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Abstract

We present a model and methodology for the maximum likelihood analysis of pair-
wise alignments of DNA sequences in which two genes are encoded in overlapping
reading frames. In the model for the substitution process, the instantaneous rates
of substitution are allowed to depend upon the nucleotides occupying the sites in a
neighborhood of the site subject to substitution, at the instant of the substitution.
By de�ning the neighborhood of a site to extend over all sites in the codons in both
reading frames to which a site belong, constraints imposed by the genetic code in
both reading frames can be taken into account. Due to the dependency of the in-
stantaneous rates of substitution on the states at neighboring sites, the transition
probability between sequences does not factorize and therefore can not be obtained
directly. We present a Markov chain Monte Carlo procedure for obtaining the ratio
of two transition probabilities between two sequences under the model considered,
and describe how maximum likelihood parameter estimation and likelihood ratio
tests can be performed using the procedure. We describe how the expected num-
bers of di�erent types of substitutions in the shared history of two sequences can
be calculated and use the described model and methodology in an analysis of a
pairwise alignment of two Hepatitis B sequences in which two genes are encoded in
overlapping frames. Finally, we present an extended model together with a simpler
approximate estimation procedure, and use this to test the adequacy of the former
model.
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Introduction

In Felsenstein's maximum likelihood framework for inferring evolutionary trees from
DNA sequences, a fundamental assumption is that the substitution processes in
the single nucleotide sites are independent (Felsenstein, 1981). When this is the
case, transition probabilities between sequences can be feasibly obtained because
these become products of transition probabilities between nucleotides. If the in-
dependent substitution processes in the sites are assumed to be identical Markov
processes described by a matrix of instantaneous rates Qnuc, the matrix of tran-
sition probabilities between nucleotides separated by time t can be obtained as
P nuc(t) = exp(Qnuct).

For many sequences the assumption of independent substitution processes
in the nucleotide sites is in striking contradiction with biological reality. Protein
coding sequences present an obvious example: the rate of synonymous substitu-
tion is generally higher than that of nonsynonymous substitution (see Li et al., 85,
and references therein). Whether a substitution in a site is synonymous or non-
synonymous, depends upon what nucleotides occupy the other sites of the codon.
Substitution processes in nucleotide sites belonging to the same codon are thus
nonindependent.

Li et al. (1985) were among the �rst to describe a method for estimating
evolutionary distances between coding sequences, in which constraints imposed by
the structure of the genetic code were taken into account. Their method relied on a
partitioning of sites into degeneracy classes. A site was de�ned to be nondegenerate
if all possible changes at the site were nonsynonymous, twofold degenerate if one
was synonymous and the other two nonsynonymous, and fourfold degenerate if
all possible changes were synonymous. The classi�cation of sites into degeneracy
classes was based upon one of the observed sequences, and the degeneracy class of a
site was assumed to be constant over time. Having de�ned the degeneracy classes of
the sites, the sequences were analyzed under the assumption that the substitution
processes in the nucleotide sites were independent. This method is approximate:
the classi�cation of sites into degeneracy classes depend upon which sequence one
chooses to base the classi�cation upon and the degeneracy class of a site is not

constant over time but changes as substitutions occur.
Muse and Gaut (1994) and Goldman and Yang (1994) described how the

nonindependence introduced by the structure of the genetic code could be dealt with
in an exact manner. They presented codon based models in which the substitution
processes in codons, rather than single nucleotide sites, were assumed to be inde-
pendent. The substitution processes in the codons were assumed to be identical,
reversible Markov processes, described by a 61�61 matrix of instantaneous rates of
codon substitution, Qcodon. In the matrix, entries corresponding to nonsynonymous
substitutions could be modi�ed relative to synonymous ones, by multiplication of a
factor representing the fractional reduction of amino acid altering relative to amino
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acid preserving rates. Due to the assumption of independent substitution processes
in codons, transition probabilities between sequences in codon based models factor-
ize into a product of transition probabilities between codons. As in nucleotide based
models these can be obtained by taking the exponential of the product of the rate
matrix and the time, i.e. P codon(t) = exp(Qcodont). The basic idea behind codon
based models have since been utilized in the development of models for substitution
processes in RNA sequences. Sch�oninger and von Haeseler (1994), Muse (1995) and
Tillier and Collins (1995), have presented dinucleotide based models for the anal-
ysis of RNA sequences that allows dependencies among the substitution processes
in nucleotide sites that participate in base pairings to be modeled. The substitu-
tion processes in dinucleotides are assumed to be independent and the transition
probability between sequences factorizes into a product of transition probabilities
between dinucleotides.

The substitution processes in sequences in which more genes are encoded in
overlapping reading frames are subject to constraints imposed by overlapping ge-
netic codes. Due to the overlapping of the constraints an assumption of independent
substitution processes in small subsequences is inappropriate. An adequate descrip-
tion of the substitution process in these sequences can therefore not be obtained by
exploiting the idea behind the codon based models. A model for the substitution
processes in sequences with multiple overlapping reading frames was suggested by
Hein and St�vlb�k (1995). They extended the notion of the degeneracy class of a
site, to that of a combination of degeneracy classes (one for each reading frame to
which a site belongs). They de�ned class speci�c matrices of instantaneous rates of
substitution, assumed independent Markov processes in the sites according to these
matrices and illustrated how a maximum likelihood analysis of evolutionary trees
under the model could be performed. As in the method of Li et al. (1985), the
classi�cation of sites was based on one of the observed sequences and the class of
a site was assumed to be �xed. The method thus inherits the shortcomings of Li
et al.'s method, and deals with the constraints imposed by the overlapping genetic
codes in an approximate manner.

In this study we present a model for the substitution process in sequences
in which two genes are encoded in overlapping frames, that incorporates the con-
straints imposed by both of the overlapping genetic codes in an exact manner. This
is achieved by allowing the instantaneous rates of substitution in a site to depend
upon what nucleotides occupy the sites in the neighborhood of the site, at the in-
stant of the substitution. Thus, the model does not rely on the degeneracy class
notion, and does not assume that the substitution processes in any subsequences
are independent. Rather, the model contains parameters representing the degrees
of selectional constraints operating in the di�erent frames, and these parameters
can be estimated. Due to the nonindependent instantaneous rates of substitution
the transition probability between two sequences does not factorize into products of
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transition probabilities between small subsequences. Rather, transition probabili-
ties between full length sequences must be considered. The model and methodology
we describe here is obtained by generalizing a model and methodology we have pre-
viously presented (Jensen and Pedersen, 2000).

The presentation is build up as follows. In the `Methods' section we describe
the model for the substitution process in sequences with overlapping reading frames.
We show that the substitution process is reversible and derive the stationary distri-
bution of a sequence under the model. We further describe a Markov chain Monte
Carlo procedure for estimating the ratio of two transition probabilities between two
sequences under the described model. Together these entities, the stationary dis-
tribution of a single sequence and the ratio of transition probabilities between two
sequences, comprise the elements needed for a maximum likelihood analysis to be
performed. In the `Results' section we analyze an alignment of two homologous
Hepatitis B subsequences in which the polymerase (P) and the envelope genes (S)
are encoded in overlapping frames using the model and methodology presented in
the preceding section. We obtain maximum likelihood estimates of the parameters
in the model, and perform a likelihood ratio test of a hypothesis concerning the
mode of substitution in the sequences. We calculate expected numbers of various
types of substitutions. Finally, to check the adequacy of the model we present a
more general model together with a simpler approximate estimation procedure.

Methods

The Model

In this section we present a model for the substitution process in sequences with
overlapping reading frames, in which constraints imposed by the two overlapping
genetic codes are incorporated.

We consider an alignment of two homologous DNA sequences in which two
genes are encoded in overlapping reading frames. We assume that the sequences
have evolved from a common ancestral sequence, through independent identical
evolutionary processes that involve substitutions only. We further assume that
the substitution process is a homogeneous Markov process and that substitutions
happen sequentially, so that within an instant, the sequence may be changed in one
nucleotide position only. We do not allow substitutions that generate stop codons
in any of the reading frames considered, and assume that no substitutions occur in
the �rst and last codons of reading frame I in the alignment. With � short for the
set of parameters specifying the substitution process, the likelihood of observing
the two sequences x and y at the tips of an evolutionary tree with branch lengths
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tx and ty is given by

L(�; tx; ty) =
X
s0

ps0(�)Ps0!x(�; tx)Ps0!y(�; ty); (1)

where the sum over s0 is over all possible ancestral sequences and ps0(�) is the
probability under the model of the ancestral sequence being s0. The parameters
tx and ty are the time epochs separating sequence x and y respectively from the
ancestral sequence, and Ps0!z(�; tz) is the transition probability between sequences
s0 and z, z = x; y.

We have left to specify the precise form of the Markov process in the inner
parts of the sequences, that is, in codons 2; : : : ; n � 1, in a way that permits the
constraints imposed by the two overlapping genetic codes to be incorporated. For
this, consider a sequence in which two genes are encoded in overlapping reading
frames. The substitution of a nucleotide in the sequence may lead to the alteration
of the amino acid being encoded in both of the reading frames, in one of the reading
frames only or in none of the reading frames. Assume that the reading frames
overlap as illustrated in Figure 1. Whether a nucleotide substitution is synonymous
or nonsynonymous with respect to one of the reading frames, depends upon what
nucleotides occupy the other positions of the codon within that reading frame at
the instant of the substitution. Whether a substitution in the �rst codon position
in reading frame I is synonymous or nonsynonymous with respect to reading frame
II depend upon what nucleotides occupy the two immediately preceding nucleotide
positions, that is, positions two and three of the preceding reading frame I codon.
In order to determine whether a substitution in codon position two or three in
reading frame I, is synonymous or nonsynonymous with respect to reading frame
II, the nucleotide immediately following the codon, that is, in position one of the
next codon in reading frame I, must be known.

A G G G A A G A T C T G

| | | |

....

| | | | |

Gly Lys Ile

Arg Glu Asp Leureading frame 1:

reading frame II:

....

Figure 1: Example of a sequence in which two genes are encoded in overlapping
reading frames.

In order to incorporate constraints imposed by the operation of two over-
lapping reading frames in the model for the substitution process, we must allow the
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instantaneous rates of nucleotide substitution to be context dependent. Numbering
the positions by the codon number in reading frame I, the instantaneous rate of
substitution of one of the three nucleotides in codon i should depend upon the nu-
cleotides occupying positions two and three of codon i�1 and position one of codon
i + 1. Let zi = (z1i ; z

2
i ; z

3
i ) denote the i'th codon in reading frame I of the inner

part of a sequence (i = 2; : : : ; n�1), where zki is the nucleotide in codon position k,
k = 1; 2; 3. Let ~zi be a codon that di�ers from zi in one nucleotide position only. In
order to allow for unequal nucleotide frequencies we assume that the instantaneous
rate of substitution to the codon ~zi is proportional to �( ~zi), where (~zi) is the target
nucleotide, that is, the nucleotide occupying the position in ~zi at which it di�ers
from zi. We assume that the �k's, k 2 fA;C;G; Tg, sum to one. We further allow
for transition/transversion bias by multiplying instantaneous rates of transitional
substitutions by the factor K. With respect to these two features out model is
sililar to that of Hasegawa, Kishino and Yano (1985). The constraints imposed by
the genetic codes are incorporated by multiplying all instantaneous rates that alter
the amino acid in reading frame I only by fI , those that alter the amino acid in
reading frame II only by fII and those that alter the amino acid in both reading
frames by fI=II , a procedure related to that used in the codon based model for single
coding sequences (Goldman and Yang, 1994, Muse and Gaut, 1994). We refer to
the f parameters (fI , fII and fI=II) as parameters for selective constraints. An f
parameter larger than one indicates that amino acid altering substitutions in the
associated reading frame are promoted, whereas if f < 1 synonymous substitutions
are favored. When f = 1 there are no selective constraints in the corresponding
reading frame. Note that using reading frame I for numbering the positions along
the sequence has no in
uence on the instantaneous rates. Whether a substitution
alters the amino acid in one of the reading frames is not related to the numbering
used.

Let qzi; ~zijz2i�1;z3i�1;z1i+1
denote the instantaneous rates of substitution from a

sequence that has zi as the i'th codon in reading frame I, to a sequence that is
identical to the sequence except in codon i in which it holds the codon ~zi, at an
instant when positions two and three of codon i� 1 and position one of codon i+1
are z2i�1, z

3
i�1 and z1i+1 respectively. The model then states the following form for

the instantaneous rates of substitution

qz;~z =

(
0 if z and ~z di�er in more than one position,

qzi; ~zijz2i�1;z3i�1;z1i+1
if z and ~z di�er at one position in codon i,

where

qzi; ~zijz2i�1;z3i�1;z1i+1
= (2)

�( ~zi)M((z2i�1; z
3
i�1; zi; z

1
i+1); (z

2
i�1; z

3
i�1; ~zi; z

1
i+1))1C(~zi)1C(z

2
i�1; z

3
i�1;

~z1i )1C(
~z2i ;

~z3i ; z
1
i+1);
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with

M((z2i�1; z
3
i�1; zi; z

1
i+1); (z

2
i�1; z

3
i�1; ~zi; z

1
i+1)) = K1tsf

1non(I);syn(II)
I f

1syn(I);non(II)
II f

1non(I);non(II)
I=II :

Here 1ts is one for a transition and zero for a transversion, 1non(I);syn(II) is one for a
substitution that is nonsynonymous in reading frame I and synonymous in reading
frame II and zero otherwise, and 1syn(I);non(II) and 1non(I);non(II) are de�ned similarly.
The set C, on which the indicator functions are 1 in (2), consists of the 61 non{stop
codons. Spelled out we obtain the following representation of the instantaneous
rates

qzi; ~zijz2i�1;z3i�1;z1i+1
=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

0; STOP

K�( ~zi); no STOP, ts, syn(I), syn(II)

�( ~zi); no STOP, tv, syn(I), syn(II)

fIK�( ~zi); no STOP, ts, non(I), syn(II)

fI�( ~zi); no STOP, tv, non(I), syn(II)

fIIK�( ~zi); no STOP, ts, syn(I), non(II)

fII�( ~zi); no STOP, tv, syn(I), non(II)

fI=IIK�( ~zi); no STOP,ts, non(I), non(II)

fI=II�( ~zi); no STOP, tv, non(I), non(II)

:

The instantaneous rate of a substitution which changes a codon ACA to a codon
GCA in reading frame I, at an instant when the codon considered is preceded by
the nucleotides TC and followed by the nucleotide A is thus �GKfI , since the
substitution is a transition to a G that changes the amino acid coded for in reading
frame I from a Threonine to an Alanine, and does not change the amino acid encoded
in reading frame II, since both of the codons TCA and TCG code for Serines. The
instantaneous rate of a substitution which changes a codon GAT in the context
CCj...jA to GAA is �AfI=II , since the substitution is a transversion to an A and the
codons ATA and AAA (in reading frame II) code for di�erent amino acids as do
the codons GAT and and GAA (in reading frame I). Note that the model can easily
be modi�ed to other kinds of overlapping genes, e.g. genes encoded in opposite
directions. The only modi�cation needed is in the translation via the genetic code.

The stationary distribution and reversibility

We assume that the Markov process has reached equilibrium and let �(z) denote
the equilibrium frequency of a sequence z. In this section we show that the model
presented above is reversible, identify the stationary distribution of a sequence under
the model, and give a quick procedure for calculating the normalizing constant of
the stationary distribution.

A Markov process with instantaneous rates qz;~z is reversible and has � as
stationary distribution if

�(z)qz;~z = �(~z)q~z;z:
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Under the model described above the equilibrium frequency of a sequence with a
stop codon in any of the two reading frames is zero, as are instantaneous rates of
substitutions that generate stop codons. The above equality is thus satis�ed for
these cases. Moreover, the equality is trivially satis�ed for sequences z and ~z that
di�er in more than one nucleotide position, as in this case the instantaneous rates
are zero. Therefore, assume that the two sequences z and ~z do not contain stop
codons in either reading frame and di�er at one codon position in codon i only and
consider

�(z)qzi; ~zijz2i�1;z3i�1;z1i+1
= �(~z)q ~zi;zijz2i�1;z3i�1;z1i+1

:

Since all factors in the instantaneous rates, except �( ~zi), which depend upon the
target nucleotide (~zi), appear symmetrically they cancel out, and we obtain

�(z)�( ~zi) = �(~z)�(zi):

It is easily seen that this equality is satis�ed if the equilibrium distribution of a
sequence �(z) is a product over the �k parameters corresponding to the nucleotide
constituents of the sequence. Incorporating the exclusion of sequences with stop
codons in the second reading frame we obtain that under the model the stationary
distribution of a sequence z = (z2; : : : ; zn�1) with z1 and zn �xed is

�(z) =
1

Z

 
n�1Y
i=2

�z1
i
�z2

i
�z3

i
1C(z

2
i�1; z

3
i�1; z

1
i )

!
1C(z

2
n�1; z

3
n�1; z

1
n); (3)

if zi 2 C; 8i. For all other sequences the stationary distribution is 0. Here Z is a
normalizing constant di�erent from 1, because sequences with stops in either reading
frames are excluded. Without this exclusion Z would indeed be 1, because the �k's
sum to 1. We have thus identi�ed the equilibrium distribution and at the same
time shown that the process is reversible. With reversibility the likelihood value
becomes independent of the placement of the root and with this and the assumed
equilibrium the likelihood in (1) reduces to

L(�; t) = �x(�)Px!y(�; t); (4)

where we write �x(�) for �(x) to stress that in the likelihood �(x) is treated as
a function of the parameters in the model, of which only � and not the branch
length(s) are relevant for the stationary distribution, and t is the sum of the branch
lengths tx and ty.

In order to calculate the likelihood value (4) we must be able to calculate
the value of the normalizing constant Z of the stationary distribution (3). This
normalizing constant can be found by summing up the equilibrium frequencies of
all possible sequences. By �rst summing over (z2i ; z

3
i ), i = 2; : : : ; n�1, we can derive

an explicit form for Z. The details are in Appendix A, where we end up with the
formula (A.9)

Z = (c1�
n�2
1 v

z1n
1 + c2�

n�2
2 v

z1n
2 )

1

�z1n
;
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where all the terms are de�ned in Appendix A.

Calculation of the transition probability between two se-

quences

We now specify how the transition probability from a sequence x to a sequence
y, under the model described above can be calculated. Since the instantaneous
rates of substitution under the model, depend upon the states at neighboring sites
at the instant of the substitution, the probability of transition between the full se-
quences does not reduce to a product of `marginal' transition probabilities, such as a
product of transition probabilities between nucleotides or codons. The substitution
processes in all the sites must be considered simultaneously. As argued in Jensen
and Pedersen (2000) we will have to resort to simulations in order to calculate the
transition probability. Furthermore, in order to reduce the variance of the simulated
values, we simulate the ratio of two probabilities Px!y(�1; t1)=Px!y(�2; t2) instead
of simulating a transition probability directly. If the ratio can be evaluated for
two sets of parameter values, likelihood ratio tests can be obtained, and maximum
likelihood estimates of the parameters in the model can be found by maximizing
the ratio

��1(x)Px!y(�1; t1)

��2(x)Px!y(�2; t2)

as a function of (�1; t1) for �xed (�2; t2). In the following we describe a procedure
for obtaining the ratio of two transition probabilities using a Markov chain Monte
Carlo simulation technique.

Let Xt be the space of paths between sequences x and y separated by time
t, and let L denote a particular path in Xt. A path is a speci�cation of the number
of substitutions, the positions in which the substitutions occur, what nucleotides
replace existing nucleotides in these substitutions, and the times (2 (0; t)) the sub-
stitutions occur. Let �t be the measure on Xt which, for a �xed number of substitu-
tions r and �xed positions and �xed nucleotides of these substitutions, corresponds
to ordinary integration on the space (0; t)r for the substitution times. For a positive
number s we denote by s

t
L the path in Xs obtained by scaling all the substitutions

times in L by s
t
. Let q�(t;L) be the contribution from the path L to the transition

probability Px!y(�; t). A detailed description of q is given in Appendix B.
In Appendix B we derive the representation

Px!y(�1; t1)

Px!y(�2; t2)
= ~E

 
tr1q�1(t1;

t1
t2
L)

tr2q�2(t2;L)

!
; (5)

where r is the number of substitutions in the path L, and ~E denotes the mean value
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under the distribution ~P on the space Xt2 having density

q�2(t2;L)R
Xt2

q�2(t2;L)d�t2
(6)

with respect to �t2 . We can thus obtain an approximation of the ratio of the two

transition probabilities by calculating
tr1q�1(t1;

t1
t2
L)

tr2q�2(t2;L)
for a large number of paths L

drawn from ~P . The further (�1; t1) and (�2; t2) are apart the larger the variance and
the more paths are needed for the ratio to be obtained with reasonable precision. It
is thus necessary while maximizing as a function of (�1; t1) to alter the parameters
in the simulation measure (�2; t2) as (�1; t1) moves away from (�2; t2).

We now specify how to simulate from (6). We use a Markov chain Monte
Carlo method (Gilks et al., 1996), that is, we construct a Markov chain on the
path space Xt2 that has ~P as its stationary distribution. A path L is the collection
of paths Lj

i of the nucleotides in the j'th codon position of codon number i in
reading frame I. We construct the Markov chain by running through the codons
from number 2 to number n � 1 while we update the path Li for the i'th codon.
The updating of Li is done by proposing a new path L0

i from a distribution Pi with
density qi. The new path L0

i is accepted with probability

� = min(1;
~q�2(L

0
ijLi�1; Li+1)=qi(L

0
i)

~q�2(LijLi�1; Li+1)=qi(Li)
); (7)

where ~q�2 is given in Appendix B. From a computational cost point of view the
important thing here is that ~q�2 depends on Li (or L

0
i) and the two neighboring

paths Li�1 and Li+1 only. Having completed a run through the alignment, we have
performed a transition in our Markov chain on sequence paths. By continuing the
procedure a large number of times, we obtain a sample of sequence paths, which
has paths throughout the support of (6) in the correct proportions. In particular,
if we propose a path L0

i that gives rise to a stop codon in reading frame II, then
~q�2(L

0
i j Li�1; Li+1) will be zero and therefore the path is not accepted.
The choice of an initial path L to start the Markov chain is not important.

We have obtained a start path by simulating paths Li from Pi, i = 2; : : : ; n � 1,
and continuing until a sequence path without stop codons in reading frame II has
been obtained. The exact form of the path proposal distribution for codon i, qi, is
given by the following three steps:

1. the number of substitutions ki is taken from a modi�ed Poisson distribution
with intensity 
i;

2. the substitution times ti(r), r = 1; : : : ; ki, are taken from a uniform distribu-
tion on the interval from 0 to t2;

10



3. the nucleotide position and new nucleotide for each substitution is chosen
from a set of allowed substitutions Ar.

As for the modi�cation of the Poisson distribution in step 1, note that if the i'th
codons in the two sequences are identical, paths with one substitution are impossi-
ble. If the codons di�er at d0 positions there must be at least d0 substitutions in the
path leading from one codon to the other. We thus modify the Poisson distributions
and propose a number of substitutions for the path between the i'th codons from

pi(k) = P (Ni = k) =

8<:

ki
k!
e�
i=(1� e�
i) xi = yi; k = 0; 2; 3; : : : ;


ki
k!
e�
i=(1�

Pdi0�1
l=0


li
l!
e�
i) xi 6= yi; k � di0;

where di0 is the number of codon positions at which the i'th codons in the two
sequences di�er. The intensity 
i is described below.

In both of steps 1 and 3 we will use intensities ~qiy;w of a change from a codon
y to a codon w given by

~qiy;w = ~qy;wjx2i�1;x3i�1;x1i+1
;

where ~qy;wjx2i�1;x3i�1;x1i+1
are de�ned as in (2), except that we treat substitutions to

stop codons in the second reading frame ((x2i�1; x
3
i�1; w

1) or (w2; w3; x1i+1)) as substi-
tutions to a 21st amino acid, rather than giving them intensity 0. We have adopted
this approach in order to keep the proposal distribution simple, that is, we are not
using the paths Li�1 and Li+1 during the proposal step. For the Poisson intensity

i in step 1 we take


i = (
X

w2C;w 6=xi

~qixi;w)t2

In step 3, let ki be the number of substitutions from step 1 and let zi(r), r =
0; : : : ; ki, be the codon after the r'th substitution with zi(0) = xi and zi(ki) =
yi. When zi(1); : : : ; zi(r � 1) have been chosen we choose zi(r) according to the
probabilities

P (zi(r) = z) =
~qizi(r�1);zP

w2Ar
~qizi(r�1);w

:

The set of allowed substitutions for substitution number r, Ar, can be described
as follows: let di(z) be the number of nucleotide positions at which codon z di�ers
from codon yi. Then

Ar = fw 2 C j w 6= zi(r � 1); di(w) � ki � r; di(w) = 1 if r = ki � 1g

The following examples illustrate the role of Ar. Assume that for a potential path
between identical codons (xi = yi), the number of substitutions chosen is two. For
the �rst substitution, we may choose any combination of position and nucleotide, as
long as the nucleotide chosen is di�erent from the one that at the moment occupy

11



that position, and as long as we do not create a stop codon. Irrespective of the
choices for the �rst substitution, the choices for the second (and last) substitution
are completely �xed, since we must get to the target codon via this substitution.
Similarly, in a path containing one substitution, between codons that di�er in one
position, the choices of position and nucleotide for the substitution, are both com-
pletely �xed. For paths between codons that di�er at one position for which we have
chosen a number of two substitutions, the �rst must occur in the position at which
the two codons di�er (since otherwise it would generate an additional di�erence,
making it impossible to get to the target codon with the remaining one substitu-
tion). Furthermore, the �rst substitution must not generate the target codon, since
if it does, we have no way of assigning the last substitution. Note that we may gen-
erate a path for which the set of allowed substitutions for a certain substitution is
empty. This is the case for a path with two substitutions between the codons TCA
and TTA: the �rst substitution must be in position two (as otherwise we would
generate an additional di�erence), it can not be to a T (because then the target
codon is reached prematurely), and it cannot be to an A or a G (as rates to the
codons TAA and TGA are 0, since the codons are stop codons). A path for which
an empty set of allowed substitutions is created is discarded, that is, it will never
be accepted.

With this procedure for generating paths, the density of proposing a path
Li for codon i is

qi(Li) =

0@pi(ki) ki�1Y
r=1

~qzi(r�1);zi(r)P
w2Ar

~qzi(r�1);w

1A ki!(
1

t2
)ki

Having obtained expressions for the equilibrium frequency of a sequence
under the model, and here an approximation of the likelihood ratio of transition
probabilities, we have the means for performing maximum likelihood estimation
and likelihood ratio tests.

Results

Below we present results from a maximum likelihood analysis of a pairwise align-
ment of two Hepatitis B sequences, in which the model and methodology presented
in the `Methods' section are used. We refer to the model presented above as `the
full model'. We give maximum likelihood estimates of the parameters in the full
model, and perform a likelihood ratio test of a model of multiplicatively operat-
ing selective constraints (referred to as `the multiplicative model'), under the full
model. The multiplicative model is accepted. In the subsequent subsection we show
how the expected numbers of various types of substitutions may be calculated, and
give the values obtained under the multiplicative model. In the last subsection we

12



present an extension of the full model, referred to as the `extended model', that we
use to check the adequacy of the full model. For the extended model we describe
and use a simpler, but approximate, estimation method than used for the full and
multiplicative models.

Maximum likelihood analysis

The Hepatitis B viral genome is circular and partially double stranded, with the
longer strand consisting of approximately 3200 nucleotides (Ganem, 1996). Every
nucleotide in the genome is within a coding region and more than half of the se-
quence is translated in more than one reading frame. The genome has four open
reading frames: P, C, S and X. The P ORF encodes the viral polymerase, the C
ORF encodes the structural protein of the nucleocapsid, the X ORF encodes a pu-
tative regulatory protein and the S ORF encodes the viral surface glycoproteins.
The S ORF is completely embedded in the P ORF, the C and X genes partially
overlap with the P ORF, and also themselves partially overlap (see Figure 2).
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Figure 2: Schematic representation of the circular genome of Hepatitis B. Approx-
imate locations of the four ORFs C, P, X and S are shown.

Two full genome sequences were obtained from the GENBANK database
(http://ncbi.nlm.nih.gov/genbank), accession numbers AF151735 (type ayw2) and
X75663 (type adw4q). An alignment of the parts of the sequences in which the S
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(surface) and P (polymerase) genes are encoded in overlapping frames was obtained
automatically using GENAL (Hein and St�vlb�k, 1994). The alignment exhibited
an insertion of 11 consecutive codons after the �rst two codons in the reading
frame of the S gene. Analysis was restricted to the region following the insertion, a
region that spans 1152 nucleotides or 384 codons in the P gene reading frame. The
paths of the �rst and last codons in this region were assumed to be �xed with no
substitutions. In the region analyzed the sequences di�er at 13 % of the nucleotide
positions. The 150 di�ering nucleotide positions are distributed among 119 reading
frame I codons, and 78 transitional di�erences are exhibited, the remaining 72 being
transversional di�erences. Among the di�ering nucleotide positions, 70 fall in �rst
codon positions in reading frame I (third codon positions in reading frame II), 32 in
second codon positions in reading frame I (�rst codon positions in reading frame II)
and 48 in third codon position of reading frame I (second codon position of reading
frame II).

The MCMC algorithm was implemented in C. The Markov chain appeared
to converge quickly towards its stationary distribution (results not shown). In the
maximization of the likelihood ratio as a function of (�1; t1), we used a stepwise
procedure: we started with a certain set of initial values for the parameters for the
simulation measure (�2; t2). We performed a �rst rough maximization (round I)
with high threshold (10�4) in which 10000 samples were used in each calculation of
the ratio of the two transition probabilities. We used the resulting 'rough' maximum
likelihood estimates as new values of (�2; t2) in a new round of maximization (round
II) with a lower threshold (10�5). In this round each evaluation of the likelihood
value were based on 100000 samples. We proceeded to round III in which we used
the obtained parameter estimates from round II as new values of (�2; t2), while the
number of samples used for evaluation of the ratio of transition probabilities were
kept at 100000, and the threshold were again lowered (10�6). In each round the
starting values of (�1; t1) were set equal to those of the simulation measure (�2; t2).

In order to examine the eÆciency and dependency of the MCMC sampler
and maximization scheme on the starting values of the parameters, we compared
the outcome of four di�erent runs. Runs A, B and C had initial values of �k = 0:25,
k 2 fA;C;G; Tg, but the initial values for the remaining parameters varied. Initial
parameter values of run C� were identical to those of run C:II, to the �rst four
decimals, but the runs were started with di�erent random seeds. Initial parameter
values and maximum likelihood estimates obtained after each round in each of the
four runs are given in Table 1. Also given are in each row the number of iterations
(full parameter vector updatings) used in the maximization procedure (Powell's
method, Press et al. 1992) to reach the given maximum likelihood estimates. The
intensities are scaled so that, at equilibrium, the expected number of substitutions
out of a codon is one, and thus the parameter t gives the expected number of
substitutions in total per codon, between the two sequences. How this scaling is
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obtained is described in the next section.

run rounda c�A c�C c�G c�T bt cK cfP cfS dfP=S ]iter.b

A: start: 0.250 0.250 0.250 0.250 0.527 1.200 0.200 0.200 0.050
I: 0.244 0.267 0.218 0.271 0.478 1.714 0.212 0.151 0.062 2
II: 0.237 0.270 0.221 0.272 0.460 1.660 0.214 0.151 0.062 2
III: 0.238 0.269 0.221 0.272 0.455 1.620 0.213 0.152 0.061 2

B: start: 0.250 0.250 0.250 0.250 0.341 2.000 0.500 0.500 0.500
I: 0.239 0.274 0.207 0.280 0.442 1.449 0.560 0.406 0.178 7
II: 0.242 0.270 0.218 0.270 0.468 1.685 0.244 0.164 0.066 17
III: 0.238 0.269 0.221 0.272 0.454 1.618 0.230 0.163 0.066 9

C: start: 0.250 0.250 0.250 0.250 0.396 3.000 0.100 0.100 0.100
I: 0.249 0.267 0.217 0.267 0.471 1.662 0.217 0.150 0.064 10
II: 0.238 0.270 0.221 0.271 0.455 1.645 0.215 0.153 0.063 2
III: 0.238 0.269 0.221 0.272 0.454 1.632 0.217 0.156 0.063 3

C�: start: 0.238 0.270 0.221 0.271 0.455 1.645 0.215 0.153 0.063
III: 0.238 0.269 0.221 0.272 0.456 1.638 0.216 0.154 0.062 2

Table 1: ML estimates of the parameters in the full model after each of three rounds
in four di�erent runs.
a: threshold in the maximization procedure and numbers of samples per transition
probability calculation in rounds I, II and III were 10�4 and 10000, 10�5 and 100000,
and 10�6 and 100000, respectively.
b: number iterations (full parameter vector updatings) in maximization procedure.

The maximum likelihood estimates obtained in the four di�erent runs were
similar and the results did not indicate any dependency of the Gibbs sampler on
the starting values for the procedure (rows A:III, B:III and C:III), nor was the
result sensitive to the random seed (rows C:III and C�:III). After round III, values
obtained for the �k, k 2 fA;C;G; Tg, parameters varied by less than one percent,
those of t andK by less than 5 % and those of the remaining parameters (fP , fS and
fP=S) by less than 8%. In contrast to the similarity of the �nal parameter values,
the computational time requirements of the runs di�ered markedly. As can be seen
from the number of iterations used in the maximization procedures of the runs
(Table 1, last column), the computational e�ort involved was positively correlated
with the distance between the parameter values in which the run is started and the
`true' values. This demonstrated the importance of having `good' starting values.

The degrees of variation in the �nal parameter values from the four di�erent
runs re
ect the amount of information contained in the data concerning the di�erent
parameters. The variance is expected to be larger on the purely evolutionary pa-
rameters (t, K, fP , fS and fP=S) than on the parameters �k, k 2 fA;C;G; Tg that
are determined mainly by sequence composition (equilibrium distribution). Among
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the purely evolutionary parameters, the variance is most likely larger on the fP , fS
and fP=S than on the t and K parameters, since the former are related to a �ner
partitioning of evolutionary events. It is likely that some of the variation obtained
among the �nal values of the fP , fS and fP=S parameters is due to too few samples in
the calculation of the transition probability. As the likelihood surface is 
at in the
directions corresponding to the purely evolutionary parameters, a relatively high
precision in the calculation of the transition probability is necessary, in order that
reliable estimates of these parameters be obtained. The precision may be increased
by augmenting the number of samples used. The pattern of variation among round
II and III parameter values illustrates this (Table 1): reasonable values for the �k,
k 2 fA;C;G; Tg parameters can be obtained after round I, as these di�er only
slightly (<5%) from the �nal values obtained after round III. As for the t and K
parameters their values are ill determined after round I (see run B), however, after
round II they di�er by no more than a few percent. The values for the remaining
parameters (fP , fS and fP=S) obtained after round II di�er by up to 14 % from the
�nal values.

The maximum likelihood estimates of the parameters show that in the dou-
ble coding region analyzed selection against amino acid altering substitutions is
stronger in the S gene than in the P gene reading frame (fS � 0:15 versus fP � 0:22).
A similar �nding has been reported by Yang et al. (1995). Parameter estimates
further indicate that selection against substitutions that alter the amino acid en-
coded in both reading frames is particularly strong (fP=S � 0:06). Under the model
above with fP and fS varying freely we performed a loglikelihood ratio test for the
null hypothesis that selection against amino acid substitution in the double coding
region acts multiplicatively, that is, fP=S = fP � fS. Parameter estimates under the
null hypothesis were �A = 0:238, �C = 0:270, �G = 0:219, �T = 0:273, t = 0:450,
K = 1:590, fP = 0:346 and fS = 0:250. Use of the values from run A:III for the
parameters under the model with fP and fS varying freely led to a �2 logQ test
statistic of 1.305. This gave a P-value of approximately 0.25 and the null hypothesis
of multiplicatively operating selective constraints was thus accepted.

Expected numbers of various types of substitutions

If we scale the intensities so that the average rate of substitution per codon at
equilibrium equals one, the time t between sequences will e�ectively be measured
as expected numbers of substitutions per codon. Let (s1; s2; s3), (s4; s5; s6), and
(s7; s8; s9) be three consecutive codons in reading frame I, and consider the septet
of nucleotides s = (s1; s2; s3; s4; s5; s6; s7). The scaling is then obtained by requiring
that X

s2S

probs
X
w2C

q(s4;s5;s6);wjs1;s2;s6 = 1;
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where probs denotes the stationary probability of septet s, and S is the set of all
septets. A procedure for calculating probs is given in appendix A.

We can now write the instantaneous rate of synonymous substitutions (that
is, substitutions that are synonymous in both reading frames) per codon as

�syn(I),syn(II) =
X
s2S

probs

8<: X
w2M(s)

q(s4;s5;s6);wjs2;s3;s7

9=; ; (8)

where the setM(s) consists of those w = (w1; w2; w3) for which the change (s4; s5; s6)!
(w1; w2; w3) is synonymous, the change (s2; s3; s4) ! (s2; s3; w1) is synonymous,
and the change (s5; s6; s7) ! (w2; w3; s7) is synonymous. The expected number
of synonymous substitutions per codon is obtained as �syn(I),syn(II)t, with the maxi-
mum likelihood estimates as parameter values. Expected numbers of other types of
substitutions are obtained by restricting the summation in (8) appropriately.

Expected proportions of di�erent kinds of substitutions per codon, under
the model with multiplicatively acting selection factors, were calculated by insert-
ing the maximum likelihood estimates in the formulas above. The obtained values
are given in Table 2. Also given are values for a situation with the same pa-
rameter values of �k, k 2 fA;C;G; Tg and K, but with no selective constraints,
that is, with fP = fS = fP=S = 1:0. Expected numbers of the various types of
substitutions per codon can be obtained by multiplication with t̂. For the max-
imum likelihood values under the model with multiplicative selective constraints,
the ratio of transitional to transversional substitutions is 0.534/0.466=1.146 and
that of synonymous to any type of nonsynonymous 0.058/(1-0.058) = 0.062. With
respect to reading frame I the ratio of synonymous to nonsynonymous rates is
(0.058+0.314)/(1-0.058-0.314) = 0.592, whereas with respect to reading frame II it
is (0.058+0.439)/(1-0.058-0.439) = 0.988. The corresponding values for the similar
case but with no selective constraints (second row of Table 2) are 0.848, 0.012, 0.379
and 0.385, respectively. As compared with the hypothetical situation with similar
parameter values but no selective constraints the transition/transversion rate ratio
is thus raised by a factor 1.146/0.848=1.351, and the ratio of overall synonymous
to nonsynonymous rates by a factor 0.062/0.012=5.167. The ratio of synonymous
to nonsynonymous rates with respect to reading frame I and II respectively are
raised by factors 0.592/0.379=1.562 and 0.988/0.385=2.566. These ratios further
establish the stronger degree of selective constraints for the evolution of the S gene
than the part of the P gene in which the S gene overlaps.

Model check

In this section we present an extension of the model described in the `Methods'
section, and describe a simpler, but approximate, estimation method. We use the
extended model to check the adequacy of the full model assumed in the above.
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transitions transversions sync non(P)d non(S)e non(PS)f

MLEsa 0.534 0.466 0.058 0.439 0.314 0.189
NSCsb 0.459 0.541 0.012 0.266 0.263 0.458

Table 2: Expected proportions of various types of substitutions per codon under
the multiplicative selectional constraints model, for two sets of parameter values:
MLEs and NSCs.
a: parameter values equal to MLEs under the multiplicative selectional constraints
hypothesis.
b: fP = fS = fP=S = 1:0, remaining parameter values MLEs under the multiplicative
selectional constraints hypothesis.
c: substitutions that are synonymous in both reading frames.
d: substitutions that are nonsynonymous in P reading frame only.
e: substitutions that are nonsynonymous in S reading frame only.
f : substitutions that are nonsynonymous in both reading frames.

In the extended model all dinucleotide interactions and position speci�c nucleotide
intensity parameters are allowed for.

In the extended model we use the intensities qzi; ~zijz2i�1;z3i�1;z1i+1
from (2) with

the nucleotide intensity �(~zi) replaced by a more general term, which includes po-

sition speci�c nucleotide intensities �jk, k 2 fA;G;C; Tg, �jA + �jG + �jC + �TA = 1,
j = 1; 2; 3, and dinucleotide interactions. By a dinucleotide interaction we mean a
function of two neighboring nucleotides. We denote these functions by


1(z
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respectively. Precisely, the extended model is now de�ned by using (2) with the
term �(~zi) replaced by
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where ~j is the position at which ~zi di�ers from zi (note that of the eight terms inside
the brackets four terms cancel because ~zi and zi di�er at one position only).

The model considered in the `Methods' section corresponds to the model
here with no dinucleotide interactions, that is, with 
j(a; b) � 1, for all (a; b) 2
fA;G;C; Tg2, and identical position speci�c nucleotide intensities, that is �ja = �a,
a 2 fA;G;C; Tg, j = 1; 2; 3. A model with the only dinucleotide interactions being
selection against CpG dinucleotides is obtained when 
j = 1 except for the values

j(C;G), j = 1; 2; 3. In this model instantaneous rates of substitution that generate
(respectively eliminate) a CpG in frame j, j = 1; 2; 3; are multiplied by f 1


j(C;G)
g1=2

(respectively 
j(C;G)
1=2) relative to instantaneous rates of substitution that leave

the CpG count unaltered.
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In the extended model the stationary distribution of a sequence z = (z2; : : : ; zn�1)
is

�(z) =
1

Z

1(z

3
1 ; z
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1 ; z
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for zi 2 C for all i. This can be veri�ed by inspection in a manner similar to
that used for the model in the `Methods' section. As the model in the `Methods'
section, the extended model allows an explicit formula for the normalizing constant
to be derived (see (A.4) in Appendix A), and that allows expected numbers of
various types of substitutions be calculated (e.g. 8). For the latter stationary
probabilities of subsequences under the extended model are needed | these are
derived in Appendix A.

To check the adequacy of the model assumed in the `Methods' section we will
compare its performance to that of the extended model. For parameter estimation
in the extended model we use the following simpler procedure: we �rst estimate the
dinucleotide interactions 
j and the position speci�c nucleotide intensities �ja using
the stationary distribution under the extended model. We base the estimation upon
one of the two sequences (we have used ayw2). The full extended model, however,
has too many parameters to be useful. When �tting the extended model we will
make the dinucleotide interactions as simple as possible, that is, we will only include
those in the model that increase the �t of the data to the model signi�cantly. For
this, we have used the following stepwise selection procedure: We start by analyzing
the conditional distribution of z1i+1 given (z1i ; z

2
i ; z

3
i ) given in (A.14) in Appendix A,

in order to estimate the interaction 
1. We start with the model where 
1 � 1 and
thereby obtain an estimate of �1

ar
a, a 2 fA;G;C; Tg (see Appendix A). We next

calculate the score function (numerically) for the di�erent entries of 
1 and choose
the entry with the largest absolute value. We include this entry as a parameter in
the conditional distribution and see if this provides a signi�cantly better description
of the distribution. This procedure is continued until a reasonable �t has been
obtained (see below). Next, the conditional distributions (A.15) and (A.16) from
Appendix A are treated in the same way, in order to estimate the interactions 
2
and 
3.

The result of the stepwise procedure for estimating the interaction param-
eters and the position speci�c nucleotide intensities are given in Table 3 and 4. It
is clear from table 3 that there is a signi�cant CG-depression in the data | for
the sequence considered the �rst entry to be included in the interaction 
j was
the CG-entry in all three positions. The stepwise procedure additionally includes
four types of dinucleotide interactions. Furthermore, the estimates of the position
speci�c nucleotide intensities �j varies among the three codon positions (Table 4).
The results from this analysis show that the simpler model does not do well with
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respect to describing a single sequence, meaning that the simple model is only a
rough approximation to the true model.


1 
2 
3
entry 
1(�; �) 2(l2 � l1) entry 
2(�; �) 2(l2 � l1) entry 
3(�; �) 2(l2 � l1)
CG 0.31 11.0 CG 0.086 36.8 CG 0.33 11.1
GA 3.04 11.4 AA,AG 2.1, 0.57 11.8 TC 3.4 13.0
Fulla 4.3 8.1 12.8

Table 3: Entries selected in the stepwise procedure for estimating the interaction
parameters in the interaction functions 
1(�; �), 
2(�; �) and 
3(�; �) under the extended
model, along with the corresponding parameter estimates and twice the increase in
loglikelihood obtained by including the interaction in the model.
a: twice the increase in loglikelihood obtained by including all remaining entries of
interactions in the model.

posa �jA �jG �jC �jT
j = 1 0.19 0.31 0.34 0.16
j = 2 0.23 0.22 0.26 0.29
j = 3 0.15 0.27 0.33 0.25

Table 4: Parameter estimates of the position speci�c nucleotide intensity parameters
obtained under the extended model in which all selected interactions have been
included.
a: codon position in reading frame I.

Having estimated the interactions 
j and the position speci�c nucleotide
intensities �j in the extended model using the stationary distribution, we could
return to the MCMC of the `Methods' section to estimate the remaining purely
evolutionary parameters t; K; fP ; fS; fP=S. However, we will here mention another
approximate estimation method that will allow us to consider the �t of the model
as well. We split the observable changes in the aligned codons in the two sequences
into a number of disjoint groups. In particular, we have used the nine groups
obtained by dividing codons into those with single and multiple changes and further
dividing those exhibiting single changes into transition or transversion, and for
each of these two groups dividing into the four combinations of a synonymous
and non-synonymous changes in the two reading frames. The observed number
Ng, g = 1; : : : ; 9, in the nine groups are approximately independent and Poisson
distributed with mean �g, say. Thus, we form an approximate likelihood based
on the Poisson approximation and use this to estimate the remaining parameters
(t; K; fP ; fS; fP=S). The means �g can be approximated by a simple forward
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simulation of the Markov process describing the evolution, that is, we must simulate
exponential waiting times and simulate the jump type.

observed expected
] changesa groupb extc ext{multd fulle

one ts,syn(I),syn(II) 6 5.6 5.7 5.0
one ts,syn(I),non(II) 19 22.2 22.4 16.0
one ts, non(I),syn(II) 27 28.8 29.0 27.4
one ts,non(I),non(II) 7 9.0 8.2 9.8
one tv,syn(I),syn(II) 3 2.9 2.9 2.2
one tv,syn(I),non(II) 11 12.1 12.2 10.6
one tv, non(I),syn(II) 14 18.1 18.2 20.0
one tv,non(I),non(II) 12 13.2 11.7 19.9

multiple any 22 16.8 16.0 16.4
�2 logQ 3.8 4.1 9.3

Table 5: Observed and expected numbers of nine groups of codons under the three
models `ext', `ext{mult' and `full' along with twice the decrease in loglikelihood
when going from the `means free' model to each of these three models.
a: number nucleotides di�ering in the codons in sequence 1 and 2.
b: type of (single nucleotide) di�erence (transition or transversion, synonymous or
nonsynonymous in either of the two reading frames)
c: extended model, fP and fS free. Parameter estimates obtained from the simple
approximate estimation procedure (Tables 3 and 4) used.
d: extended model, fP=S = fPfS. Parameter estimates obtained from the simple
approximate estimation procedure (Tables 3 and 4) used, except for the value of
fP=S, which here is fP=S = fPfS = 0:175� 0:161 = 0:028
e: the `full' model (see `Methods' section). MLEs used (Table 1).

The estimated evolutionary parameters for the extended model are t =
0:476, K = 1:946, fP = 0:175, fS = 0:161, fP=S = 0:033. Observed numbers
of codons falling in the 9 groups are given in column 3 of Table 5, and expected
numbers under the extended model with corresponding parameter estimates are
given in the fourth column. The expectations under the extended model �ts well
with the observed numbers in the 9 categories (�2 logQ = 3:8 � �(4)). In the
�fth column results are given for a model similar to the extended model, except
that the selectional constraints are assumed to act multiplicatively (fP=S = fPfS).
Here, parameter values identical to those in the column before are used, except
that fP=S = 0:175 � 0:161 = 0:028. Even though no �tting of the parameters to
the extended model with multiplicatively operating selection parameters have been
done, the �2 logQ test statistic is only marginally augmented (to 4.1), and the
result of multiplicatively operating selection factors found in the analyses based on
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the simple model of the `Methods' section are con�rmed. The last column gives the
expected number of codons in the nine categories under the model of the `methods'
section using the maximum likelihood estimates from the subsection above. With
a �2 logQ value of 9.3, the simple model is a good approximation to the extended
model with respect to the evolutionary part, as measured by the expectations of
the various types of changes.

Discussion

The model presented for the substitution process in DNA sequences in which two
genes are encoded in overlapping reading frames, takes into account constraints im-
posed by the genetic code in both of the reading frames. A model for the analyses
of sequences with three genes encoded in overlapping frames, in which constraints
imposed by three overlapping codes are incorporated, can be obtained simply by
extending the neighborhood of dependency one nucleotide to the right. A proce-
dure for calculating the transition probability between two sequences under such a
model can be obtained by minor modi�cations of the procedure presented here. By
combining models of the above types one can achieve a model for sequences with
combinations of non, single, double and triple coding regions, in which constraints
imposed by the various combinations of overlapping reading frames are allowed for.
In the case of Hepatitis B, analyses of the substitution process in the full genome
under such a model should be feasible, given the limited size of the genome (3.2
kb), and the small number of genes.

The methodology described for calculating the transition probability be-
tween two sequences has two drawbacks. First of all, it allows for the analysis of
pairs of sequences only. The development of a procedure for obtaining the likeli-
hood of observing a set of (more than two) sequences at the tips of a given binary
tree under a model with dependent substitution rates has still to be developed.
The second drawback is that the methodology is computationally very demanding.
It should be possible to reduce the computational time requirements considerably
by parallelizing computations. Computational requirements of a similar procedure
for more than two sequences related by a tree will be increased due to the larger
number of branch length parameters. It is however possible that the increase due to
more parameters will be counterbalanced by an increase of information in the data
regarding the more poorly determined purely evolutionary parameters, which would
allow transition probabilities to be approximated by smaller samples of paths.

Given the computational requirements for inference under the presented
model, it would be of considerable interest to compare results obtained with this
model and methodology to those obtained using the more heuristic and much
quicker models and procedures. Computational demands, however, seriously limits
the possibility of performing simulation based bias studies.
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Appendix A

In this appendix we �rst �nd the normalizing constants Z in the stationary distri-
butions (3) and (9) of a sequence. We next turn to a rewriting of the stationary
distribution that allows us to calculate the stationary probability of a subsequence.

Since the model in (3) is a special case of the model in (9) we �rst state the
formulas for the model in (9). The normalizing constant Z is found by summing
up the equilibrium frequencies over all z2; : : : ; zn�1. If we sum �rst over (z2i ; z

3
i ),

i = 2; : : : ; n� 1, we obtain

Z =
X

z12 ;z
1
3 ;���;z

1
n�1


1(z
3
1 ; z

1
2)1C(z

2
1 ; z

3
1 ; z

1
2)V (z

1
2 ; z

1
3)V (z

1
3 ; z

1
4) � � �V (z

1
n�1; z

1
n) (A.1)

where, for (a; b) 2 fA;G;C; Tg2,

V (a; b) =
X

s2;s32fA;G;C;Tg2

�2
s2�

3
s3�

1
b
2(a; s

2)
3(s
2; s3)
1(s

3; b)1C(a; s
2; s3)1C(s

2; s3; b):

(A.2)
To evaluate (A.1) we use the eigenvalues and eigenvectors of the 4 � 4 matrix V .
Let �1; : : : ; �4 and v1; : : : ; v4 be the eigenvalues and left eigenvectors, respectively,
with �1 the largest eigenvalue. Writing vi = (vAi ; v

G
i ; v

C
i ; v

T
i ) we thus haveX

a2fA;G;C;Tg

vai V (a; b) = �iv
b
i :

Let w = (wA; wG; wC; wT ) be the vector with

wa = 
1(z
3
1 ; a)�

1
a1C(z

2
1 ; z

3
1; a); (A.3)

where a 2 fA;G;C; Tg, and de�ne coeÆcients c1; : : : ; c4 by

w = c1v1 + c2v2 + c3v3 + c4v4:

Then we get from (A.1)

Z =
4X

i=1

ci�
n�2
i v

z1n
i

1

�1
z1n

: (A.4)

Let us now specialize (A.2) to the simple model in (A.1), corresponding to 
j � 1
and �ja = �a. The matrix V from (A.2) becomes

V =

0BBB@
�
�
�

�� �

1CCCA ; (A.5)
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where the vectors � = (�A; �G; �C ; �T ) and � = (�A; �G; �C ; �T ) are given by

� = (�A � �T�A�A � �T�G�A; �G � �T�A�G; �C ; �T )

and

� = (�A; �G; �C ; �T )
�stop
�T

;

with �stop = �T�A�A + �T�G�A + �T�A�G. A simple calculation shows that the
eigenvalues are

�1 =
1

2
(1�2�stop+

q
1� 4�stop); �2 =

1

2
(1�2�stop�

q
1� 4�stop); �3 = 0; �4 = 0;

(A.6)
with corresponding left eigenvectors

v1 = � + 
1�; v2 = � + 
2�; v3 = (1;�1; 0; 0; ); v4 = (1; 0;�1; 0); (A.7)

where


1 =
�T

2�stop
(�1 +

q
1� 4�stop); 
2 =

�T
2�stop

(�1�
q
1� 4�stop): (A.8)

The vector w from (A.3) becomes

w = (�A1C(z
2
1 ; z

3
1; A); �G1C(z

2
1 ; z

3
1 ; G); �C ; �T ) = c1v1 + c2v2 + c3v3 + c4v4;

and the normalizing constant in (A.4) is

Z =
�
c1�

n�2
1 v

z1n
1 + c2�

n�2
2 v

z1n
2

� 1

�z1n
: (A.9)

In particular if (z21 ; z
3
1) is di�erent from (T,A) and (T,G) we �nd that c1 = c2 =

1=
q
1� 4�stop.

We next turn to a closer study of the stationary measure in (3) and (9). the
stationary measure can be written as a product of conditional densities. To this end
we consider the matrix V in (A.2) again and let r = (rA; rG; rC ; rT ) be the positive
right eigenvector corresponding to the largest eigenvalue �1. For the simple model
with V given in (A.5) we �nd

r =
�
1; 1; 1;

1

2
(2�T � 1 +

q
1� 4�stop)=�T

�
: (A.10)

Considering the chain fz1i g; i = 1; 2; : : :, one �nds that this is a homogeneous Markov
chain with transition matrix

T (a; b) = P (z1i+1 = b j z1i = a) = (V (a; b)rb)=(�1r
a); a; b 2 fA;G;C; Tg:

24



Since X
a

va1r
aT (a; b) =

rb

�1

X
a

va1V (a; b) = vb1r
b;

the stationary density p0 for this Markov chain is

p0(a) = P (z1i = a) =
va1r

aP
b v

b
1rb

; a 2 fA;G;C; Tg: (A.11)

Furthermore, the conditional density p231j1 of (z
2
i ; z

3
i ; z

1
i+1) given z1i is

rz
1
i+1

�1rz
1
i

�2
z2i
�3
z3i
�1
z1i+1


2(z
1
i ; z

2
i )
3(z

2
i ; z

3
i )
1(z

3
i ; z

1
i+1)1C(z

1
i ; z

2
i ; z

3
i )1C(z

2
i ; z

3
i ; z

1
i+1): (A.12)

Thus the stationary frequency of the septet (zi; zi+1; z
1
i+2) is

p0(z1i )p231j1(z
2
i ; z

3
i ; z

1
i+1 j z

1
i )p231j1(z

2
i+1; z

3
i+1; z

1
i+2 j z

1
i+1); (A.13)

which can be used for evaluating the expected numbers of various types of substi-
tutions. For the simple model we use (A.13) with 
j � 1, �ja = �a in (A.12), with
r given in (A.10), and with v1 given in (A.7).

Finally, in connection with �nding a suitable extended model we use the
following conditional distributions:

P (z1i+1 = bj(z1i ; z
2
i ; z

3
i ) = (a; s2; s3)) =

rb�1
b
1(s

3; b)

g(s2; s3)
1C(s

2; s3; b); (A.14)

P (z3i = s3j(z1i ; z
2
i ) = (a; s2)) =

g(s2; s3)�3
s3
3(s

2; s3)

h(a; s2)
1C(a; s

2; s3); (A.15)

P (z2i = s2jz1i = a) =
h(a; s2)�2

s2
2(a; s
2)

�ra
; (A.16)

where the functions g and h are normalizing functions, de�ned so that (A.14) and
(A.15) are densities.

Appendix B

We �rst derive formula (5). From the de�nition of q�1(t1;L) we have

Px!y(�1; t1) =
Z
Xt1

q�1(t1;L)�t1(dL) =
Z
Xt2

�
t1
t2

�r
q�1(t1;

t1
t2
L)�t2(dL);

25



where r is the number of substitutions in the path L. We then �nd

Px!y(�1; t1)

Px!y(�2; t2)
=

R
Xt2

�
t1
t2

�r
q�1(t1;

t1
t2
L)�t2(dL)R

Xt2
q�2(t2;L)�t2(dL)

=
Z
Xt2

tr1q�1(t1;
t1
t2
L)

tr2q�2(t2;L)

q�2(t2;L)R
Xt2

q�2(t2; ~L)�t2(d~L)
�t2(dL)

= ~E

 
tr1q�1(t1;

t1
t2
L)

tr2q�2(t2;L)

!

where ~E is the mean under the measure ~P de�ned in (6).
The weight q�(t;L) of a path L with r substitutions is the product of the

densities of r waiting times, times the product of r jump probabilities, times the
probability that the last waiting time exceeds t. Since the intensities in these waiting
times are the sum over all the positions of the intensity for an event at this position,
one sees that q�(t;L) becomes a product

q�(t;L) =
n�1Y
i=2

q�(t; i; 1)q�(t; i; 2)q�(t; i; 3); (B.1)

where q�(t; i; 1) depends on (L2
i�1; L

3
i�1; Li), and q�(t; i; 2) and q�(t; i; 3) depend on

(Li; L
1
i+1). To give the exact form of these terms de�ne si to be the total number

of substitutions in the paths L2
i�1, L

3
i�1, L

1
i , L

2
i , L

3
i and L1

i+1. Let ui(r) be the time
the r'th among these substitutions occurs, and let z2i�1(r); z

3
i�1(r); zi(r) and z

1
i+1(r),

respectively, be the nucleotide contents of the second and third positions of codon
i� 1, the three positions in codon i and the �rst position in codon i + 1, after the
r'th substitution. Set

(z2i�1(0); z
3
i�1(0); zi(0); z

1
i+1(0)) = (x2i�1; x

3
i�1; xi; x

1
i+1)

and
(z2i�1(si); z

3
i�1(si); zi(si); z

1
i+1(si)) = (y2i�1; y

3
i�1; yi; y

1
i+1):

With these de�nitions we can write q�(t; i; j) as

q�(t; i; j) =(
siY
r=1

�
qzi(r�1);zi(r)jz2i�1(r�1);z3

i�1(r�1);z1
i+1(r�1)

�1(zj
i
(r)6=zj

i
(r�1))

� expf�qj
zi(r�1)jz2i�1(r�1);z3i�1(r�1);z1i+1(r�1)

(ui(r)� ui(r � 1))g
�

� expf�qj
zi(si)jz2i�1(si);z

3
i�1(si);z

1
i+1(si)

(t� si)g
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where
qjzja2;a3;b1 =

X
fw2Cjwk=zk; k 6=jg

qz;wja2;a3;b1 :

The ~q�2(Li j Li�1; Li+1) term from (7) comes from the conditional distribu-
tion of Li given (Li�1; Li+1) and is found from (B.1) to be

~q�2(Li j Li�1; Li+1) =

q�2(t2; i� 1; 2)q�2(t2; i� 1; 3)q�2(t2; i; 1)q�2(t2; i; 2)q�2(t2; i; 3)q�2(t2; i+ 1; 1):

The term ~q�2(L
0
i j Li�1; Li+1) is de�ned as above with Li replaced by L0

i.
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