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Abstract

We consider a capacity expansion problem arising in the design of telecommunica-

tion networks. The problem is to install capacity on links of the network so as to meet

customer demand while minimizing total costs incurred. When studying this and re-

lated problems it is customary to assume that point to point demands are given. This

will not be the case in practice, however, since future demand is generally unknown

and the decision must be based on uncertain forecasts. We develop a stochastic integer

programming formulation of the problem and propose an L-shaped solution procedure

based on well-known cutting plane procedures for the deterministic problem. The al-

gorithm was tested on two sets of real life problem instances and we present results of

our computational experiments.

Keywords: Stochastic programming, integer programming, telecommunication net-

works, capacity expansion.

1. Introduction

Capacity expansion problems is a very important class of problems arising in many contexts.

Capacity expansion in telecommunication networks has been the center of particular atten-

tion due to the rapid increase in demand which network providers have been facing in recent

years. In this paper we consider the design of a capacitated telecommunication network.

The problem is to install additional capacity on the edges of the network and route traÆc

so as to meet customer demand while minimizing total costs incurred. We shall assume that

two facilities with �xed capacities are available for installation but most of the results may

be generalized if one wishes to consider the situation with several facilities.
�Corresponding author. Email: riis@imf.au.dk
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The polyhedral structure of the two-facility capacitated network design problem has been

studied by e.g. Bienstock and G�unl�uk [2] and G�unl�uk [5]. Here, facet de�ning inequalities

are derived and used to solve the problem by cutting plane procedures. Similar results have

been obtained for the closely related network loading problem by Magnanti, Mirchandani and

Vachani [10], [11] and Mirchandani [12]. The network loading problem is a slight variation

of the capacitated network design problem in which it is assumed that there is no existing

capacity on the edges of the network and no cost of 
ow. The capacitated network design

problem will generally be relevant for the network provider, whereas the network loading

problem typically arises when customers wish to design a private line network by leasing

transmission facilities from the network provider.

In the literature it has been customary to assume that point to point demands in the

network are known when studying these problems. Typically this will not be the case, though,

since actual demand is in general unknown at the time the decision is made. Instead, point to

point demands should be thought of as depending on the outcome of some random variable.

This means that the decision on capacity expansion cannot be based on actual demand. The

only information that is available is the partial knowledge of demand conveyed through its

distribution. (This may be thought of as some kind of forecast of demand.) It is well known

(see e.g. Birge and Loveaux [3]) that the expected value problem, obtained by replacing

random demand by its expected value, may not produce very good solutions to the problem.

In this paper we will formulate the capacitated network design problem as a two-stage

stochastic program with integer �rst stage and continuous second stage, hence explicitly

taking uncertainty into account in the decision process.

Stochastic programming has previously been used as a modelling tool in telecommuni-

cations. Sen, Doverspike and Cosares [18] study a capacity expansion problem in which the

expected number of unserved requests is minimized subject to limitations on the total capa-

city expansion. Riis and Andersen [15] use stochastic programming to solve the multiperiod

capacity expansion problem of one connection in telecommunications. Finally, Dempster,

Medova and Thompson [4] uses chance-constrained programming to solve a capacity expan-

sion problem subject to certain grade of service constraints assuming that the arrival process

of calls is known.

There is a vast amount of literature concerning the solution of stochastic programming

problems. If no integrality restrictions are imposed on the variables, numerous powerful

solution procedures for two-stage stochastic programs with recourse are available. Such

procedures include the progressive hedging algorithm introduced by Rockafellar and Wets

[16], regularized decomposition introduced by Ruszscynski [17] and stochastic decompostion
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introduced by Higle and Sen [7]. Regularized decomposition as well as stochastic decompo-

sition may be viewed as specialized versions of the L-shaped procedure, introduced by Van

Slyke and Wets [19], which is based on Bender's decomposition principle. The procedure

takes advantage of the fact that the second stage value function is convex and piecewise

linear on a convex polyhedral domain and hence may be replaced by a �nite number of

so-called feasibility cuts and optimality cuts.

Less has been said about stochastic integer programming problems which su�er from the

hardships of both stochastic programming and integer programming. Still, when only �rst

stage variables are restricted to integer values, as is the case in the problem considered in

this paper, the second stage value function remains convex and piecewise linear. This means,

that we may adapt the above-mentioned procedures to take integrality restrictions on �rst

stage variables into account. Such an approach has previously been taken by Wollmer [20]

who proposed an implicit enumeration scheme to solve two-stage stochastic programs with

binary �rst stage and continuous second stage in an L-shaped algorithm. This approach was

extended by Laporte and Loveaux [9] to problems with binary �rst stage and general, but

easily computable, second stage problems.

This paper is organized as follows: in section 2 we will formulate the deterministic capac-

itated network design problem and present several classes of well-known valid inequalities.

Next, in section 3 we formulate the capacitated network design problem as a two-stage

stochastic program with integer �rst stage and continuous second stage. We discuss how the

valid inequalities derived for the deterministic problem, generalize for the new formulation

and under what conditions they are facet de�ning for the feasible region of the stochastic

problem. An L-shaped solution procedure for the stochastic program is presented in section

4. The seminal idea is to project the feasible region of the problem onto the space of discrete

�rst stage variables and hence the approach is closely related to that followed by Bienstock

et al. [2] and by Mirchandani [12]. The projection is built in a master problem by imposing

di�erent kinds of cuts. In addition to the well-known optimality cuts and feasibility cuts

which are generated through the solution of subproblems, the procedure uses heuristically

generated facet de�ning inequalities as cutting planes in the master problem. Moreover, the

L-shaped procedure is combined with a branch and cut scheme to solve the stochastic integer

program. The algorithm was implemented in C++ using procedures from the callable library

of CPLEX 6.6 and tested on two sets of real life problem instances, previously studied in

Bienstock and G�unl�uk [2] and G�unl�uk [5]. The results of our computational experiments are

reported in section 5. Finally, in section 6 we summarize our work and give some conclusions.
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2. The Capacitated Network Design Problem

The network is modelled as a connected undirected graph G = (V;E) in which directed point

to point demands are to be routed. The existing capacity on an edge fi; jg 2 E is denoted by

Cij. Since we are modelling a telecommunication network with optical transmission systems

we will assume that a given edge in the network can carry 
ow in either direction and, more

importantly, that these 
ows do not interfere. Hence, each edge fi; jg 2 E conceptually

corresponds to two directed edges (i; j) and (j; i), each with capacity Cij. Additional capacity

may be installed on the edges in multiples of two batch sizes corresponding to low capacity

and high capacity facilities respectively. We will assume that the smaller batch size is equal

to 1 which may be achieved by rescaling demand. The larger batch size will be denoted by

� and we will assume that � is an integer.

Demand will be described by a set K of commodities and we let dik denote the net

demand of commodity k at node i (k 2 K; i 2 V ). Several possibilities exist for de�ning

the commodities. One common approach is to de�ne a commodity for every point to point

demand resulting in a total of O(jV j2) commodities. We will, however, prefer to work with

an aggregated formulation in which a commodity k corresponds to point to point demands

with source node k (k 2 V ) resulting in a total of O(jV j) commodities.

We are now ready to de�ne the convex hull of feasible solutions for the capacitated

network design problem:

P = conv

�
(x; y; f) 2 ZjEj

+ �ZjEj
+ � IR

2jKjjEj
+

���X
j:fi;jg2E

fjik �
X

j:fi;jg2E

fijk = dik i 2 V; k 2 K; i 6= k (2.1)

X
k2K

fijk � Cij + xij + �yij fi; jg 2 E (2.2)

X
k2K

fjik � Cij + xij + �yij fi; jg 2 E

�
(2.3)

Here, xij (yij) denotes the number of low capacity (high capacity) facilities to be installed on

edge fi; jg while fijk and fjik denote the 
ow of commodity k on the two conceptual edges

(i; j) and (j; i) corresponding to edge fi; jg. Equation (2.1) is a 
ow conservation constraint

while (2.2) and (2.3) are capacity constraints. In the following, whenever e = fi; jg 2 E we

shall refer to the same variable by xij; xji and xe interchangeably. A similar notation will be

used for existing capacity and high capacity facilities.

The cost of installing a low capacity facility on the edge fi; jg is denoted by aij and the

corresponding cost of a high capacity facility is denoted by bij. Finally, we will use a 
ow
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cost cijk = cjik for one unit of commodity k on the edge fi; jg, knowing that this cost may

well be zero in many real life applications. The deterministic capacitated network design

problem may now be stated as:

zDP = min
n
ax+ by + cf

�� (x; y; f) 2 Po (2.4)

where a; b and c are the cost vectors and transposes have been omitted for simplicity.

2.1 Metric Inequalities

The class of metric inequalities, originally introduced by Iri [8] and Onaga and Kakusho [14],

can be used to project P onto the space of the discrete capacity variables. G�unl�uk [5] brie
y

describes these inequalities for a general multicommodity 
ow problem but argues that it

is only practical to use special subclasses of the inequalities in cutting plane procedures for

problem (2.4). Bienstock et al. [1] use metric inequalities in a cutting plane procedure for

a reformulation of the one facility capacitated network design problem using path variables

rather than edge variables as in our formulation. For the stochastic programming problem

that we are going to consider, the metric inequalities may be used as feasibility cuts in an

L-shaped algorithm and hence they will be of some importance.

For �xed values of the capacity variables x and y problem (2.4) is a multicommodity


ow problem. Associating dual variables �; � and � with constraints (2.1), (2.2) and (2.3)

respectively, the dual of this problem is:

max
X
i2V

X
k2K

dik�ik �
X

fi;jg2E

(�ij+�ij)(Cij + xij + �yij)

s.t. �jk � �ik � �ij � cijk fi; jg 2 E; k 2 K

�ik � �jk � �ij � cijk fi; jg 2 E; k 2 K (2.5)

�kk = 0 k 2 K

� 2 IRjV jjKj; �; � 2 IR
jEj
+

The multicommodity 
ow problem is feasible if and only if the dual problem (2.5) is bounded.

That is, if and only if:X
fi;jg2E

(vij + wij)(Cij + xij + �yij) �
X
i2V

X
k2K

dikuik 8(u; v; w) 2 D+ (2.6)

where D+ denotes the recession cone of the feasible region of the dual problem:

D+ =

�
(u; v; w) 2 IRjV jjKj � IR

jEj
+ � IR

jEj
+

���
ujk � uik � vij; uik � ujk � wij ; ukk = 0; k 2 K; fi; jg 2 E

� (2.7)
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Clearly, we may restrict attention to the extreme rays of the dual feasible region.

To understand why inequalities de�ned by (2.6) are called metric inequalities, consider

a directed graph �G = (V;A) constructed in the following way. For each undirected edge

fi; jg 2 E let A contain the two directed edges (i; j) and (j; i). If we associate weights vij

with edge (i; j) 2 A and wij with edge (j; i) 2 A, we see that the right hand side of (2.6)

is maximized if and only if uik is the length of a shortest (k; i)-path in �G. From now on we

shall only be interested in vectors (u; v; w) satisfying this property.

Since the feasible region of the dual problem is a rational polyhedron, we may assume

that such (u; v; w) 2 D+ are integral - this can be achieved by scaling. Hence (2.6) may be

strengthened by rounding:

X
fi;jg2E

(vij + wij)(xij + �yij) �

�X
i2V

X
k2K

dikuik �
X

fi;jg2E

Cij(vij + wij)

�

The strengthened inequalities are referred to as integral metric inequalities. They are not

necessarily facet de�ning but, as mentioned, they will be useful as feasibility cuts in the

L-shaped algorithm.

2.2 Partition Inequalities

In this section we consider a special class of integral metric inequalities called partition

inequalities. The reason why we consider these inequalities separately, is that some parti-

tion inequalities are facet de�ning under mild conditions. We will only consider partition

inequalities obtained by assigning unit weights to some edges and zero weight to the remain-

ing edges.

Let � = (V1; : : : ; Vl) be a partition of the node set into l subsets and let E� denote the

corresponding multicut, E� =
�
fi; jg 2 E

�� 9 r 2 f1; : : : ; lg : jfi; jg \ Vrj = 1
	
. Next, for

any permutation � = (�1; : : : ; �l) of the sequence (1; : : : ; l), we let T (�; �) denote the net

traÆc which must be routed across the multicut E� from lower numbered subsets to higher

numbered subsets when subsets are numbered with respect to �:

T (�; �) =
l�1X
r=1

X
k2V�r

X
i2V �r

dik �
X
e2E�

Ce

where V �r =
Sl

t=r+1 V�t. T (�; �) provides a lower bound on the capacity which needs to be

installed across the multicut E�. Taking the maximum over the l! possible permutations of

(1; : : : ; l), we obtain a stronger lower bound T (�) and the valid inequality:

x(E�) + �y(E�) � dT (�)e (2.8)
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where we have de�ned the aggregate variables x(E�) =
P

e2E�
xe and y(E�) =

P
e2E�

ye for

notational convenience.

Note that the valid inequality with left hand side as in (2.8) and right hand side equal to

dT (�; �)e is an integral metric inequality obtained in the following way. For each undirected

edge fi; jg 2 E� let A� contain the directed edge (i; j) or (j; i) going from a lower numbered

subset to a higher numbered subset when subsets are numbered with respect to �. The

desired inequality is now obtained by assigning unit weights to edges in A� and zero weight

to all other edges. Integral metric inequalities obtained in this fashion will be referred to as

l-partition inequalities. 2-partition inequalities are usually referred to as cutset inequalities.

A cutset inequality de�nes a facet of P provided that V1 as well as V2 = V nV1 are not empty

and induce connected subgraphs and that T (V1; V2) is not integer. A proof of this result

may be found in e.g. Bienstock and G�unl�uk [2] who also give several suÆcient conditions

for 3-partition inequalities to be facet de�ning. Finally, Bienstock et al. [1] consider a one

facility capacitated network design problem and give suÆcient conditions for a general l-

partition inequality to be facet de�ning for the projection of the feasible region on the space

of discrete capacity variables.

2.3 Mixed Integer Rounding Inequalities

By applying the mixed integer rounding procedure (see Nemhauser and Wolsey [13]) to the

partition inequalities, we obtain a new class of valid inequalities referred to as mixed integer

rounding inequalities. For notational convenience we let �T� denote the right hand side of

the partition inequality (2.8) for a given partition �, that is �T� = dT (�)e. Next we de�ne

r� = ( �T� mod �) so that �T� = �b �T�=�c+ r�. Note that 0 � r� < � and r� = 0 if and only if

�T� is a scalar multiple of �.

In terms of the aggregate variables
�
x(E�); y(E�)

�
the partition inequality (2.8) is tight

at integer points
�
�T�; 0

�
;
�
�T���; 1

�
; : : : ;

�
r�; b �T�=�c

�
. Still, when �T� is not a scalar multiple

of �, new fractional extreme points with x(E�) = 0 and y(E�) = �T�=� are induced. Such

points may be cut o� by including the following mixed integer rounding inequality in the

constraint set:

x(E�) + r�y(E�) � r�d �T�=�e (2.9)

In terms of the aggregate variables
�
x(E�); y(E�)

�
this inequality is tight at integer points�

0; d �T�=�e
�
and

�
r�; b �T�=�c

�
assuming that r� is not equal to zero in which case (2.9) is

redundant. Hence, assuming that r� 6= 0, the mixed integer rounding inequality is stronger

than the corresponding partition inequality for points with b �T�=�c � y(E�) � d �T�=�e.
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It is possible to prove that if a partition inequality (2.8) is facet de�ning for P, then the

corresponding mixed integer rounding inequality (2.9) is also facet de�ning for P under mild

conditions. (See e.g. Bienstock and G�unl�uk [2].)

2.4 Mixed Partition Inequalities

Finally, we will consider the class of mixed partition inequalities introduced by G�unl�uk [5].

Let � and �0 be two distinct partitions of the node set V and consider the related partition

inequalities (2.8). Once again we let �T� and �T�0 denote the right hand sides and r� and r�0

the corresponding remainders by division with �. We assume that r� > r�0 . Applying a

general mixing procedure for mixed-integer sets, introduced by G�unl�uk and Pochet [6], to

the two partition inequalities, we obtain a mixed partition inequality:

x(E� [ E�0) + (r� � r�0)y(E�) + r�0y(E�0) � (r� � r�0)d �T�=�e+ r�0d �T�0=�e

which is valid for P cf. Theorem 2.1 [6]. G�unl�uk [5] presented several conditions for mixed

partition inequalities to be facet de�ning for P but his computational experiments indicated

that the inequalities only in rare cases had an e�ect when partition and mixed integer

rounding inequalities were already included in the formulation. It turns out, however, that

the mixed partition inequalities is the only class of inequalities presented so far which are

able to combine information from di�erent scenarios in the stochastic problem, and hence

they turned out to be quite useful.

3. The Stochastic Programming Problem

So far, we have only considered the deterministic capacitated network design problem. As

already mentioned, though, the assumption that demand is known, will generally not be

justi�ed since uncertainty is almost always an inherent feature of systems involving the

assessment of future demand. In this section we explicitly take this uncertainty into account

by formulating the capacitated network design problem as a two-stage stochastic program

with integer �rst stage and continuous second stage.

The fact that demand is not known with certainty, at the time the decision on capacity

expansion has to be made, is incorporated in the problem formulation by allowing demand to

depend on the outcome of a random variable � de�ned on some probability space (�;F ; P ).

The number of low and high capacity facilities to install on each edge of the network must

be decided upon well in advance of the point in time at which they are actually installed and

operating. Also, it is quite likely that this capacity expansion is required to be suÆcient for
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some period of time causing even more uncertainty about the size of demand that needs to

be satis�ed. The routing of traÆc, on the other hand, is naturally postponed until the actual

realization of demand is observed. Hence decisions can be split in two: �rst stage decisions x

and y based solely on the information about demand conveyed through its distribution and

second stage decisions f(�) taken after demand d(�) has been observed.

The following assumption about the distribution of � allows us to think of uncertainty in

terms of scenarios:

Assumption 1. The random variable � has a discrete distribution with �nite support � =

f�1; : : : ; �Sg and corresponding probabilities P (�1) = p1; : : : ; P (�S) = pS.

Associated with a scenario s is a realization of random demand d(�s) and a corresponding

routing of traÆc f(�s). The solution procedure, which we are going to propose, allows us to

let the cost of 
ow c depend on the outcome of � too. One should be aware, though, that

this drastically increases the number of scenarios needed to give an adequate description of

the random vectors. For notational convenience we will refer to demand under scenario s

simply as ds and similar notation will be used for 
ows f s and cost of 
ow cs.

The feasible region of the stochastic capacitated network design problem, when only 
ow

under scenario s is restricted, is:

Rs =

�
(x; y; f 1; : : : ; fS) 2 Z

jEj
+ �Z

jEj
+ �IR

2jKjjEj
+ � : : :� IR

2jKjjEj
+

���X
j:fi;jg2E

f sjik �
X

j:fi;jg2E

f sijk = dsik i 2 V; k 2 K; i 6= k (3.1)

X
k2K

f sijk � Cij + xij + �yij fi; jg 2 E (3.2)

X
k2K

f sjik � Cij + xij + �yij fi; jg 2 E

�
(3.3)

and the feasible region of the stochastic programming problem is:

R =
S\

s=1

Rs

Finally, we may state the capacitated network design problem as a two-stage stochastic

programming problem in which total installment costs and expected 
ow costs are minimized

subject to the usual 
ow conservation and capacity constraints:

zSP = min

�
ax + by +

SX
s=1

pscsf s
��� (x; y; f 1; : : : ; fS) 2 convR

�
(3.4)
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Since we are going to solve the problem by an L-shaped algorithm it will be convenient

to reformulate it in terms of the capacity variables x and y only. To this end we de�ne the

projections of the sets Rs and R on the space of discrete capacity variables x and y:

Rs
x;y =

n
(x; y) 2 ZjEj

+ �ZjEj
+

��� 9f 1; : : : ; fS 2 IR
2jKjjEj
+ : (x; y; f 1; : : : ; fS) 2 Rs

o

Rx;y =
S\

s=1

Rs
x;y

Problem (3.4) may now be stated as:

zSP = min

�
ax + by +

SX
s=1

psQs(x; y)
��� (x; y) 2 convRx;y

�
(3.5)

where the second stage value function Qs(x; y) is given by:

Qs(x; y) = min
�
csf s j (x; y; f 1; : : : ; fS) 2 Rs

	
(3.6)

Before we proceed, it may be appropriate to pass a few remarks on the feasible region of the

stochastic programming problem. In practice it is evident that demand for a commodity k at

a node i cannot be thought of as a stationary variable dik. Usually we describe the arrival of

demands/transmissions by a Poisson process, the length of a transmission by an exponentially

distributed random variable and even the required bandwidth of a transmission may be a

random variable. It is not (economically) feasible to construct a network in which no blocking

will occur even in extreme peak situations. What the network provider usually does, is to

select a grade of service (GoS) corresponding to a certain blocking probability that must not

be exceeded. Given the blocking probalities and the distributions that describe demand, it

is possible to determine the so-called e�ective bandwidth requirement, which can be thought

of as the capacity needed to secure that the blocking probabilities are not exceeded. (See

Dempster, Medova and Thompson [4].) The e�ective bandwidth requirement obtained in

this fashion serves as demand input for our problem and a feasible solution is required to

observe these requirements so that the blocking probabilities are not exceeded. Uncertainty

in our formulation of the problem arises due to the fact that distributions describing future

demand, and hence also the e�ective bandwidth requirements, are unknown.

3.1 Valid Inequalities

We will now generalize the valid inequalities derived for the deterministic problem to the

new setting. Comparing the structure of the regions P and conv Rs it is obvious that we
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may obtain integral metric inequalities, partition inequalities and mixed integer rounding

inequalities for convRs in the exact same way as for the deterministic problem.

For any scenario s, consider the multicommodity 
ow problem obtained by �xing the

values of the capacity variables x and y and minimizing the 
ow costs subject to (3.1), (3.2)

and (3.3). Note that the recession cone D+ de�ned by (2.7) is the same for all of these

problems. Hence for any extreme ray (u; v; w) 2 D+ satisfying the property, that uik is the

length of a shortest (k-i)�path using edge weights vij and wij as previously described, we

obtain an integral metric inequality for convRs:

X
fi;jg2E

(vij + wij)(xij + �yij) �

�X
i2V

X
k2K

dsikuik �
X

fi;jg2E

Cij(vij + wij)

�
(3.7)

Similarly, for any partition � = (V1; : : : ; Vl) of the node set we may calculate the maximum

net traÆc which needs to be routed across the multicut E� under scenario s:

T s(�) = max
�

� l�1X
r=1

X
k2V�r

X
i2V �r

dsik

�
�
X
e2E�

Ce

Letting �T s
� = dT s(�)e, we obtain an l-partition inequality for convRs:

x(E�) + �y(E�) � �T s
� (3.8)

Next, letting rs� = ( �T s
� mod �), we obtain a mixed integer rounding inequality for convRs:

x(E�) + rs�y(E�) � rs�d �T
s
�=�e (3.9)

As pointed out these three classes of inequalities are all valid for convRs and hence for

conv R. Thus in principle we may generate cuts of each type from all of the S scenarios.

It is easily seen, though, that similarities of cuts generated from di�erent scenarios allow

us to reduce the number of inequalities included in the formulation. We will denote by �T�

the maximum of the right hand sides in (3.8) over all scenarios and by r� the corresponding

remainder by division with �:

�T� = �T s�

� where s� 2 arg max
1�s�S

�
�T s
�

	
r� = �T� mod �

It is natural to consider the partition inequalities and mixed integer rounding inequalities

generated by �T� and r�.
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Theorem 1. For any scenario s 2 f1; : : : ; Sg the partition inequality (3.8) is dominated by

the stronger partition inequality:

x(E�) + �y(E�) � �T� (3.10)

Proof. The result is obvious.

A similar result may be stated for the integral metric inequalities (3.7). When we turn

to mixed integer rounding inequalities, on the other hand, a bit more care must be taken,

since these cuts are not parallel for di�erent scenarios.

Theorem 2. For any scenario s 2 f1; : : : ; Sg the mixed integer rounding inequality (3.9) is

dominated by either non-negativity constraints, the partition inequality (3.10) or the mixed

integer rounding inequality:

x(E�) + r�y(E�) � r�d �T�=�e (3.11)

Proof. Let s 2 f1; : : : ; Sg and write the corresponding mixed integer rounding inequality as:

x(E�) � rs�
�
d �T s

�=�e � y(E�)
�

(3.12)

Similarly, write (3.10) and (3.11) as:

x(E�) � �T� � �y(E�) (3.13)

x(E�) � r�
�
d �T�=�e � y(E�)

�
(3.14)

First of all, note that unless 0 � y(E�) � d �T s
�=�e the inequality (3.12) is dominated by

nonnegativity constraints. Next, note that if rs� � r�, the inequality (3.12) is dominated by

(3.14) for 0 � y(E�) � d �T s
�=�e. So assume that rs� > r�. Since d �T s

�=�e = d �T�=�e implies

rs� � r�, we see that d �T
s
�=�e � b �T�=�c and (3.12) is dominated by:

x(E�) � rs�
�
b �T�=�c � y(E�)

�
(3.15)

To see that this inequality is dominated by (3.13), we use the fact that �T� = r� +�(b �T�=�c)

to write (3.13) as:

x(E�) � r� + �
�
b �T�=�c � y(E�)

�
(3.16)

Since rs� < � and r� � 0, we see that for 0 � y(E�) � d �T s
�=�e the inequality (3.13) dominates

(3.15) and with that also (3.12).
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Finally, we turn to the class of mixed partition inequalities. Unlike the previously consid-

ered inequalities we may derive inequalities of this type combining information from di�erent

scenarios. Thus consider two maximal partition inequalities (3.10) corresponding to two dis-

tinct partitions � and �0. Denote by �T�, �T�0, r� and r�0 the right hand sides and corresponding

remainders by division with �. Once again we assume that r� > r�0. Applying the mix-

ing procedure of G�unl�uk and Pochet [6] to these inequalities we obtain a mixed partition

inequality:

x(E� [ E�0) + (r� � r�0)y(E�) + r�0y(E�0) � (r� � r�0)d �T�=�e+ r�0d �T�0=�e (3.17)

which is valid for convR cf. Theorem 2.1 [6].

The important thing to note at this point, is that the maximum right hand sides �T� and

�T�0 for the two partitions may very well be attained for di�erent scenarios. Hence the mixed

partition inequality (3.17) may combine demand information from distinct scenarios and for

this reason this class of inequalities may have greater signi�cance when solving the stochastic

program than what was experienced by G�unl�uk [5] for the deterministic problem. To test

this conjecture we performed a series of preliminary computational testing. We used branch

and cut to solve the problem AT13t (see section 5) with 10 scenarios. 10 independent runs

were performed with and without the mixed partition inequalities. These test runs revealed

a signi�cant reduction in the CPU time as well as the number of nodes in the branching tree

when the mixed partition inequaltities were included.

3.2 Facet De�ning Inequalities

As previously mentioned, suÆcient conditions for partition inequalities and mixed integer

rounding inequalities to de�ne facets of convRs (or convRs
x;y) for some s 2 f1; : : : ; Sg have

been given by various authors. One should note, though, that even if such a facet also de�nes

a facet of
TS

s=1 convR
s (or

TS

s=1 convR
s
x;y), it does not necessarily de�ne a facet of convR

(or convRx;y) since, in general, we have:

convR �
S\

s=1

convRs

and consequently:

convRx;y �
S\

s=1

convRs
x;y

and these inclusions may be strict.
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In this section we provide suÆcient conditions for (3.10) and (3.11), respectively, to de�ne

facets of convRx;y. First, we note the following result:

Theorem 3. convRx;y and convRs
x;y, s = 1; : : : ; S are full-dimensional polyhedrons.

Proof. We only show that convRx;y is full-dimensional since the proof is exactly similar for

the remaining sets. First of all note that conv Rx;y is non-empty. Let (�x; �y) 2 conv Rx;y.

Next, add to (�x; �y) each of the 2jEj unit vectors. The 2jEj+ 1 points obtained this way all

belong to convRx;y and they are aÆnely independent.

Recall that given a partition inequality we let s� denote the scenario for which the right

hand side is maximized. We are now able to prove the following result:

Theorem 4. Consider a partition � = fV1; : : : ; Vlg of the nodeset V . If the partition in-

equality (3.10) de�nes a facet of convRs�

x;y then it also de�nes a facet of convRx;y.

Proof. We consider the two faces F =
�
(x; y) 2 Rx;y

�� x(E�) + �y(E�) = �T�
	
and F s� =�

(x; y) 2 Rs�

x;y

�� x(E�) + �y(E�) = �T�
	
. Since F s� is a facet of conv Rs�

x;y, we know by

Theorem 3 that we can �nd 2jEj aÆnely independent points (x1; y1); : : : ; (x2jEj; y2jEj) 2 F s�.

Now consider the points given by:

(x̂ie; ŷ
i
e) =

(
(xie; y

i
e) if e 2 E�

(xie +M; yie) otherwise
for i = 1; : : : ; 2jEj

where M is some large number. By the de�nition of �T� and s� we see that for any scenario

the solution (x̂ie; ŷ
i
e); e 2 E allows a feasible routing of all demand across the cut E� as

well as all internal demand in each nodeset V1; : : : ; Vl. Hence (x̂
1; ŷ1); : : : ; (x̂2jEj; ŷ2jEj) 2 F .

Furthermore, these points are obtained by adding the same vector to each of the points

(x1; y1); : : : ; (x2jEj; y2jEj) and hence they are aÆnely independent.

In the exact same way we may prove the following result:

Theorem 5. Consider a partition � = fV1; : : : ; Vlg of the nodeset V . If the mixed integer

rounding inequality (3.11) de�nes a facet of convRs�

x;y then it also de�nes a facet of convRx;y.

Theorems 4 and 5 will prove extremely useful to us, since they allow us to use conditions

derived for the deterministic capacitated network design problem to identify facet de�ning

inequalities for the stochastic program.
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4. An L-shaped Algorithm

Problem (3.4) is a large-scale mixed integer programming problem and may be solved as

such by standard software packages. However, as always when working with stochastic

programming problems one should exploit the special structure of the problem and hence we

will use the formulation (3.5)-(3.6). We present a modi�ed version of the L-shaped algorithm

for continuous stochastic programming problems combining ordinary Bender's decomposition

with a branch and cut scheme.

Since convRx;y is a convex polyhedron, the condition (x; y) 2 convRx;y may be replaced

by a �nite number of feasibility cuts corresponding to the facets of conv Rx;y. In general,

however, we cannot identify all of these cuts due to the integer requirements on the �rst stage

variables. Still, we have shown that the integral metric inequalities (3.7), and in particular

the partition inequalities (3.10), provide necessary conditions for feasibility of the second

stage problems and hence we shall use these inequalities as feasibility cuts. The mixed

integer rounding inequalities (3.11) and mixed partition inequalities (3.17) are not strictly

necessary for second stage feasibility, but we will use them as a sort of feasibility cuts since

they do de�ne facets of convRx;y under certain conditions.

Likewise, the convex and piecewise linear second stage value functions (3.6) may be

represented by a number of linear models, referred to as optimality cuts. To be speci�c, we

have by linear programming duality that:

Qs(x; y) = max
l2f1;:::;Lsg

�X
i2V

X
k2K

dsik�
l
ik �

X
fi;jg2E

(�lij + � lij)(Cij + xij + �yij)

�

where (�l; �l; � l); l 2 f1; : : : ; Lsg are the dual extreme points of the s'th second stage prob-

lem. Hence we may replace each of the second stage value functions by a single variable �s

and the constraints:

�s �
X
i2V

X
k2K

dsik�
l
ik �

X
fi;jg2E

(�lij + � lij)(Cij + xij + �yij) l = 1; : : : ; Ls

The algorithm progresses by sequentially solving a master problem and adding feasibil-

ity cuts or optimality cuts which are violated at the current solution. Violated optimality

cuts as well as violated metric inequalities are identi�ed by solving the second stage prob-

lems, thereby generating the needed dual extreme points and extreme rays. The separation

problem for the integral metric inequalities, the partition inequalities, the mixed integer

rounding inequalities and the mixed partition inequalities, on the other hand, is in general

NP-hard and we may have to resort to heuristics to identify violated cuts of these types -
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an issue which we shall return to. By appropriately de�ning matrices D = (D1; D2; d) and

E = (E1; E2; E3; e) representing the feasibility cuts and optimality cuts which have been

included, we may state the master problem as:

zP = min ax + by +
SX

s=1

ps�s

s.t. D1x +D2y � d (4.1)

E1x + E2y + E3� � e

x; y 2 IRjEj

Algorithm 1

Step 1 (Initialization) Set �z = 1, choose an initial set of constraints represented by

D and E and let P consist of problem (4.1).

Step 2 (Termination/Node Selection) If P = ;, stop; the solution which generated the

current upper bound �z is optimal. Otherwise, select and remove a problem P

from P.

Step 3 (Master Iteration) Solve the current master problem P and let (�x; �y; ��) be the

optimal solution vector. Consider the following situations:

1. zP � �z. The current problem is fathomed; go to step 2.

2. zP < �z and (�x; �y) is integral. Solve the second stage problem (3.6) for

s = 1; : : : ; S and update the upper bound if a�x+ b�y+
PS

s=1 p
sQs(�x; �y) < �z.

If ��s = Qs(�x; �y) for all scenarios the current problem is fathomed; go to step

2. Otherwise; go to step 4.

3. zP < �z and (�x; �y) contains a fractional element. Decide whether to proceed

by cutting (go to step 4) or branching (go to step 5).

Step 4 (Cut Generation) Identify a number of cuts which are violated at the current

solution and augment D and E by appending the new rows to the appropriate

matrix. Go to step 3.

Step 5 (Branching) Select an edge fi; jg such that �xij or �yij is fractional and add two

new problems to P by including either the bounds xij � b�xijc and xij � d�xije or

the bounds yij � b�yijc and yij � d�yije in the formulation. Go to step 2.
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5. Computational Experiments

We implemented Algorithm 1 in C++ using procedures from the callable library of CPLEX

6.6 to solve the master- and subproblems. A series of computational experiments was per-

formed to test the practicability of the procedure and in particular the sensitivity of compu-

tation time with respect to the number of scenarios.

5.1 Implementational Details

The branch and cut segment of the algorithm was implemented in compliance with the

guidelines provided by G�unl�uk [5] to which we refer for a detailed description of this part of

the algorithm. As previously discussed, feasibility cuts and optimality cuts were generated

through the solution of the second stage problems. Integral metric inequalities, partition

inequalities and mixed integer rounding inequalities, on the other hand, were generated

heuristically using the procedures described in G�unl�uk [5] and Bienstock et al. [1]. Mixed

partition inequalities were only generated at initialization by mixing all tight partition in-

equalities at the root node. At each node of the branching tree we ran the heuristics until

no more cuts could be identi�ed in a �xed amount of time. That is, in step 3.3 of Algorithm

1 we chose to proceed by cutting whenever some second stage problem was infeasible or new

violated cuts were identi�ed by the heuristics in the last iteration. Optimality cuts were

added whenever a second stage problem was feasible but the addition of new optimality

cuts was not allowed to a�ect the decision whether to keep cutting or proceed by branching.

Hence branching occurred whenever the current solution contained a fractional element, all

second stage problems where feasible and no more cuts could be identi�ed by the heuristics.

5.2 Problem Instances

The computational experiments were performed on two real-life instances previously studied

in Bienstock and G�unl�uk [2] and G�unl�uk [5]. The �rst instance is a network representing the

Atlanta area, containing 15 nodes and 22 edges. Since we are primarily interested in long-

term planning where uncertainty is more signi�cant, we chose as starting point the instance

exhibiting the largest increase in demand, referred to as AT13t in the previous studies. The

second instance is a denser network representing the New York area. This network contains

16 nodes and 49 edges and again we chose the instance with largest demand increase as

starting point (NY17t). In the second instance there are no cost of 
ow and no existing

capacity in the network. Both instances have fully dense traÆc matrices.
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For each network we performed a series of experiments with varying number of scenarios.

Scenarios were generated randomly assuming some uncertainty in the overall demand level

captured in a parameter � as well as some regional (node dependent) 
uctuations captured

in the parameters �i (i 2 V ). The demand between nodes i and j under scenario s was

calculated as:

Ds
ij = �s�si�

s
jDij

where Dij is demand between nodes i and j in the deterministic problem and the random

parameters �s and �si (i 2 V ) are sampled from the uniform distribution:

�s � U(0:8; 1:2)

�si � U(0:9; 1:1) 8 i 2 V

5.3 Computational Results

For the Atlanta problem we �rst generated instances with 1, 5, 10, 50, 100 and 500 scenarios.

For each number of scenarios we randomly generated ten independent instances and ran the

algorithm. At termination we recorded the lower bound (LB) and upper bound (UB), the

number of nodes in the branching tree (Nodes), the number of optimality cuts (OC), feasi-

bility cuts (FC) and cuts generated by heuristics (HC), the total number of cuts generated

(Total), the number of cuts remaining in the master problem (Active) and the CPU time

spent by the procedure (CPU). CPU times are reported as minutes:seconds. The numbers

reported in table 1 are all averages over the ten independent runs.

Table 1: Atlanta Problems

S OC FC HC Total Active Nodes LB UB Gap CPU
1 41 22 1606 1669 61 112 509068.0 509068.0 0% 0:13
5 161 43 1606 1810 69 502 561864.7 561864.7 0% 1:18
10 248 56 1611 1915 99 525 588765.7 588765.7 0% 2:24
50 438 149 1603 2190 172 558 622275.9 622275.9 0% 10:21
100 673 266 1603 2542 303 554 627343.4 627343.4 0% 19:27
500 1955 838 1612 4405 883 589 644081.3 644081.3 0% 111:08

First of all we note that the algorithm terminated with an optimal solution in every run

performed on the Atlanta problems in this series of experiments. Also, we see that CPU time

exhibits an approximately linear growth with respect to the number of scenarios. The large

increase in the number of optimality cuts and the size of the master problem is only natural,

since we chose to place disaggregate optimality cuts on the S second stage value functions

seperately, and hence at least one active cut exists for each scenario. We also note that the
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number of cuts generated by the heuristics is fairly constant. This is due to the fact that

the cuts generated at initialization were identical (as regards the left hand side) irrespective

of the number of scenarios, and these cuts constitute the major part of the heuristically

generated cuts. Finally, we observed that the increase in the average number of branching

nodes when the number of scenarios is increased seemed to stem from a few \extreme" runs

requiring a very large number of nodes, whereas the major part of the runs terminated after

a few hundred nodes had been investigated. This tendency became even clearer when we

ran the algorithm with 1000 scenarios in which case two of the ten runs did not terminate

after more than eight hours of CPU time. Even in this situation, however, the algorithm

is able to produce very good lower and upper bounds in a relatively short amount of time.

Figure 1 shows the developement of the lower and upper bound for one of the extreme runs

with 1000 scenarios.
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Figure 1: Atlanta problem, 1000 scenarios

We see that the gap between the lower and upper bound is narrowed very quickly. After

30 minutes of CPU time the relative gap is as small as 0.27%, whereas the remaining gap

after eight hours of CPU time is 0.02%. The reason for the sudden large increase in the

lower bound occurring after half an hour is that the lower bound is only updated when

the branching tree is searched after a node has been fathomed. Hence, during the initial

cutting phase and the �rst dive in the branching tree, the bound remains constant at the

level reached after initialization. We should note that this initial lower bound was obtained

after approximately 90 seconds of CPU time. We conclude that even with 1000 scenarios

the algorithm usually terminated within a few hours of CPU time and when this was not

the case, very good upper and lower bounds were provided in a reasonable amount of time.

Next, we turn to the New York problems. These problems are much harder than the

Atlanta problems and the algorithm presented by G�unl�uk [5] required more than one and a
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half hours of CPU time to solve the deterministic problem NY17t. Hence, our main interest

lay in the quality of the bounds provided in a reasonable amount of time and we chose to

stop all runs after three hours of CPU time. Since there is no cost of 
ow in these problems,

we did not place any optimality cuts, but apart from this the statistics appearing in table 2

are the same as those recorded for the Atlanta problems.

Table 2: New York Problems

S FC HC Total Active Nodes LB UB Gap CPU
1 26595 11363 37958 46 13741 3754.4 3789.6 0.92% 180:00
5 4745 11087 15829 46 2645 4116.4 4237.2 2.84% 180:00
10 2490 11437 13927 46 1350 4334.2 4447.0 2.79% 180:00
50 292 11964 12256 55 136 4444.1 4654.2 4.50% 180:00
100 277 11973 12249 61 61 4427.0 4738.3 6.53% 180:00

First of all we note the quality of the bounds provided by the algorithm. Thus, we see that

the average gap is modest for all �ve series of experiments, even though a signi�cant increase

in the gap is observed when the number of scenarios increase. Naturally, the increased gap

is caused by the drastic decrease in the number of feasibility cuts and the number of nodes

investigated which result from the increased computation time required per iteration when

the number of scenarios increase. On the other hand we see that the number of heuristically

generated cuts is once again fairly constant due to the large number of cuts generated at

initialization. The number of tight cuts in the master does not exhibit the same sensitivity

with respect to the number of scenarios as for the Atlanta problems, since no optimality cuts

were placed. We did observe, however, a slight increase in the number of active cuts which

could not quite be accounted for. Since, on the average, only 61 nodes were investigated

with 100 scenarios, we chose not to run the algorithm with more scenarios.

6. Conclusions

We have considered the capacitated network design problem. In speci�c it has been investi-

gated how methods developed for the deterministic problem may be applied to a two-stage

stochastic programming formulation arising when demand is assumed to be unknown at the

point of decision. The algorithm which was elaborated was tested on two sets of real-life

instances with promising results. For the smaller network the algorithm terminated with an

optimal solution when it was applied to problems containing between 1 and 500 scenarios.

When more scenarios were generated, the algorithm did not always terminate within a few
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hours of CPU time, but very good lower and upper bounds were relatively quickly avail-

able. For the larger network we never obtained an optimal solution, but again the quality

of the bounds provided is good, though decreasing somewhat with the number of scenarios.

We conclude that the method is certainly practicable and a valuable tool in the design of

telecommunication networks under uncertainty.
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