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1. INTRODUCTION

An ambitious project is to obtain the general solution f,g,h € C(G) of the
functional equation

/K F(ak -y)dk = F()g(y) + 9(2) () + h(@)h(y), 7, € G, (1)

where G is a topological group, and C(G) denotes the algebra of all continuous,
complex valued functions on G. Furthermore K is a compact, transformation group,
acting by automorphisms on G, and k - x denotes the action of k € K on x € G. In
particular the map (k,z) — k -z of K x G into G is continuous. Finally dk is the
normalized Haar measure on K. This notation will be used throughout the paper.

We give the complete continuous solution to (1) for K = Z. acting on a topo-
logical abelian group G. That is we solve the functional equation

flx+y)+ flz+oay)

= f()9(y) + 9(@)f(y) + h(2)h(y), v,y € G,  (2)

2
where 0 : G — @ denotes a continuous involutive automorphism of G. Obvious
examples of such automorphisms are ¢ = I and 0 = —I, where I denotes the identity

operator. Letting o be a reflection in a hyperplane in G = R"™ we get an example for
which o # £1. Tt turns out that the solutions are certain exponential polynomials.
Chung, Kanappan and Ng’s paper [4] deals with the functional equation

f(zy) = f(@)g(y) + 9(x) f(y) + h(z)h(y), =,y € G, (3)

that can be viewed as the case of ¢ = I in (2). Our results encompass those of
[4] (see Remark 3.4). For G = R the functional equation (2) describes involved
addition formulas for trigonometric and related functions. See also [7].

The classical example o = —I of the equation (2) has been studied extensively
for d’Alembert’s functional equation (g = f — h = 0), the trigonometric functional
equations in [5] (h = 0 and g = f = ih) and the quadratic equation (h = g—1 = 0).
The special case of h = g turns up as part of a system of 2 functional equations
in ([5]; Formula (3.6)) and in ([11]; Lemma V.3). The case of g = 1 is Swiataks
equation (see [3] and [13]).

The general form of the solution sets for functional equations of d’Alembert’s
type, i.e., with the left hand side (f(z + y) + f(z —y))/2, can be found in Rukhin
[10].

The new of the present paper is that we:

i: Produce the explicit solution formulas for the special functional equations
(2) in question.

ii: Do it for any involutive automorphism ¢, not just for o = £1.

iii: Take continuity into account.

We reveal part of the underlying structure in the set up by discussing the general
equation (1). The results of the present paper can be compared with the ones of
[4] because we formulate them in the same way. It is intriguing to see that many of
the methods of [4] carry over to the more general situations (1) and (2). However,
our formulas for the solutions of (2) contain certain types of functions that are
absent in [4], because they vanish for 0 = I. For example the 4’th order term in
Proposition 3.2. So new phenomena show up.
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With more than one term on the left hand side the possibility of varying signs
exists. We give the complete solution of the functional equation

flety) —2f($ ) f(a)gl) + () @) + @A), 2y €G,  (4)

in Section 6.

2. MAIN RESULT

The following notation will be used throughout the paper unless explicitly stated
otherwise.

Notation (G,+) is an abelian topological group, 0 its identity element. We
let ¢ : G — G be an continuous automorphism of order 2. A(G) is the vector
space of all continuous additive maps from G to C and A*(GQ) := {A € A(QG) :
A oo = +A}. Furthermore S™(G) denotes the vector space of all continuous,
biadditive, symmetric maps S : G x G — C for which S(oz,y) = —S(=,y) for
all z,y € G. If S~ € S (G) we let for brevity S~ also denote the function
S~ (z) := S™(z,z),z € G. With K = Zy = (£1,-) equipped with the discrete
topology, the action of K on G given by 1-2 = z,Vx € G and —1-z =oz,Vz € G.
A K-spherical function is a function ¢ € C(G) such that ¢ # 0 and ¢ satifies
Jx o(zk - y)dk = ¢(x)p(y) for all z,y € G, in the case K = Z, the K-spherical
functions are given by theorem III.1 in [12]. If f is a function on G and k € K we
define the function k- f by (k- f)(z) := f(k~!-z) for z € G. We let C* denote the
multiplicative group of nonzero complex numbers.

Our main result is

Theorem 2.1. Let (f,g,h) be a continuous solution of

TeXDETEL) _ fa)gty) + o) f(0) + M@RG), 2y € G (5)

Then f,g and h have one of the following sixz forms, and conversely.
(A): f=h=0andge C(Q).

(B):
f a1 az as ¢1
g ¢=4 b b b3 ¢ ¢, (6)
h C1 C2 C3 ¢3

where ¢1,02 and ¢3 are K-spherical functions on G and a;, b;,c;,i =1,2,3
are complex constants satisfying the matriz equation

ay b1 C1 b1 b2 b3 ai 0 0
as b2 C2 a; as ag = 0 as 0 . (7)
as b3 C3 Ci Cy C3 0 0 as
(C):
f a1 a» as b1
g ¢=4q b b2 b3 b2 ; (8)
h ¢ ¢ c3 (m2A + (m2o0)(Adoo))/2

where ¢1 is o K-spherical function on G, ms : G — C* is a continuous
homomorphism for which my # mooo, ¢o is the corresponding K-spherical
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function ¢y = [, k-madk, A € A(G), and a;,b;,¢i,i =1,2,3 are complex
constants satisfying the matriz equation

ay b1 C1 b1 b2 b3 ai 0 0
as b2 Co ay; as ag = 0 as as - (9)
as b3 C3 Ci Cy C3 0 as 0

Furthermore a3 = 1. If f, g and h are linearly independent it may also be
assumed that a1 = —as.

(D):
f ar az as ¢1
g = by by b3 ma ) (10)
h c1 c2 c3 mag

where ¢1 is a K-spherical function on G, ma : G — C* is a continuous
homomorphism for which mas = maoo, ¢ = AT + S~ where AT € AT(G)
and S™ € §7(G) and a;,b;,c;,i = 1,2,3 are complex constants satisfying
the matriz equation (9). It may be assumed that az = 1. If f,g and h are

1mearly independent it may also be assumed that a; = —as.
li ly ind d ) lso b d th
(E):
p o a4 ap ) [ A mo0)(di00))/2
g =9 b b2 b3y by (m +m o0)/2 , (11)
. o o o . (mA+ (m o 0)(4 0 0))/2
R (mA? + (moo)(A%00))/2

where m : G — C* is a continuous homomorphism for which m # mo o,
A A € A(G), and a;,bi,ci,0 = 1,2,3,4 are complex constants satisfying
the matriz equation

a b ¢ 0 a 0 0
a; b; c: bi by by by a; a; asz a4
as b3 C3 a1 G2 a3 G4 = 0 as 2&4 0 (12)
a4 b4 C4 @ €2 €3 €4 0 a4 0 0

Futhermore a1 = 1 and az = 0. If f,g and h are linearly independent then
it may also be assumed that az = 0 and that as = 1/2.

(F):

f a1 as as mF
g ¢=9 b b b3 m o, (13)
h €1 C2 C3 mq

where a;, b;,c;, 1 = 1,2,3 are complexr constants satisfying the matriz equa-
tion

a bl C1 bl b2 b3 0 ai 0
as b2 Co ay a2 as = ay; a2 as , (14)
as b3 C3 C1 C2 C3 0 az ap

m: G — C* is a continuous homomorphism for which m =mo o, and

F= J(A%) 4+ (A7) 4 AT (A7) + A7 457, (15)

q=A"+(47) (16)
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where AT, AT € AT (G), A= € A~(G) and S~ € S~(G). We may even
assume that

ay a2 as 1 0 0
by by b3 p=< —2?/2 1 z % for somez € C. (17)
€1 C2 C3 -z 01

Proof. It is elementary to check that the functions listed are solutions. Thus what
is left is to show that each continuous solution (f,g,h) of (5) occurs in the list.
Apart from the last section the rest of the paper is dedicated to this. O

Remark 2.2. (a) Theorem 2.1 above yields for ¢ = I the main result of [4]. In
checking that this is so it is advisable to take the discussion on p. 276 of [4] into
account or the remark after our Lemma 3.3.

(b) The matrix equations (7), (9) and (12) occur in [3].

3. TECHNICALITIES

Proposition 3.1. The solutions g € C(G) of the quadratic equation
q(z +y) +q(z + oy)

9 = q(.’L’) + Q(y), T,y € Ga (18)
are the functions of the form ¢ = AT + S—, where A* € AT (G) and S~ € S~ (Q).
Proof. This is Corollary IIL.8 of [12]. O

Proposition 3.2. The solutions F,q € C(G) of the system of functional equations
F(x+y) + F(z + oy)

2 = F(@)+F(y)+q@)qly), ©,y€G,  (19)
— +2q<m Y~ @) +ql), .y € G,
are
Fo— b+ é(z‘l‘)4 + AT AT+, (20)

qQ = A++(A_)27
where AT € AT(G) and where ¢' € C(G) is a solution of the quadratic equation

(18).

Proof. Tt suffices to prove that q has the stated form. Indeed, if so then fy :=
(A*)2/24 AT (A7)2 + (A)*/6 is a particular solution of the first equation of (19).
Its complete solution is F = fy + ¢ where ¢' ranges over the solutions of the
corresponding homogeneous equation, i.e. of the quadratic equation.

If the function = — q(z + t) — g(x) is a constant, say c(t), for any ¢ € G then
c(t) = q(t) — q(0) = ¢q(t), implying that q is additive. Substituting oy for y in
(18) shows that any solution of the quadratic equation is invariant under o, hence
qg € AY(G). So from now on we may assume that there exists a t € G such
that the function ¢ — ¢(z + t) — ¢(x) is not constant. The function Fi(z) :=
F(x+1t)— F(x) — F(t), x € G satisfies

file 2 o)+ BEL0) _ pe) + oo +1) - a@)a), 2y € G, ()
which is a version of the functional equation of symmetric differences. It is solved
by theorem IV.1 of [12] according to which there are five cases (a)-(e) to take into
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account: The cases (a) and (b) do not apply under our assumptions here. (c) gives
q = AT + (A7)2 In each of the two remaining cases q has the form ¢ = ¢(¢ — 1)
where ¢ € C and ¢ is a Zs-spherical function. But if a function g of this form
satisfies the second equation of (19) then it is 0. O

The general result that makes thing work is the following technical lemma. It says
that if f,g,h € C(G) constitute a solution of (22) then g and h satisfy functional
equations of the same nature as f in (22). The corresponding result of [4] is there
expressed by (3.7) and (3.8).

Lemma 3.3. In this Lemma G need not be abelian, so we use the multiplicative
way of writing the group composition. If f,g,h € C(G) constitute a solution of

| 1@k k= [@a) + 9@ ) + h@hw). 2.y € G (22
and f # 0 then there exists constants a, 3,7,6 € C such that v> = a + 35 and
| stk )k = gla)gto) (23)

= af(2)f(y) + Blf (@)h(y) + h(2)f (y)] + Yh(x)h(y), z,y € G,

/K h(ak - y)dk — g(@)h(y) — h(z)g(y) = (24)
B1(2)f () +1f@h(y) + h@)fw)] + Sh(@)h(y), 7,y € G.

Proof. This is Propostition IL.5 of [9]. We have included the proof for the readers
convinience as [9] is not readily available.
Case A : f and h are linearly independent. Lemma II.2 in [12] implies here that

G(z,y)f(2) + H(z,y)h(z) = G(y,2) f(x) + H(y, 2)h(2), 2,y,2 € G, (25)

where

Gla,y) = /K o(ok - y)dk — g(@)g(y), 2,y € G, (26)

H(z,y) = /K h(zk - y)dk — g(x)h(y) — hz)g(y), =,y € G.
By (25) we have for any 21, 22 € G that
fe) k@) \ [ Gy \ _ ( Gl a)f(@) + H(y, 2)h(z)
( fz) hiz) ) ( H(z.y) > = ( Gy, 2)f(z) + H(y, 22)h(z) ) - @D

Since f and h are linearly independent there exists 21, 22 € G such that the matrix
on the left is invertible (see Lemma 14.1 in [1]), and so

Gz,y) = n(y)f(@)+i(y)h(), (28)
H(z,y) = ¢2(y)f(z) +2(y)h(2),
for some functions ¢1, @=2,v1,12 € C(G). When we substitute this back into (25)
we get by the linear independence of f and h that
oY) f(2) +2(y)M(z) = ¢1(2)f(y) +¥1(2)h(y), y,2 €G, (29)
P1(y) f(2) + 2(y)h(2) ¢2(2) f(y) + ¥2(2)h(y), ¥,z € G.

Using the linear independence of f and h once more we get that there exist constants
a1,a2,b1,ba,c1,C2,dy,ds € Csuchthat ¢; = a;f+b;h and ¢p; = ¢; f+d;hfori =1,2.
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Substituting this back into (29) we find that by = ¢1, az = by, be = di, ¢1 = as,
co = by, di = co, so that ¢1 = af + Bh, ¢p2 = Y1 = Bf + vh, and VY2 = vf + 0h,
where a = a1, 8 = b1, v = ba, and § = d2. This means by (28) that G and H have
the forms stated in (23) and (24). That ? = a + 3§ follows from applying Lemma
I1.2 in [12] to any of the two identities (23) and (24).

Case B: f and h are linearly dependent. Since f # 0 there exists a constant
c € C such that h = v/2¢cf. The identity (22) then becomes

/Kf(wk-y)dk = f(2)g9(y) +9(=@)f(y) +2¢° f(2) f(y)

f@lg+fly) +1g+fl@)fy), zye G (30)

From Lemma V.1 in [11] it follows after elementary computations that there exists
a constant k € C such that

/K ok - y)dk — g(@)g(y) = K2£(2){(v), 2,y € G. (31)

From (22) we get that
/K Wk -y)dk — g(2)h(y) — h@)g(y) = Vich@h(y), 2.y € G,  (32)

So all that remains to be show is that there exist o, 8,7, 8 € C such that v2 = a+ 39,
a + 2v2¢B + 2¢2y = k2, and B + 2v/2¢y + 2¢25 = +/2¢. But this is obvious. O

Remark 3.4. Let K be the trivial group as in [4] and let (f, g, h) be a solution of
(22) with f # 0. Then it follows from (22),(23) and (24) that each of the functions
f, g and h satisfies Kannappans condition. Hence we may assume without loss of
generality that G is abelian in this case. Unfortunately the argument does not
generalize to K = Z so here we assume that G is Abelian.

Proposition 3.5. Let each of the functions ¢1,¢d2, ¢3s be a K-spherical function
on G or the zero function. For a;,b;,c; € C,i = 1,2,3, we define the functions
= Z§:1 a;¢i, g = 2?21 b;¢; and h := Ele c;¢;. If the coefficients a;, b;,c; €
C,i = 1,2,3 satisfy the matriz equation (7) then the triple (f,g,h) constitutes a
solution of the functional equation (22).

Conwversely if the triple (f,9,h) solves (22) and if f,g and h are linearly independent
then the coefficients satisfy the matriz equation (7).

Proof. To prove the converse result note that f, g, and h linearly independent
implies that ¢, @2, @3 are linearly independent and the result follows by direct
computations. O

Proposition 3.6. Let my,my : G — C* be continuous homomorphisms and let
A e A(G). For a;,b;,c; € C,i = 1,2,3 we define the functions

f ay az as 1
[ = b1 b2 b3 ¢2 5 (33)
h C1 C2 C3 fK k- (mg A)dk

where ¢;,i = 1,2 denotes the K-spherical function ¢; := fK k- m;dk.

If the coefficients satisfy the matriz equation (9) then the triple (f,g9,h) constitutes
a solution of the functional equation (22).

Conversely if the triple (f,g,h) € C(G) solves (22) and if f, g and h are linearly
independent then the coefficients satisfy the matriz equation (9).
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4. THE CASE OF LINEAR INDEPENDENCE

Let us assume that the triple (f,g,h) solves the functional equation (22) and
that f # 0. Explicit calculations based on the identities (22), (23) and (24) reveal
that

f f
/ g ¢ (zk-y)dk = ®(y)* { g } (z), z,y € G, (34)
K| h h

where & is defined by

(35)

[SOR NS

0 a O 0 g
d=gl+f{ 1 0 0 p+h{ 0 O
0 8 ~ 1 v

Elementary computations based on the definition of ® and the identities (22),
(23) and (24) where 72 = a + 36 show that & satisfies the spherical equation

/ ®(zk - y)dk = &(x)P(y) forall z,y € G. (36)
K

Since the right hand sides of (22), (23) and (24) are symmetric in x and y it
follows that

/ F(zk -y)dk = / F(yk - z)dk, Vz,y € G, F € {f,g,h}. (37)
K K

B () B(y) = /K<I>(a:k-y)dk= /K<I>(yk-x)dk= B(y)d(z), Yo,y € G.  (38)

By linear Algebra this ensures the existence of a 3 x 3 complex matrix A such that
A~1®(x)A is upper triangular for all z € G. Below we find such an A explicitly. If
we put y = e in (22) we get that

(9(e) =1)f + f(e)g + h(e)h = 0. (39)

If f, g and h are linearly independent this means that g(e) = 1 and f(e) = h(e) = 0.
In particular we find in this case that ®(e) = I so ® is a matrix valued K-spherical
function. In the remaining part of this section we shall assume that the triple (f,g,h)
constitutes a solution of (22) and that f, g and h are linearly independent.

CASE 1: 3 =0 but a = 7? # 0. Here ® takes the form

0 v 0 0 0 ~
d=gl+f<¢ 1 0 p+h< 0 0 1 5. (40)
0 o 1 ~ 6

oo~

Let
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CASE 1.A: Ay # A_. Here

-y Y ! - Y
1 1 1 ¢ 1 1 1 = (42)
0 Ay A 0 Ay A
g-~f 0 0
0 g+’yf+)\+h 0
0 0 g+vf+A_h

None of the three functions in the diagonal are zero, because f, g, and h are
linearly independent. From (36) we read that ¢1 := g —vf, ¢2 := g+ vf + Aph,
and ¢3 ;= g +vf + A_h are K-spherical functions on G. We find that there exist
constants a;,b;,c; € C for ¢ = 1,2,3 such that f = Zle a;pi, g = Zle b i,
and h = Ele c;¢;. It follows from Proposition 3.5 that the coefficients satisfy the
matrix equation (7). The solution occurs in (B) of the list of Theorem 2.1.

CASE 1.B: \; = A_. This means that vy = —§2/8. In particular § # 0 since
~v # 0. Here we find that

)
=9
M)

62
T —g 0 T —5 0
1 1 0 ¢ 1 1 0 p= (43)
[} ]
0o 3 1 0o 3 1
g+§f 0 0
o2 )
0 -5 f+5h 2h
0 0 -2 f+3n

We see from (36) that ¢ := g+ 62f/8 and ¢2 := g — 62 f/8 + dh/2 are K-spherical
functions on G. Furthermore

= (2 i 6h dg= 1 5h 44
f= ; (¢1—¢2+§)an 9—§(¢1+¢2—§)a (44)

and h is a non-zero solution of the functional equation
| hak- )k = 62@)he) + h@a(w). 2.9 €. (45)

We specialize to Zy for a moment. By Theorem III.1 of [12] (or Theorem 3 of [2])
there exists a continuous homomorphism my : G — C* such that ¢o = (ma +ma o
0)/2. By Theorem V.1 of [13] there are two possibilities for h :

CASE 1.B.1: ms # mg o 0. Here

b= m2+;ngoaA++m2—;ngoaA_:m2A+(m22oa)(Aoa)’

where AT € A*(G), A € A(G). It follows from Proposition 3.6 that the coefficients
satisfy the matrix equation (9). The solution occurs in (C) of the list of Theorem
2.1.

CASE 1.B.2: ms = my o o. Here h = maq where q is a solution of the quadratic
equation (18). We find that

(46)

f G2 -G 1Y ( &
st=4 1 b e )
h 0 0 o m2q

so that the solution occurs in (D) of the list of Theorem 2.1.
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CASE 2: a =3 =+ =0 but  # 0. We find that

00 1 Y ' (00 1 g 0 f—h/s
11 0 {11 0 =40 g+sh 0 . (48)
05 -1/5 05 -1/5 0 0 g

From here we proceed exactly as in Case 1.B above. The solutions occur in (C)
and (D) of the list of Theorem 2.1.
CASE 3:a=p8=7=6§=0. We get

00 1Y) "' 001 g h f
100 3{ 1 00 $=20 g h %, (49)
010 010 00 g

so that g is a K-spherical function. We know from Theorem III.1 of [12] (or Theorem
3 of [2]) that there exists a continuous homomorphism m : G — C* such that
g=(m+moo)/2.

CASE 3.A: m # m o o. By Proposition IIL.6 of [12] there exists a continuous
homomorphism M : G — GL(3,C) of the form

m v ¢ g b f)
M=< 0 m 9 jsuchthat ¢ 0 g h p»=—-(M+Moo). (50)
0 0 m 00 g) 2

The homomorphism property of M means that

Y(E+y) = mz)Y(y) +P(@)m(y), (51)
oz +y) = ox)m(y) +m(z)p(y) + (@)Y (y)-

Dividing by m(z + y) = m(z)m(y) in the above identities we get that

Yarn=L@+ L), nyea, (52)
so that ¢y = mA where A € A(G), and
2@+ =L@+ L)+ A@Aw), nyeo. (53)

A particular solution of this inhomogeneous equation is % = A?%/2 so its complete
solution is % = Ay + A?/2 where A; € A(G). Now

1 A A+ 14
M=m{ 0 1 A : (54)
00 1

from which we find that

f 100
g =401 0
h 00 1

The solution occurs in (E) in the list of Theorem 2.1.

(m+moo)/2
(mA+ (moaog)(Aoa))/2
(mA? + (m 0 0)(4% 0 )) /2

(55)

O ON=

} (mA1 + (moa)(4y100))/2
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CASE 3.B: m = moo. In this case g = m = m o o. The original functional
equation (22) and the one for h from Lemma 3.3 are in this case:

flx+y)+ flz+oy)
2

h(z +y) + h(z + oy)
2

= fl@m(y) + m(z)f(y) + h(z)h(y), z,y € G, (56)

= h(z)m(y) + m(z)h(y), =, € G. (57)

f 1 0 mF
FIR TR
h 0 1 mq

where the functions F := f/m and q := h/m satisfy the equations

We find that

> OO

F(z+y)+ F(z +oy)

2 = F(@)+F(y) +q@)e), z,yed,  (59)
q(z +v) *-QQ(eray) T )

Proposition 3.2 shows that the solution occurs in (F) of the list Theorem 2.1.
CASE 4: 8 #0. For any z € C we put

2
G:=g—%f—zh and H := h + zf. (61)

1 0 0 )" 1 00
= 1 - =¢ =2 1 2z 3. (62)
z 0 1 -z 01

Now f, G and H are linearly independent because f, g and h are so. Brute force
calculations show that

/K f(@k - y)dk = f(2)G(y) + G(x)f(y) + H(2)H(y), (63)

Note that

/K G(ak - y)dk — G(z)G(y) = (64)
Af(2)f () + BUf (@) H(y) + H(x) f ()] + CH(2)H(y),

| Hak-n)dk - G@HE) - H@)GE) = (65)
Bf(2){(y) + CLf (2)H(y) + H(x)f(y)] + DH(@)H(y),

where
= —gz4—6z3+37z2—3ﬂz+a, (66)
= 22462%-2y2+ 5, (67)
—gz2 —dz+1, (68)
= §+32 (69)

D Q @ =
I
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We note that C?2 = A + BD corresponding to the earlier identity 72 = a + 3.
Choosing z € C such that B = 0 we can apply the earlier results to the new set of
functions {f, G, H} replacing {a,3,7,d} by {4, B,C,D}. Thus

f a ... ap Y1
G =< b ... by : , (70)
H €l ... Cp Vn
corresponding to the various cases above. Now
f L0oY( a - ap V1
h -z 0 1 H a(z) - cn(2) Un
where b;(2) := b; — %zzai +zc; and ¢;(2) :=¢;—za; for z€ Candi=1,...,n. We
are through by the following matrix identity:
ar bi(z) ca(z) bi(z) - bu(z)
: : : ap - Gy = (72)
an bn(2) cn(2) ca(z) -+ cn(2)
a b by -+ by
: : ai .. an
an bn cn a - Cn

Indeed, in all the cases (B)-(F) of Theorem 2.1 the matrix equation contains only
the a; entries on the right hand side and they are independent of z.

5. THE CASE OF LINEAR DEPENDENCE

This section deals with the remaining case of f, g and h linearly dependent. We
divide it into three subcases (A), (B) and (C).

(A) f and h linearly independent, so that ¢ = Af + ph for some A, u € C.
Substituting this expression for g into the functional equation (1) and introducing
H := h+ uf instead of h we get

/K f(ak - y)dk = X = p2)f(2)f(y) + H(@)H(y), 7, € G. (73)

If 2\ = p? then taking y = e in (73) we find that f = H(e)H = H(e)h + H(e)uf,
contradicting that f and h are linearly independent. So 2\ — u? # 0. Letting p € C
be a square root of 2\ — u? the equation (73) becomes

/K F(zk - y) = F(2)F(y) + G(2)G(y), z,y € G, (74)

where F := p? f and G := pH. The solutions of (74) are written down as Theorem
V.5 of [13] for K = Z, with n=1. The theorem states that there are only the
following possibilities (a)-(e):

(a) F = G = 0. This implies here that f = 0. However that possibility must be
excluded since f and h are assumed to be linearly independent.

(b) There exists a continuous homomorphism m : G - C* and a ¢ € C\ {%i}

such that
1 m+moo

1+ ¢2 2

_ ¢ m-+moo
T l+c? 2

pH and p’ f = (75)
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It follows that c¢pf = h + pf. But f and h are assumed to be linearly independent
so the possibility (b) must also be excluded.

(c) There exist continuous homomorphisms mq,ms : G - C* and ac € C\ {%i}
such that

c mi+mio0 mo +MmMo 00
H = _
P 1+ ( 2 2 ) : (76)
1 mi+mioo 2 mas+maoo
2 1 1 2 2
= . Y
s 1+ 2 TTreT 2 (77
Letting ¢ := (m1 +mq 00)/2 and ¢2 := (ma + ma 0 0)/2 we find that
f 1 c
1 1 .
9 0= 513 A+ ppe— i c(Ae— pp — cp?) {zz } (78)
h pc— p —c(p + pc)
A calculation reveals that this fits into case (B) of Theorem 2.1 when we take
ai as as 1 1 1 C2 0
by by b3 p= A A+ ppec—p?2 cde—pp—cp?) 0 3. (79)
c1 ¢y c3 p ¢ pc — —c(p + pc) 0

(d) There exists a continuous homomorphism m : G — C* for which m # moo,
At € AY(G) and A~ € A(G)~ such that

m-+moco m-—moqo ,_

_ +
pH = ————A"+ A (80)
P2f = m—i—moaii m+moaA++m—mooA_ _ (81)
2 2 2
With A := 4ip~2(AT + A7) we find that

f 0 p~? 1 (m+moo)/2

g 0= 0 (P—-p>p?/2 (pTFip)/2 (m+moa)/2

h 0 —pp~? Fi(p F ip) (mA+ (mA)oo)/2

(2)
The solution fits into case (C) of Theorem 2.1.
(e) There exists a continuous homomorphism m : G — C* for which m =moo
and a solution ¢ € C(G) of the quadratic equation (18) such that pH = mq and
p2f = m £ imgq. Here we find that

f a; az as m
[ = b1 bg b3 m ; (83)
h €1 C2 C3 mq
where
a1 a2 ag 0 p~? 1
bi by by p=4 0 3(0*—p®)p™? —3(Fip—p)? }. (84)
a ¢ o 0 —pp~? Fip—p

A calculation reveals that this fits into case (D) of Theorem 2.1.
(B) f =0. Here h = 0 and g € C(G), which is the trivial case (A) of Theorem
2.1.
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(C) f # 0 and h are linearly dependent, so that h = af for some a € C. Here
the functional equation (5) reduces to

2

fety) +i@toy) _ 5 [g(y) + %2]‘(3/)} + [g(x) + %f(a:)] f),zy €G,

2
(85)

which is once again a well known functional equation. The solutions of the equation
(85) are written down as Theorem V.4 of [13] for K = Z» with n=1. The theorem
state that there are only the following possibilities (a)-(e):

(a) f = 0. This possibility is excluded by assumption.

(b) There exists a continuous homomorphism m : G — C* and a constant ¢ € C
such that g+ a?f/2=(m+moo)/4 and f = c(m +moo).

Letting ¢1 = ¢2 = ¢p3 = (m + mo o) /2 we get

f 2¢c 00 o1
g t={ 3—0% 0 0 da 3, (86)
h 2ac 0 0 3

from which a small calculation reveals that we this is case (B) of Theorem 2.1.

(c) There exist continuous homomorphisms m;,ms : G — C* and a constant
c € Csuch that g+ a?f/2 = (m1+m100+ma+mooc)/dand f=c[mi +myo
o — (m2 +myoa).

Letting ¢1 := (m1 +mq 00)/2 and ¢2 = @3 := (ma + m2 0 0)/2 we find that

f 2¢c —2c 0 é1
g p=1{ t-a% L+a2 0 b2 ¢, (87)
h 2ac —2ac 0 ¢3

from which a small calculation reveals that this is case (B) of Theorem 2.1.
(d) There exists a continuous homomorphism m : G — C* for which m # moo,
At € AY(G) and A~ € A~(G) such that

m-+moo m-+moo m-—moaog ,_

1,
- = = At A~
g9+ 3@ f 5 and f 5 + 5 (88)
We find with A := At + A~ that
f 0 0 1 (m+moo)/2
g =<0 1 —a?/2 (m+moo)/2 , (89)
h 0 0 a (mA+ (mA)oo)/2

from which a small calculation reveals that this is case (C) of Theorem 2.1.

(e) There exists a continuous homomorphism m : G — C* for which m =m oo,
and a solution ¢ € C(G) of the quadratic equation (18) such that g + a®f/2 =m
and f =mgq. We find that

i 00 1 m
g p=4 0 1 —a?/2 m 3, (90)
h 0 0 a mq

from which a small calculation reveals that this is case (D) of Theorem 2.1.
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6. THE SIGNED EQUATION

Proposition 6.1. f,g,h € C(G) is a solution to

/K f(@+k-y)x(k)dk = f(2)g(y) + 9(2)f (y) + h(@)h(y), =,y € G, (91)

where x is a continuous homomorphism from K into the circle group {z € C: |z| =
1} and x # 1, if and only if one of the following three conditions holds:

a): f=h=0, and g € C(G).
b): f=v, g=—a?v/2, and h = av where a € C and v € C(Q) is a solution
to
/ (@ + k- y)x(R)dk = 0, 2,y € G. (92)
K

c): g=—p’f/2+puH, h = H— uf where p € C, and f,H € C(G) is a
solution to

/far+k y)x(R)dk = H(z)H(y), 2,y € G. (93)

Proof. That the conditions are sufficient is verified by trivial calculations. Now
suppose that the triplet f, g, and h is a solution. Suppose f(k - z) = x(k)f(z) for
all x € G and for all k € K. Then

/ fly+ k- z)dk
K

/f(k—l-x+y)dk=/f(k—l-(x+k-y))dk
K K

/ F@+ k- y)x(k Y)dk = / (@ + k- y)x(Fydk
o) + 9) (z) + h(y)h(z)
- /fy+k;z: YRy dk, (94)

where we have used that K is unimodular since it is compact (see Theorem 15.13
and Theorem 15.14 in [6]). Taking z = e we get

= [ k- = [ sk oxtae= 1) [ XBdk=0, (©)
K K K

since’y # 1 (see Lemma 23.19in [6]). Soif f # 0 we can not have f(k-z) = x(k)f(z)
for all z € G and for all k € K. We will use this observation to exclude a number
of cases and thereby prove that the only possible solutions are those given by the
proposition.

Suppose that f, g, and h are linearly independent. it follows immediately from
Theorem II.2 in [11] that f(k - z) = x(k)f(z), Vz € G, Yk € K. But this is
impossible since f # 0. So f, g, and h have to be linearly dependent.

Case A: f and h are linearly independent. Then g = Af + uh for some A, p € C.
Define H = h + pf, then we have

[ fe+ kX ik = A= )1 @)f @) + H@HG), 2.y €G. (96)
Take p € C such that p? = 2\ — u?. Suppose p # 0 and define F = pf. We have

/K f@+ k- y)x(R)dk = F(2)F(y) + H@)H(y), 2,y € G. (97)
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F = pf and H = h + puf are linearly independent since f and h are linearly
independent. Again it follows from Theorem II.2 in [11] that F'(k - z) = x(k)F ()
and hence f(k-z) = x(k)f(z), Vz € G, Yk € K. So f = 0, but this is impossible
so p = 0. Hence

/K f@ + k- y)x(B)dk = H@)H(y), 7,y € G. (98)

This is case ¢ in Proposition 6.1.

Case B: f and h are linearly dependent.

Case B1: f =0, then h = 0 and g € C(G) can be arbitrary. This is case a in
Proposition 6.1.

Case B2: f #0, so h = af and we have

[ $o+ ke gk @ik = $% 1 +l0) + 5+ D), my e G (09)

Suppose f and o f/2 + g are linearly independent then again it follows from The-
orem I1.2 in [11] that f(k-z) = x(k)f(z), Vz € G, Vk € K. So f = 0. But this is
impossible so f and a? f /2+ g have to be linearly dependent. So a?f/2+g = \2f/2
for some A € C. Hence we have

/K f(@ + k- y)x®dk = M) @)A)@), 7,y € G. (100)

Suppose A # 0 then, using Theorem I1.2 in [11] it follows that f(k-z) = x(k) f(z), Vz €
G, Vk € K so f =0 and this is impossible. So A = 0 and we have

/ Fo+k-y)x®)dk =0, 5,y € G. (101)
K
This is case b in Proposition 6.1 This proves the proposition. O

Proposition 6.2. f,g,h € C(G) is a solution to

Fex D) ZJ@E) _ a)900) + 9)70) + h@hw), 7y €6, (102)

if and only if one of the following conditions holds:

a): f=h=0and g € C(G).

b): f =v, g = —-a’v/2, h = av, where a € C and v(z +y) = v(z +
oy), Vz,y € G.

c): g = —p?f/2+ pH, h = H — pf, where u € C, and where f = c*(m +
moo)/2+v and H = ¢(m —moo)/2 where ¢ € C and v(z +y) =
v(z+oy), Vz,y € G and m : G — C* is a continuous homomorphism such
that m # moo.

d): g = —p®f/2+pH, h=H — pf, where p € C, and f = m(A~)?/2+v
and H = mA~, where A € A~ (G), and m : G — C* is a continuous
homomorphism such that m = moao, and v(z+y) = v(z+oy), Vz,y € G.

Proof. To check that anything on the list is a solution is trivial. Now suppose that
f, g, and h is a solution. We let K = Zs act in the usual way on G. We define
X : K+~ C* by x(1) =1 and x(—1) = —1. Then we have

A(f(x+k'y)mdk _ f(m‘f'y)—zf(.’lf—{—ay)

= [f(®)9(y) +9(x)f(y) + h(2)h(y), 2,y € G. (103)
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This equation was treated in Proposition 6.1.

If we are in case a in Proposition 6.1 then we are in case a in Proposition 6.2. If
we are in case b in Proposition 6.1 then we are in case b in Proposition 6.2.

If we are in case ¢ in Proposition 6.1. Then for some y € C we have g =
—p2f/2+ pH and h = H — puf where f, H € C(G) is a solution to

flx+y)— flz+oy)
2

The equation (104) has been solved in Corollary IIL5 in [12].

If we are in case 1 or 2 in Corollary IIL.5 in [12] then H = 0 and f(z +y) =
f(z+oy), z,y € G. This is case b of Proposition 6.2.

If we are in case 3 in Corollary IIL.5 in [12] then there exist a continuous homo-
morphism m : G — C* for whichm #moo, c€ C\ {0}, ¢1,¢2 € C, and v € C(G)
for which v(z +y) = v(z + oy), 2,y € G such that

= H(z)H(y), =,y €G. (104)

Clm+moa+c2m—moa:H:cm—moa’ (105)
2 2 2
and
f:cc2m+;noa+cc1m_;noa+u. (106)

From (105) it follows that ¢; = H(e) = 0, and since m # moo it follows from (105)
that ¢o = ¢, and we are in case ¢ of Proposition 6.2.

If we are in case 4 of Corollary III.5 in [12] then there exist a continuous homo-
morphism m : G — C* for which m =moo, c,c; € C, A~ € A(G), and v € C(G)
for which v(z +y) = v(z + oy), z,y € G, such that

cm+cymAT = H =mA~, (107)
and )
f=cmA™ + 5clm(A—)2 + 0. (108)

From equation (107) it follows that ¢ = H(e) = mA (e) = 0, if A~ = 0 we can
take ¢; to be 1, if A~ # 0 then ¢; has to be 1. We are in case d in Proposition
6.2. O

Remark 6.3. Note that if G is 2-divisible and o = —I then the condition v(z +y) =
v(z + oy), x,y € G implies that v is constant. Where 2-divisible means that for
any z € G there is a y € G such that y? = z, this y is not assumed to be unique.
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