
DEPARTMENT OF OPERATIONS RESEARCH
UNIVERSITY OF AARHUS

Working Paper no. 2000/6

Multicriteria Semi-obnoxious Network Location
Problems (MSNLP) with Sum and Center Objectives

Horst W. Hamacher
Martine Labbé
Stefan Nickel
Anders J.V. Skriver

ISSN 1398-8964

Department of Mathematical Science Building 530, Ny Munkegade
Telephone: +45 8942 3188 DK-8000 Aarhus C, Denmark
E-mail: institut@imf.au.dk URL: www.imf.au.dk

Multicriteria Semi-obnoxious Network Location Problems (MSNLP)
with Sum and Center Objectives

Horst W. Hamacher

Fachbereich Mathematik

Universit�at Kaiserslautern

Kurt-Schumacher-Strasse 26

67663 Kaiserslautern

Germany

Stefan Nickel

ITWM

Universit�at Kaiserslautern

Ottlieb-Daimler-Strasse

Geb�aude 49

67663 Kaiserslautern

Germany

Martine Labb�e

Service de Math�ematiques de la Gestion

Universit�e Libr�e de Bruxelles

Brussels

Belgium

Anders J. V. Skriver
�

Department of Operations Research

University of Aarhus

Building 530, Ny Munkegade

DK - 8000 �Arhus C

Denmark

November 17, 2000

Abstract

Locating a facility is often modeled as either the maxisum or the minisum prob-
lem, re
ecting whether the facility is undesirable (obnoxious) or desirable. But many
facilities are both desirable and undesirable at the same time, e.g. an airport. This
can be modeled as a multicriteria network location problem, where some of the sum-
objectives are maximized (push e�ect) and some of the sum-objectives are minimized
(pull e�ect).

We present a polynomial time algorithm for this model along with some basic
theoretical results, and generalize the results also to incorporate maximin and minimax
objectives. In fact, the method works for any piecewise linear objective functions.
Finally, we present some computational results.

Keywords: MCDM, Multicriteria, Obnoxious, Semi-obnoxious, Facility Location, Net-
works.

1 Introduction

There are a number of models that deal with the problem of locating (placing) a new facility

on a network. Most of these models locate a desirable facility, such as a supermarket or a

�Corresponding author.

1

�re station, where the objective is to keep the new facility close to its users (pull e�ect).

There are also some models describing how to locate an obnoxious (undesirable) facility

such as a nuclear power plant or a dump site which the users want to locate far away (push

e�ect). Many facilities can, however, be thought of as semi-obnoxious. Such facilities

could be airports, train stations or other noisy service facilities. It could also be the

above-mentioned dump site that, with respect to transportation costs, should be located

centrally, but, in the opinion of the citizens, should be located distantly. These location

problems could with obvious advantages be formulated as multicriteria network location

problems. In this way the trade-o� between the di�erent objectives can be revealed,

making a good basis for an overall decision. Di�erent aspects of the problem can be

described by di�erent objectives. Such objectives could be transportation costs, travel

time, air pollution or minimizing the number of citizens within a certain radius of the

facility. Another situation arises when we have more decision makers, each having their

own objective function. When we solve a problem with more than one objective, it is

highly unlikely that one solution is optimal for all objectives. Instead, the solution is the

set of eÆcient or Pareto locations, i.e. solutions where we cannot improve any objective

without at least one other objective being worsened.

Bicriterion models for the planar case of the problem is presented in Brimberg and Juel

[1], Carrizosa et al. [2] and Andersen and Skriver [10]. In Andersen and Skriver [10]

an approximation solution method for the bicriterion network location problem is also

presented. A general solution method for the multicriterion median-problem is presented

in Hamacher et al. [5].

As one notices, the terminology for location problems is not unique. Therefore we intro-

duce in the following a classi�cation scheme for location problems that should help get an

overview over the manifold area of location problems.

We use a scheme which is analogous to the one introduced successfully in scheduling theory.

The presented scheme for location problems was developed in Hamacher and Nickel [6]

and Hamacher et al. [5].

We have the following �ve position classi�cation

pos1=pos2=pos3=pos4=pos5 ;

where the meaning of each position is explained in Table 1:

If we do not make any special assumptions in a position, we indicate this by a �.

The rest of the paper is organized as follows. In Section 2 we give some de�nitions and

2

Position Meaning Usage (Examples)

1 number of new facilities

2 type of problem
P planar location problem
D discrete location problem
G network location problem

3 special assumptions and
restrictions

wm = 1 all weights are equal
R a forbidden region

4 type of distance function
l1 Manhattan metric

d(V;V) node to node distance
d(V; G) node to point distance

5 type of objective function

P
median problemP

obnox anti-median problem
max center problem

maxobnox anti-center problem

Table 1: Classi�cation scheme for location problems.

describe the problem. The general solution procedure is described in Section 3, and in

Section 4 we present a di�erent approach that works only in the bicriteria case. In Section

5 we discuss how the general solution procedure can also be used with center objectives.

Computational results are presented in Section 6, and we conclude the paper in Section 7.

2 Problem formulation and de�nitions

We are given a (strongly) connected network G(V; E) with nodeset V = fv1; v2; : : : ; vng

where jVj = n nodes, and edgeset E = f(vi; vj); (vk; vl); : : : ; (vp; vq)g with jEj = m edges.

If the underlying graph is directed it is denoted GD, and the edge e = (vi; vj) has head vj

and tail vi. If the underlying graph is undirected, it is just denoted G, and e = (vi; vj) =

(vj ; vi) 8e 2 E . We de�ne the set of objectives as Q = f1; 2; : : : ; Qg. Each node vi carries

Q weights (w1
i ; w

2
i ; : : : ; w

Q
i)

t, where wq
i > 0;8q 2 Q, so we may refer to the matrix of

weights by WQ�n. Each edge e 2 E has length l(e) 2 R+.

By d(vh; vk) we denote the distance between vh and vk, is given by the length of a shortest

path between vh and vk. A point x 2 G(V; E) can be located both at a node or on an

edge. This is often referred to as absolute location.

We de�ne a point x on a directed edge e = (vi; vj) as a tuple x = (e; t); t 2 [0; 1], with

d(vk; x) = d(vk; vi) + tl(e) and d(x; vk) = (1� t)l(e) + d(vj ; vk)

for any vk 2 V. A point x on an undirected edge e = (vi; vj) is de�ned as a touple

3

x = (e; t); t 2 [0; 1], with

d(x; vk) = minfd(vk; vi) + tl(e); d(vk; vj) + (1� t)l(e)g

for any vk 2 V. Notice that d(vi; x) = tl(e) and d(x; vj) = (1 � t)l(e) for x = (e; t). Since

vi = (e; 0) and vj = (e; 1), all nodes of the network are also points of the network.

The set f(e; t)jt 2 (t1; t2); t1; t2 2 [0; 1]g, forming an open subedge on e, is denoted

(e; (t1; t2)) for any e 2 E . Of course this set is empty, unless t2 > t1. Similarly, we de�ne

closed and half right/left open subedges.

We formulate the model with the maxisum and minisum objectives, which are obviously

negatively correlated. These objective functions are often referred to as the weighted

anti-median andmedian of a network. In Section 5 we discuss the maximin and minimax

objectives. For the undirected problem the objective functions are de�ned by

f q(x) =
nX
i=1

wq
i d(x; vi) q 2 Q (1)

and for the directed case they are de�ned by

f q(x) =
nX
i=1

wq
i (d(x; vi) + d(vi; x)) q 2 Q (2)

In (2) observe that we for each node vi make a round-trip from x to vi and back to x. In

some applications it may be more appropriate to look only at the distances out of x or into

x. The general undirected problem 1/G/�/d(V; G)/(Q1 -
P

obnox; Q2-
P
)Par is formulated

as follows:

max f q(x) q 2 Q1

min f q(x) q 2 Q2

s.t.
x 2 G(V; E)

(3)

Q = Q1 [Q2, where Q1 \ Q2 = ;. Q1 is the set of obnoxious objective functions, and

Q2 is the set of desirable objective functions. At most one of the sets are allowed to be

empty. If Q1 = ; we have the situation discussed in Hamacher, Labb�e and Nickel [5].

f(x) = (f1(x); f2(x); : : : ; fQ(x))t.

For simplicity in the succeeding argumentation we multiply all objective functions in Q1

by �1 in order to minimize instead of maximize. Thus, in the remaining part of the paper

we assume that wq
i < 0;8i = 1; 2; : : : ; n and q 2 Q1, and wq

i > 0;8i = 1; 2; : : : ; n and

q 2 Q2. We now have a multicriteria minimization model:

min f q(x) q 2 Q1

min f q(x) q 2 Q2

s.t.
x 2 G(V; E)

(4)

4

In order to �nd the shortest distances between x and all the nodes, we need the distance

matrix D of shortest distances between all pairs of nodes. Note that Dij = d(vi; vj). This

matrix can be calculated in O(n3) running time using Floyd's algorithm or by applying Di-

jkstra's algorithm to all n nodes. For details on these graph procedures, see Thulasiraman

and Swamy [13]. For an undirected network the distance matrix D is symmetric.

This model is a combination of two well-known models. The minisum and the maxisum

models. The solution procedures for these two models are similar, but we will explain the

most important details here. For the maxisum problem, some interesting theory is found

in Church and Gar�nkel [3]. They introduce the concept of bottleneck points, and refer

to nodes with degree one as dangling nodes (often called pendant nodes). The minisum

problem has been well studied, and we refer to Daskin [4] for details.

We will now outline the concept of bottleneck-points as it is presented in Church and

Gar�nkel [3]. There are two types of bottleneck-points. The edge-bottleneck-points are

de�ned as follows, for each edge (vi; vj) 2 E : Let x be on the edge (vi; vj). If there exists

a node vk 6= vi; vj such that

Dki + d(x; vi) = Dkj + d(x; vj)

then x is an edge-bottleneck-point. It is easily seen, that edge (vi; vj) contains an

edge-bottleneck-point with respect to node vk if and only if

jDki �Dkjj < l((vi; vj))

This sets the upper bound for the number of edge-bottleneck-points on an edge to n� 2.

Now we de�ne the node-bottleneck-points. Assume there exists distinct nodes vi,vh and

vk. If there exists a node vj 6= vi; vh; vk such that

Dik +Dkj = Dih +Dhj

then node vj is a node-bottleneck-point with respect to node vi (and vi to vj). Consid-

ering the whole edge (vi; vj) including the nodes, it contains at most n bottleneck-points.

Since there are m edges in G, the total number of bottleneck-points is bounded by mn.

It is important to note that the bottleneck-points are independent of the weights. They

only depend on the network structure including the edge-lengths. We will denote the

edge-bottleneck-point matrix of shortest distances from all edge-bottleneck-points to

all nodes by B. So Bij is the shortest distance from edge-bottleneck-point Bi to node vj .

This matrix is needed for easy calculation of the objective-values in the bottleneck-points.

5

When we know the shortest distance matrix D, the bottleneck-points can be calculated

in O(mn) running time, because for each edge we have to evaluate all nodes. This can be

improved to an algorithm that takes O(n log n) time, see Hansen et al. [7].

In Church and Gar�nkel [3] it is shown that there exists a point x, that is either a

bottleneck-point or a dangling node that solves the maxisum problem. This is true be-

cause the weighted-sum objective is a piecewise linear, concave function on the edges,

with break-points only in the edge-bottleneck-points. This corresponds to minimizing the

weighted sum where all weights are negative. The objective function is then a piecewise

linear, convex function with break-points only in the edge-bottleneck-points, see f1 in

Figure 1. Note that the optimum need not be unique, it can be a subedge between two (or

more) bottleneck-points, or the optimum value may also be obtained on a di�erent edge.

It is well-known that the optimum for the minisum problem is found in a node (f2 in

Figure 1). The standard way of solving this problem is to sum the rows of the distance

matrix D multiplied by the weights. The row with the smallest weighted sum corresponds

to the minisum optimum node. For further details see Daskin [4].

t10

f 2 = z2

f 1 = z1

t0 t1 t2 t3

Z2

Z1

Figure 1: Illustration of the objective functions on an edge.

We denote the set of optimal solutions to a single-objective problem by X q. The cor-

responding objective values are denoted by Zq. Note that these sets of objective-values

only contain one value, namely the optimal value, but the notation generalizes to the

nondominated set ZPar de�ned below.

Solving the Q-criteria semi-obnoxious network location problem means �nding the set of

eÆcient points. For an introduction to multiple criteria analysis see Steuer [12].

The de�nition of eÆciency is as follows.

6

De�nition 1 A solution x 2 G(V; E) to (4) is eÆcient (Pareto optimal) i� there does

not exist another solution �x 2 G(V; E) to (4) such that f q(�x) � f q(x) 8q 2 Q and

9q 2 Q s:t: f q(�x) < f q(x). Otherwise x is ineÆcient.

The set of all eÆcient/Pareto optimal solutions are denoted by XPar. EÆciency is de�ned

in the decision space. There is a natural counterpart in the criterion space. The criterion

space is denoted by Z and is given by Z = ff(x) 2 RQjx 2 G(V; E)g.

De�nition 2 f(x) 2 Z is a nondominated criterion vector i� x is an eÆcient solution

to (4). Otherwise f(x) is a dominated criterion vector.

The set of all nondominated criterion vectors are denoted by ZPar where ZPar = f(XPar).

We use the Pareto optimality notation for both decision and criterion space.

Let S be a subset of G(V; E). We will de�ne the set of locally eÆcient solutions, denoted

XPar(S), to be the solutions that are eÆcient with respect to all other solutions in the

subset S. Similarly, ZPar(S) denotes the set of criterion vectors from f(S) that are locally

nondominated by any other criterion vector in f(S).

2.1 Example

Now we present two small examples to illustrate the structure of the directed and the

undirected problem, see Figure 2 and 3. Let the distance matrix Ddirected be given by

Ddirected =

2
6666664

0 1 5 4 3 6
7 0 6 3 10 5
1 2 0 5 4 7
4 3 3 0 7 2
3 4 2 7 0 3
8 1 7 4 11 0

3
7777775

for the directed network of Figure 2. Let the weights be w1 = (�1;�2;�1;�1;�2;�2)

and w2 = (2; 1; 2; 2; 2; 1).

The solution procedure for the directed network in Figure 2 is explained in Section 3.2,

and the criterion values are presented in Table 3.

Let the distance matrix D be given by

D =

2
6666664

0 1 1 4 3 2
1 0 2 3 4 1
1 2 0 3 2 3
4 3 3 0 5 2
3 4 2 5 0 3
2 1 3 2 3 0

3
7777775

7

v1 v2

v3 v4

v5 v6

3

1

1

3

2 2

3

1

3

Figure 2: The directed network of Example 2.1. The bold parts constitute the set of
eÆcient points.

for the undirected network of Figure 3. B can be calculated as

B =

2
66666666664

2 3 3 6 1 4
3 2 4 1 6 3
2 3 1 2 3 4
3 4 2 1 4 3
2 3 1 4 1 4
3 2 4 1 4 1
4 3 3 4 1 2
3 2 4 3 2 1

3
77777777775

:

v1 v2

v3 v4

v5 v6

B1

B2

B3 B4

B5 B6

B7 B8

p

Figure 3: The undirected network of Example 2.1. The bold parts constitute the set of
eÆcient points.

To clarify the solution to the undirected network in Figure 3 we present some function

values in Table 2. The solution method for this bicriterion model is described in Section

4. Please note the values of p and B4. This proves that a subedge, not having endpoint

at a node or a bottleneck-point, can be eÆcient. We will refer to this example in Section

3 and 4.

8

Point x f(x) = (f1(x); f2(x))

v1 (�17; 19)
v2 (�16; 21)
v3 (�18; 17)
v4 (�27; 29)
v5 (�24; 27)
v6 (�15; 21)
B1 (�27; 31)
B2 (�30; 33)
B3 (�25; 23)
B4 (�28; 27)
B5 (�23; 29)
B6 (�20; 27)
B7 (�25; 25)
B8 (�23; 27)
p (�28; 301

3
)

Table 2: Criterion values for all nodes, all bottleneck-points and point p.

From Table 2 we note that bottleneck-point B2 is optimal for the maxisum criterion (f1)

and node v3 is optimal for the minisum criterion (f2).

3 General solution method for the Q criteria case

First, we solve two simple cases of the problem, namely the node problem and the directed

case of the absolute location problem. Then we present the absolute location problem on

an undirected network.

3.1 The easy case: 1/G;GD/�/d(V;V)/(Q1-
P

obnox; Q2-
P

)Par

In this case the new facility can be placed only at the nodes of the given network, and

we can determine the eÆcient set XPar = XPar(V) by the following approach in O(Qn2)

time, given the distance matrix D. This approach is presented in [5].

Algorithm 3.1:

1. XPar(V) = V;

2. for i = 1 to n do

for j = 1 to n do

if f(vj) dominates f(vi) then XPar(V) = XPar(V) n fvig;

9

3. Output XPar(V);

3.2 The easy case: 1/GD/�/d(V; G)/(Q1-
P

obnox; Q2-
P

)Par

For this problem we have to investigate the objective function (2) of the directed case.

First, we observe that the objective functions are constant on the interior of the edges.

This is true because each term in the sum in (2) consists of a shortest cycle multiplied by

a weight.

Theorem 1 The directed objective function f q(x) de�ned in (2) is constant on (e; (0; 1))

for all e 2 E and for all q 2 Q.

Proof :

Assume e = (vi; vj) 2 E . In the objective function

f q(x) =

nX
k=1

wq
k (d(x; vk) + d(vk; x)) q 2 Q

we observe that

d(x; vk) = d(x; vj) + d(vj ; vk) 8k 2 V

d(vk; x) = d(vk; vi) + d(vi; x) 8k 2 V

on the interior of e, and that

d(x; vj) = (1� t)l(e) and d(vi; x) = tl(e)

for some t 2 (0; 1). After substituting the distance terms we get

f q(x) =

nX
k=1

wq
k (d(vj ; vk) + d(vk; vi) + l(e)) (5)

which is independent of t, and thus of x, on the interior of e.

Next we use the triangular inequality to prove that the obnoxious objective functions,

q 2 Q1, have a higher value at the endnodes of e, and that the desirable objective functions,

q 2 Q2, have a lower value at the endnodes of e. To see this we analyze the objective

function (2) once again.

Theorem 2 Let e = (vi; vj) 2 E be given. The obnoxious objective function values f q(vi)

and f q(vj) are higher than f q(x), where x is an interior point on e for all q 2 Q1.

10

Proof :

WLOG we prove that f q(x) � f q(vi) < 0. Remember that wq
i < 0;8i = 1; 2; : : : ; n and

q 2 Q1. Let us examine the two sums in

f q(x)� f q(vi) =

nX
k=1

wq
k (d(x; vk)� d(vi; vk)) +

nX
k=1

wq
k (d(vk; x)� d(vk; vi)) (6)

Starting at the second sum of (6) we use that d(vk; x) = d(vk; vi) + d(vi; x) to get

nX
k=1

wq
k (d(vk; x)� d(vk; vi)) =

nX
k=1

wq
k d(vi; x) =

nX
k=1

wq
k tl(e)

In the �rst sum of (6) we use the triangular inequality d(vi; vk) � d(vi; vj) + d(vj ; vk) and

that d(x; vk) = d(x; vj) + d(vj ; vk). Remembering wq
i < 0, we get

nX
k=1

wq
k (d(x; vk)� d(vi; vk)) =

nX
k=1

k 6=i

wq
k (d(x; vk)� d(vi; vk)) + wq

i (d(x; vj) + d(vj ; vi))

�
nX

k=1

k 6=i

wq
k (d(x; vj)� d(vi; vj)) + wq

i ((1 � t)l(e) + d(vj ; vi))

=
nX

k=1

k 6=i

�wq
k tl(e) + wq

i ((1� t)l(e) + d(vj ; vi))

=

nX
k=1

�wq
k tl(e) + wq

i (l(e) + d(vj ; vi)):

Hence,

f q(x)� f q(vi) � wq
i (l(e) + d(vj ; vi)) < 0

because wq
i < 0. The proof that f q(x) � f q(vj) < 0 is similar, apart from the triangular

inequality being used in the second sum of (6).

Theorem 3 Let e = (vi; vj) 2 E be given. The desirable objective function values f q(vi)

and f q(vj) are lower than f q(x), where x is an interior point on e for all q 2 Q2.

Proof :

Similar to the proof of Theorem 2, except wq
i > 0;8i = 1; 2; : : : ; n and q 2 Q2.

Using Theorem 3, we observe that the function values on int(e) cannot dominate the

function values at the nodes vi and vj , because the desirable function values at the nodes

are lower. Similarly, the function values at the nodes cannot dominate the function value

on the interior of e, because the obnoxious function value is lower on int(e) by Theorem

11

2. This observation cannot, however, be used to conclude that nodes and edges cannot

dominate each other. The objective function values on edge e12 in the directed network

in Figure 2 are illustrated in Figure 4.

t

10v1 v2

62
78

98

-70
-62

-96

Figure 4: f((v1; v2)). Notice that f(v1) dominates f(v2).

In Algorithm 3.2 we have to compare all nodes and edges, but we only need one vector of

function values on each edge, calculated easily by (5).

To present a compact form of the algorithm, we de�ne the n+m points ai on G(V; E) as

the n nodes and the midpoints on the m edges:

ai = vi 8 i = 1; 2; : : : ; n

an+i = xi = (ei;
1

2
) 8 i = 1; 2; : : : ;m

Algorithm 3.2:

1. XPar = G(V; E);

2. for i = 1 to n+m do

for j = 1 to n+m do

if f(aj) dominates f(ai) then

if i � n then XPar = XPar n fvig;

if i > n then XPar = XPar n (ei�n; (0; 1));

3. Output XPar;

When we make the pairwise comparison on the n+m points, each taking O(Q) time, we

get a complexity bound of O(Q(n+m)2) time.

12

For the directed example in Figure 2, using (2) and (5), we get the criterion values of

Table 3. The optimal value for the obnoxious function is �126 attained on (v5; v6) and

the optimal desirable function value is 62 attained at v1 and v3. After running Algorithm

3.2 we have determined the eÆcient nodes and edges as indicated in the table and the

�gure.

Point x f(x) = (f1(x); f2(x))

v1 (�70; 62) EÆcient
v2 (�62; 78)
v3 (�70; 62) EÆcient
v4 (�68; 72)
v5 (�82; 80) EÆcient
v6 (�74; 102)

(v1; v2) (�96; 98)
(v1; v5) (�94; 92) EÆcient
(v2; v4) (�74; 84)
(v3; v1) (�76; 74) EÆcient
(v4; v3) (�96; 98)
(v4; v6) (�98; 120)
(v5; v3) (�106; 98) EÆcient
(v5; v6) (�126; 140) EÆcient
(v6; v2) (�86; 108)

Table 3: Criterion values for all nodes and all edges.

3.3 Solving 1/G/�/d(V; G)/(Q1-
P

obnox; Q2-
P

)Par

The general solution method consists of pairwise comparison of subedges. The objective

functions are all piecewise linear, and the idea is to partition the network into subedges,

where the objective functions are linear. The points where the piecewise linear functions

change in slope are in fact the bottleneck-points. We then make a pairwise comparison

of all these subedges and delete the ineÆcient parts. The result is the complete set of

eÆcient solutions XPar.

It is important to note that part of a subedge may be eÆcient, starting at a point that is

not a node or an edge-bottleneck-point (see Example 2.1 at point p).

For each comparison of two subedges we will construct a linear program to detect ineÆcient

points (segments), that can be solved in linear time by methods found in Megiddo [9].

Let zq(t) = f q(xt); xt = (e; t). These Q functions are all piecewise linear with the same

set of possible breakpoints corresponding to the bottleneck-points. Assume there are P+1

13

breakpoints including the two nodes. We then have P subedges. Let these breakpoints

on (e; t) be denoted by tj ; j = 0; 1; : : : ; P , (1 � P � n � 1), with t0 = vi, tP = vj and

tj�1 < tj 8 j = 1; 2; : : : ; P . For t 2 [tj�1; tj], the z
q(t)'s are linear functions of the form

zq(t) = mq
jt+ bqj 8 q = 1; 2; : : : ; Q with

mq
1 � mq

2 � : : : � mq
P ; bq1 � bq2 � : : : � bqP q 2 Q1

mq
1 � mq

2 � : : : � mq
P ; bq1 � bq2 � : : : � bqP q 2 Q2

This is illustrated in Figure 1. Let us now compare the subedge A on edge eA, (eA; [tj�1; tj])

with subedge B on edge eB , (eB ; [sp�1; sp]). A point (eA; t) 2 (eA; [tj�1; tj]) is dominated

by some point (eB ; s) 2 (eB ; [sp�1; sp]) if and only if

mq
ps+ bqp � mq

jt+ bqj 8 q = 1; 2; : : : ; Q

where at least one inequality is strict. This comparison is illustrated in Figure 5 for two

subedges from Example 2.1. Subedge (B7; B8) is compared with subedge (v5; B7).

1
3

02
3

1
3

z2

z1

t1 (B7) t2 (B8) s0 (v5) s1 (B7)t s

29

�23 �23

29

27 27

�20

�24

Figure 5: Comparing subedge (B7; B8) with subedge (v5; B7).

14

Let us de�ne the set T where the inequalities hold (for these particular subedges) by

T = f(s; t)j mq
jt�mq

ps � bqp � bqj ; 8 q 2 Qg \ ([sp�1; sp]� [tj�1; tj])

If T = ;, (eB ; [sp�1; sp]) does not contain a point dominating any point in (eA; [tj�1; tj]).

Otherwise T 6= ; is taken as a feasible solution set of the two 2-variable linear programs:

LB = minf t j (s; t) 2 T g and UB = maxf t j (s; t) 2 T g

Using methods described by Megiddo [9], LB and UB can be calculated in O(Q) time.

We now check if we have only weak dominance. This means that none of the inequali-

ties need to be strict as required by De�nition 1. Note that points with weak dominated

objective function values may be eÆcient. Let sLB and sUB be optimal values of s cor-

responding to LB and UB. These s-values are not necessarily unique as illustrated in

Figure 6, where sLB can be any point in [0; 1
3
]. In the case where sLB (and/or sUB) is not

unique (sLB 2 [sa; sb]), we choose sLB = 1

2
(sa + sb) to avoid problems with weak domi-

nance in the subedge endnodes. To check for weak dominance, we examine the subedge

endnodes. If mq
psLB + bqp = mq

jLB + bqj 8 q 2 Q, then LB is only weakly dominated and

can therefore still be eÆcient. Similarly, if mq
psUB + bqp = mq

jUB + bqj 8 q 2 Q, then UB

is only weakly dominated. If both LB and UB are only weakly dominated, the entire

subedge (eA; [tj�1; tj]) is only weakly dominated by (eB ; [sp�1; sp]). This means that all

the inequalities in T are in fact equalities. Otherwise the ineÆcient part of the subedge

is deleted. If both LB and UB are dominated, then

(eA; [tj�1; tj]) = (eA; [tj�1; tj]) n (eA; [LB;UB])

and if, say LB is only weakly dominated, then

(eA; [tj�1; tj]) = (eA; [tj�1; tj]) n (eA; (LB;UB])

This comparison can also be done in linear time. The approach is simpli�ed if one or both

subedges consists of a single point (eA; t
0) (or (eB ; s

00)). If (eA; [tj�1; tj]) = (eA; t
0) = x,

then LB = UB = t0 and

T 0 = fsj �mq
ps � bqp � f q(x); 8 q 2 Qg \ [sp�1; sp]

If (eB ; [sp�1; sp]) = (eB ; s
00) = y, then

T 00 = ftj mq
jt � f q(y)� bqj ; 8 q 2 Qg \ [tj�1; tj]

and

LB = minf t j t 2 T 00g and UB = maxf t j t 2 T 00g

15

t

s

1

1

2

3

2

3

1

3

1

3

T

Figure 6: The linear programming constraints for comparing (B7; B8) = (e; [1
3
; 2
3
]) with

(v5; B7) = (e; [0; 1
3
]) on edge (v5; v6) in Example 2.1. T is indicated by the shaded area.

This subedge comparison is illustrated in Figure 6, where the subedge (B7; B8) = (e; [1
3
; 2
3
])

from Example 2.1 is compared with (v5; B7) = (e; [0; 1
3
]). Both subedges are on the same

edge. Since T is non-empty, we solve the two programs and �nd LB = 1

3
and UB = 2

3
.

Both LB and UB are dominated, so the subedge (B7; B8) is completely deleted.

Since we are removing a connected piece of (eA; [tj�1; tj]), three things can happen. First,

(eA; [tj�1; tj]) can be completely deleted if tj�1 = LB and tj = UB are both dominated.

Second, a piece of (eA; [tj�1; tj]) that includes one of the endpoints tj�1 or tj can be deleted,

in which case one connected subedge remains, say (eA; [tj�1; LB)) or (eA; [tj�1; LB]). The

third case is when an interior part of (eA; [tj�1; tj]) is deleted, so we end up with the two

subedges (eA; [tj�1; LB)) and (eA; (UB; tj]), possibly including one of the points LB or

UB. The third case is illustrated in Figure 7 where UB is not deleted, because z(UB) =

z(t2).

In order to complete the comparison, we simply make an ordered subedge comparison.

First, we compare (e1; [t0; t1]) with all the other subedges, possibly dividing (e1; [t0; t1])

into new subedges. Then we compare the second subedge (e1; [t1; t2]) with all the remaining

subedges. If (e1; [t0; t1]) is not completely dominated, we also compare with this subedge.

This comparison continues until we have compared the last subedge (em; [sP�1; sP]) with

all the remaining subedges.

Notice that we can still use the entire subedge (eA; [tj�1; tj]) to compare with the other

subedges, even though a part of it is ineÆcient. It is only for the set of eÆcient points

XPar, that we have to remember what part of (eA; [tj�1; tj]) is eÆcient. But if the whole

subedge (eA; [tj�1; tj]) is ineÆcient, we should delete it from further consideration, also in

the comparison process.

Assume that edge ei 2 E is divided into Pi bottleneck-point subedges.

16

t1

z2

z1

t0 t1 t2 t3

Figure 7: There are 4 breakpoints (P = 3) and 4 eÆcient subedges. Locally Pareto optimal
subedges are indicated in bold on the t axes. Note that (e; [t2; t3]) dominates an interior
part of (e; [t0; t1]).

Algorithm 3.3:

1. XPar = G(V; E);

2. for i = 1 to m do

for x = 1 to Pi do

for j = 1 to m do

for y = 1 to Pj do

compare (ei; [tx�1; tx]) with (ej ; [ty�1; ty])

XPar unchanged if no points are dominated

XPar = XPar n (ei; [LB;UB]) if LB and UB are dominated;

XPar = XPar n (ei; (LB;UB]) if only UB is dominated;

XPar = XPar n (ei; [LB;UB)) if only LB is dominated;

3. Output XPar;

This general algorithm has been implemented, and computational results are reported in

Section 6. Each of the m edges may consist of up to n � 1 bottleneck-point subedges,

giving at most O(mn) subedges. If we make the global pairwise comparison on the

O(mn) bottleneck-point subedges, each taking O(Q) time, we get a complexity bound

of O(Qm2n2) time. This is also the bound for the case where Q = Q2 found in Hamacher

et al. [5].

17

4 Bicriteria case

In the case where we only have two criteria, we may use the image of the network mapped

into criterion space Z to solve the problem faster. This is done by calculating the lower

envelope, see Hershberger [8]. This can be done in O(p log p) time, where p is the

number of line-segments. There are three di�erent situations. Q1 = ; denoted min-min

(1/G/�/d(V; G)/2-(
P

)Par), jQ1j = jQ2j = 1 denoted max-min (1/G/�/d(V; G)/(
P

obnox;
P
)Par)

and Q2 = ; denoted max-max (1/G/�/d(V; G)/2-(
P

obnox)Par). All three cases are solved

by the same method.

4.1 Direct mapping of the network into criterion space

This procedure is best described by an example, so we present the undirected network of

Example 2.1 in criterion space.

-30 -18

17

33
B2

p

B4

B3

v3

Figure 8: Mapping of the undirected network from Example 2.1 into criterion space. The
bold parts constitute the set of nondominated points.

Since we want to �nd the set of eÆcient solutions XPar, we are only interested in values

between the two extreme optimal solutions, namely Z1 and Z2. We therefore investigate

the region [f1
Z1 ; f

1

Z2]� [f2
Z2 ; f

2

Z1], denoted S.

We have to make sure that the slope of the envelope is decreasing, when the f1-values

increase, to ensure that there are no dominated points on the envelope. This can be done

by adding horizontal lines to all nodes and bottleneck-points in S, with the horizontal

18

lines ending at f1
Z2 . This will at worst double the number of line-segments in the region S.

Alternatively we could add the horizontal line to bottleneck-points that does not have a

subedge with negative slope leaving the point. In the example of Figure 8 none of the points

in S would need the horizontal line added. After the lower envelope is determined, we

delete the horizontal parts (if any), because the points on a horizontal line are dominated

by the left endpoint. The result is ZPar. The set of eÆcient solutions are then given by

XPar = f�1(ZPar). The eÆcient set corresponding to the nondominated set of Figure 8

is indicated in Figure 3.

We have the same complexity bound on the lower envelope calculation, as in Hamacher et

al. [5], namely O(mn log(mn)). This bound can be rewritten by examining the log term

and using the fact that m is at most n2 for dense graphs. We therefore get the bound of

O(mn log n) time for the envelope calculation.

5 Center objectives - 1/G/�/d(V ; G)/(Q3-maxobnox; Q4-max)Par

We now investigate the maximin and minimax objectives. These criterion functions are

often referred to as the weighted anti-center and center of a network. The problem is

formulated as follows:

max f q(x) = mini w
q
i � d(x; vi) q 2 Q3

min f q(x) = maxi w
q
i � d(x; vi) q 2 Q4

s.t.
x 2 G(V; E)

(7)

Q3 is the set of obnoxious objective functions, and Q4 is the set of attraction objective

functions. At most one of the sets are allowed to be empty.

For simplicity we again multiply all objective functions in Q3 by �1 in order to minimize

in stead of maximize. This gives the following formulation:

min f q(x) = maxi �w
q
i � d(x; vi) q 2 Q3

min f q(x) = maxi w
q
i � d(x; vi) q 2 Q4

s.t.
x 2 G(V; E)

(8)

We notice that the objective functions are again piecewise linear, but the breakpoints are

now weight dependent, see Figure 9. If we �nd these breakpoints, we can apply the same

solution approach as in Section 3.3 for the multicriteria case, and the envelope method

of Section 4 for the bicriteria case. When we only have center objective functions, the

19

new breakpoints are the only ones needed. If we combine these objectives with the sum

objectives, we may get a lot more breakpoints, because the bottleneck-point breakpoints

are also needed.

1

6

1

2

t

1

z4

z3

B3 B4

Figure 9: f((v3; v4)). There are two edge-bottleneck-points on this edge, and we �nd two
new breakpoints. f3 and f4 are indicated with a bold lines.

In the following we expand Example 2.1 to illustrate what the center objectives look

like. In Figure 9 we illustrate the locally eÆcient points on (v3; v4), where w
3 = w1 and

w4 = w2, as XPar((v3; v4)) = ((v3; v4); [
1

6
; 1
2
]).

In this example both objective functions turn out to be convex, but this is not the general

case. The center objective is known to be neither convex nor concave. But the anti-center

(maximin) objective is a concave function (so in problem (8) it is convex). This is true,

because it is the minimum of piecewise linear concave functions. When we convert the

problem to a minimax with negative weights, we get a piecewise linear convex function.

This fact leaves little hope for �nding an improved approach for this general case where we

combine both sum and center objectives. After having investigated the di�erent problems

in turn, we can conclude that the method described in Section 3.3 works for any piecewise

linear objective functions.

20

6 Computational results

In this section we present computational results from an implementation of Algorithm 3.3.

We have not used the methods of Megiddo [9] in this implementation to solve the small

LP's. Instead, we have used CPLEX 6.6. The code is programmed in C++ and the tests

are run on a 700 MHz Linux PC.

We have used random networks of varying size generated using NETMAKER. A descrip-

tion of NETMAKER can be found in Skriver and Andersen [11]. All the random networks

have a �xed number of nodes and a random number of edges with mean 4 times the num-

ber of nodes, i.e. a 50 node network has approximately 200 edges. Each network contains

a random Hamiltonian cycle, and for each node three random edges are generated. The

weights are generated negatively correlated. If one weight is in the integer interval from

1 to 33, the other is in the integer interval of 67 to 100. The same holds for the negative

weights for the obnoxious objective functions (except for the sign). In each group we have

used 10 random networks, and the mean is reported in the following tables.

First, we examine some semi-obnoxious bicriterion networks, having one push objective

and one pull objective. The results are presented in Table 4. It appears that the number

of subedges grows a little less than squared the number of nodes. The number of subedges

is important, because in worst case we have to make a pairwise comparison of all these

subedges, (# Subedges)2. The number of actual comparisons made is presented in the

table, and the percentage of actual comparisons to the worst case is also presented. It is

important to note that this percentage decreases as the networks increase in size.

Nodes 50 100 150 200 250

CPU-time 40.96 229.54 774.64 1505.42 3326.37
Subedges 3033.6 9411.5 18525.2 28368.1 39540.2
Subedge comparisons (in millions) 0.358 1.770 5.138 8.655 16.531
EÆcient subedges 96.2 155.3 175.7 222.5 264.5
% EÆcient subedges 3 1.6 0.95 0.78 0.67
% Comparisons 4.00 2.02 1.50 1.08 1.05
Comparisons per sec 8733 7709 6633 5749 4970

Table 4: Semi-obnoxious bicriterion results, 1 push - 1 pull objective.

The number of eÆcient subedges is also presented in Table 4, and this number seems to

grow linearly with the number of nodes. This number is in fact higher than the number

of actual eÆcient subedges, because more subedges may contain the same eÆcient point,

when this point is a node. If a node is eÆcient, all the subedges connected to this node

21

contain some eÆcient points (perhaps only the node which is the endpoint of the subedge).

The last row in Table 4 are the numbers of comparisons made per CPU-second. Assuming

that CPLEX performs independently of the number of problems it has to solve, this

decrease indicates that the large problems require a lot more storage of data, and accessing

this data takes an increasing amount of time.

Next we examine the e�ect of having more objectives. These results are all computed on

networks with 50 nodes. We reuse the results of the bicriterion (1-1) networks of Table

4, examine two types of three objective problems and one type of four objective prob-

lems. The three objective networks are generated with both 1 obnoxious and 2 desirable

objectives (1-2), and 2 obnoxious and 1 desirable objectives (2-1). The four objective

networks are all with 2 obnoxious and 2 desirable objective functions (2-2). The results

are presented in Table 5.

As expected both the number of subedges containing eÆcient points and the CPU-time

increase rapidly when more negatively correlated objective functions are added. With four

objectives more than 75 % of the subedges contain eÆcient points. It is seen that the CPU-

time for these instances is almost proportional to the number of subedge comparisons, since

the data size of the instances is approximately the same (last line in Table 5).

Objectives 1-1 1-2 2-1 2-2

CPU-time 40.96 123.05 105.49 870.57
Subedges 3033.6 3293.1 3158.8 2853.6
Subedge comparisons (in millions) 0.358 1.019 0.914 6.128
EÆcient subedges 96.2 359.1 357.9 2237.7
% EÆcient subedges 3 11 11 78
% Comparisons 4.00 9.47 9.53 75.46
Comparisons per sec 8733 8349 8720 7077

Table 5: The e�ect of having more objectives. All networks have 50 nodes.

Finally, we conclude that the computational results are constructive in the sence that

rather large problems can be solved within a reasonable amount of time. Since location

problems are usually not of the type you have to resolve often, a longer CPU-time is

acceptable.

The most encouraging result being that for bicriterion networks with objective functions

in almost opposite directions, a very small proportion of the networks is eÆcient. This

indicates that this model is in fact an aid for the decision-maker, since a large part of the

network can be omitted from further consideration. On the eÆcient parts of the network,

the trade-o� between the two objectives can then be revealed.

22

As a �nal comment, we note that with negatively correlated objectives, at most three

objective functions should be considered. Otherwise the results are inconclusive, since a

large proportion of the network will be eÆcient.

7 Concluding remarks

In this paper we have set up a multicriterion network location model for locating a (semi)

obnoxious facility. We have proposed an eÆcient solution algorithm based on ideas from

the multicriterion median network location problem presented in Hamacher et al. [5].

In the bicriterion case we have found an improved method, but this method has not been

implemented. The general method presented in this paper works for all piecewise linear

objective functions, and has been implemented in C++ using CPLEX as a solver. The

computational results show that networks of realistic size can be solved in a reasonable

amount of time. We thus conclude that this model is a good tool for general network

location decisions.

References

[1] J. Brimberg and H. Juel. A bicriteria model for locating a semi-desirable facility in

the plane. European Journal of Operational Research, 106:144{151, 1998.

[2] E. Carrizosa, E. Conde, and D. Romero-Morales. Location of a semiobnoxious facility.

A biobjective approach. In 1996 Torremolinos, editor, Advances in multiple objective

and goal programming, pages 338{346. Springer-Verlag, Berlin-Heidelberg, 1997.

[3] R.L. Church and R.S. Gar�nkel. Locating an obnoxious facility on a network. Trans-

portation Science, 12:107{118, 1978.

[4] M.S. Daskin. Network and Discrete Location. Wiley, New York, 1995.

[5] H.W. Hamacher, M. Labbe, and S. Nickel. Multicriteria network location problems

with sum objectives. Networks, 33:79{92, 1999.

[6] H.W. Hamacher and S. Nickel. Multicriteria planar location problems. European

Journal of Operational Research, 94:66{86, 1996.

[7] P. Hansen, M. Labb�e, and J.F. Thisse. From the median to the generalized center.

RAIRO Rech. Op�er., 25:73{86, 1991.

23

[8] J. Hershberger. Finding the upper envelope of n line segments in O(n log n) time.

Info Process Lett, 33:169{174, 1989.

[9] N. Megiddo. Linear-time algorithms for linear programming in R3 and related prob-

lems. SIAM J. Comput, 12:759{776, 1983.

[10] A.J.V. Skriver and K.A. Andersen. A bicriterion semi-obnoxious facility location

model solved by an �-approximation. Technical Report 2000-1, Department of Oper-

ations Research, University of Aarhus, Denmark, 2000.

[11] A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion

shortest path problems. Computers and Operations Research, 27:507{524, 2000.

[12] R.E. Steuer. Multiple criteria optimization: Theory, Computation, and Application.

Wiley, New York, 1986.

[13] K. Thulasiraman and M.N.S. Swamy. Graphs: Theory and Algorithms. Wiley, New

York, 1992.

24

