @ € B, then A4(ii) implies A4(i). Likewise in A5(ii) the local dominated
v-integrability assumption of y — [D?gy(y|z)| for p-almost all z implies a similar
property of y — |Dgy(y|x)|, provided that |Dgy(y|z)| € L' (P,) for a § € B,.

REMARK 2.2 By assumptions A5(i), A1l and A4 the function 27 — Dipy(z7,y7) is
locally dominated p"-integrable around 6, for v"-almost all 7', any n € Nand 7z =1, 2.
This is seen by noting that by (1) Dpy(z7,y}) consists of a sum of terms like, for
instance,
n—1
mo(@)go(yale1) [ {eo(@r1, 2x)g0(uelze) Yo(w;1, 25) Daa(y;;).
k=2,k#j

By A1l and A5(i) this term is absolutely dominated by

n

M" [ [ hy () | D Vog go (yl2;)| < M™ sup sup |y (ys|a)| | ] oy (),
k=1 € By TeX k=1

which for almost all fixed y? is a u"-integrable function, by assumption A4(iii). The
domination of the second derivative is similar. The local integrability assumption is
needed to “interchange integration and differentiation” in some expressions below.

REMARK 2.3 The process Y is ergodic under A1l. To see this, we observe that Y, can
be described as Yy, = g(Xy, Uy; 6y), where Uy, Us, . .. are uniformly distributed U(0, 1),
and independent of X. Now { (X, Ux)} is a stationary Markov chain, with transition
density p(z1,uq | o, uo) = ap(xg, 1) and hence ergodic by Al. Thus Y is also ergodic.

REMARK 2.4 The assumptions A1, A3 and A4 are restrictive and are not fulfilled in
a general state space model. A typical example where Al to A5 are fulfilled is the
following. Suppose X is a compact set in R? and p is the Lebesque measure. If the
transition density ay(z,z) and the stationary density my(z) are positive and satisfies
A2 and if ay(z, 2), my(x) and their first and second derivatives are continuous functions
of (6,z,z) and (0, ), respectively, then A1, A4(ii) and A4(i) are satisfied. Suppose,
furthermore, that gg(y|z) is an exponential family density,

99 (ylx) = e0(@:0)t(y) —r(d(x,0))

Here x denotes the cumulant transform of #(Y) defined on the full parameter space
A CRF and ¢(z,0) € Ay where Ay is a subset of int(A). Suppose that ¢(z, ) is twice
differentiable wrt. # and that ¢ and its derivatives are continuous functions of (x,#),
then ¢(x,0) : X x By — Ay takes values in a compact set. By continuity of x we have

90(ylz)/95(y|2) = exp [{8(,0) — 6(2,0)} - t(y) — {K(¢(z,0)) — K((2,0))}]
< ¢ exp(C;[t(y)]).
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Then

inf / 90(ylz)/p(y) v(dy) > ci" inf / e?(@00) 1Y) =k($(@.00)) g=e2ltW)| 1 ()

zeX

> ¢ inf / ¢ 19(@.00) 1) €21t ()
y

zeX

> ¢ / eIy (dy) > 0,
y

hence A3 is fulfilled. As for A4(iii) we have

Dloggo(ylx) = DIo(a,) - tly) — r(0(z,0)} = AP ty(4) —2(o(a, )},

where 7(¢) = 9%(9) is the mean of ¢(Y) under P, and 22&9) denotes the d x k matrix
¢ ¢ a9

of partial derivatives of ¢ wrt. . Then because of compactness of X x By we get

sup sup |Dlog go(y|z)| < e1 + calt(y)|,
0€eBy zeX

and hence

Ey(sup sup |Dlog go(y|z)[?) < 2¢2 + 2c3E, ([t(Y)?) < <.
0cBy X

The second derivative D?log g¢(y|x) can be dominated in the same way, and hence
A4 follows. Assumption A5(i) follows again by compactness of the parameter space,
and finally A5(ii) follows by the continuity of ¢.

3. Main results. Our main results are stated in this Section. These are a central
limit theorem for the score function and a uniform law of large numbers for the observed
information. As a consequence of these we find that with a probability that tends to
one as n tends to infinity, there exists a (local) maximum point of the likelihood
function, which is consistent in probability and asymptotically normal. If especially
the maximum likelihood estimator exists and is consistent, it is asymptotically normal.

Let [,,(6) denote the log likelihood function based on observations Yi, ..., Y, . Below,
Ty will denote a Fisher information matrix given by

Ty = Eo(nmm"), where n = lim Dlogp,(Y;|Y?).
n—oo

This will be formally defined in Section 4, but as the following theorems show it can
be thought of as the asymptotic covariance matrix of the score function or the limit of
the normed observed information as the number of observations tends to infinity.

THEOREM 3.1 As n tends to infinity n=/2DI,(6y) — N(0,Z,), Po-weakly.

This Theorem is proved in Section 4.
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THEOREM 3.2 Let {0} denote any stochastic sequence in © such that 65 — 6y in
Py-probability as n — oco. Then n~1D?1,(0}) — —Iy in Py-probability as n — oo.

This Theorem is proved in Section 5. Having established these two results the following
result is proved in Jensen (1986) (see also Sweeting (1980).)

THEOREM 3.3 Assume that Iy is positive definite. With a Py-probability that tends to
1 as n tends to infinity, there exists a sequence of local mazimum points of the likelihood
function {8,} such that 6, — 6y in Py probability, and

V0, —6y) = N(0,Z3%), Py — weakly.

If especially the mazimum likelihood estimator exists and is consistent in Py-probability,
then this estimator has the same limit distribution.

The proof of the second part of the theorem follows by a Taylor expansion of the
likelihood function around 6y, as the proof of Theorem 1 in Bickel et al. The proof of
the first part relies on the assumption that Z, is positive definite, thus in the limit the
likelihood function has negative curvature and hence a local maximum at 6.

4. A central limit theorem for the score function. In this Section we prove
the central limit theorem for the score function stated in Theorem 3.1. Bickel et al.
proved the same result in case where the state space of the latent process is finite.
Here we start with some Lemmas which will replace Lemma 4 and 5 in Bickel et al.
For notational reasons we will assume that d is equal to one in the rest of this paper.
If derivatives are replaced by gradients and second derivatives by Hessians all results
are valid for general d.

LEMMA 4.1 Let J C Z be an integer set and let 0 € By. Conditionally on Yy = {Y}|j €
J}, X constitute an inhomogeneous Markov chain with pg(Xg| Xk 1,Ys) > wg, where

o = { o*[(Mp(Ye)) ifk €]
k o? /M ifk & J.

The inequality is also true for the reversed chain {X _j}rez.

Proor The Markov property is proved by considering n < k < m, assuming for
simplicity that n < j < m for all j € J. Then

m—1

po(XN 1 Xy | X, Vo) = mo(Xn) [ [ @0(Xs, Xiwn) [ [ 90(Y51X5) /2o (X, Vo)

i=n jeJ

= hy (X, Y ha(X[, V),

where h; and hy are functions of (X%, Y;) and (X[, Y), respectively. It follows that
XF~!and X" | are conditionally independent given (Xj,Y;).
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Suppose k € J. Conditionally on X} ; and X i, X} and Y\ () are independent
by definition of the state space model. Hence the conditional density of X given
(X1, Xpy1,Yy) is

g (Xi—1, Xi) g (X, Xi+1)90(Yie| Xi)
[y 0o(Xi—1, ) (2, Xi1) 9o (Vi ) pu(der)

S 2 (M/Xae(Xkl,x)%ﬂ(dﬂf))l

> o2 /(Mp(Y2)). (2)

Po(Xi| X1, Xp41,Yy) =

Integrating the conditional density wrt. ps(Xygi1|Xk_1,Y) gives the stated result.
When k ¢ J the term go(Yy|Xx) vanishes.

The proof of the statement for the reversed chain follows by integrating (2) wrt.
Po(Xk_1| Xki1,Yy) instead. O

We state the following Lemma for future reference, leaving the proof to the reader.

LEMMA 4.2 Let (X, A,u) be a measure space and let h: X — R be a measurable

function on X. Let v1 and vy be two measures dominated by p with v1(X) = ve(X).
Then

\/thyl_/ hdus| < {sup h(z) — inf h(x)}{(5*) ~ 1(S*)},

TEX

+ _ %_dvz
where ST = {F] > 0}.

In the next Lemma we will let { X} }ez denote any inhomogenous Markov chain,
that is, { X%} is not necessarily the latent process in the model.

LEMMA 4.3 Let {Xg}rez be a Markov chain with state space (X, A, ). Assume

dPXk|Xk—1 ($|Z)

m = pi(2,2) > g,

forall z,z € X and k € Z, where Px,x, , denotes the conditional distribution of Xy
giwven Xy_1. Then for any A€ A,

sup P(X, € A| X, =¢) — g)f(P(Xn € AlXy=1) H (1 — Gpp(X

{ex

PRrROOF Let S = {z € X | pr(§,2) — pi(n, ) > 0} for fixed £ and n in X, and let
Sy = (8;)° Define M = supey P(X, € A|X), = €) and m{) = infex P(X, €
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A|X; =mn). Then

MXC—I) _ mgc—l)
= Sup (P(Xn € A|Xk_1 = g) - P(Xn € A|Xk—1 = ’r’))

&m
= up /X P(X, € A|Xy, = 2){pr(€, 2) — pr(1, 2)} p(dz)

< sup{P(Xi € 8{[Xps =€) = P(Xe € 571Xt = )} — m)
)

= sup{l = P(Xy € S| X1 =€) ~ P(Xi € ST X = )M —mlP)
717

< {1 = Sppu(X) M —mlP),

where the first inequality follows from Lemma 4.2. The result now follows by induction
with k =n,n —1,...,1. (Proof based on Doob (1953, p. 198)) O

We are now ready to prove a result corresponding to Lemma 4 in Bickel et al. Let

w(y) = p(X)o®/(Mp(y))-

LEMMA 4.4 Let k < 1 and let J C Z such that {k,k+1,..,1—1} C J. Let Y; =
{Y; | j € J} then for any 0 € By,

sup sup |P9(Xk € A|YJ,Xl :g) —Pg(Xk € A|YJ,Xl = ’I] H 1 —w
AcAEneXx i=k

Likewise, if | < k and {{+ 1,01+ 2,...,k} C J then

k
sup sup [Pp(Xy € A|Yy, X =€) = Py(Xp € A|Yy, X =)l < [] (1 —w(¥D)).

A€ AEnex =041

PROOF Consider the case k < [. Applying Lemma 4.1 on the reversed chain {X _}xez
we get

po(Xi| Xiy1,Yy) > 02/ (Mp(Y;)) = w(Yi)/u(X) fori=Fk,...,1—1.

Using Lemma 4.3 with §; = w(Y;)/u(X) we get the stated result. The proof is similar
when [ < k, applying Lemma 4.1 on the original chain {Xj}rez. O
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LEMMA 4.5 Let —m < —n <k <0. For any 0 in By and any A, B € A we have

0
|Py(Xi € AIYL,) = Po(Xp € AIYS) < [ - w(¥2)),
=k

0
|Pp(Xy € A, Xp1 € BIY) — Py(Xp € A, Xpn € BIY)| < ] (1 -w(¥7)),

i=k+1

k
[Po(Xy € AIYL) = Py(Xp € A|Y2,) < [ (1 - w(¥),
B k
|Py(Xy € A, Xpp1 € B|Y!) = Py(Xp € A, X € BIYY )| < [T (1 - w(V7)).

i=—n

The first and second expression hold Py-almost surely if n is replaced by oc. The third
and fourth hold Py-almost surely if m is replaced by oo and for both we can replace Y,
and Y1 by Y and Y, respectively.

—m
PrOOF The first expression can be evaluated as

|P0(Xk €A | Y—ln) - PG(Xk €A | an)|

= I/XPa(Xk €AY, 2){ps(a1 | Y7,) — (@ | Y7,)} ulday)|

0
<sup Pp(Xp € A|Y°, X1 =) — inf Py(X; € AV, X1 =) < [[(1 —w(¥)),
gex nex ik

where the inequalities follows from Lemma 4.2 and 4.4, respectively. As for the second
expression,

|Py(Xp € A, Xpy1 € BIY!' ) — Py(X}, € A, Xy € B|Y?)]

= I/ Py(Xy € Alzisr, YE ) Po(wrsn | Y2,) = Po(wnrn [ Y2,)} pldwp)|
B

0
< [Po(Xpar € STIYE) = Py(Xpan € STIYE)[ <[] (1 - w(¥i).
i=k+1

Here St is a set chosen as in Lemma 4.2 and the second inequality follows from above.

By a martingale convergence theorem by Levy (Hoffmann-Jgrgensen 1994, p. 505)
we get, for instance, that Py(X; € A|Y! ) — Pp(Xy € A|Y! ) Pyp-almost surely as
n — oo. This result shows that we can replace n by oo in the inequalities above.

The third expression is proved as the first by conditioningon X ,, | =z , ; in
the integral, and the fourth expression follows from the third by an argument similar
to the one used to deduce the second from the first. The arguments are identical when
replacing Y2, and Y, with Y and Y°,, and the extension to the case m = oo follows
from the martingale convergence argument above. [
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Lemma 4.5 corresponds to Lemma 5 in Bickel et al. Having established this result
the rest of the proof of the CLT for the score function follows the line of these authors
closely. However, we will repeat some of the arguments here since there are some
differences due to our latent process being continuous.

We will for notational reasons denote our observations Y_,,, ..., Y;. The score func-
tion DI(f) is then given by

1
DI(6) = > Dlogpy(Ys | Y1),
k=—n
where py(Yy | YX-1) denotes the conditional density of Y given Y*! given by
Dlogpy(Ys | YE") = Dlogpy(YZ,) — Dlogps(YE).

Using assumption A5(i) to interchange integration and differentiation below we find
that for any j =k — 1, k,

Hence Dlogpg(Yy | Y*71) is given by

Dlogpy(Yy | Y5 1)
= Eg(Dlogpe(YE,, X*,) | YE,) — Eg(Dlogpe(YE, ', XE ) | YEY). (3)

Using the expression for pp(Y* ) X* ) in (1) we find

Dlogpy(Y | Y51 =

k-1
Z {Eg(No(Xs, Xit1) +70(Yi|Xa)[YE,) — Eo(No(Xi, Xiv1) + 70 (Vi X0) YD)}
+ Eg(m9(X ) |YF) = Bp(19(X ) | YE) + Eg(ve (Yl Xi) [ YE,).  (4)
Now, let

0
m= > {Eo(o(Xi, Xi1) +70(Yi|X;) V!, )—

1=—00

Eo(Ao (X, Xit1) + 7 (Yi X)) [Y2,) } + Eo(o (V1| X1) | Y2). (5)

The infinite sum is absolutely convergent in I.?(F), as will be shown in Lemma 4.6,
so 71 is a well defined variable in 12 (). Let

Ty = Eo(n})-

Letting || - || denote the IL?(P,)-norm we have:
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LEMMA 4.6 There exists a 3 € [0,1) and a constant ¢ such that
ID1og poYi [ Y2,) = mill» < cB

for all n.

PROOF Let
Zk = Mo( Xk, Xi41) + 70 (Ve | X))

By splitting the sums in (4) and (5) we can dominate ||Dlogpy (Y1 |Y?2,) —m1|]2 by the
sum of the following terms:

1 Eo(10(X-n) | YZ,) = Eo(ro(X-n) [ YZ,)ll2, (6)
1 Eo(r0(Y1]X1) | Y2,) = Eo(o(Yi|X1) | Y20 e, (7)
k=—[n/2]
—[n/2]-1
> Eo(Ze|Y2,) = Eo(Ze | YO,)ls, 9)
*[7:/2]
D Be(Ze | Y ) = Bo(Zi | YO, (10)

where [-] denotes the integer part. We will show that each of the terms (6)—(10) can
be dominated by c38", where 0 < (8 < 1, which proves the Lemma. Furthermore, the
domination of (10) shows that the sum in (5) is absolutely convergent as stated earlier.

We will show the domination of (9) and leave the remaining terms to the reader.
We will first consider the part of Z; given by 7o(Y%|Xx) in (9). By applying Lemma
4.2 and 4.5 we have the following inequality:

| Eo(0(Yel Xi) | YZ,) — Bo(70(Yel Xk) | Y2,)]

_ ‘ [ o0l putan | Y) = e | 5,0} ()

< 25up [yo(Velo)| T] (1= w(¥0).
zeX i=k+1

Hence the L2-norm can be dominated as
1 Eo (0 (Ve Xk) | Y2,,) — Eo(vo(YelXk) [ Y2,)5

0
< 4FE, (EO (supfy() Yi|z)? H (1 —w(

zEX i=k+1

)

=4Eq (EO(SUP%(YM»T | Xk) H Eo((1 - w(Y7))? |X)>

reX imk+1
<cp (11)
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where the equality follows by definition of the state space model and where 3 is given

by
g=sup [ (1- /;\(;;);)2)290(1/@) v(dy)

reX

(
zph (g v

mf/go ylz)/p(y) v(dy) <1
y

=1-

by assumption A3. The constant in (11) is finite by assumption A4. For a sum of
L2-norms we get,

—[n/2]-1
D Eo(ro(YelXi) [ Y2,) = Eo(o (Yl Xi) [ Y22
k=—n
—[n/2]-1
S c Z ﬂ*k/Q S CB[H/Q]/Q
k=—n

The part of (9) involving Ag(Xx, Xk+1) can be dominated in a similar way, using A4
and the second inequality in Lemma 4.4. Hence we have proved the claimed domination
of (9). O

Lemma 4.6 is the final brick needed to prove Theorem 3.1; it tells us that in the limit
the score function function is equivalent to a sum of terms like 7;. These constitute
a stationary martingale increment sequence, and hence by a martingal central limit
theorem we obtain the stated limit distribution of the score function. The proof is
identical to the proof of Lemma 1 in Bickel et al. (p. 1626)

5. A law of large numbers for the observed information. In this Section we
will show Theorem 3.2. As in the previous Section we will start with some Lemmas pro-
viding inequalities for conditional probabilities. Lemmas 5.1 and 5.3 are multivariate
versions of Lemma 4.5.

LEMMA 5.1 Let —-m < —n<k<1<0, andlet € By. Then for all C € o{(X},Y;) :
t <1} we have

0
|P(C[YE,) = P(CY2)] < T](1 = w(¥2)).

i=l
Likewise for all C € o{(X},Y;) : t > k} and for j = 0,1 we have,

[Py(C|Y?) = By(CY7,) < [ (- w(¥).

i=—n
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ProoOF Let C € o{(X,Y;),t <[}. Then
|Py(C | Y!) = Py(C | Y°)]
= | / Py(C o, Y ol | Y2,) = poae | Y2,)} p(day)]
X

0
<P(X € STV = P(X, € STV <[] - w(W3)),

=

where St = {x;, € X | po(x;|YL,) — po(z:|Y?,) > 0} is chosen as in Lemma 4.2,
and the last inequality follows from 4.5. The second inequality is derived by a similar
argument, by conditioning on X} instead of X;. [

In the next Lemma {X} denotes any inhomogenous Markov chain, as in Lemma
4.3.

LEMMA 5.2 Let the setup be as in Lemma 4.3. Let n € 7Z and let () be the measure
on A® A defined by,

Q(A x B) = P(X, € A)P(X, € B),
for A,B e A. Then for allC € A® A,

IP((X0, X,) € <JJ0 st

Proor Let Cyy = {2, € X | (20, z,) € C}, then
[P ((Xo, Xn) € C) = Q(C)]

_ |/{P(Xn € Cry | Xo = 70) — P(Xn € Cuy)} Py (dzo)] < [[(1 = bpu(¥
x Pty

Here the last inequality follows from Lemma 4.3 since
|P(X, € A| Xo=¢&) — P(X, € A)|
— | [ (P(Xa € 41X =€) - P(X, € A| Xo = 1)} Px,(dn)
X

= sup P(X,, € A| Xo =€) — inf P(X,, € 4| Xo =) <[[a - den(x
sex k=1

O
LEMMA 5.3 Let - m < —n <k <1<0. Let ng_n be the measure on A ® A defined

by
9,-n(A X B) = Pp(Xy € A|YL,)Py(X; € B|YZ,)
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for 7=0,1 and A, B € A. Then for all 0 € By, for C € A® A and for j =0,1,

|Po(X, X)) € C1Y2,) = @), (O) < ] [(1 - w(¥2)),

i

Q5. (C) — Q) _,(C)] < 2H(1 — w(Y;

|
—

Il
B

Q5 (C) = Q4 (O) <2 [] (1 ~w(¥;

i=—n

ProOF The first inequality follows from Lemma 5.2 and 4.1. To prove the second
expression we will let Cy = {z € X | (z,y) € C}, C, = {y € X | (z,y) € C} and
proceed as follows,

1Q6,-n(C) — Q5 —n(C)]
= | /C {po(i | Y2)po(0 | Y2,) — ol | Yo )po(20 | Y2,)} pldae) p(dy)|

< / (o(ee | Y) = polee | Y, poler | YY)l ()
T / (o] Y',) — polar | Y°,)} pole | Y°,) () u(dle)
< / |Py(Xy € Cy, | Y1) — Py(Xy € Cy, | Y2, po(x| YY) pu(day)+

+ [ IP(Xi € € 1Y4) = Ra(Xi € Co [ V2] polanlV?,) ()

gf[1—w H(l—w <2H1—w

1=l
where the third inequality is given by Lemma 4.5.

The third expression is proved as the second. [J

Having established these inequalities we are ready to prove the law of large numbers
for the observed information. Using A5(i) to interchange integration and differentiation
we find

D?logpe(Y1 | Y2,) = D*logpe(Y,) — D*log pp(Y?2,) (12)
= Ey(D?logpe(XL,, V! )\Yl ) — Eg(D*logpe(XL,,, Y )|Y° )
+ Vare(DlogPa(Xl ) \Yl ) - Val"e(Dlogpe(Xl ) |Y0 )

—’n,7 —n’

Define for notational reasons

Zo g = Mo( X Xis1) + 70 (Ya| Xi) and Zy g = DAg(Xp, Xps1) + Dy (Ve Xi).
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Inserting expression (1) in (12) we get,

D?logpy(V1 |Y2,) (13)
= Ey(Dro(X_n) | Y2,) = Bo(Do(X_0) | Y2,) + Eg(Dye(Y1]X1) | Y2,)

+ > AEs(Zoy |Y",) — Eo(Zox | Y°,)}

k=—n

+varg(1p(Y1|X1) | Y2,,) + varg(ro(X ) | Y2,) — varg(rp(X ) [ YZ,)

0 0
+ Z Z {COVQ(Zg,k,Zg,l

k=—nl=—n

Y1) —cove(Zok, Zo, | Y°,)}

0
+2)  {covo(rg(X—n), Zo | Y2,)) — covo(rs(X_n), Zou

k=—n

Y?n)}

0
+2 ) covg(19(Yi|X1), Zox | Y2,) + 2cove(70(Y1|X0), 79(X ) | Y2,).

k=—n

We then have the following convergence result.

LEMMA 5.4 As m,n — oo,

— 0,
1

sup |D*logpg (Y1 | Y2,) — D*logpo(¥1 | YZ,,)
€bo

where ||-||, denotes the L (Py)-norm.

This Lemma states that {D?*logps(Y1|Y?,)} is a uniform Cauchy sequence in
L'(P). This is important because it proves the existence of a limit in L!'(F,) of
D?logpe(Y1 | Y!,) as n — oo for any 0 € By, and not only § = ;. In the proof we will
need the following Lemma.

LEMMA 5.5 Let —m < —n < k <1 <0 and let Zyy, be defined as above. Then there
exists a 3 € [0,1) such that the following inequalities hold for j =0, 1,

sup |covg(Zyk, Zp, Y_ln) —covg(Zok, Zo, | an)| <cp™, (14)
6By 1
sup |cove(Zox, Zo, | Y7,) — cove(Zox, Zog | Y2l < eBF™, (15)
6e By 1
sup |covg(Zyk, Zg, | Yﬁn)| < cfi k. (16)
#€ By 1

Above Zy,; may be replaced by 19(X;) or vo(Yi | X;) fori =k, 1.
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PRrROOF Recall that Zyj, = Ag(Xy, Xj11) + 79(Yk | Xi). Thus the covariance of Zy
and Zy,; splits into the sum of four covariance terms involving Ay and 7. We will
show that cove(ve(Yx | Xk),79(Y:| X)) | Y) satisfies the claimed inequalities. The three
remaining terms are similar.

To show the first inequality we will consider the expression

sup [Ep{vo(Yie | Xi)70(Ye| X0) [ Y2} = Eo{ye(Yi | Xi)y0(Ye | X0) | Y2, }

0e€ By
= sup \ 2 Yo(Ye | 2)v0 (Ve | ) {po(an, 1 | Y2,) — po(@r, 2| Y2,)} p(dae) pu(da)|
€bBo X
< 29" (Yi)v' (V1) Sup | Py((Xy, X1) € ST|YL,) — Py((Xg, X)) € ST[Y2)]
€Byp

<2y (Yi)y' (W) [ [ - w(¥3)).

1=l

Here v*(Y}) = supyep, SuP,ex [79(Ys|2)| as defined in assumption A4, and the inequal-
ities follows from Lemma 4.2 and 5.1, respectively. The L!(P;)-norm of such a term is
thus less than

0

280 (7 (") [ J1 - w0

1=l
0

o5, (E (v*mw*(m 1[0 -w) X’g)>

1=l

< 28 (B ()X Bl (1)) [] Bal1 (391

<2E,(v(V)H)B =B,

where the first inequality follows by definition of the state space model, and where 3
is given by

5= sup o1 = ()X, = ) = sup /y (1 - ’j\(j;();’)) golyl) v(dy) < 1,

by assumption A3. Assumption A4 assures that the constant c above is finite.
The expression

Sup [Eo{v0(Ys | Xi) | Y2} Bo{ve (Y| Xi) | Y2, } -
€Bo

Ep{vs (Vi | Xi) [ Y2, } Eg{vo(Yi] X0) | Y2,

1

can be dominated by the same technique, using the second expression in Lemma 5.3.
Hence (14) is proved.
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The second inequality (15) is proved as (14) using the second expression in Lemma
5.1 and the third expression in Lemma 5.3, respectively. As for (16) we have

sup |cove(vo(Yi | Xi), v6(Y: | X)) | Y7,)]

6e By

=sup | [ Yo(Ye|zx)ve(Y:|21)

6e By X2
{po(wr, 2 | Y2,) = po(wr | Y2, )po (e | Y2,) } pu(dy) p(day)|

s%f@afﬂﬂ[ﬂl—wﬂﬂ%

2

by the first expression in Lemma 5.3. The claimed domination of the L' (FP)-norm of
this term is proved as above. []

PROOF (Lemma 5.4.) Considering the expression for D?logps(Y:|Y?,) in (13) we
will show that the term

0 0
Z Z {COV@(Zg,k, ZQJ ‘ Y_lm) — COVg(Zg,k, Zgyl | Yfm)}

k=—mlil=—m

0 0
- Z Z {cove(Z s, Zoy | Y2,) — cove(Zo,

k=—nl=—n

sup
6€ By

(17)

as n,m — oo. The remaining terms in (13) can be treated with similar arguments.
Suppose m > n. By symmetry of k£ and [ in the sum in (17) it suffices to consider the
sum over the region where k£ < [. This region can be further divided into 5 subregions,

={(k,)) €Z®| —[n/2) <k <0,k <1<0},
={(k,)) € Z?| —n <k < —[n/2],[k/2] <1<0},
(k1) € Z*| —m < k < —n,[k/2] <1< 0},
(k1) € Z?| —n <k < —[n/2],k <1< [k/2]},
(k) eZ?| —m<k<-nk<I<I[k/2]}.

We will show that the sum over each of these regions tends to zero in L'(P,) as
n, m — o0, hence proving (17). Using (15) we find that

>

(k,l)EDl

Sup {cove(Zok, Zoy | Y2,) — cove(Zo g, Zoy | Y2,0)}
€By

— {cove(Zo, Zoy | Y2,) — cove(Zay,

<C Z Zﬂk—l—n

—[n/2] 1=k
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Using (16) we find that the corresponding sums over Dy and Dj are less than

—n/2] 0o
Y At wd o> Y 4
k=—n 1=[k/2] k=—mi=[k/2]

respectively, and by (14) the sums over D, and Dj are dominated by

—[n/2] [k/2] —n [k/2]
C Z Z,B ! and C Z Zﬂ l
k=—n I=k k=—m I=k

respectively. Since 0 < 8 < 1 these sums all tend to zero as n, m — oo and the proof
is complete. []

LEMMA 5.6 The map 0 — D?*logpy(Y1|Y?,) from By to L'(Py) is continuous.

Proor Let {0,,} C By be a sequence such that 6,, — 6 as m — oco. We will show
that Eo{|D*logps,, (Y1|Y?%,) — D*logpe(Y1]Y?,)|} — 0, as m — oo. Considering the
expression in (13) we must show that terms like, for instance,

Eo[|Ep, {0, (Yel Xi)v0,, (Vi X0) | Y2} — Bo{ve (Y| Xi) 0 (Y2 X0) [ Y2, ]
tend to zero as m — oo. The integrand can be evaluated as
| Eou{Y0r (Ve Xi) 70,0 (Y21 X0) [ Y2} — Eg{ve(Yel Xi)ve (Vi X0) | Y2,

< \/ Vor (Ve |28) V0, (Y1 1) {00, (2r, 20 | Y2,) = Do (h, 20 | Y2, } p(de) p(dazy)|
X2
+ | /2{79m (Yel k) V0, Vil 1) — Yo (Vilze) vo (Yilz) Yo (zh, 20 | Y,) pu(dy) p(dy) |-
X
The first term is less than

v (Ye)v* (V) /X2 196, (2k, 20| Y2,) — po(, 20 | Y2,)| p(day) p(dazy) (18)

7 (Ye)y* (V) . X 1
_W /X2 Do, (Tk, 1, Y2,) — po(zh, 21 | Y2, )P0, (Y2, )| p(dzi) p(day).  (19)

The integral tends to zero as m — co as can be seen by considering the simultaneous
density
pam(ﬂﬁk,ﬂﬁhyl )=

/ o o), (Vorln) TT Lo oot 2)n, (Vi) T[ iz, (20
" t=—n+1 i=—n

17k,
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Since the integrand here is continuous and can be dominated by

M2 T hi(a) € L), (21)

t=—n

by assumption A1l and A5, we have from Lebesgue’s dominated convergence theorem
that
o, (T, 21, Y1) = po(wp, 2, YY) as m — oco.

Likewise py,, (Y',) — pe(Y!,) as m — oo, and hence the integrand in (19) tends to
zero. By (21) the integrand can be dominated in IL!(y?), and therefore (19) tends to
7ero.

Since the expression in (18) is less than

7 (Ye)v* (V) L2{P0m($ka$z|Y1n)+p0(=’13k,$1|Y1n)}ﬂ(d$k)u(d$l)
=27v" (Vv (Y), (22)

it is dominated in L' () and hence tends to zero in L' (FP) as m — oo.
The second term can be dominated similarly and tends to zero Fj-almost surely,
and therefore also in L' (P,), by the continuity of . O]

Lemma 5.4 and 5.6 show that {D?logp(Y1|Y°,) }nen is a uniform Cauchy sequence
of continuous functions in L!(F), which proves Lemma 10 of Bickel et al. The final
Lemma states a usual property of the Fisher information. With this result, the re-
maining part of the proof of Theorem 3.2 is now identical to the proof of Lemma 2 in
Bickel et al. (p. 1633)

LEMMA 5.7 For any n,
Eo{D?logpo(Y1|Y?,)} = —Eo{[Dlogpo(Y1|Y°,)]’}.
ProorF By (3) and (12) we have
(Dlogpo(Y1]Y2,))” + D*logpe(Y1 | Y?,)

—9 (EO(D logpo(X*,,Y° )| Y°)?

—n —

- Ba(Dlog (X! Y1) V1) Bo(Dlogm(x®,, %) [v5)) )
+ Eo((Dlogpo(X1,,, Y2,))* |Y2,) = Eo((Dlogpo(XL,, Y2,))* [YE,)
+ Eo(D*logpo(X',,, Y1) [Y7,) — Eo(D*logpo(X ', Y7,) | Y7,).
The first term has zero mean. This follows by noting from (1) that
Dlogpo(XZ,,Y2,) = Dlogpg(X1,,Y2,) + % (V1]X1), (24)
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thus

Ey[Eo{Dlogpo(XL,,YL,) | Y1} Eo{Dlogpo(XL,,Y2,) | Y2, }]
= EO{Dlogpo( X1 YI)VEy{Dlogps(X*, ,Y°)] an}}
= EO{DIngo(Xim an)EO(DIOgPO(Xim 22}
+ Eo{’)/o V1| X1)Eo(Dlogpo(X',,Y°,) |Y0 )}
= Eo{Dlogpo(XL,,Y2)Eo(Dlogpe(XL,, Y2,) | V2, )}
+ Eo{ Eo[0(Y1]X1)| X1] Eo [Eo(DlOgPo(X1 ) Y2 ) [ X1]}
= Eo{Dlogpo(X1,, Y2, )Eo(Dlogpe(XL,, Y2 | Y2},
where the third equality follows from the conditional independence of Y, and Y; given

Xy, and the last equality from the fact that Ey(vo(Y1|X1)|X1) = 0 by A5(ii). The
mean of the first term in (23) is then

2Eo{ Ey(Dlogpo(XZ,,Y",) | YZ,)
By (24) the mean of the sum of the two last terms is given by
Eo{D*log go(Y1 | X1)} + Eo{(Dlog go(Y1 | X1))*}
+ 2Eo{’Vo(Yi | X1)Dlogpo(XL,,Y?" )}

The last term is zero, which is seen by conditioning on X; and using the argument from
above. The sum of the two first terms is zero by assumption A5(ii), which completes
the proof. [
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Abstract

In functional magnetic resonance imaging (fMRI) movies consisting of hun-
dreds of images of the human brain are acquired and analysed to identify regions
of the brain, where the intensity changes according to controlled stimuli. Com-
monly observed phenomena in fMRI time series are trends and fluctuations,
possibly caused by movement effects remaining in the images after realignment,
physiological effects like changes in blood pressure and cardiopulmonary effects.
A widespread method is to model the trend as a linear term and, furthermore,
some authors have designed digital filters to reduce the pulsation effects. How-
ever, the trend is not neccesarily linear, and eliminating the pulsations by fil-
tering might not be the optimal solution if the cardiac rate varies during the
experiment. In this paper we will estimate non-linear trend terms and cardiac
rhythms directly from the data by a multidimensional state space model, and
model any pixel time series with the trend and fluctuation terms included in
the mean value space. In the first part of the paper an introduction to state
space models is given and an approximate Kalman filter for non-linear models is
developed. In the second part these models are employed in fMRI.

1 Introduction

This paper falls in two parts. The first is an introduction to state space models, with
a description of a Kalman filter for non-linear models. The theory is exemplified by
an analysis of the Canadian Lynx dataset. In the second part we consider functional
magnetic resonance imaging (fMRI) data, and the problem of modelling trends and
fluctuations in these data. We employ non-linear state space models and the general
Kalman filter to estimate physiological noise components in the images, and include
these in a general model for any fMRI time series.

2 State space models

In this part we will give a general introduction to state space models. In Section 2.1
we will formulate a general state space model and motivate the use of this model. In
Section 2.2 we will concentrate on linear state space models and derive the Kalman filter
and Kalman smoother. In Section 2.3 we will consider non-linear state space models

VI.1
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with Gaussian errors and derive an approximation to the Kalman filter. Finally in 2.4
we will discuss estimation of parameters in these models.

2.1 Definition of a state space model

State space models is a class of time series models for discrete time observations, which
is becoming increasingly popular these years. The reason for this is that the state space
framework provides an intuitive and easily interpretable way of modelling dependencies
among stochastic variables, as well as a natural way of incorporating known determin-
istic covariates. The applications cover all classical areas of time series modeling,
such as biological processes and financial time series (Kitagawa & Gersh 1984, West
& Harrison 1989), but state space models can be formulated for many other types of
data. For instance Jgrgensen et al. (1997) consider models for multivariate count data
and apply the models to daily counts of emergency room visits for respiratory diseases,
and to cucumber yields.

Suppose we observe a sequence of correlated stochastic variables {Y;}. In the state
space framework the dependency between the Y;’s are modelled via an unobserved
Markov process {X;} such that conditionally on {X;} the ¥;’s are independent and the
distribution of Y; depends on {X;} through X; only. Graphically the dependencies are
represented as in Figure 1

Yi o Yi1 Y, Y
Xi—o X1 Xy Xi1

Figure 1: A graphical representation of a state space model

The model can be stated as

Y; ‘ Xy~ gt(yt | Clﬁt)a (1)
X | Xior ~ ag(@i-1, @), (2)

fort=1,2,...,n and
Xo ~ (o). (3)

Equation (1) is often referred to as the observation equation and equation (2) as the
state equation or system equation. Equation (3) is the initial distribution or, in a
Bayesian terminology, the initial prior. Considering the {Y;}’s as the output of a
dynamical system the process {X;} is often interpreted as the state of the system,
explaining the terminology “state space models”. The process {X;} is called the state
process, the latent proces or the regime of the system.

The state space framework is suitable for many different time series models, where
an unobserved process enters directly or indirectly. The unobserved process might be
of interest in its own right or it might be a technical tool for formulating a specific
correlation structure. As an example of the first, the state space framework can be
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used to model financial time series, where the variance, or the volatility, changes over
time. Here the unobserved process is the volatility, which is of interest since it is a
measure of the stability of the market. As an example of the latter, one can formulate
the classical ARMA models in the state space framework (West & Harrison 1989, p.
306). In this situation the latent process contains lagged observations of the observed
process, which obviously is not of separate interest.

As mentioned above, state space models can be seen as an extension of the Box-
Jenkins models. However, while it is difficult to interpret the dependency structure
in an ARMA(2,2) model, say, the state space models often provide an intuitive and
interpretable framework. The state space formulation not only allows us to model
an observed time series satisfactorily, but also provides insight in the process that
are generating the observations, which is of course the ultimate goal of all statistical
modelling. As an example of this viewpoint, and as a motivation for studying state
space models, let us consider the classical Candian lynx data set.

2.1.1 Example: The Canadian lynx data

In this example we will consider the Canadian lynx data set consisting of the number
of annual trappings of lynx in the Mackenzie River district of North-West Canada in
the years 1821-1934. A plot of the number of trappings can be seen in Figure 2.

6000
3.5

4000
3.0

Annual trappings
25

2000
log10(Annual trappings)

2.0

0

1820 1840 1860 1880 1900 1920 1820 1840 1860 1880 1900 1920

Figure 2: The Candian lynx data set: The number of annual trappings of lynx in the
years 1821-1934 in the Canadian Mackenzie River district.

The lynx data is a classical time series data set, which has been analysed several
times since Elton & Nicholson (1942) introduced it in the statistical literature. The
number of trappings shows a clear periodicity which is often explained by a predator-
prey relationship, the prey being the snowshoe rabbit. Our ambition is not to review
and compare the different approaches to analysing the lynx data, we will merely use this
data set to compare an ARMA approach and a state space approach, and examplify
our points of view stated above. An overview of published analyses of the lynx data
set is given by Campbell & Walker (1977) with discussions, and Tong (1990).

An example of an autoregressive model for the lynx data is presented in Tong
(1977). He considers models for the logarithm of the annual trappings. The use of
the log transform is widespread in the published analyses, primarily to reduce the
asymmetry of the series. Tong (1990) argues furthermore that his prime interest is
the relative population fluctuation rather than the absolute fluctuation. A plot of the
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log transformed data set is given in Figure 2. Tong considers autoregressive Gaussian
models of order p and selects the order by Akaike’s information criteria, given by

AIC(p) = nloga®(p) + 2p, (4)

where 62(p) is the estimated innovation variance in the fitted model. The first term
is thus minus two times the maximized likelihood function, and the second term is
a penalising term. The model yielding the lowest AIC is the best model in terms
of a balance between a good fit and parsimony in the number parameters. Tong
estimates the autoregressive parameters and the innovation variance by solving the
Yule-Walker equations, and finds that the AIC best model is given by p = 11. Redoing
his calculations with the S-plus procedure ar we reach the same conclusion, and find
that the fitted AR(11)-model is given by

Y; =290+ 1.14Y;_; — 0.51Y;_5 + 0.21Y;_3
—0.27Y,_4 + 0.11Y;_5 — 0.12Y;_¢ + 0.07Y;_-
—0.04Y; g+ 0.13Y; 9 + 0.19Y; 19 — 0.31Y; 11 + v,

where Y; denotes the log,, transformed number of trappings at year ¢, and where {1}
is a white noise sequence with zero mean and estimated variance 0.0477. The observed
residual variance is 0.0367. The fit of the model can be judged in Figure 3.

While Tong’s model fits data very well it is not straightforward to interpret. A
characteristic feature of the data is the periodic behavior, with a period of roughly 10
years. Assuming the number of trappings is proportional to the size of the population,
one might pose questions like “Can we estimate a fluctuation corrected size of the
population, and if so, how does this vary through the observed time period?” or “How
does the fluctuation period vary through time?”. In order to answer questions like
these, we need a model that captures the characteristic features of the data set more
directly than the autoregressive model does. An obvious approach is to model the series
by a deterministic harmonic component plus random noise. Tong (1977) argues, by
inspection of the spectral density estimate, that the length of the period appears to vary
through time, a feature which a fixed frequency model cannot capture satisfactorily.
This leads us to a model where the frequency is allowed to change gradually, which
can be formulated as a state space model.

Let Y; denote the log,, transformed number of trappings in year ¢ as above. The
state space model is then

Vi = g + ard(2m AL + ) + v, ~ N(0,0%), (5)
pe = p+ pulp—1 — p) + wf', wi' ~ N(0,02),
a; = a+ pa(a;—1 — a) + wy, wy' ~ N(0, 02): (6)
Ve =7+ py(e-1 — ) + ], w{ ~ N(0,02),

for t =1,2,...,n. The periodic function ¢ was chosen as

é(z) = cos(z) + 0.15cos(2z — 1.5),
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Figure 3: Diagnostic plots of Tong’s AR(11)-model. Top left: The log lynx data
plotted as a line and one step ahead forecasts marked by points. Top right: The
autocovariance function of the residuals. Bottom left: The residuals plotted against
time. Bottom right: The residuals plotted against one step ahead forecasts.

by inspection of the shape of individual cycles. The noise processes {v;},{wi'}, {w}
and {w;'} are #d and independent of each other. The process {y.:} can be interpreted
as the mean level of the series, {a;} is the amplitude process and {7} is the relative
phase of the fluctuation at time ¢. The triple (p,as,7y;) constitute the unobserved
latent process.

In the formulation of the model we assume that the underlying frequency A is
fixed, yet by varying the phase ; the observed period can vary slightly. One could also
formulate a model where the frequency is allowed to change over time, a type of model
which we will consider in a later section for modelling fluctuations caused by the heart
rhythm in fMRI data. However, in the lynx data the frequency changes are only slight,
which is the reason for choosing the model above. We chose to set A = 0.105 years,
by inspection of the periodogram of the series and by fitting the model with different
values of A. One could alternatively estimate A by the maximum likelihood method.
Notice, however, that the value of A is not essential to the goodness of fit of the model,
since if \ is chosen too small, say, the process 7; will compensate for this by showing
a positive trend.

In Section 2.3 we will explain how one can calculate an approximation to the like-
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lihood function, estimate one step ahead forecasts and estimate the state of the latent
process at different timepoints given the observations Y7, Ys, ..., Y,,. Later we will also
explain in more detail how the estimation of the parameters is performed. We will skip

the technical details in this introductionary example, and refer the reader to Section
2.3 and 2.4.

For this model we fixed the three correlation parameters at 0.95, and estimated the
remaining parameters by minimizing the residual variance numerically. The reason for
fixing the correlation parameters was to stabilize the maximization procedure. Cor-
relation parameters are generally not very well estimated, and in the formulation of
the model we implicitly assume that the latent processes are smoothly varying series,
rather than “wiggly” less correlated series. One can thus consider the fixed values of
the correlation parameters as a part of the model formulation.

The fitted model is as follows:

Y, = py + aip(27 M+ v,) + v, v, ~ N(0,0.0938%), (7)
pe = 2.96 + p(ps1 — 2.96) + wi', wl' ~ N(0,0.110%),

a; = 0.886 + p(a;_1 — 0.886) + wy, w? ~ N(0,0.0171%),

Ve = 1.69 + p(-1 — 1.69) + wy, w] ~ N(0,0.429%),

where p = 0.95. The observed residual variance is 0.0478. The fit of the model can be
judged in Figure 4. In Figure 5 are plots of estimates of the latent processes with 95%
confidence limits.

It is clear from the plots, that the fit of the state space model is not as good as
that of Tongs model. When comparing the two models, however, one must consider
that we have estimated 8 parameters (including A) to fit our model, while Tong has
estimated 13. One might calculate the AIC for our model and use this to compare the
models. Yet our main point here is not to compare the models by a single number, but
to illustrate the main quality of the state space model: By fitting the model we also
estimate the latent processes and thereby gain information about characterstic features
of the data set. Returning to the questions posed above, we can refer to Figure 5, in
which the course of the latent processes can be studied. We can see how the estimated
fluctuation corrected size of the population varies through time, and how the amplitude
of the fluctuations varies. Perhaps surprisingly, the model shows no coherence between
the mean size of the population and the amplitude of the fluctuations. The plot of the
phase shows, for instance, that the fluctuation period around 1890 is longer than the
neighbouring periods around 1880 and 1900.

The example illustrates the contrast between an intuitive and natural model formu-
lation as given by the state space model, and the more subtle formulation of the ARMA
model. When formulating the state space model, one can use the plots in Figure 5 as
diagnostic plots. If the models fits poorly one can examine the latent processes and
evaluate if any shows an unintended course, using this as a guideline for improving the
model. If, for instance, the process {u:} in the example above contained fluctuations
corresponding to those of the observed series, the model for the periodicity as given by
(ag, v¢) would not be satisfactory.
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Figure 4: Diagnostic plots of the state space model. Top left: The log lynx data
plotted as a line and one step ahead forecasts marked by points. Top right: The
autocovariance function of the residuals. Bottom left: The residuals plotted against
time. Bottom right: The residuals plotted against one step ahead forecasts.

2.2 The Kalman filter

Having introduced and motivated the use of state space models, we will now briefly
introduce linear Gaussian models and the Kalman filter. The linear state space model
with Gaussian errors can be formulated as

Y = X + w,
X =G X1 + wy,

Vg ~ Nk(oa ‘/;)7
Wy ~ Nd(oa Wt)a

(8)
)

for t = 1,2,...,n and Xy ~ Ny(myg,Cy). Here F; and G; are known k x d and
d x d matrices respectively, and the error sequences {1;} and {w;} are independent
and mutually independent. Linear state space models are studied in West & Harrison
(1989) who gives many examples.

Having observed Yi,Y5, ..., Y, the model is often used as a basis for forecasting
values of Y; for t > n or estimate the current or previous values of the latent process
Xy, t < n, the latter is denoted smoothing. Tools for this task are the Kalman filter and
the Kalman smoother, a set of recursive equations stating conditional distributions of
the processes. The Kalman filter is stated in Theorem 2.1 and the Kalman smoother
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Figure 5: Estimates of the latent processes with 95% confidence limits, as given by the
Kalman smoother. Top left: {u;}, top right: {a;}, bottom: {~}.

in Theorem 2.2.

Theorem 2.1 (The Kalman filter) Let D; = o(Y1,Ys,...,Y;) be the information
available at time t. Suppose that

X1 \ Dy ~ N(mt—la Ct—l)-
If (8) and (9) holds then

Xy | Dy ~ N(at; Rt), ar = Gymy_q,
R, = G,C,1 Gy + W,
Y | Dy ~ N(ft, Qt) ft = Fiay,
Qi = F,R,F; +V,
Xi| Dy ~ N(my, Cy) my = ap + A(Y; — fo),

Cr = Ry — A,QiA;
At = Rt}?tIQt_l

Proof Assume that X; ;| D;_1 ~ N(my_1,Ci—1). By (8) and (9) we get that

Xt at Rt RtFI
(o= ((5) (i a0))
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which gives the two first expressions. Conditioning on Y; above, we get
X |(Dy-1,Yy) ~ N(ay + ReF)Q, (Y — fi), Ry — RiF,Q; ' FRy) ~ N(my, Cy),
and by noting that X; | D; ~ X;| (D;_1,Y;) we get the last expression. d

Notice that the posterior mean m; is an adjustment of the prior mean a; by the error
Y; — f; scaled by A;. The matrix A; is denoted the Kalman gain. It is a measure of the
influence, that the current observation Y; has on the updating of the prior distribution
X | Dy 1 to the posterior Xy | D;. It is also worth noting, that the variance C; does
not depend on the observation Y;. Hence if the model is constant in the sence that
F;, G, V; and W, does not depend on ¢, the variance of the latent process will converge
to a steady level (West & Harrison 1989, Theorem 5.1). This is not the case for the
non-linear models as can be seen in Figure 5.

The model can be extended to the case where the noise terms v, and w; have
non-zero means. The formulas above are then changed to a; = Gym;_1 + E(w;) and
fi = Fray + E(»).

Theorem 2.2 (The Kalman smoother) Let the notation be as in Theorem 2.1. Let
Gn = My, Ry, = C,, and define recursively

ar = my + By(Gr1 — ar41)

Ry = Cy + Bi(Ryy1 — Ria) By,

fort=1,2,...,n—1, where B; = CtGQJrLR;Lll. If (9) holds and if X; | Dy ~ N(my, Cy)
fort=1,2,...,n, then X;| D, ~ N(as, R;) fort=1,2,...,n.

Proof Clearly the result is true for ¢ = n. Let ¢ < n and suppose that X, | Dy, ~
N(Gyy1, Riv1). By assumption Xy | Dy ~ N(my, Cy), thus by (9) we have

Xt my Ct Ct ; >>
D, ~ N +l .
( Xipa ) ‘ ! (( Q41 ) ’ ( Gi1Cr Ry
By definition of the state space model X; | (X¢y1, Dy) ~ X¢ | (X¢41, D¢) and hence

Xi| Xiy1, Do ~ N(my + CtG::—HRt_—kll (Xep1 — ar41), Cy — CtGQ+1R§f1Gt+1Ct)
~ N(my + By(Xi41 — ai41), Ct — BiRiy1 By).

Since Xyi1 | Dy ~ NGy, Rt+1) by the induction assumption, we then get
Xi| Dy ~ N(my + By(Gs41 — as41), Cr + Bt(Rt—e—l — Ry41)By),
and the proof is complete. O

Note that the result is only indirectly dependent on the form of (8). As long as the
assumption X; | Dy ~ N(my, Dy) is fulfilled, the observation equation does not enter
the expression for the smoothing density.

We can define filter residuals by R; = Y;— f;. By Theorem 2.1, R, = Y;—E(Y; | D;—1)
and hence {R,;} will be an uncorrelated sequence with zero mean. Furthermore, {R,}
will be Gaussian since {Y;} is. The residuals can be used for diagnostic plots to examine
the fit of the model.
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2.3 An approximative Kalman filter for non-linear models

In this section we will consider an approximative Kalman filter for non-linear models
with Gaussian errors. The approximation to the filter is based on numerical techniques.
We will consider models of the form

Y, = Fi(Xy2)Xeq + (X 2) + 14 vy ~ Ni(0,V}), (10)
Xt = GtXt—l + Wt Wy ~ Nd(bt7 Wt): (]‘]‘)

fort =1,2,...,n and X ~ Nyg(mo, Cy). Here V; € R, X; € R? and X, = (X7, X/,),
where X;; € R% 4 =1,2. The matrices F; and G, have dimensions k x d; and d x d
respectively, hi(X;2) is a vector in R* and b, is a vector in R?. The noise sequences
{n} and {w;} are independent series and mutually independent of each other.

In the model formulation we assume that even though the latent process enters
non-linearly in the observation equation, the model is linear conditionally on a part of
the latent process, namely X;5. In the examples below the dimension of X;,, ds, is
one.

2.3.1 Example 1: The lynx model

Consider the model for the lynx data, introduced in Section 2.1,

Yy = iy + a:p(2mA + 1) + v, ve ~ N(0,07),
e = p+ pupe 1 — p) + ot wi' ~ N(0,07),
ar = a + pala—1 — a) + wy, wt ~ N(0,02),
Ve =7+ py (V1 — ) + Wi, W?NN(OJA?);

for t =1,2,...,n. In the notation above the model is given by:

Xy = (/«tt, ag, ’Yt)’, Xt,l = (Mt, at)la Xt,2 =,
Fi(w) = 1, 0@2nAt+ 7)),  h(w) =0,

and
pp 0 0 (1 = py) o, 0 0
Gi=10 p, 0], by=a(l—p) |, Wy=[0 o2 0
0 0 py (1 = py) 0 0 ‘73

2.3.2 Example 2: Dynamic frequency model

Consider a model for k£ time series. Common to all series is a fluctuation term with a
frequency that varies in time. Added to this is a trend term for each time series given
by a random walk. The model is given by

Y: = e + acos(vy) + vy, vy ~ Ni(0, %),
Mt = U1 + wfa w# ~ Nk(oa O-ZI/C),
dy = d + p(dy—1 — d) + wf wi ~ N(0,07)

vy = V1 + dy,
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fort =1,2,...,n. Here Y; € R*, uy = (ps1, phe2, - - -, k)’ is the vector of trend terms

and a = (a1, --.,ax)" is a vector of amplitudes. {d;} can be interpreted as the frequency

process and v; represents the phase at time ¢. This model will be applied in Section

3.3 as a model for fluctuations in fMRI images caused by the pulse rhythm.
Formulating the model in the standard notation we get:

Xy = (,Ut,la <oy Mtk d, Ut)', Xt,l = (Mt,l, <oy Mt ks dt)’; Xt,2 = Vg,

10 00 ay cos(vy) 0
01 --- 00 as cos(vg) :
Fy(v) = T hy(vy) = . 3 by = 0
00 --- 10 ay, cos(vy) d(1 — pa)
\d(1 - pa)
and
(10 0 0 0) on 0 -~ 0 0 0)
0 0 0 0 0 Gi -0 0 0
G, = RSP ’ w,=| Do :
00 -- 1 00 o 0 --- JZ 0 0
00 -+ 0 ps 0 0 0 .- 0 o3 o3
\0 0 -~ 0 pg 1) \0 0 - 0 0% o2

O
A crucial assumption in the derivation of the Kalman filter in Theorem 2.1 is the
linearity of the model, and it is not possible to construct exact updating equations for
the models considered in this section. Instead we will consider approximate Kalman
filtering. At each time point ¢ we will approximate the posterior density X; | D; by a
normal density, where the approximation is calculated by numerical techniques. This
approach is also studied by Frithwirth-Schnatter (1994). However, this author consid-
ers non-normal observation densities p(y; | x;) = p(y: | \¢) which depend on the latent
process through the linear predictor A\; = H;X; only. The latter has the same dimen-
sion as ;. We restrict ourselves to Gaussian errors, but allow the observation densities
to depend on the latent process in more complicated ways.
Assume at time ¢ — 1 the posterior distribution is given by

Xi1 | Di—y ~ N(my—1,Ci—1),

where D, 1 = o(Y7,...,Y; 1). Since the state equation (11) is linear, the prior distri-
bution is
Xi| Dyy ~ N(ay, Ry),

where a; = Gymy—1 + by and R, = G1Cy—1 G}, + W, and thus the joint distribution of
(Xta }/;5) iS
1
p(X, Y| Dyq) o< exp | — §(Xt —a) RN Xy — ay)

1 o
— i{Yt — Fy(Xi2) X1 — he(Xe2)}'V, "y, — Fi(Xi2)Xe1 — he(Xe2)}| . (12)
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Because of the non-linearity in (10) the distributions of Y; | D;_; and X;| D; are not
normal. However, we will approximate the latter with a normal distribution,

Xt | Dt ~ N(mt, Ct),

where my; = E(X; | D;) and C; = var(X;| D;). The conditional moments of X; can be
calculated by numerical integration. At a first glance this seems like a computationally
infeasible task, unless the dimension of the state vector is small. Even two-dimensional
numerical integration can be a rather large computational burden. However, we will
exploit the structure of the model in (10) where only X}, enters non-linearly in the ob-
servation equation. The dimension of the integral can then be reduced to the dimension
of X9, which is one in our examples.
The following Lemma is the basis for this approach.

Lemma 2.1 Assume that
Xi—1|Dy—y ~ N(my—1,Cy—q). (13)
Let a; = Gymy—1 + by and Ry = G1Cy G, + Wy. Let Ry be divided as
Ry11 Ry
Ry = ),
b <Rt 2 Rioo
where Ry 5 is di X dj, i, j = 1,2, and let a; be divided as a; = (a} 1, a;,)" where a;; € R%
Then

X1 | Di—1, Xio ~ N(a;(Xi2), Ry), (14)
th ‘ thla Xt,2 ~ N(ft*(Xt 2): (Xt 2))) (15)
X \ Dy, Xyo ~ N(m:(XtQ)a :(Xw))a (16)
where
a; (22) = ag1 + Ry Ry (w2 — ag2), R} = Riy1 — Ry1oR; 5o R,
fi (x2) = Fi(z2)ai(z2) + hi(z2), Qi (x2) = F{ (w2) R{ FY (1) + Vi,
my (z2) = a; (w2) + Af(22) (Vi — f; (22)), Cf (w2) = Rf — Af (22)Q; (x2) A} (22)',
Af(22) = Ry F} (22)' Q5 (2) .

p(l’t,2 | Dt)

* 1 * — *
o G (w12) |2 exp | = S{(m] (202)'s 71,5) — G} Ry H{(mi (212)',705)' = e}

- %{Yt — Fy(meo)my (o) — hu(w2) YV, HY: — Fy(@r2)my (202) — ha(@e) } -
(17)

Remark Note that if F3(X;) does not depend on X;, then neither does Q;, A} or
C;. When performing a numerical integration wrt. X, , we then only need to calculate
these expressions once. This is the case in Example 2.



NON-LINEAR STATE SPACE MODELS IN FMRI VI.13

Proof By (13) we get X |D;_1 ~ N(a, R;), and hence
Xi1| D1, Xip ~ N(ag + Rt,lzR{,le (X2 —as2), Ry — Rt,12R;212Rt,21),
which proves (14). Conditionally on X;, the model is linear, and the proof of (15) and
(16) are then identical to the derivation of the Kalman filter in Theorem 2.1.
To prove (17) we consider the density p(z;| D;) which is given by
p(xi| Dy) o< p(Ys, w¢ | Di1) = p(xe | Di—1)p(Y: | 24)
1
X exp | — §{$t — a}' Ry H{ay — ag}
1 _
— 51V = F(wea)wny = (@) YV {Ys = Fi(wia)wiy — b))}

For any z,; we have that

P(iﬁt ‘ Dt) = p(mt,l \ T2, Dt)p(mm \ Dt)-

The expression in (17) now follows by setting x;1 = m;(z:2) above and noting that by
(16) the first term on the right hand side then is proportional to |C} (z42)| /2. O

Lemma 2.1 provides the following formulas for conditional moments:

E(Xt,l ‘ Dt) = /m;“ (%,2) p(xt,Q | Dt) dl‘t,%

E(Xt,Q \ Dt) = /%,2 P(fﬂm | Dt) dﬂ?t,z,

E(Xi X3, | Dy) = /{Ci‘(ﬂ?m) + mi (Te2)m; (212)'} (@2 | Dy) davy,
E(Xi1Xi, | Dy) = / m; (e2) %45 P(T12 | Dt) dae o,
E(X2Xi,y | Dy) = /3375,233;,2 P(xe2 | Dy) day g,
E(Y;: \ thl) = /ft*($t,2) p(xt,Q | thl) dzy,
EWY! | Dy ) = /{Q: (T12) + [ (@e2) f7 (212)'} P(202 | Dyo1) dyg,

and the conditional distribution of Y; given D;_; can be calculated by

p(Yi| Dyy) =
[n) +21Qi @) 2 exp [ — S R @)Y Qi) Vi i ()}
Dt—l) dl‘t’g.

p($t,2

In practice the integration is performed numerically. As in the linear model setup,
these formulas provide:
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e An approximative updating formula,
Xt ‘ Dt ~ N(mt, Ct),
where my = E(Xt | Dt) and Ct = VaI'(Xt ‘ Dt)

A forecast estimate given by f; = E(Y; | Dy_1).

Filtering residuals, R, = Y; — E(Y; | D;_1). {R:} will be an approximately uncor-
related sequence, though not Gaussian.

A contribution to the likelihood function, p(Y;| D; 1). Recall that the likelihood
function is given by p(Y3,...,Y,) =[] 1p(Y{t | Dy 1).

A contribution to the residual variance, ||Y; — f;||>. The residual variance is given
by 2 Ve = fil

2.3.3 Numerical integration

A word about the implementation of the numerical integration is in order here. We
have chosen a straightforward weighted sum approximation to the integral, however,
the main problem is selecting the domain of the sum since the mean and variance of
Xi2| Dy are not known explicitly. We have chosen to use the prior distribution

(at,2, Rt,22)

as a starting point, assuming the posterior distribution resembles this. We then select
a range of values x% = a2 + 1A, for i € J;. Here A is a fixed step length, and J; is an
index set. The integral of a function g(z,.) is then calculated by

S ies 9(@NB(a) | D)
ZZEJtp xrgg )

bl

/9(%,2)10(%,2 | Dy) Az ~

where p(xt2 | Dy) is the expression in (17).
Inltlally the index set J; is chosen according to the prior distribution such that

={-K,,...,K;}, where K; = [3R i/QQQ/A] + 1. Here [-] denotes the integer part. The
values ng“Ll), x§§t+2), , are considered sequentially and if
p(ﬂﬁgtﬂ) | Dy) > ep(agz | Dy), (18)

for some small ¢ > 0, then K; + j is added to J;. When a value K; + j is reached
such that (18) does not hold, no more values are considered. The same procedure is
performed with —K; — j, 7 > 1. In our implementation we have chosen ¢ = 10~1°.

If Fy(xt2) does not depend on ;5 the computational burden can be reduced con-
siderably. The expressions in Lemma 2.1 are then given by

(:vﬁf%) a1+ Ryl 2o, R =Ry — Rt,12R;212Rt,21>
fi (@43) = Fuany + F Ry Ry gy i hu(a13), Qi = R +V,,
m; (z2) = (962) " A*(Yt — [ (22)), Ct = Ry — AJQAY,
Ay = R F}
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All matrices which do not dependent on w5, like FyR; 2R, . A and A} for instance,
need only be calculated once.

The step length must be chosen according to the model in consideration, that is
according to an average value of var(X,|D;). Obviously this is a trade-off between
computational speed and accuracy of the numerical approximation. For the models in
example 1 and 2, X, is an angular value in radians, whose posterior distributions are
essentially concentrated on an interval of length 27. Here we have chosen A = 27/15.

2.3.4 Approximative smoothing

As remarked after Theorem 2.2, non-linearity of the observation equation does not
affect the expression for the smoothing densities. By construction of the numerical
integration Kalman filter we have the approximation X;|D; ~ N(my, Cy) for t =
1,2,...,n, and hence the approximative smoothing densities

X,|D, ~ N(a, R)), fort=1,2,...,n,

follows directly from Theorem 2.2. Here &, and R; are given as in the theorem.

2.4 Estimation

Unknown parameters may enter the model via the matrices F; and G, via the variances
V; and W, via b; or via the function h;. Finally the initial moments of the latent process
my and Cy are typically also unspecified.

The initial moments can generally not be estimated by a consistent estimator in the
classical likelihood sense. The reason for this is that unless we specify a model with
a long-range dependency structure in the latent process, the influence of the initial
prior N(mg, Cp) on the observations Y; decreases as t increases. Suppose for instance,
that the process (X, Y;) is stationary and ergodic. By the theory of Markov processes
the process wil converge to an equilibrium distribution independently of its initial
distribution. Hence in the limit as n tends to infinity we will observe values from the
equilibrium distribution, which will not provide additional information on the initial
moments.

On the other hand this also implies that correct specification of the initial moments
is not essential to the fit of the model. If the latent process is stationary one can
chose my and Cj as the mean and variance of the process. If the process is not
stationary or if the moments are difficult to calculate, one can estimate mg and Cj
by applying the Kalman filter on the reversed process. The final prior distribution
Xo| (Y1,...,Ys) ~ N(ap, Ry) can then be used as the initial prior.

The remaining parameters may be estimated numerically by an optimisation func-
tion, such as the likelihood function p(Yi,...,Y,) = [\, p(Y;| Dy_1), or the residual
variance Y ., ||Y; — fi|[* where f; = E(Y;| D;_1). We have chosen to use the residual
variance for the following reason: Suppose the model does not fit the data very well,
either because we apply the Kalman filter with very “strange” parameter values, as
inevitably occurs at some stage in a numerical maximization algorithm, or because
the model is not correct. When the observed value Y; differs a lot from the expected
value f;, the variance of the latent process will increase. At the next iteration, the
conditional variance of the observation var(Yy; | D;) is thus also increased. In this
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way the Kalman filter might enter a state, where large differences between Y; and f;
are reflected in an inflation of the variances rather than a proper adjustment of the
mean of the latent process. By plotting the forecast estimates with the observed time
series, it is quite obvious that one step ahead observations are estimated quite poorly
by the Kalman forecasts. However, this is not necessarily reflected in the same degree
by the likelihood function, because the large variances tend to compensate for the lack
of fit. This problem does not exist for linear models, where the variance of the latent
process does not depend on the observations. We regard it as a problem caused by the
sequential approximations made at each iteration in the numerical integration Kalman
filter, and one could approximate the likelihood function to any degree of accuracy
by simulation techniques, as developed by Durbin & Koopman (1997) and references
therein, by which the problem would likely be solved. This is yet to be investigated
further. As an alternative we use the residual variance as a measure of the fit of
the model. The variance var(Y; | D;—1) does not enter this expression and hence this
procedure is more stable to the instabilites of the numerical integration Kalman filter.

In order to reduce the computational burden of estimating many parameters nu-
merically, or as a method for providing good initial values for the estimation algorithm,
it is worth considering ad hoc methods to estimate parameters. In the Canadian Lynx

model formulated in example 1 we have employed the complexr demodulation technique
(Bloomfield 1976). The model is given by

Yi = py + aid(2mAE + ) + v,

where {u;}, {a;} and {7y} are smooth processes and {v;} is a noise term. Assume for
simplicity that ¢(x) = cos(x). Complex demodulation is a non-parametric method for
estimating {u;}, {a;} and {y}. Consider Z; given by

Zy = Yyexp(—i2mAt)

= %exp(i%) + %exp(—i(47r)\t + %)) + e exp(—i27At) + vy exp(—127A\E).
The first term on the right hand side can be regarded as a low-frequency component of
{Z,}, since a; and 7, are smoothly varying processes. The second and third terms are
roughly periodic with frequency 47\ and 27\, respectively, and the last is a noise term
containing mainly high-frequency noise—any low frequency components of the noise
term can not be distinguished from the first term. The problem is now to separate the
low-frequency component from the higher frequency components, which is a classical
problem in signal analysis. The solution is to use a filter, that is a set of weights

{w_p,w_py1, ..., wo, w1, ..., w,}, and consider
T
Zt = E wsZt—s
S=—r

instead of Z;. One can design the filter so that low frequency components of Z; are
almost unaffected by the above convolution, but higher frequencies of Z; are cancelled
out. In this situation the ideal filter should eliminate all frequencies above 2w )\/2, say,
and let lower frequencies pass unaffected. For a general discussion on construction
of filters see Bloomfield (1976). When the filter is applied we assume that Z;, ~
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ay exp(iv;)/2 and extract a; and ~y; by a; = Q\Zt\ and v, = arg(Zt). In the same manner
one can extract the mean process {}.

Performing the above procedure on the Canadian lynx data we can filter out the
amplitude and phase of the periodic component with frequency A and the mean value
component. Below are listed estimates of the mean and innovation standard deviation
of these processes, based on the AR(1) model in (6) with p = 0.95.

Mean Std. Dev.
e 2.87 0.034
a; 0.67 0.026
v 175 0.052

Table 1: Complex demodulation estimates for the parameters of the latent processes
in the Canadian Lynx model in (6). For each process, the mean and the standard
deviation of the innovations are listed, the latter calculated with p = 0.95.

The mean values correspond well to the estimated values in (7). The standard
deviation estimates differ somewhat, which is not surprising, since these are more
sensitive to the choice of the filter applied in the complex demodulation. Yet, the
variance estimates are sensible initial values for an estimation procedure.

Notice, that in the above procedure, we actually perform a local Fourier transform
at each time point ¢. More specifically, Z, is given by

t+r
Z, = Z w5 Ys exp(—i2mAs)

s=t—r

which is a discrete Fourier transform of the weighted series {w;_;Y;};. Hence, intu-
itively we perform a weighted fit of a sinusoidal mean value structure with frequency
27\ to {Y;}. Pursuing this a bit further, we can use the same technique to fit an
arbitrary mean value structure to the data. Consider the general model in (10),

Y, = Fi(Xi2)Xi1 + hi(Xe2) + v,

and suppose that the latent process X; is smooth. Non-parametric estimates X of the
latent process can then be obtained by for each time point ¢ minimizing

t+r

D we (Vs = Fy(@a)z1 — hy(22))|?

s=t—r

with respect to z = (21, 22), and letting X, be the minimumpoint. This method can
be regarded as an extension of the complex demodulation technique, though with the
general mean value structure, we loose the interpretation of the w;’s as a filter, and
hence also loose an optimal criteria for choosing them. For fixed z5 the minimization
is linear in z; and hence the minimization problem is only of dimension d,.
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3 Modelling physiological noise in fMRI series

The second part of this paper is an application of non-linear state space models in
functional magnetic resonance imaging. Section 3.1 is a general introduction to the
subject, stating the aims of this paper. In Section 3.2 we will briefly introduce the
data used in this study and in Section 3.3 we will propose a model for fMRI time series
and investigate its utility to model physiological fluctuations in fMRI data. Finally in
Section 3.4 we discuss the results and topics for future research.

3.1 fMRI time series

Functional magnetic resonance imaging (fMRI) is a technique where fast MR scanners
are used to map the neurofunctional centres of the human brain. One of the first
published fMRI experiments is Kwong et al. (1992), today, only few years later, fMRI
is the most important modality in functional brain imaging. It is superior to positron
emission tomography (PET) in several ways; the temporal resolution of fMRI is much
better than that of PET, the spatial resolution is often better, and perhaps most
importantly, with fMRI the subjects are not exposed to radiactive tracers as is the case
with PET. For a short introduction to the principles of fMRI see Cohen & Bookheimer
(1994). Lange (1996) gives an overview from a statistical point of view.

The basis for neurofunctional mapping with fMRI are changes in blood flow and
blood oxygenation resulting from neuronal activity. Though these processes are not yet
fully understood (Buxton et al. 1997) the essense of how fMRI is thought to work is the
following. When neurones are activated an increase of deoxyhaemoglobin is detected in
blood vessels surrounding the neurones. This is due both to an increase in blood flow
and a change in the relative amount of deoxyhaemoglobin and oxyhaemoglobin. The
result is a signal increase in certain types of MR images, this is known as the Blood
Oxygen Level Dependence or BOLD effect. In a typical fMRI experiment the subject
is exposed to an external stimulation while a sequence of MR scans of the brain is
acquired. The stimulation could be a flashing light in the eye, an auditory stimulation
like music or spoken words, an induced pain, a motor stimulation where the subject is
instructed to tap his fingers, an odour stimulation etc. The purpose of the analysis of
the images is then to localize areas in the brain where the intensity changes according to
the stimulus, i.e. areas that are activated by the stimulus. A widely used experimental
design is periodic stimulation, where the stimulus are presented in alternating blocks
of on and off.

The data obtained by fMRI consists of a sequence of images, typically around 100,
acquired with an inter-image time of less than a few seconds. Each image is represented
as a matrix of two byte intensity values, usually of dimension 64 x 64 or 128 x 128.
Each pixel in the sequence of images is thus a one-dimensional time series of the
intensity values in a specific position in the brain. Three-dimensional information is
obtained by interpolation of several two-dimensional slices of the brain.

A typical analysis of fMRI data is a marginal time series analysis. Each pixel in
the images is considered after turn, and the intensity values in a single pixel in the
sequence of scans, is considered as a one-dimensional time series, {Y;}. The time series
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is modelled as a signal with noise added,
Y: = apr + &

Here ¢, is a response function, which is a model for the possible intensity changes due to
neuronal activity at the location of the pixel, a is the amplitude of the activation signal
and ¢; is a noise component. The term “noise” is to be interpreted very generally here,
meaning the mean value structure of the series and the stochastic variation. A measure
of the signal amplitude in the time series is calculated, this is either an estimate of a
or a test statistic for the hypothesis @ = 0, and this is used to judge wether the pixel
represents neurons that are activated by the presented stimulus or not.

Two main problems arises with this approach: 1) How should the model for ¢, and
et be formulated? and 2) How should we determine if a pixel is significantly activated?
Even if the theoretical distribution of the test statistic in each pixel is known, the
second question is not trivial. By considering individual pixels, rather than the entire
image, we effectively perform thousands of tests for the same null hypothesis, and
hundreds of pixels will be classified as activated by chance if we perform a test at a
level of 5%. A further complexity is the spatial correlation between the pixels, which
makes correction of the significance level difficult. Current approaches to addressing
this problem is to model the field of test statistics as a random field under the null
hypothesis, and use probabilistic results on geometry of the field to detect significant
peaks or clusters in the image (Worsley 1995). Alternatively a smaller group of pixels
rather than the entire brain might be tested for activation, where the selection of the
pixels is guided by neurological hypotheses (Lange & Zeger 1997).

In this paper we will address the first question. The response function has received
much attention in the literature. Generally the signal reflects dynamic changes of blood
oxygenation and blood volume and as mentioned above, these effects are not fully
understood at the moment. In the simplest models the response function is a square
wave function which is one when the stimulus is presented and zero elsewhere. Due
to an inevitable delay (in the order of 4-8 sec.) from the onset of neuronal acitivity
to the maximal haemodynamic response, this is, however, not a satisfactory model.
Lee et al. (1995) estimated the delay by modelling the reponse as a linear combination
of a sine and a cosine term, with period equal to the stimulation period. Bullmore
et al. (1996) developed this model further by including the second and third harmonic
terms in the response function. The response is thus modelled as a “smooth” periodic
function, given by a truncated Fourier series. Bandettini et al. (1993) modelled the
shape of the response empirically as the observed response from one or two activated
pixels in the actual data set. A more specific approach is Friston et al. (1994), Friston
et al. (1995), Worsley & Friston (1995) and Lange & Zeger (1997). These authors
assume an additive response function, such that the response from a prolonged period
of stimulation is the sum of point response functions. In Friston et al. (1994) the
model for the point response function is a Poisson density function with estimated
mean 7.69 sec. The authors noted that this function is very similar to a Gaussian
density with mean and variance equal to that of the Poisson density, and hence a
Gaussian shaped point response function was used in Friston et al. (1995) and Worsley
& Friston (1995). Lange & Zeger (1997) assumed a Gamma density shape of the point
response, and estimated the parameters of the density separately in each pixel.
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The noise term {e,} is a model for everything but the signal, i.e. a model for an un-
activated time series. Most fMRI time series exhibit a drift, which is typically modelled
as a linear trend term in the mean of {¢;}. The trend arises from slight patient motion
during the experiment, instrumental instability and perhaps from several physiological
sources, for instance changes in blood pressure level. Though the images are tempo-
rally aligned, artifacts from subject motion can seldom be completely removed. The
choice of a linear trend term seems somewhat ad hoc and more general trend models
have been proposed, for instance in Holmes et al. (1997) who model the trend as a
linear combination of low frequency trigonometric functions.

The remaining variation is often modelled by a stationary Gaussian process. Ex-
amples are given in Bullmore et al. (1996), where a first order autoregressive process is
fitted to selected time series, and Lange & Zeger (1997), who model the variation as a
general stationary Gaussian process. However, a large part of the variation is physio-
logical noise due to cardiac and respiratory processes, which could be more specifically
modelled through the mean value of the series than by formulating a general covari-
ance structure. Some authors have designed digital filters to reduce these pulsations.
Biswal et al. (1996) recorded cardiac and respiratory rhythms externally and designed
band-reject Gaussian filters to reduce the physiological fluctuations, and Buonocore
& Maddock (1997) estimated the pulsation rhythms directly from the images and de-
signed Wiener filters to reduce the fluctuations. A filtering approach, however, has
the disadvantage that cardiac and respiratory rates are not necessarily constant during
the experiment. In that case the physiological noise components contain a wide range
of frequencies. Buonocore & Maddock (1997) recognizes this by allowing up to 64
different frequencies in the cardiac and respiratory frequency ranges.

In this paper we propose a new model for the noise part {¢;} of the time series. We
wish to formulate a model, that a) incorporates more flexible trend structures, than just
linear terms, and b) models physiological fluctuations more intuitively and specificly
than the filter approach. Most current approaches to removing trend and physiological
fluctuations are based on filters with a high degree of freedom. Since filtering introduces
correlation in the time series, there is a delicate balance between reducing degrees of
freedom, and removing unwanted frequencies. This is acknowledged by Buonocore &
Maddock, who notes that in some situations filtering seems to be worse than doing no
filtering.

Instead of applying very flexible filters we wish to estimate the fluctuation and
trend pattern specificly from a few pixels in the images, and use this as a model for
any time series. Our main tenet is that any trend term should be visible in pixels in
the large vessels outside the brain itself, for instance in sinus sagittalis, which is a large
vein circumferencing the brain in the mid-sagittal plane. Both motion artifacts and
artifacts caused by physiological processes are visible in these vessels. Hence we will
use time series outside the brain as templates for modelling the noise in time series
representing neurones. We will accomplish this by formulating a multidimensional
model for a group of pixels in sinus sagittalis and use this model to extract trend and
fluctuation terms represented in this group of series. Finally these noise templates will
be included in a model for any time series in the images.
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3.2 The data

The data considered in this study were obtained in a visual stimulation experiment.
A GE Signa System 1.5 T scanner was used and the data were obtained by an EPI se-
quence. In total 90 sets of scans were acquired in each experiment, each scan consisting
of 5 oblique slices through the brain, with an inter-image time (repetition time) of 2
sec. Each image is represented as a 128 x 128 matrix of 2 byte intensity values, where
roughly 5000 pixels correspond to cerebral tissue. The physical dimension of each pixel
in the images is 1.9 mm X 1.9 mm X 5 mm. Two experiments were performed:

1. A visual stimulation experiment, where the subject was exposed to a 7 Hz flashing
light in the right eye. The stimulation was presented in alternating blocks of on
and off, each block of length 10 images, starting and ending with an off-block.
Thus the length of one on-off cycle, or the stimulation period, was 40 sec and 4
periods were presented.

2. A baseline experiment, where the images were obtained under the same conditions
as in the first experiment, only in this session no stimulation was presented. The
data can thus be regarded as a noise data set, and is used to verify models for
the noise part of the time series.

To correct for head movements the images were aligned sequentially. This was done
by minizing the IL? distance between each individual image and a reference image,
under all rotations and translations, and then resampling the transformed image onto
a grid of pixels. Due to differences in magnetization of the tissue in the first scans
compared to the rest, the first three images in each series were removed, and we thus
only considered 87 images.

3.3 A state space model for noise in fMRI time series

We will consider k£ template pixels, represented by the k-dimensional time series Y;, ¢t =
1,2,...,n. These pixels should be located in veins outside the brain or in the ventricles,
so that they contain no activation, yet are still affected by movement artifacts and
physiological processes such as cardiac fluctuations.

We will assume that each pixel contains a trend term, overlayed with a fluctuation of
random frequency, caused either by the cardiac og respiratory rhythm. We will model
the trend terms as random walks, and the frequency as a first order autoregressive
process. This is the model introduced in example 2 in section 2.3, with the slight
generalisation here that we allow the fluctuations in different time series to differ in
phase.

Y, = py + acos(vy) + bsin(vy) + v, vy ~ Ni(0,%),
pe = pu—1 + Wi, wi' ~ N(0,051),
575 =0+ p(étfl — 5) + wf wf ~ N(O, O'g)

Uy = V1 + Oy,

for t = 1,2,...,n. Here Y; € R*, uy = (wg1, fie2s---, ) is the vector of trend
terms and a = (ai,...,a;) and b = (by,...,bx)" are vectors describing the amplitudes
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and relative phases. The term {d;} can be interpreted as the frequency process and v,
represents the phase at time ¢. By constraining b, to zero, the phase of the fluctuations
in {Y1,} is given by v;.

The inference in this model is based on the non-linear Kalman filter described in
Section 2.3. Assuming ¥ = 0%I}, there are 2k + 4 parameters in the model, which can
be estimated numerically by minimizing the residual variance as described earlier. The
Kalman smoother can then be applied to the fitted model to extract estimates of the
k trend terms, and of the fluctuation pattern.

To investigate the structure of pure noise time series, we considered the baseline
data set, and applied the state space model to six pixels, three located in the posterior
sinus sagittalis in the neck, and three located in the anterior part at the forehead.
The pixels were chosen by visual inspection of the images. In Fig. 6 is a plot of the
corresponding time series. As can be seen from this plot there is a strong periodic
effect in the series. This is caused by the cardiac rhythm, which is aliased to a lower
frequency than the pulse rate due to the relatively long period of 2 sec. between two
consecutive images. The estimated parameters can be seen in table 1. In Fig. 6 is a
plot of the smoothed mean value estimates with the observed series. As can be seen
from the plot, the fit of the model might be improved—the model for the periodic
component does not meet the observed periodicity completely. One could improve the
model by including a more flexible periodic function than the cosine terms, however,
we will direct our attention to the fact, that the frequency of the periodic component
is estimated satisfactorily and this is the main purpose for fitting the model. A model
with more parameters would necessitate a computationally more demanding and less
robust estimation procedure and since the proposed model satisfies the purpose of
estimating latent trends and fluctuations, we will refrain from extending it. A plot of
the estimated latent processes is given in Fig. 7. We will denote the estimated trends

A~

f = (fi,--., k) and the estimated fluctuation phase ©.

a  99.74 o, 385
a; 11621 by, -2596 & 11.02
as 87.97 by -5293 p  0.88
as -47.16 by 26.95 o5 0.0227
as -69.38 bs 50.86 o 16.16
ag  46.68 bs -19.28

Table 2: Estimated parameters in the state space model

We will now incorporate the estimated latent processes in a model for any time
series X in the image,

X =DfB+¢e, wheree~ N,(0,%). (19)

Here the design matrix D is of dimension n X d, where d = k + 13. The columns of D
are given by the following terms.

e The k estimated trends fiy, ..., [ix and a constant term, (1,1,...,1)" € R™.
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Figure 6: Top: Plot of the six template time series, used to estimate cardiac rate and
trend terms. All pixels are located in sinus sagittalis. Bottom: Plot of the noise series
(dotted line) with smoothed mean values (solid line).

e Six cardiac fluctuation terms of the form
cos(y), sin(1;), cos(20;), sin(20;), cos(30;), sin(37;),
fort=1,..,n.
e Six terms comprising the response function
cos(2nt/T),sin(2nt/T), cos(2m2t/T),sin(272t/T), cos(2n3t/T), sin(273t/T),
fort =1,...,n, where T is the stimulation period.

The column space of D is deliberately chosen quite large, since a wide range of mean
value structures are observed in fMRI time series, dependent on the physical location of
the pixel. As can be seen in Fig. 6, we can not expect even neighbouring pixels to show
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Figure 7: Plots of smoothed latent processes based on the series in Fig. 6. Top: Plots
of the six estimated trend terms. Bottom: Plots of the estimated cardiac rate, and the
corresponding fluctuation pattern expected in the series.

similar trend patterns, since artifacts from movement and physiological processes may
enter the series differently, depending on the surrounding tissue. This is the reason for
including several trend terms in the mean. Likewise the shape of cardiac fluctuations
may vary from one series to another, and thus a flexible fluctuation structure is also
included, through the six sine and cosine terms.

To investigate the qualities of the model, we excluded the six activation terms, and
fitted the model to the baseline data set, containing only noise series. Initially we
chose ¥ = ¢2I, and estimated the parameters by ordinary least squares. While it is
necessary to formulate a very large mean value space in order to model every fMRI time
series, the dimensionality of the model can be greatly reduced once a specific series is
considered. In order to do so, we sequentially excluded column vectors of the design
matrix by the principle of minimizing Akaike’s information criteria (Akaike 1974). For
a general model P = {P,0 € ©} where © C R? the criteria is given by

A~

AIC(P) = —2log L(6) + 2d,
where L(é) is the maximized likelihood function. By selecting the minimum AIC
model we obtain a model that fits data well, yet are parsimoniously parametrized. The
reduction procedure can equivalently be regarded as a sequence of likelihood ratio tests
for parameters equal to zero, accepting the reduction with a quite conservative level of
significance. In the 5353 time series corresponding to cerebral tissue, the dimensionality
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Figure 8: Plots of six different time series in the baseline data set. Top: Plots of the
six series. Botton: Plots of the series (dotted line) with the fitted mean value (solid
line), as given by the model in (19)

of the mean value space was on average reduced to 4.8. None of the six proposed trend
terms seemed superfluous since each was present in around 2200 reduced models. The
fit of the model in six time series located in different regions of the images can be
judged in Fig. 8.

We examined the independence assumption of the errors by considering the resid-
uals R = X — DJ3, where 3 is the maximum likelihood estimate of 3. If the model is
appropriate, the residuals should be almost uncorrelated. This can be verified by the
Box-Pierce-Ljung test statistic (Box et al. 1994). The statistic is given by

Q=n(n+2))Y_ ri(R)/(n—k),

K
k=1

where 7;(R) denotes the lag k sample autocorrelation of the residuals. If the residual
process is white noise, Q will be asymptotically x?(K) distributed as n and K tends
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Figure 9: Plot of the theoretical x?-quantiles vs. the observed quantiles of the Box-
Pierce-Ljung statistic in the 5353 time series. Left: Model with independent errors.
Right: Model with AR(1) errors.

to infinity and K/n tends to zero. If more generally the residuals are calculated by
fitting an ARMA (p, ¢) model, the asymptotic distribution of Q is a x*(K — p — ¢)
distribution. We calculated the statistic in every pixel with K = 14. Fig. 9 displays
a plot of the theoretical x2(14) quantiles vs. the empirical quantiles of Q. The plot
shows that the observed values of Q) are generally much larger than expected, which
indicates autocorrelation in the errors. We therefore assumed an AR(1) model for the
error terms, that is
gr=per 1+, v~ N(0,0%),

for t = 1,2,...,n, where {1,} is a white noise process. The model was re-fitted
with this covariance structure, the estimation now based on the conditional likelihood
obtained from the conditional density of X5, ..., X, given X;. The maximum likelihood
estimates of 3, 0% and p can be obtained by iteratively estimating (3, 02) by generalized
least squares, using the current value of p to determine the covariance structure, and
estimating p from the obtained residuals (Bloomfield 1991). In practice the generalized
least squares estimates can be calculated by considering the transformed variables,

X; =Xy —pXy1, and Df=D;—pDyq, fort=23,...,n,
where D; is the ¢’th row of the design matrix D. The model is then
X*=D*B+v, wherev~ N, 1(0,0°I, 1),

and B can be calculated by ordinary least squares. The correlation is then estimated
by

n n—1
p=Y RiR1/) R,
t=2 t=1

where R are the residuals, R = X — DS. Given an estimate j of p, the transformed
variables X* also provide the basis for calculating approximately uncorrelated residuals,
namely R* = X*— D*3. We found that the iterative procedure converged fast; for most
series four iterations were sufficient. To reduce computational complexity we therefore
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chose to perform four iterations in all series, rather than iterating until convergence.
It should be noted also that in order to simplify the computations, the reduction of
each model by the minimum AIC procedure was performed under the assumption of
independent errors, even in autoregressive model. This is not of great concern, however:
Due to positive correlation in the series, the variance of the parameter estimates tend to
be underestimated in the #zd-model, and hence the reduction tests are generally more
conservative in the #id-case than in the AR(1)-case. Hence columns of the design matrix
eliminated under the i4d model would generally also be eliminated in the autoregressive
model.

We refitted the model by the described procedure and performed Box-Pierce-Ljung
tests for independence in the R* series. The corresponding qg-plot is shown in Fig.
9. The plot shows that we have reduced the correlation in the residuals significantly
by modelling the errors as an AR(1) process. Yet, the observed values of the statistic
are generally slightly larger than expected, indicating that the correlation structure is
not completely desribed by the AR(1) model. However, since the overall picture is not
disturbing we will aovid introducing further complexity in the model.

In Fig. 10 are diagnostic plots of the R* residuals of the six time series shown
in Fig. 8. The plot of normal quantiles vs. empirical quantiles does not conflict
with the normality assumption, and the plot of the sample autocorrelation functions
confirms the impression from the Box-Pierce-Ljung tests that the residuals are mainly
uncorrelated.

From the diagnostic plots, the proposed model seems to give a reasonable descrip-
tion of the noise in fMRI time series. To compare the model with alternative ap-
proaches, we considered models proposed by Bullmore et al. (1996) and Holmes et al.
(1997). The authors of the former paper suggest a linear trend model where the re-
maining variation is described by an AR(1) process, that is

X;=a+fBt+e, where & =pe_1+v, v~ N(0,0°%), (20)

where {14} is a white noise process. These authors proposed to model the activation
term by a linear combination of sine and cosine terms of the fundamental stimulation
frequency and the second and third harmonics, a model which we have adopted in our
formulation (19). The authors carefully examined the fit of this model, with activation
terms included, in 156 fMRI time series. They reached the conclusion, that the model
gives an adequate description of observed data.

Holmes et al. (1997) proposed to model the trend by a linear combination of low
frequency cosine terms,

K
Xi=a+pt+ Z e cos(kmt/n) + &4,
k=1
where K is chosen such that the period of the cosine terms are well above that of the
experimental paradigm. These authors account for the correlation of the errors by a
different procedure than the AR(1) model applied in this paper, however, to be able
to compare their trend model with ours, we will consider the model

K
Xi=a+ft+ Z{’yk cos(kmt/n) + 0k sin(knt/n)} + &, (21)
k=1
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Figure 10: Diagnostic plots of residuals of the six time series displayed in Fig. 8.
Top: Plots of normal quantiles vs. empirical quantiles. Bottom: Plots of sample
autocorrelation functions.

where {¢;} is modelled as an AR(1) process. Here we have included sine terms as well to
accomodate different phases of the low frequency variations. This trend model acts as
a high-pass filter, eliminating components with frequencies k/2n for k = 1,..., K from
the residuals. The parameter K was chosen to be 4, giving a minimal fluctuation period
of 43 images, roughly twice the stimulation period of 20 images in the corresponding
activation data.

We fitted these two models to the baseline fMRI data set, by the same procedure
as described earlier, including the sequential elimination procedure of non-significant
column vectors of the design matrix. For the Bullmore model the average dimension of
the mean value space was reduced to 1.6 and for the high-pass filter model the average
was reduced to 4.5. We compared the models with the proposed model by comparing
the AIC in each pixel. In Fig. 11 are plots of the 5353 AIC values of our model versus
each of the two alternative models. As can be seen the proposed model is the AIC
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Figure 11: Comparison of the AIC values of the model in (19) and two alternative
models. Left: The linear trend model in (20). Right: The high-pass filter model in
(21).

best model in the majority of pixels, despite the fact that this model is generally of
higher dimension than the alternative models. The Bullmore model had a higher AIC
value in 4917 time series out of the 5353 series, for the high-pass model the number
was 4725 series. We conclude from these plots, that even though we generally need
more parameters to describe the mean value of the series, our model gives a better
description of the trends and fluctuations in the series than the alternatives.

3.4 Discussion

We have established a method for estimating trends and pulsation artifacts in fMRI
time series. This was performed by employing a non-linear Kalman smoother to few
selected pixels located in veins outside the brain. A linear model was then proposed
for any fMRI time series where the estimated trend and pulsation terms enter in the
mean value structure. By applying the model to a baseline data set without neuronal
activation, we have demonstrated that the proposed model describes the baseline noise
satisfactorily, and by comparing AIC values we found that our model is superior to
two other trend models commonly employed. This is not surprising since our model
provides flexible trend terms which are effectively fitted to the specific data set in con-
sideration. By using pixels outside the brain as noise templates we can estimate noise
components in a flexible way, yet once estimated, the noise artifacts are included in
a restrcitive way through few mean value vectors, ensuring that the noise is parsimo-
neously parametrized in each individual time series. Hence we obtain a general noise
model with only a slight reduction of degrees of freedom in individual series.
Included in the noise components are possibly global activation related intensity
changes, for instance activation related movement artifacts. By estimating these ar-
tifacts and including them in the noise terms, we effectively reduce the significance
of detected activation in cerebral tissue. This is, however, regarded as an advantage,
since the activation related intensity changes included in the noise does not result from
neuronal activity, and should hence be regarded as artifacts. Any intensity changes
corresponding to these artifacts should not falsely improve significance of observed
neuronal activation, but rather reduce the confidence of observed activation to reflect
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the difficulty of seperating true activation and stimulus induced artifacts.

The proposed model gives an intuitive and interpretable way of including commonly
observed artifacts in the analysis of fMRI data. For the model to be useful, we still
need to develop a test statistic for the hypothesis: “The series contains no activation
term”. An obvious approach is to consider the likelihood ratio test for 3, = 0 where
B, is the vector of coefficients of the 6 activation terms in (19). Explorative studies of
the baseline data suggest that the distribution of —2log @, where @ is the likelihood
ratio statistic, is well approximated by a scaled x?(6) distribution. Hence we are of
the opinion that a Bartlett corrected —2log Q-statistic would be a appropriate. This
is the subject of further research.

It would also be of interest to consider the spatial correlation in the images, which
could be studied through the residuals from the fitted model. This dependency could be
accounted for either by formulating a multidimensional model corresponding to (19) for
a group of pixels, or by modelling the spatial correlation of the marginal teststatistics,
—2log ). This, as well, is the subject of further research.

The pixels selected as noise templates are chosen by visual inspection of the in-
dividual time series. All noise templates have been selected because of their strong
cardiac pulsations. We have not developed criteria for selecting the pixels automaticly,
neither have we investigated the optimal number of noise templates to include in the
model. It is not unlikely that an objective selection procedure could be developed,
for instance based on the amplitude of the cardiac fluctuation term in selected pixels.
Alternatively the pixels could be selected manually by identifying larger veins on an
anatomical image of the scanning plane, by pointing with the mouse. This would give
a more robust selection procedure, where only pixels corresponding to vessels were se-
lected, and pixels corresponding to cerebral tisuue or partly to background noise were
avoided. This manual selection tool would also be useful in the development stage,
for investigating the effect that various pixels has on the model, by inclusion as noise
templates. As for the optimal number of templates, we have found that none of the six
estimated trend components were superfluous and it is likely that the model could be
further improved by including more trend terms. There is, however, a balance between
improving the linear model and maintaining simplicity on the state space model. The
estimation procedure in the state space model requires a non-neglectible amount of
computer time, and for the analysis to be applicable in practice, it is desirable to keep
a sparse dimension in the state space model. It is yet to be investigated if the inclusion
of more pixels could improve the model to an extend that would justify the increase
in computer time.

We have not included respiratory artifacts in the proposed model. This could be
achieved by a similar procedure as the inclusion of cardiac effects, however respiration
did not seem to be significant in this data set. It is our experience that pulsations
due to respiration is visible in the ventricles and pixels from this area could be used as
templates of the respiratory rhythm. This extension should be investigated further on
alternative data sets.

We are somewhat concerned, that the repetition time (TR) may effect the perfor-
mance of the model. By selecting a TR of 1 sec., say, we would record an image roughly
once in every pulse period, which means that the observed pulse effect would be almost
constant, rather than showing a fluctuation pattern. This would make the estimation
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of a periodic term in the state space model somewhat unstable, since it would be dif-
ficult to distinguish the fluctuation term form the trend. In this situation the cardiac
effect could be totally excluded from the model, perhaps automaticly if the models
falls short of identifying the effect. The problem is also relevant for the respiratory
effect, and since the two effects have periods of typically 1 sec. and 5 sec., respectively,
it is not obvious how to determine optimal repetition times in order to identify both
physiological pulsations. Furthermore the repetition time is usually restricted by the
scanner equipment and parameter settings such as the number of image slices and the
resolution of the images.

The fluctuation pattern may be recorded externally and included in the state space
model as covariates. This would likely resolve some of our concerns regarding the rep-
etition time. This can be done, though is not a trivial task. Electronic measurements
are impeded by the strong magnetic field in the scanner and the measured frequency
series need to be carefully registrered with the image sequence. Since, furthermore,
the majority of fMRI data sets do not have these covariates attached, the development
of models which are not dependent on seperate cardiopulmonary measurements seems
very relevant.
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