D’ALEMBERT’S AND WILSON’S EQUATIONS ON LIE GROUPS

PETER DE PLACE FRIIS

1. INTRODUCTION

In this paper we discuss certain topics in the theory of functional equations on
non-abelian groups. Our first aim is to study d’Alembert’s equation

9(zy) + g(zy ") = 29(x)g(y), =,y € G, (1)

where G is a group and ¢ is a complex valued function on G, and the following
generalization that comes out naturally of the study of Wilson’s functional equation
(see Corovei [3])

9(zy) +g(yz) +g(zy™") + gy~ '2) = 49(2)9(y), =,y € G. (2)
Secondly we will study Wilson’s equation
flay) + flzy™") = 2f(2)g(y), 2,y € G. (3)
Finally we will solve Jensen’s equation
fey) + flzy™) = 2f(2), 2,y €G, 4

on a semidirect product of groups.

Notation: The following notation will be used throughout the article. G' denotes
a group with e as neutral element and Z(G) its centre. C* denotes the multiplicative
group of non-zero complex numbers. If m : G — C* is a homomorphism, then
m : G — C* is the homomorphism given by m(z) = m(z~!), z € G. A group G
is said to be 2-divisible, if for any z € G there exists y € G such that y*> = z. y
is not assumed to be unique. An involution 7 of G is a map 7 : G — G such that
7(zy) = 7(y)7(2), Y,y € G and 7(7(z)) = = for all z € G.

If m: G — C* is a homomorphism, then

g@) =" ), 2 €6, 5)
is a solution to (1). No restrictions on the group are needed for that statement.
For abelian groups the converse is true: Any nonzero solution of (1) has this form
(Kannappan [6]). This is true for certain other groups as well (Corovei [2] and
Stetkeer [10]). We are going to show it for still another class of groups.

Our main results are the following;:

(1) We show that any solution g to (1) and (2) is of the form (5) when G is a
connected nilpotent Lie group (see Theorem 2.6 and Corollary 2.8).
(2) We give all solutions to Wilson’s equation on connected nilpotent Lie groups,
provided that it is not the degenerate version of Wilson’s equation where
g =1, i.e. Jensen’s equation (see Theorem 3.4).
1
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(3) We give the solution to Jensen’s equation on a semidirect product of two
groups, where we suppose that the normalized solutions to Jensen’s equa-
tion on the groups, which enter in the formation of the semidirect product,
are homomorphisms. This is the case if they are abelian (see Theorem 4.1).

Ng has solved Jensen’s equation for all free groups and GL,,(Z) for n > 3 (see Ng
[8]). Ng has also studied the following version of Jensen’s equation

flzy)+ fly~'z) = 2f(x), Vz € G. (6)

We are not going to pursue this, but we will compare our results to his on the
Heisenberg group (see Example 4.2). The difference is somewhat surprising.

The parts of the present paper concerned with d’Alembert’s and Wilson’s func-
tional equations are closely related to and inspired by Corovei [2] and [3]. However
there is a shift of emphasis from insisting on that all elements have odd order to
looking at 2-divisibility as we do. Apart from the trivial group, connected Lie
groups contain elements of infinite order, so it is essentially a phenomenon for dis-
crete groups that all elements have odd order. We manage to treat the connected
nilpotent Lie groups which play an important role in Analysis. This is one reason
that the results are interesting. These groups are 2-divisible. Since 2-divisibility
was what made Corovei’s proofs work, some of his proofs are copied with only
modest changes. But our results are more general (see Remark 2.7 and Remark
3.5).

From Lemma 1 in [1] we know that a solution f : G — C of Jensen’s equation
with f(e) =0 and f(zy) = f(yz) for all z,y € G is a homomorphism. But not all
solutions f with f(e) = 0 are homomorphisms. We have a counterexample when
G is the Heisenberg group (see Example 4.2), the simplest connected nilpotent Lie
group which is not abelian.

2. D’ALEMBERT’S EQUATION ON NILPOTENT CONNECTED LIE GROUPS

In this section we will solve (2). It is a generalization of (1), because g(xy) =
g(yz) for any solution g of (1) (see Remark V.2 in [10]) so that any solution of (1)
is also a solution of (2).

Lemma 2.1. Let g : G — C be a non-zero solution of the equation
9(zy) + 9(yz) + 9(x7(y)) + 9(r(¥)z) = 49(2)9(y), .y € G, (7)

where T is an involution of G. Then g(e) =1, goT =g, and

9(z?) + g(z7(z)) ;Q(T(ﬂf)m) = 2(2)?, z €G. ®)

Proof. See Lemma IIL.1 of [10]. O

Theorem 2.2. Let g be a solution of the following extension of d’Alembert’s func-
tional equation

9(zy) + 9(yz) + 9(x7(y)) + 9(7(y)z) = 49(z)g(y), Vz,y € G, 9)
where T : G — G is an involution and Z(g9) = {u € G : g(zuy) = g(zyu), Vz,y €
G}.

a: If there exists u € Z(g) such that g(u)? # g(ut(u)) then g has the form
_m+morT

= (10)
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where m : G — C* is a homomorphism.
b: If g(u)? = g(ut(u)) for all u € Z(g) then

g(zu) = g(z)g(u), Vz € G, Yu € Z(g). (11)
Proof. See Theorem III1.2 of [10]. O

Lemma 2.3. Let H be o 2-divisible subgroup of G. Let g be a solution of

9(zy) + g(yz) + g(zy™") + g(y~'z) = 49(2)g(y), z,y € G. (12)
Ifg>=1 on Hthen g =1 on H.

Proof. For any x € H there exists y € H such that y2 = z. Using Lemma, 2.1 we

get g(x) = g(y*) = 29(y)* —g(e) = 1. O
Lemma 2.4. If g : G — C is a solution to
9(zy) + 9yz) + g(zy ) + gy~ 'z) = 49(2)9(y), =,y € G, (13)

and g(u) = 1, Yu € Z(G), then one can define F : G/Z(G) — C by F(z) =
g9(z), Vx € G, where T = xZ(G). Furthermore F' satisfies the equation

F(zg) + F(§Z) + F(zg ') + F(§ ‘%) = 4F(2)F()), %,5 € G/Z(G). (14)
Proof. See Lemma 4 of [2]. O

Lemma 2.5. If G is a connected nilpotent Lie group, then G is 2-divisible. Fur-
thermore Z(G) and G/Z(G) are connected nilpotent Lie groups and hence also
2-divisible.

Proof. Let G be the Lie algebra of G. Since G is connected and nilpotent, the
exponential map exp : G — G is onto (see Corollary VI 4.4 of [5] (p. 269)). Let
x € G, there exists X € G such that exp(X) = z. G being a vector space, put
y = exp(3X), then

y? = exp(%X) exp(%X) — exp(X) = z. (15)

So G is 2-divisible. Z(G) is a closed subgroup of G and hence a Lie group in it’s
own right. Furthermore Z(G) is connected (see Corollary 3.6.4 of [11]). Being
nilpotent Z(G) is 2-divisible. Since Z(G) is a closed normal subgroup of G, it
follows that G/Z(G) is a Lie group (see Theorem 2.9.6 of [11]). The natural map
m: G = G/Z(Q) given by 7(g) = gZ(G) is continuous, so G/Z(G) is connected.
Hence G/Z(@) is a connected nilpotent Lie group. O

For Lie groups the following theorem extends Proposition V.5 of [10].
Theorem 2.6. If G is a nilpotent connected Lie group, then g : G — C is a
non-zero solution to

9(xy) + g(yz) + g(zy™) + gy ~"2) = 49(2)g(y), =,y € G, (16)
if and only if g has the form

m—+m
2 s

9= (17)

where m : G — C* is a homomorphism.
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Proof. Standard technique. Let {e} = Zy < --- < Z,, = G be an ascending central
series for G, with Z;11/Z; = Z(G/Z;). We will prove the result by induction on
n. If n = 0,1 then Z(G) = G, hence G is abelian, and g therefore satisfies the
equation

g(zy) +g(zy™") = 29(x)g(y), =,y € G. (18)
That is d’Alembert’s equation on an abelian group, where it is known that g has the
stated form. Let n € N and assume that the result is true for all nilpotent connected
Lie groups with ascending central series of length n. Let G be a nilpotent connected
Lie group with ascending central series {e} = Zg < Z1 < -+ < Zp, < Zpy1 = G,
where Z;1/Z; = Z(GZ;). If there exists u € Z(G) such that g(u)? # 1, then it
follows from the previous theorem that g has the stated form. So we can assume
that g(u)? = 1, Vu € Z(G). Since Z(G) is 2-divisible it follows that g(u) =
1, Yu € Z(@G). By the previous lemma G/Z(G) is a nilpotent connected Lie group.
Furthermore Z1/Z; < --- < Zu41/Z1 = G/Z; is an ascending central series for
G/Z1 = G/Z(G) with (ZZ+1/Z1)/(Z1/Zl) = Z((G/Zl)/(Z,/Zl)) We have shown
above that we can define F' : G/Z; — C by F(Z) = g(z), where Z = zZ;, and
furthermore F' : G/Z; — C is a solution to

F(zy) + F(yz) + F(zy ') + F(y~'z) = 4F(2)F(y), 2,9 € G/Z(G). ~ (19)
By assumption, there exists a homomorphism M : G/Z; — C* such that F' = (M +
M)/2. Define a homomorphism m : G — C* by m(z) = M (Z), then m(z) = M(Z).
So we have that

. M4+M, . m+m
g2) = F(@) = == (2) = "2 (x), 2 € G. (20)
The theorem now follows by induction on n. a

Remark 2.7. (a) Instead of g : G — C we could consider g : G — K where K is any
quadratically closed field with characteristic different from 2.

(b) Instead of nilpotent connected Lie groups, we could consider any class C of
nilpotent groups G, for which G € C implies Z(G) is 2-divisible and G/Z(G) € C.
Note that if we take C to be all nilpotent groups where the order of all elements are
odd, then C fulfils the requirement. So if we formulate the theorem for classes C
with the above mentioned properties, instead of for connected nilpotent Lie groups,
then it contains as a special case Theorem 2 in [2].

Corollary 2.8. If G is a connected nilpotent Lie group, and K be a quadratically
closed field with characteristic different from 2. Then g : G — K is a nonzero
solution of d’Alembert’s equation

glay) + g(zy™") = 29(x)g(y), =,y € G, (21)
if and only if g has the form g = (m+)/2, wherem : G — K* is a homomorphism.

Furthermore suppose K = C, then g is continuous if and only if m is continuous.

Proof. Let g : G — K be a non-zero solution of d’Alembert’s equation. Then
g(zy) = g(yx) Vz,y € G. Hence g satisfies the equation

9(zy) + g(yz) + g(zy™) + g(y~"2) = 49(2)g(y), =,y € G- (22)
Hence by the previous theorem g has the form g = (m+m)/2, wherem : G — K* is
a homomorphism. The converse result is trivial. Suppose K = C. If m is continous
then obviously so is g. If g is continuous then it follows from Theorem 1 in [6] or
Proposition V.7 of [10] that m is continuous. O
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3. WILSON’S EQUATION ON CONNECTED NILPOTENT LIE GROUPS
The following lemma is a slight extension of Lemma 1 of [3] in that the group
inversion has been replaced by a general involution.
Lemma 3.1. Let the pair f,g: G — C be a solution of Wilson’s equation

flzy) + f(z7(y)) = 2f(x)g(y), =,y € G. (23)
where 7 : G — G is an involution. If f is not identically zero then g satisfies the
following equation

9(zy) + g(yz) + g(z7(y)) + 9(r(y)z) = 49(2)g(y), =,y € G. (24)
Proof.

8f(2)g(y)g(z) = 4f(x)g(y)g(2) +4f(2)9(2)9(y) (25)
= 2f(zy)g(2) + 2 (27(y))9(2) + 2/ (22)9(y) + 2f (x7(2))g(y)
= flzyz) + f(ayr(2)) + f(27(y)2) + f(z7(y)7(2))

+f(zzy) + f(z27(y)) + f(27(2)y) + f(27(2)7(y))
= 2f(@)lg(y2) + 9(2y) + 9(y7(2)) + 9(r(2)y)], =,y,2 € G
Since f is assumed not to be identically zero, the result follows. |
The following theorem is a slight extension of Theorem 1 in [3], again because
the group inversion has been replaced by a general involution 7.

Theorem 3.2. Let G be a group. Suppose that the pair f and g is a solution to
Wilson’s equation,

flzy) + f(a7(y) = 2f(2)g(y), =,y € G, (26)

where T is an involution and f is nonzero. Suppose furthermore that there exists

u € Z(G) such that g(u)? # g(ut(u)), then f and g has the form,

f:Am+mOT +Bm—m07" g= m+m07"

2 2 2
where m is a homomorphism of G into C*, and A, B € C are constants.

(27)

Proof. Since f is non-zero it follows from the previous lemma that g satisfies the
following equation

9(zy) + g(yz) + g(z7(y)) + 9(7(y)z) = 49(x)9(y), =,y € G. (28)

Since we assume that there exists ug € Z(G) such that g(uo)? # g(uo7(uo)) then it
follows from Theorem 2.2 that g = (m+mo7)/2. Now g(uo)? # g(uoT(uo)) implies
that m(ug) # m(7(ug)). Now fix zg € G for the moment and consider the smallest
abelian subgroup G, of G which contains Z(G) and z (G, = {282 :n€Z, 2z €
Z(@)}). We obviously have

flzy) + f(27(y)) = 2f(2)9(y), =,y € Gy, (29)
It follows from Theorem III.4 in [9] that f’s restriction to G, has the form
m-+morT m—morT
£@) = ex(e0) 2T @)+ ealire) T
where ¢1 (o), c2(x0) € C are constants. Putting z = e and 2 = uo we find that

c1(xo) = f(e), (31)

(z), x € Gy, (30)
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and
2
c2(wo) = m(ug) — m(r(ug)) (f(uo) — f(e)g(uo))- (32)

So the constants A = ¢;(xg), B = ¢2(xg) € C do not depend on our particular
choice of zy. So for arbitrary o € G we have

f(xo)zAm+;”°T+Bm_;’“°T. (33)

O

Lemma 3.3. Let G be a 2-divisible group. Let the pair f,g: G — C be a solution
to Wilson’s equation
flxy) + flzy™") = 2f(2)g(y), Y,y € G, (34)

where f is non-zero. Suppose that Vu € Z(G) : g(u) =1 and Iz € G : g(z) # 1.
Then the functions F1,G1 : G/Z(G) — C can be defined by Fi(z) = f(z), Vz €
G,and G1(z) = g(z), Vz € G, where T = zZ(G). The functions Fi and G fulfil
the equation

Fi(29) + Fi(z5 ") = 2F(2)G1(9), Z,7 € G/Z(G). (35)

Proof. This is like the proof of Lemma 2 of [3] with minor modifications. We
already know from Lemma 2.4 that G1(Z) = g(z), Vx € G is a valid definition,
since g(zu) = g(z), Vz € G, Yu € Z(G).
We split f into its even and odd parts f(x) = fi(x)+ f2(z) where fi(z71) = fi (=)
and fo(z7") = — fa().
2f(e)g(y) = f(y) + Fly™") = 2f1(y)- (36)
So fi(z) = Ag(x) where A = f(e). Now

fi(@y) + folzy) + fi(zy™") + folzy™") = 2[fi(2) + fo(2)]l9(y) (37)
implies that

fa(zy) + fa(zy ™) = 2[Ag(z) + f2()]g(y) — Alg(zy) + g(zy~ ). (38)
Exchange z and y in this equation.
f2(yz) + fa(yz™") = 2[Ag(y) + f2(y)]g(z) — Alg(yz) + g(yz")]. (39)

Note that f2(yz~!) = —fo((yz™")7") = —fa(zy™"), and g(zy~") = g((zy~") ") =
g(yz~1). Adding the previous two equations, and using these two facts we get

fo(zy) + fa(yz) = 2£2(2)9(y) + 2f2(y)g9(z) + Alg(y~'z) — g(zy™")]. (40)
Taking y = z in the following identity

fleyu) + fley u™") = 2f(2)g(uy) = 2f (2)g(y) = flay) + flay™"),  (41)
we find that

f@u) + flu™) = f(2®) + A, Vz € G, Yue Z(Q). (42)
Since G is 2-divisible we get
fu)+ fu™) = f(z)+ 4, V2 €G, Yue Z(G). (43)

We know that
fi(zu) = Ag(zu) = Ag(z) = fi(z), Vz € G, Vu € Z(G). (44)
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So we get

fa(zu) f(zu) = fi(zu) = f(zu) — f(2) + fo(z) (45)
fa(@) + A= Aglu™) — fa(u™") = fol@) + fa(u).

From (40)) we have that

fo(zu) + fo(uz) = 2fa(x)g(u) + 29(x) f2(u) + Alg(u™'z) — g(zu™)]
= 2f3(z) + 2g9(x) fo(u). (46)
Hence
fo(@) + f2(u) = folau) = fo@) + 9(@) f2(u). (47)
So we get
0= fo(u)[g(z) — 1], Vz € G, Yu e Z(G). (48)

Since there exists z € G such that g(z) # 1 we deduce that fo(u) =0, Yu € Z(G).
So

fo(zu) = fo(z), Vo € G, VYu € Z(G). (49)
Hence
flzu) = fi(zu) + fo(zu) = fi(z) + fa(z) = f(z), Vz € G, Yue Z(G). (50)
So Fi(Z) = f(z) is a valid definition. It is trivial to check that
Fi(zg) + Fi(zg 1) = 2F1(2)G1(9), %,7 € G/Z(G). (51)
O

Theorem 3.4. Let G be a connected nilpotent Lie group. Let f,g: G — C be a
solution to Wilson’s equation, where f is non-zero. Suppose that there ezxists x € G
such that g(z) # 1. Then f and g have the form:

m+m m—m m+m

f 5t 5 9 2
where A, B € C are constants, and m : G — C* is a homomorphism. Conversely if
f and g have this form where A, B are arbitrary constants, then the pair f,g is a

solution to Wilsons equation.

(52)

Proof. The last claim is a trivial calculation. The proof of the fact that the solutions
must have this form is standard technique. Let {e} = Zy < --- < Z, = G be an
ascending central series for G, with Z;11/Z; = Z(G/Z;). We will prove the result
by induction on n. If n =1 then Z(G) = G and it follows by the previous theorem
that f and g has the stated form. Let n € N and suppose that the result is true
for any connected nilpotent Lie group with an ascending central series af length n.
Let G be a connected nilpotent Lie group with an ascending central series of length
n+ 1, {6} = Zo < - < Zn < Zn+1 = G, with Zi+1/Zi = Z(G/Zz)7 Zl = Z(G) If
there exists u € Z(G) such that g(u) # 1, then the result follows by the Theorem
3.2. So suppose g(u) = 1, Vu € Z(G). By the previous lemma we can define
Fi,Gy : G/Zy — C by Fi1(Z) = f(z) and G1(Z) = g(x), furthermore F; and G;
satisfy the equation

Fy(zg) + Fi(z5 ") = 2F(2)G1(§), %,5 € G/Z1. (53)
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G/Z, is a connected nilpotent Lie group with an ascending central series Z; /Z; <
© < Zuna]Z) = G2y with (Zip1/20)/(Zi]2)) = Z((G/2,)/(Zi)2,)). By as-
sumption there exist a homomorphism M : G/Z; — C* and constants A,B € C
such that
M+ M M-—M M+ M

Fi=A—0—+B=—0—, Gi=—(5—. (54)

Define m : G — C* by m(z) = M(Z), m is a homomorphism and rm(z) = M(%).

M+ M M-M + 17 — 17
f(@) = Fi(3) = A——(2) + B——(3) = AT () + B (x), (55)
and 3
_ M+ M, m+m
9(2) = Gi(7) = 2 —(2) = "L (a). (56)
The theorem follows by induction on n. |

Remark 3.5. (a) Instead of f,g: G — C we could consider f,g: G — K where K
is any quadratically closed field with characteristic different from 2.

(b) Instead of nilpotent connected Lie groups, we could consider a class C of nilpo-
tent groups G, for which G € C implies G and Z(G) are 2-divisible and G/Z(G) € C.
Note that if we take C to be all nilpotent groups where all elements are of odd order
then C fulfils the requirement. So if we formulate the theorem in terms of classes C
with the above mentioned properties, instead of for connected nilpotent Lie groups,
then it contains as a special case Theorem 2 of [3].

4. JENSEN’S EQUATION ON A SEMIDIRECT PRODUCT OF TWO GROUPS

Let G be a semidirect product of G; and G2. So we assume that G; is a
transformation group of G2 acting by homomorphisms, that is a - (zy) = (a - x)(a -
y), Va € Gy, Vx,y € G2, and that the group operation in G = G5 x Gy, is given
by

(x,a)(y,b) = (:zs(a ) y)aab)a V(x,a), (ya b) € Gy x G. (57)
We let e; denote the neutral element of G; for i = 1,2. Then e = (e1,e3). Note
that (z,a)™! = (a7 !-z71,a71), V(z,a) € G2 x G1. The idea is to reduce the study
of functional equations on G to the study of functional equations on the subgroups
G1 and G,. Clearly constant functions on G and homomorphisms of G into C* are
solutions to Jensen’s equation on G. If f is a solution to Jensen’s equation on G,
then so is f — f(e), so we may assume that f(e) = 0. If G is abelian and f is a
solution of Jensen’s equation on G such that f(e) =0, then f is a homomorphism
of G into C* (see Lemma 1 in [1]).

Theorem 4.1. Assume that G1 and Go satisfy the following. If f; : G; — C
satisfies
filed) + fi(ed™") = 2fi(c) Ve,d € G; and fi(e;) =0, (58)
then f; € Hom(G;,C) i =1,2. Then f : G — C is a solution to Jensens equation
on G
f((z,a)(y,)) + f((2,0)(y,0)™") = 2f (2, 0), ¥(z,a), (y,b) € G, (59)
such that f(e) =0 if and only if

f(z,a) = Ai(a) + Ay (2) + As(a™ ' - 2), Y(z,a) €G, (60)
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where A; € Hom(G;,C) ,i=1,2 and

As((ab) - z) = Az(a- 1) + Ax(b- x) — As(z), V(z,a) € G2 x G1. (61)
Suppose f is of this form. Then f € Hom(G,C) if and only if As(a-x) =
As(z), Y(z,a) € G.

Proof. Assume that f : G — C is a solution to Jensen’s equation with f(e) = 0.
Then
2f(z,a) = f(z(a-y),ab) + f(z(ab * -y '),ab t), ¥(z,a),(y,b) €G.  (62)
Putting b = e; and fixing a € G1 in (62) we have
2fa(2) = 2f(z,0) = fa(z(a-y)) + fa(z(a-y)™"), Va,y € Ga. (63)

Since a- : Gy — G4 is a bijection, it follows that f, : Go — C is a solution to
Jensen’s equation on G». Hence

f(@,a) = fo(z) = Aa(2) + fale2) = Aa(z) + fle2,a), V(z,a) €G,  (64)
where A, : G2 — C is additive. Put y = e and fix z € G in (62)

2f%(a) = 2f(x,a) = f%(ab) + f(ab™"), Va,b € G;. (65)
Hence f* : G; — C is a solution to Jensen’s equation on Gj.
f7(a) = A%(a) + f*(e1) = A%(a) + f(z,€1), V(z,0) €G, (66)
where A% : G; — C is additive.
f(z,e1) = A;, (2) + flez,e1) = Ae, (x), Vz € G2, (67)
and
flez,a) = f2(a) = A®?(a) + f(e2,e1) = A®%(a), Va € G;. (68)
Hence we have
f(z,a) = Au(z) + A% (a) = A%(a) + Ae, (z), VY(z,a) € G. (69)
Note that
A™(a) = Aq(zy) + A% (a) — A, (zy) = A%(a) + AY(a) — A%*(a). (70)
Now

2f(z,0) = f((,0)(z,a)) + f((z,a)(z,a)"") = f(z(a-2),0*)

— Aw(a.m) (a2) + A€1 (m(a . .'E)
= 2(4%(a) + A, (7)) — A, (z) +2(A" " (a) — A% (a)) + A, (a - z)
= 2f(z,a) — Ae, (x) +24,(a- 1) — Ae, (a - z), Y(z,0) € G.
So
Ay(a-7) = %(Ael(a:) + 4., (a-2), Y(z,0) € G. (71)
Substitute a~! - z for x, that gives us
Ay () = %(Ael(x) + A, (a - 2), V(z,0) € G. (72)

So
f(z,a) = Au(z) + A% (a) = A°2(a) + B(z) + B(a ' - 2),V(z,a) € G, (73)
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where B = 1 A,, is an additive function on G». f(z,a) = A°2(a)+B(z)+B(a™" )
is a solution to Jensen’s equation if and only if g(z,a) = B(z) + B(a™' - z) is a
solution to Jensen’s equation. The computation
2B(z) +2B(a”' -z) = 2g(z,a) = g(z(a-y),ab) + g(z(ab™" -y~'),ab™")
= B(z(a-y)) + B((ab) ' - (z(a-y)))
+B(z(ab~" -y1)) + B((ab™") " - (z(ad~ -y )
= 2B(z)+B(a-y)+ Bl tat-z)+ B0l -y)

+B(ab™' -y™") + B(ba' -z) + B(y™"), (74)
shows that g is a solution to Jensen’s equation if and only if
2B(a'-z) = Bla-y)+Bbtat-z)+Bb 'y (75)

+B(ab -y Y+ B(ba ! -2) — B(y), Y(z,a),(y,b) € G.
Put = ey in (75) to get
0=B(a-y)+B(b ' -y)—Blab~"-y) - B(y). (76)
Put @ = b in (76) to get
2B(y) = B(a-y) + B(a™" -y). (77)
In particular we have
2B(a™'-x) = B(ba™'-z)+ B(b"'a™' - ). (78)
It is now obvious that if conversely (76) holds, i.e. if
0=B(a-y)+ B0 " -y)—B(ab™" -y) — B(y), Va,b€ Gy, Vy€ Gz, (79)
then g is a solution to Jensen’s equation. The condition (76) is equivalent to
0=B(a-y)+ B(b-y) — B(ab-y) — B(y), Ya,be G1, Yy € Ga. (80)

Now all that remains is to determine when f is additive. This is the case if and
only if g is additive.

B(z(a-y)) + B((ab)™" - (z(a-y))) (81)
—B(z) -~ B(a™' -2) = B(y) - B -y)
= B(b'al-z)=Ba'-z)+Bla-y)— By).

g(($7a)(y> b)) - g($7a) - g(yab)

Suppose that g is additive
0=B(b'a™'-2) —B(a™'-z)+ Bla-y) — B(y). (82)
Putz =e,
B(a-y) = B(y), Va € G1, Yy € Go. (83)

Conversely if this condition is fulfilled then g is additive.
O

Example 4.2. The Heisenberg-group Hs = R? x, R, where the action of R on R2
is given by z - (y, 2) = (y, 2 + zy). Here e = ((0,0),0).
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Proposition 4.3. fis a solution to Jensen’s equation on Hz with f(e) = 0 if and
only if and only if

F(,2),7) = A1(@) + Ay(y) + 245z — sy, Vay s € R, (81

where A; € Hom(R,C) are arbitrary, i = 1,2, 3.
Suppose f is a solution to Jensen’s equation. Then f € Hom(Hs,C) if and only

Proof. Let B : R? — C be any additive function on R2. Tt is a simple calculation
to check that

B((z1+22)-(y,2)) + By, 2) = B(x1-(y,2)) + B(z2- (4, 2)), Va1, 22,9,2 € R (85)

So it follows immediately from Theorem 4.1 that the solutions to Jensen’s equation
on Hs are of the form

f((y,2),2) = A1(x) + B(y,2) + B(y, 2 — y),Vz,y,2 € R, (86)

where B € Hom(R?,C) is arbitrary. For B € Hom(R2?,C) there exist Ay, A3 €
Hom(R,C) such that B(y,z) = $A2(y) + A3(z), Vy,z € R. When is f additive?
We know from Theorem 4.1 that it is the case if and only if

1 1
5 A2(y) + As(z+2y) = B(z-(y,2)) = B(y, 2) = 5A2(y) + 43(2), Vo,y,2 € R, (87)
that is if and only if A3 = 0. O

Note in particular that f((y, 2)z) = 2z —zy is a solution to Jensen’s equation on
the Heisenberg group with f(e) = 0 which is not a homomorphism. So this example
show that genuine differences occur, from the abelian case, when we attempt to
solve Jensen’s equation on non-abelian groups. Furthermore Hjs is a connected
nilpotent Lie group, so the example also shows that contrary to what Theorem 3.4
might lead one to suspect, the solutions to the degenerate Wilson’s equation, i.e.
Jensen’s equation, need not be of the classical form, even on connected nilpotent
Lie groups. By the term the classical form we mean homomorphisms, which is the
form of the solutions in the case where G is abelian. In contrast Ng has shown that
all solutions to (6) with f(e) = 0 are homomorphisms for certain groups including
the Heisenberg group (private communication and presented in his talk at the 37th
ISFE).

Example 4.4. The (ax+b)-group G = R xs Ry where the action of Ry on R is
given by a -y = ay. Here e = (0,1).

Proposition 4.5. f : G — C is a solution to Jensen’s equation with f(e) = 0 if
and only if f(x,a) = A(a), Va € Ry, Vx € R, where A : Ry — C is additive.

Proof. Assume that B : R — C is additive and
B((ab) - z) + B(z) = B(a-z) + B(b-z), Vz € R, Va,be R, (88)
Puta=5b=2
B(4z) = B(2-z) + B(2- 1) = B(4z) + B(z), Vz € R. (89)

Hence B(xz) = 0, Vx € R. The proposition now follows immediately from Theorem
4.1. O
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