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EXCISION IN EQUIVARIANT KK-THEORY

KLAUS THOMSEN

1. Introduction

It is wellknown that the equivariant KK-theory of Kasparov, [K], has excision with
respect to equivariant extensions for which the quotient map admits a completely
positive and equivariant section. In other words, when G is a second countable
locally compact group, an extension of G-algebras,

0 // B // E
p // A // 0; (1.1)

with the property that there is a completely positive and equivariant linear map
s : A! E such that p Æ s = idA, will give rise to the two six-term exact sequences

KKG(D;B) // KKG(D;E) // KKG(D;A)

��
KK1

G(D;A)

OO

KK1
G(D;E)

oo KK1
G(D;B)

oo

and

KKG(A;D) // KKG(E;D) // KKG(B;D)

��
KK1

G(B;D)

OO

KK1
G(E;D)oo KK1

G(A;D)oo

for any G-algebra D. This important property of equivariant KK-theory was estab-
lished in [BS]. Already in the non-equivariant case it is in general necessary to have
the completely positive section, cf. [S], but it was a question if it was necessary that
the completely positive section be equivariant. This question has been addressed in
[Ma], [C], and partial results - all indicating that equivariance may not be necessary
- have been obtained in [CS], [BS] and [Ma]. The purpose with this note is to prove
that equivariance of s is in fact not necessary. This will be done by proving the
following theorem.

Theorem 1.1. Let G be a second countable locally compact group. Let A and B be
separable G-algebras and

0 // B // E
p // A // 0

a G-extension (i.e. a short exact sequence where all �-homomorphisms are equivari-
ant). Assume that there is a completely positive linear map s : A ! E such that
pÆs = idA. (s need not be equivariant !) It follows that there is a completely positive
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equivariant linear contraction r : A
K G ! E
K G such that (p
idKG )Ær = idA
KG .
In other words, the G-extension

0 // B 
 K G
// E 
 K G

p
idKG// A
 K G
// 0 (1.2)

is equivariantly semi-split.

K G is here the G-algebra of compact operators on the countable direct sum of
copies of L2(G), equipped with the G-action implemented by the direct sum of the
left regular representation. Since K G is equivalent to C in KKG the general excision
property of equivariant KK-theory follows from Theorem 1.1 and [BS].
Theorem 1.1 has other applications, both in K-theory and beyond. Since the

notion of exactness for groups is currently under extensive study we mention the
following corollary.

Corollary 1.2. For any G-extension (1.1) which is semi-split in the sense that there
is a completely positive linear map s : A! E such that p Æ s = idA, the sequence

0 // B or G // E or G // Aor G // 0;

is also exact and semi-split.

Acknowledgement. I wish to thank Joachim Cuntz for bringing the problem of
excision in equivariant KK-theory to my attention a couple of years ago.

2. Proofs

In the following G is a �xed second countable locally compact group.

Lemma 2.1. There is a non-negative function ' 2 Cc(G) and a sequence f ng1n=1

of non-negative functions in Cc(G�G) such that,

a)
R
G
'(h)

R
G
 n(g

�1h; g)2 dg dh = 1 for all n 2 N, and
b) for any compact subset K � G there is an N 2 N such thatZ

G

'(h)

Z
G

j n(k
�1h; gk)�  n(h; g)j2 dg dh = 0

for all k 2 K and all n � N .

Proof. Let J 2 Cc(G) be a non-negative function such that J(e) 6= 0, where e 2 G

is the neutral element. De�ne � : G�G! R by

�(h; s) =

Z
G

J(g�1s�1)J(h�1g) dg:

Then � is continuous and non-negative. Furthermore,

�(k�1h; sk) = �(h; s) (2.1)

for all h; s 2 G. Set '(h) = �(h; e). ' is non-negative, has compact support
and

R
G
'(h)2 dh > 0. Let U1 � U2 � U3 � � � � be a sequence of open sets in

G with compact closures such that
S

n Un = G and let �n : G ! [0; 1]; n 2 N ,
be a monotonely increasing sequence in Cc(G) such that �n(g) = 1; g 2 Un. Set
ln(h; s) = �n(s)�(h; s). Each ln is non-negative and has compact support. Set
�n =

p
ln. Then

lim
n!1

Z
G

'(h)

Z
G

�n(g
�1h; g)2 dg dh > 0: (2.2)
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Indeed, by Lebesgues theorem on monotone convergence,

lim
n!1

Z
G

'(h)

Z
G

�n(g
�1h; g)2 dg dh =

Z
G

'(h)

Z
G

�(g�1h; g) dg dh:

By (2.1) the latter equals
R
G
'(h)

R
G
�(h; e) dg dh = m(G)

R
G
'(h)2 dh, where m

is the Haar-measure. The last expression is strictly positive (and = +1 when
G is not compact). It follows that if we ignore �nitely many n's we can set

 n(h; s) = Æ
�1=2
n �n(h; s) where Æn =

R
G
'(h)

R
G
�n(g

�1h; g)2 dg dh. Then a) holds
by construction. To see that b) holds, consider a compact subset K � G and set
L = K [ supp'. The support of g 7! �(h; g) is contained in M = fg�11 g�12 g�13 :
g1; g2 2 supp J; g3 2 Lg when h 2 L. Choose N so large that M [ML � UN . It
follows from (2.1) thatZ

G

jln(k�1h; gk)� ln(h; g)j dg =
Z
G

j�n(gk)� �n(g)j�(h; g) dg;

so we see that Z
G

jln(k�1h; gk)� ln(h; g)j dg = 0; n � N; k; h 2 L: (2.3)

Since ja� bj2 � ja2 � b2j; a; b � 0, we have the estimateZ
G

j�n(k�1h; gk)� �n(h; g)j2 dg �
Z
G

jln(k�1h; gk)� ln(h; g)j dg

for all n. In combination with (2.3) this implies that
R
G
'(h)

R
G
j n(k

�1h; gk) �
 n(h; g)j2 dg dh = 0 for all k 2 K and all n � N . �

By a G-algebra A we mean a separable C�-algebra equipped with a point-wise
normcontinuous action of G by automorphisms. Such an action extends to an action
ofG by automorphisms of the multiplier algebraM(A), although the extended action
can fail to be point-wise normcontinuous. In the following we shall also consider
Hilbert modules over a G-algebra equipped with a comparable G-action. Since the
de�nitions and terminology will be familiar to most readers (if not all), we refer to
[Ma], [T] or [MP] for this. We denote the action of a group element g 2 G on an
element x of a C�-algebra or a Hilbert module over a C�-algebra by g �x. A sequence
f'ng of maps 'n : E ! F between Hilbert B;G-modules will be called eventually
equivariant when the following holds: For any compact subset K � G there is an
N 2 N such that g � 'n(x) = 'n(g � x) for all x 2 E ; g 2 K, when n � N .

Lemma 2.2. Let A and B be G-algebras. Let s : A!M(B) be a completely positive
contraction such that s(g �a)�g �s(a) 2 B for all a 2 A and all g 2 G. There is then
a countably generated Hilbert B;G-module E, an equivariant �-homomorphism � :
A ! LB (E) and an eventually equivariant sequence fWng of adjoinable isometries
Wn : B ! E such that s(a)�W �

n�(a)Wn 2 B for all a 2 A and all n 2 N.

Proof. After adding a unit to A and extending s we may assume that A and s are
unital. Let ' and f ng be the functions from Lemma 2.1. Let � and � denote the
given representations of G as automorphisms on A and B, respectively. We give
Cc(G;A)
Cc(G;B) a right B-module structure such that (h
 f)b = h
 fb, where
fb(g) = f(g)�g(b) and make it into a semi-inner-product B-module in the sense of
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[L] such that

< j 
  ; j1 
  1 > =

Z
G

'(h)

Z
G

g�1 � [ (g)�s(g � (j(g�1h)�j1(g�1h))) 1(g)] dg dh :

Let E denote the resulting Hilbert B-module, cf. pp 3-4 in [L]. E is countably gener-
ated because G is second countable and A and B separable. De�ne a representation
S of G on E such that

Sk(j 
 f) = �k(j(k
�1�))
 f(�k):

Then E is a Hilbert B;G-module. De�ne � : A ! LB (E) such that �(a)(j 
 f) =
aj 
 f , where (aj)(g) = aj(g). Then �(a)Sk�1(j 
 f) = a�k�1(j(k�))
 f(�k�1) and
hence (Sk�(a)Sk�1)(j 
 f) = �k(a)j(�)
 f(�) = �(k � a)(j 
 f), proving that � is an
equivariant �-homomorphism. Since  n can be uniformly approximated by elements
from Cc(G) 
 Cc(G) and 1 2 A, the function (h; s) 7!  n(h; s)�s(b) is an element
of E which we de�ne to be Wnb. To see that Wn : B ! E is adjoinable, de�ne �rst
T : Cc(G;A)
 Cc(G;B)! B such that

T (j 
 f) =

Z
G

'(h)

Z
G

 n(g
�1h; g)g�1 � [s(g � j(g�1h))f(g)] dg dh:

It is then straightforward to check that

< Wnb; j 
 f >=< b; T (j 
 f) > : (2.4)

Let
P

i ji 
 fi be a �nite sum of simple tensors in Cc(G;A) 
 Cc(G;B). By using
that s is a completely positive contraction we �nd that

kT (
X
i

ji 
 fi)k

= k
Z
G

'(h)

Z
G

 n(g
�1h; g)

X
i

g�1 � [s(g � (ji(g�1h)))fi(g)] dg dhk

� k
Z
G

'(h)

Z
G

g�1 � [
X
i

fi(g)
�s(g � (ji(g�1h)�))

X
l

s(g � (jl(g�1h)))fl(g)] dg dhk1=2�

(

Z
G

'(h)

Z
G

 n(g
�1h; g)2 dg dh)1=2

� k
Z
G

'(h)

Z
G

g�1 � [
X
i;l

fi(g)
�s(g � (ji(g�1h)�jl(g�1h)))fl(g)] dg dhk1=2

= k
X
i

ji 
 fik:

It follows that T extends to a linear contraction T : E ! B which then, by (2.4), is
W �

n . Since

W �
nWnb = b

Z
G

'(h)

Z
G

 n(g
�1h; g)2 dg dh = b;
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we see that Wn is an isometry thanks to a) of Lemma 2.1. Since g 7! g�1 � s(g � a)
is normcontinuous by Theorem 2.1 of [T], the identity

W �
n�(a)Wnb� s(a)b =

Z
G

'(h)

Z
G

 n(g
�1h; g)2[g�1 � (s(g � a))� s(a)]b dg dh

shows thatW �
n�(a)Wn�s(a) 2 B for all a; n. Since (SkWnb)(h; s) =  n(k

�1h; sk)�sk(b)
and Wn�k(b)(h; s) =  n(h; s)�sk(b), we �nd that

kSkWnb�Wn�kbk2 = k
Z
G

'(h)

Z
G

�k(b
�b)j n(k

�1h; gk)�  n(h; g)j2 dg dhk

� kbk2
Z
G

'(h)

Z
G

j n(k
�1h; gk)�  n(h; g)j2 dg dh:

It follows that fWng is eventually equivariant thanks to property b) of Lemma 2.1.
�

In the following we shall manipulate the Hilbert B;G-module from Lemma 2.2
further, and to do this we need to assume that B is 'stable'. For G-algebras there are
at least two di�erent notions of stability which are relevant. We will say that B is
weakly stable when B
K is equivariantly isomorphic to B, where K denotes the G-
algebra of compact operators on a separable in�nite dimensional Hilbert space with
the trivial G-action. Thus any G-algebra can be weakly stabilized; B 
K is weakly
stable. A stronger notion of stability is the following. Let K G be the G-algebra of
compact operators on the countable direct sum of copies of L2(G), equipped with
the G-action implemented by the direct sum of the left regular representation. We
say that B is stable when B 
 K G is equivariantly isomorphic to B. An arbitrary
G-algebra can also be stabilized; B 
 K G is stable, cf. [MP].
In the following we shall consider the Hilbert B;G-module L2(G;B)1, cf. [MP].

Note that L2(G;B)1 ' L2(G;B) ' B 
 L2(G) when B is weakly stable.

Lemma 2.3. Let A and B be G-algebras, B weakly stable. Let s : A!M(B) be a
completely positive contraction such that s(g�a)�g�s(a) 2 B for all a 2 A and all g 2
G. It follows that there is an equivariant �-homomorphism � : A
KG !M(B
KG)
and an eventually equivariant sequence fWng of isometries in M(B
KG) such that
W �

n�(x)Wn � s
 idKG(x) 2 B 
KG for all n and all x 2 A
KG.

Proof. It follows from Lemma 2.2 that there is a countably generated Hilbert B;G-
module E , a �-homomorphism �0 : A ! LB (E) and an eventually equivariant se-

quence of isometries ~Wn : B ! E such that ~Wn
�
�0(a) ~Wn � s(a) 2 B for all a 2 A.

Set Vn = ~Wn 
 idL2(G) : B 
 L2(G) ! E 
 L2(G) and �00 = �0 
 idKG : A 
 KG !
LB (E 
 L2(G)). We have the following isomorphisms of Hilbert B;G-modules:

(E 
 L2(G))1 � L2(G;B)1 ' (L2(G; E � B))1 (by de�nition)

' L2(G;B)1 (by Theorem 2.4 of [MP])

' B 
 L2(G) (since B is weakly stable) .

It follows that there is an adjoinable equivariant isometry V : E 
 L2(G) ! B 

L2(G). Let � = V �00(�)V � and set Wn = V Vn. Via the identi�cation M(B 
KG) =
LB (B 
 L2(G)) we get the desired things.

�
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Proposition 2.4. Let A and B be G-algebras, B weakly stable. Let s : A !
M(B) be a completely positive contraction such that s(g � a) � g � s(a) 2 B for
all a 2 A and all g 2 G. It follows that there is an equivariant �-homomorphism
� : A
KG !M(B
KG) and a sequence of isometries fSng �M(B
KG) such that
S�n�(x)Sn�s
 idKG(x) 2 B
KG for all x 2 A
KG and all n, g �Sn�Sn 2 B
KG

for all g; n, and limn!1 g � Sn � Sn = 0, uniformly on compact subsets of G.

Proof. Set A = A 
 KG; B = B 
 KG. By Lemma 2.3 there is an equivariant
�-homomorphism ~� : A ! M(B) and an eventually equivariant sequence f ~Wng of

isometries inM(B) such that ~Wn
�
~�(x) ~Wn�s
 idKG(x) 2 B; x 2 A
KG. Since B is

weakly stable there is a sequence fVng of G-invariant isometries in M(B) such thatP1

n=1 VnV
�
n = 1, with convergence in the strict topology. Set �(x) =

P1

n=1 Vn~�(x)V
�
n

and Wn = Vn ~Wn. The Wn's are isometries, W �
n�(x)Wn = ~Wn

�
~�(x) ~Wn for all x; n,

and fWng is eventually equivariant. In addition,

W �
i �(A)Wj = f0g; and W �

i Wj = 0; i 6= j (2.5)

and

lim
n!1

W �
nb = 0; b 2 B: (2.6)

Fix a compact subset X with dense span in A, an � > 0 and a compact subset
K � G. To complete the proof it suÆces to construct an isometry S 2 M(B) such
that g �S�S 2 B for all g 2 G, S��(x)S�s
idKG(x) 2 B; x 2 X, and kk �S�Sk � �

for all k 2 K. Let K = K1 � K2 � K3 � � � � be a sequence of compact sets such
that G =

S
nKn. Let b be a strictly positive element in B. Choose a sub-sequence

fTkg of fWkg such that

g � Ti = Ti; g 2 Ki; (2.7)

and, using (2.6),

kT �i bk � 2�i; (2.8)

for all i. Let feig1i=1 be an approximate unit for B which is asymptotically G-
invariant and asymptotically commutes with s
 idKG(A), cf. Lemma 1.4 of [K]. Let
n1 < n2 < n3 < � � � be a sequence in N and set

f1 = e1=2n1 ; fk = (enk � enk�1)
1=2; k � 2:

We shall assume that fnig increases so fast that

kg � fi � fik � 2�i� (2.9)

for all g 2 Ki and all i 2 N ,

kfibk � 2�i; i � 2; (2.10)

and

kfks
 idKG(x)� s
 idKG(x)fkk � 2�k (2.11)

for all x 2 X and k 2 N . Furthermore, since T �i �(x)Ti � s 
 idKG(x) 2 B for all
x 2 X, we can arrange that

kfi(T �i �(x)Ti � s
 idKG(x))fik � 2�i; x 2 X; i � 2: (2.12)

It follows then from (2.10), (2.8) and (2.5) that
P1

k=1 Tkfk converges in the strict
topology to an isometry S in M(B). By (2.9) and (2.7),

kg � (Tkfk)� Tkfkk � 2�k�; k � n; g 2 Kn;
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from which we conclude that g�S�S 2 B for all g 2 G and that kk�S�Sk � �; k 2 K.
It follows from (2.5) that S��(x)S�s
idKG(x) =

P
1

i=1 fiT
�
i �(x)Tifi�s
idKG(x) for

all x 2 X. Furthermore, (2.11) ensures that s
 idKG(x)�
P1

i=1 fis
 idKG(x)fi 2 B.
Hence

S��(x)S � s
 idKG(x) =
1X
i=1

fi(T
�
i �(x)Ti � s
 idKG(x))fi

modulo B for all x 2 X. The last sum is in B by (2.12).
�

Proof. (Of Theorem 1.1.) By tensoring the entire extension with K G we may assume
that A;E and B are all stable. Furthermore, we may assume that s is a contraction,
cf. Remark 2.5.1 of [CS]. By combining Proposition 2.4 here with Lemma 3.2 of
[T] we conclude that the extension (1.2) is invertible in the sense of [T]. The result
follows now from Theorem 8.1 of [T]. �

Proof. (Of Corollary 1.2.) It follows from Theorem 1.1 that

0 // (B 
 K G)or G // (E 
 K G)or G // (A
 K G)or G // 0;

is exact and semi-split. But the action of G on B 
 K G is exterior equivalent to the
action which is trivial on the tensor factor K G , and consequently (B 
 K G)or G '
(B or G) 
 K. The same is of course true with E or A in place of B, and the
isomorphisms are natural. Hence

0 // (B or G)
 K // (E or G)
 K // (Aor G)
K // 0;

is also exact and semi-split, and the corollary follows straightforwardly from this. �
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