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Abstract

We consider a network design problem arising in mobile communications. The

problem consists in deploying a number of new MSCs and allocating existing BSCs to

MSCs, so as to minimize the incurred costs while meeting customer demand and ob-

serving the capacity restrictions. We formulate this problem as a two-stage stochastic

program with mixed-integer recourse. To solve the problem we apply a dual decom-

position procedure, solving scenario subproblems by means of branch and cut. The

solution procedure has been tested on a real life problem instance provided by Sono-

fon, a Danish mobile communication network provider, and we report some results of

our computational experiments.

Keywords: Network planning; Telecommunication; Stochastic Programming; Dual De-

composition; Branch and Cut.

1 Introduction

Mobile telecommunication network providers have been facing a rapid growth in demand for

several years and this trend seems likely to continue. This forces the network provider to
�Corresponding author. Email: riis@imf.au.dk
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constantly expand the capacity of the network in order to provide an acceptable grade of

service to customers. There is a vast amount of literature concerning the optimal expansion

of link capacities in a telecommunications network. We refer to papers by e.g. Balakrishnan,

Magnanti and Wong [1], Bienstock and G�unl�uk [2], Chang and Gavish [4] and Dahl and

Stoer [5] for di�erent approaches to such types of problems. The link capacities do not

constitute the only potential bottleneck in a telecommunications network, however, since

capacity restrictions may be imposed not only on traÆc but also on the number of customers

served by the network. In this paper we study a network design problem in which some

capacity constraints are imposed to restrict traÆc on links in the network while others are

imposed to restrict the number of customers served by nodes in the network.

We study a mobile communications network. The base transceiver stations (BTSs) are

each connected to one base station controller (BSC). Each BSC serves a number of BTSs

and is connected to one mobile switching center (MSC). Finally each MSC serves a number

of BSCs and the MSCs are connected internally. The network is illustrated in Figure 1.
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Figure 1: Illustration of a mobile telecommunications network.

The visitor location register (VLR) of an MSC, a database handling all information about

clients, has a limited capacity, thus restricting the number of customers that can be served

(through BTSs and BSCs) by an MSC. Thus the network provider not only has to expand

the link capacities but should consider when and where to deploy new MSCs in order to be

able to serve the increasing number of customers.

We will consider the problem of deploying a number of new MSCs and allocating the

BSCs to new and existing MSCs, thus treating the number and locations of BTSs and BSCs

as exogenous. The deployment of MSCs must be carried out so as to minimize the incurred
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costs while meeting customer demand and observing the capacity restrictions. The cost

function will include four terms:

1. The cost of new MSCs.

2. The cost of connecting BSCs to MSCs.

3. The cost of expanding the capacity of links connecting the MSCs.

4. A penalty cost for handovers that occur among BSCs that are connected to di�erent

MSCs.

Tzifa et al. [17] study a similar problem in which only the access network is considered,

thus ignoring the third cost term mentioned above. Also, the problem of optimally assigning

BSCs to MSCs has been addressed by several authors such as Saha, Mukherjee and Bhat-

tacharya [15] and Merchant and Sengupta [8]. Apart from minimizing the incurred costs of

connecting BSCs to MSCs and the handover cost, it is customary to enforce some degree of

load balancing among the MSCs. Tzifa et al. and Saha, Mukherjee and Bhattacharya explic-

itly include a penalty cost on uneven loads in the objective function, whereas Merchant and

Sengupta propose to handle the load balancing problem parametrically. We do not explicitly

consider load balancing but the parametric approach of Merchant and Sengupta may easily

be adopted in our setting.

All of the above-mentioned authors follow a deterministic approach in the sense that the

cost parameters, the number of customers and the demand for bandwidth are all assumed

to be known at the point of decision. It is a fact, however, that the time that passes from

the moment at which deployment of MSCs is resolved on, until the equipment is actually

in place and available for use, is rather long (about a year). This means that at the time

the decision has to be made, the network provider does not have full knowledge of several

important parameters of the model. For this reason the network provider should put o� the

de�nitive decision on allocation of BSCs to MSCs for as long as possible, allowing uncertainty

to be at least partially revealed. This is the incentive for us to model the problem as a two-

stage stochastic program. In this formulation uncertain parameters are replaced by random

variables and decisions are organized in two stages. The �rst stage consists of deployment of

MSCs which must be resolved on before uncertainty has been revealed and hence must be

based on the distribution of random parameters only. In the second stage outcomes of all

random parameters have been observed and an optimal allocation of BSCs to MSCs and a

corresponding routing of traÆc in the resulting network is determined.

The importance of including uncertainty in the problem formulation when modeling ca-

pacity expansion problems is well recognized. Stochastic programming has been used as a
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modeling tool for such problems in telecommunications by several authors. Sen, Doverspike

and Cosares [16] study a capacity expansion problem in which the expected number of un-

served requests is minimized subject to limitations on the total capacity expansion. Riis and

Andersen [11, 12] use stochastic programming to solve two di�erent capacity expansion prob-

lems in which additional capacity, required to meet customer demand, should be installed

on edges of the network in modularities of �xed batch sizes. Finally, Dempster, Medova and

Thompson [6] use chance-constrained programming to solve a capacity expansion problem

subject to certain grade of service constraints assuming that the arrival process of calls is

known. The main emphasis in previous studies has been on the capacity expansion of links,

while less has been said about the network design problem considered in this paper.

This paper is organized as follows. We start out by formalizing the problem formulation

and describing the parameters involved in Section 2. Extensions of the basic model to hedge

against potential node and edge failures by imposing survivability constraints are discussed

in Section 3. Next, in Section 4 we brie
y outline the concept of dual decomposition (or

scenario decomposition). Dual decomposition techniques have been applied in the context of

stochastic programming by numerous authors including Car�e and Schultz [3], Mulvey and

Ruszczynski [9] and Rockafellar and Wets [14]. The seminal idea is to use variable splitting

to make the problem separable into independent subproblems which are easily solved. In

our case, the subproblems are solved by means of branch and cut, using valid inequalities

derived in Section 5 as cutting planes. In Section 6 our application is described along with

some of the practical diÆculties concerning implementation of the algorithm. Finally, we

give some concluding remarks in Section 7.

2 Problem Formulation

To give a formal formulation of the capacity expansion problem introduced in the previous

section, we will consider a �nite number of potential locations for new MSCs and hence the

basic setup will be described by three �nite sets of nodes representing the locations of MSCs

and BSCs:

� V1 The set of locations of existing MSCs.

� V2 The set of potential locations for new MSCs.

� W The set of locations of BSCs.

Note that a given location may very well be represented as a node in more than one of the

sets (even in all of them). In fact, the model allows for a single location to be represented as

several nodes in one set, for example if we wish to deploy more than one MSC at a location.
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The network interconnecting the MSCs is modeled as an undirected graph G = (V;E).

The nodeset V = V1 [ V2 represents the existing and potential locations of MSCs, and the

edge set E represents the existing and potential links fi; jg between nodes i; j 2 V . We

will consider demand at BSC level. Even though we assume that traÆc is bidirectional, we

will �nd it convenient to use directed 
ow for modeling purposes. Hence we shall assign an

arbitrary direction to each point-to-point demand and refer to its origin and destination.

Also, each undirected edge fi; jg 2 E will correspond to two (conceptual) directed edges

(i; j) and (j; i), each of which can carry 
ow. Still, to allow for the appropriate bidirectional

traÆc, edge capacities are dimensioned with respect to the total traÆc on the given edge,

disregarding the arbitrarily assigned directions of 
ow.

Demand for bandwidth on the connections will be described by a set K of commodities.

Two main approaches for de�ning such commodities have been used in the literature. One

possibility is to de�ne a commodity for each point-to-point demand resulting in a total of

O(jW j2) commodities. In general we �nd it more convenient, though, to reduce the number

of variables by working with an aggregated formulation containing a total of only O(jW j)

commodities. This is achieved by letting each commodity k 2 K correspond to demand

originating at a given BSC with respect to the arbitrary directions assigned to traÆc. If

one wishes to impose survivability constraints, however, it turns out that the disaggregated

formulation may be more convenient. We will return to this issue in Section 3.

As previously discussed, several parameters of the model are not known with certainty

at the time the decision on deployment of MSCs has to be made. In particular, the only

information about future demand available at the point of decision, comes from past obser-

vations and some form of forecast model. This inherent uncertainty will be incorporated in

the problem formulation by introducing some probability space (
;F ; P ) and allowing the

parameters in question to be dependent on the outcome of a random event ! 2 
. Here,

the probability distribution P is meant to re
ect information about uncertain parameters

coming from the above-mentioned forecasts. Thus the demand for bandwidth on edges and

VLR-capacity at nodes will be described by the following sets of parameters:

� Dkr(!) The net demand for commodity k at BSC r. (k 2 K; r 2 W )

� Lr(!) The load of BSC r on the VLR in the MSC to which it is connected. (r 2 W )

We emphasize that Dkr(!) is the net demand for commodity k at BSC r and hence, in

particular, that it is negative if and only if BSC r is the origin of commodity k and thatP
r2W Dkr(!) = 0. The parameter Dkr(!) is directly related to the traÆc between the origin

of commodity k and BSC r, whereas the load Lr(!) should rather be thought of as depending

on the number of customers in the area served by BSC r.
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Corresponding to the two types of demand, we have two types of existing capacity in

the network - capacity restricting 
ow on edges of the network and capacity restricting the

number of customers served by nodes in the network. These are summarized in the following

sets of parameters:

� Cij Flow-capacity on edge fi; jg. (fi; jg 2 E)

�Mi VLR-capacity of the MSC located at node i. (i 2 V )

The cost structure is described by the following sets of parameters some of which are

treated as exogenous, while others are assumed to be uncertain at the point in time at which

the decision has to be made, thus depending on the random event !:

� ci The cost of deploying an MSC at node i. (i 2 V2)

� pij(!) The cost of adding one unit of capacity on edge fi; jg. (fi; jg 2 E)

� qri(!) The cost of connecting BSC r to node i. (r 2 W; i 2 V )

� hrt(!) The penalty cost (for supporting handovers) incurred if BSC r and t are con-

nected to di�erent MSCs. (r; t 2 W )

Note that we assume the cost of expanding the capacity of a connection to be linear and that

we do not include a �xed cost for establishing the connection. The reason for this is the fact

that the company, in cooperation with which this research project was engaged upon, had

already available a physical network with suÆcient link capacities. In order to utilize this

capacity, however, it may be necessary to install additional equipment at the end-points of

the connection, and this cost is assumed to be linear with respect to the capacity provided.

The main decisions to be taken are deployment of new MSCs and allocation of BSCs to

MSCs. These decisions are represented by the following two sets of binary variables:

� xi =

(
1 if an MSC is deployed in node i. (i 2 V2)

0 otherwise

� yri(!) =

(
1 if BSC r is connected to MSC i. (r 2 W , i 2 V )

0 otherwise

As indicated by the dependency of the variables yri on the random event !, the allocation

of BSCs to MSCs is allowed to depend on the outcome of the random parameters. That is,

the decision on allocation of BSCs to MSCs is postponed to the second stage to take full

advantage of the additional information which is available at this point.

Finally, the following sets of variables are used to describe 
ow in the network, and the

capacity expansion of links needed to carry this 
ow. Since 
ow does not occur until demand

is realized, these variables all belong in the second stage.
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� fijk(!) Flow of commodity k on edge fi; jg in direction from i to j. (k 2 K; fi; jg 2 E)

� fjik(!) Flow of commodity k on edge fi; jg in direction from j to i. (k 2 K; fi; jg 2 E)

� vij(!) Aggregate 
ow on edge fi; jg in excess of current capacity Cij. (fi; jg 2 E)

To be capable of handling the model computationally, we will assume that there is only

a �nite number of possible outcomes of random parameters.

(A1) The probability distribution P is discrete and has �nite support, say 
 = f!1; : : : ; !Sg

with corresponding probabilities P
�
f!1g

�
= �1; : : : ; P

�
f!Sg

�
= �S.

A possible outcome of random parameters (p(!s); q(!s); h(!s); D(!s); L(!s)) corresponding

to some elementary event !s 2 
 will be referred to as a scenario. For notational conve-

nience we will refer to such a scenario simply by (ps; qs; hs; Ds; Ls). Likewise, we will use a

superscript s on second-stage variables to indicate that these decisions are allowed to di�er

for di�erent scenarios.

We are now ready to formulate the problem of optimally deploying a number of new

MSCs and allocating BSCs to MSCs as a two-stage stochastic program. The �rst-stage

objective is to minimize the sum of the cost of new MSCs and the expected value of the cost

incurred in the second stage,

z = min
X
i2V2

cixi +
SX
s=1

�sQs(x) (1)

s.t. x 2 IBjV2j: (2)

Here, the second-stage value function Qs(x) is given by

Qs(x) = min
X

fi;jg2E

psijv
s
ij +

X
r2W

X
i2V

qsriy
s
ri +

X
r;t2W
r<t

hsrt

X
i2V

(ysri � ysti)
+ (3)

s.t.
X
r2W

Ls
ry

s
ri �Mi 8i 2 V1; (4)

X
r2W

Ls
ry

s
ri �Mixi 8i 2 V2; (5)

X
i2V

ysri = 1 8r 2 W; (6)

X
j:fi;jg2E

f sjik �
X

j:fi;jg2E

f sijk =
X
r2W

Ds
kry

s
ri 8i 2 V; k 2 K; (7)

X
k2K

�
f sijk + f sjik

�
� Cij + vsij 8fi; jg 2 E; (8)

ys 2 IBjW jjV j; f s 2 IR
2jEjjKj
+ ; vs 2 IR

jEj
+ : (9)
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We have used the notation x+ to denote maxf0; xg for x 2 IR, and hence the third term of

the second-stage objective (3) includes the handover cost between BSCs r and t if and only

if these BSCs are allocated to di�erent MSCs. The constraints (4) and (5) ensure that the

total load from the BSCs connected to an MSC does not exceed the capacity of the VLR.

Moreover, the constraint (5) ensures that a BSC can only be connected to an MSC if this

is actually deployed (xi=1) while the constraint (6) ensures that all BSCs are connected to

exactly one MSC. The constraint (7) is a 
ow conservation constraint stating that the net


ow of commodity k into MSC i should equal the aggregate net demand for commodity k

from BSCs connected to MSC i. Finally, the constraint (8) states that the aggregate 
ow

on an edge fi; jg 2 E cannot exceed the total capacity installed on the edge.

We note that the nonlinear term in the second-stage objective may easily be replaced by

a linear one. Hence let Hs
rt be a variable representing the handover cost incurred between

BSCs r and t under scenario s. Then Hs
rt may be de�ned using V linear constraints,

Hs
rt � hsrt(y

s
ri � ysti) 8i 2 V; (10)

and the nonlinear term may be replaced by a simple summation of the variables Hs
rt. Thus

if the constraints (10) are added, the third objective term may be replaced byX
r;t2W
r<t

Hs
rt:

3 Survivability

There is an entirely di�erent side to the issue of designing a telecommunications network

under uncertainty besides the one we have considered this far. Thus it is possible that not

only the parameters of the model, such as demand and prices, are subject to uncertainty. To

be speci�c, we will consider a situation in which nodes and/or edges are subject to potential

failures. This forces us to impose di�erent kinds of survivability constraints to ensure that

the network is not too vulnerable in case of such failures. The concept of survivability

has previously been considered in the context of telecommunication networks by numerous

authors. (See e.g. Dahl and Stoer [5] and Rios, Marianov and Gutierrez [13].) In general

survivability may be achieved either by diversi�cation or by reservation depending on the

assurance required and the ability to restructure the solution in case of failures. In this

section we discuss some possible formulations in the context of problem (1)-(9).

By diversi�cation we mean routing demand using two or more edge- and/or node-disjoint

paths. Diversi�cation constraints are easily imposed if we are working with the disaggregate

formulation in which each commodity k 2 K corresponds to a unique point-to-point demand.
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Hence we may let O(k) and D(k) denote the origin and destination of commodity k, and

dsk the demand for commodity k under some scenario s so that Ds
kr equals d

s
k for r = D(k),

�dsk for r = O(k) and zero otherwise. If �k is a parameter equal to the maximum fraction

of demand for commodity k that is allowed to 
ow through any given node or edge of the

network, we may impose the following diversi�cation constraints:

f sijk + f sjik � �kd
s
k 8fi; jg 2 E; k 2 K (11)X

j:fi;jg2E

f sijk � �kd
s
k + (1� �k)d

s
ky

s
O(k);i 8i 2 V; k 2 K (12)

If paths are not required to be node disjoint the constraints de�ned by (12) are ignored.

When working with the aggregate formulation on the other hand, we cannot impose such

exact diversi�cation constraints. One possibility is to use the following constraint, stating

that at most a fraction of �k of the aggregate net 
ow of a commodity into a given MSC can

arrive through one connection.

f sjik � �k
X
r2W

Ds
kry

s
ri +

X
h:fi;hg2E

f sihk 8fi; jg 2 E; k 2 K

As mentioned, another way to achieve survivability is by reservation. That is, to ensure

the possibility of rerouting a given fraction of demand in the network resulting after a node

or edge failure. To include reservation in the problem formulation each scenario should

correspond not only to an outcome of the random parameters, but also to a speci�c failure

state (possibly no failure). If all second-stage decisions may be modi�ed in the light of a

failure such an extension is easily included in the formulation, simply by modifying the node

and/or edge set for each scenario according to the corresponding failure. It is more realistic,

however, to assume that only rerouting of traÆc is possible, whereas a swift reallocation of

BSCs to MSCs or capacity expansion is not practicable. Such a situation would correspond

to a three-stage stochastic program. In the �rst stage, as before, the deployment of MSCs

is decided upon. In the second stage the outcome of random parameters is revealed and

allocation of BSCs to MSCs and appropriate capacity expansion is carried out. Finally, in

the third stage a failure possibly occurs and traÆc is rerouted accordingly. Note that a

node (MSC) failure in this situation would result in the loss of some demand, since BSCs

allocated to the MSC in question would be cut o� from the rest. We do not pursue this issue

further in the present paper. It should be noted, however, that in theory such a three-stage

problem could be solved by the solution procedure presented in the subsequent sections, but

in practice the computational overhead involved would render such an approach intractable

even for networks of moderate size.
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4 Dual Decomposition

In this section we brie
y outline the dual decomposition procedure which we are going to

apply to problem (1)-(9). Dual decomposition, or scenario decomposition, exploits the fact

that the vast majority of variables and constraints in the stochastic program are scenario

dependent. In fact the only thing tying the scenarios together are the �rst-stage decisions on

deployment of MSCs. Hence, if we use variable splitting on the �rst-stage variables, de�ning

a deployment of MSCs for each scenario x1; : : : ; xS, problem (1)-(9) becomes separable into

independent scenario subproblems. The fact that the deployment of MSCs cannot be scenario

dependent may now be represented by a non-anticipativity constraint stating the problem

as

z = min
SX
s=1

�s
�X
i2V2

cix
s
i +Qs(xs)

�

s.t. x1 = : : : = xS;

xs 2 IBjV2j 8s 2 f1; : : : ; Sg:

(13)

Relaxing the non-anticipativity constraint we obtain a problem which is completely separable

into independent scenario subproblems. These subproblems are solved to obtain an optimal

deployment of MSCs for each scenario. Next non-anticipativity is reinforced by branching

on components of these solutions which di�er among scenarios. To be speci�c, we introduce

a branching tree initially consisting of only the root node corresponding to the original

problem (13). In a given iteration we select a problem from the branching tree and solve the

corresponding scenario subproblems obtaining scenario solutions x1; : : : ; xS. If MSC i is to be

deployed in some scenario solutions and not in others, we add two problems to the branching

tree imposing for s = 1; : : : ; S the constraints xsi = 0 and xsi = 1 respectively. Otherwise, if

all scenario solutions are equal, we have a feasible solution of the original problem and may

update the upper bound if appropriate. For a thorough description of such a procedure,

including a Lagrangian relaxation of the non-anticipativity constraints, we refer to Car�e

and Schultz [3].

Clearly, if the scenario subproblems are solved by means of some branch and bound

procedure, some e�ort should be taken to put information from previous iterations in the

above procedure to use. Thus a node which is fathomed in a given subproblem in some

iteration of the main procedure may be reconsidered in subsequent iterations since more

variables are �xed as the main procedure progresses. In fact, for the problem instance

considered in Section 6, the number of �rst-stage variables was so small (less than 20) that

an enumeration tree could be created a priori and used for all scenarios, thus precluding any

re-evalutions of nodes.
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5 Valid Inequalities

In order to solve problem (1)-(9) using the dual decomposition procedure outlined in the

previous section we need an eÆcient procedure for solving the scenario subproblems. To

this end we will apply the concept of branch and cut which have proven to be a powerful

tool for the solution of (mixed-) integer programming problems. As in ordinary branch and

bound we start with the LP-relaxation of the mixed-integer programming problem and build

a partitioning of the solution space in order to obtain an integral solution. The crucial

idea in branch and cut is to combine this approach with a continuous generation of cutting

planes tightening the formulation and thus reducing the size of the branching tree. For a

thorough discussion of the branch and cut approach we refer to Padberg and Rinaldi [10]

and G�unl�uk [7]. As cutting planes we will use valid inequalities derived through simple

polyhedral considerations.

First, we consider an inequality based on the total VLR-capacity installed through de-

ployment of new MSCs. The inequality simply states that the total capacity of all VLRs in

the resulting network should exceed the total demand from all BSCs. Formally the inequality

is derived by summing the constraints (4)-(5), rearranging and rounding.

X
i2V2

xsi �

�
1

M

�X
r2W

Ls
r �

X
i2V1

Mi

��
8s 2 f1; : : : ; Sg:

Here we have de�ned M := maxi2V2 Mi. Since the deployment of MSCs is not allowed to be

scenario dependent this inequality may be strengthened further:

Proposition 1 The following inequality is valid for the feasible region of all scenario sub-

problems, s = 1; : : : ; S.

X
i2V2

xsi � max
�2f1;:::;Sg

�
1

M

�X
r2W

L�
r �

X
i2V1

Mi

��
:

This inequality may be viewed as a global constraint in the sense that it is valid for all scenar-

ios. As mentioned in the previous section we used an enumeration tree to solve subproblems

for the instance considered in Section 6. Hence the above inequality was not actually included

in the formulation but was merely used to reduce the size of the enumeration tree.

Next we consider a local constraint which is only guaranteed to be valid for the particular

scenario from which it was derived. This inequality is based on the VLR-capacity of the

individual MSCs and is used to enforce the fact that each BSC must be allocated to a

unique MSC. Once again the underlying idea is simple. If the total demand from a group

of BSCs exceeds the VLR-capacity of an MSC, we cannot allocate all of these BSCs to the

MSC in question. This is formalized in the following proposition.

11



Proposition 2 Let U be a subset of W such that
P

r2U L
s
r > Mi for some MSC i 2 V and

some scenario s 2 f1; : : : ; Sg. Then the following inequality is valid for the feasible region

of the s0th scenario subproblem. X
r2U

ysri � jU j � 1:

Naturally, this inequality will only be useful when the subset U of W is minimal in the sense

that
P

r2Unftg L
s
r �Mi for all t 2 U , since it is otherwise dominated by other inequalities of

the same type.

6 Numerical Results

In this section we will describe the practical application of our model. We have implemented

our model on a real problem provided by Sonofon, a Danish mobile communication network

provider. In this section we brie
y describe the problem instance, the structure of costs and

demand, and the practical collection and estimation of data. Due to competitive conditions,

however, we cannot be too speci�c about the problem size and the input data. Finally, we

report our computational results.

The problem under consideration has between 5 and 10 existing MSCs, less than 20

potential locations for new MSCs and less than 50 BSCs. The network interconnecting the

MSCs is complete. The number of binary variables were reduced by dividing the area of

interest into a number of regions and precluding from consideration certain allocations of

BSCs to MSCs across regions. In the resulting formulation each scenario subproblem has

707 binary variables, 14598 continuous variables and 12045 constraints.

The cost of a new MSC is orders of magnitude higher than any other cost parameter. The

cost of connecting a BSC to an MSC was set to zero if the BSC is currently connected to this

particular MSC, and otherwise the total cost of a movement was estimated. Furthermore,

the cost of expanding link capacities is given by the total cost of installing new equipment.

The issue of determining an appropriate level for the arti�cial penalty cost for handovers,

however, is a more complicated matter. Setting this level too low, may result in solutions

with a large number of handovers which are not acceptable from a practical viewpoint. A

high level, on the other hand, may result in con�gurations for which the gained practicability

obtained by reducing the number of handovers is not suÆcient to justify the increased cost.

As a side e�ect computation time is likely to be increased in this case due to the large number

of movements of BSCs required to reduce the number of handovers. In practice we chose to

adjust the handover costs, observing their e�ect on solutions, so as to create geographically

connected BSC areas.
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The current demand for bandwidth and VLR-capacity was estimated from observations

of traÆc and the number of customers respectively. Future demand was then calculated

using the estimates of current demand scaled by di�erent scenario dependent growth factors.

We have used the following procedure to generate demand for VLR-capacity at BSC r under

scenario s,

Ls
r = �s � �sr � Lr:

Here Lr is the current demand for VLR-capacity at BSC r, �s is a parameter re
ecting

the average growth in the number of customers, while �sr is a parameter re
ecting regional


uctuations from this average growth. To capture the correlation between the demand for

VLR-capacity and the demand for bandwidth, the net demand for commodity k at BSC r

under scenario s was calculated using current demand Dkr, the above-mentioned parameters

re
ecting growth in the number of customers, and a third parameter �s re
ecting growth in

the demand for bandwidth per customer,

Ds
kr = �s �

p
�sk � �

s
r � �

s �Dkr:

Note that we have used the geometric average of the regional 
uctuations �sk and �
s
r. Likewise

the di�erent cost terms were made scenario dependent by introducing stochastic 
uctuations

on future prices. The growth factors were all sampled from uniform distributions re
ecting

the expectations of Sonofon for the time horizon under consideration. As pointed out in

Section 1, the second-stage decision of allocation of BSCs to MSCs is to be made after one

year, and this was the time horizon used when estimating growth factors for the cost terms.

As for customer demand, however, we have used a four-year time horizon when estimating the

appropriate growth factors. This was done to ensure a somewhat stable solution guaranteeing

suÆcient network capacity for three additional years beyond the completed deployment of

new MSCs. This means that demand is in fact only partially revealed at the time the

second-stage decisions are to be made, but since the additional information obtained at this

point will provide an improved estimate of the true rate of growth in demand, the gain of

postponing some decisions to the second stage is likely to be considerable.

The algorithm was implemented in C++ using procedures from the callable library from

CPLEX 6.6. Considering 100 scenarios, the solution times were about 3.5 hours CPU-time

on a 700 MHz Linux PC. The solution suggested the deployment of one new MSC. Due

to the complexity of the problem, the survivability constraints of Section 3 have not been

implemented in the application. The valid inequalities of Section 5, however, have speeded

up the solution times considerably.
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7 Conclusions

In this paper we have set up a model for the optimal deployment of new MSCs in a mobile

communications network. The model takes into account the cost of new MSCs, the cost of

allocating BSCs to MSCs, and the cost of expanding capacities of links connecting the MSCs.

Furthermore, a penalty cost was introduced to limit the number of handovers, inducing

connected BSC areas. Since the deployment of MSCs involves a planning horizon of about

a year, a number of important parameters of the model are not known with certainty at

the point of decision. This lead us to a two-stage stochastic programming formulation of

the problem. Considering 100 possible scenarios for the random parameters, the resulting

formulation of a real-life problem contained more than a million variables and constraints

and hence decompostion methods were called for. We chose to solve the problem using a dual

decomposition procedure, solving scenario subproblems by means of branch and cut. The

algorithm was implemented in C++ and the problem could be solved to optimality within a

few hours of CPU time. We conclude that our model has been successfully implemented, and

that it incorporates the most important details of the problem. We also conclude that the

stochastic programming model is an important tool in the decision process, giving insight of

the dynamics of the expansion problem.
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