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Preface

This thesis is the outcome of my PhD study and develops around
securitization of insurance risks. In particular it considers products
related to catastrophe insurance. The thesis is split into three major
sections. The �rst section gives a short summary of each of the �ve
manuscripts included in the thesis, there is one in English and one
in Danish. The second section gives a longer review of the new main
results contained in the thesis and discusses how these results relates to
existing theories in the literature. The remainder of the thesis consists
of the �ve manuscripts. Cynics would say that the second part exists
so that you will not have to read the manuscripts.
Some of the work in the thesis was developed while I was visiting the

�nancial and insurance mathematics group at the ETH, Z�urich 1998-
1999 and Laboratory of Actuarial Mathematics, University of Copen-
hagen 2000. I am grateful to Paul Embrechts and Ragnar Norberg
respectively for making these stays possible.
The work in this thesis has bene�ted from stimulating discussions,

suggestions and comments from a number of persons. Credits are due
to Susan Black (PCS), Amy Casey (CBoT), Bent Jesper Christensen,
Sam Cox, Freddy Delbaen, Paul Embrechts, Damir Filipovic, Asbj�rn
Trolle Hansen, J�rgen Ho�mann-J�rgensen, Dena Karras (CBoT), Ran-
di Mosegaard, Thomas M�ller, J�rgen Aase Nielsen, Ragnar Norberg,
Jesper Lund Pedersen, Rolf Poulsen, Tina H. Rydberg, Uwe Schmock,
Mogens Ste�ensen, Michael K. S�rensen, Jim Welsh (PCS), and of
course my supervisor Hanspeter Schmidli.
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Paper I: Pricing catastrophe insurance products based on actually
reported claims, 17 pages.

Paper II: The PCS option, an improvement of the CAT-future,
11 pages.

Paper III: A new model for pricing catastrophe insurance derivatives,
14 pages.

Paper IV: Implied loss distributions for catastrophe insurance
derivatives, 19 pages.
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Summaries of Manuscripts in the Thesis (English)

This thesis consists of the following �ve papers:

� Christensen, Claus Vorm and Hanspeter Schmidli, \Pricing catas-
trophe insurance products based on actually reported claims", (to
appear in Insurance: Mathematics and Economics).

� Christensen, Claus Vorm, \The PCS-option, an improvement of
the CAT-future", (Manuscript, University of Aarhus).

� Christensen, Claus Vorm, \A new model for pricing catastrophe
insurance derivatives", (Working Paper Series No. 28, Centre for
Analytical Finance).

� Christensen, Claus Vorm, \Implied loss distributions for catastro-
phe insurance derivatives", (Manuscript, University of Aarhus.)

� Christensen, Claus Vorm, \How to hedge unknown risk", (Manu-
script, University of Aarhus.)

Below I give a short summary of the content of each paper.

Refereed Publications

Christensen, Claus Vorm and Hanspeter Schmidli (1998), "Pricing
catastrophe insurance products based on actually reported claims", (to
appear in Insurance: Mathematics and Economics).

Abstract: This article deals with the problem of pricing a �nancial
product relying on an index of reported claims from catastrophe insur-
ance. The problem of pricing such products is that, at a �xed time
in the trading period, we do not know the total claim amount from
the catastrophes occurred. Therefore we have to price these products
solely from knowing the aggregate amount of the reported claims at
the �xed time point. This article will propose a way to handle this
problem by introducing a model taking reporting lags into account.
The main idea of the article is to model the aggregate claim from a
single catastrophe as a compound (mixed) Poisson model. We thereby
obtain the possibility to separate the individual claims and to model
the reporting times of the claims. This new model and an illustration
of how price calculations can be done in the model is the main purpose
of the article.
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Working Papers

\The PCS-option, an improvement of the CAT-future", (Manuscript,
University of Aarhus).
In 1992, Chicago Board of Trade (CBoT) introduced the CAT-future
as an alternative to catastrophe reinsurance. But the product never
became very popular, so in 1995 it was replaced by a new product the
PCS-option. In relation to my PhD project, I therefore started col-
lecting information about the PCS-option. The basic information was
obtained by reading [14] and [55]. But some was also received by mail-
ing with people from the PCS and the CBOT. After having received
this information it seemed natural to gather it in a paper. This is done
here, together with an explanation of why the CAT-future was replaced
by the PCS-option, and why the PCS-option is an improvement. The
paper also explains how to hedge catastrophe risk with PCS-options
and it compares the PCS-option with traditional reinsurance.

\A new model for pricing catastrophe insurance derivatives", (Work-
ing Paper Series No. 28, Centre for Analytical Finance.)
Since the introduction of the insurance derivatives in 1992, it has been
a problem how to price these products. The two main problems have
been the following. First if we choose a realistic model for the under-
lying loss process the market will be incomplete and there will exist
many equivalent martingale measures. Hence there will exist several
arbitrage free prices of the product. Second we want a Pareto like tail
for the underlying loss index, but heavy tails often give computational
problems. It is therefore natural to look for a model that solves both
these problems. In this paper we present a model which in some sense
takes care of both problems. The model is inspired by results from
Gerber and Shiu [43]. In [43] it is shown that the Esscher transform
is a unique and transparent technique for valuing derivative securities
if the logarithms of the underlying process are governed by a certain
stochastic process with stationary and independent increments (a Levy
process). In this paper we propose such a model, and by way of exam-
ple we calculate prices for the PCS-option, but the approach can also
be used for pricing other securities relying on a catastrophe loss index.

\Implied loss distributions for catastrophe insurance derivatives",
(Manuscript, University of Aarhus).
In this paper we also price catastrophe insurance derivatives, but here
we lead our analysis in another direction than in the previous papers.
We follow a procedure familiar to the conventional option market which
also is suggested by Lane and Movchan in [46], namely rather than
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estimating volatilities and calculate consistent prices using, say the
Black Scholes model, take the traded prices and extract the volatilities
consistent with those prices, i.e. �nd the implied volatility. We cannot
use the same procedure on the insurance derivative market directly
since we are not able to characterize the price by a single parameter.
But we can do something similar. We can choose a model for the
implied loss distribution and then estimate the implied parameters from
the observed prices.
This analysis can be used to evaluate cheapness and dearness among

di�erent prices and di�erent insurance derivative products. We simply
calculate implied prices from the implied loss distributions and com-
pare them to the observed prices. There are two main problems in
this analysis. First, what kind of distribution should be chosen for
the implied losses and second, how should the involved parameters be
estimated? In this paper we analyse those two problems and end up
by recommending a new implied loss distribution and a new objective
function for estimating the parameters.

\How to hedge unknown risk", (Manuscript, University of Aarhus).
In this paper we are considering risk with more than one prior estimate
of the frequency, e.g. environmental health risk of new and little known
epidemics, or risk induced by scienti�c uncertainty in predicting the
frequency and severity of catastrophic events. It is not possible to
hedge this kind of risk using only traditional insurance practice. A
new method is called for.
This problem was �rst mentioned by Chichilnisky and Heal in [15]

(a non mathematical paper), where they argued that this unknown
risk should be managed by using traditional insurance practice and by
trading in the security market simultaneously. In this article we will
continue and extend the ideas from [15]. The main purpose is to build
a mathematical model that is able to handle this and related problems.
In the paper we extend the ideas from [15] by considering both com-

plete and incomplete markets. Furthermore we consider the case where
the premium charged by the insurance company is restricted. In this
case the insurance company has to choose an allocation of the restricted
premium corresponding to the states of the world. We propose four dif-
ferent methods for solving this problem. These four methods are then
analysed and evaluated; advantages and disadvantages are illustrated
by examples.
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Summaries of Manuscripts in the Thesis (Danish)

Afhandlingen indeholder f�lgende fem artikler:

� Christensen, Claus Vorm and Hanspeter Schmidli, \Prisfasts�t-
telse af katastrofeforsikrings produkter baseret p�a aktuelle, rap-
porterede skader", (udkommer i Insurance, Mathematics and Eco-
nomics).

� Christensen, Claus Vorm, \PCS-optionen, en forbedring af CAT-
futuren" (Manuskript, Aarhus Universitet).

� Christensen, Claus Vorm, \En ny model til prisfasts�ttelse af
katastrofeforsikrings derivater", (Working Paper Serie No. 28,
Center for Analytisk Finansiering.)

� Christensen, Claus Vorm, \Markedsudledte skadesfordelinger for
katastrofeforsikrings derivater", (Manuskript, Aarhus Universitet).

� Christensen, Claus Vorm, \Hvordan man afd�kker ukendt risiko",
(Manuskript, Aarhus Universitet).

Herunder f�lger et kort referat af indholdet i de fem artikler.

Accepterede artikler

Christensen, Claus Vorm and Hanspeter Schmidli (1998), "Prisfast-
s�ttelse af katastrofeforsikrings produkter baseret p�a aktuelle rapporterede
skader", (udkommer i Insurance, Mathematics and Economics).

Resum�e: Denne artikel omhandler problemer ved prisfasts�ttelse
af et �nansielt aktiv, som beror p�a et index af rapporterede skader
fra katastrofeforsikringer. Problemet ved at prisfasts�tte s�adanne pro-
dukt er, at man p�a et givet tidspunkt i handelsperioden ikke kender
det totale skadesbel�b fra allerede indtrufne katastrofer. Man skal der-
for prisfasts�tte produktet udelukkende ud fra kendskabet til bel�bet
af de rapporterede skader til et givet tidspunkt. Denne artikel anviser
en m�ade hvorp�a man kan l�se dette problem. Hovedideen i artiklen
er at modellere de samlede skader fra en katastrofe som en sammen-
sat (blandet) Poisson model. Vi opn�ar derved muligheden for at se-
parere de individuelle skader og modellere rapporteringstidspunkterne
for skaderne. Denne nye model og en illustration af hvordan man kan
beregne priser i modellen er hovedbudskabet i artiklen.
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Working Papers

\PCS-optionen, en forbedring af CAT-futuren", (Manuskript, Aarhus
Universitet).
I 1992 indf�rte CBoT CAT-futuren som et alternativ til katastrofe gen-
forsikring. Men produktet blev aldrig rigtigt popul�rt, s�a i 1995 blev
det erstattet af PCS-optionen. I relation til mit PhD studie, start-
ede jeg derfor med at indsamle information om PCS-optionen. Den
mest basale information stammer fra artiklerne [14] og [55]. Derudover
blev en del information indhentet via personlig kontakt ved ansatte ved
PCS og CBoT. Efter at have indhentet denne information fandt jeg det
naturligt, at samle den i en artikel. Det er gjort i denne artikel, som
ogs�a forklarer hvorfor CAT-futuren blev erstattet af PCS-optionen og
hvorfor PCS-optionen er en forbedring. Artiklen forklarer ogs�a hvor-
dan man afd�kker katastroferisiko og sammenligner PCS-optionen med
almindelig genforsikring.

\En ny model til prisfasts�ttelse af katastrofeforsikrings derivater",
(Working Paper Serie No. 28, Center for Analytisk Finansiering).
Siden �nansielle katastrofe forsikringsprodukter blev indf�rt i 1992, har
det v�ret et problem hvordan disse produkter skulle prisfasts�ttes.
Der har v�ret f�lgende to hovedproblemer. For det f�rste, hvis vi
v�lger en realistisk model for den underliggende tabsproces, s�a bliver
markedet ufuldst�ndigt og som f�lge heraf eksisterer der mange �kvi-
valente martingalm�al. Dette betyder at der eksisterer mange arbitrage
frie priser p�a produktet. Det andet problem er at vi gerne vil have
at fordelingen for det underliggende tabs index har en tung hale, men
tunge haler giver ofte beregningsm�ssige problemer. Det har derfor
v�ret naturligt at lede efter en model der l�ser begge disse problemer.
I denne artikel pr�senterer vi en model, der i en vis henseende tager
h�jde for begge disse probelmer. Modellen er inspireret af resultater
fra Gerber og Shiu [43]. I [43] er det vist at Esscher transformen er en
entydig og umiddelbar teknik for v�rdifasts�ttelse af aktiver, hvor log-
aritmen af den underliggende proces er styret af en bestemt stokastisk
proces med station�re og uafh�ngige tilv�kster (en Levy proces). I
denne artikel foresl�ar vi en s�adan model, og som eksempel beregner vi
prisen for PCS-optionen. Metoden kan ogs�a benyttes til prisfasts�t-
telse af andre aktiver, der beror p�a et katastrofetabs index.

\Markeds udledte skadesfordelinger for katastrofeforsikrings derivater",
(Manuskript, Aarhus Universitet).
I denne artikel fors�ger vi ogs�a at prisfasts�tte katastrofe forsikrings

derivater, men vi drejer nu vores analyse i en anden retning end i
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de tidligere artikler. Vi benytter en metode, som ogs�a er kendt fra
det almindelige optionsmarked, og som ogs�a er foresl�aet af Lane and
Movchan in [46]. I stedet for at estimere volatiliteter og beregne kon-
sistente priser ved hj�lp af for eksempel Black Scholes, s�a tages her
udgangspunkt i de handlede priser og derfra udledes den volatilitet,
der er konsistent med disse priser, dvs. den markedsudledte volatilitet.
Vi kan ikke bruge den samme procedure direkte p�a katastrofeforsikrings
derivater, idet det typisk ikke er muligt at karakterisere prisen for
disse ved hj�lp af en enkelt parameter. Vi kan derimod g�re no-
get tilsvarende. Vi kan v�lge en model for de markedsudledte tabs-
fordelinger, og s�a estimere de markedsudledte parametre h�rende til
disse fordelinger ud fra de observerede priser.
Denne analyse kan s�a bruges til at evaluere forskellige priser p�a

forskellige katastrofeforsikrings derivater. Vi beregner simpelthen bare
de implicitte priser ud fra de markedsudledte skadesfordelinger, og sam-
menligner dem med de observerede priser. Der er to hovedproblemer i
denne analyse. For det f�rste, hvilken fordeling skal vi v�lge for den
markedsudledte skadesfordeling og for det andet, hvordan skal de ind-
volverede parametre estimeres? I denne artikel analyserer vi disse to
problemer og foreslr en ny skadesfordeling samt en ny objektfunktion
til parameterestimation.

\Hvordan man afd�kker ukendt risiko", (Manuskript, Aarhus Uni-
versitet).
I denne artikel betragter vi risiko med mere end et indledende es-

timat af risikoens frekvens, eksempelvis milj�m�ssig sundhedsrisiko
ved nye og ukendte epidemier, eller risikoen ved den videnskabelige
usikkerhed forbundet med at forudsige frekvensen og styrken af en
given naturkatastrofe. Det er ikke muligt at afd�kke denne risiko
udelukkende ved at benytte traditionel forsikringspraksis. Der er behov
for en ny metode.
Dette problem blev f�rste gang n�vnt af Chichilnisky og Heal i [15]

(en ikke matematisk artikel), hvor de argumenterede for, at det skulle
v�re muligt at styre denne form for risiko ved simultant at benytte
traditionel forsikringspraksis og handle p�a det �nansielle marked. I
denne artikel vil vi tage udgangspunkt i [15] og videreudvikle ideerne
derfra. Hovedform�alet med artiklen er at konstruere en matematisk
model som er i stand til at l�se dette og tilh�rende problemer.
I artiklen udvider vi ideerne fra [15] ved at betragte b�ade fuld-

st�ndige og de ufuldst�ndige �nansielle markeder. Derudover be-
tragter vi ogs�a den situation, hvor forsikringsselskabet kun kan forlange
en begr�nset pr�mie. I det tilf�lde er forsikringsselskabet n�dt til at
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v�lge en allokering af den begr�nsede pr�mie h�rende til de forskel-
lige mulige tilstande. Vi foresl�ar �re forskellige m�ader at l�se dette
problem p�a. Disse �re metoder bliver s�a analyseret og evalueret og ved
eksempler bliver fordele og ulemper skitseret.
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1. Introduction

During the nineties a highly discussed theme among academics has
been the interplay between insurance and �nance. Some of the gen-
eral issues have been: the increasing collaboration between insurance
companies and banks; the discussions about risk management method-
ologies for �nancial institutions, and the emergence of �nance related
insurance products, e.g. catastrophe futures and options, PCS options,
index-linked policies,........
This thesis develops around the interplay between insurance and �-

nance and especially around the pricing of �nance related insurance
products (insurance derivatives). The insurance derivative was devel-
oped as a �nancial product which should work as an alternative or
replacement of reinsurance. This meant that companies that would
normally reduce their risk by reinsurance, could now consider these
new �nancial products as alternatives. One of the main di�erences be-
tween the traditional concept of reinsurance and these new products,
is the way they are priced. Reinsurance contracts are priced using
traditional actuarial methods, whereas derivatives should be priced by
�nancial methods of no arbitrage. To give an impression of the dif-
ferences between these two methods of pricing, we start this second
major section with a description of the two methods of pricing and
their interaction.
The rest of this second section of the thesis, gives a chronological

description of how the market for catastrophe insurance products has
developed, with a special focus on the pricing approach. Here rele-
vant literature is described and it is explained how my work relates to,
contributes to, and extends various �elds.

2. The difference between financial and actuarial
pricing

As mentioned above I found it appropriate to stress how �nancial
and actuarial pricing are related to one another. This is done by �rst
describing the pricing procedures in insurance, then the pricing proce-
dures in �nance and �nally by making some remarks on the interaction.
The following subsections are closely related to the nice paper [30], but
are also based on theory from [28], [32], [52] and [53].

2.1. Insurance pricing. Let the annual premium for a certain risk
be �, denote by Xi the losses in year i and assume that the Xi's are
independent and identically distributed. The company has a certain
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initial capital u. Then the capital of the company after year i is

Ci = u+ �i�
iX

j=1

Xj

It is well-known, see e.g. [53], that only if � > EP [Xi] there is a positive
probability that Ci � 0 for all i 2 IIN, i.e. one should be prepared to
pay more than E[Xi] (a safety loading is added). That agents are in
fact willing to pay more than EP [Xi] can be shown by looking at utility
theory. Consider an agent who is going to buy an insurance to cover
the losses Xi. Assume that the agent has initial capital k and utility
function w, where w0 > 0 (more is better) and w00 < 0 (decreasing
marginal utility) and that VarP [Xi] 6= 0. Then the agent is willing to
pay the premium ~� de�ned by the equation

w(k � ~�) = EP [w(k �Xi)]:

The de�nition of w implies that �w is convex and therefore Jensen's
inequality immediately leads to

~� > EP [Xi]:

An insurance contract between the agent and the insurer is now called
feasible whenever

~� � � > EP [Xi]:

One can now choose among various well-known premium principles
for the valuation of the premium. We will now describe some of these
premium calculation principles for the risk X.

� The expected value principle

� = EP [X] + ÆEP [X]

� The variance principle

� = EP [X] + ÆVarP [X]

� The standard deviation principle

� = EP [X] + Æ(VarP [X])1=2

The loading factor Æ is often determined by setting suÆciently protec-
tive solvency margins which may be derived from ruin estimates of the
underlying risk process over a given (�nite) period of time.

� The exponential principle: Assume that the insurance company
has initial capital h and utility function v, where v0 > 0 and
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v00 < 0. The premium � for the insurance company can be de�ned
by the equation

v(h) = EP [v(h+ � �X)]:

If the insurance company has an exponential utility function, i.e.
v(x) = 1�e�Æx we, obtain by the above de�nition the exponential
principle

� =
1

Æ
logEP [e

ÆX ]:

� The percentage principle: The company wants to keep the proba-
bility that the risk exceeds the premium income small. The com-
pany therefore chooses a parameter � and de�nes the premium
by

� = inffy > 0 : P [X > y] � �g:
� The Esscher principle:

� =
EP [Xe

ÆX ]

EP [eÆX ]
:

for an appropriate Æ > 0. An economic foundation for the Esscher
principle, using risk exchange and equilibrium pricing has been
given by B�uhlmann in [9].

2.2. Pricing in �nance. When we change from the pricing in insur-
ance to the pricing in �nance, the riskX typically becomes a contingent
claim. Let us consider some examples. Let (St)0�t�T denote the un-
derlying price process of some traded asset. The risk of a European
call with strike K and maturity T is then

X = (ST �K)+

Note that this contract is similar to an excess-of-loss reinsurance treaty
with priority K. Another example is the Asian option with strike price
K, which speci�es the payo�

X = (
1

T

Z T

0

Sudu�K)+:

This contract is similar to the stop-loss treaty in reinsurance.
In the �nance context, the argument against using EP [X] as the

premium is based on the notion of no-arbitrage. The correct price
at time t of a contingent claim X, in a no-arbitrage framework with
risk-free interest rate r, is

vt = EQ[e
�r(T�t)XjFt]
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and the premium to be charged at time t = 0

v0 = EQ[e
�rT )X];

see [28] for further details. We calculate the fair premium with respect
to another probability measure Q. This risk neutral probability mea-
sure Q changes the original measure P in order to give more weight to
unfavorable events in a risk averse environment. In �nancial economics
this leads to the concept of \the market price of risk" and in insurance
mathematics it should explain the safety loading.
In complete markets Q is the unique P -equivalent probability mea-

sure which turns e�rtSt into a martingale. In incomplete models Q is
not unique, and without further information on investor speci�c pref-
erences only bounds on prices can be given.
Examples of complete models:

� Geometric Brownian motions (Black-Scholes),
� multi-dimensional geometric Brownian motions,
� (Nt��t)t�0 with Nt a homogeneous Poisson process with intensity
�, and

� square integrable point process martingales (Nt �
R t
0
�sds)t�0, for

deterministic �.

Examples of incomplete models:

� Stochastic volatility models with unhedgable volatility risk, and
� processes with jumps of random size (e.g. compound Poisson pro-
cesses and general jump di�usions).

If one chooses a martingale measure in the incomplete market one
will at the same time choose the weights for the di�erent risks and
then implicitly the markets utility function, i.e. one could argue that
it would be natural to work out the incomplete market price in a utility
maximization framework. If one does so, a unique measure emerges in
a very natural way, see [32] and references therein. Other important
references for readers interested in incomplete markets are [37] and [38].

2.3. The intersection between insurance and �nance. The clas-
sical risk process, being de�ned as a compound Poisson process, is
traditionally used as a model for insurance business. And as we have
seen in Subsection 2.1 the premium to be asked per unit of time is
de�ned as the expectation plus some loading factor. It could then be
interesting to investigate whether the �nancial approach from the pre-
vious subsection could be used to calculate premiums for risk processes,
and how these premiums are related to the premiums obtained in Sub-
section 2.1. This is exactly the aim of the paper [27] by Delbaen and
Haezendonck. Let us now outline the method introduced in this paper.
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For a given �nite time horizon [0;T ] we consider a company holding
the risk process L given by a compound Poisson process

Lt =
NtX
i=1

Yi

where the Yi's are independent and identically distributed positive
claims with common distribution function F . Nt is a homogeneous
Poisson process with intensity � > 0 and independent of (Yi)i�1.

Let ( ~St)0�t�T be the discounted price process for the claim LT . Del-
baen and Haezendonck then at this point conclude, that the liquidity of
the market makes it reasonable to assume that the market is arbitrage
free, i.e. there exists a risk neutral probability measure under which
the discounted price process ( ~St)0�t�T is an Ft-martingale. Thus:

~St = EQ[LT jFt]; 0 � t � T:

Suppose that at each time t, the company can sell the remaining risk
of the period ]t;T ] for a given (predictable) premium �t. Since �t is a
premium that admits no arbitrage, it is determined as

�t = EQ[LT � LtjFt]; 0 � t � T;

= EQ[LT jFt]� Lt; 0 � t � T:

Hence, the underlying price process ( ~St)0�t�T can be decomposed into

~St = �t + Lt 0 � t � T:

or in other words, the company's liabilities ~St at time t consist of the
claims up to time t and the premium for the remaining risk LT � Lt.
If one further more imposes that

�t = �(T � t) 0 � t � T;

where � is a premium density, i.e. the premium is linear in time, then
we obtain that under Q the risk process Lt remains a compound Pois-
son process. We therefore consider only those equivalent martingale
measures Q that preserve the compound Poisson property of Lt within
this non-arbitrage insurance context. A viable premium density then
takes the form

�Q = EQ[L1] = EQ[N1]EQ[Y1];

resulting in change of both claim-size and claim-intensity of the under-
lying process. It is then shown that the Q-measures giving rise to such
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viable premium principles have the following properties (formulated in
terms of distribution functions):

F
(�)
Q (x) =

1

EP [exp(�(Y1))]

Z x

0

e�(y)dF (y); x � 0

where � : IR+ ! IR is increasing so that

EP [exp(�(Y1))] <1 and EP [Y1 exp(�(Y1))] <1
The resulting premium density then satis�es for �(y) � 0,

�P = EP [N1]EP [Y1] < �Q(�) <1
hence taking safety loading into account. Special choices of � now lead
to special premium principles, all consistent within the no-arbitrage
set-up. Examples are:

� �(x) = � > 0, then
�Q(�) = e�EP [N1]EP [Y1] = e��EP [Y1] (the expected value prin-

ciple);

� �(x) = log(a + bx), 0 < b < (EP [Y1])
�1 and a = 1� bEP [Y1] > 0,

then
�Q(�) = �(EP [Y1] + bVarP [Y1]) (the variance principle);

� �(x) = �x� logEP [e
�Y1 ], � > 0, then

�Q(�) = �EP [Y1 exp(�Y1)]
EP [exp(�Y1)]

(the Esscher principle).

So, in a suÆciently liquid insurance market, classical insurance pre-
mium principles can be reinterpreted in a standard no-arbitrage pricing
set-up. The main results from [27] are generalized in [47] to be valid
for mixed Poisson and doubly stochastic Poisson processes as well.
Consider now a contingent claim based on a loss process. One could

then derive arbitrage-free prices of such contingent claims on the basis
of the risk-neutral probability measure derived above. This is done
in [4] where prices are calculated for di�erent risk-neutral measures.
The prices are calculated by solving integro-di�erential equations for
the contingent claims numerically. But the risk neutral measure is not
unique, so there still exist several possibilities to price these contingent
claims excluding arbitrage opportunities. A natural way to choose
a speci�c measure could then be, as argued above, to work out the
incomplete market price in a utility maximization framework. And as
stated above a unique measure emerges in a very natural way. We will
discuss this further in the next section.
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3. Securitization, the CAT-future

Let us start this section by listing the 10 most costly insurance losses
in the period 1970-1999. The data can be found in sigma [58] (the
insured losses are in USD millions at 1999 prices).

Date Event loss
24.08.1992 Hurricane \Andrew", USA 19086
17.01.1994 Northridge earthquake, Calif. 14122
27.09.1991 Typhoon \Mireille", Japan 6906
25.01.1990 Winter storm \Daria", Europe 5882
15.09.1989 Hurricane \Hugo", Puerto Rico 5664
25.12.1999 Winter storm \Lothar", Europe 4500
15.10.1987 Autumn storm, Europe 4415
26.02.1990 Winter storm \Vivian", Europe 4088
20.08.1998 Hurricane \George", USA 3622
22.09.1999 Typhoon \Bart" hits south Japan 2980

Table 3.1. The 10 most costly insurance losses (1970-1999).

From table 3.1 it is seen that all 10 events have happened during
the second half of the period. One therefore gets the impression that
the frequency and severity of large losses has increased, which is also
con�rmed in [58]. This increase is due to higher population densities,
more insured values in endangered areas and higher concentration of
values in industrialized countries.
The insurance industry already got the impression of this increase

in the early nineties after hurricane Andrew and the Northridge earth-
quake. And they soon realized that the reinsurance industry might lack
the capital to cover the huge catastrophes of the future. To solve this
problem securitization of catastrophe risk was invented. The idea of
securitization was to transfer some of the risk from the insurance mar-
ket to the �nancial market, where the risk-bearing capacity is much
larger. This transfer should then be done by use of �nancial instru-
ments such as options and futures on indices of catastrophe losses or
catastrophe bonds. Catastrophe bonds are bonds where the payment
of the coupon and/or the return of the principal of the bond is linked
to the non-occurrence of a speci�ed catastrophic event. In the rest
of the thesis we will denote these �nancial instruments as catastrophe
insurance derivatives.
We now give a short description of one of the �rst products of this

kind, namely the CAT-future introduced by CBoT in 1992.
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3.1. Description of the CAT-future. CAT-futures are traded at
CBoT on a quarterly cycle, with contract months March, June, Sep-
tember and December. A contract for a calendar quarter (called the
event quarter) is based on losses occurring in the listed quarter and
being reported to the participating companies by the end of the follow-
ing quarter. A contract also speci�es an area and the type of claim to
be taken into account. The additional three months following the re-
porting period is attributable to data processing lags. The six months
period following the start of the event quarter is called reporting pe-
riod. The three reporting months following the event quarter are to
allow for settlement lags that are usual in insurance. The contracts
expire on the �fth day of the fourth month following the end of the
reporting period. Let T1 < T2 be the end of the event quarter and the
end of the reporting period, respectively.
The settlement value of the contract is determined by a loss index;

the ISO-index. Let us now consider the index. Each quarter approxi-
mately 100 American insurance companies report property loss data to
the ISO (Insurance Service OÆce, a well-known statistical agent). ISO
then selects a pool of at least ten of these companies on the basis of
size, diversity of business, and quality of reported data. The ISO-index
is calculated as the loss-ratio of this pool

ISO-index =
reported incurred losses

earned premiums
:

The list of companies included in the pool is announced by the CBoT
prior to the beginning of the trading period for that contract. The
CBoT also announces the premium volume for companies participating
in the pool prior to the start of the trading period. Thus the premium in
the pool is a known constant throughout the trading period, and price
changes are attributable solely to changes in the market's expectation
of loss liabilities.
The settlement value for the CAT-futures is

FT2 = 25 000�min(IT2 ; 2)

where IT2 is the ISO-index at the end of the reporting period, i.e. the
ratio between the losses incurred during the event quarter and reported
up till three months later and the premium volume for the companies
participating in the pool.

Example 3.1. The June contract covers losses from events occurring
in April, May and June and are reported to the participating companies
by the end of September. The June contract expires on January 5th
the following year. The contract is illustrated by Figure 3.1.
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FINAL SETTLEMENT

Apr July Oct Nov DecJuneMay SepAug

EVENT QUARTER

Jan

REPORTING PERIOD

INTERIM REPORT

Figure 3.1. June CAT-Future contract

3.2. The CAT-future pricing problem. Since the introduction of
the CAT-future in 1992, it has been a highly discussed theme among
academics how these catastrophe insurance derivatives should be priced.
It has not been possible to �nd a unique model like the Black-Scholes
model since the underlying index cannot be described by a distribution
as simple as the log-normal, and furthermore, the underlying is not a
traded asset.
One of the �rst attempts to price these derivatives was done by

Cummins and Geman in [24]. This paper develops an Asian option
model for the pricing of the CAT-future. They argue that the Asian
approach is appropriate since most insurance contracts, including the
CAT-future, have pay-o�s de�ned in terms of claims accumulations
rather than the end-of-period values of the underlying state variables.
For the underlying index [24] use the model

LT =

Z T

0

S(s)ds

where

dS(t) = �S(t )dt+ �S(t )dW (t) + kdN(t):

In order to price the CAT-future they then assume that there exist two
other securities on the market from which one can derive the behavior
of the processes W (t) and N(t) under the Q-measure. Under these
assumptions they are able to price the CAT-future by use of techniques
arising from pricing Asian options.
The model, however, seems to be far from reality. At times where

a catastrophe occurs or shortly thereafter, one would expect a strong
increase of the loss index. It is therefore preferable to use a marked
point process as it is popular in actuarial mathematics. But if we
look after such a model we will also have to look for another pricing
approach, since we are then no longer able to price by no arbitrage.
A model of this type was suggested by Aase in [1]. Here a compound

Poisson model is used. This can be seen as catastrophes occurring
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at certain times and claims being reported immediately. In such a
model there would be no need for the prolonged reporting period. In
[1] a closed form pricing model is derived in the framework of general
economic equilibrium theory under uncertainty.
An improvement of this model is the model suggested by Embrechts

and Meister in [32]. In this case a doubly stochastic Poisson model
is introduced. Here, a high intensity level will occur shortly after a
catastrophe, where more claims are expected to be reported. For the
pricing of the derivative, a utility and risk-minimization approach is
used, and in the case of the exponential utility function, we obtain the
following pricing formula. Let Ft be the price of the future, Lt the value
of the losses occurred in the event quarter and reported till time t, Ft

the information at time t, � premiums earned and let c = 25 000=�.
Then the price at time t, is (see [32, p.19])

Ft = c
EP [exp(�L1) (LT2 ^ 2�) j Ft]

EP [exp(�L1) j Ft]
:(3.1)

In particular, EP [exp(�L1)] has to exist. The market will determine
the risk aversion coeÆcient �. This pricing formula is also the one we
use in Christensen and Schmidli [17]. In the next section we outline
the main results from [17].

3.3. Pricing based on actually reported claims. One of the prob-
lems with pricing these �nancial products relying on indices of reported
claims from catastrophe insurance is that, at a �xed time in the trading
period, the total claim amount from the catastrophes occurred is not
known. One therefore has to price these products solely from knowing
the aggregate amount of the reported claims at the �xed time point.
The idea of the manuscript [17] was to derive a pricing model that
was only based on the actually reported claims and thereby extend the
existing pricing models for products of this kind.
The main idea of [17] is to model the aggregate claim from a sin-

gle catastrophe as a compound (mixed) Poisson model. We thereby
obtain the possibility to separate the individual claims and to model
the reporting times of the claims. In [17] it is shown how prices can
be calculated within this new model. For pricing the catastrophe in-
surance futures and options we use the exponential utility approach of
[32]. This approach will only work for aggregate claims with an expo-
nentially decreasing tail. But data give evidence that the distribution
tail of the aggregate claims is heavy tailed. In our model a heavy-tail
can be obtained by a heavy-tailed distribution for the number of indi-
vidual claims of a single catastrophe. For pricing we approximate the
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claim number distribution by a negative binomial distribution; more
precisely, by a mixed Poisson distribution with a �(
; �)-mixing distri-
bution. Choosing 
 and � small a heavy-tail behaviour can be approx-
imated. The reader should note that the value of the security is based
on a capped index and therefore has an upper bound. This justi�es
the light-tail approximation.

3.3.1. The model. The model looks as follows. Catastrophes occur at
times �1 � �2 � �3 : : : The i-th catastrophe produces Mi claims with
sizes Yij. The j-th claim is then reported with lag Dij (Dij � FD),
i.e. at time �i + Dij. Furthermore let Mi(t) be the number of claims
from catastrophe i reported until time t. In our model the claims Yij
from the i-th catastrophe are randomly ordered. This simpli�es the
modeling of the reporting lags Dij. Let (Di:j : 1 � j � Mi) be the
order statistics of the (Dij)1�j�Mi

, and Yi:j be the claim corresponding
to Di:j. Then the claims occurred before T1 and reported till t � T2
amount to

Lt =

Nt^T1X
i=1

Mi(t)X
j=1

Yi:j :

In particular, the �nal aggregate amount, LT2 , can be represented as

LT2 = Lt +

Nt^T1X
i=1

Mi(T2)X
j=Mi(t)+1

Yi:j +

NT1X
i=Nt^T1

+1

Mi(T2)X
j=1

Yi:j ;

i.e. the �nal aggregate amount LT2 can at time t be represented as a
sum of the claims that has already occurred and already been reported,
plus a sum of the claims that already occurred and will be reported be-
fore the end of the reporting period, plus a sum of claims that will occur
before the end of the loss period and be reported before the end of the
reporting period. Based on the assumption that Mi is mixed Poisson
distributed we can show that Mi(t) also is mixed Poisson distributed
but with a di�erent parameter dependent on the old parameter and
the distribution of the reporting lags, see [17] for further details.
Under, some additional assumptions, see [17], we then show that

LT2 � Lt is a compound Poisson sum, and we �nd the distribution of
the parameter. This parameter depends on the (non-observable) mean
claim number of the i-th catastrophe (�i). We therefore work with
two models. First we work with a simple model assuming that �i is
deterministic, i.e. all catastrophes have the same mean claim number.
Next we work with a model where the �i is stochastic, i.e. we allow
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the parameter to depend on the information from the claims having
occurred in the past.
We now know the distribution of the underlying loss process, and

in order to price the CAT-future we follow the approach of Embrechts
and Meister [32], or more precisely the pricing formula (3.1). The term
exp(�L1)=EP [exp(�L1)] from (3.1) is strictly positive and integrates
to one. Thus it is the Radon-Nikodym derivative dQ=dP of an equiv-
alent measure. In the speci�c model we will consider, the process (Lt)
follows the same model (but to be considered with di�erent param-
eters) under the measure Q as under the measure P . For the exact
behavior of Lt under Q, see [17]. We will use this fact to calculate the
price.

3.3.2. The pricing of the CAT-future. Denoting by ~FL(�; t) the distri-
bution function of LT2 � Lt under Q conditioned on Ft. We can then
express the price at time t of the CAT-future as

cEQ[LT2 ^ 2�jFt]

= c(Lt + EQ[(LT2 � Lt)� ((LT2 � Lt)� (2�� Lt))
+ j Ft])

= c
�
Lt + EQ[(LT2 � Lt) j Ft]�

Z 1

2��Lt

(1� ~FL(x; t)) dx
�
:(3.2)

The problem with the above expression, however, is that we have to
�nd the n-fold convolutions of FD[T2� ~� ] (~� is uniformly distributed on
(t; T1), in order to calculate the last term. To �nd an explicit expression
seems to be hard.
Historical data show that so far, the cap 2 in the de�nition of the

CAT-future has not been reached. The largest loss ratio was hurri-
cane Andrew with L1 = 1:79�. Under the measure P we have that
fLT2 > 2�g is a rare event. Since we are dealing with catastrophe
insurance, the market risk aversion coeÆcient � cannot be large. Oth-
erwise catastrophe insurance would not be possible. We therefore as-
sume that fLT2 > 2�g is also a rare event with respect to the mea-
sure Q, see also [32]. The light tail approximation to our model then
assures that the tail of ~FL(�; t) is exponentially decreasing. That isR1
2��Lt

(1� ~FL(x; t)) dx will be small as long as Q(LT2 > 2�) is small.
The latter of course depending on the risk aversion coeÆcient �, be-
ing small in order to be able to neglect the last term. As in [32] we
therefore propose the approximation c(Lt +EQ[(LT2 �Lt) j Ft]) to the
price of the CAT-future. For the exact calculation of this expression,
see [17]. The �nal result is also stated here in Theorem 3.2.
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In the extended model we assume that the �i's are stochastic. This
can be seen as a measure of the severity of the catastrophe. For sim-
plicity of the model, we assume that �i can be observed via reported
claims only. Of course, in reality other information as TV-pictures or
reports from the a�ected area will be available. Then for claims occur-
ring before t we have some information on the intensity parameter �i.
We therefore have to work with the posterior distribution of �i given
Ft. It would be desirable if the prior and the posterior distribution
would belong to the same class, see the discussion in [21, Ch.10]. We
therefore choose �i to be � distributed. Let �i � �(
; �). Under these
assumptions we again calculate an approximation for the price of the
CAT-future, see [17] for an exact calculation. The �nal result is stated
here in Theorem 3.6.
The above results are both approximations, so it is relevant to ask

how good these approximations are. This question is also considered
in [17]. From equation 3.2 we know that the approximation error is
given by the following expression:

c
�Z 1

2��Lt

(1� ~FL(x; t)) dx
�

(3.3)

where ~FL(�; t) denotes the distribution function of LT2 � Lt under Q
conditioned on Ft. The reason for omitting this term was that it is hard
to calculate ~FL(�; t). In [17] we �nd an approximation to the expression
above by using some of the approximations to LT2 � Lt known from
actuarial mathematics, namely the translated gamma approximation
and the Edgeworth approximation. We use these two approximations
as examples which both are shown to be useful but other approxima-
tions may also possible.
The results in [17] are derived specially for the CAT-futures, even

though an improved �nancial catastrophe insurance product, the PCS-
option, was introduced in 1995. In the next section we will consider the
PCS-option and discuss why the CAT-future was replaced. The results
from [17] cannot directly be used for pricing PCS-options since they
have a di�erent structure. However, because of a strong correlation
between claims reported and the PCS-index, some of the ideas may be
used. We now turn to the PCS-option.

4. Securitization, the PCS-option

In 1995 CBoT introduced the PCS-option as a replacement of the
CAT-future. Let us brie
y describe the PCS-option before we explain
why modi�cations of the CAT-future was needed.
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4.1. Description of the PCS-option. In this section the de�nitions
of the keywords that specify the PCS-options are given. For a more
detailed description of the PCS-option see [14] or [16].
Property Claim Services (PCS), a division of American Insurance

Services Group, is the recognized industry authority for catastrophe
property damage estimates. PCS is a not-for-pro�t organization serv-
ing the insurance industry.
The PCS-options are traded by Chicago Board of Trade and are

regional contracts whose value is tied to the so-called PCS Index. The
PCS index tracks PCS estimates for insured industry losses resulting
from catastrophic events (as identi�ed by PCS) in the area and loss
period covered. The options are traded as capped contracts, i.e. the cap
limits the amount of losses that can be included under each contract.
The value of a PCS call option at expiration day T , with exercise price
A and cap value K is given by

C(T; LT ) = min(max(LT � A; 0); K � A)

where LT is the value of the PCS index at time T .
PCS-options can be traded as European calls, puts or spreads. Most

of the trading activity occurs in call-spreads, since they essentially work
like aggregate excess-of-loss reinsurance agreements, see [16] for further
explanations.
The option includes both a loss period and a development period.

The loss period is the time during which a catastrophic event must
occur in order for resulting losses to be included in a particular in-
dex. During the loss period, PCS provides loss estimates as catas-
trophes occur. The development period is the time after the loss
period during which PCS continues to estimate and reestimate losses
from catastrophes occurred during the loss period. The reestimations
may result (and have resulted historically) in adjustments upwards and
downwards. PCS-option users can choose either a six-month or twelve-
month development period. The settlement value for each index repre-
sents the sum of then-current PCS insured loss estimates provided and
revised over the loss and development periods.

4.2. Why the PCS-option was an improvement. The main prob-
lem of the CAT-future was caused by the construction of the underlying
index, the ISO index. Let It be the value of the ISO index at time t.
One of the problems was that It was only published once before the set-
tlement date. This took place just after the end of the reporting period
(the Interim report, see Figure 3.1). This meant that the companies
participating in the pool had a possibility of knowing at least part of
the data used to form the index before the settlement date, while it
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was certainly more diÆcult for other insurers. This created an informa-
tion asymmetry which was a potential factor preventing people from
entering the market of CAT-futures. This problem was solved for the
PCS-option, because PCS reports the PCS loss indices on each CBoT
trading day (the index is only changed if there are new catastrophes
or if the index is adjusted) and neither American Insurance Services
Group nor any person employed by American Insurance Services Group
will disclose any estimate of total insured losses following a catastro-
phe to any person prior to its oÆcial publication. This means that all
investors receive the same information at the same time. Thereby the
problem of asymmetric information is eliminated.
Another problem was the Moral Hazard problem. A company from

the pool could manipulate data by delaying the report of a big loss so
that it �rst would be included in the next reporting period and thereby
never a�ect the index. The company's intension for doing so, could be
that the company had agreed to a short position of a future contract1.
That this possibility existed, could also have prevented people from
entering the market of CAT-futures. This problem was also solved by
PCS conducting surveys of the market, when they estimate the loss
indices. These surveys are con�dential and they are not used directly
in the estimation of the indices. So it is extremely diÆcult for insurance
companies to a�ect the indices, and thereby the Moral Hazard Problem
was eliminated.
A more serious problem could occur due to the reporting period being

too short. If a late quarter catastrophe occurs and claims are slow in
developing, then the �nal claims ratio for the purpose of deciding the
future payo� could be low relative to the actual �nal claims ratio. This
problem occurred in the March 1994 contract period, the period of the
Northridge earthquake. The settlement ratio was low and the contract
pay-o� did not truly re
ect the actual claim loss. The construction
of the PCS-option also solves this problem. The PCS index does not
directly depend on a number of reported claims and the time from the
end of the event period to the time the index is settled is also longer
for the PCS-option than it was for the CAT-future.
These problems being solved, was probably the main reason for the

PCS-options higher trading activity compared to the CAT-future. But
the fact that the new product was more logically constructed than
the old one, could also have had an e�ect. Hereby we mean that a

1When a company, at time t and at a price Ft, enters a short position of a future
contract, it means that the company should pay (FT �Ft) to the other part of the
contract at time T. The company will then like FT to be as small as possible.
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construction using options instead of futures and \options on futures",
seems more logical when all the trading activities are in options.
In fact, the CBoT market has never progressed to a well launched

market. However, the market is still developing, and competitors such
as The Bermuda Commodities Exchange and The Catastrophe Risk
Exchange are beginning to have some trading success, see [46]. J.A.
Tilley [60] is mentioning the following four reasons why this market is
emerging so slowly. First, since 1994 there has been a generally favor-
able catastrophe loss experience and as a result of this the reinsurance
prices have decreased. This becomes a problem because many cedents
of risk, both primary writers and reinsurers, have considered securiti-
zation as an alternative to reinsurance rather than complementary to
reinsurance. Second, insurers are unwilling to be pioneers due to the
high development cost. Third, the fact that the products are uncorre-
lated to other �nancial products is not a good enough selling story for
investors. Investors want to understand the nature of the risk, and this
takes time. And �nally, there still remains unanswered questions about
what form and structure of insurance linked securities and derivatives
will be viewed most favorable by investors.

4.3. New pricing models for the PCS-option. Many of the mod-
els derived for the CAT-future can, with some adjustments, be used to
price the PCS-option. In addition, models have been derived, e.g. the
paper by Geman and Yor [39]. In [39] they assume that the dynamics
of the claim index (Lt) under Q is driven by the following stochastic
di�erential equation:

dLt =Wtdt+�dNt

where Wt is a geometric Brownian motion, Nt is a Poisson process and
� is a positive constant representing the magnitude of the jumps. In
the development period the last term is excluded. Subsequently, they
then obtain quasi-completeness of the insurance derivative market by
applying the Delbaen and Hazendonk [27] methodology to the class of
layers of reinsurance replicating the call-spreads. The pricing of the
call-spreads is then done by using stochastic time change, see [39] for
further details.
The model can, as the model by Cummins and Geman [24], be crit-

icized for being unrealistic, because it is too light-tailed. As discussed
earlier a compound Poisson model will be more realistic, but using the
approach from the previous section we will still not be able to han-
dle heavy-tailed distributions for the jumps. An interesting question
is therefore the following. Does there exist a model for the loss index
which has a heavy-tail and still allows for a unique pricing formula?
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To present such a model was the aim of the manuscript \A new model
for pricing catastrophe insurance derivatives" Christensen [18] and is
to our knowledge the �rst paper with this agenda. We now give a short
presentation of this manuscript.

4.3.1. The model. The model we present below is inspired by Gerber
and Shiu [43]. In [43] they show how one can obtain a risk neutral
Esscher measure in a unique and transparent way if the logarithms of
the value of the underlying security is a Levy process. The idea is now
to choose such a model.
Let Lt be the underlying loss index for a catastrophe insurance deriv-

ative, [0; T1] be the loss period and [T1; T2] be the development period.
We then assume that Lt for all t 2 [0; T2] is described by

Lt = L0 exp(Xt)

where Xt is a Levy process, and L0 2 IR+. We model Xt di�erently
in the loss period and the development period, for a similar model see
[55]. The question is then how to model Xt for the loss period and for
the development period.
For t 2 [0; T1] we will model Xt by a compound Poisson process

Xt =
NtX
i=1

Yi 8t 2 [0; T1]

where Nt is a Poisson process with a �xed parameter �1, and Yi is
exponentially distributed with parameter �. We hereby obtain one of
the desired properties namely as mentioned above the heavy-tail for
Lt, e.g. when Xt �Exp(�) then Lt � L0 is Pa(�; L0) distributed. But
as mentioned above this model is not chosen because it is the most
obvious one but because it has a heavy-tail, allows for 
uctuation and
gives a the possibility to express the price in closed-form. Therefore,
the model has some disadvantages compared to a more natural model,
�rstly the fact that late catastrophes become more severe than earlier
ones and secondly L0 = L0 > 0. For this reason this model should only
be used as a �rst \crude" approximation to the real world. We have
tried to work out these problems, but this seems to be hard.
We have to choose a model for Xt for the development period. We

know that the adjustments are done both upwards and downwards we
will therefore again describe Xt as a compound Poisson process for
t 2 [T1; T2]

Xt = XT1 +

~Nt�T1X
i=1

~Yi



18 Securitization, the PCS-option

where ~Nt is a Poisson process with a �xed parameter �2 and ~Yi is
normally distributed (N(�; �)), where the most natural choice of �
is � = 0 (unbiased previous estimates). In order to use the results
from Gerber and Shiu [43] we need to assume that the process Xt for
t 2 [0; T1] is independent of the process Xt � XT1 for t 2 [T1; T2]. In
the real world one will expect some dependence but the assumption is
invariable in order to use the results form [43].
The value of the option at time t is then

C(t; Lt) = exp(�r(T2 � t))E�[C(T2; LT2)jFt]

where r is the risk free interest rate and E� is the mean value according
to a risk neutral measure. Before we can proceed further in the calcu-
lation of the option price we will have to choose a risk neutral measure.
This is done in the next sections.

4.3.2. The pricing of the PCS-option. This section describes how to
compute a risk neutral measure using the Esscher Transform. The
theory was introduced by Gerber and Shiu [43]. However we need to
make some adjustments in order to use their results in our context.
Let Lt be the value of the PCS index at time t

Lt = L0 exp(Xt); 8t � 0;(4.1)

where Xt is a Levy process. Let M(z; t) be the moment generating
function de�ned by:

M(z; t) := E[exp(zXt)] =

Z 1

�1

exp(zx)F (dx; t)(4.2)

provided the integral is �nite, where F denotes the distribution function
forXt. Because of the independent stationary increments we then have,
(see [34], section IX.5) , that

M(z; t) = (M(z; 1))t(4.3)

For any h 2 IR the Esscher-Transformation F (dx; t; h) is de�ned as:

F (dx; t; h) =
exp(hx)F (dx; t)

M(h; t)
:(4.4)

From this transformed density we de�ne the Esscher-transformed mo-
ment generating function as:

M(z; t; h) =

Z 1

�1

exp(zx)F (dx; t; h) =
M(z + h; t)

M(h; t)
:(4.5)

Then it follows from (4.3) and (4.5) that

M(z; t; h) = (M(z; 1; h))t(4.6)
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The idea of Gerber and Shiu [43] is to choose h = h� such that
the discounted underlying process here fe�rtLtg becomes a martin-
gale under the Esscher transformed measure. But absence of arbitrage
arguments do not apply because the underlying process Lt is a loss
index and not a price process, i.e. it gives no meaning to derive the
risk neutral measure under the conditions that fe�rtLtg should be a
martingale. So we have to consider another process. Let Pt be the
deterministic premium paid till time t to receive the value Lt at time
t and assume that the index fLt=Ptg is a traded asset. We then use
the idea of Gerber and Shiu by choosing h = h� such that the process
fe�rtLt=Ptg is a martingale under the Esscher transformed measure.
The question now is how to model Pt. We have to consider the

loss period and the development period separately. Therefore we �rst
consider the loss period. We would like the premium to be arbitrage
free, so we will calculate the premium according to the adjusted pa-
rameter principle suggested by Venter [61]. See the latter paper for
a description of the premium principle and a discussion of why this
premium principle is arbitrage free. Let now ~�1 and ~� be the adjusted
parameters and let ~Xt be the adjusted process, i.e. ~Xt is a compound
Poisson process with Poisson parameter ~�1 and with marks that are
exponentially distributed with parameter ~�. . The premium is then:

Pt = EP [ ~Lt]

= EP [L
0 exp( ~Xt)]

= L0 exp(
~�1t

(~�� 1)
)

Motivated by this, we will use the following model for Pt

Pt = L0 exp(�1t)

We are now ready to �nd the parameter h�l and thereby derive the
risk neutral measure in the loss period. h�l is chosen such that the pro-
cess fe�rtLt=Ptg is a martingale under the Esscher transformed measure

E�[exp(�rt)Lt=Pt] = 1

) exp((r + �1)t) = E�[exp(Xt)]

) exp((r + �1)t) =

Z 1

�1

exp(x)F (dx; t; h�l )

) exp((r + �1)t) =M(1; t; h�l )(4.7)
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By (4.6) it follows that the condition for h�l in the loss period is:

exp(r + �1) =Ml(1; 1; h
�
l )(4.8)

where Ml denotes that it is the moment generating function with re-
spect to the distribution in the loss period. For the development period
the situation is similar, the model for Xt is just di�erent, see [18] for
further details. The condition for h�d in the development period is:

exp(r + �2) =Md(1; 1; h
�
d)(4.9)

where Md denotes that it is the moment generating function with re-
spect to the distribution in the development period.
The Radon-Nikodym derivative for the risk neutral Esscher measure

on the �-algebra Ft can now be characterized

dQ

dP
jFt =

8<
:

eh
�

l
Xt

Ml(h
�

l
;t)

t 2 [0; T1]

e
h
�

l
XT1

Ml(h
�

l
;T1)

e
h
�

d
(Xt�XT1

)

Md(h
�

d
;t�T1)

t 2 [T1; T2]

where h�l and h
�
d are given by equation 4.8 and equation 4.9 respectively.

Although there is more than one equivalent measure, the risk neutral
Esscher measure provides a unique and transparent answer. In [18] the
measure is justi�ed by looking at a representative investor with a power
utility function, see [18] for further details.
The above results is then used to calculate the concrete risk neu-

tral Esscher measures for both the loss period and the development
period, see [18] for further details. Let us now consider the PCS
call option with exercise price A, cap K and expiring date T2. Let
v1(t) := ln(A=(L0 expXt)) and v2(t) = ln(K=(L0 expXt)). The value
of the option at time t 2 [T1; T2] can then be expressed as:

C(t; Lt) = e�r(T2�t)
�
Lt exp(�2(T2 � t))

�
F (v2(t); T2 � t; h�d + 1)

�F (v1(t); T2 � t; h�d + 1)
�
+K(1� F (v2(t); T2 � t; h�d))�

A(1� F (v1(t); T2 � t; h�d))
�

(4.10)

If t 2 [0; T1] then the value of the call option at time t is given by

C(t; Lt) = e�r(T2�t)E�[C(T2; LT2)jFt]

= e�r(T2�t)E�[E�[C(T2; LT2)jFT1]jFt]

the value of E�[C(T2; LT2)jFT1] is given by (4.10). At time t < T1
the values of LT1 ; v1(T1) and v2(T1) are stochastic. The conditional
mean value at time t is therefore obtained by integrating the expression
with respect to the distribution function for the risk neutral Esscher



Implied loss distributions 21

transformed process in the loss period, see [18] for further details. Here
we calculate the exact price of the PCS-option.

5. Implied loss distributions

As we have seen in the previous section, it is hard to �nd realistic
models for the loss index, which also allows one to express consistent
prices in a closed form.
In Christensen [19] we therefore lead our analysis in another direc-

tion. We follow a procedure familiar to the conventional option market
which is also suggested by Lane and Movchan in [46]. Rather than esti-
mating volatilities and calculate consistent prices using, say the Black
Scholes model, they take the traded prices and extract the volatilities
consistent with those prices, i.e. �nd the implied volatility. We can-
not use the exact same procedure on the insurance derivative market,
since we are not able to characterize the price by a single parameter.
However we can do something similar. We can choose a model for
the implied loss distribution and then estimate the implied parameters
from the observed prices.
This analysis can be used to evaluate cheapness and dearness among

di�erent prices and insurance derivative products. We simply calculate
implied prices from the implied loss distributions and compare them
to the observed prices. There are two main problems related to this
analysis. First what kind of distribution should be used for the implied
loss distribution, and second, how should the involved parameters be
estimated. These two questions are answered in the manuscript [19],
where we base our analysis on data for the PCS-option. We now give
a summary of this manuscript.

5.1. The models. In [19] we consider six di�erent models for the im-
plied losses which are all presented in this section. Five of these models
are new. Before we present these models we �rst give a general descrip-
tion of the price for a PCS call-spread expressed by the implied loss
distribution.
Consider now a PCS call-spread expiring at time T with upper and

lower strike Ku and Kl, respectively. Let eFLT and efLT be the implied
distribution function and the implied density function for the aggregate
PCS loss index (LT ) at time T . The value of the PCS call-spread at
time 0 is then given by

PKu;Kl
(L0; 0) = eE[min(max(LT �Kl; 0); Ku �Kl)]

=

Z Ku

Kl

(x�Kl) efLT (x)dx+ (Ku �Kl)(1� eFLT (Ku))
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The question is now, how is this implied loss distribution of the PCS
index related to the real statistical distribution, i.e. the distribution
under the P -measure? The implied distribution for the losses and
the real distribution for the losses will in general not be the same.
But based on the discussion in [19], we only use models which could
reasonably be used to describe the real losses, when we model the
implied losses. We now present the six models for the implied losses.
Model 1. The �rst model considered is similar to the one suggested

by Lane and Movchan [46], namely a compound Poisson model with
gamma distributed claims, i.e.

eLT =

NTX
i=1

Yi

where eLT is the implied losses, NT � Pois(�) and Yi � �(
; �). The
nice thing about this model is that we know the nth convolution of the
Y 's (Y1 + : : : + Yn � �(n
; �)). This fact makes computations very
simple. A disadvantage of the model is that the claims are light-tailed,
whereas data give evidence that the distribution of the aggregate claims
is heavy-tailed. In this model we can only approximate a heavy-tail by
choosing low values of 
 and �.
It is important to have this model in the analysis in order to see how

the results from this model di�er from the following new and more
complicated models.
Model 2. Looking at the listed call-spreads we see, that the one

with the lowest strikes is the 40/60 call-spread (see Table 5.1 below).
The bid and ask for this call-spread is 12 and 15 respectively, which
are relatively large values for a product that has a maximum pay-out
of 20. These facts could therefore indicate that the market expects the
loss index to be above a given threshold K0 for sure. If this is true and
K0 > 40, then there is no market for a 20/40 call-spread, because the
market will expect the call-spread to be worth 20 for sure. Based on
these indications we now make an extension of model 1,

eLT = K0 +

NTX
i=1

Yi

where eLT is the implied losses, K0 is a constant indicating the threshold
the market expects the losses to be above for sure, NT � Pois(�) and
Yi � �(
; �). According to the bid of the 40/60 call-spread (12), we
will not allow K0 to be above 52 (40+12). A possible interpretation of
this model is to think of K0 as the mean value of the \normal" claims
and of the compound Poisson process as a model of the excesses.
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Model 3. The next model will also rely on a light-tail distribution
but we will now put more 
uctuation into the model.
The PCS index can be viewed as the sum of losses from the individ-

ual catastrophes, and the losses from the individual catastrophe can
be viewed as the sum of the individual claims corresponding to this
particular catastrophe. We could therefore model the PCS index LT
as

LT =

NTX
i=1

MiX
j=1

Yij

where NT is the number of catastrophes, Mi the number of claims from
the ith catastrophe and Yij is the claim size number j from catastrophe
number i. Recall that this model is similar to the one suggested in [17],
where it was used to incorporate the reporting times of the claims.
The number of claims from a catastrophe is very large, so by the

strong law of the large numbers it follows that
PMi

j=1 Yij � MiE[Yij].
If the approximation should be good we will also need the Var(Yij)
to be small. If we use this approximation, we could describe LT as
LT �

PNT

i=1MiY where Y = E[Yij]. Motivated by this, we now model
the implied PCS index as

eLT =

NTX
i=1

MiY

where NT � Pois(�), Mi � NB(
,p) or more precisely by a mixed
Poisson distribution with a � mixing parameter �i � �(
; �) and Y is
a constant. We now have a model allowing for more 
uctuation but we
also have four parameters to estimate.
Model 4. We simply use the same model as model 1, but we now

choose a Pareto distribution for the Y 's, i.e. LT =
PNT

i=1 Yi where NT �
Pois(�) and Yi � Pa(�; �). However, we do not know the nth convolu-
tion of the Y 's. We solve this problem by the following approximation.
The value of the PCS call-spread with strikes Kl and Ku at time 0 is
here given by

PKu;Kl
(L0; 0)

=
1X
n=1

e��
�n

n!

�Z Ku

Kl

(x�Kl)f
�n(x)dx + (Ku �Kl)

Z 1

Ku

f �n(x)dx
�

�
4X

n=1

e��
�n

n!

�Z 1

Ku

(x�Kl)f
�n(x)dx + (Ku �Kl)

Z Ku

Kl

f �n(x)dx
�
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where f �n(x) denotes the density for the nth convolution of the Pareto
distribution.
The �rst 4 convolutions are then found by the well-known general

formula for the Lebesgue convolution (f �2(x) =
R x
0
f(x � y)f(y)dy,

f �3(x) =
R x
0
f(x � y)(

R y
0
f(y � z)f(z)dz)dy, : : : ). By only taking the

�rst 4 convolutions in the sum it should be possible for a computer to
calculate the expression. And if � (the average number of catastrophes)
is small, the approximation is good because the term

P1
5 e���n=n! will

be small.
Model 5 This model is inspired by the volatility surface models

trying to explain the volatility smile, i.e. models where the implied
volatility depends on the strike of the option. We construct a similar
model where the most explanatory parameter in the implied loss dis-
tribution is dependent on the strike. We assume that the implied loss
index is Pareto distributed, i.e.

~LT � Pa(�; �)

� being just a scale parameter. The most explanatory parameter in
this loss distribution is the � parameter. We therefore choose � to be
the strike dependent parameter, i.e. we assume that � is a function of
the strike (�(K) = f(K)). The estimation of the parameters is done
in four steps, because we have to choose the function f �rst. The four
steps are as follows:

1. We assume that � = �0, i.e. independent of the strike. We then
let eLT � Pa(�0; �0) and estimate the parameters �0 and �0.

2. We now keep � �xed as �0 and then for each PCS call spread with
strikes Ki

l and K
i
u, we estimate an �i from the traded price or the

bid/ask spread dependent of what is available. These values are
then plotted. A possible picture could be the one given by �gure
5.1.

3. From this plot we choose a function to describe our �, i.e. if we
choose a function f with three parameters a, b and c, a; b; c 2 R.
We can now describe � by �(K) = f(a; b; c;K). The implied loss
distribution for a PCS call option with strike K is therefore given
by eLT � Pa(�(K); �)

where �(K) = f(a; b; c;K).
4. Calculate the theoretical prices and estimate the parameters.

Model 6. The models 3, 4 and 5 could also be extended by including
a threshold as was done for model 1 in model 2. But we will desist from
doing this, as model 3 and 5 will be over parameterized and model 4
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Figure 5.1. The � values.

will be too computationally heavy. We return to this discussion later.
The last model we will consider is a very simple model, which we expect
to be computationally very fast. It will be interesting to compare the
results of this model with the results of the other more complicated
models. We again include a threshold as we did for model 2 and then
model LT by eLT = K0 + YT

where eLT is the implied losses, K0 is a constant indicating the threshold
the market expects the losses to be above almost surely, and YT �
Pa(�; �). Again we will not allow K0 to be above 52.
The above six models are the models we are testing on the data

available. The next step in the analysis is to describe the objective
function from which the parameters should be found. The objective
function that we purpose in the next section is new and di�erent from
the one used by Lane and Movchan in [46].

5.2. The objective function. Lane and Movchan [46] estimate the
parameters for the implied loss distribution by the following procedure.
\The parameters are chosen such that they generate prices that are
(i) lower than known o�ers; (ii) higher than known bids, and (iii)
closest to actual traded prices. The optimization is two-tier. First, get
inside the bid-o�er spread. Second, get closest to actual traded prices.
The two-tier e�ect is achieved by attaching (ideally non-Archimedean)
weights to each of the two objective functions. \Closest" is de�ned as
the absolute value of the di�erence between the actual traded price and
the theoretical (or �tted) prices".
We agree that it is desirable that the parameters are chosen such that

the prices ful�ll (i) and (ii), but we do not think that the requirements
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should be invariable, since it could be a problem to �nd a solution if
the spreads are very small. And if the theoretical prices appear to be
far away from the spread, it could be used to indicate that the chosen
model may be wrong. We also agree on point (iii), i.e. if our data
contains only traded prices, the parameters should be found by a least
square �t. But the data primarily consists of spreads and single bids
or asks, we therefore suggest the following objective function.

O =
X
bids

��P bid
i � P th

i

P bid
i

�+�2
| {z }

term 1

+
X
asks

��P th
i � P ask

i

P ask
i

�+�2
| {z }

term 2

+ Æ1

� 1

#spreads

X
spreads

(P bid
i � P ask

i )

(P bid
i + P ask

i )=2

�
| {z }

term 3X
spreads

�P th
i � (P bid

i + P ask
i )=2

P bid
i � P ask

i

�2
^ 1

4| {z }
term4

+ Æ2
X

single bids

��P th
i � 2P bid

i

P bid
i

�+�2
| {z }

term 5

+ Æ2
X

single asks

��0:5P ask
i � P th

i

P ask
i

�+�2�
| {z }

term 6

where the P th
i 's are the theoretical prices, the P bid

i 's are the observed
bids and the P ask

i 's are the observed asks. Æ1 and Æ2 are both constants.
When Pi is a traded price, Pi is considered as both a bid and an ask
where P bid

i = P ask
i .

Term 1 and 2 are included because, as mentioned above, we prefer
the theoretical prices to be above the observed bids and below the
observed asks. And as for the optimal case where we have only traded
prices and no bid/ask spreads, these two terms alone will give us the
commonly used least square �t.
As long as the average length of the spreads is small, we are close to

the optimal case where we have only traded prices and term 1 and 2
will probably be suÆcient to �nd a solution. But if the average length
of the spread is large there is less information about the prices and we
will probably be unable to �nd a unique solution. We therefore add
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term 4. In this term we value the information from the bid and the ask
equally, i.e. we prefer the theoretical price to be in the middle of the
bid/ask spread. We cap the single terms in the sum at 1/4, because if
P th
i = P bid

i or P th
i = P ask

i the single term in the sum is equal to 1/4,
and if P th

i > P bid
i or P th

i < P ask
i then it is punished in term 1 or 2. How

much this fourth term should be valued compared to term 1 and 2 is
adjusted by term 3. Term 3 is a constant Æ1 and a term denoting the
average length of the spread. In agreement with the comments above,
we thereby obtain that, if the average length of the spreads is small,
we weight P th

i being in the middle less than if the average length of the
spreads is large.
The terms 5 and 6 are included in order to secure that the theoretical

prices do not get too far away from the single bids or asks. By too far
away we mean that a theoretical price is punished if it is lower than
50% of a single ask or higher than 200% of a single bid. By the term
Æ2 we are able to adjust how much the �fth term should be valued
compared to the other terms.

5.3. The parameter estimation. In this section we estimate the
parameters and evaluate the six models described above. Before we
start to estimate we �rst present the data.
The data material that we are going to use for this analysis are the

prices for the National PCS call-spreads announced by the CBoT on
January 7th 1999.
The National PCS call-spreads announced by the CBoT on January

7th 1999 is given by Table 5.1.

Call-Spreads Kl=KU bid ask

National 40/60 12.0 15.0
National 60/80 6.0 12.0
National 80/100 4.0 8.0
National 100/120 2.8 4.0
National 150/200 4.3 6.0
National 200/250 2.8 4.0
National 250/300 3.5
National 300/350 3.0

Table 5.1. The National PCS call-spread prices.

The �rst change in the underlying PCS index was made January
19th, where the index increased from 0 to 7.6. We have chosen the
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data from January 7th because the last changes in the bids and asks
before January 19th were made here. If we take data from dates after
January 19th we have to take the value of the index into account. If we
consider data from a time point t where the PCS index is greater than
0, some adjustments have to be made. The implied losses at expiration
time T can, at time t, be written as eLT = (eLT � Lt) + Lt, where Lt
is a constant and eLT � Lt is the implied losses in the period from t
to T . eLT � Lt can then be described by the same models as we used
to describe eLT , but the parameters will probably be changed. Even
though we are looking at a model where eLT is a stationary process, we
cannot expect the same parameters since the PCS index is in
uenced
by some large seasonal e�ects.
The parameters are found by minimizing the objective function, with

Æ1 = 0:001 and Æ2 = 0:1. We return to the discussion of these parame-
ters later. The objective function is a function depending on a higher
dimensional variable (the dimension is given by the number of param-
eters in the model). We therefore choose to minimize it by using a
modi�cation of the method of steepest descent described by Broyden
see [8] and [35].
The parameters found by minimizing the objective function, the cor-

responding mean values and variances for the implied losses and the
theoretical prices are listed in table 5.2, table 5.3 and table 5.4, respec-
tively.

Model par. 1 par. 2 par. 3 par. 4 value

1 � = 70 � = 0:0123 
 = 0:0129 0.058
2 � = 55 � = 0:0050 
 = 0:0039 x = 47:2 0.00015
3 � = 36 � = 0:00019 
 = 0:0266 Y = 0:015 0.086
4 � = 2:6 � = 3:50 � = 90:7 0.060
5 � = 58 a = �0:117 b = �4:082 c = 0:596 0.013
6 � = 24 � = 1:25 x = 40:0 0.00010

Table 5.2. The estimated parameters.

M1 M2 M3 M4 M5 M6
Mean value 74 90 77 96 (73;91) 139
Variance 6096 8453 6178 11652 1 1

Table 5.3. Mean value and variance of implied losses.
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Kl=KU bid M1 M2 M3 M4 M5 M6 ask

40/60 12.0 9.87 13.56 10.02 9.33 13.57 13.57 15.0

60/80 6.0 7.61 6.55 7.72 7.27 8.00 7.48 12.0

80/100 4.0 5.88 4.82 5.96 5.63 5.49 5.03 8.0

100/120 2.8 4.55 3.78 4.60 4.36 4.07 3.73 4.0

150/200 4.3 5.07 5.07 5.06 4.92 5.08 4.88 6.0

200/250 2.8 2.71 3.35 2.67 2.78 3.41 3.45 4.0

250/300 1.45 2.29 1.41 1.67 2.46 2.64 3.5

300/350 0.78 1.60 0.74 1.06 1.87 2.11 3.0

Table 5.4. The theoretical prices.

A detailed discussion of these results can be found in [19]. We now
give the main conclusion. From Table 5.4 we see that model 1 is unable
to generate prices that get into the bid/ask spread of the 40/60 and
200/250 call-spreads and we also see that it produces very low prices
for the 250/300 and 300/350 call-spreads. This indicates that model
1 is a bad description of the implied losses. But recall that this is the
model that was successfully suggested by Lane and Movchan in [46] so
why now this di�erence? In [46] they consider market prices midyear
1998 where the PCS index was nearly 40 and this apparently makes a
di�erence.
We also tried to model the midyear 1998 prices with model 1 and

our objective function. The results are shown in Table 5.5 (The �
parameter from [46] has been adjusted to correspond to the index value
and not the Billion $ value).
From Table 5.5 we see that model 1 in our objective function also

generates reasonable results for the midyear 1998 prices. We therefore
conclude that the reason for the bad �t of the 1999 prices is the model
and not the objective function. Another important thing to note from
Table 5.5 is that there are remarkable di�erences in the prices obtained
by Lane and Movchan and the prices we obtain. We thereby see that
the valuation of the bids and asks is highly dependent on the choice of
the objective function.
Instead, we �nd that model 2 is a better model to use for the implied

losses. However, it would be preferable to use model 6 also in order
to support model 2. It is clear that none of the suggested models �t
the implied losses perfectly, but we believe that model 2 supported by
model 6 will be a good tool for investors analysing prices of catastrophe
insurance derivatives. Models 3, 4 and 5 are all bad descriptions of the
losses for various reasons, see [19] for further details.
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Kl=KU bid LM CVC ask

40/60 11.0 11.0 12.0
60/80 6.0 7.5 8.2 10.0

80/100 5.7 6.1 8.0

100/120 3.5 4.4 4.6 6.0

100/150 9.4 9.5 12.0

120/140 1.0 3.5 3.5 6.0

250/300 0.5 1.9 1.4 2.5

100/200 14.7 14.4 20.0

150/200 4.0 5.4 4.9 7.5

180/200 0.4 1.8 1.6 1.8

� 2.23 2.17

 0.1887 0.2645
� 0.0089 0.0124

Table 5.5. The data from [46] contra our data.

In relation to how the parameters should be estimated we �nd that an
improvement of the procedure from [46] was necessary for the following
two reasons. Firstly we agree that it is desirable that the parameters
are chosen such that the prices are lower than known o�ers and higher
than known bids, but we do not think that the requirements should be
invariable because, if the spreads are very small, it could be a problem
to �nd a solution. And if the theoretical prices appear to be far away
from the spread, it could be used to indicate that the chosen model may
be wrong. Secondly we agree on point that the parameters should be
chosen such that the prices gets closest to the actual traded prices, i.e.
if our data contain only traded prices, the parameters should be found
by a least square �t. But because the data primarily consists of spreads
and single bids or asks, we �nd that this should be incorporated in the
objective function. No matter what objective function one uses, it is
clear from the discussion of model 1 that the choice of the objective
function has a large e�ect on the derived prices, and it should therefore
be chosen carefully.

5.4. Other relevant references. Let us end this section with a short
description of some other interesting papers in relation to insurance
derivatives. There is a huge amount of literature on the subject, a lot
of it being non-mathematical, e.g. [11], [36], [57] and [60]. From the
more mathematical papers let me shortly describe the following three.
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Firstly, Brockett, Cox and Smith, [7] use a more actuarial pricing
approach. They assume that the traders do not have complete infor-
mation about the underlying loss process, but only information about
a range of values for the loss process, i.e.

�1 � E[LT ] � �2 and �21 � V ar[LT ] � �22

Based on this information they are then able to derive a range of prices
for the insurance derivatives, see [7] for further details.
Second, Rasmussen, [50], develops along the line of Schweizer, [56],

and uses the minimal martingale measure to price the PCS option. In
[50] it is shown that the equivalent minimal martingale measure exists
and it is shown how one can �nd the fair hedging price of a PCS option
by choosing the equivalent minimal martingale measure as the pricing
measure.
Finally, we mention the paper by Schmock, [54]. This paper consid-

ers catastrophe bonds issued by Winterthur. Several di�erent models
are presented in order to evaluate the value of the coupons, and it is
shown how substantial the model risk, inherent in pricing such �nancial
products, is.

6. The future of global reinsurance

In this section we will take a look into the future of global reinsur-
ance. The results in this section are based on Christensen [20].
Risk related to natural phenomena such as various catastrophes has

traditionally been distributed through the insurance and reinsurance
system. Insurance companies accumulate the risk of individual entities
and redistribute the risk to the global reinsurance industry. But, as
discussed earlier, it will be insuÆcient to manage this risk in such a
way in the future. A new way to managing such risk or unknown risk
in general is called for.
When we talk about unknown risk, we refer to risk whose frequency

we do not know, i.e. there is more than one estimate of the frequency
of the risk. Examples of unknown risk are environmental health risk of
new and little known epidemics, or risk induced by scienti�c uncertainty
in predicting the frequency and severity of catastrophic events.
The problems related to unknown risk was �rst mentioned by Chi-

chilnisky and Heal in [15] (a non mathematical paper), where they
argued that unknown risk should be managed by using traditional in-
surance practice and by trading in the security market simultaneously.
In the article [20] we continue and extend the ideas from [15]. The
main purpose is to build a mathematical model that is able to handle
these problems.
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In the following we will describe the mathematical model from [20]
and explain how we extend the ideas from [15] by considering both
complete and incomplete markets and by considering the case where
the premium charged by the insurance company is restricted.
In [20] we consider a general model for an insurance company, where

the company faces n states of the world. For each of these states the
insurance company is able to estimate the frequency of the risk, but
the risk related to the states is unknown. We show how the company
should handle this unknown risk. This is done by using the statistical
approach to handle the known risk, i.e. the risk related to a given state,
and by using the economic approach to handle the risk related to the
di�erent states.

6.1. The model. Let S denote the state of the world. We make the
following assumptions:

� There are n states denoted by fs1; : : : ; sng; S 2 fs1; : : : ; sng.
� The probabilities corresponding to the n states are known

P (S = si) = pi; i = 1; : : : ; n;
nX
i=1

pi = 1

� Fi is known for all i 2 f1; : : : ; ng, where Fi denotes the distribu-
tion of the loss (L) of the insurance companies, given the state is
i (LjfS = sig � Fi). Let Li = LjfS = sig.

� If the insurance company knows the state S, then the statistical
approach by adding a safety loading would work, i.e. if the insur-
ance company knew that S = si, it would be reasonable to charge
the premium Pi given by

Pi = E[Li] + Æi

where Æi is a safety loading calculated by a standard premium
calculation principle.

� There exist n \state securities" traded on the n states. Security
number j pays the amount cij if the state is i. Let ci be the vector
ci = (ci1; : : : ; cin) and let C be the matrix given by

C =

2
4 c1

...
cn

3
5

Let further ~cj be the jth column in C.
� The market is complete, i.e. the n columns in C are linearly inde-
pendent.
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� The market for these securities is arbitrage free and there exists a
unique risk neutral measure. We denote the risk neutral probabili-
ties by q1; : : : ; qn, and let q be the vector given by q = (q1; : : : ; qn).
From basic �nance courses it is known that these risk neutral prob-
abilities can be used to price the state securities, i.e. the price of
state security number i is given by the discounted value of q ~cj.

� There exists a risk free security and for simplicity we assume that
the risk free interest rate is zero. This is no loss of generality,
since we can discount all securities.

We now have a model where the insurance company exactly knows
how they should handle the insurance risk if the state of the world is
known. But because of the uncertainty about the state of the world,
the general risk for the insurance company becomes unknown. In the
next section we will show how the insurance company is able to handle
this unknown risk.

6.2. How to handle unknown risk in a complete market. The
expected loss for the insurance company is given by

E[L] = p1E[L1] + � � �+ pnE[Ln]

To cover these losses, the insurance company has to charge a premium
P . But charging a premium is not enough, since we obtain a safety
loading in state i given by ~Æi = P � E[Li] if the insurance company
charges a premium P . The problem connected with this, is that we do
not obtain the desired safety loading. For some i's we have that Æi < ~Æi
which means that the insurance company has been over charging. And
for some i's we have that Æi > ~Æi, which means that the insurance
company has been under charging, which could lead to a dangerous
position. Before we solve this problem, we make the two following
de�nitions.

De�nition 6.1. A trading strategy for the insurance company is
de�ned as a vector m = (m1; : : : ; mn)

T where mi denotes how many
securities i the insurance company buys.

De�nition 6.2. An optimal trading strategy for the insurance
company is a costless trading strategy such that

P + cim� E[Li] = Æi 8i = 1; � � � ; n:(6.1)

The questions are now whether it is possible to obtain this optimal
strategy and if so, what premium should be charged in order to obtain
it? These questions are answered in the following theorem.
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Theorem 6.1. An optimal trading strategy can be obtained if and only
if

P = q1P1 + � � �+ qnPn:

In this case, the strategy m has to be chosen by

m = C�1

2
4 �P + E[L1] + Æ1

...
�P + E[Ln] + Æn

3
5 :

Remark 6.1. The problem can be simpli�ed considered in the following
way. The insurance company wants to obtain the premiums (P1; : : : ; Pn)
corresponding to the n states. This could be obtained for all i if we
for all i buy Pi of Arrow-Debreu (AD) security number i. AD security
i is a security that pays 1 if the state is i and pays zero in all other
states. These AD securities exist because the market is complete, and
the price of AD security number i is given by qi. The total price of this
AD portfolio is therefore given by

Total price =
nX
i=1

Piqi

So by charging a premium P =
Pn

i=1 Piqi, the insurance company can
obtain the optimal strategy. This only works if the market is complete,
we will return to the incomplete case later.

6.3. The restricted premium case. In the previous section we found
the optimal premium to charge for the insurance company. But the
insurance company may be unable to charge this premium for compe-
tition reasons. We therefore now assume that the premium which the
insurance company can charge is �xed at P0.
The insurance company should therefore choose a trading strategy

which they �nd \optimal" under the restriction that the cost of the
trading strategy equals P0. What we mean by \optimal" is discussed
later in this section. In this complete market case, choosing a trading
strategy m is equivalent to choosing premiums (P1; : : : ; Pn). We have
the following relation between (P1; : : : ; Pn) and m

(P1; : : : ; Pn)
T = Cm:

The restriction can also be expressed in terms of the Pi's instead of m.

vm = P0

) qCC�1(P1; : : : ; Pn)
T = P0

) q1P1 + � � �+ qnPn = P0:
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These observations allow us to reformulate the problem to a problem
in terms of the premiums (P1; : : : ; Pn) instead of a problem in terms
of the trading strategy m.
The problem in this �xed premium case is therefore to �nd the \opti-

mal" choice of the Pi's subject to the constraint P0 = P1q1+ � � �+Pnqn.
In [20] we consider four di�erent ways of solving this optimal premium
choice (OPC), i.e. de�ning \optimal". The four OPC's are based on
the following:

� OPC1: The goal here is to obtain the same risk quantity in all
the states. To measure the risk quantity, we will use the mean
divided by the standard deviation.

� OPC2: The goal here is to obtain the same ruin probabilities in
all the states.

� OPC3: The goal here is to obtain the same expected utility in all
the states.

� OPC4: The goal here is to obtain the maximal expected utility.

In [20] these four OPC's are solved, analysed and compared, see [20]
for further details.

6.4. The incomplete market case. In this section we consider the
incomplete market case, i.e. a market where the number of states n
is larger than the number of securities. Now let k denote the number
of securities. Let again vi be the price of state security number i and
let v = (v1; : : : ; vk). Because of the incompleteness in this market
we are no longer able to construct the n AD securities. We therefore
cannot construct the optimal trading strategy and set the premium
by P = q1P1 + � � � + qnPn. So instead of constructing the optimal
trading strategy an alternative could be to choose the cheapest strategy
which assures that the premium in state i is greater than or equal to
Pi = E[Li] + Æi for all states, i.e. choose a trading strategy that solve
the following problem

min
m

vm

st
kX

j=1

mjcij � E[Li] + Æi i = 2; : : : ; n:

A problem of this strategy is that it could be very expensive. An
alternative strategy is therefore to choose the premiums so that they get
as close as possible to the optimal premiums (P1; : : : ; Pn), i.e. choose
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the portfolio m that solves the following problem

min
m1;::: ;mk

nX
i=1

(
kX

j=1

mjcij � Pi)
2

or equivalently

min
m
kCm�

2
4 P1

...
Pn

3
5 k2

where C now is a n� k matrix. This is a well known problem and it is
solved by the least square solution which is given by, (see [3] p. 318),

m = (CTC)�1CT

2
4 P1

...
Pn

3
5

After these considerations we now make the following de�nition

De�nition 6.3. A least square strategy is a trading strategy such
that the insurance company gets as close as possible to the desired n
state premiums as possible in the least square sense, i.e. the least
square strategy is obtained by the following portfolio of securities.

m = (CTC)�1CT

2
4 P1

...
Pn

3
5

The insurance company would of course prefer to follow the optimal
trading strategy given by Pi = E[Li] + Æi but this is impossible in this
market. But had it been possible the insurance company would have
been willing to pay more for the optimal strategy than for the least
square strategy. Therefore, if the insurance company follows the least
square strategy they should charge a premium that is larger than the
price of the least square strategy. They are thereby compensated for
not having the optimal strategy but only the least square strategy.
Let us now as in the complete case consider the situation where

the insurance company is unable to charge the desired premium for
competition reasons. We again set the possible �xed premium that
can be charged to P0.
The problem now is that we want to set the Pi's according to OPC1,

OPC2, OPC3 or OPC4 but the equation P0 = P1q1 + � � �+ Pnqn is no
longer valid. We are no longer able to construct the n AD securities
in this incomplete market. But instead of choosing the Pi's according
to OPC1, OPC2, OPC3 or OPC4, we could choose the corresponding
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least square solution. We would then just have to replace the equation
P0 = P1q1 + � � � + Pnqn with an equation that makes sure that the
price of the least square portfolio is equal to P0. How this is done is
described in [20], see [20] for further details.

7. Conclusion

What have we done in this thesis? Or perhaps more accurately:
What are the contributions of the manuscripts included?
Christensen and Schmidli [17] present a model for insurance fu-

ture pricing, which only relies on the information available. The prod-
ucts are priced solely from observing the reporting stream. Contrary
to the existing literature we model the reporting times explicitly. We
thereby obtain a more realistic model.
The results of this article rely on an approximation of the exact future

price. One therefore has to be careful applying the results derived,
because the results will be inaccurate if the cap-probability (P (LT2 >
2�)) or the risk aversion coeÆcient is \too large".
This paper suggests two ways of approximating the approximation

error, the gamma approximation and the Edgeworth approximation.
It is shown that they are both useful in the determination of the error
level even though the gamma approximation seems to be the best.
Christensen [16] is a gathering of information about the PCS-

option. It explains why the PCS-option replaced the CAT-future and
how the PCS-option is an improvement. The paper also explains how
to hedge catastrophe risk with PCS-options and it compares the PCS-
option with traditional reinsurance.
Christensen [18] derives a new model for pricing insurance deriva-

tives which allows for heavy-tails, and also provides a unique pricing
measure. The model is obtained by modeling the logarithms of the loss
process as a compound Poisson process with exponential distributed
marks in the loss period and with normal distributed marks in the de-
velopment period. The price is found by evaluating the future pay-out
of the insurance derivative under the risk neutral measure derived by
the Esscher approach. In the article the exact price in the case of the
PCS-option is calculated.
Christensen [19] analyses prices for catastrophe insurance deriva-

tives by looking at the \implied loss distributions" embedded in the
traded prices. And it gives answers to the two main problems in this
analysis. First, what kind of distribution should be chosen for the
implied losses and second, how should the involved parameters be es-
timated?
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In relation to how the parameters should be estimated we have come
up with a new objective function. It is not possible to prove that it is
better than the one used by Lane and Movchan [46], but we �nd that
the argumentation in the paper supports the choice of the proposed
function.
In the paper it is also documented that the model suggested by Lane

and Movchan [46] is unable to �t the PCS-option prices in general.
Instead the manuscript suggests other models, some of which are shown
to be more suÆcient in the description of the implied losses.
Christensen [20] presents a model for managing unknown risk. The

model is inspired by Chichilnisky and Heal [15] (a non mathematical
paper), where they argued that unknown risk should be managed by
using traditional insurance practice and by trading in the security mar-
ket simultaneously. The model presented in [20] is new and it presents
the ideas from [15] in a mathematical way, i.e. [20] show how unknown
risk and related problems can be handled mathematically.
[20] also extends the ideas from [15] by considering both complete

and incomplete markets. Furthermore it considers the case where the
premium charged by the insurance company is restricted. In this case
the insurance company has to choose an allocation of the restricted
premium corresponding to the states of the world. We propose four
di�erent methods of solving this problem. These four methods are
then analysed and evaluated, and by examples, advantages and disad-
vantages are illustrated.
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PRICING CATASTROPHE INSURANCE PRODUCTS

BASED ON ACTUALLY REPORTED CLAIMS

CLAUS VORM CHRISTENSEN AND HANSPETER SCHMIDLI

Abstract. This article deals with the problem of pricing a �nan-
cial product relying on an index of reported claims from catastro-
phe insurance. The problem of pricing such products is that, at a
�xed time in the trading period, the total claim amount from the
catastrophes occurred is not known. Therefore one has to price
these products solely from knowing the aggregate amount of the
reported claims at the �xed time point. This article will propose a
way to handle this problem, and will thereby extend the existing
pricing models for products of this kind.

1. Introduction

Modelling claims from a catastrophe actuaries use heavy tailed dis-
tributions, such as the Pareto distribution. This means that the aggre-
gate claim basically is determined by the largest claim, see [8] or [13].
This e�ect became clearly visible in the early 90's, when the insurance
industry had to cover huge aggregate claims incurring from catastro-
phes. Because certain catastrophic events like earthquakes, hurricanes
or 
ooding are typical for some areas, a properly calculated annual
premium would be nearly as high as the loss insured. From an actu-
arial point of view, such events are not insurable. But people living in
such areas need protection. One possibility would be the government
(tax payer) to take over the risk, as it is the case for 
ooding in the
Netherlands. Another possibility are futures or options based on a loss
index. Here the risk is transfered to private investors. A description of
these products can be found for example in [2] or [14].
In 1992 the Chicago Board of Trade (CBoT) introduced the CAT-

futures. This future is based on the ISO-index, which measures the
amount of claims occured in a certain period and reported to a par-
ticipating insurance company until a certain time. The product never
became popular among private investors. The reasons were that the
index only was announced once before the settlement date, there was
information asymmetry between insurers and investors, and that there

1991 Mathematics Subject Classi�cation. 62P05.
Key words and phrases. Insurance futures; Derivatives; Claims-process; Catas-

trophe insurance; Mixed Poisson model; Change of measure; Expected utility;
Approximations.

1



2 C. VORM CHRISTENSEN AND H. SCHMIDLI

was a lack of realistic models. In 1995 the CAT-future was replaced
by the PCS-option. This option is based on a loss index | the PCS-
index | estimated by an independent authority. The latter index is
announced daily. In this paper we study a model for indices like the
ISO-index or the PCS-index. In the case of the CAT-future where
the information stream is generated by a delayed reporting of claims
from the catastrophes, in the case of the PCS-option by more and
more re�ned estimates. For simplicity we will formulate the model as
a model for the ISO-index. More speci�cally, we study the case where
the number of claims from a single catastrophe has a �xed distribu-
tion (Section 3.1) and thereafter the case where the number of claims
depend on an unobserved \severity" of the catastrophe (Section 3.2).
The recently introduced PCS-options (see [5]) do not directly depend

on reported claims. But there is a strong correlation between actually
reported claims and the PCS-index. Because these options serve as
a sort of reinsurance instrument, an insurance company exposed to
catastrophic risk would have to estimate the PCS-index and its price in
order to determine their hedging strategy. It therefore seems natural to
use the information on the claims reported to this company. Therefore
our (ISO-index) model may also be of interest for a company investing
into the new catastrophe options.
The main purpose of this article is to introduce a model taking re-

porting lags into account. As illustration, how calculations can be done
in this model, we will approximate the CAT-future price, even though
this product is not traded anymore. For pricing the catastrophe in-
surance futures and options we use the exponential utility approach
of [1], [4] or [9]. This approach will only work for aggregate claims
with an exponentially decreasing tail. But data give evidence that
the distribution tail of the aggregate claims is heavy tailed. In our
model a heavy-tail can be obtained by a heavy-tailed distribution for
the number of individual claims of a single catastrophe. For pricing
we approximate the claim number distribution by a negative binomial
distribution; more precisely, by a mixed Poisson distribution with a
�(
; �)-mixing distribution. Choosing 
 and � small a heavy-tail be-
haviour can be approximated. The reader should note that the value
of the security is based on a capped index and therefore has an upper
bound. This justi�es the light-tail approximation.
In the remaining parts of this introduction we describe the CAT-

future. In Section 2 we introduce the model. In contrast to the exist-
ing literature, the reporting lags are explicitly taken into account. In
Sections 3.1 and 3.2 we calculate approximations to the prices. Finally,
in Section 4 we study the approximation error.

1.1. Description of the CAT-futures. CAT-futures are traded on
a quarterly cycle, with contract months March, June, September, and
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December. A contract for a calendar quarter (called the event quarter)
is based on losses occurring in the listed quarter and being reported
to the participating companies by the end of the following quarter. A
contract also speci�es an area and the type of claim to be taken into
account. The additional three months following the reporting period is
attributable to data processing lags. The six months period following
the start of the event quarter is called reporting period. The three
reporting months following the event quarter are to allow for settlement
lags that are usual in insurance. The contracts expire on the �fth day
of the fourth month following the end of the reporting period. We will
use arbitrary times T1 < T2 for the end of the event quarter and the end
of the reporting period, respectively. This will allow for redesigning the
futures. As a matter of fact a longer reporting period would be much
more suitable for the need of the insurance world.
The settlement value of the contract is determined by a loss index;

the ISO-index. Let us now consider the index. Each quarter approxi-
mately 100 American insurance companies report property loss data to
the ISO (Insurance Service OÆce, a well known statistical agent). ISO
then selects a pool of at least ten of these companies on the basis of
size, diversity of business, and quality of reported data. The ISO-index
is calculated as the loss-ratio of this pool

ISO-index =
reported incurred losses

earned premiums
:

The list of companies which are included in the pool is announced by
the CBoT prior to the beginning of the trading period for that con-
tract. The CBoT also announces the premium volume for companies
participating in the pool prior to the start of the trading period. Thus
the premium in the pool is a known constant throughout the trad-
ing period, and price changes are attributable solely to changes in the
market's expectation of loss liabilities.
The settlement value for the CAT-futures is

FT2 = 25 000�min(IT2 ; 2)

where IT2 is the ISO-index at the end of the reporting period, i.e. the
ratio between the losses incurred during the event quarter and reported
up till three months later and the premium volume for the companies
participating in the pool.

Example 1.1. The June contract covers losses from events occurring
in April, May and June and are reported to the participating companies
by the end of September. The June contract expires on January 5th,
the following year. The contract is illustrated by Figure 1.1.

1.2. The CAT-future pricing problem. Cummins and Geman [7]
were the �rst to price the insurance futures. Their approach was quite
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FINAL SETTLEMENT

Apr July Oct Nov DecJuneMay SepAug

EVENT QUARTER

Jan

REPORTING PERIOD

INTERIM REPORT

Figure 1.1. June CAT-Future contract

di�erent from the approach used in this paper. As model they used
integrated geometric Brownian motion. This allowed them to apply
techniques arising from pricing Asian options. The model, however,
seems to be far from reality. At times where a catastrophe occurs or
shortly thereafter, one would expect a strong increase of the loss index.
It therefore is preferable to use a marked point process as it is popular
in actuarial mathematics.
The price to pay for the more realistic model is \non-uniqueness" of

the market, see [1] and [9] for further details. In fact, the index (It) is
not a traded asset. Thus markets cannot be complete. Moreover, as it
is the case for term structure models, any equivalent measure may be
used for no-arbitrage pricing. However, the preferences of the agents
in the market will determine which martingale measure applies.
In this article we follow the approach of Embrechts and Meister [9].

There the general equilibrium approach is used, where all the agent's
utility functions are of exponential type. More precisely, let Ft be the
price of the future, Lt the value of the losses occured in the event quar-
ter and reported till time t, Ft the information at time t, � premiums
earned and let c = 25 000=�. Then the price at time t, is (see [9, p.19])

Ft = c
EP [exp(�L1) (LT2 ^ 2�) j Ft]

EP [exp(�L1) j Ft]
: (1.2)

In particular, EP [exp(�L1)] has to exist. The market will determine
the risk aversion coeÆcient �.
The term exp(�L1)=EP [exp(�L1)] is strictly positive and integrates

to one. Thus it is the Radon-Nikodym derivative dQ=dP of an equiv-
alent measure. In the speci�c model we will consider, the process (Lt)
follows under to the measure Q the same model (but with di�erent pa-
rameters) as under P . We will use this fact to calculate the price of the
CAT-future and the PCS-option. This change of measure is similar to
the Esscher method described in [11] and [14]. If we assume that pro-
portional reinsurance is possible, the premiums are fairly split between
insurer and reinsurer, and that the proportion held in the portfolio can
be changed at any time, then the index (L1(T )��(T )) would become
a traded asset, where L1(T ) are all the claims occured till time T and
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�(T ) are the premiums earned to cover the claims occuring till time T .
In our model �(T ) would be a linear function. This would imply that
the process (L1(T )� �(T ) : T � 0) is a martingale under the pricing
measure. This condition will determine the risk aversion coeÆcient �,
see for instance [15].
To proceed further in the calculation of the future price, one has to

choose a model for (Lt). [1] used a compound Poisson model. This
can be seen as catastrophes occurring at certain times and claims are
reported immediately. In such a model there would not be a need
for the prolonged reporting period. In [9] a doubly stochastic Poisson
model is introduced. Here, a high intensity level will occur shortly after
a catastrophe, where more claims are expected to be reported. In [12,
Example 5.3] the asymptotic expected value and asymptotic variance
for a general compound process are obtained.
The aim of this paper is to model the claims reported to the com-

panies as individual claims with a reporting lag. This is done by mod-
elling the aggregate claim from a single catastrophe as a compound
(mixed) Poisson model. We thereby obtain the possibility to separate
the individual claims and to model the reporting times of the claims.
In Section 3.1 we calculate the future price using a compound Pois-
son model, whereas in Section 3.2 the results are extended by using a
compound negative binomial model, represented as a mixed compound
Poisson model. We thereby can estimate the mixing parameter from
the reporting 
ow.

2. The model and assumptions

Let T1 denote the end of the event period and T2 > T1 the end of the
reporting period. We work on a complete probability space (
;F ; P )
containing the following random variables and stochastic processes:

Lt : The aggregate amount of reported claims till time t;
Nt : The number of cat. occurred in the interval [0; t],
Mi : The number of claims from the i-th cat.
Mi(t) : The number of claims from cat. i reported until t;
Yij : The claim size for the j-th claim from the i-th cat.
Dij : The reporting lag for the j-th claim from the i-th cat.
�i : The occurrence time of the i-th cat.

We assume the following:

� (Ft) is the smallest right continuous complete �ltration, such that
the aggregate amount of reported losses Lt at time t is (Ft)-
adapted.

� (Nt) is a Poisson process with rate � 2 (0;1).
� (Mi : i 2 IIN), (Nt : 0 � t � T1), (Dij : i; j 2 IIN), (Yij : i; j 2 IIN)
are independent.
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� Mi is mixed Poisson distributed with mixing distribution F�. That
is, there are random variables (�i) with distribution F� such that,
given �i, Mi is conditionally Poisson distributed with parameter
�i. If the distribution F� is degenerated (�

i = � for some constant
�) the (unconditional) distribution of Mi is Poisson with param-
eter �. If F� is degenerate then Mi is Poisson distributed. We
denote by �i the mixing parameter and by � a generic random
variable for �i.

� (�i : i 2 IIN) are iid and independent of (Nt), (Dij), (Yij).
� Dij � FD, Yij � FY . We denote by Y (D, respectively) a generic
variable for Yij (Dij), and by mY (r) = E[erY ] the moment gener-
ating function of the claim sizes.

� The j-th claim Yij from the i-th catastrophe is reported at time
�i +Dij.

We have NT �Nt � Poi(�(T � t)) and (�Nt+1; : : : ; �NT
j NT �Nt = n)

has the same distribution as (U(1); : : : ; U(n)) where the (Ui) are iid
uniformly distributed on the interval [t; T ] and (U(i)) denotes the or-
der statistics, see for instance [13, Thm 5.2.1]. Moreover, it can be
shown, which may seem a little bit surprising, that the number of
claims Mi(T2)�Mi(t) from catastrophe i reported in the period [t; T2]
is, given �i, conditionally independent of the number of claims Mi(t)
reported in the period [�i; t]. Moreover, for 1 � i � NT1 , given (�i), �

i,
we have

i � Nt : Mi(t)
��
�i;�i

� Poi(�i(FD(t� �i))) (2.1)

and

Mi(T2)�Mi(t)
��
�i;�i

� Poi(�i(FD(T2 � �i)� FD(t� �i))) ;

i > Nt : Mi(T2)�Mi(t)
��
�i;�i

� Poi(�i(FD(T2 � �i))) :

In our model the claims Yij from the i-th catastrophe are randomly
ordered. This simpli�es the modelling of the reporting lags Dij. Let
(Di:j : 1 � j � Mi) be the order statistics of the (Dij)1�j�Mi

, and Yi:j
be the claim corresponding to Di:j. Then the claims occured before T1
and reported till t � T2 amount to

Lt =

Nt^T1X
i=1

Mi(t)X
j=1

Yi:j :

In particular, the �nal aggregate amount LT2 can be represented as

LT2 = Lt +

Nt^T1X
i=1

Mi(T2)X
j=Mi(t)+1

Yi:j +

NT1X
i=Nt^T1

+1

Mi(T2)X
j=1

Yi:j :
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For the rest of this section we work with the measure P conditioned
on Ft. Let

Si =

Mi(T2)X
j=Mi(t)+1

Yi:j :

For i � Nt, given �i, Si is then compound Poisson distributed with
intensity parameter �i(FD(T2 � �i) � FD(t � �i)). At time t, Nt is
known, so S1+ � � �+SNt

conditioned on �1; : : : ; �Nt is again compound
Poisson distributed with parameter (�1(FD(T2 � �1) � FD(t � �1)) +
� � �+ �Nt(FD(T2 � �Nt

)� FD(t� �Nt
))). The latter is known from risk

theory, see for instance [10, p. 13] or [13, Thm 4.2.2].
For Nt < i � NT1 , given �i and �i, Si is then compound Pois-

son distributed with intensity parameter �i(FD(T2 � �i)). We again
have that SNt+1 + � � �+ SNT1

conditioned on NT1 , �
Nt+1; : : : ; �NT1 and

�Nt+1; : : : ; �NT1 , is compound Poisson distributed with intensity pa-

rameter
PNT1

i=Nt+1 �
i(FD(T2 � �i)). So all in all we get that LT2 � Lt =

S1+ � � �+SNt
+SNt+1+ � � �+SNT1

given NT1 ; �
1; : : : ; �NT1 ; � 1; : : : ; �NT1

is compound Poisson distributed with intensity parameter

NtX
i=1

�i(FD(T2 � �i)� FD(t� �i)) +

NT1X
i=Nt+1

�i(FD(T2 � �i))

d
=

NtX
i=1

�i(FD(T2 � �i)� FD(t� �i)) +

NT1X
i=Nt+1

�i(FD(T2 � ~�i)) (2.2)

where ~�i are iid uniformly distributed on (t; T1) and independent of

Ft. Here
d
= means equality in distribution. Thus for t �xed LT2 � Lt

becomes a mixed compound Poisson model.

3. Calculation of the CAT-future price

3.1. Deterministic �i. In this section we will derive the future price
(1.2) when �i = � is deterministic. We therefore �rst need the value

EP [expf�L1g]. We remark that
PMi

j=1 Yij has a compound Poisson
distribution with moment generating function expf�(mY (r)�1)g. This
yields

EP [expf�L1g] = expf�(e�(mY (�)�1) � 1)g :
Let us consider now the process (Lt) under the measure Q. For an
introduction to change of measure methods we refer to [13]. A simple
calculation yields that under Q the process (Lt) is of the same type,
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only with di�erent parameters. (Nt) is a Poisson process with rate

~� = �EP

h
exp

n M1X
j=1

Y1j

oi
= �expf�(mY (�)� 1)g :

The number of claims of the i-th catastrophe is Poisson distributed
with parameter ~� = �(mY (�)) and the individual claims have the dis-
tribution function ~FY (x) =

R x
0
e�y dFY (y)=mY (�). The lags Dij have

the same distribution as under P .
The price of a CAT-future is therefore cEQ[LT2 ^ 2�]. Denoting the

distribution function of LT2 �Lt under Q conditioned on Ft by ~FL(�; t)
we can express the price as

c(Lt + EQ[(LT2 � Lt)� ((LT2 � Lt)� (2�� Lt))
+ j Ft])

= c
�
Lt + EQ[(LT2 � Lt) j Ft]�

Z 1

2��Lt

(1� ~FL(x; t)) dx
�
:

But the problem with the above expression is that we have to �nd the
n-fold convolutions of FD[T2 � ~� ], in order to calculate the last term.
To �nd an explicit expression seems to be hard.
Historical data show that, so far, the cap 2 in the de�nition of the

CAT-future has not been reached. The largest loss ratio was hurri-
cane Andrew with L1 = 1:79�. Under the measure P we have that
fLT2 > 2�g is a rare event. Because we are dealing with catastro-
phe insurance, the market risk aversion coeÆcient � cannot be large.
Otherwise, catastrophe insurance would not be possible. We therefore
assume that fLT2 > 2�g is also a rare event with respect to the mea-
sure Q, see also [9]. The light tail approximation to our model then
assures that the tail of ~FL(�; t) is exponentially decreasing. That isR1
2��Lt

(1 � ~FL(x; t)) dx will be small as long as Q(LT2 > 2�) is small,
see also the discussion in Section 4. The latter depends of course on the
risk aversion coeÆcient �, which has to be small in order to be able to
neglect the last term. As in [9] we therefore propose the approximation
c(Lt+EQ[(LT2�Lt) j Ft]) to the price of the CAT-future, and we then
make the following de�nition.

De�nition 3.1. Let pt be the price of the CAT-future at time t. The
upper bound papproxt of pt de�ned as

papproxt = pt +

Z 1

2��Lt

(1� ~FL(x; t)) dx

= c(Lt + EQ[(LT2 � Lt) j Ft])

is used as an approximation to the future price pt.

Theorem 3.2. Let the assumptions be as in Section 2 with a �xed risk
aversion coeÆcient �. Assume further that �i = � is deterministic.
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Then papproxt for a given risk aversion coeÆcient � is given by

25 000

�

�
Lt +

� NtX
i=1

(FD(T2 � �i)� FD(t� �i))

+~�(T1 � t)EQ[FD(T2 � ~� )]
�
~�EQ[Y ]

�
:

for t 2 [0; T1] and

25 000

�

�
Lt +

NT1X
i=1

(FD(T2 � �i)� FD(t� �i))~�EQ[Y ]
�

for t 2 [T1; T2].

Proof: We only consider EQ[LT2 � Lt j Ft]. From the considerations
in Section 2 we know that for t < T1

EQ[(LT2 � Lt) j Ft]

=
�
EQ

h NtX
i=1

~�(FD(T2 � �i)� FD(t� �i))
��� Nt; �1; : : : ; �Nt

i

+ EQ

h NT1X
i=Nt+1

~�FD(T2 � ~�i)
i�
EQ[Yij]

=
� NtX
i=1

(FD(T2 � �i)� FD(t� �i))

+~�(T1 � t)EQ[FD(T2 � ~�)]
�
~�EQ[Y ] : (3.3)

Note that

EQ[FD(T2 � ~� )] = EP [FD(T2 � ~�)] =
1

T1 � t

Z T2�t

T2�T1

FD(s) ds ; (3.4)

provided t < T1, and EQ[Y ] = m0
Y (�)=mY (�). If T1 � t � T2 we �nd

EQ[(LT2 � Lt) j Ft] =

NT1X
i=1

(FD(T2 � �i)� FD(t� �i))~�EQ[Y ] :

The approximation error will be discussed in Section 4.

3.2. Stochastic �i. We now assume that the �i's are stochastic and
independent. This can be seen as a measure of the severity of the
catastrophe. For simplicity of the model, we assume that �i can be
observed via reported claims only. Of course, in reality other informa-
tion as TV-pictures or reports from the a�ected area will be available.
Then for claims occurring before t we have some information on the
intensity parameter �i. We therefore have to work with the posterior
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distribution of �i given Ft. It would be desirable if the prior and the
posterior distribution would belong to the same class, see the discus-
sion in [6, Ch.10]. We therefore choose �i to be � distributed. Let
�i � �(
; �).
We �nd

EP [expf�L1g] = exp

�
�

�
�

� �mY (�) + 1

�


� 1

�
:

It again turns out that under the measure Q the process (Lt) is of the
same type with di�erent parameters. (Nt) is a Poisson process with
rate ~� = ��
(��mY (�)+ 1)�
, �i is �(
; ��mY (�) + 1) distributed,
Mi given �

i is conditionally Poisson distributed with parameter ~�i =
�imY (�) and Y has distribution ~FY (x) =

R x
0
e�y dFY (y)=mY (�). As

before the lags (Dij) have the same distribution under Q as under P .
Thus Mi has a mixed Poisson distribution where the mixing variable
~�i is �(
; (� � mY (�) + 1)=mY (�)) distributed. Let ~
 = 
 and ~� =
(� �mY (�) + 1)=mY (�).
We now �x the time t at which we want to �nd the CAT-future price.

For i � Nt the posterior distribution of ~�
i at time t is then

~�i jFt� �(
 +Mi(t); FD(t� �i) + ~�) : (3.5)

Theorem 3.6. Let the assumptions be as in Section 2 with a �xed risk
aversion coeÆcient �. Assume further that �i � �(
; �). Then papproxt

for a given risk aversion coeÆcient �, is given by

25 000

�

�
Lt +

� NtX
i=1

EQ[~�
i j Ft](FD(T2 � �i)� FD(t� �i))

+

mY (�)~�(T1 � t)

� �mY (�) + 1
EQ[FD(T2 � ~�)]

�
EQ[Y ]

�
for t 2 [0; T1] and

25 000

�

�
Lt +

NT1X
i=1

EQ[~�
i j Ft](FD(T2 � �i)� FD(t� �i))EQ[Y ]

�
for t 2 [T1; T2].

Proof: For the calculation of EQ[LT2 �Lt j Ft] we again split LT2 �Lt
into the terms occuring from catastrophes occurred before and catas-
trophes that will occur in the future. Consider �rst the case t < T1.
The �rst terms have expectation

NtX
i=1

EQ[~�
i j Ft](FD(T2 � �i)� FD(t� �i))EQ[Y ] :

Note that EQ[~�
i j Ft] = (
 +Mi(t))=(FD(t� �i) + ~�).
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For the expectation of the second terms we obtain

~�(T1 � t)EQ[~�
iFD(T2 � ~�)]EQ[Yij]

=

mY (�)~�(T1 � t)

� �mY (�) + 1
EQ[FD(T2 � ~� )]EQ[Y ] :

The expectation was already calculated in (3.4). This yields the desired
expressions. If T1 � t � T2 we �nd

EQ[(LT2 � Lt) j Ft] =

NT1X
i=1

EQ[~�
i j Ft](FD(T2 � �i)� FD(t� �i))EQ[Y ] :

Note that with the exception of (3.4) the upper bound can be found
explicitly.

4. The approximation error

The results in Theorems 3.2 and 3.6 are both approximations, so it is
relevant to ask how good these approximations are. In this section we
will investigate this question. We only consider the case where �i = �
is constant. For the mixed Poisson case the results are similar.

4.1. The approximation of the approximation error. From Sec-
tion 3.1 we know that the approximation error (AE) is given by the
following expression:

c
�Z 1

2��Lt

(1� ~FL(x; t)) dx
�

(4.1)

where ~FL(�; t) denotes the distribution function of LT2 � Lt under Q
conditioned on Ft. The reason for omitting this term was that it is
hard to calculate ~FL(�; t). In order to �nd an approximation to the
expression above we will now try to use some of the approximations to
LT2 � Lt known from actuarial mathematics. Namely the translated
gamma approximation and the Edgeworth approximation.
The idea behind the translated gamma approximation is to approx-

imate the distribution function by k + Z where k is a constant and Z
is �(g; h) distributed, such that the �rst three moments of LT2 � Lt
and k + Z coincide. We already have calculated the mean value �L
of LT2 � Lt in (3.3). Standard calculations yield also the (condi-
tional) variance �2L and the (conditional) coeÆcient of skewness sL =
EQ[(LT2 � Lt � EQ[LT2 � Lt])

3 j Ft]�
�3
L . From this the parameters of

the translated gamma distribution are found to be

g =
4

s2L
; h =

2

sL�L
; k = �L � 2�L

sL
:
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The approximation error therefore is approximated by

AP(G) = c
�Z 1

2��Lt

Z 1

x�k

hg

�(g)
yg�1e�hy dy dx

�
= c

� hg

�(g)

�Z 1

(2��Lt)�k

yge�hy dy

�(2�� Lt � k)

Z 1

(2��Lt)�k

yg�1e�hy dy
��

:

The idea behind the Edgeworth approximation is to consider the cor-
responding standardized random variable Z and then to approximate
its distribution. So consider the random variable

Z =
LT2 � Lt � EQ[LT2 � Lt]p

VarQ[LT2 � Lt]
:

The Taylor expansion of logMZ(r) around r = 0 has the form

logMZ(r) = a0 + a1r + a2
r2

2
+ a3

r3

6
+ a4

r4

24
+ � � �

where

ak =
dk logMZ(r)

dkr

����
r=0

:

Simple calculations show that a0 = 0, a1 = E[Z] = 0, a2 = V ar[Z] = 1,

a3 = sL and a4 =
E[(LT2�Lt�E[LT2�Lt])

4]

Var[LT2�Lt]
2 � 3 . In our case a3 and a4 are

calculated under Q and conditioned on Ft, and both the values can
be found by standard calculations. We truncate the Taylor series after
the term involving r4. The moment generating function of Z can be
written as

MZ(r) � er
2=2ea3r

3=6+a4r4=24 � er
2=2

�
1 + a3

r3

6
+ a4

r4

24
+ a23

r6

72

�
:

The inverse of expfr2=2g is easily found to be the normal distribution
function �(x). For the other terms we derive

rner
2=2 =

Z 1

�1

(erx)(n) �0(x) dx = (�1)n
Z 1

�1

erx�(n+1)(x) dx :

Thus the inverse of rner
2=2 is (�1)n times the n-th derivative of �. The

approximation yields

P [LT2 � Lt � x] = P [Z � z]

� �(z)� a3
6
�(3)(z) +

a4
24
�(4)(z) +

a23
72
�(6)(z)
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where z = (x�E[LT2�Lt])=
p
Var[LT2 � Lt]. The approximation error

therefore is approximated by

AP(E) = c
�p

Var[LT2 � Lt]Z 1

z0

�(z) � a3
6
�(3)(z) +

a4
24
�(4)(z) +

a23
72
�(6)(z) dz

�
:

where z0 = ((2�� Lt)� E[LT2 � Lt])=
p
Var[LT2 � Lt].

We now have constructed two ways of approximating the AE. The
question is then whether we obtain a better price if we correct the
uncapped future price with these approximations, or we are better o�
just using the uncapped future price directly? We will now look at an
example in order to answer this question.

4.2. Example. The capped future price (FC
t ) is calculated according

to equation (1.2)

FC
t = c

EP [exp(�L1) (LT2 ^ 2�) j Ft]

EP [exp(�L1) j Ft]

where a reliable value of the expression is obtained by Monte-Carlo
simulations. In order to use MC we make the following assumptions:

� The claim sizes are exponentially distributed with parameter �,
� The reporting lags are exponentially distributed with parameter
�.

The uncapped future price (FU
t ) is calculated according to Theorem 3.2.

We will keep all the parameters �xed in the example, except from the
premium � and the risk aversion coeÆcient � in order to see how the
approximations depend on these two parameters. We use the following
parameters:

T1 = 1 T2 = 2 t = 0:5

� = 6 Nt = 3 � = 0:0005

�1 = 0:1 �2 = 0:25 �3 = 0:4

M1(t) = 698 M2(t) = 528 M3(t) = 259

� = (1 + �)12� 106 � = 1000

Lt = E[Lt] = 2:97� 106 � = 3

� is calculated by the expected value principle with safety loading �
under the assumption that all the claims will be reported.
The parameters are chosen such that P (LT2 > 2�) is consistent with

the few data that we had. None out of the approximately 80 available
settlement values exceeded the level 2�. For dates before 1992 the ISO
index had to be estimated from the �nal aggregate loss value (L1).
The largest values of the ratio LT2=� there have been seen so far is
1.7893 (the Eastern Loss Ratio from Hurricane Andrew, Sept. 1992)
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and 1.0508 (the Western Loss Ratio from Northridge Earthquake, 2nd
March 1994). In our example with � = 0:05 we have that P (LT2=� >
1:79) � 0:01.
For di�erent values of � and �, Table 4.1 shows the values of FC

t ,
FU
t , the approximation error AE = FU

t � FC
t by using the uncapped

future price, the approximation error AE(G) = (FU
t �AP(G))� FC

t if
we correct FU

t by the gamma approximation to (4.1), and �nally the
approximation error AE(E) = (FU

t �AP(E))�FC
t if we correct FU

t by
the Edgeworth approximation (4.1).

� � FC
t FU

t AE AE(G) AE(E)

1� 10�8 0.05 23666.8 23668.3 1.5 -1.9 0.5
1� 10�8 0.10 22590.8 22592.5 1.7 0.2 1.4
1� 10�8 0.15 21608.8 21610.2 1.4 0.7 1.3

1� 10�7 0.05 25999.3 26009.7 10.4 -2.1 6.2
1� 10�7 0.10 24822.5 24827.5 5.0 -1.0 3.2
1� 10�7 0.15 23743.7 23748.0 4.3 1.5 3.6

2� 10�7 0.05 29106.7 29158.8 52.1 0.7 32.0
2� 10�7 0.10 27808.1 27833.4 25.3 -1.7 16.7
2� 10�7 0.15 26605.0 26623.2 18.2 4.3 14.3

3� 10�7 0.05 32817.4 33008.2 190.8 -6.0 62.4
3� 10�7 0.10 31402.1 31507.9 105.8 -7.4 47.2
3� 10�7 0.15 30052.8 30138.0 85.2 21.4 60.0

Table 4.1. The approximation errors.

From Table 4.1 we see, that for all the chosen parameters the un-
capped future price seems to approximate the capped future price fairly
well, and best when the risk aversion coeÆcient is small or the safety
loading is large. But are the chosen parameters reasonable?
Let us �rst discuss the � parameter. In insurance the safety loading

is always positive, and looking at real data the safety loading seems to
be \large" when we are considering catastrophe insurance. By \large"
we mean that the event fLT2 > 2�g never has occured.
The � parameter is the risk aversion coeÆcient for the single in-

surance company when pricing in a utility maximization framework
(see [9] for further details), or the markets risk aversion when pricing
in a general equilibrium model (see [9] for further details). The �rst
thing to note on the � parameter is that the parameter is price de-
�ned, i.e. it depends on the way we price the losses. Here the values of
the losses are \large" and therefore the � parameter becomes \small".
The parameters are then chosen in such a way that di�erent prices are
represented, for � = 0:15 and � = 1� 10�8 the capped future price is
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21608.8 and for � = 0:05 and � = 3� 10�7 the capped future price is
32812.7. An indication that the single insurance company or the mar-
ket should have a low risk aversion coeÆcient, is the market conditions:
The CAT-future pays a high pro�t with a small probability and a low
pro�t with a high probability. After these remarks on the parameters
we now turn to the �gures.
From Table 4.1 we see that there is some variance on the �gures from

the MC simulations. This is observed in the column named AE, where
the AE should be decreasing when the �'s are increasing. But apart
from this it is clear that both approximations give reasonable values for
the approximation error, i.e. if the uncapped future price is corrected
with one of the approximations we in general obtain a more accurate
price. From the values it seems like the AE(E) underestimates the AE,
but even though that it is the case in this example this does not hold
in general. Based on this example the gamma approximation gives the
best approximations for nearly all the values. The only exception is for
� = 1�10�8, and � = 0:05, but this is probably caused by the variance
in the MC. So based on this example the gamma approximation is the
best one to use.
Finally we conclude that in our model under the above assumption

the uncapped future price is a good approximation. But as mentioned
above we obtain a more accurate price if we correct with one of the
approximations, and in this example the gamma approximation is the
best one to use.

5. Conclusion

This paper develops a model for insurance future pricing, which only
relies on the information available. The products are priced solely from
observing the reporting stream. Contrary to the existing literature we
model the reporting times explicitly. We thereby obtain a more realistic
model.
The results of this article rely on an approximation to the exact

future price. One therefore has to be careful applying the results
derived, because the results will be inaccurate if the cap-probability
(P (LT2 > 2�)) or the risk aversion coeÆcient is \too large".
This paper suggest two ways to approximate the approximation er-

ror, the gamma approximation and the Edgeworth approximation. It
is shown that they both are useful in the determination of the error
level even though that the gamma approximation seems to be the best.
The results are derived specially for the CAT-futures, even though

an improved �nancial catastrophe insurance product, the PCS-option,
was introduced in 1995. For a description of the PCS-option and an
explanation of why the CAT-future was improved see [5]. The results
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from this article cannot directly be used for pricing PCS-options be-
cause they have another structure. But, because of a strong correlation
between claims reported and the PCS-index some of the ideas may be
used. This is a topic for further research.
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THE PCS-OPTION, AN IMPROVEMENT OF THE

CAT-FUTURE

CLAUS VORM CHRISTENSEN

Abstract. In 1992, CBoT introduced the CAT-future as an alter-
native to catastrophe reinsurance. But the product never became
very popular. In 1995 it was replaced by a new product, the PCS-
option. This article describes the PCS-option and attempts to
explain why the new product is an improvement. The article also
explains how to hedge a catastrophe risk with PCS-options and
�nally it compares the PCS-options with traditional reinsurance.

1. Introduction

The insurance industry has been hit very hardly in the 1990s by
their catastrophe insurances. This has been caused by a record num-
ber of natural catastrophe losses, of which the insurance premiums only
covered a small part. At the same time many of the catastrophe pre-
miums are very large (approximately the value of the maximal losses),
so there is hardly no room for increasing the capacity in the insur-
ance market. Examples of risks which demand such large premiums
are 
ooding in the Netherlands occuring every spring and earthquakes
i L.A. also occuring regularly. Thus the search for new capacity has
led to the prospect of trading insurance risk not only within the tradi-
tional insurance system but also transferring them to the more liquid
�nancial markets.
On the December 11, 1992 CBoT made the �rst attempt to do so.

They launched futures on catastrophe loss indices and related options
(CAT-future and options). The CAT-option, also referred to as the
future option, has as underlying instrument one catastrophe insurance
future contract. Because of this relation the article will only consider
the CAT-future in the section where these old product is under con-
sideration). Following initial diÆculties, which will be explained later,
these standardized contracts have been improved, and on September
29, 1995 CBoT introduced the PCS-options. The underlying assets
of the PCS-options are the PCS indices. These loss indices are pro-
vided daily to the CBoT by the Property Claim Services (PCS), which
is the recognized industry authority for catastrophe property damage
estimates.

Date: April, 1998.
1



2 C. VORM CHRISTENSEN

This article will �rst give a description of the PCS-option, then it will
describe the ISO index which was the underlying index of the CAT-
futures and also the main reason for the product's problems. Then
the index for the PCS-options is described and it is explained how the
PCS-options improved the CAT-future. It will then be shown how to
hedge with PCS-options, and �nally the article gives a description of
PCS-options versus reinsurance.

2. Specification of the PCS-option

In this section the de�nitions of the keywords that specify the PCS-
options are given. The information about the PCS-option is primarily
taken from [2] and [5], but some was also obtained by mailing with
people from the PCS a the CBOT. As mentioned above, the underlying
asset of the PCS-options are the PCS indices. There are nine di�erent
type of indices, which are provided daily by the PCS. The nine indices
are divided into one national index, �ve regional indices and three
state indices. The �ve regional indices are: Eastern, Northeastern,
Southeastern, Midwestern and Western. The three state indices are:
Florida, Texas and California. Each loss index tracks PCS estimates for
insured industry losses resulting from catastrophic events (as identi�ed
by PCS) in the area and loss period covered.
PCS-options can be traded as calls, puts, or spreads. Most of the

trading activity occurs in call spreads, since they essentially work like
aggregate excess-of-loss reinsurance agreements, see Section 4. PCS-
options are traded both as \small cap" and as \large cap" contracts.
These caps limit the loss that can be included under each contract.
Small cap options track aggregate insured industry losses from $ 0 to
$ 20 billion. Large cap options track aggregate insured industry losses
from $ 20 billion to $ 50 billion.
The loss period is the time during which a catastrophic event must

occur in order that resulting losses are included in a particular index.
During the loss period, PCS provides loss estimates as catastrophes
occur. Most PCS options have quarterly loss periods, with contracts
listed for March, June, September and December. Western and Cali-
fornia PCS-options have annual loss periods and are available only as
annual contracts. The last day of the loss period is the calendar day of
the quarter or year. Losses from catastrophes starting in one quarter
or year and ending in the next will be included in the quarter or year
in which the catastrophe started.
The development period is the time after the loss period during

which PCS continues to estimate and reestimate losses from catas-
trophes occured during the loss period. PCS-option users can choose
either a six-month or twelve-month development period. The develop-
ment period begins immediately after the loss period ends. The PCS
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index value at the end of the chosen development period will be used
for settlement purposes, even though PCS loss estimates may continue
to change.
PCS-options settle in cash on the last business day of the develop-

ment period. The settlement value (LT ) for each index represents the
sum of then-current PCS insured loss estimates provided and revised
over the loss and development periods. PCS-options are options of Eu-
ropean type, that means that they can be exercised on the expiration
day at the end of the development period only.
The value of the PCS-call option at expiration day T , exercise price

X and cap value K can be expressed as

C(T; L(T )) = min(max(L(T )�X; 0); K �X)

Due to diÆculties in trading options in industry loss dollar amounts,
the CBoT has developed a pricing index to re
ect dollar loss amounts
raging from $ 0 to $ 50 billion. Each PCS loss index represents the
sum of then-current PCS estimates for insured catastrophic losses in
the area and loss period covered, divided by $ 100 million and rounded
to the nearest �rst decimal point. PCS-options prices or premiums,
are quoted in points and tenths of a point. Each point equals $ 200;
each tenth of a point equals $ 20. We will end this subsection with an
example.

Example 2.1. Let us consider a reinsurer who buys a June Eastern
small cap call PCS-option with strike value of 20 and a development
period of six-months. This contract tracks losses from catastrophic
events occuring in the Eastern region between April 1 and June 30
1997. The six-month development period runs from July 1 to December
31. The option will thus settle on December 31, 1997 according to the
settlement value of the index.

SETTLEMENT

Aug

DAY

Apr July Oct Nov Dec

LOSS PERIOD DEVELOPMENT PERIOD

JuneMay Sep

Figure 1. June PCS-option with development period
of six-months

Let us assume that the losses have been estimated to $ 3.565.270.000.
The index value would then be 35.65 rounded to 35.7. The value of the
call option is then

C(T; L(T )) = min(max(35:7� 20; 0); 200� 20) � $200 = $3140
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So in this example the reinsurer receives $ 3140. If the loss index has
been estimated above $ 20 billion let us say $ 23 billion then the value
of the call option would be

C(T; L(T )) = min(max(230� 20; 0); 200� 20) � $200 = $36000

and the reinsurer would then (only) have received $ 36000 because it
was a small cap option.

3. Loss estimation

As mentioned in the introduction, the PCS-options is an improve-
ment of the CAT-futures. The main problems with CAT-futures were
caused by the underlying asset, the so called ISO index. The improve-
ments have therefore mainly been achieved by changing this underlying
asset. This subsection will highlight some of the problems of the CAT-
futures, and explain how the introduction of the PCS-option solved
some of them. The information about the CAT-future is obtained
from [1] and [3]. Let us �rst consider the ISO index.

3.1. The ISO index. Each quarter approximately 100 American in-
surance companies reported property loss data to the ISO (Insurance
Service OÆce, a well known statistical agent). ISO then selected a pool
of at least ten of these companies on basis of size, diversity of business,
and quality of reported data. The ISO index was then calculated as
the loss ratio of this pool.
The ISO index:

ISO index =
reported incurred losses

earned premiums
:

The list of companies included in the pool was announced by the
CBoT prior to the beginning of the trading period for that contract.
The CBoT also announced the premium volume of the companies par-
ticipating in the pool prior to the start of the trading period. Thus
the premium in the pool was a known constant throughout the trad-
ing period, and price changes were attributed solely to changes in the
markets expectation of loss liabilities.
CAT-futures were traded on a quarterly cycle, with contract months

March, June, September, and December. A contract for any given
calendar quarter (the event quarter) was based on losses occuring in
the listed quarter, and beeing reported to the participating companies
by the end of the following quarter. The six month period following the
start of the event quarter is known as the reporting period. The three
additional reporting months following the close of the event quarter are
to allow for loss settlement lags that are common in insurance. The
contracts expire on the �fth day of the fourth month following the end
of the reporting period. The additional three months following the
reporting period is attributable to data processing lags. Trading was
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conducted from the date the contract was listed until the settlement
date.

Example 3.1. The June contract covers losses from events occuring
in April, May and June as reported to the participating companies by
the end of September. The June contract expires on January 5th the
following year. The contract is illustrated by the �gure below.

FINAL SETTLEMENT

Apr July Oct Nov DecJuneMay SepAug

EVENT QUARTER

Jan

REPORTING PERIOD

INTERIM REPORT

Figure 2. June CAT-future contract

Finally the settlement value for the CAT-futures was given by:

FT = $25000�min(IT ; 2)

where IT is the ISO index at time T, i.e. the ratio between the losses
incurred during the event quarter, though reported up un till three
months later, and the premium volume for the companies participating
in the pool.
Let us now focus on the problems with the ISO index. Let It be the

value of the ISO index at time t. One of the problems was that It was
only published once before the settlement date. This took place just
after the end of the reporting period (the Interim report see �gure 2).
This meant that the companies, participating in the pool, had a possi-
bility of knowing at least part of the data used to form the index before
the settlement date, while it was certainly more diÆcult for other in-
surers. This created a information asymmetry which was a potential
factor preventing people from entering the market of CAT-futures.
Another problem was the Moral Hazard problem. A company from

the pool could manipulate data by delaying the report of a big loss so it
�rst would be included in the next reporting period and thereby never
a�ect the index. The companys intension for doing so, could be that
the company had agreed to a short position of a future contract1. That
this possibility existed, could also have prevented people from entering
the market of CAT-futures.

1When a company, at time t and at a price Ft, enters a short position of a future
contract, it means that the company should pay (FT � Ft) to the other part of the
contract at time T. The company will then like FT to be as small as possible
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As mentioned in [4] a more serious problem could occur because the
reporting period was too short. If a late quarter catastrophe occurs
and claims are slow in developing, then the �nal claims ratio for the
purpose of deciding the future payo� could be low relative to the actual
�nal claims ratio. This problem occurred in the March 1994 contract
period, the period of the Northridge earthquake. The settlement ratio
was low and the contract payo� did not truly re
ect the actual claim
loss. After this description of the ISO index and its problems, we now
turn to the PCS index.

3.2. The PCS index. Property Claim Services (PCS), a division of
American Insurance Services Group, is the recognized industry author-
ity for catastrophe property damage estimates. PCS is a not-for-pro�t
organization serving the insurance industry.
When PCS, in its sole judgement, estimates that a natural or man-

made event within the United States is likely to cause more than $25
million in total insured property losses, and determines that such ef-
fect is likely to a�ect a signi�cant number of policy holders and prop-
erty/casualty insurance companies, PCS identi�es the event as a catas-
trophe and assigns it a catastrophe serial number (a \PCS Identi�ed
Catastrophe"). The types of insured "perils" that have caused insured
losses deemed catastrophic by PCS include, without limitation, tor-
nadoes, hurricanes, storms, 
oods, ice and snow, freezing, wind, water
damage, hail, earthquakes, �res, explosions, volcanic eruptions and civil
disorders. PCS compiles three di�erent types of estimates: The Flash
Loss Estimates, the Preliminary Loss Estimates and the Resurvey Loss
Estimates. Let us now focus on these.
Simultaneously with announcing that a catastrophe has been identi-

�ed (generally within 48-72 hours after the occurrence of a PCS Iden-
ti�ed Catastrophe), PCS generally provides a "
ash" estimate antic-
ipated industry insured property losses from such event. The Flash
Estimates generally are based on PCS's initial meteorological or seis-
mological information and/or initial telephonic information from indus-
try personnel and public oÆcials in the a�ected areas. Such estimates
are expressed in terms of a range of estimated total insured property
losses. These Flash Loss Estimates give the insurers and reinsurers an
initial perspective on the catastrophe's severity, but are not included
in the indices calculated for the CBoT.
The indices compiled for the CBoT, comprise Preliminary Loss Es-

timates and are adjusted according to Resurvey Loss Estimates. The
Preliminary Loss Estimate of anticipated insured property losses is
typically prepared and released within several days to two weeks after
occurrence of a PCS Identi�ed Catastrophe. If a catastrophe is large
enough, PCS will continue to survey loss information to determine
whether its preliminary estimate should be adjusted. PCS generally
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resurveys PCS Identi�ed Catastrophes that, based upon its Prelimi-
nary Estimate, appear to have caused more than $250 million of insured
property damage. PCS usually releases the initial Resurvey Estimate
to subscribers approximately 60 days after the Preliminary Estimate is
issued. PCS may continue the resurvey process and publish additional
Resurvey Estimates approximately every 60 days after the previous
Preliminary Estimate or Resurvey Estimate, until it believes that the
industry insured property loss has been reasonably approximated. This
means that the insured losses due to certain catastrophes may continue
to develop after PCS-option settlement. PCS compiles its estimates of
insured property damage using a combination of procedures, including
a general survey of insurers, its National Risk Pro�le, and where ap-
propriate, its own on-the-ground survey. PCS will report the PCS loss
indices on each CBoT trading day. But the indices are only changed
when a new Preliminary Loss Estimate is released or a Resurvey Loss
Estimate is released.
Let us now return to the problems of the CAT-futures and how the

PCS options solve them. Neither American Insurance Services Group
nor any person employed by American Insurance Services Group will
disclose any estimate of total insured losses following a catastrophe to
any person prior to its oÆcial publication. This means that all investors
receive the same information at the same time. Thereby the problem
of asymmetric information is eliminated.
When PCS estimates the loss indices, they conduct surveys of the

market. These surveys are con�dential and they are not used directly
in the estimation of the indices. So it is extremely diÆcult for insurance
companies to a�ect the indices, and thereby the Moral Hazard Problem
is eliminated.
The construction of the PCS-option also eliminates the problem by

late occured catastrophes. The PCS index does not directly depend on
a number of reported claims and the time from the end of the event
period to the time the index is settled is also longer for the PCS-option
than it was for the CAT-future.
That these problems were solved, was probably the main reason for

the PCS-options higher trading activity compared to the CAT-future.
But the fact that the new product was more logically constructed than
the old one could also have had an e�ect. Hereby we mean that a
construction using options instead of futures and \options on futures",
seems more logical, when all the trading activities are in options.
Next will be explained, as mentioned in section 2, that the call

spreads work much like aggregate excess-of-loss reinsurance agreements.
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4. Hedging with PCS-options

This Subsection will describe how to hedge against catastrophe losses
using PCS-option. Only the PCS-option spreads will be considered
since most of the trading activity occurs in these products.
The buyers of PCS-options spreads are mainly large insurance com-

panies and reinsurance companies. The sellers could be investors, as
for instance companies earning money in relation to catastrophes (such
as building supply �rms or construction companies). To illustrate how
PCS-option spreads work, lets now consider a hypothetical insurance
company. The Safe-place Insurance Company is a property/casualty
insurance company with a book of business heavily concentrated in the
Eastern region.
Assume that:

(a) Safe-Place Insurance Company has a 0.2% market share (mea-
sured in written premium)

(b) Safe-Place's book is less exposed on average to hurricane risk than
that of the industry. More speci�cally, assume that Safe-Place
anticipates its losses to be 80% of the industry on average.

(c) Safe-Place wants to hedge catastrophe losses in the hurricane sea-
son (the third quarter) by buying a layer of protection of $ 6
million in excess of $ 4 million.

The question is now, what kind of September Eastern option spreads
should Safe-Place buy (the September Eastern contract track third-
quarter losses for the eastern region of the United states)? Based on
the given assumption, Safe-Place calculates the appropriate amount of
protection by relating its attachment point to the industrys attachment
points as follows:

Strike value = Comp. loss� 1

comp. market share
� 1

loss experience

At the $4 million attachment point:

Strike value = $ 4 million� 1

0.2 %
� 1

80 %
= $ 2.5 billion or 25 p.

At the $10 million attachment point($ 6 million excess of $ 4 million):

Strike value = $ 10 million� 1

0.2 %
� 1

80 %
= $ 6.25 billion or 62.5 p.

Safe-Place's $ 6 million in excess of $ 4 million level of protection is
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now approximated by a 25/65 call spread (PCS-option contract speci-
�cations call only for �ve-point strike intervals). This translates to an
industry loss range of $ 2.5 billion to $ 6.5 billion.
Safe-Place calculates the proper number of spreads as follows:

Number of spreads =
ammount of protection needed

amount of protection o�ered by each layer

Number of spreads =
$ 6 million

$((65� 25)� $200)
= 750 spreads

They therefore decides to buy 750 25/65 September Eastern call spreads
(the September Eastern contract track third-quarter losses for the east-
ern region of the United states). In other words they would buy 750
call at strike value 25 and simultaneously sell 750 call at strike value 65.
The value of a 25/65 call spread can be illustrated by �gure 3. The two
dotted lines illustrate the payo� from selling a call 65 and from buying
a call 25. The full-drawn line is the the total payo� from buying a call
spread 25/65.

Premium

of Spread

Premium

Premium

Call B (short position)

PCS LOSS ESTIMATE

of Call A

of Call B

A B

Call A (long position)

Option Spread A/B

Figure 3. A 25/65 call option spread.

If the losses have been estimated below $2.5 billion, the 25/65 call
spread has no value. If the losses have been estimated above $65 billion
Safe-Place receives a full protection payment, that is, 40� $200� 750,
or $6 million which is the amount of protection originally desired by the
�rm. If the losses have been estimated between the 25/65 attachment
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points, Safe-Place is compensated for the di�erence between the lower
attachment point (25) and the actual settlement value. For instance,
assume that the losses have been estimated to $4 billion. This industry
loss amount corresponds to a $6.4 million aggregate loss for Safe-Place,
or a $2.4 million excess of the $4 million retained by the company. On
settlement day Safe-Place receives compensation equal to (40� 25)�
$200� 750 spreads, or $2.25 million. This amount helps to o�set the
companys original loss.
This example shows the PCS call spreads work much like layers of

aggregate excess-of-loss reinsurance, but as we shall see in the next
section they are not perfect substitutes.

5. PCS-options versus Reinsurance contracts

As mentioned in section 4, the PCS-options are similar to the struc-
tures of typical stop loss reinsurance contracts, but there are important
di�erences between reinsurance and �nancial contracts.
The buyers and sellers of a PCS-option are anonymous to each other

and the price is determined through an auction market. For the rein-
surance contract it is di�erent, here the contract is negotiated between
the buyer and the seller, and the price is determined through a negoti-
ation process. These conditions make the buyers of an actively traded
PCS-options more assured of receiving an arbitrage-free price than the
buyers of a reinsurance contract. Even though the buyer negotiated
with several reinsurers before making a decision.
A main problem of the PCS-option is that the loss, estimated by

the PCS, is not necessarily perfectly correlated to the buyer's losses.
This is not a problem in reinsurance because it is the buyer's own loss
experiences that are covered. But that the PCS-options are standard-
ized to all buyers and sellers does have some advantages. If the general
risk exposure suddenly changes then the people on the option market
have the possibility of closing out a position by taking the opposite
position. The portfolio can also be adjusted using the experience of
losses included in the index. For instance if a company has an upper
layer, A say, and there had been already many catastrophes, so that
A is likely to be exceeded, the company can adjust the portfolio by
buying AB-spreads for B > A, giving them a new upper layer B. This
is usually not possible for people on the reinsurance market, because
of the buyer speci�c reinsurance contracts.
Another advantage of the PCS-options is the time factor. The PCS-

options can be bought and sold in a second, assuming the buyer has
been accepted by the clearinghouse. Unlike the reinsurance contract,
where it often takes quite a while before the contract is negotiated and
underwritten by the reinsurer. And in the reinsurance market there
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is no clearinghouse to assure the buyers and sellers about the credit
worthiness of the other party.
PCS-options and reinsurance can both be used in hedging under-

written risk, but as seen above they are not perfect substitutes. It is
therefore likely that we will see both type of contracts in the future.
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A NEW MODEL FOR PRICING CATASTROPHE

INSURANCE DERIVATIVES

CLAUS VORM CHRISTENSEN

Abstract. We want to price catastrophe insurance derivatives
and we are therefore facing two main problems. The �rst prob-
lem is that under a realistic model for the underlying loss process
the market is incomplete and there exist many equivalent mar-
tingale measures. Hence there are several arbitrage free prices of
the product. The other problem is that we prefer a heavy tail for
the underlying loss index, but heavy tails often give computational
problems. In this note we will present a model which in some sense
takes care of both the problems. We will in particular consider the
PCS option, but the approach can also be used for pricing other
securities relying on a catastrophe loss index.

1. Introduction

After Hurricane Andrew in 1992 there followed a reinsurance capac-
ity shortage and a huge increase in property catastrophe reinsurance
premiums. Both phenomena where reinforced by the occurrence of the
Northridge Earthquake in 1994. The reinsurance industry therefore
needed new capital. This capital should be found in the �nancial mar-
ket and the way to obtain it was to create the securitization market.
One of the �rst products on this market was the CAT future in-

troduced by the CBOT (Chicago Board of Trade) in 1992. And ever
since the market has tried to ful�l the investors requirements, but the
market is still not well launched. J. A. Tilley [12] is mentioning the
following four reasons why this market is emerging so slowly. First,
since 1994 there has been a generally favourable catastrophe loss ex-
perience and as a result of this the reinsurance prices have decreased.
This becomes a problem because many cedents of risk both primary
writers and reinsurers have considered securitization as an alternative
to reinsurance rather than complementary to reinsurance. Second, in-
surers are unwilling to be pioneers, because of the high development
cost. Third, the fact that the products are uncorrelated to other �nan-
cial products is not a good enough selling story for investors. Investors
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1991 Mathematics Subject Classi�cation. 62P05.
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want to understand the nature of the risk, and this takes time. And
�nally there still remains unanswered questions about what form and
structure of insurance linked securities and derivatives will be viewed
most favourable by investors.
But even though the market have not been well launched and the

products has not been standardized, academics has tried to model the
prices of such products see [1], [2], [5], [6] and [8]. And this is also the
aim of this paper. We aim to �nd a model that solves two of the main
problems related to pricing. The �rst problem is that if we choose a
realistic model for the underlying loss process the market will be in-
complete and there will exist many equivalent martingale measures.
Hence there exists a large set of arbitrage free prices of the product.
The next problem is that we like a heavy tail for the underlying loss
index, but heavy tails often give computational problems. The model
presented takes in some sense care of both these problems and is to our
knowledge the �rst one to do so. To derive the price of the securities
we use results from Gerber and Shiu [10]. In [10] it is shown that the
Esscher transform is an unique and transparent technique for valuing
derivative securities if the logarithms of the underlying process are gov-
erned by a certain stochastic process with stationary and independent
increments (a Levy process). We propose here such a model and by way
of example we calculate prices for one the most standardized products
on the market namely the PCS option.
In the remaining part of this introduction we give a short description

of the PCS option, and the keywords that specify the PCS option are
given. In Section 2 we present the model of the underlying loss index
for the PCS option, and show how the option price is determined within
this model. In Section 3, we show how the results from [10] can be used
in our context to �nd the risk neutral Esscher measure. In Section 4
we show how to compute the risk neutral Esscher measure for the loss
period and the development period. In Section 5 we then calculate the
price for the PCS option based on the results obtained in the previous
sections. And �nally there are some concluding remarks.

1.1. Speci�cation of the PCS option. In this section the de�nitions
of the keywords that specify the PCS options are given. For a more
detailed description of the PCS option see [3] or [4].
The PCS options are traded by Chicago Board of Trade and are

regional contracts whose value is tied to the so called PCS Index. The
PCS index tracks PCS estimates for insured industry losses resulting
from catastrophic events (as identi�ed by PCS) in the area and loss
period covered. The options are traded as capped contracts, i.e. the cap
limit the amount of losses that can be included under each contract.The
value of a PCS call option at expiration day T , with exercise price A
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and cap value K is given by

C(T; LT ) = min(max(LT � A; 0); K � A)

where LT is the value of the PCS index at time T .
PCS options can be traded as European calls, puts, or spreads. Most

of the trading activity occurs in call spreads, since they essentially work
like aggregate excess-of-loss reinsurance agreements see [4] for further
explanations.
The option contract includes both a loss period and a development

period. The loss period is the time during which a catastrophic event
must occur in order for resulting losses to be included in a particular
index. During the loss period, PCS provides loss estimates as catas-
trophes occur. The development period is the time after the loss
period during which PCS continues to estimate and reestimate losses
from catastrophes occurred during the loss period. The reestimations
may result (and have resulted historically) in adjustments upwards and
downwards. PCS option users can choose either a six-month or twelve-
month development period. The settlement value for each index repre-
sents the sum of then-current PCS insured loss estimates provided and
revised over the loss and development periods.

2. The underlying model

The most natural way to model the underlying loss index is to model
it by a marked point process with a heavy tailed distribution function
for the marks. But as previous papers has shown it is hard to price
derivative securities in such a model see [1], [2], [5] and [8]. The idea
in this paper is therefore to search for another model than the marked
point process. This model may not be perfect, but on the other hand
we hope to �nd a model that has a heavy tail, allows for 
uctuation
and gives the possibility to express the price in a closed form.
The model we present below is inspired by Gerber and Shiu [10]. In

[10] they show how one can obtain a risk neutral measure in an unique
and transparent way if the logarithms of the value of the underlying
security is a Levy process. The idea is now to choose such a model.
Let now Lt be the underlying loss index for a catastrophe insurance

derivative, [0; T1] be the loss period and [T1; T2] be the development
period. We then assume that Lt for all t 2 [0; T2] is described by

Lt = L0 exp(Xt)

where Xt is a levy process in the development period and in the loss
period and L0 2 IR+. We model Xt di�erently in the loss period and
the development period, for a similar model see [11]. The question
is then how to model Xt for the loss period and for the development
period.
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For t 2 [0; T1] we will model Xt by a compound Poisson process

Xt =
NtX
i=1

Yi 8t 2 [0; T1]

where Nt is a Poisson process with a �xed parameter �1, and Yi is
exponentially distributed with parameter �. We hereby obtain one of
the desired properties namely as mentioned above the heavy tail for Lt,
e.g. when Xt �Exp(�) then Lt � L0 is Pa(�; L0) distributed. But as
mentioned above this model is not chosen because it is the most obvious
one but because it has a heavy tail, allows for 
uctuation and gives the
possibility to express the price in a closed form. The model therefore
also has some disadvantages compared to a more natural model, �rstly
late catastrophes become more severe than earlier ones and secondly
L0 = L0 > 0. For this reason this model should only be used as a �rst
\crude" approximation to the real world. We have tried to work out
these problems, but this seems to be hard.
It should be mentioned that it is possible to make a model which

allows for more 
uctuation, e.g. we can also express the price in a closed
form with Yi =

PMi

j=1 Yij whereMi is negative binomial distributed and
Yij is exponentially distributed, but to keep the model tractable we
consider the simple model. Also in order to keep the model simple we
assume that all the adjustments are done in the development period.
We now have to choose a model for Xt for the development period.

We know that the adjustments are done both upwards and downwards
we will therefore again describe Xt as a compound Poisson process for
t 2 [T1; T2]

Xt = XT1 +

~Nt�T1X
i=1

~Yi

where ~Nt is a Poisson process with a �xed parameter �2 and ~Yi is
normally distributed (N(�; �)), where the most natural choice of �
is � = 0 (unbiased previous estimates). In order to use the results
from Gerber and Shiu [10] we need to assume that the process Xt for
t 2 [0; T1] is independent of the process Xt � XT1 for t 2 [T1; T2]. In
the real world one will expect some dependence but the assumption is
invariable in order to use the results form [10].
The value of the PCS call option at expiration day T2, with exercise

price A and cap value K is given by

C(T2; LT2) = min(max(LT2 � A; 0); K � A):

Let Ft be the information available at time t. We will then make the
following assumption
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� Ft is the smallest right continuous complete �ltration, such that
the aggregate amount of reported losses at time t (Lt) is (Ft)-
adapted.

The value of the option at time t is then

C(t; Lt) = exp(�r(T2 � t))E�[C(T2; LT2)jFt]

where r is the risk free interest rate and E� is the mean value according
to a risk neutral measure. Before we can proceed further in the calcu-
lation of the option price we will have to choose a risk neutral measure.
This is done in the next sections.

3. The computation of the risk neutral measure

This section describe how to compute a risk neutral measure using
the Esscher Transform. The theory was introduced by Gerber and
Shiu [10]. But some adjustments have to be made in order to use their
results in our context.

3.1. The computation of the risk neutral measure. Let Lt be
the value of the PCS index at time t.

Lt = L0 exp(Xt); 8t 2 [0; T1]; (3.1)

where Xt is a Levy process. To keep it simple we only consider the
loss period, we extend the results to the development period later. Let
M(z; t) be the moment generating function de�ned by:

M(z; t) := E[exp(zXt)] =

Z 1

�1

exp(zx)F (dx; t) (3.2)

provided the integral is �nite, where F denotes the distribution function
forXt. Because of the independent stationary increments we then have,
(see [9], section IX.5), that

M(z; t) = (M(z; 1))t (3.3)

For any h 2 IR the Esscher-Transformation F (dx; t; h) is de�ned as:

F (dx; t; h) =
exp(hx)F (dx; t)

M(h; t)
: (3.4)

From this transformed density we de�ne the Esscher-transformed mo-
ment generating function as:

M(z; t; h) =

Z 1

�1

exp(zx)F (dx; t; h) =
M(z + h; t)

M(h; t)
: (3.5)

Then it follows from (3.3) and (3.5) that

M(z; t; h) = (M(z; 1; h))t (3.6)
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The idea of Gerber and Shiu [10] is to choose h = h� such that
the discounted underlying process here fe�rtLtg becomes a martin-
gale under the Esscher transformed measure. But absence of arbitrage
arguments do not apply because the underlying process Lt is a loss
index and not a price process, i.e. it gives no meaning to derive the
risk neutral measure under the conditions that fe�rtLtg should be a
martingale. So we have to consider another process. Let Pt be the
deterministic premium paid till time t to receive the value Lt at time
t and assume that the index fLt=Ptg is a traded asset. We then use
the idea of Gerber and Shiu by choosing h = h� such that the process
fe�rtLt=Ptg is a martingale under the Esscher transformed measure.
The question now is how to model Pt. We have to consider the loss

period and the development period separately. We therefore �rst con-
sider the loss period. Insurance markets are competitive and certainly
with the introduction of securitization which o�er an alternative to
reinsurance, we argue that it is reasonable to assume that the insurance
markets creates no arbitrage possibilities. We will therefore calculate
the premium according to the adjusted parameter principle suggested
by Venter [13]. See the latter paper for a description of the premium
principle and a discussion of why this premium principle is arbitrage
free. Let now ~�1 and ~� be the adjusted parameters and let ~Xt be the
adjusted process, i.e. ~Xt is a compound Poisson process with Poisson
parameter ~�1 and with marks that are exponentially distributed with
parameter ~�. . The premium is then:

Pt = EP [ ~Lt]

= EP [L
0 exp( ~Xt)]

= L0 exp(
~�1t

(~�� 1)
)

Motivated by this we will use the following model for Pt

Pt = L0 exp(�1t)

We are now ready to �nd the parameter h�l and thereby derive the
risk neutral measure in the loss period. h�l is chosen such that the pro-
cess fe�rtLt=Ptg is a martingale under the Esscher transformed measure

E�[exp(�rt)Lt=Pt] = 1

) exp((r + �1)t) = E�[exp(Xt)]

) exp((r + �1)t) =

Z 1

�1

exp(x)F (dx; t; h�l )

) exp((r + �1)t) =M(1; t; h�l ) (3.7)
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By (3.6) it follows that the condition for h�l in the loss period is:

exp(r + �1) =M(1; 1; h�l ) (3.8)

For the development period the situation is similar, the model for
Xt is just di�erent. Let now ~�2, ~� and ~� be the adjusted parameters
corresponding to the development period. For t 2 [T1; T2] the premium
is:

Pt = EP [L
0 exp( ~Xt)]

= EP [L
0 exp( ~XT1) exp( ~Xt � ~XT1)]

= L0 exp(�1T1) exp( ~�2(t� T1)(e
~�2

2
+~� � 1))

= L0 exp(�1T1) exp(�2(t� T1)):

And as before it follows that the condition for h�d in the development
period is given by:

E�[exp(�rt)Lt=Pt] = 1

) e(r+�1)T1e(r+�2)(t�T1) = E�[exp(XT1) exp(Xt �XT1)]

) e(r+�1)T1e(r+�2)(t�T1) =Ml(1; T1; h
�
l )Md(1; t� T1; h

�
d)

where Ml(1; t; h) and Md(1; t; h) denotes the Esscher-transformed mo-
ment generating function forXt for t in the loss period and development
period respectively. It hereby follows that the condition for h�d in the
development period is:

exp(r + �2) =M(1; 1; h�d) (3.9)

The Radon-Nikodym derivative for the risk neutral Esscher measure
on the �-algebra Ft can now be characterized

dQ

dP
jFt =

8<
:

eh
�

l
Xt

Ml(h
�

l
;t)

t 2 [0; T1]

e
h
�

l
XT1

Ml(h
�

l
;T1)

e
h
�

d
(Xt�XT1

)

Md(h
�

d
;t�T1)

t 2 [T1; T2]

where h�l and h
�
d are given by equation 3.8 and equation 3.9 respectively.

Above we derive the risk neutral measure Q under the assumption
that fLt=Ptg is a traded index, but it should be mentioned that this
assumption is not strictly needed. It is basically the information in Pt
that determines the Q measure, i.e. the measure Q is derived such that
it evaluates the risk in the same way as Pt does. So instead of using
that fLt=Ptg is a traded index, the measure Q can be derived directly

from the equation e�rtEQ[exp(
PNt

i=1Xi)] = exp(�1t).
Although there is more than one equivalent measure, the risk neutral

Esscher measure provides a unique and transparent answer. Motivated
by [10] we now try to justify the choice of the Esscher measure by
looking at a representative investor maximizing his expected utility.
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3.2. The representative investor with power utility function.

Consider a market with only the traded index (Lt=Pt) and a risk free
bond and their derivative securities. To keep it simple we only consider
the loss period. Assume there exists a representative investor who has
m shares of of the traded index Lt=Pt and who bases his decisions on
a risk-averse utility function u(x). Consider then a derivative security
that provides a payment �t at time t, t > 0; �t is a function of the
index process (Lt=Pt) until time t. What is the investors price for the
derivative security, such that it is optimal for him not to buy or sell
any multiple of it? Let V0 denote this price. Mathematically, this leads
to the function

 (�) = E[u(mLt=Pt + �(�t � ertV0))]

is maximal for � = 0. From

 0(0) = 0

we obtain

V0 = e�rt
E[�tu

0(mLt=Pt)]

E[u0(mLt=Pt)]

(as a necessary and suÆcient condition, since  00(�) < 0 if u00(x) < 0).
In the particular case of a power utility function with parameter c > 0,

u(x) =

�
x1�c

1�c
if c 6= 1

ln(x) if c = 1

We have u0(x) = x�c, and

V0 = e�rt
E[�t(m(Lt=Pt))

�c]

E[(m(Lt=Pt))�c]
= e�rt

E[�t(Lt=Pt)
�c]

E[(Lt=Pt)�c]
(3.10)

Formula (3.10) must hold for all derivative securities. For �t = Lt=Pt
and therefore V0 = 1, (3.10) becomes

1 = e�rt
E[(Lt=Pt)

1�c]

E[(Lt=Pt)�c]

or

exp((r + �1)t) =
M(1� c; t)

M(�c; t) : (3.11)

Comparing (3.11) with (3.7) we see that the value of the parameter �c
is h�l . Hence Pt is indeed the expectation of the losses Lt calculated
with respect to the risk neutral measure.
The results from this section will now be used in the next section,

where the concrete risk neutral Esscher measures for both the loss
period and the development period will be computed.
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4. The risk neutral Esscher measures

In this section we compute the risk neutral Esscher measures for both
the loss period and the development period.

4.1. The risk neutral Esscher measure for the loss period.

In this section we will compute the risk neutral Esscher measure for
the compound Poisson process where the marks are exponentially dis-
tributed.

Xt =
NtX
i=1

Yi

where Nt � Po(�1t) and Yi �Exp(�).
The moment generating function of Xt is

M(z; t) = E[exp(z(
NtX
i=1

Yi))]

= exp

�
�1t

�
�

�� z
� 1

��
: (4.1)

The Esscher-transformed moment generating function is then com-
puted according to (3.5)

M(z; t; h) = exp

�
�1t
� �

�� (z + h)
� �

�� h

��

= exp

�
�1

�

�� h
t
� (�� h)

(�� h)� z
� 1

��
: (4.2)

From (4.1) and (4.2) it follows that the Esscher transformed process
is again a process of the same type as the original one, provided h < �.
Let ~Xt denote the Esscher transformed process, then

~Xt =

~NtX
i=1

~Yi

where we now have that ~Nt � Po(�1
�

��h
t) and ~Yi �Exp(� � h).

We are now ready to calculate the parameter h�l which determines
the risk neutral Esscher measure.
We use (3.8) to �nd h�l

M(1; 1; h�l ) = exp(r + �1)

) exp

�
�1

�

�� h�l
(

(�� h�l )

(�� h�l )� 1
� 1)

�
= exp(r + �1)

) (h�l )
2 � (2�� 1)h�l + �(�� 1 +

�1
r + �1

) = 0 (4.3)

(4.3) is a second order equation where only one of the solutions ful�lls
the restriction h�l < �.
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Finally we will compute P �(Xt � x)

P �(Xt � x) = P ( ~Xt � x)

=
1X
n=0

P (Nt = n)P (
nX
i=0

~Yi � x)

=
1X
n=0

P (Nt = n)

Z x

0

(�� h�l )
n�(n)�1zn�1e�(��h

�

l
)zdz

=
1X
n=0

e��
�

1t
(��1t)

n

n!
��(n; �; x) (4.4)

where ��1 = �1
�

��h�
l

and ��(n; �; x) =
R x
0
(��h�l )n�(n)�1zn�1e�(��h�l )zdz

4.2. The risk neutral Esscher measure for the development pe-
riod. In this section we will compute the risk neutral Esscher measure
for the compound Poisson process where the claim sizes are normally
distributed.

Xt =
NtX
i=1

Yi

where Nt � Po(�2t), and Yi � N(�; �).
The moment generating function of Xt is

M(z; t) = E[exp(z(
NtX
i=1

Yi))]

= exp
�
�2t

�
e
�
2

2
z2+�z � 1

��
(4.5)

The Esscher-transformed moment generating function is then com-
puted according to (3.5).

M(z; t; h) = exp
�
�2t

�
e
�
2

2
(z+h)2+�(z+h) � e

�
2

2
h2+�h

��
= exp

�
�2te

�
2

2
h2+�h

�
e
�
2

2
z2+(�+�2h)z � 1

��
(4.6)

From (4.5) and (4.6) it follows that the Esscher transformed process
is again a process of the same type as the original one. Let ~Xt denote
the Esscher transformed process then.

~Xt =

~NtX
i=1

~Yi

where we now have ~Nt � Po(�2e
�
2

2
h2+�ht) and ~Yi � N(�2h + �; �2).

We are now ready to calculate the parameter h�d which determines
the risk neutral Esscher measure.
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We use (3.9) to �nd h�d

M(1; 1; h�) = exp(r + �2)

) exp
�
�21

�
e
�
2

2
(1+h�

d
)2+�(1+h�

d
) � e

�
2

2
h�
d

2+�h�
d

��
= exp(r + �2)

) e
�
2

2
(1+h�

d
)2+�(1+h�

d
) � e

�
2

2
h�
d

2+�h�
d =

r + �2
�2

(4.7)

the solution to (4.7) has to be found numerically.
Finally we will compute P �(Xt � x)

P �(Xt � x)

= P ( ~Xt � x)

=
1X
n=0

exp(��2te�
2

2
h�
d

2+�h�
d)
(�2te

�
2

2
h�
d

2+�h�
d)n

n!
P (

nX
i=1

~Yi � x)

=
1X
n=0

exp(��2te�
2

2
h�
d

2+�h�
d)
(�2te

�
2

2
h�
d

2+�h�
d)n

n!
�(
x� n(�2h�d + �)p

n�2
)

=
1X
n=0

exp(���2t)
(��2t)

n

n!
�(
x� n��p

n�2
) (4.8)

where ��2 = �2te
�
2

2
h�
d

2+�h�
d and �� = �2h�d + �. For later use we also

de�ne ��+1
2 = �2te

�
2

2
(h�

d
+1)2+�(h�

d
+1) and ��+1 = �2(h�d + 1) + �.

5. Calculation of the PCS option price

Now we have calculated the risk neutral Esscher measure for both
the loss period and the development period. We are therefore ready to
calculate the PCS option price.
Let us now consider the PCS call option with exercise price A, cap

K and expiring date T2. Let v1(t) := ln(A=(L0 expXt)) and v2(t) =
ln(K=(L0 expXt)). The value of the option at time t 2 [T1; T2] is:

C(t; Lt)

= E�[exp(�r(T2 � t))min(max(LT2 � A; 0); K � A)jFt]

= E�[exp(�r(T2 � t)min(max(L0 exp(Xt) exp(XT2 �Xt)� A; 0); K � A)jFt]

= exp(�r(T2 � t))
�Z v2(t)

v1(t)

(Lt exp(x)� A)F (dx; T2 � t; h�d)

+(K � A)(1� F (v2(t); T2 � t; h�d))
�

= exp(�r(T2 � t))
�
Lt

Z v2(t)

v1(t)

exp(x)F (dx; T2 � t; h�d)

+K(1� F (v2(t); T2 � t; h�d))� A(1� F (v1(t); T2 � t; h�d))
�
:
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Using (3.4), (3.5) and (3.7) the integrand can be reduced further:

exp(x)F (dx; T2 � t; h�d) =
exp((h�d + 1)x)F (dx; T2 � t)

M(h�d; T2 � t)

=
M(h�d + 1; T2 � t)

M(h�d; T2 � t)
F (dx; T2 � t; h�d + 1)

= M(1; T2 � t; h�d)F (dx; T2 � t; h�d + 1)

= exp(�2(T2 � t))F (dx; T2 � t; h�d + 1)

We hereby obtain:

C(t; Lt) = exp(�r(T2 � t))
�
Lt exp(�2(T2 � t))

�
F (v2(t); T2 � t; h�d + 1)

�F (v1(t); T2 � t; h�d + 1)
�
+K(1� F (v2(t); T2 � t; h�d))�

A(1� F (v1(t); T2 � t; h�d))
�

(5.1)

And if we use the results from the Section 4.2 we obtain

C(t; Lt)

= e(�2�r)(T2�t)Lt

1X
n=0

exp(���+1
2 (T2 � t))

(��+1
2 (T2 � t))n

n!�
�(
v2(t)� n��+1

p
n�2

)� �(
v1(t)� n��+1

p
n�2

)

�

+e�r(T2�t)
1X
n=0

exp(���2(T2 � t))
(��2(T2 � t))n

n!

�
K(1� �(

v2(t)� n��p
n�2

))

�A(1� �(
v1(t)� n��p

n�2
))
�

(5.2)

If t 2 [0; T1] the value of the call option at time t is given by

C(t; Lt) = e�r(T2�t)E�[C(T2; LT2)jFt]

= e�r(T2�t)E�[E�[C(T2; LT2)jFT1]jFt]

the value of E�[C(T2; LT2)jFT1] is known from (5.2). At time t < T1
the values of LT1 ; v1(T1) and v2(T1) are stochastic. The conditional
mean value at time t is therefore obtained by integrating the expression
with respect to the distribution function for the risk neutral Esscher
transformed process in the loss period which we calculated in section
4.1.
The values of LT1 , v1(T1) and v2(T1) can all be expressed by the value

of an independent copy ( ~Xt) of Xt.
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� LT1 = L0 exp(Xt) exp(XT1 �Xt)
d
= L(t) exp ~X(T1�t)

� v1(T1) = v1(t)�XT1 +Xt
d
= v1(t)� ~X(T1�t)

� v2(T1) = v2(t)�XT1 +Xt
d
= v2(t)� ~X(T1�t)

Let now ~F (dx; T1�t; h�l ) denote the Esscher transformed distribution
for ~X(T1�t), which we found in section 4.1 (h�l denote the parameter
which determines the risk neutral Esscher measure in the loss period).
The value of the option price at time t 2 [0; T1] is then

C(t; Lt) = e(�2�r)(T1�t)L0 exp(Xt)Z 1

�1

exp(x)
1X
n=0

exp(���+1
2 (T2 � T1))

(��+1
2 (T2 � T1))

n

n!�
�(
v2(t)� x� n(�2(h�d + 1) + �)p

n�2
)

��(v1(t)� x� n(�2(h�d + 1) + �)p
n�2

)
�
~F (dx; (T1 � t); h�l )

+e�r(T2�t)
Z 1

�1

1X
n=0

exp(���2(T2 � T1))
(��2(T2 � T1))

n

n!�
K(1� �(

v2(t)� x� n��p
n�2

))

�A(1� �(
v1(t)� x� n��p

n�2
))
�
~F (dx; (T1 � t); h�l )

(5.3)

where ~F (dx; (T1 � t); h�l ) is given by (4.4)

~F (dx; (T1 � t); h�l )

=
1X
n=0

exp(���1(T1 � t))
(��1(T1 � t))n

n!
��(n; �; x)

From the above results we can now state the following theorem.

Theorem 5.4. Let Lt be the value of the PCS index at time t;

Lt = L0 exp(Xt) 8t � 0

For t 2 [0; T1] (the loss period) assume that

Xt =
NtX
i=1

Yi

where Nt � Po(�1t) and Yi �Exp(�).
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For t 2 [T1; T2] (the development period) assume that

Xt = XT1 +

~Nt�T1X
i=1

~Yi

where ~Nt � Po(�2t), and Yi � N(�; �).
Then the price of the PCS call option for t 2 [T1; T2] is given by (5.2)

and for t 2 [0; T1] it is given by (5.3).

6. Conclusion

The purpose of this note was to derive a model for pricing insur-
ance derivatives which allows for heavy tails and also provide a unique
pricing measure. We succeeded in �nding such a model by modelling
the logarithms of the loss process as a compound Poisson process with
exponential distributed marks in the loss period and with normal dis-
tributed marks in the development period. The price was then found by
evaluating the future payout of the insurance derivative under the risk
neutral measure derived by the Esscher approach. We then calculated
the exact price in the case of the PCS option.
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IMPLIED LOSS DISTRIBUTIONS FOR CATASTROPHE

INSURANCE DERIVATIVES

CLAUS VORM CHRISTENSEN

Abstract. We analyse prices for catastrophe insurance deriva-
tives in the same way as Lane and Movchan [10] considering the
\implied loss distributions" embedded in the traded prices. There
are two main problems in this analysis. First, what kind of dis-
tribution should be chosen for the implied losses and, second how
should the involved parameters be estimated? In this paper we
give answers to these two questions.

1. Introduction

Since the introduction of the insurance derivatives in 1992, there have
been a problem pricing these products and several attempts has been
made, see [1], [2], [5], [6], [7], [9] and [12]. It has not been possible to
�nd a unique model like the Black Scholes model because the underly-
ing cannot be described by a distribution as simple as the log normal
and furthermore, the underlying is not traded. The underlying (the
aggregate catastrophe losses, which we in the following will denote LT )
would instead most naturally be described by a marked point process
with heavy tail distributed marks. But the problem of such a model
for the underlying is that the market becomes incomplete and it is
then an open question how the pricing measure should be determined.
Furthermore, the heavy tailed distribution often gives computationally
problems, e.g. if the pricing measure is determined by a representa-
tive agent with an exponential utility function, the marks must have
an exponentially decreasing tail. So, estimating parameters for the
marked point process and calculating consistent prices using a closed
form pricing model is just now not a workable plan.
We therefore lead our analysis in another direction. We follow a pro-

cedure familiar to the conventional option market which also is sug-
gested by Lane and Movchan in [10], namely rather than estimating
volatilities and calculate consistent prices using, say the Black Scholes
model, take the traded prices and extract the volatilities consistent
with those prices, i.e. �nd the implied volatility. We cannot use ex-
act the same procedure on the insurance derivative market, since as

1991 Mathematics Subject Classi�cation. 62P05.
Key words and phrases. Implied loss distribution, parameter estimation, rein-

surance, Catastrophe insurance derivatives, PCS-options.
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2 C. VORM CHRISTENSEN

mentioned above, we are not able to characterize the price by a sin-
gle parameter. But we can do something similar. We can choose a
model for the implied loss distribution and then estimate the implied
parameters from observed prices.
This analysis can be used to evaluate cheapness and dearness among

di�erent prices and di�erent insurance derivative products. We simply
calculate implied prices from the implied loss distributions and compare
them to the observed prices. This analysis is very relevant seen in
relation to the recent trading success observed at the Chicago Board
of Trade (CBoT) competitors namely by The Bermuda Commodities
Exchange (BCOE) and The Catastrophe Risk Exchange (CATEX).
There are two main problems related to this analysis. First what

kind of distribution should be used for the implied loss distribution
and second, how the involved parameters should be estimated. We are
going to answer these two questions in this paper. The data material
used for this analysis are the prices for the National PCS call spreads
announced by the CBoT on January 1st 1999. For a description of the
PCS-option see [4].
The paper will proceed as follows. In section 2 we will present the

di�erent models for the implied loss distributions, in section 3 we will
describe the procedure for estimating the parameters, in section 4 we
present the data and estimate the parameters, in section 5 we evaluate
the di�erent models and �nally, there are some concluding remarks.

2. The implied loss distribution

In this section we present six di�erent models for the implied losses.
First, we will give a general description of the price for a PCS call
spread expressed by the implied loss distribution.
Consider now a PCS call spread expiring at time T with upper and

lower strike Ku and Kl respectively. Let eFLT and efLT be the implied
distribution function and the implied density function for the aggregate
PCS loss index (LT ) at time T . The value of the PCS call spread at
time 0 is then given by

PKu;Kl
(L0; 0) = eE[min(max(LT �Kl; 0); Ku �Kl)]

=

Z Ku

Kl

(x�Kl) efLT (x)dx + (Ku �Kl)(1� eFLT (Ku))

The question is now, how is this implied loss distribution of the PCS
index related to the real statistical distribution, i.e. the distribution
under the P -measure? Before we try to answer this question we con-
sider an example.
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Example 2.1. Let the statistical distribution for the aggregate losses
be described by a compound Poisson process, i.e.

LT =

NTX
i=1

Yi

where NT � Pois(�T ), Yi � FY and Yi are iid and independent of NT .
We will now price the PCS call spread by the approach of Embrechts
and Meister [9]. There the general equilibrium approach is used, where
all the utility functions of the agents are of exponential type. More
precisely, let at time t the price of the PCS call spread be given by
PKu;Kl

(Lt; t), the value of the PCS index be given by Lt and the infor-
mation be given by Ft, the price at time t see [9], is

PKu;Kl
(Lt; t) =

EP [exp (�LT )min(max(LT �Kl; 0); Ku �Kl) j Ft]

EP [exp (�LT ) j Ft]

where � is the risk aversion coeÆcient.
The term exp (�LT )=EP [exp (�LT ) j Ft] is strictly positive and inte-

grates to one. Thus it is the Radon-Nikodym derivative dQ=dP of an
equivalent measure. We can therefore express the price PKu;Kl

(Lt; t) as

PKu;Kl
(Lt; t) = EQ[min(max(LT �Kl; 0); Ku �Kl) j Ft]

where dQ=dP = exp(�LT )=EP [exp(�LT ) j Ft]. If PKu;Kl
(Lt; t) is the

correct price, the distribution of the PCS index under the risk neutral
measure Q should coincide with the implied loss distribution. There-
fore, if we are able to �nd the distribution of the PCS index under
the risk neutral measure, we are also able to say something about the
implied loss distribution.
Let us now try to �nd this distribution. For an introduction to

change of measure methods, we refer to [11]. Let MY (�) denote the
moment generating function for Y . By the above de�nition of the
Q-measure, it follows that 1 � i � n

Q(NT = n; Yi 2 Ci)

=
1

EP [exp (�LT )]
EP [exp (�LT )1fNT=ng1fYi2Cig]

=
1

EP [exp (�LT )]
EP [exp (�

nX
i=1

Yi)1fNT=ng1fYi2Cig]

=
1

exp(�(MY (�)� 1))
MY (�)

nP (NT = n)
nY
i=1

EP [exp(�Yi)1fYi2Cig]

MY (�)

=
1

exp(�(MY (�)� 1))
MY (�)

n (�)
n

n!
e��

nY
i=1

EP [exp(�Y1)1fYi2Cig]

MY (�)

= e��MY (�) (�MY (�))
n

n!

nY
i=1

EP [exp(�Y1)1fYi2Cig]

MY (�)
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Hereby it follows that the process LT is under the new measure Q
a process of the same type but with di�erent parameters as under P .
Under Q, NT is a Poisson process with rate �MY (�) and the individual

claims have the distribution function FQ
Y (x) =

R x
0
e�ydF (y)=MY (�)

(e.g. if Y � �(�; 
) then Y � �(���; 
) under Q). Similar results for
another model can be found in [5].

In example 2.1 we �nd that the implied loss distribution and the sta-
tistical distribution are of the same type only with di�erent parameters.
It would be convenient if this were true in general. When modelling
the implied losses, we would only have to look among the models which
reasonably could be used to describe the real losses. But is this true in
general?
As mentioned earlier the most natural way to describe the real losses

is by a marked point process with positive marks. Let us now recall the
de�nition of a marked point process. A marked point process with posi-
tive marks is a sequence (Tn; Yn)n�1 of stochastic pairs, where T1; T2; : : :
are non-negative and represent time of occurrence of some phenomena
represented by the non-negative elements Y1; Y2; : : : referred to as the
marks of the process. By this de�nition it follows that if (Tn; Yn) is
a marked point process with positive marks under P , then (Tn; Yn) is
a marked point process with positive marks under Q, where Q is an
equivalent measure. So, if the real losses are described by a marked
point process the implied losses should also be described by a marked
point process.
The distribution for the implied losses and the distribution for the

real losses will in general not be the same. But by the discussion above,
we will only use models which could reasonably be used to describe the
real losses, when we now start to model the implied losses. We now
present six models for the implied losses.

2.1. Model 1. The �rst model we will use in our analysis is the same
model as the one suggested by Lane and Movchan [10], namely a com-
pound Poisson model with gamma distributed claims, i.e.

eLT =

NTX
i=1

Yi

where eLT are the implied losses, NT � Pois(�T ) and Yi � �(
; �).
This model is also suggested in [1], here a closed form pricing model
are derived in the framework of general economic equilibrium theory
under uncertainty.
The nice thing about this model is that we know the nth convolution

of the Y 's (Y1+: : :+Yn � �(n
; �)). This fact makes the computations
very simple. A disadvantage of the model is that the claims are light
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tailed, whereas data give evidence that the distribution tail of the ag-
gregate claims is heavy tailed. In this model we can only approximate
a heavy tail by choosing low values of 
 and �.
It is important to have this model in the analysis in order to see

how the result from this model di�ers from the following and more
complicated models. The value of the PCS call spread with strikes Kl

and Ku at time 0 is given by

PKu;Kl
(L0; 0)

=

Z Ku

Kl

(x�Kl) efLT (x)dx+ (Ku �Kl)(1� eFLT (Ku))

=
1X
n=1

e��
�n

n!

�Z Ku

Kl

�n
�(n
)�1xn
e��xdx

+Ku

Z 1

Ku

�n
�(n
)�1xn
�1e��xdx

�Kl

Z 1

Kl

�n
�(n
)�1xn
�1e��xdx
�

where L0 = 0.

2.2. Model 2. Looking at the listed call spreads we see, that the one
with the lowest strikes is the 40/60 call spread. The bid and ask for this
call spread is 12 and 15 respectively, which are relatively large values
for a product that has a maximal pay-out of 20. These facts could
therefore indicate that the market expects that the loss index will be
above a given threshold K0 for sure. If this is true and K0 > 40,
then there is no market for a 20/40 call spread, because the market
will expect the call spread to be worth 20 for sure. Based on these
indications we extend model 1,

eLT = K0 +

NTX
i=1

Yi

where eLT are the implied losses, K0 is a constant indicating the thresh-
old the market expects the losses to be above for sure, NT � Pois(�T )
and Yi � �(
; �). According to the bid of the 40/60 call spread (12),
we will not allow K0 to be above 52 (40+12). A possible interpretation
of this model is to think of K0 as the mean value of the \normal" claims
and of the compound Poisson process as a model of the excesses.
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The computations are still very simple. The value of the PCS call
spread with strikes Kl and Ku at time 0 is here given by

PKu;Kl
(L0; 0)

=

Z Ku

Kl

(x�Kl) efLT (x)dx+ (Ku �Kl)(1� eFLT (Ku))

=
1X
n=1

e��
�n

n!

�Z Ku�K0

(Kl�K0)+
�n
�(n
)�1xn
e��xdx

+ (Ku �K0)

Z 1

Ku�K0

�n
�(n
)�1xn
�1e��xdx

� (Kl �K0)

Z 1

(Kl�K0)+
�n
�(n
)�1xn
�1e��xdx

�
recall that we require K0 < 52 so the term (K0�Kl)

+ is only included
in the price of the 40/60 call spread.

2.3. Model 3. The next model will also rely on a light tail distribution
but we will now put more 
uctuation into the model.
The PCS index can be viewed as the sum of losses from the individual

catastrophes, and the losses from the individual catastrophe can be
viewed as the sum of the individual claims corresponding to this single
catastrophe. We could therefore model the PCS index LT as

LT =

NTX
i=1

MiX
j=1

Yij

where NT is the number of catastrophes, Mi the number of claims from
the ith catastrophe and Yij is claim size number j from catastrophe
number i. A similar model is also suggested in [6], here a closed form
pricing model are derived and it is shown how the above model can be
used to incorporate the reporting times of the claims.
The number of claims from a catastrophe is very large, so by the

strong law of the large numbers it follows that
PMi

j=1 Yij � MiE[Yij].
If the approximation should be good we will also need the Var(Yij)
to be small. If we use this approximation we could describe LT as
LT �

PNT

i=1MiY where Y = E[Yij]. Motivated by this, we now model
the implied PCS index as

eLT =

NTX
i=1

MiY

where NT � Pois(�T ), Mi � NB(
,p) or more precisely by a mixed
Poisson distribution with a � mixing parameter �i � �(
; �) and Y is
a constant. We now have a model allowing for more 
uctuation but
we also have four parameters to estimate. The value of the PCS call
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spread with strikes Kl and Ku at time 0 is here given by

PKu;Kl
(L0; 0)

=
1X
n=1

P (NT = n)
1X
m=1

P (M1 + : : :+Mn = m)g(m)

=
1X
n=1

e��
�n

n!

1X
m=1

E[P (M1 + : : :+Mn = m j �1; : : : ; �n)]g(m)

=
1X
n=1

e��
�n

n!

1X
m=1

E[e�(�1+:::+�n)
(�1 + : : :+ �n)

m

m!
]g(m)

=
1X
n=1

e��
�n

n!

1X
m=1

�Z 1

0

e�x
(x)m

m!
�n
�(n
)�1xn
�1e��xdx

�
g(m)

=
1X
n=1

e��
�n

n!

1X
m=1

�n
�(n
 +m)g(m)

(� + 1)n
+m�(n
)m!

where g(m) = (mY �Kl)
+ � (mY �Ku)

+.

2.4. Model 4. We now construct a model allowing heavy tails. We
simply use the same model as model 1, but we now choose a Pareto
distribution for the Y 's, i.e. LT =

PNT

i=1 Yi where NT � Pois(�T ) and
Yi � Pa(�; �) (fY (x) = ���(� + x)��). However, there is no closed
form formula for the nth convolution of the Y s. We solve this problem
by the following approximation. The value of the PCS call spread with
strikes Kl and Ku at time 0 is given by

PKu;Kl
(L0; 0)

=
1X
n=1

e��
�n

n!

�Z Ku

Kl

(x�Kl)f
�n(x)dx + (Ku �Kl)

Z 1

Ku

f �n(x)dx
�

�
4X

n=1

e��
�n

n!

�Z Ku

Kl

(x�Kl)f
�n(x)dx + (Ku �Kl)

Z 1

Ku

f �n(x)dx
�

where f �n(x) denotes the density for the nth convolution of the Pareto
distribution.
The �rst 4 convolutions are then found by the well-known general

formula for the Lebesgue convolution (f �2(x) =
R x
0
f(x � y)f(y)dy,

f �3(x) =
R x
0
f(x � y)(

R y
0
f(y � z)f(z)dz)dy, : : : ). By taking the �rst

4 convolutions in the sum only it should be possible for a computer to
calculate the expression. And if � (the average number of catastrophes)
is small, the approximation is good because the term

P1
5 e���n=n! will

be small.

2.5. Model 5. This model is inspired by the volatility surface models
which try to explain the volatility smile, i.e. models where the volatility
depends on the strike of the option. We construct a similar model
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where the most explanatory parameter in the implied loss distribution
is dependent on the strike. We assume that the implied loss index is
Pareto distributed, i.e.

fLT � Pa(�; �)

� being just a scale parameter, the most explanatory parameter in this
loss distribution is the � parameter. We therefore choose � to be the
strike dependent parameter, i.e. we assume that � is a function of the
strike (�(k) = f(K)). The estimation of the parameters is done in four
steps, because we have to chose the function f �rst. The four steps are
the following

1. We assume that � = �0, i.e. independent of the strike. We then
let eLT � Pa(�0; �0) and estimate the parameters �0 and �0.

2. We now keep � �xed as �0 and then for each PCS call spread with
strikes Ki

l and K
i
u, we estimate an �i from the traded price or the

bid/ask spread dependent of what is available. These values are
then plotted. A possible picture could be the one given by �gure
2.1.

-

6

20 40 60 80 100 120

�

Strike

Figure 2.1. The � values.

3. From this plot we choose a function to describe �, i.e if we choose
a function f with three parameters a, b and c, a; b; c 2 R. We
can now describe � by �(K) = f(a; b; c;K). The implied loss
distribution for a PCS call option with strike K is therefore given
by

eLT � Pa(�(K); �)

where �(K) = f(a; b; c;K).
4. Let now PK(0; L0) denote the value of a PCS call option at time

0, i.e. PK(0; L0) =
R1
K
(x�K) efL(x)dx. The value of the PCS call
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spread with strikes Kl and Ku at time 0 is here given by

PKu;Kl
(L0; 0) = PKl

(0; L0)� PKu
(0; L0)

=

Z 1

Kl

(x�Kl) efL(x;Kl)dx�
Z 1

Ku

(x�Ku) efL(x;Ku)dx

=

Z 1

Kl

(x�Kl)�(Kl)�
�(Kl)(� + x)��(Kl)�1dx

�
Z 1

Ku

(x�Ku)�(Ku)�
�(Ku)(� + x)��(Ku)�1dx

by use of this expression the parameters a, b c and � can now be
estimated.

2.6. Model 6. The models 3, 4 and 5 could also be extended by in-
cluding a threshold as it was done for model 1 in model 2. But we will
desist from doing this, as model 3 and 5 will be over parameterized
and model 4 will be computationally too heavy. We will return to this
discussion later. The last model we consider is a very simple model,
which we expect to be computationally very fast. It will be interesting
to compare the results of this model with the results of the other more
complicated models. We again include a threshold as we did for model
2 and then model LT by eLT = K0 + YT

where eLT are the implied losses, K0 is a constant indicating the thresh-
old the market expects the losses to be above almost surely, YT �
Pa(�; �). Again we will not allow K0 to be above 52. The value of the
PCS call spread with strikes Kl and Ku at time 0 is here given by

PKu;Kl
(L0; 0)

=

Z Ku

Kl

(x�Kl) efLT (x)dx
+ (Ku �Kl)(1� eFLT (Ku))

=

Z (Ku�K0)

(Kl�K0)+
(x +K0 �Kl)��

�(� + x)���1dx

+ (Ku �Kl)(��
�(� + (Ku �K0))

��)

The above six models are the models we are going to test on our
data. The next step in our analysis is to describe the objective function
from which the parameters should be found. This objective function is
described in the next section.

3. The objective function

Lane and Movchan [10] estimate the parameters for the implied loss
distribution by the following procedure. \The parameters are chosen
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such that they generate prices that are (i) lower than known o�ers; (ii)
higher than known bids, and (iii) closest to actual traded prices. The
optimization is two-tier. First, get inside the bid-o�er spread. Second,
get closest to actual traded prices. The two-tier e�ect is achieved by at-
taching (ideally non-Archimedean) weights to each of the two objective
function. \Closest" is de�ned as the absolute value of the di�erence
between the actual traded price and the theoretical (or �tted) prices".
We agree that it is desirable that the parameters are chosen such that

the prices ful�ll (i) and (ii), but we do not think that the requirements
should be invariable because, if the spreads are very small, it could be
a problem to �nd a solution. And if the theoretical prices appear to be
far away from the spread, it could be used to indicate that the chosen
model may be wrong. We also agree on point (iii), i.e. if our data
contain only traded prices, the parameters should be found by a least
square �t. But the data primarily consist of spreads and single bids or
asks, we therefore suggest the following objective function.

3.1. The objective function. The objective function O that we pro-
pose be minimized in order to �nd the parameters is the following

O =
X
bids

��P bid
i � P th

i

P bid
i

�+�2
| {z }

term 1

+
X
asks

��P th
i � P ask

i

P ask
i

�+�2
| {z }

term 2

+ Æ1

� 1

#spreads

X
spreads

(P bid
i � P ask

i )

(P bid
i + P ask

i )=2

�
| {z }

term 3X
spreads

�P th
i � (P bid

i + P ask
i )=2

P bid
i � P ask

i

�2
^ 1

4| {z }
term4

+ Æ2
X

single bids

��P th
i � 2P bid

i

P bid
i

�+�2
| {z }

term 5

+ Æ2
X

single asks

��0:5P ask
i � P th

i

P ask
i

�+�2�
| {z }

term 6

where the P th
i 's are the theoretical prices, the P bid

i 's are the observed
bids and the P ask

i 's are the observed asks. Æ1 and Æ2 are both constants.
When Pi is a traded price, Pi is considered as both a bid and an ask
where P bid

i = P ask
i .

Term 1 and 2 are included because as mentioned above we prefer the
theoretical prices to be above the observed bids and below the observed
asks. And as for the optimal case where we have only traded prices and
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no bid/ask spreads, these two terms alone will give us the commonly
used least square �t.
As long as the average length of the spreads is small we are close to

the optimal case where we only have traded prices and term 1 and 2
will probably be suÆcient to �nd a solution. But if the average length
of the spread is large there is less information about the prices and we
will probably be unable to �nd a unique solution. We therefore add
term 4, in this term we value the information from the bid and the ask
equally, i.e. we prefer the theoretical price to be in the middle of the
bid/ask spread. We cap the single terms in the sum at 1/4, because if
P th
i = P bid

i or P th
i = P ask

i the single term in the sum is equal to 1/4,
and if P th

i > P bid
i or P th

i < P ask
i then it is punished in term 1 or 2. How

much this fourth term should be valued compared to term 1 and 2 is
then adjusted by term 3. Term 3 is a constant Æ1 and a term denoting
the average length of the spread. In agreement with the comments
above, we thereby obtain, that if the average length of the spreads is
small, we weight P th

i being in the middle less than if the average length
of the spreads is large.
The term 5 and 6 are included in order to secure that the theoretical

prices do not get too far away from the single bid's or ask's. By too far
away we mean that a theoretical price is punished if it is lower than
50 % of a single ask or higher than 200 % of a single bid. By the term
Æ2 we are able to adjust how much the �fth term should be valued
compared to the other terms.
If we also had information about the volumes that are bid and asked,

it could be argued that the bid and ask prices should be weighted by
the corresponding volumes. This is due to the fact that if the volume
is large, the traders are more concerned about the price, and therefore
the price should be more accurate. The problem with this argument
is that there is an opposite e�ect, namely if the asks are much higher
than the \true" price, we also expect the volumes to be large and if
the bids are much lower than the \true" price, we expect the volume
to be large. We therefore do not take the volumes into the objective
function. We are now ready to estimate the parameters for the models
described in section 2 by the above objective function. This estimation
is the subject of the next section.

4. The parameter estimation

In this section we estimate the parameters and evaluate the six mod-
els described in section 2. Before we start to estimate we �rst present
the data.

4.1. The data. The data material that we are going to use for this
analysis are the prices for the National PCS call spreads announced by
the CBoT on January 7th 1999.
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The �rst change in the underlying PCS index was made January
19th, where the index increased from 0 to 7.6. We have chosen the
data from January 7th because the last changes in the bids and asks
before January 19th were made here. If we take data from dates after
January 19th we have to take the value of the index into account. If we
consider data from a time point t where the PCS index is greater than
0, some adjustments have to be done. The implied losses at expiration
time T can, at time t, be written as eLT = (eLT � Lt) + Lt, where Lt
is a constant and eLT � Lt is the implied losses in the period from t
to T . eLT � Lt can then be described by the same models as we used
to describe eLT , but the parameters will probably be changed. Even
though we are looking at a model where eLT is a stationary process, we
cannot expect the same parameters since the PCS index is in
uenced
by some large seasonal e�ects.
The National PCS call spreads announced by the CBoT on January

7th 1999 is given by table 4.1.

Call Spreads Kl=KU bid ask

National 40/60 12.0 15.0
National 60/80 6.0 12.0
National 80/100 4.0 8.0
National 100/120 2.8 4.0
National 150/200 4.3 6.0
National 200/250 2.8 4.0
National 250/300 3.5
National 300/350 3.0

Table 4.1. The National PCS call spread prices.

4.2. The estimation. The parameters are found by minimizing the
objective function, with Æ1 = 0:001 and Æ2 = 0:1. We return to the dis-
cussion of these parameters later. The objective function is a function
depending on a higher dimensional variable (the dimension is given
by the number of parameters in the model). We therefore choose to
minimize it by using a modi�cation of the method of steepest decent
described by Broyden see [3] and [8].
When we evaluate the models it is important to consider the com-

puter time used in order to �nd the optimum. This time is of course
dependent on the chosen initial parameter values, it is therefore not
possible to compare the computer times directly. But after running
the programs a couple of times, one gets an indication of how fast or
slow the di�erent models are. The table below gives a brief indication
of how computationally heavy the models are. The �gures in this table
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Model Computer time used

1 hours
2 hours
3 days
4 days
5 hours
6 seconds

Table 4.2. The computer time used.

are very brief. But from the table it is very clear that model 3 and 4
seems to be computationally heavy compared to model 1, 2, 5 and 6.
We will keep this in mind for the evaluation of the models. It is not
possible to disqualify any of the models, because the computer times
could be reduced with a faster computer, or by using method tailored
for the problem to solve.

4.3. The theoretical prices. We are now ready to estimate the pa-
rameters. The estimation of the parameters for model 1, 2, 3, 4 and 6 is
straightforward. We simply write a computer program that calculates
the theoretical prices according to the above formulas and minimize
the objective function according to the description in [3] and [8]. For
model 5 we have to do the estimation in four steps as described in
section 2. In step 1 we �nd � = 7:66 and � = 508. In step 2 we then
set � = 508 and estimate the di�erent �'s, the �'s are shown in �gure
4.1.

-

6

50 100 150 200 250 300

�

Strike

Figure 4.1. The � values.

In step 3 we then have to choose a function to describe the de-
pendence between the �-parameter and the strike value. Figure 4.1
shows that we need at least three parameters to describe this de-
pendence. Another thing we have to keep in mind is that the �-
parameter has to be positive. We therefore choose the following func-
tion �(K) = exp(aK�2+bK�1+c) to describe the dependence between
the �-parameter and the strike value. With this function we run the
computer program.
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The parameters found by minimizing the objective function, the cor-
responding mean values and variances for the implied losses and the
theoretical prices are listed in table 4.3, table 4.4 and table 4.5 respec-
tively.

Model par. 1 par. 2 par. 3 par. 4 value

1 � = 70 � = 0:0123 
 = 0:0129 0.058
2 � = 55 � = 0:0050 
 = 0:0039 x = 47:2 0.00015
3 � = 36 � = 0:00019 
 = 0:0266 Y = 0:015 0.086
4 � = 2:6 � = 3:50 � = 90:7 0.060
5 � = 58 a = �0:117 b = �4:082 c = 0:596 0.013
6 � = 24 � = 1:25 x = 40:0 0.00010

Table 4.3. The estimated parameters.

M1 M2 M3 M4 M5 M6
Mean value 74 90 77 96 (73;91) 139
Variance 6096 8453 6178 11652 1 1

Table 4.4. Mean value and variance.

Kl=KU bid M1 M2 M3 M4 M5 M6 ask

40/60 12.0 9.87 13.56 10.02 9.33 13.57 13.57 15.0

60/80 6.0 7.61 6.55 7.72 7.27 8.00 7.48 12.0

80/100 4.0 5.88 4.82 5.96 5.63 5.49 5.03 8.0

100/120 2.8 4.55 3.78 4.60 4.36 4.07 3.73 4.0

150/200 4.3 5.07 5.07 5.06 4.92 5.08 4.88 6.0

200/250 2.8 2.71 3.35 2.67 2.78 3.41 3.45 4.0

250/300 1.45 2.29 1.41 1.67 2.46 2.64 3.5

300/350 0.78 1.60 0.74 1.06 1.87 2.11 3.0

Table 4.5. The theoretical prices.

5. Evaluation of the models

In this section we evaluate the results of the estimations from the
previous section.

5.1. Model 1. From table 4.5 we see that model 1 is unable to gen-
erate prices that get into the bid/ask spread of the 40/60 and 200/250
call spreads and we also see that it produces very low prices for the
250/300 and 300/350 call spreads. This indicates that model 1 is a bad
description of the implied losses. But recall that this is the model that
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was successfully suggested by Lane and Movchan in [10] so why now
this di�erence? In [10] they consider market prices midyear 1998 where
the PCS index was nearly 40 and this apparently makes a di�erence.
We also tried to model the midyear 1998 prices with model 1 and our

objective function. The results are shown in table 5.1 (The � parameter
from [10] has been adjusted to correspond to the index value and not
the Billion $ value).

Kl=KU bid LM CVC ask

40/60 11.0 11.0 12.0
60/80 6.0 7.5 8.2 10.0

80/100 5.7 6.1 8.0

100/120 3.5 4.4 4.6 6.0

100/150 9.4 9.5 12.0

120/140 1.0 3.5 3.5 6.0

250/300 0.5 1.9 1.4 2.5

100/200 14.7 14.4 20.0

150/200 4.0 5.4 4.9 7.5

180/200 0.4 1.8 1.6 1.8

� 2.23 2.17

 0.1887 0.2645
� 0.0089 0.0124

Table 5.1. The data from [10] contra our data.

From table 5.1 we see that model 1 in our objective function also
generates reasonable results for the midyear 1998 prices. We therefore
conclude that the reason for the bad �t of the 1999 prices is the model
and not the objective function. Another important thing to note from
table 5.1 is that there are remarkable di�erences in the prices obtained
by Lane and Movchan and the prices we obtain. We thereby see that
the valuation of the bid's and ask's is highly dependent on the choice
of the objective function.

5.2. Model 2. Looking at the results from model 2 we see a remark-
ably better �t. All the prices are now in the bid/ask spreads and we
also have reasonable prices for the 250/300 and 300/350 call spreads.
So the shift of the distribution to x = 47:2 apparently has a large e�ect.
This is in agreement with the results from [10]. If we compare the 1999
prices with the midyear 1998 prices we see that they are quite similar,
see table 5.2
Looking at the �gures in table 5.2 and recalling that the compound

Poisson distribution �ts the midyear 1998 prices (where the index value
was 40), it is not suprising that the shifted compound Poisson distribu-
tion �ts the 1999 prices. Model 1 is a special case of model 2 (x = 0),
so model 2 will also be able to �t the midyear 1998 prices.
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Kl=KU bid99 ask99 bid98 ask98

40/60 11.0 12.0 15.0
60/80 6.0 10.0 6.0 12.0
80/100 8.0 4.0 8.0
100/120 3.5 6.0 2.8 4.0
150/200 4.0 7.5 4.3 6.0
250/300 0.5 2.5 3.5

Table 5.2. The 99 prices contra the midyear 98 prices

5.3. Model 3. From table 4.5 we see that model 3 generates prices
very similar to model 1, so we do not obtain much by including the
extra parameter. And as for model 1 we conclude that model 3 is a
bad description of the implied losses. As done for model 1 we could
also extend model 3 by shifting it, but we will desist from doing this
because we will then have �ve parameters, which we consider too many.
How many parameters one will allow in a model is of course individual,
but we set the limit by four. We discuss this further in the dicussion
of model 5.

5.4. Model 4. A very important thing to note about this model is
that the computation of the convolutions is very time consuming and
this is also why we only include the �rst four convolutions in the model.
The prices we obtain by including only the �rst four convolutions are
very similar to the prices from model 1 and model 3, and as for model
1 and model 3 it is not possible to get into the 40/60 and 200/250 call
spreads. The prices for the 250/300 and the 300/350 call spreads seem a
little bit better than those for model 1 and 3. The model was justi�ed
by assuming that the term

P1
5 e���n=n! should be small. Here the

term is 0.12, which can hardly be considered small. So, with only four
convolutions, we consider the model as a bad describtion of the implied
losses.
If we had included more convolutions, 10 say, we would have ex-

pected a remarkably better �t, but this would have been way to time-
comsuming. The time factor is also the reason why we desist from
shifting the distribution.

5.5. Model 5. The �rst thing to note from model 5 is the number
of data being very small, which therefore makes it hard to really gain
anything from �gure 4.1 (the relation between the �-parameter and
the strike). The function we choose based on �gure 4.1 is therefore
also very general. The three parameters included in the function are
many compared to the number of data. It is therefore not surprising
that we get a better �t than for model 1, 3 and 4, and if we had
increased the number of parameters even more, say to four or �ve, we
would probably also obtain a better �t than we did in model 2. But
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increasing the number of parameters does not make the model any
better in relation of describing the implied losses. After the estimation
of the prices for model 5 it is our general impression that model 5 is a
bad description of the implied losses. We thereby do not conclude that
there is no strike dependency on the inplied parameters, but if there
is, it has to be modeled in another way.

5.6. Model 6. It is very fast to compute the prices corresponding to
model 6 and the �t we obtain is surprisingly good. Suprisingly because
it is not a compound process, but only a shifted Pareto distribution,
and it generates prices that are better than the prices from model 2.
But even though the model generates a good �t, the prices are very
di�erent from the prices obtained by model 2. In general it derives
prices that are higher than the prices from model 2. The di�erences
in prices are not surprising if we compare the mean values and the
variances from model 1 with the ones from model 6, see table 4.4.
We now have two models both generating reasonable prices and hav-

ing nearly the same value of the objective function. But this is not the
same as saying that the two models are equally good. Based on the
discussion in section 2, model 2 seems to be the best theoretically
founded model. But if we look at the model 2 prices for the 60/80 and
the 80/100 call spread, one could get the impression that the implied
distribution from model 2 generates too little risk, which indicates that
model 2 is not a perfect model.
After this discussion we �nd that model 2 is the best model to use

even though it is not perfect. But we also �nd that one should use
model 6 simultaneously because it is very fast and it could be used to
support the evaluation of the prices.

5.7. The Æ1 and Æ2 parameter. How the parameters Æ1 and Æ2 should
be set depends on the data set. If the data set consist of only bid/ask
spreads and our model generates prices that are inside these spreads,
then the value of Æ1 has no e�ect on the results. But if we have also
traded prices in our data set, the value of Æ1 gets more important. In
this case we believe that one should estimate prices for di�erent values
of Æ1 and then set the parameter based on an evaluation of these results.
Model 2 and model 6 both generate results that are inside the bid/ask
spread and the value of Æ1 therefore becomes unimportant for the data
set considered in this paper.
The value of Æ2 is set to 0.1, i.e. if the prices are more than 100%

above a single bid or 50% below a single ask we punish it only 10%
as hard as when the prices are below or above a bid or an ask. We
�nd this value reasonable but again we could for a given data set try
with di�erent values and based on these estimations set the parameter.
But again for model 2 and model 6, the value of Æ2 does not a�ect the
results in this paper.
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6. Conclusion

We analyse prices for catastrophe insurance derivatives by looking
at the \implied loss distributions" embedded in the traded prices. As
mentioned in the introduction there are two main problems in this anal-
ysis. First, what kind of distribution should be chosen for the implied
losses and second, how should the involved parameters be estimated?
In relation to how the parameters should be estimated we �nd that

an improvement of the procedure from [10] was necessary because of
the following two reasons. First we agree that it is desirable that the
parameters are chosen such that the prices are lower than known o�ers
and higher than known bids, but we do not think that the requirements
should be invariable because, if the spreads are very small, it could be
a problem to �nd a solution. And if the theoretical prices appear to be
far away from the spread, it could be used to indicate that the chosen
model may be wrong. Second we agree on point that the parameters
should be chosen such that the prices gets closest to the actual traded
prices, i.e. if our data contain only traded prices, the parameters should
be found by a least square �t. But because the data primarily consists
of spreads and single bids or asks, we �nd that this should be incor-
porated in the objective function. No matter what objective function
one uses, it is clear from the discussion of model 1 that the choice of
the objective function has a large e�ect on the derived prices, and it
should therefore be chosen carefully.
After the discussion in the previous section we �nd that model 1,

suggested by Lane and Movchan [10], is unable to �t the PCS-option
prices in general. Instead, we �nd that model 2 is a better model to use
for the implied losses. However, it would be preferable to use model
6 also in order to support it. It is clear that none of the suggested
models �t the implied losses perfectly, but we believe that model 2
supported by model 6 will be a good tool for investors analysing prices
of catastrophe insurance derivatives.
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HOW TO HEDGE UNKNOWN RISK

CLAUS VORM CHRISTENSEN

Abstract. In this paper we are considering risk with more than
one prior estimate of the frequency, e.g. environmental health risk
of new and little known epidemics, or risk induced by scienti�c
uncertainty in predicting the frequency and severity of catastrophic
events. It is not possible to hedge this kind of risk only using
traditional insurance practice. A new method is called for. In
this paper we show how to manage this unknown risk by using
traditional insurance practice and by trading in the security market
simultaneously.

1. Introduction

During the last years, the market for risk related to natural phenom-
ena such as di�erent catastrophes has witnessed important changes.
Such risk have traditionally been distributed through the insurance

and reinsurance system. Insurance companies accumulate the risk of
individual entities and redistribute the risk to the global reinsurance
industry. But the volatility of weather, taken together with population
movement to warm coastal areas and change of property prices has
made catastrophic risk highly unpredictable. It is therefore no longer
possible to diversify this risk using traditional insurance practices. A
new way to manage such risk or unknown risk in general is called for.
When we talk about unknown risk, we refer to risk which frequency

we do not know, i.e. there is more than one estimate of the frequency
of the risk. Examples of unknown risk are environmental health risk of
new and little known epidemics, or risk induced by scienti�c uncertainty
in predicting the frequency and severity of catastrophic events.
As we will show in this paper, motivated by [2], the way to han-

dle unknown risk is to use two di�erent approaches of hedging risk
simultaneously, namely the statistical approach known from the insur-
ance industry and the economic approach known from the securities
industry.
In this paper we consider a general model for an insurance company,

where the company faces n states of the world. For each of these states

Date: June 30, 1999.
1991 Mathematics Subject Classi�cation. 91B99.
Key words and phrases. Unknown risk, interplay between insurance and �nance,

catastrophe insurance, catastrophe insurance derivatives.
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the insurance company is able to estimate the frequency of the risk,
but the risk related to the states is unknown. We then show how the
company should handle this unknown risk. This is done by using the
statistical approach to handle the known risk, i.e. the risk related to
a given state. And by using the economic approach to handle the risk
related to the di�erent states.
In the next section we make the basic assumptions and present the

general model underlying the theory. In section 3 we show how to han-
dle the unknown risk in the case where the market is complete. We
show how the statistical approach and the economic approach are used
simultaneously. It is not always the case that the insurance company
can charge any premium they want, it is therefore natural to consider
the case with a restricted premium. This case we consider in section
4 where four di�erent ways of choosing the n state premiums are sug-
gested. These four di�erent choices are then evaluated in section 5 and
6. In section 7 we consider the incomplete market case and �nally there
are some concluding remarks.

2. The Model

Let S denote the state of the world. We make the following assump-
tions:

� There are n states denoted by fs1; : : : ; sng; S 2 fs1; : : : ; sng.
� The probabilities corresponding to the n states are known

P (S = si) = pi; i = 1; : : : ; n;
nX
i=1

pi = 1

� Fi is known for all i 2 f1; : : : ; ng, where Fi denotes the distribu-
tion of the loss (L) of the insurance companies given the state is
i (LjfS = sig � Fi). Let Li = LjfS = sig.

� If the insurance company knows the state S then the statistical
approach by adding a safety loading would work, i.e. if the insur-
ance company knew that S = si it would be reasonable to charge
the premium Pi given by

Pi = E[Li] + Æi

where Æi is a safety loading calculated by a standard premium
calculation principle.

� There exist n \state securities" traded on the n states. Security
number j pays the amount cij if the state is i. Let ci be the vector
ci = (ci1; : : : ; cin) and let C be the matrix given by

C =

2
4 c1

...
cn

3
5
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Let further ~cj be the jth column in C.
� The market is complete, i.e. the n columns in C are linearly
independent.

� The market for these securities is arbitrage free and there exists an
unique risk neutral measure. We denote the risk neutral probabili-
ties by q1; : : : ; qn, and let q be the vector given by q = (q1; : : : ; qn).
From basic �nance courses it is known that these risk neutral prob-
abilities can be used to price the state securities, i.e. the price of
state security number i is given by the discounted value of q ~cj.

� There exists a risk free security and for simplicity we assume that
the risk free interest rate is zero. This is no loss of generality
because we can discount all securities.

We now have a model where the insurance company exactly knows
how they should handle the insurance risk if the state of the world is
known. But because of the uncertainty on the state of the world the
general risk for the insurance company becomes unknown. In the next
section we will show how the insurance company is able to handle this
unknown risk.

3. How to handle unknown risk in a complete market

The expected loss for the insurance company is given by

E[L] = p1E[L1] + � � �+ pnE[Ln]

To cover these losses the insurance company has to charge a premium
P , but charging a premium is not enough. Because if the insurance
company charges a premium P we obtain a safety loading in state i
given by ~Æi = P �E[Li]. The problem by this is that we do not obtain

the desired safety loading. For some i's we have that Æi < ~Æi which
means that the insurance company has been overcharging. And for
some i's we have that Æi > ~Æi which means that the insurance company
has been undercharging, which could lead to a dangerous position.
Before we solve this problem we make the two following de�nitions.

De�nition 3.1. A trading strategy for the insurance company is
de�ned as a vector m = (m1; : : : ; mn)

T where mi denotes how many
securities i the insurance company buys.

De�nition 3.2. An optimal trading strategy for the insurance
company is a costless trading strategy such that

P + cim� E[Li] = Æi 8i = 1; � � � ; n: (3.3)

The question is now whether it is possible to obtain this optimal
strategy and if it is, what premium should be charged in order to
obtain it? These questions is answered in the following theorem.



4 C. VORM CHRISTENSEN

Theorem 3.4. An optimal trading strategy can be obtained if and only
if

P = q1P1 + � � �+ qnPn:

In this case, the strategy m has to be chosen by 3.5.

Proof. We �rst show the if part. Assume that the insurance company
charge the premium P given by P = q1P1 + � � �+ qnPn. We then show
that there exist a trading strategy m = (m1; : : : ; mn)

T that solves
condition (3.3) in de�nition (3.2). m if found by solving the following
equation2

4 P
...
P

3
5�

2
4 E[L1]

...
E[Ln]

3
5 +

2
4 c11 : : : c1n

...
. . .

...
cn1 : : : cnn

3
5
2
4 m1

...
mn

3
5 =

2
4 Æ1

...
Æn

3
5 :

The market is complete, C is therefore invertible. A solution exists and
is given by

m = C�1

2
4 �P + E[L1] + Æ1

...
�P + E[Ln] + Æn

3
5 : (3.5)

It now remains to show that this trading strategy is costless. The value
of the ith security is the expected value of the payo� calculated under
the risk neutral measure. Let vi denote the value of the ith security

vi = q ~cj:

Let v be given by v = (v1; : : : ; vn). The cost of the portfolio is then
given by

Cost of pf. = vm

= qCC�1

2
4 �P + E[L1] + Æ1

...
�P + E[Ln] + Æn

3
5

=
nX
i=1

qi(�P + E[Li] + Æi)

= �P
nX
i=1

qi +
nX
i=1

qiPi = 0:

We now show the only if part. Assume therefore that there exist an
optimal trading strategy. Equation (3.5) then holds and vm = 0. Using
this and that v = qC we obtain

nX
i=1

qi(�P + E[Li] + Æi) = 0

and rearranging the terms we obtain
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P = q1P1 + � � �+ qnPn

Remark 3.6. The problem can be simpli�ed if we consider it in the
following way. The insurance company wants to obtain the premiums
(P1; : : : ; Pn) corresponding to the n states. This could be obtained for
all i if we for all i buy Pi of Arrow-Debreu (AD) security number i.
AD security i is a security that pays 1 if the state is i and pays zero
in all other states. These AD securities exist because the market is
complete, and the price of AD security number i is given by qi. The
total price of this AD portfolio is therefore given by

Total price =
nX
i=1

Piqi

So by charging a premium P =
Pn

i=1 Piqi the insurance company can
obtain the optimal strategy. This only works if the market is complete,
we will return to the incomplete case later.

4. The restricted premium case

In the previous section we found the optimal premium to charge for
the insurance company. But the insurance company may be unable to
charge this premium because of some competitive reasons. We therefore
now assume that the premium which the insurance company can charge
is �xed at P0.
The insurance company should therefore now choose a trading strat-

egy which they �nd \optimal" under the restriction that the cost of the
trading strategy equals P0. What we mean by \optimal" is discussed
later in this section. In this complete market case choosing a trading
strategy m is equivalent to choosing premiums (P1; : : : ; Pn). We have
the following relation between (P1; : : : ; Pn) and m

(P1; : : : ; Pn)
T = Cm:

The restriction can also be expressed in terms of the Pi's instead of m.

vm = P0

) qCC�1(P1; : : : ; Pn)
T = P0

) q1P1 + � � �+ qnPn = P0:

These observations now allows us to reformulate the problem to a prob-
lem in terms of the premiums (P1; : : : ; Pn) instead of a problem in term
of the trading strategy m.
The problem in this �xed premium case is therefore to �nd the \op-

timal" choice of the Pi's subject to the constrain P0 = P1q1+� � �+Pnqn.
We will now consider four di�erent ways of solving this optimal pre-
mium choice (OPC), i.e. de�ning \optimal". In the following we let
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Oi denote the di�erence between the premium received in state i and
the losses paid in state i, i.e. Oi = Pi � Li.

4.1. OPC1: Equal risk quantity in all states. The goal here is
to obtain the same risk quantity in all the states. To measure the risk
quantity we will use the mean divided by the standard deviation, i.e.
high value of the quantity corresponds to a low risk. The solution to
OPC1 is found by solving the following n equations with n unknowns:

E[O1]p
Var(O1)

=
E[Oi]p
Var(Oi)

; i = 2; : : : ; n

P0 = P1q1 + � � �+ Pnqn

Note that we here have V ar(Oi) = V ar(Li). OPC1 therefore ensures
that expected gain E[Pi � Li] will be high in states where V ar(Li) is
large, i.e. we obtain a high gain in the risky states.

4.2. OPC2: Equal ruin probabilities in all states. The goal here
is to obtain the same ruin probabilities in all the states. The ruin
probabilities are usually calculated according to the initial capital, we
therefore include the initial capital u in the OPC. The solution is found
by solving the following n equations with n unknowns:

P (O1 + u < 0) = P (Oi + u < 0); i = 2; : : : ; n

P0 = P1q1 + � � �+ Pnqn

4.3. OPC3: Equal expected utility in all states. The goal here
is to obtain the same expected utility in all the states. In order to
solve the problem we have to choose a utility function. Let the utility
function be given by v(x); x 2 R, where we assume, v(0) = 0 (only for
convenience), v0 > 0 (less losses are preferred) and v00 < 0 (stronger
weights for higher losses). The solution is found by solving the following
n equations with n unknowns:

E[v(u+O1)] = E[v(u+Oi)]; i = 2; : : : ; n

P0 = P1q1 + � � �+ Pnqn

4.4. OPC4: Maximal expected utility. The goal here is to obtain
the maximal expected utility. We have the same utility function as in
OPC3, but we now have to solve the following maximization problem:

maxE[v(u+ Ps � Ls)]

st P0 = P1q1 + � � �+ Pnqn

We have now stated four di�erent ways of solving the OPC, but
which one is the best? At �rst it seems most natural to use OPC4,
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i.e. maximize the expected utility. But a problem by this approach
is that when we only consider the general expected utility we could
end up with some very risky individual states. One could imagine a
situation where the insurance company maximizes its expected utility
and thereby obtains a very large ruin probability in one of the states.
Such a premium choice could then, because of the high ruin probability,
be refused by shareholders, authorities or the like. OPC4 is therefore
not necessarily the best OPC to use in general. In the following we will
analyse the OPC's further.

5. Solutions of the different OPC's

In this section we will try to evaluate and compare the di�erent
OPC's. This is done by �rst solving the di�erent OPC's one by one, and
then secondly compare them by an example where di�erent premiums
are calculated.

5.1. Solution of OPC1. Let now �i denote the mean value and �i
denote the standard deviation of Li. We then have

p
Var(Oi) = �i and

OPC1 can now be written as

P1 � �1
�1

=
Pi � �i
�i

; i = 2; : : : ; n

P0 = P1q1 + � � �+ Pnqn

The general solution to these n equations with n unknowns is given by

Pi = aiP1 + bi; i = 2; : : : ; n

P1 =
P0 � q2b2 � � � � � qnbn
q1 + q2a2 + � � �+ qnan

where ai = �i=�1 and bi = �i � ai�1.
OPC1 is easy to solve, and it only requires that the �rst two moments

of all the loss distributions exists. From the solution we see that Pi is
increasing in �i and if P0 >

Pn
i=1 qi�i also increasing in �i. This also

seems intuitively clear. Here the risk measure must be the same for
all the states, the premium for state i is therefore expected to increase
if the mean value or the standard deviation corresponding to state i
increases.

5.2. Solution of OPC2. Consider �rst

P(Oi + u < 0)

= P(Pi � Li + u < 0) = P(Li > Pi + u) = 1� Fi(Pi + u)
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OPC2 can therefore be written as

F1(P1 + u) = Fi(Pi + u); i = 2; : : : ; n

P0 = P1q1 + � � �+ Pnqn

Plugging the (n� 1) equations into equation number n we obtain
nX
i=1

qiF
�1
i (F1(P1 + u)) = P0 + u

Let then G(x) be given by

G(x) =
X
i=1

qiF
�1
i (F1(x))

G(x) is then increasing, hence invertible. In the cases where Fi is
continuous the solution is given by

P1 = G�1(P0 + u)� u

Pi = F�1
i (F1(P1 + u))� u

If Fi is not continuous, it may happen that no solution exists.

Remark 5.1. An alternative way of solve the problem, will be to solve
the problem numerically by setting up the following minimization prob-
lem

min
nX
i=2

(F1(P1 + u)� Fi(Pi + u))2 + (P0 � P1q1 � � � � � Pnqn)
2

Note that the solution to the minimization problem is only a solution
to the OPC2 problem if the optimal value is 0.

5.3. Solution of OPC3. We �rst solve OPC3 in general, i.e. where
the only assumption we have on the utility function is that v(0) = 0,
v0 > 0 and v00 < 0. Let now gi(x) be given by

gi(x) = E[v(x� Li + u)]

gi(x) is then strictly increasing and continuous, hence the inverse ex-
ists, and is also strictly increasing and continuous. The n equations
corresponding to OPC3 can therefore be written as

Pi = g�1i (g1(P1)); i = 2; : : : ; n

P0 =
nX
i=1

qig
�1
i (g1(P1)):

Let now G(x) be given by

G(x) =
nX
i=1

qig
�1
i (gi(x)):
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G(x) is then increasing, hence invertible and the solution is given by

P1 = G�1(P0):

We now have a general solution of OPC3. In the next part of this
section we consider OPC3 with a further assumption, namely that the
Pi's has to be independent of u. How this assumption will restrict our
choice of the utility function is shown by the following lemma.

Lemma 5.2. The Pi's that solves OPC3 are independent of u for all
distributions of Li and all choices of q1; : : : ; qn if and only if v(x) =
A(1� e��x) for some A > 0 and � > 0.

Proof. Assume that v(x) = A(1 � e��x). We then have to solve the
following problem

E[A(1� e��(P1�L1+u))] = E[A(1� e��(Pi�Li+u))]; i = 2; : : : ; n

P0 = P1q1 + � � �+ Pnqn

These equations are equivalent to

E[A(1� e��(P1�L1))] = E[A(1� e��(Pi�Li))]; i = 2; : : : ; n

P0 = P1q1 + � � �+ Pnqn (5.3)

We here see that the Pi's are independent of u.
Assume that the Pi's are independent of u. Let there be two states

and two corresponding AD prices q1 and q2 (q1 + q2 = 1). Let P (L1 =
2) = 1 � P (L1 = 0) = r and P (L2 = 1) = 1. P1 and P2 are now
dependent on r and we will therefore in the following denote them
P1(r) and P2(r). The OPC3 can now be written as

rv(u+ P1(r)� 2) + (1� r)v(u+ P1(r)) = v(u+ P2(r)� 1)

q1P1(r) + q2P2(r) = P0

From the second equation we can express P2(r) in terms of P1(r) . This
expression is used in the �rst equation to obtain

rv(u+ P1(r)� 2) + (1� r)v(u+ P1(r)) =

v(u+
P0 � q1P1(r)

q2
� 1): (5.4)

Taking the derivative of (5.4) with respect to u yields

rv0(u+ P1(r)� 2) + (1� r)v0(u+ P1(r)) =

v0(u+
P0 � q1P1(r)

q2
� 1): (5.5)

The derivative of (5.4) with respect to r is

v(u+ P1(r)� 2)� v(u+ P1(r)) + P 0
1(r)rv

0(u+ P1(r)� 2)+

P 0
1(r)(1� r)v0(u+ P1(r)) = � q1

q2
P 0
1(r)v

0(u+ P0�q1P1(r)
q2

� 1): (5.6)
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Plugging in (5.5) in (5.6) yields

v(u+ P1(r)� 2)� v(u+ P1(r)) +

1

q2
P 0
1(r)v

0(u+
P0 � q1P1(r)

q2
� 1) = 0: (5.7)

Note that P 0
1(r) > 0 follows immediately. The derivative of (5.7) with

respect to u is

v0(u+ P1(r)� 2)� v0(u+ P1(r)) +

1

q2
P 0
1(r)v

00(u+
P0 � q1P1(r)

q2
� 1) = 0: (5.8)

and from the derivative with respect to r it follows that

� 1

q22
P 0
1(r)

2v00(u+
P0 � q1P1(r)

q2
� 1) +

1

q2
P 00
1 (r)v

0(u+
P0 � q1P1(r)

q2
� 1) = 0:

Thus P 00
1 (r) � 0 and if we substitute x = u+ P0�q1P1(r)

q2
� 1 we get

q2
P 00
1 (r)

P 0
1(r)

2
=
v00(x)

v0(x)
:

The right hand side is independent of r and the left hand side is inde-
pendent of x. The left hand side and the right side is therefore both
independent of r and x. And from this we conclude

v00(x)

v0(x)
= ��

for some � � 0 and the assertion follows.

Example 5.9. If we now set v(x) = A(1 � e��x) we are able to �nd
a closed solution to OPC3. Let MLi(�) denote the moment generating
function of Li at the point �. From (5.3) we then know that OPC3
can be written as

Pi = P1 � 1

�
ln(

ML1(�)

MLi(�)
); i = 2; : : : ; n

P0 = P1q1 + � � �+ Pnqn

We now have a problem equivalent to OPC1 and the general solution
is therefore given by

P1 = P0 +
1

�
(q2 ln(a2) + � � �+ qn ln(an))

Pi = P1 � 1

�
ln(ai); i = 2; : : : ; n

where ai =
ML1

(�)

MLi
(�)

.
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Remark 5.10. A problem of the exponential utility function is that it
only allows for loss distributions where the moment generating function
exists. This means that for heavy tailed loss distributions we need to
choose another utility function, e.g. the power utility function. If we
do so the OPC3 becomes dependent of u and also much harder to solve.
In most of the cases the solution will have to be found numerically.

5.4. Solution of OPC4. As for OPC3 we �rst solve OPC4 in general.

max p1E[v(u+ P1 � L1)] + � � �+ pnE[v(u+ Pn � Ln)]

st P0 = P1q1 + � � �+ Pnqn

In order to solve this problem we construct the Lagrange function

F (P1; : : : ; Pn) = p1E[v(u+ P1 � L1)] + � � �+ pnE[v(u+ Pn � Ln)]

+�(P0 � P1q1 � � � � � Pnqn)

The next step is to construct the �rst and second order condition cor-
responding to the maximization problem. The �rst order condition:

@F

@P1
= p1E[v

0(u+ P1 � L1)]� �q1 = 0

...
@F

@Pn
= pnE[v

0(u+ Pn � Ln)]� �qn = 0

@F

@�
= P0 � P1q1 � � � � � Pnqn = 0

Let now gi(x) = E[v0(u + x � Li)], then gi(x) is strictly decreasing
and continuous, hence the inverse exists, which also is continuous and
decreasing. From equation number 1 and i, i = 2; : : : ; n we get

Pi = g�1i (
p1qi
piq1

g1(P1)): (5.11)

P1 is found by plugging (5.11) into the constraint, i.e. from the equation

P0 = q1P1 + q2g
�1
2 (

p1q2
p2q1

g1(P1)) + � � �+ qng
�1
n (

p1qn
pnq1

g1(P1)):

Note that q1P1 and qig
�1
i (p1qi

piq1
g1(P1)) for all i are strictly increasing in

P1. It is therefore possible to �nd a solution to this equation.
We now have a solution. In order to check whether it is optimal we

check the second order condition. To check the second order condition,
for a minimization problem with an equality constraint, we have to
construct the so called bordered determinants, see [3] (p. 382). They
are obtained by bordering the principal minors of the Hessian deter-
minant of second partial derivatives of the Lagrange function by a row
and a column containing the �rst partial derivatives of the constraint.
The element in the southeast corner of each of these arrays is zero.
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The second order condition for the problem is then satis�ed if these
bordered determinants alternate in sign, starting with plus, i.e. the
sign of the determinants below must taken from above be +,{,+, etc.2

4 p1E[v
00(u+ P1 � L1)] 0 �q1

0 p2E[v
00(u+ P2 � L2)] �q2

�q1 �q2 0

3
5

... 2
664
p1E[v

00(u+ P1 � L1)] : : : 0 �q1
...

. . .
...

...
0 : : : pnE[v

00(u+ Pn � Ln)] �qn
�q1 : : : �qn 0

3
775

It follows easily from the bordering determinants above that the second
order condition is ful�lled.
In the following example we solve the problem explicitly for the ex-

ponential utility function.

Example 5.12. As for OPC3 we now solve OPC4 explicitly for v(x) =
A(1� e��x). The OPC4 problem then takes the following form:

max 1� p1E[e
��(P1�L1)]� � � � � pnE[e

��(Pn�Ln)]

st P0 = P1q1 + � � �+ Pnqn

As before we �rst construct the Lagrange function

F (P1; : : : ; Pn) = 1� p1ML1(�)e
��P1 � � � � � pnMLn(�)e

��Pn

+�(P0 � P1q1 � � � � � Pnqn)

The next step is then to construct the �rst and second order condition
corresponding to the maximization problem. The �rst order condition
as before:

@F

@P1
= �p1ML1(�)e

��P1 � �q1 = 0

...
@F

@Pn
= �pnMLn(�)e

��Pn � �qn = 0

@F

@�
= P0 � P1q1 � � � � � Pnqn = 0

From equation number 1 and i, i = 2; : : : ; n we get

Pi = P1 � 1

�
ln ai; where ai =

p1qiML1(�)

piq1MLi(�)
: (5.13)
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Plugging (5.13) into the constraint we obtain

P1 = P0 +
1

�
(q2 ln(a2) + � � �+ qn ln(an))

We now have a solution and we know from the general solution that it is
optimal. So again we obtain a nice solution for the exponential utility
function. But as for OPC3 the solution only work for distribution
where the moment generating function exist. Note that for general
utility functions, solutions may have to be found numerically.

We are now ready to evaluate the four OPC's.

6. Evaluation of the OPS's

In this section we try to evaluate the di�erent OPC's. This is done by
constructing two di�erent examples. In the �rst example we consider
a model with three di�erent states. The losses corresponding to these
states follow an exponential distribution, and two di�erent gamma dis-
tributions, respectively. These light tailed distributions allow us to use
the exponential utility function in OPC3 and OPC4. We are therefore
able to compare all the di�erent OPC's in this example. In the other
example we include a heavy tailed distribution. We here consider two
states, the losses in state two follow a Pareto distribution whereas the
losses in state one still follow a light tailed distribution namely the
exponential. When we include a heavy tailed distribution we are no
longer able to use the exponential utility function. We therefore only
compare OPC1 and OPC2 in this example.

6.1. Example 1. We start this example by specifying the distribu-
tion of the state losses and their mean values, variances and moment
generating functions. The possible premium (P0) is set to 1:2� EP [L]
(P0 = 7:44).

L1 L2 L3

Distribution Exp(1) �(5,1) �(2,0.1)
Mean value 1 5 20
Variance 1 5 200
MLi(�) ( 1

1��
) ( 1

1��
)5 ( 0:1

0:1��
)2

We further assume that the p probabilities are given by p1 = 0:45,
p2 = 0:35 and p3 = 0:2. But before we set the q probabilities recall
the following. The q probabilities can be seen as the prices of the AD
securities. The q probabilities are therefore set by the agents in the
market. Some of the agents trading in this market will be people from
the insurance market, i.e. people who will be needing money if the
world end up in state 3. We therefore expect the price of AD security
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3 (q3) to be higher than p3 and as a consequence of this q1 and/or q2
to be lower than p1 and/or p2. With this in mind we now assume that
the preferences in the market determines the following q probabilities
q1 = 0:044, q2 = 0:0345 and q3 = 0:0215. We have now set all the
parameter and are therefore ready to calculate the di�erent OPC.
In table 1 the di�erent OPC are stated. For OPC2 we have chosen

di�erent values for the initial capital, and similar for OPC3/4 we have
chosen di�erent values for the risk aversion coeÆcient �.

OPC number special parameter P1 P2 P3

1 1.022 5.108 24.318

2 u = 0 1.118 5.701 23.168
2 u = 1 0.356 5.212 25.512
2 u = 10 -6.224 3.742 46.742

3 � = 0:09 -4.782 -0.590 45.339
3 � = 0:05 0.284 4.387 26.984
3 � = 0:03341 1.022 5.090 24.346
3 � = 0:03075 1.118 5.181 24.002
3 � = 0:03 1.145 5.206 23.908
3 � = 0:01 1.739 5.759 21.806
3 � = 0:001 1.953 5.955 21.053
3 � = 0:0001 1.973 5.973 20.983

4 � = 0:09 -4.525 -0.423 44.543
4 � = 0:05 0.747 4.689 25.551
4 � = 0:04549 1.022 4.938 24.591
4 � = 0:04384 1.118 5.024 24.255
4 � = 0:03 1.917 5.709 21.520
4 � = 0:01 4.056 7.267 14.643
4 � = 0:001 25.122 21.040 -50.571

Table 1. The OPC's for example 1

From table 1 we see that the safety loadings corresponding to state
1,2 and 3 for OPC1 are set to 2%, 2% and 22% respectively. The
safety loadings are the same for state 1 and state 2. This is just as we
expect, because they have the same ratio between the mean value and
the variance. The safety loading for state 3 is much larger, this means
that OPC1, as preferred, takes the higher risk in state 3 into account.
How OPC1 changes when the risk in state 1 becomes more and more
heavy tailed is considered in example 2.
Consider now OPC2. For u = 0 the safety loadings are 12%, 14%

and 16% for state 1, 2 and 3 respectively. This means that OPC2 for
u = 0 do not specially compensate for the higher risk in state 3. But
if we increase the initial capital, we see that the premium in state 3
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increases. It is preferable to have a OPC that compensates for the
higher risk in state 3. But the question is how large a compensation
is desirable? We see that for high values of u OPC2 suggest that we
start selling out of AD security 1 in order to buy more of AD security
3. We hereby obtain a low ruin probability in all states but also the
probability of loosing money on the sold AD securities. For some it will
probably be better to accept a higher ruin probability in state 3 and
then not to sell as many of AD security 1. If this is the case one should
choose the u carefully or go for another OPC. The choice of u could
also lead to other problem for OPC2, which we return to in example 2.
We now turn to OPC3. When we chose the risk aversion parameter

(�) we have to remember that � has to be below 0.1 otherwise the
moment generating function for the loss in state 3 does not exist. Values
of � close to 0.1 therefore corresponds to a high risk aversion. For
� = 0:09 we also see a very risk averse behaviour. Here the agent fears
state 3 so much that he sells out of AD security 1 and 2 in order to buy
more of AD security 3. For lower values of the risk aversion the safety
loading in state 3 decreases. The values of � = 0:03341 and � = 0:03075
are included in the table in order to see how OPC 3 is related to
OPC1 and OPC2. For the two values we obtain POPC3

1 = POPC1
1 and

POPC3
1 = POPC2

1 , but we also see that is not possible to �nd a � such
that the all Pi's are equal, but for � = 0:03341 OPC1 and OPC3 are
very similar. For � ! 0, i.e. if we moving towards a risk neutral
behaviour we see that the Pi's are converging. It can be shown that
the limits are given by

Pi = E[Li] + P0 � EQ[L]

= E[Li] + 0:975

This is also what we expect, an agent with a risk neutral behaviour
allocates the same amount of safety loading in all the states.
Finally consider OPC4. When we consider OPC4 we have to remem-

ber that OPC4 both include the p and the q probabilities. This means
that the premium choices for an agent using OPC4 becomes depended
on how he evaluates the market prices, i.e. how his preferences are
compared to the preferences of the representative agent. This means
that if the agent consider the price of AD security i (qi) to low com-
pared to his own preferences he will be buying more of AD security i.
But when he buys more of AD security i his portfolio changes and at
some level he will consider the price to high. So when we now evaluate
OPC4 we will have to remember that the agent maximize his utility
and evaluate the prices (the q probabilities) at the same time.
For a high risk aversion coeÆcient we see, as for OPC3, that the

agent sells out of AD security 1 and 2 in order to buy more of AD
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security 3. We also see that for � = 0:09 P3 is lower for OPC4 than
for OPC3. The reason for this is as mentioned above that when the
agent using OPC4 obtain a premium P3 = 44:543 in state 3 he starts
considering the price of AD security 3 (q3) to high.
The values of � = 0:04549 and � = 0:04384 are included in the table

in order to see how OPC 4 is related to OPC1 and OPC2. For the
two values we obtain POPC3

1 = POPC1
1 and POPC3

1 = POPC2
1 . We here

observe that OPC4 put more weight into state 3 that both OPC1 and
OPC2.
Finally we see that for � ! 0, i.e. we are moving towards a risk

neutral behaviour the agent, as expected, considers the price of AD
security 3 higher and higher. He therefore sets P3 lower and lower, i.e.
selling more and more of AD security 3.

6.2. Example 2. As mentioned above we here assume that the total
losses in state 1 is exponentially distributed (L1 � Exp(�1)) and the
total losses in state 2 is Pareto distributed (L2 � Pa(�2; �2)). The
possible premium (P0) is here set to 1:2�EQ[L] and the q probabilities
are set to q1 = 0:75 and q2 = 0:25. In this example we consider three
di�erent values for the parameters. This is done in order to see how
the two OPC's (OPC1 and OPC2) di�er when the loss distribution in
state 2 becomes more and more heavy tailed. The parameter values,
the mean values and the variances for the Li's, the OPC, the risk
quantity's and the ruin probabilities are all given in the table below.
OPC2 is solved for di�erent values of the initial capital. The value of
the u's are given in the table.
If we �rst consider OPC1, we see that the value of P2 increases and

the risk quantity decreases when L2 becomes more and more heavy
tailed. So again OPC1 works the way we want, i.e. we have a relatively
large safety loading in the states where our risk is high.
We now consider OPC2. Here the picture is di�erent. For u = 0

and u = 10 we surprisingly observe that the the value of P2 and the
ruin probability both decreases when L2 becomes more and more heavy
tailed. But for u = 20 we observe a more preferable behaviour, namely
that P2 and the ruin probability both increases when L2 becomes more
and more heavy tailed. The reason for the \bad" OPC for u = 0 and
u = 10 must be found in the shape of the distribution functions. In
�gure 1 and �gure 2 P (L < P+u) (1-"the ruin probability") are shown
for u = 0 and u = 20 respectively. The labels corresponds to the fol-
lowing distributions of L Exp(0:1)(0), Pa(6; 50)(1) and Pa(2:1; 11)(3).
The horizontal lines are the levels of the survival probability (1-ruin
probability) for OPC2.
If we start analysing �gure 1, it becomes clear why we observe the

decreasing P2 when L2 becomes heavier tailed. Because of the low val-
ues of the initial capital we have a relative low level of the distribution
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Figure 1. The shape of the distribution functions for
u = 0.

0.9

1

0 30 60

Figure 2. The shape of the distribution functions for
u = 20.
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Case 1 Case 2 Case 3

�1 0.1 0.1 0.1
�2 6 3 2.1
�2 50 20 11

E[L1] 10 10 10
V ar(L1) 100 100 100

E[L2] 10 10 10
V ar(L2) 150 300 2100

OPT1 P1 11.89 11.69 11.06

OPC1 P2 12.32 12.93 14.83

risk quantity 0.19 0.17 0.11

OPC2 P1 (u = 0) 12.23 12.54 12.89

OPC2 P2 (u = 0) 11.31 10.38 9.32

Ruin probability 0.294 0.285 0.276

OPC2 P1 (u = 10) 11.97 12.08 12.36

OPC2 P2 (u = 10) 12.10 11.75 10.91

Ruin probability 0.111 0.110 0.107

OPC2 P1 (u = 20) 11.27 10.75 10.59

OPC2 P2 (u = 20) 14.20 15.75 16.22

Ruin probability 0.044 0.046 0.047

Table 2. The OPC's for example 2

function in equilibrium. At this levels the curve of the case 3 Pareto
distribution function is above the curve of the case 1 Pareto distribu-
tion function. We therefore observe the decreasing P2's. But when we
increase the initial capital and thereby increase the survival probability
the picture changes. At this level the fat tail is taking over, and we
get the desired e�ect namely that P2 increases when the tail is getting
fatter.
We now conclude that the simple OPC1 is easy to calculate, and it

works reasonable. OPC2 is more complicated to calculate and we have
to be more careful when we use it, because it is highly depended on
the initial capital. But with a \suitable" level of the initial capital we
have seen that it works well. It is not possible to say whether OPC1
or OPC2 is best in general.

6.3. Example 3. As seen above, it is not possible to rank the di�erent
OPC's. But in this example we will try to do it for an agent that weights
all four OPC's equally and who has a known utility function.
Let the situation be as in example 1. We further assume that the

considered agent has an exponential utility function with risk aversion
coeÆcient � = 0:03 and initial capital u = 0.
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The state premiums are known from example 1.

OPC number P1 P2 P3

1 1.022 5.108 24.318
2 1.118 5.701 23.168
3 1.145 5.206 23.908
4 1.917 5.709 21.520

We will now evaluate how OPC1, OPC2, OPC3 and OPC4 are do-
ing in relation of having equal risk quantity (RQ), equal ruin proba-
bility (RP), equal expected utility (EU) and maximal expected utility
(MEU). This is done in the following way. Let RQij denote the risk
quantity in state j if Pj is determined from OPCi. We then introduce
the variable RQi to denote how well OPCi is doing in relation of having
equal risk quantities, let RQi be given by

RQi =

P3
j=1 pjjRQ1j � RQijjP4

i=1(
P3

j=1 pjjRQ1j � RQijj)
:

The numerator denotes how far the RQ is from the optimal RQ (the
RQ obtained by OPC1) weighted by the state probabilities. The de-
nominator is included in order to normalize the expression such that
it can be compared with the three other cases. Note that RQi is 0 for
i = 1.
A corresponding formula is used to calculate the variables that de-

notes how well the OPCi's are doing in relation of having equal ruin
probabilities (the RPi's) and equal expected utilities (the EUi's). For
the maximal expected utility we use the following formula

MEUi =
jMEU4 �MEUijP4

i=1(jMEU4 �MEUij)
In the table below we have listed RQi, RPi, EUi and MEUi for

i=1,2,3 and 4.

OPC number RQ RP EU MEU �

1 0 0.300 0.113 0.468 0.881
2 0.144 0 0.220 0.190 0.554
3 0.105 0.195 0 0.342 0.643
4 0.751 0.504 0.667 0 1.922

In the column to the right the sum of the �gures are listed. From
this column we can now rank the OPC's. It is seen that OPC2 is
the best OPC to use for the agent considered in this example. But
it is important to note that the analysis is highly depended on the
preferences of the agent. If we set the risk aversion coeÆcient di�erent
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we might obtain another ranking, e.g. if we set � = 0:04 we will, based
on table 1, expect OPC4 to do better.

7. The incomplete market case

In this section we consider the incomplete market case, i.e. we now
consider a market where the number of states n is larger than the
number of securities. Let now k denote the number of securities. Let
again vi be the price of state security number i and let v = (v1; : : : ; vk).

7.1. The unrestricted premium case. Because of the incomplete-
ness in this market we are no longer able to construct the n AD secu-
rities. We therefore cannot construct the optimal trading strategy and
set the premium by P = q1P1 + � � � + qnPn. So instead of construct-
ing the optimal trading strategy an alternative could be to choose the
cheapest strategy which assures that the premium in state i is greater
than or equal to Pi = E[Li] + Æi for all states, i.e. choose a trading
strategy that solve the following problem

min
m

vm

st
kX

j=1

mjcij � E[Li] + Æi i = 2; : : : ; n:

A problem of this strategy is that it could be very expensive. An
alternative strategy is therefore to choose the premiums so that they get
as close as possible to the optimal premiums (P1; : : : ; Pn), i.e. choose
the portfolio m that solves the following problem

min
m1;::: ;mk

nX
i=1

(
kX

j=1

mjcij � Pi)
2

or equivalent

min
m
kCm�

2
4 P1

...
Pn

3
5 k2

where C now is a n� k matrix. This is a well known problem and it is
solved by the least square solution which is given by, (see [1] p. 318),

m = (CTC)�1CT

2
4 P1

...
Pn

3
5

After these considerations we now make the following de�nition

De�nition 7.1. A least square strategy is a trading strategy such
that the insurance company gets as close as possible to the desired n
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state premiums as possible in the least square sense, i.e. the least
square strategy is obtained by the following portfolio of securities.

m = (CTC)�1CT

2
4 P1

...
Pn

3
5

The insurance company would of course prefer to follow the optimal
trading strategy given by Pi = E[Li] + Æi but this is impossible in this
market. But if it has been possible the insurance company would have
been willing to pay more for the optimal strategy than for the least
square strategy. Therefore if the insurance company follows the least
square strategy they should charge a premium that is larger than the
price of the least square strategy. They thereby get a compensation for
not having the optimal strategy but only the least square strategy.

7.2. The restricted premium case. Let us now as in the complete
case consider the situation where the insurance company is unable to
charge the desired premium because of some competitive reasons. We
again set the possible �xed premium that can be charged to P0.
The problem now is that we want to set the Pi's according to OPC1,

OPC2, OPC3 or OPC4 but the equation P0 = P1q1 + � � �+ Pnqn is no
longer valid. We are no longer able to construct the n AD securities
in this incomplete market. But instead of choosing the Pis according
to OPC1, OPC2, OPC3 or OPC4 we could choose the corresponding
least square solution. We then just have to replace the equation P0 =
P1q1+ � � �+Pnqn with an equation that makes sure that the price of the
least square portfolio is equal to P0. Before we solve this problem we
make the following de�nition in relation to OPC1, OPC2 and OPC3.
We return to OPC4 later.

De�nition 7.2. The incomplete optimal premium choice (IOPC)
is de�ned as a choice of premiums (Pi's) such that

� The Pi's solve the n�1 �rst equations in OPC1, OPC2 or OPC3.
� The price of the least square strategy corresponding to the Pi's is
P0.

The IOPC is then found by the following theorem

Theorem 7.3. The solution to the IOPC corresponding to OPC1,
OPC2 or OPC3 is found by solving the n equations with n unknowns
from the OPC. But where the last equation in OPC1, OPC2 and OPC3
is replaced by

P0 = ~q

2
4 P1

...
Pn

3
5 = ~q1P1 + � � �+ ~qnPn



22 C. VORM CHRISTENSEN

where ~q is given by

~q = v(CTC)�1CT

Proof. The least square strategy corresponding to (P1; : : : ; Pn) is given
by

m = (CTC)�1CT

2
4 P1

...
Pn

3
5

and the price of the state securities is given by v = (v1; : : : ; vk). The
price of the least square strategy corresponding to (P1; : : : ; Pn) is then
given by

vm = v(CTC)�1CT

2
4 P1

...
Pn

3
5

= ~q

2
4 P1

...
Pn

3
5 = ~q1P1 + � � �+ ~qnPn (7.4)

where ~q is given by

~q = v(CTC)�1CT

It then follows by de�nition 7.2 that if the last equation in OPC1,
OPC2 or OPC3 is replaced by 7.4, we will obtain the corresponding
IOPC.

For OPC4 the situation is di�erent. OPC4 is a maximization prob-
lem and we therefore just have to reformulate the problem to a problem
of dimension k instead of a problem of dimension n. The IOPC for
OPC4 therefore takes the following form

max
m

E[v(u+ cim� Li)]

st vm = P0:

The maximization problem is solved in the same way as described in
section 5.

8. Conclusion

In this paper we have been looking at risk with more than one prior
estimate of the frequency. As mentioned in the introduction it is not
possible to hedge this kind of risk using traditional insurance practice
only, so a new method was called for. In this paper we present a
model that is able to manage this kind of risk. The model works by
using traditional insurance practice and trading in the security market
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simultaneously. The paper shows how this new method works both in
complete and incomplete markets.
Further we consider the case where the premium the insurance com-

pany can charge is restricted. In this case the insurance company has
to choose an allocation of the restricted premium corresponding to the
states of the world. We propose four di�erent methods of solving this
problem. These four methods are then analysed and evaluated and by
examples advantages and disadvantages are illustrated. We also show
a way to rank the four methods in the case where we consider an agent
that evaluates the four OPC equally and has a known utility function.
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