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EXCISION IN EQUIVARIANT KK-THEORY

KLAUS THOMSEN

1. INTRODUCTION

It is wellknown that the equivariant KK-theory of Kasparov, [K], has excision with
respect to equivariant extensions for which the quotient map admits a completely
positive and equivariant section. In other words, when G is a second countable
locally compact group, an extension of G-algebras,

p

0 B E A 0, (1.1)

with the property that there is a completely positive and equivariant linear map
s: A — F such that po s =idyu, will give rise to the two six-term exact sequences

KKg(D,B) —= KKa(D,E) —= KKq(D, A)

T |

and
KKg(A,D)—— KKg(E,D) — KKg(B, D)

T |

for any G-algebra D. This important property of equivariant KK-theory was estab-
lished in [BS]. Already in the non-equivariant case it is in general necessary to have
the completely positive section, cf. [S], but it was a question if it was necessary that
the completely positive section be equivariant. This question has been addressed in
[Ma], [C], and partial results - all indicating that equivariance may not be necessary
- have been obtained in [CS], [BS] and [Ma]. The purpose with this note is to prove
that equivariance of s is in fact not necessary. This will be done by proving the
following theorem.

Theorem 1.1. Let G be a second countable locally compact group. Let A and B be
separable G-algebras and

p

0 B E A 0

a G-extension (i.e. a short exact sequence where all x-homomorphisms are equivari-
ant). Assume that there is a completely positive linear map s : A — E such that
pos =idy. (s need not be equivariant !) It follows that there is a completely positive
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2 KLAUS THOMSEN

equivariant linear contractionr : AQKg — FQKg such that (p®idg,, )or = idagxk,, -
In other words, the G-extension

p®idKG
0—=BeKs —EQKs; —A®Ks; —=0 (1.2)
15 equivariantly semi-split.

Kg is here the G-algebra of compact operators on the countable direct sum of
copies of L?(G), equipped with the G-action implemented by the direct sum of the
left regular representation. Since K¢ is equivalent to C in K K the general excision
property of equivariant KK-theory follows from Theorem 1.1 and [BS].

Theorem 1.1 has other applications, both in K-theory and beyond. Since the
notion of exactness for groups is currently under extensive study we mention the
following corollary.

Corollary 1.2. For any G-extension (1.1) which is semi-split in the sense that there
is a completely positive linear map s : A — E such that po s =idy, the sequence
0—BXx,G—Ex,G—AXx,G—0,

15 also exact and semi-split.

Acknowledgement. 1 wish to thank Joachim Cuntz for bringing the problem of
excision in equivariant KK-theory to my attention a couple of years ago.

2. PROOFS

In the following G is a fixed second countable locally compact group.

Lemma 2.1. There is a non-negative function ¢ € C.(G) and a sequence {1},
of non-negative functions in C.(G x G) such that,

a) fG ©o(h) fG U9~ h, g)? dg dh =1 for all n € N, and
b) for any compact subset K C G there is an N € N such that

[0 [ 1000 gk) = i) dg dh =0
G G
for all k € K and all n > N.

Proof. Let J € C.(G) be a non-negative function such that J(e) # 0, where e € G
is the neutral element. Define A : G x G — R by

Aies) = [ g5 07g) do.
G
Then A is continuous and non-negative. Furthermore,

Ak th, sk) = A(h, 5) (2.1)
for all h,s € G. Set ¢(h) = A(h,e). ¢ is non-negative, has compact support
and [, ¢(h)> dh > 0. Let Uy C Uy, C Us C -+ be a sequence of open sets in
G with compact closures such that |J, U, = G and let X, : G — [0,1],n € N,
be a monotonely increasing sequence in C.(G) such that A\,(g) = 1,9 € U,. Set

ln(h,s) = Au(s)A(h,s). Each [, is non-negative and has compact support. Set
kn = \/1,. Then

n—0o0

lim gp(h)/ kn(g th,g)* dg dh > 0. (2.2)
G G
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Indeed, by Lebesgues theorem on monotone convergence,

i [ o) [ w9 dg i = [ o) [ Ng~hg) dg dh.
n—=o Ja G G G

By (2.1) the latter equals [, ¢(h) [, A(h,e) dg dh = m(G) [, ¢(h)* dh, where m
is the Haar-measure. The last expression is strictly positive (and = 400 when
G is not compact). It follows that if we ignore ﬁnitely many n’s we can set
Un(h, ) = 05 P kn(h, 5) where 8, = [, o(h) [ kn(g " h,g)> dg dh. Then a) holds
by construction. To see that b) holds, consider a compact subset K C G and set
L = K Usuppy. The support of g — A(h, g) is contained in M = {g; g, 95"
g1, 92 € suppJ g3 € L} when h € L. Choose N so large that M U ML C Uy. It
follows from (2.1) that

/Il "ty gk) = 1 hgldg—/lA (9k) = Aul9)[A(R, 9) dg,
so we see that
/ (kb gk) — 1n(h, )| dg = 0, n> N, k,h € L. (2.3)
G

Since |a — b]* < |a* — b?|, a,b > 0, we have the estimate

/ k(K™ Ry gk) — Kn(h, g)|* dg < / Lo (k7 "h, gk) — 1, (h, g)| dg
G G

for all n. In combination with (2.3) this implies that [, @(h) [, [n(k™"h, gk) —
Yn(h,g)|*> dg dh =0 for all k € K and all n > N. O

By a G-algebra A we mean a separable C*-algebra equipped with a point-wise
normcontinuous action of G' by automorphisms. Such an action extends to an action
of G by automorphisms of the multiplier algebra M (A), although the extended action
can fail to be point-wise normcontinuous. In the following we shall also consider
Hilbert modules over a G-algebra equipped with a comparable G-action. Since the
definitions and terminology will be familiar to most readers (if not all), we refer to
[Ma], [T] or [MP] for this. We denote the action of a group element g € G on an
element z of a C*-algebra or a Hilbert module over a C*-algebra by ¢g-x. A sequence
{¢n} of maps ¢, : £ — F between Hilbert B, G-modules will be called eventually
equivariant when the following holds: For any compact subset K C G there is an
N € N such that g- ¢, (z) = p,(g-x) forallz € £,g € K, when n > N.

Lemma 2.2. Let A and B be G-algebras. Let s : A — M(B) be a completely positive
contraction such that s(g-a)—g-s(a) € B for alla € A and all g € G. There is then
a countably generated Hilbert B, G-module &£, an equivariant x-homomorphism 7 :
A — Lg(€) and an eventually equivariant sequence {W,} of adjoinable isometries

W, : B — &€ such that s(a) — W} (a)W, € B for alla € A and all n € N.

Proof. After adding a unit to A and extending s we may assume that A and s are
unital. Let ¢ and {t,} be the functions from Lemma 2.1. Let o and f denote the
given representations of G as automorphisms on A and B, respectively. We give
C.(G,A)®C.(G, B) aright B-module structure such that (b ® f)b = h® fb, where
fo(g) = f(g)B,(b) and make it into a semi-inner-product B-module in the sense of
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[L] such that

<j®w,j1®w1>=/

e

sz>(/”c)/Gg1 [W(9)*s(g- (3(g " "h) (g "h))¥i(g)] dg dh .

Let £ denote the resulting Hilbert B-module, cf. pp 3-4 in [L]. £ is countably gener-
ated because G is second countable and A and B separable. Define a representation
S of G on £ such that

Sk ® f) = ar(i(k™")) ® f(-k).

Then € is a Hilbert B, G-module. Define m : A — Lp(€) such that m(a)(j ® f) =
aj ® f, where (aj)(g) = aj(g). Then m(a)Sp-1(j ® f) = acy-1(j(k+)) @ f(-k~") and
hence (Sgm(a)Sk-1)(j @ f) = ag(a)j(-) @ f(-) =n(k-a)(j ® f), proving that 7 is an
equivariant x-homomorphism. Since ), can be uniformly approximated by elements
from C.(G) ® C.(G) and 1 € A, the function (h,s) — 1, (h,s)Bs(b) is an element
of £ which we define to be W,,b. To see that W,, : B — £ is adjoinable, define first
T:C.(G,A)®C.(G,B) — B such that

1G9 ) = [ o) [ valg™holg™ - slo-ila" W) )] da b
It is then straightforward to check that
< Wb, i@ f>=<bT(HRf)>. (2.4)

Let > .j; ® f; be a finite sum of simple tensors in C.(G, A) ® C.(G, B). By using
that s is a completely positive contraction we find that

||T(Z]z ® fi)ll
=11 [ o) [ vala™ ) Y07 s(a- (il W) fla)] d ]

<1 [ o) [ a7 (3 o) sta Gita™ 07 3 sl - g™ ) )] da bl
([ et [ vt hg)? dg any'

<1 foth) Lo (0 Aot U™t~ D) da

= ||Z]z®fz||

It follows that 7" extends to a linear contraction 7" : £ — B which then, by (2.4), is
Wr. Since

WiW,b = b/ 90(/%)/ Un(gh,g)* dg dh = b,
G G



EXCISION 5

we see that W, is an isometry thanks to a) of Lemma 2.1. Since g — ¢! -

is normcontinuous by Theorem 2.1 of [T], the identity

Wi (a) Wb — s(a)b L/ /wn 1, g)’lg™ - (sg - a)) — s(a)lb dg dh

shows that W*m(a)W,—s(a) € B for all a,n. Since (SgW,,b)(h, s) = ¥, (k~th, sk)Bs(D)
and W, Bk(b)(h, s) = 1, (h, s)Bsk(b), we find that

s(g - a)

n&mmwwm%w/mm/mwwa%wwmmmF@Mn
G (€]

b2 | o(h W(kLh, gk) — 0, (h, 9)2 dg dh.
snanyLW( gk) — Ga(hyg)? dg

It follows that {W,} is eventually equivariant thanks to property b) of Lemma 2.1.
U

In the following we shall manipulate the Hilbert B, G-module from Lemma 2.2
further, and to do this we need to assume that B is 'stable’. For G-algebras there are
at least two different notions of stability which are relevant. We will say that B is
weakly stable when B ® K is equivariantly isomorphic to B, where I denotes the G-
algebra of compact operators on a separable infinite dimensional Hilbert space with
the trivial G-action. Thus any G-algebra can be weakly stabilized; B ® K is weakly
stable. A stronger notion of stability is the following. Let K be the G-algebra of
compact operators on the countable direct sum of copies of L*(G), equipped with
the G-action implemented by the direct sum of the left regular representation. We
say that B is stable when B ® Kg is equivariantly isomorphic to B. An arbitrary
G-algebra can also be stabilized; B ® K¢ is stable, cf. [MP].

In the following we shall consider the Hilbert B, G-module L*(G, B)*, cf. [MP].
Note that L*(G, B)® ~ L*(G, B) ~ B ® L*(G) when B is weakly stable.

Lemma 2.3. Let A and B be G-algebras, B weakly stable. Let s : A — M(B) be a

completely positive contraction such that s(g-a)—g-s(a) € B for alla € A and all g €
G. It follows that there is an equivariant x-homomorphism 7 : AQKg — M(B®Kg)
and an eventually equivariant sequence {W,} of isometries in M (B ® K¢) such that

Wir(x)W,, — s @ idg,(z) € B® K¢ for alln and allx € A® Kg.

Proof. 1t follows from Lemma 2.2 that there is a countably generated Hilbert B, G-
module &£, a *-homomorphism 7’ : A — Lg(€) and an eventually equivariant se-

quence of isometries W, : B — & such that W, 7' (a)W, — s(a) € B for all a € A.
Set Vi, = W, @ idp2q) : B® L*(G) = € ® L*(G) and 7" = 7' @id, : A® Kg —
Lp (€ ® L*(G)). We have the following isomorphisms of Hilbert B, G-modules:
(£ L*(Q)* @ L*(G, B)™ ~ (L*(G,£ ® B))™ (by definition)
~ [*(G, B)™® (by Theorem 2.4 of [MP])
~ B® L*(G) (since B is weakly stable) .
It follows that there is an adjoinable equivariant isometry V : € ® L?*(G) — B ®

L*(GQ). Let 7 = Vr"(-)V* and set W,, = V'V,,. Via the identification M(B ® K¢) =
Lp(B ® L?(G)) we get the desired things.

O
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Proposition 2.4. Let A and B be G-algebras, B weakly stable. Let s : A —
M (B) be a completely positive contraction such that s(g - a) — g - s(a) € B for
all a € A and all g € G. It follows that there is an equivariant *-homomorphism
m: AQKg - M(B®Kg) and a sequence of isometries {S,} C M(B®Kq) such that
Sim(x)Sy, —s®idi,(v) € B&Kq forallz € AQKq and alln, g-S,— S, € B&Kq
for all g,n, and lim,,_,, g - S, — S, = 0, uniformly on compact subsets of G.

Proof. Set A = AR Kg, B = B® Kg. By Lemma 2.3 there is an equivariant
«-homomorphism 7 : A — M(B) and an eventually equivariant sequence {W,} of
isometries in M(B) such that W, 7 (z)W, —s®idx, (z) € B, = € A®Kg. Since B is
weakly stable there is a sequence {V},} of G-invariant isometries in M (B) such that
> ViV =1, with convergence in the strict topology. Set w(z) = > > Vo, (x)V!
and W, = V,W,. The W,’s are isometries, Wen(z)W,, = Wn*%(x)l/ffn for all x,n,
and {W,} is eventually equivariant. In addition,

Win(A)W; = {0}, and W;W; =0, i#j (2.5)

and
lim Wb =0, b e B. (2.6)

n—oo

Fix a compact subset X with dense span in A, an ¢ > 0 and a compact subset
K C G. To complete the proof it suffices to construct an isometry S € M(B) such
that g-S—S € Bforallg € G, S*r(x)S —s®idk,(r) € B,x € X, and ||k-5S—S5]| <€
forall k € K. Let K = K; C Ky C K3 C --- be a sequence of compact sets such
that G = J,, K,,. Let b be a strictly positive element in B. Choose a sub-sequence
{T}} of {Wy} such that

9-Ti=T, g €Ki (2.7)
and, using (2.6),

ITyo) < 277, (2.8)

for all i. Let {e;};2, be an approximate unit for B which is asymptotically G-
invariant and asymptotically commutes with s ®idg,(A), cf. Lemma 1.4 of [K]. Let
ny < ng <ng<--- bea sequence in N and set

fl - 61/2 fk) — (enk - enk_l)l/za k Z 2

ny ?

We shall assume that {n;} increases so fast that

lg- fi— fil <27 (2.9)
forall g € K; and all © € N,
Ifibll <27%, i > 2, (2.10)
and
s © idicg () — 5 ® iy () i} < 27* (2.11)

for all x € X and k£ € N. Furthermore, since T;7(2)T; — s ® id,(z) € B for all
x € X, we can arrange that

£ (T m(2)T; — s @ ide,, (2)) fil| < 27F, = € X,i > 2. (2.12)

It follows then from (2.10), (2.8) and (2.5) that Y_,° T)f) converges in the strict
topology to an isometry S in M(B). By (2.9) and (2.7),

g+ (Tefe) — Tfill < 27%, k> n, g € K,,
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from which we conclude that g-S—S € Bforall g € G and that ||k-S—S|| <, k € K.
It follows from (2.5) that S*m(z)S—s®idi, (x) = > oo, fil;m(2)T; f; —sQidk,, () for
all z € X. Furthermore, (2.11) ensures that s @idy, (z) —> o, fis@idk,(z)f; € B.
Hence

S*r(x)S — s @ idg,, (x) = Z Fi(Trm(2)T; — s ® idee,, () f;

modulo B for all z € X. The last sum is in B by (2.12).
0

Proof. (Of Theorem 1.1.) By tensoring the entire extension with K; we may assume
that A, F and B are all stable. Furthermore, we may assume that s is a contraction,
cf. Remark 2.5.1 of [CS]. By combining Proposition 2.4 here with Lemma 3.2 of
[T] we conclude that the extension (1.2) is invertible in the sense of [T]. The result
follows now from Theorem 8.1 of [T]. O

Proof. (Of Corollary 1.2.) It follows from Theorem 1.1 that
0—= (B®Kg) %, G— (E®Kg) X, G— (A Kg) %, G—0,

is exact and semi-split. But the action of G on B ® K¢ is exterior equivalent to the
action which is trivial on the tensor factor Kg, and consequently (B @ Kg) X, G ~
(B %, G) ® K. The same is of course true with £ or A in place of B, and the
isomorphisms are natural. Hence

0— Bx,G)K—(EX,G) K — (A X%, G) @ K—=0,

is also exact and semi-split, and the corollary follows straightforwardly from this. [J
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